src/share/vm/opto/node.hpp

Thu, 08 Aug 2013 03:16:56 +0200

author
rbackman
date
Thu, 08 Aug 2013 03:16:56 +0200
changeset 5546
acedd49a1bce
parent 5509
d1034bd8cefc
child 5614
9758d9f36299
child 5626
766fac3395d6
permissions
-rw-r--r--

8022675: Redundant class init check
Reviewed-by: kvn, twisti

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_OPTO_NODE_HPP
    26 #define SHARE_VM_OPTO_NODE_HPP
    28 #include "libadt/port.hpp"
    29 #include "libadt/vectset.hpp"
    30 #include "opto/compile.hpp"
    31 #include "opto/type.hpp"
    33 // Portions of code courtesy of Clifford Click
    35 // Optimization - Graph Style
    38 class AbstractLockNode;
    39 class AddNode;
    40 class AddPNode;
    41 class AliasInfo;
    42 class AllocateArrayNode;
    43 class AllocateNode;
    44 class Block;
    45 class BoolNode;
    46 class BoxLockNode;
    47 class CMoveNode;
    48 class CallDynamicJavaNode;
    49 class CallJavaNode;
    50 class CallLeafNode;
    51 class CallNode;
    52 class CallRuntimeNode;
    53 class CallStaticJavaNode;
    54 class CatchNode;
    55 class CatchProjNode;
    56 class CheckCastPPNode;
    57 class ClearArrayNode;
    58 class CmpNode;
    59 class CodeBuffer;
    60 class ConstraintCastNode;
    61 class ConNode;
    62 class CountedLoopNode;
    63 class CountedLoopEndNode;
    64 class DecodeNarrowPtrNode;
    65 class DecodeNNode;
    66 class DecodeNKlassNode;
    67 class EncodeNarrowPtrNode;
    68 class EncodePNode;
    69 class EncodePKlassNode;
    70 class FastLockNode;
    71 class FastUnlockNode;
    72 class IfNode;
    73 class IfFalseNode;
    74 class IfTrueNode;
    75 class InitializeNode;
    76 class JVMState;
    77 class JumpNode;
    78 class JumpProjNode;
    79 class LoadNode;
    80 class LoadStoreNode;
    81 class LockNode;
    82 class LoopNode;
    83 class MachBranchNode;
    84 class MachCallDynamicJavaNode;
    85 class MachCallJavaNode;
    86 class MachCallLeafNode;
    87 class MachCallNode;
    88 class MachCallRuntimeNode;
    89 class MachCallStaticJavaNode;
    90 class MachConstantBaseNode;
    91 class MachConstantNode;
    92 class MachGotoNode;
    93 class MachIfNode;
    94 class MachNode;
    95 class MachNullCheckNode;
    96 class MachProjNode;
    97 class MachReturnNode;
    98 class MachSafePointNode;
    99 class MachSpillCopyNode;
   100 class MachTempNode;
   101 class Matcher;
   102 class MemBarNode;
   103 class MemBarStoreStoreNode;
   104 class MemNode;
   105 class MergeMemNode;
   106 class MulNode;
   107 class MultiNode;
   108 class MultiBranchNode;
   109 class NeverBranchNode;
   110 class Node;
   111 class Node_Array;
   112 class Node_List;
   113 class Node_Stack;
   114 class NullCheckNode;
   115 class OopMap;
   116 class ParmNode;
   117 class PCTableNode;
   118 class PhaseCCP;
   119 class PhaseGVN;
   120 class PhaseIterGVN;
   121 class PhaseRegAlloc;
   122 class PhaseTransform;
   123 class PhaseValues;
   124 class PhiNode;
   125 class Pipeline;
   126 class ProjNode;
   127 class RegMask;
   128 class RegionNode;
   129 class RootNode;
   130 class SafePointNode;
   131 class SafePointScalarObjectNode;
   132 class StartNode;
   133 class State;
   134 class StoreNode;
   135 class SubNode;
   136 class Type;
   137 class TypeNode;
   138 class UnlockNode;
   139 class VectorNode;
   140 class LoadVectorNode;
   141 class StoreVectorNode;
   142 class VectorSet;
   143 typedef void (*NFunc)(Node&,void*);
   144 extern "C" {
   145   typedef int (*C_sort_func_t)(const void *, const void *);
   146 }
   148 // The type of all node counts and indexes.
   149 // It must hold at least 16 bits, but must also be fast to load and store.
   150 // This type, if less than 32 bits, could limit the number of possible nodes.
   151 // (To make this type platform-specific, move to globalDefinitions_xxx.hpp.)
   152 typedef unsigned int node_idx_t;
   155 #ifndef OPTO_DU_ITERATOR_ASSERT
   156 #ifdef ASSERT
   157 #define OPTO_DU_ITERATOR_ASSERT 1
   158 #else
   159 #define OPTO_DU_ITERATOR_ASSERT 0
   160 #endif
   161 #endif //OPTO_DU_ITERATOR_ASSERT
   163 #if OPTO_DU_ITERATOR_ASSERT
   164 class DUIterator;
   165 class DUIterator_Fast;
   166 class DUIterator_Last;
   167 #else
   168 typedef uint   DUIterator;
   169 typedef Node** DUIterator_Fast;
   170 typedef Node** DUIterator_Last;
   171 #endif
   173 // Node Sentinel
   174 #define NodeSentinel (Node*)-1
   176 // Unknown count frequency
   177 #define COUNT_UNKNOWN (-1.0f)
   179 //------------------------------Node-------------------------------------------
   180 // Nodes define actions in the program.  They create values, which have types.
   181 // They are both vertices in a directed graph and program primitives.  Nodes
   182 // are labeled; the label is the "opcode", the primitive function in the lambda
   183 // calculus sense that gives meaning to the Node.  Node inputs are ordered (so
   184 // that "a-b" is different from "b-a").  The inputs to a Node are the inputs to
   185 // the Node's function.  These inputs also define a Type equation for the Node.
   186 // Solving these Type equations amounts to doing dataflow analysis.
   187 // Control and data are uniformly represented in the graph.  Finally, Nodes
   188 // have a unique dense integer index which is used to index into side arrays
   189 // whenever I have phase-specific information.
   191 class Node {
   192   friend class VMStructs;
   194   // Lots of restrictions on cloning Nodes
   195   Node(const Node&);            // not defined; linker error to use these
   196   Node &operator=(const Node &rhs);
   198 public:
   199   friend class Compile;
   200   #if OPTO_DU_ITERATOR_ASSERT
   201   friend class DUIterator_Common;
   202   friend class DUIterator;
   203   friend class DUIterator_Fast;
   204   friend class DUIterator_Last;
   205   #endif
   207   // Because Nodes come and go, I define an Arena of Node structures to pull
   208   // from.  This should allow fast access to node creation & deletion.  This
   209   // field is a local cache of a value defined in some "program fragment" for
   210   // which these Nodes are just a part of.
   212   // New Operator that takes a Compile pointer, this will eventually
   213   // be the "new" New operator.
   214   inline void* operator new( size_t x, Compile* C) {
   215     Node* n = (Node*)C->node_arena()->Amalloc_D(x);
   216 #ifdef ASSERT
   217     n->_in = (Node**)n; // magic cookie for assertion check
   218 #endif
   219     n->_out = (Node**)C;
   220     return (void*)n;
   221   }
   223   // Delete is a NOP
   224   void operator delete( void *ptr ) {}
   225   // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
   226   void destruct();
   228   // Create a new Node.  Required is the number is of inputs required for
   229   // semantic correctness.
   230   Node( uint required );
   232   // Create a new Node with given input edges.
   233   // This version requires use of the "edge-count" new.
   234   // E.g.  new (C,3) FooNode( C, NULL, left, right );
   235   Node( Node *n0 );
   236   Node( Node *n0, Node *n1 );
   237   Node( Node *n0, Node *n1, Node *n2 );
   238   Node( Node *n0, Node *n1, Node *n2, Node *n3 );
   239   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 );
   240   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 );
   241   Node( Node *n0, Node *n1, Node *n2, Node *n3,
   242             Node *n4, Node *n5, Node *n6 );
   244   // Clone an inherited Node given only the base Node type.
   245   Node* clone() const;
   247   // Clone a Node, immediately supplying one or two new edges.
   248   // The first and second arguments, if non-null, replace in(1) and in(2),
   249   // respectively.
   250   Node* clone_with_data_edge(Node* in1, Node* in2 = NULL) const {
   251     Node* nn = clone();
   252     if (in1 != NULL)  nn->set_req(1, in1);
   253     if (in2 != NULL)  nn->set_req(2, in2);
   254     return nn;
   255   }
   257 private:
   258   // Shared setup for the above constructors.
   259   // Handles all interactions with Compile::current.
   260   // Puts initial values in all Node fields except _idx.
   261   // Returns the initial value for _idx, which cannot
   262   // be initialized by assignment.
   263   inline int Init(int req, Compile* C);
   265 //----------------- input edge handling
   266 protected:
   267   friend class PhaseCFG;        // Access to address of _in array elements
   268   Node **_in;                   // Array of use-def references to Nodes
   269   Node **_out;                  // Array of def-use references to Nodes
   271   // Input edges are split into two categories.  Required edges are required
   272   // for semantic correctness; order is important and NULLs are allowed.
   273   // Precedence edges are used to help determine execution order and are
   274   // added, e.g., for scheduling purposes.  They are unordered and not
   275   // duplicated; they have no embedded NULLs.  Edges from 0 to _cnt-1
   276   // are required, from _cnt to _max-1 are precedence edges.
   277   node_idx_t _cnt;              // Total number of required Node inputs.
   279   node_idx_t _max;              // Actual length of input array.
   281   // Output edges are an unordered list of def-use edges which exactly
   282   // correspond to required input edges which point from other nodes
   283   // to this one.  Thus the count of the output edges is the number of
   284   // users of this node.
   285   node_idx_t _outcnt;           // Total number of Node outputs.
   287   node_idx_t _outmax;           // Actual length of output array.
   289   // Grow the actual input array to the next larger power-of-2 bigger than len.
   290   void grow( uint len );
   291   // Grow the output array to the next larger power-of-2 bigger than len.
   292   void out_grow( uint len );
   294  public:
   295   // Each Node is assigned a unique small/dense number.  This number is used
   296   // to index into auxiliary arrays of data and bitvectors.
   297   // It is declared const to defend against inadvertant assignment,
   298   // since it is used by clients as a naked field.
   299   const node_idx_t _idx;
   301   // Get the (read-only) number of input edges
   302   uint req() const { return _cnt; }
   303   uint len() const { return _max; }
   304   // Get the (read-only) number of output edges
   305   uint outcnt() const { return _outcnt; }
   307 #if OPTO_DU_ITERATOR_ASSERT
   308   // Iterate over the out-edges of this node.  Deletions are illegal.
   309   inline DUIterator outs() const;
   310   // Use this when the out array might have changed to suppress asserts.
   311   inline DUIterator& refresh_out_pos(DUIterator& i) const;
   312   // Does the node have an out at this position?  (Used for iteration.)
   313   inline bool has_out(DUIterator& i) const;
   314   inline Node*    out(DUIterator& i) const;
   315   // Iterate over the out-edges of this node.  All changes are illegal.
   316   inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const;
   317   inline Node*    fast_out(DUIterator_Fast& i) const;
   318   // Iterate over the out-edges of this node, deleting one at a time.
   319   inline DUIterator_Last last_outs(DUIterator_Last& min) const;
   320   inline Node*    last_out(DUIterator_Last& i) const;
   321   // The inline bodies of all these methods are after the iterator definitions.
   322 #else
   323   // Iterate over the out-edges of this node.  Deletions are illegal.
   324   // This iteration uses integral indexes, to decouple from array reallocations.
   325   DUIterator outs() const  { return 0; }
   326   // Use this when the out array might have changed to suppress asserts.
   327   DUIterator refresh_out_pos(DUIterator i) const { return i; }
   329   // Reference to the i'th output Node.  Error if out of bounds.
   330   Node*    out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; }
   331   // Does the node have an out at this position?  (Used for iteration.)
   332   bool has_out(DUIterator i) const { return i < _outcnt; }
   334   // Iterate over the out-edges of this node.  All changes are illegal.
   335   // This iteration uses a pointer internal to the out array.
   336   DUIterator_Fast fast_outs(DUIterator_Fast& max) const {
   337     Node** out = _out;
   338     // Assign a limit pointer to the reference argument:
   339     max = out + (ptrdiff_t)_outcnt;
   340     // Return the base pointer:
   341     return out;
   342   }
   343   Node*    fast_out(DUIterator_Fast i) const  { return *i; }
   344   // Iterate over the out-edges of this node, deleting one at a time.
   345   // This iteration uses a pointer internal to the out array.
   346   DUIterator_Last last_outs(DUIterator_Last& min) const {
   347     Node** out = _out;
   348     // Assign a limit pointer to the reference argument:
   349     min = out;
   350     // Return the pointer to the start of the iteration:
   351     return out + (ptrdiff_t)_outcnt - 1;
   352   }
   353   Node*    last_out(DUIterator_Last i) const  { return *i; }
   354 #endif
   356   // Reference to the i'th input Node.  Error if out of bounds.
   357   Node* in(uint i) const { assert(i < _max, err_msg_res("oob: i=%d, _max=%d", i, _max)); return _in[i]; }
   358   // Reference to the i'th output Node.  Error if out of bounds.
   359   // Use this accessor sparingly.  We are going trying to use iterators instead.
   360   Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; }
   361   // Return the unique out edge.
   362   Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; }
   363   // Delete out edge at position 'i' by moving last out edge to position 'i'
   364   void  raw_del_out(uint i) {
   365     assert(i < _outcnt,"oob");
   366     assert(_outcnt > 0,"oob");
   367     #if OPTO_DU_ITERATOR_ASSERT
   368     // Record that a change happened here.
   369     debug_only(_last_del = _out[i]; ++_del_tick);
   370     #endif
   371     _out[i] = _out[--_outcnt];
   372     // Smash the old edge so it can't be used accidentally.
   373     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
   374   }
   376 #ifdef ASSERT
   377   bool is_dead() const;
   378 #define is_not_dead(n) ((n) == NULL || !VerifyIterativeGVN || !((n)->is_dead()))
   379 #endif
   380   // Check whether node has become unreachable
   381   bool is_unreachable(PhaseIterGVN &igvn) const;
   383   // Set a required input edge, also updates corresponding output edge
   384   void add_req( Node *n ); // Append a NEW required input
   385   void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n).
   386   void del_req( uint idx ); // Delete required edge & compact
   387   void ins_req( uint i, Node *n ); // Insert a NEW required input
   388   void set_req( uint i, Node *n ) {
   389     assert( is_not_dead(n), "can not use dead node");
   390     assert( i < _cnt, err_msg_res("oob: i=%d, _cnt=%d", i, _cnt));
   391     assert( !VerifyHashTableKeys || _hash_lock == 0,
   392             "remove node from hash table before modifying it");
   393     Node** p = &_in[i];    // cache this._in, across the del_out call
   394     if (*p != NULL)  (*p)->del_out((Node *)this);
   395     (*p) = n;
   396     if (n != NULL)      n->add_out((Node *)this);
   397   }
   398   // Light version of set_req() to init inputs after node creation.
   399   void init_req( uint i, Node *n ) {
   400     assert( i == 0 && this == n ||
   401             is_not_dead(n), "can not use dead node");
   402     assert( i < _cnt, "oob");
   403     assert( !VerifyHashTableKeys || _hash_lock == 0,
   404             "remove node from hash table before modifying it");
   405     assert( _in[i] == NULL, "sanity");
   406     _in[i] = n;
   407     if (n != NULL)      n->add_out((Node *)this);
   408   }
   409   // Find first occurrence of n among my edges:
   410   int find_edge(Node* n);
   411   int replace_edge(Node* old, Node* neww);
   412   int replace_edges_in_range(Node* old, Node* neww, int start, int end);
   413   // NULL out all inputs to eliminate incoming Def-Use edges.
   414   // Return the number of edges between 'n' and 'this'
   415   int  disconnect_inputs(Node *n, Compile *c);
   417   // Quickly, return true if and only if I am Compile::current()->top().
   418   bool is_top() const {
   419     assert((this == (Node*) Compile::current()->top()) == (_out == NULL), "");
   420     return (_out == NULL);
   421   }
   422   // Reaffirm invariants for is_top.  (Only from Compile::set_cached_top_node.)
   423   void setup_is_top();
   425   // Strip away casting.  (It is depth-limited.)
   426   Node* uncast() const;
   427   // Return whether two Nodes are equivalent, after stripping casting.
   428   bool eqv_uncast(const Node* n) const {
   429     return (this->uncast() == n->uncast());
   430   }
   432 private:
   433   static Node* uncast_helper(const Node* n);
   435   // Add an output edge to the end of the list
   436   void add_out( Node *n ) {
   437     if (is_top())  return;
   438     if( _outcnt == _outmax ) out_grow(_outcnt);
   439     _out[_outcnt++] = n;
   440   }
   441   // Delete an output edge
   442   void del_out( Node *n ) {
   443     if (is_top())  return;
   444     Node** outp = &_out[_outcnt];
   445     // Find and remove n
   446     do {
   447       assert(outp > _out, "Missing Def-Use edge");
   448     } while (*--outp != n);
   449     *outp = _out[--_outcnt];
   450     // Smash the old edge so it can't be used accidentally.
   451     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
   452     // Record that a change happened here.
   453     #if OPTO_DU_ITERATOR_ASSERT
   454     debug_only(_last_del = n; ++_del_tick);
   455     #endif
   456   }
   458 public:
   459   // Globally replace this node by a given new node, updating all uses.
   460   void replace_by(Node* new_node);
   461   // Globally replace this node by a given new node, updating all uses
   462   // and cutting input edges of old node.
   463   void subsume_by(Node* new_node, Compile* c) {
   464     replace_by(new_node);
   465     disconnect_inputs(NULL, c);
   466   }
   467   void set_req_X( uint i, Node *n, PhaseIterGVN *igvn );
   468   // Find the one non-null required input.  RegionNode only
   469   Node *nonnull_req() const;
   470   // Add or remove precedence edges
   471   void add_prec( Node *n );
   472   void rm_prec( uint i );
   473   void set_prec( uint i, Node *n ) {
   474     assert( is_not_dead(n), "can not use dead node");
   475     assert( i >= _cnt, "not a precedence edge");
   476     if (_in[i] != NULL) _in[i]->del_out((Node *)this);
   477     _in[i] = n;
   478     if (n != NULL) n->add_out((Node *)this);
   479   }
   480   // Set this node's index, used by cisc_version to replace current node
   481   void set_idx(uint new_idx) {
   482     const node_idx_t* ref = &_idx;
   483     *(node_idx_t*)ref = new_idx;
   484   }
   485   // Swap input edge order.  (Edge indexes i1 and i2 are usually 1 and 2.)
   486   void swap_edges(uint i1, uint i2) {
   487     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
   488     // Def-Use info is unchanged
   489     Node* n1 = in(i1);
   490     Node* n2 = in(i2);
   491     _in[i1] = n2;
   492     _in[i2] = n1;
   493     // If this node is in the hash table, make sure it doesn't need a rehash.
   494     assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code");
   495   }
   497   // Iterators over input Nodes for a Node X are written as:
   498   // for( i = 0; i < X.req(); i++ ) ... X[i] ...
   499   // NOTE: Required edges can contain embedded NULL pointers.
   501 //----------------- Other Node Properties
   503   // Generate class id for some ideal nodes to avoid virtual query
   504   // methods is_<Node>().
   505   // Class id is the set of bits corresponded to the node class and all its
   506   // super classes so that queries for super classes are also valid.
   507   // Subclasses of the same super class have different assigned bit
   508   // (the third parameter in the macro DEFINE_CLASS_ID).
   509   // Classes with deeper hierarchy are declared first.
   510   // Classes with the same hierarchy depth are sorted by usage frequency.
   511   //
   512   // The query method masks the bits to cut off bits of subclasses
   513   // and then compare the result with the class id
   514   // (see the macro DEFINE_CLASS_QUERY below).
   515   //
   516   //  Class_MachCall=30, ClassMask_MachCall=31
   517   // 12               8               4               0
   518   //  0   0   0   0   0   0   0   0   1   1   1   1   0
   519   //                                  |   |   |   |
   520   //                                  |   |   |   Bit_Mach=2
   521   //                                  |   |   Bit_MachReturn=4
   522   //                                  |   Bit_MachSafePoint=8
   523   //                                  Bit_MachCall=16
   524   //
   525   //  Class_CountedLoop=56, ClassMask_CountedLoop=63
   526   // 12               8               4               0
   527   //  0   0   0   0   0   0   0   1   1   1   0   0   0
   528   //                              |   |   |
   529   //                              |   |   Bit_Region=8
   530   //                              |   Bit_Loop=16
   531   //                              Bit_CountedLoop=32
   533   #define DEFINE_CLASS_ID(cl, supcl, subn) \
   534   Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \
   535   Class_##cl = Class_##supcl + Bit_##cl , \
   536   ClassMask_##cl = ((Bit_##cl << 1) - 1) ,
   538   // This enum is used only for C2 ideal and mach nodes with is_<node>() methods
   539   // so that it's values fits into 16 bits.
   540   enum NodeClasses {
   541     Bit_Node   = 0x0000,
   542     Class_Node = 0x0000,
   543     ClassMask_Node = 0xFFFF,
   545     DEFINE_CLASS_ID(Multi, Node, 0)
   546       DEFINE_CLASS_ID(SafePoint, Multi, 0)
   547         DEFINE_CLASS_ID(Call,      SafePoint, 0)
   548           DEFINE_CLASS_ID(CallJava,         Call, 0)
   549             DEFINE_CLASS_ID(CallStaticJava,   CallJava, 0)
   550             DEFINE_CLASS_ID(CallDynamicJava,  CallJava, 1)
   551           DEFINE_CLASS_ID(CallRuntime,      Call, 1)
   552             DEFINE_CLASS_ID(CallLeaf,         CallRuntime, 0)
   553           DEFINE_CLASS_ID(Allocate,         Call, 2)
   554             DEFINE_CLASS_ID(AllocateArray,    Allocate, 0)
   555           DEFINE_CLASS_ID(AbstractLock,     Call, 3)
   556             DEFINE_CLASS_ID(Lock,             AbstractLock, 0)
   557             DEFINE_CLASS_ID(Unlock,           AbstractLock, 1)
   558       DEFINE_CLASS_ID(MultiBranch, Multi, 1)
   559         DEFINE_CLASS_ID(PCTable,     MultiBranch, 0)
   560           DEFINE_CLASS_ID(Catch,       PCTable, 0)
   561           DEFINE_CLASS_ID(Jump,        PCTable, 1)
   562         DEFINE_CLASS_ID(If,          MultiBranch, 1)
   563           DEFINE_CLASS_ID(CountedLoopEnd, If, 0)
   564         DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2)
   565       DEFINE_CLASS_ID(Start,       Multi, 2)
   566       DEFINE_CLASS_ID(MemBar,      Multi, 3)
   567         DEFINE_CLASS_ID(Initialize,       MemBar, 0)
   568         DEFINE_CLASS_ID(MemBarStoreStore, MemBar, 1)
   570     DEFINE_CLASS_ID(Mach,  Node, 1)
   571       DEFINE_CLASS_ID(MachReturn, Mach, 0)
   572         DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0)
   573           DEFINE_CLASS_ID(MachCall, MachSafePoint, 0)
   574             DEFINE_CLASS_ID(MachCallJava,         MachCall, 0)
   575               DEFINE_CLASS_ID(MachCallStaticJava,   MachCallJava, 0)
   576               DEFINE_CLASS_ID(MachCallDynamicJava,  MachCallJava, 1)
   577             DEFINE_CLASS_ID(MachCallRuntime,      MachCall, 1)
   578               DEFINE_CLASS_ID(MachCallLeaf,         MachCallRuntime, 0)
   579       DEFINE_CLASS_ID(MachBranch, Mach, 1)
   580         DEFINE_CLASS_ID(MachIf,         MachBranch, 0)
   581         DEFINE_CLASS_ID(MachGoto,       MachBranch, 1)
   582         DEFINE_CLASS_ID(MachNullCheck,  MachBranch, 2)
   583       DEFINE_CLASS_ID(MachSpillCopy,    Mach, 2)
   584       DEFINE_CLASS_ID(MachTemp,         Mach, 3)
   585       DEFINE_CLASS_ID(MachConstantBase, Mach, 4)
   586       DEFINE_CLASS_ID(MachConstant,     Mach, 5)
   588     DEFINE_CLASS_ID(Type,  Node, 2)
   589       DEFINE_CLASS_ID(Phi,   Type, 0)
   590       DEFINE_CLASS_ID(ConstraintCast, Type, 1)
   591       DEFINE_CLASS_ID(CheckCastPP, Type, 2)
   592       DEFINE_CLASS_ID(CMove, Type, 3)
   593       DEFINE_CLASS_ID(SafePointScalarObject, Type, 4)
   594       DEFINE_CLASS_ID(DecodeNarrowPtr, Type, 5)
   595         DEFINE_CLASS_ID(DecodeN, DecodeNarrowPtr, 0)
   596         DEFINE_CLASS_ID(DecodeNKlass, DecodeNarrowPtr, 1)
   597       DEFINE_CLASS_ID(EncodeNarrowPtr, Type, 6)
   598         DEFINE_CLASS_ID(EncodeP, EncodeNarrowPtr, 0)
   599         DEFINE_CLASS_ID(EncodePKlass, EncodeNarrowPtr, 1)
   601     DEFINE_CLASS_ID(Proj,  Node, 3)
   602       DEFINE_CLASS_ID(CatchProj, Proj, 0)
   603       DEFINE_CLASS_ID(JumpProj,  Proj, 1)
   604       DEFINE_CLASS_ID(IfTrue,    Proj, 2)
   605       DEFINE_CLASS_ID(IfFalse,   Proj, 3)
   606       DEFINE_CLASS_ID(Parm,      Proj, 4)
   607       DEFINE_CLASS_ID(MachProj,  Proj, 5)
   609     DEFINE_CLASS_ID(Mem,   Node, 4)
   610       DEFINE_CLASS_ID(Load,  Mem, 0)
   611         DEFINE_CLASS_ID(LoadVector,  Load, 0)
   612       DEFINE_CLASS_ID(Store, Mem, 1)
   613         DEFINE_CLASS_ID(StoreVector, Store, 0)
   614       DEFINE_CLASS_ID(LoadStore, Mem, 2)
   616     DEFINE_CLASS_ID(Region, Node, 5)
   617       DEFINE_CLASS_ID(Loop, Region, 0)
   618         DEFINE_CLASS_ID(Root,        Loop, 0)
   619         DEFINE_CLASS_ID(CountedLoop, Loop, 1)
   621     DEFINE_CLASS_ID(Sub,   Node, 6)
   622       DEFINE_CLASS_ID(Cmp,   Sub, 0)
   623         DEFINE_CLASS_ID(FastLock,   Cmp, 0)
   624         DEFINE_CLASS_ID(FastUnlock, Cmp, 1)
   626     DEFINE_CLASS_ID(MergeMem, Node, 7)
   627     DEFINE_CLASS_ID(Bool,     Node, 8)
   628     DEFINE_CLASS_ID(AddP,     Node, 9)
   629     DEFINE_CLASS_ID(BoxLock,  Node, 10)
   630     DEFINE_CLASS_ID(Add,      Node, 11)
   631     DEFINE_CLASS_ID(Mul,      Node, 12)
   632     DEFINE_CLASS_ID(Vector,   Node, 13)
   633     DEFINE_CLASS_ID(ClearArray, Node, 14)
   635     _max_classes  = ClassMask_ClearArray
   636   };
   637   #undef DEFINE_CLASS_ID
   639   // Flags are sorted by usage frequency.
   640   enum NodeFlags {
   641     Flag_is_Copy             = 0x01, // should be first bit to avoid shift
   642     Flag_rematerialize       = Flag_is_Copy << 1,
   643     Flag_needs_anti_dependence_check = Flag_rematerialize << 1,
   644     Flag_is_macro            = Flag_needs_anti_dependence_check << 1,
   645     Flag_is_Con              = Flag_is_macro << 1,
   646     Flag_is_cisc_alternate   = Flag_is_Con << 1,
   647     Flag_is_dead_loop_safe   = Flag_is_cisc_alternate << 1,
   648     Flag_may_be_short_branch = Flag_is_dead_loop_safe << 1,
   649     Flag_avoid_back_to_back  = Flag_may_be_short_branch << 1,
   650     Flag_has_call            = Flag_avoid_back_to_back << 1,
   651     Flag_is_expensive        = Flag_has_call << 1,
   652     _max_flags = (Flag_is_expensive << 1) - 1 // allow flags combination
   653   };
   655 private:
   656   jushort _class_id;
   657   jushort _flags;
   659 protected:
   660   // These methods should be called from constructors only.
   661   void init_class_id(jushort c) {
   662     assert(c <= _max_classes, "invalid node class");
   663     _class_id = c; // cast out const
   664   }
   665   void init_flags(jushort fl) {
   666     assert(fl <= _max_flags, "invalid node flag");
   667     _flags |= fl;
   668   }
   669   void clear_flag(jushort fl) {
   670     assert(fl <= _max_flags, "invalid node flag");
   671     _flags &= ~fl;
   672   }
   674 public:
   675   const jushort class_id() const { return _class_id; }
   677   const jushort flags() const { return _flags; }
   679   // Return a dense integer opcode number
   680   virtual int Opcode() const;
   682   // Virtual inherited Node size
   683   virtual uint size_of() const;
   685   // Other interesting Node properties
   686   #define DEFINE_CLASS_QUERY(type)                           \
   687   bool is_##type() const {                                   \
   688     return ((_class_id & ClassMask_##type) == Class_##type); \
   689   }                                                          \
   690   type##Node *as_##type() const {                            \
   691     assert(is_##type(), "invalid node class");               \
   692     return (type##Node*)this;                                \
   693   }                                                          \
   694   type##Node* isa_##type() const {                           \
   695     return (is_##type()) ? as_##type() : NULL;               \
   696   }
   698   DEFINE_CLASS_QUERY(AbstractLock)
   699   DEFINE_CLASS_QUERY(Add)
   700   DEFINE_CLASS_QUERY(AddP)
   701   DEFINE_CLASS_QUERY(Allocate)
   702   DEFINE_CLASS_QUERY(AllocateArray)
   703   DEFINE_CLASS_QUERY(Bool)
   704   DEFINE_CLASS_QUERY(BoxLock)
   705   DEFINE_CLASS_QUERY(Call)
   706   DEFINE_CLASS_QUERY(CallDynamicJava)
   707   DEFINE_CLASS_QUERY(CallJava)
   708   DEFINE_CLASS_QUERY(CallLeaf)
   709   DEFINE_CLASS_QUERY(CallRuntime)
   710   DEFINE_CLASS_QUERY(CallStaticJava)
   711   DEFINE_CLASS_QUERY(Catch)
   712   DEFINE_CLASS_QUERY(CatchProj)
   713   DEFINE_CLASS_QUERY(CheckCastPP)
   714   DEFINE_CLASS_QUERY(ConstraintCast)
   715   DEFINE_CLASS_QUERY(ClearArray)
   716   DEFINE_CLASS_QUERY(CMove)
   717   DEFINE_CLASS_QUERY(Cmp)
   718   DEFINE_CLASS_QUERY(CountedLoop)
   719   DEFINE_CLASS_QUERY(CountedLoopEnd)
   720   DEFINE_CLASS_QUERY(DecodeNarrowPtr)
   721   DEFINE_CLASS_QUERY(DecodeN)
   722   DEFINE_CLASS_QUERY(DecodeNKlass)
   723   DEFINE_CLASS_QUERY(EncodeNarrowPtr)
   724   DEFINE_CLASS_QUERY(EncodeP)
   725   DEFINE_CLASS_QUERY(EncodePKlass)
   726   DEFINE_CLASS_QUERY(FastLock)
   727   DEFINE_CLASS_QUERY(FastUnlock)
   728   DEFINE_CLASS_QUERY(If)
   729   DEFINE_CLASS_QUERY(IfFalse)
   730   DEFINE_CLASS_QUERY(IfTrue)
   731   DEFINE_CLASS_QUERY(Initialize)
   732   DEFINE_CLASS_QUERY(Jump)
   733   DEFINE_CLASS_QUERY(JumpProj)
   734   DEFINE_CLASS_QUERY(Load)
   735   DEFINE_CLASS_QUERY(LoadStore)
   736   DEFINE_CLASS_QUERY(Lock)
   737   DEFINE_CLASS_QUERY(Loop)
   738   DEFINE_CLASS_QUERY(Mach)
   739   DEFINE_CLASS_QUERY(MachBranch)
   740   DEFINE_CLASS_QUERY(MachCall)
   741   DEFINE_CLASS_QUERY(MachCallDynamicJava)
   742   DEFINE_CLASS_QUERY(MachCallJava)
   743   DEFINE_CLASS_QUERY(MachCallLeaf)
   744   DEFINE_CLASS_QUERY(MachCallRuntime)
   745   DEFINE_CLASS_QUERY(MachCallStaticJava)
   746   DEFINE_CLASS_QUERY(MachConstantBase)
   747   DEFINE_CLASS_QUERY(MachConstant)
   748   DEFINE_CLASS_QUERY(MachGoto)
   749   DEFINE_CLASS_QUERY(MachIf)
   750   DEFINE_CLASS_QUERY(MachNullCheck)
   751   DEFINE_CLASS_QUERY(MachProj)
   752   DEFINE_CLASS_QUERY(MachReturn)
   753   DEFINE_CLASS_QUERY(MachSafePoint)
   754   DEFINE_CLASS_QUERY(MachSpillCopy)
   755   DEFINE_CLASS_QUERY(MachTemp)
   756   DEFINE_CLASS_QUERY(Mem)
   757   DEFINE_CLASS_QUERY(MemBar)
   758   DEFINE_CLASS_QUERY(MemBarStoreStore)
   759   DEFINE_CLASS_QUERY(MergeMem)
   760   DEFINE_CLASS_QUERY(Mul)
   761   DEFINE_CLASS_QUERY(Multi)
   762   DEFINE_CLASS_QUERY(MultiBranch)
   763   DEFINE_CLASS_QUERY(Parm)
   764   DEFINE_CLASS_QUERY(PCTable)
   765   DEFINE_CLASS_QUERY(Phi)
   766   DEFINE_CLASS_QUERY(Proj)
   767   DEFINE_CLASS_QUERY(Region)
   768   DEFINE_CLASS_QUERY(Root)
   769   DEFINE_CLASS_QUERY(SafePoint)
   770   DEFINE_CLASS_QUERY(SafePointScalarObject)
   771   DEFINE_CLASS_QUERY(Start)
   772   DEFINE_CLASS_QUERY(Store)
   773   DEFINE_CLASS_QUERY(Sub)
   774   DEFINE_CLASS_QUERY(Type)
   775   DEFINE_CLASS_QUERY(Vector)
   776   DEFINE_CLASS_QUERY(LoadVector)
   777   DEFINE_CLASS_QUERY(StoreVector)
   778   DEFINE_CLASS_QUERY(Unlock)
   780   #undef DEFINE_CLASS_QUERY
   782   // duplicate of is_MachSpillCopy()
   783   bool is_SpillCopy () const {
   784     return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy);
   785   }
   787   bool is_Con () const { return (_flags & Flag_is_Con) != 0; }
   788   // The data node which is safe to leave in dead loop during IGVN optimization.
   789   bool is_dead_loop_safe() const {
   790     return is_Phi() || (is_Proj() && in(0) == NULL) ||
   791            ((_flags & (Flag_is_dead_loop_safe | Flag_is_Con)) != 0 &&
   792             (!is_Proj() || !in(0)->is_Allocate()));
   793   }
   795   // is_Copy() returns copied edge index (0 or 1)
   796   uint is_Copy() const { return (_flags & Flag_is_Copy); }
   798   virtual bool is_CFG() const { return false; }
   800   // If this node is control-dependent on a test, can it be
   801   // rerouted to a dominating equivalent test?  This is usually
   802   // true of non-CFG nodes, but can be false for operations which
   803   // depend for their correct sequencing on more than one test.
   804   // (In that case, hoisting to a dominating test may silently
   805   // skip some other important test.)
   806   virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; };
   808   // When building basic blocks, I need to have a notion of block beginning
   809   // Nodes, next block selector Nodes (block enders), and next block
   810   // projections.  These calls need to work on their machine equivalents.  The
   811   // Ideal beginning Nodes are RootNode, RegionNode and StartNode.
   812   bool is_block_start() const {
   813     if ( is_Region() )
   814       return this == (const Node*)in(0);
   815     else
   816       return is_Start();
   817   }
   819   // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root,
   820   // Goto and Return.  This call also returns the block ending Node.
   821   virtual const Node *is_block_proj() const;
   823   // The node is a "macro" node which needs to be expanded before matching
   824   bool is_macro() const { return (_flags & Flag_is_macro) != 0; }
   825   // The node is expensive: the best control is set during loop opts
   826   bool is_expensive() const { return (_flags & Flag_is_expensive) != 0 && in(0) != NULL; }
   828 //----------------- Optimization
   830   // Get the worst-case Type output for this Node.
   831   virtual const class Type *bottom_type() const;
   833   // If we find a better type for a node, try to record it permanently.
   834   // Return true if this node actually changed.
   835   // Be sure to do the hash_delete game in the "rehash" variant.
   836   void raise_bottom_type(const Type* new_type);
   838   // Get the address type with which this node uses and/or defs memory,
   839   // or NULL if none.  The address type is conservatively wide.
   840   // Returns non-null for calls, membars, loads, stores, etc.
   841   // Returns TypePtr::BOTTOM if the node touches memory "broadly".
   842   virtual const class TypePtr *adr_type() const { return NULL; }
   844   // Return an existing node which computes the same function as this node.
   845   // The optimistic combined algorithm requires this to return a Node which
   846   // is a small number of steps away (e.g., one of my inputs).
   847   virtual Node *Identity( PhaseTransform *phase );
   849   // Return the set of values this Node can take on at runtime.
   850   virtual const Type *Value( PhaseTransform *phase ) const;
   852   // Return a node which is more "ideal" than the current node.
   853   // The invariants on this call are subtle.  If in doubt, read the
   854   // treatise in node.cpp above the default implemention AND TEST WITH
   855   // +VerifyIterativeGVN!
   856   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   858   // Some nodes have specific Ideal subgraph transformations only if they are
   859   // unique users of specific nodes. Such nodes should be put on IGVN worklist
   860   // for the transformations to happen.
   861   bool has_special_unique_user() const;
   863   // Skip Proj and CatchProj nodes chains. Check for Null and Top.
   864   Node* find_exact_control(Node* ctrl);
   866   // Check if 'this' node dominates or equal to 'sub'.
   867   bool dominates(Node* sub, Node_List &nlist);
   869 protected:
   870   bool remove_dead_region(PhaseGVN *phase, bool can_reshape);
   871 public:
   873   // Idealize graph, using DU info.  Done after constant propagation
   874   virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
   876   // See if there is valid pipeline info
   877   static  const Pipeline *pipeline_class();
   878   virtual const Pipeline *pipeline() const;
   880   // Compute the latency from the def to this instruction of the ith input node
   881   uint latency(uint i);
   883   // Hash & compare functions, for pessimistic value numbering
   885   // If the hash function returns the special sentinel value NO_HASH,
   886   // the node is guaranteed never to compare equal to any other node.
   887   // If we accidentally generate a hash with value NO_HASH the node
   888   // won't go into the table and we'll lose a little optimization.
   889   enum { NO_HASH = 0 };
   890   virtual uint hash() const;
   891   virtual uint cmp( const Node &n ) const;
   893   // Operation appears to be iteratively computed (such as an induction variable)
   894   // It is possible for this operation to return false for a loop-varying
   895   // value, if it appears (by local graph inspection) to be computed by a simple conditional.
   896   bool is_iteratively_computed();
   898   // Determine if a node is Counted loop induction variable.
   899   // The method is defined in loopnode.cpp.
   900   const Node* is_loop_iv() const;
   902   // Return a node with opcode "opc" and same inputs as "this" if one can
   903   // be found; Otherwise return NULL;
   904   Node* find_similar(int opc);
   906   // Return the unique control out if only one. Null if none or more than one.
   907   Node* unique_ctrl_out();
   909 //----------------- Code Generation
   911   // Ideal register class for Matching.  Zero means unmatched instruction
   912   // (these are cloned instead of converted to machine nodes).
   913   virtual uint ideal_reg() const;
   915   static const uint NotAMachineReg;   // must be > max. machine register
   917   // Do we Match on this edge index or not?  Generally false for Control
   918   // and true for everything else.  Weird for calls & returns.
   919   virtual uint match_edge(uint idx) const;
   921   // Register class output is returned in
   922   virtual const RegMask &out_RegMask() const;
   923   // Register class input is expected in
   924   virtual const RegMask &in_RegMask(uint) const;
   925   // Should we clone rather than spill this instruction?
   926   bool rematerialize() const;
   928   // Return JVM State Object if this Node carries debug info, or NULL otherwise
   929   virtual JVMState* jvms() const;
   931   // Print as assembly
   932   virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const;
   933   // Emit bytes starting at parameter 'ptr'
   934   // Bump 'ptr' by the number of output bytes
   935   virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
   936   // Size of instruction in bytes
   937   virtual uint size(PhaseRegAlloc *ra_) const;
   939   // Convenience function to extract an integer constant from a node.
   940   // If it is not an integer constant (either Con, CastII, or Mach),
   941   // return value_if_unknown.
   942   jint find_int_con(jint value_if_unknown) const {
   943     const TypeInt* t = find_int_type();
   944     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
   945   }
   946   // Return the constant, knowing it is an integer constant already
   947   jint get_int() const {
   948     const TypeInt* t = find_int_type();
   949     guarantee(t != NULL, "must be con");
   950     return t->get_con();
   951   }
   952   // Here's where the work is done.  Can produce non-constant int types too.
   953   const TypeInt* find_int_type() const;
   955   // Same thing for long (and intptr_t, via type.hpp):
   956   jlong get_long() const {
   957     const TypeLong* t = find_long_type();
   958     guarantee(t != NULL, "must be con");
   959     return t->get_con();
   960   }
   961   jlong find_long_con(jint value_if_unknown) const {
   962     const TypeLong* t = find_long_type();
   963     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
   964   }
   965   const TypeLong* find_long_type() const;
   967   const TypePtr* get_ptr_type() const;
   969   // These guys are called by code generated by ADLC:
   970   intptr_t get_ptr() const;
   971   intptr_t get_narrowcon() const;
   972   jdouble getd() const;
   973   jfloat getf() const;
   975   // Nodes which are pinned into basic blocks
   976   virtual bool pinned() const { return false; }
   978   // Nodes which use memory without consuming it, hence need antidependences
   979   // More specifically, needs_anti_dependence_check returns true iff the node
   980   // (a) does a load, and (b) does not perform a store (except perhaps to a
   981   // stack slot or some other unaliased location).
   982   bool needs_anti_dependence_check() const;
   984   // Return which operand this instruction may cisc-spill. In other words,
   985   // return operand position that can convert from reg to memory access
   986   virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; }
   987   bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; }
   989 //----------------- Graph walking
   990 public:
   991   // Walk and apply member functions recursively.
   992   // Supplied (this) pointer is root.
   993   void walk(NFunc pre, NFunc post, void *env);
   994   static void nop(Node &, void*); // Dummy empty function
   995   static void packregion( Node &n, void* );
   996 private:
   997   void walk_(NFunc pre, NFunc post, void *env, VectorSet &visited);
   999 //----------------- Printing, etc
  1000 public:
  1001 #ifndef PRODUCT
  1002   Node* find(int idx) const;         // Search the graph for the given idx.
  1003   Node* find_ctrl(int idx) const;    // Search control ancestors for the given idx.
  1004   void dump() const { dump("\n"); }  // Print this node.
  1005   void dump(const char* suffix, outputStream *st = tty) const;// Print this node.
  1006   void dump(int depth) const;        // Print this node, recursively to depth d
  1007   void dump_ctrl(int depth) const;   // Print control nodes, to depth d
  1008   virtual void dump_req(outputStream *st = tty) const;     // Print required-edge info
  1009   virtual void dump_prec(outputStream *st = tty) const;    // Print precedence-edge info
  1010   virtual void dump_out(outputStream *st = tty) const;     // Print the output edge info
  1011   virtual void dump_spec(outputStream *st) const {}; // Print per-node info
  1012   void verify_edges(Unique_Node_List &visited); // Verify bi-directional edges
  1013   void verify() const;               // Check Def-Use info for my subgraph
  1014   static void verify_recur(const Node *n, int verify_depth, VectorSet &old_space, VectorSet &new_space);
  1016   // This call defines a class-unique string used to identify class instances
  1017   virtual const char *Name() const;
  1019   void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...)
  1020   // RegMask Print Functions
  1021   void dump_in_regmask(int idx) { in_RegMask(idx).dump(); }
  1022   void dump_out_regmask() { out_RegMask().dump(); }
  1023   static int _in_dump_cnt;
  1024   static bool in_dump() { return _in_dump_cnt > 0; }
  1025   void fast_dump() const {
  1026     tty->print("%4d: %-17s", _idx, Name());
  1027     for (uint i = 0; i < len(); i++)
  1028       if (in(i))
  1029         tty->print(" %4d", in(i)->_idx);
  1030       else
  1031         tty->print(" NULL");
  1032     tty->print("\n");
  1034 #endif
  1035 #ifdef ASSERT
  1036   void verify_construction();
  1037   bool verify_jvms(const JVMState* jvms) const;
  1038   int  _debug_idx;                     // Unique value assigned to every node.
  1039   int   debug_idx() const              { return _debug_idx; }
  1040   void  set_debug_idx( int debug_idx ) { _debug_idx = debug_idx; }
  1042   Node* _debug_orig;                   // Original version of this, if any.
  1043   Node*  debug_orig() const            { return _debug_orig; }
  1044   void   set_debug_orig(Node* orig);   // _debug_orig = orig
  1046   int        _hash_lock;               // Barrier to modifications of nodes in the hash table
  1047   void  enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); }
  1048   void   exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); }
  1050   static void init_NodeProperty();
  1052   #if OPTO_DU_ITERATOR_ASSERT
  1053   const Node* _last_del;               // The last deleted node.
  1054   uint        _del_tick;               // Bumped when a deletion happens..
  1055   #endif
  1056 #endif
  1057 };
  1059 //-----------------------------------------------------------------------------
  1060 // Iterators over DU info, and associated Node functions.
  1062 #if OPTO_DU_ITERATOR_ASSERT
  1064 // Common code for assertion checking on DU iterators.
  1065 class DUIterator_Common VALUE_OBJ_CLASS_SPEC {
  1066 #ifdef ASSERT
  1067  protected:
  1068   bool         _vdui;               // cached value of VerifyDUIterators
  1069   const Node*  _node;               // the node containing the _out array
  1070   uint         _outcnt;             // cached node->_outcnt
  1071   uint         _del_tick;           // cached node->_del_tick
  1072   Node*        _last;               // last value produced by the iterator
  1074   void sample(const Node* node);    // used by c'tor to set up for verifies
  1075   void verify(const Node* node, bool at_end_ok = false);
  1076   void verify_resync();
  1077   void reset(const DUIterator_Common& that);
  1079 // The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators
  1080   #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } }
  1081 #else
  1082   #define I_VDUI_ONLY(i,x) { }
  1083 #endif //ASSERT
  1084 };
  1086 #define VDUI_ONLY(x)     I_VDUI_ONLY(*this, x)
  1088 // Default DU iterator.  Allows appends onto the out array.
  1089 // Allows deletion from the out array only at the current point.
  1090 // Usage:
  1091 //  for (DUIterator i = x->outs(); x->has_out(i); i++) {
  1092 //    Node* y = x->out(i);
  1093 //    ...
  1094 //  }
  1095 // Compiles in product mode to a unsigned integer index, which indexes
  1096 // onto a repeatedly reloaded base pointer of x->_out.  The loop predicate
  1097 // also reloads x->_outcnt.  If you delete, you must perform "--i" just
  1098 // before continuing the loop.  You must delete only the last-produced
  1099 // edge.  You must delete only a single copy of the last-produced edge,
  1100 // or else you must delete all copies at once (the first time the edge
  1101 // is produced by the iterator).
  1102 class DUIterator : public DUIterator_Common {
  1103   friend class Node;
  1105   // This is the index which provides the product-mode behavior.
  1106   // Whatever the product-mode version of the system does to the
  1107   // DUI index is done to this index.  All other fields in
  1108   // this class are used only for assertion checking.
  1109   uint         _idx;
  1111   #ifdef ASSERT
  1112   uint         _refresh_tick;    // Records the refresh activity.
  1114   void sample(const Node* node); // Initialize _refresh_tick etc.
  1115   void verify(const Node* node, bool at_end_ok = false);
  1116   void verify_increment();       // Verify an increment operation.
  1117   void verify_resync();          // Verify that we can back up over a deletion.
  1118   void verify_finish();          // Verify that the loop terminated properly.
  1119   void refresh();                // Resample verification info.
  1120   void reset(const DUIterator& that);  // Resample after assignment.
  1121   #endif
  1123   DUIterator(const Node* node, int dummy_to_avoid_conversion)
  1124     { _idx = 0;                         debug_only(sample(node)); }
  1126  public:
  1127   // initialize to garbage; clear _vdui to disable asserts
  1128   DUIterator()
  1129     { /*initialize to garbage*/         debug_only(_vdui = false); }
  1131   void operator++(int dummy_to_specify_postfix_op)
  1132     { _idx++;                           VDUI_ONLY(verify_increment()); }
  1134   void operator--()
  1135     { VDUI_ONLY(verify_resync());       --_idx; }
  1137   ~DUIterator()
  1138     { VDUI_ONLY(verify_finish()); }
  1140   void operator=(const DUIterator& that)
  1141     { _idx = that._idx;                 debug_only(reset(that)); }
  1142 };
  1144 DUIterator Node::outs() const
  1145   { return DUIterator(this, 0); }
  1146 DUIterator& Node::refresh_out_pos(DUIterator& i) const
  1147   { I_VDUI_ONLY(i, i.refresh());        return i; }
  1148 bool Node::has_out(DUIterator& i) const
  1149   { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; }
  1150 Node*    Node::out(DUIterator& i) const
  1151   { I_VDUI_ONLY(i, i.verify(this));     return debug_only(i._last=) _out[i._idx]; }
  1154 // Faster DU iterator.  Disallows insertions into the out array.
  1155 // Allows deletion from the out array only at the current point.
  1156 // Usage:
  1157 //  for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
  1158 //    Node* y = x->fast_out(i);
  1159 //    ...
  1160 //  }
  1161 // Compiles in product mode to raw Node** pointer arithmetic, with
  1162 // no reloading of pointers from the original node x.  If you delete,
  1163 // you must perform "--i; --imax" just before continuing the loop.
  1164 // If you delete multiple copies of the same edge, you must decrement
  1165 // imax, but not i, multiple times:  "--i, imax -= num_edges".
  1166 class DUIterator_Fast : public DUIterator_Common {
  1167   friend class Node;
  1168   friend class DUIterator_Last;
  1170   // This is the pointer which provides the product-mode behavior.
  1171   // Whatever the product-mode version of the system does to the
  1172   // DUI pointer is done to this pointer.  All other fields in
  1173   // this class are used only for assertion checking.
  1174   Node**       _outp;
  1176   #ifdef ASSERT
  1177   void verify(const Node* node, bool at_end_ok = false);
  1178   void verify_limit();
  1179   void verify_resync();
  1180   void verify_relimit(uint n);
  1181   void reset(const DUIterator_Fast& that);
  1182   #endif
  1184   // Note:  offset must be signed, since -1 is sometimes passed
  1185   DUIterator_Fast(const Node* node, ptrdiff_t offset)
  1186     { _outp = node->_out + offset;      debug_only(sample(node)); }
  1188  public:
  1189   // initialize to garbage; clear _vdui to disable asserts
  1190   DUIterator_Fast()
  1191     { /*initialize to garbage*/         debug_only(_vdui = false); }
  1193   void operator++(int dummy_to_specify_postfix_op)
  1194     { _outp++;                          VDUI_ONLY(verify(_node, true)); }
  1196   void operator--()
  1197     { VDUI_ONLY(verify_resync());       --_outp; }
  1199   void operator-=(uint n)   // applied to the limit only
  1200     { _outp -= n;           VDUI_ONLY(verify_relimit(n));  }
  1202   bool operator<(DUIterator_Fast& limit) {
  1203     I_VDUI_ONLY(*this, this->verify(_node, true));
  1204     I_VDUI_ONLY(limit, limit.verify_limit());
  1205     return _outp < limit._outp;
  1208   void operator=(const DUIterator_Fast& that)
  1209     { _outp = that._outp;               debug_only(reset(that)); }
  1210 };
  1212 DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const {
  1213   // Assign a limit pointer to the reference argument:
  1214   imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt);
  1215   // Return the base pointer:
  1216   return DUIterator_Fast(this, 0);
  1218 Node* Node::fast_out(DUIterator_Fast& i) const {
  1219   I_VDUI_ONLY(i, i.verify(this));
  1220   return debug_only(i._last=) *i._outp;
  1224 // Faster DU iterator.  Requires each successive edge to be removed.
  1225 // Does not allow insertion of any edges.
  1226 // Usage:
  1227 //  for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) {
  1228 //    Node* y = x->last_out(i);
  1229 //    ...
  1230 //  }
  1231 // Compiles in product mode to raw Node** pointer arithmetic, with
  1232 // no reloading of pointers from the original node x.
  1233 class DUIterator_Last : private DUIterator_Fast {
  1234   friend class Node;
  1236   #ifdef ASSERT
  1237   void verify(const Node* node, bool at_end_ok = false);
  1238   void verify_limit();
  1239   void verify_step(uint num_edges);
  1240   #endif
  1242   // Note:  offset must be signed, since -1 is sometimes passed
  1243   DUIterator_Last(const Node* node, ptrdiff_t offset)
  1244     : DUIterator_Fast(node, offset) { }
  1246   void operator++(int dummy_to_specify_postfix_op) {} // do not use
  1247   void operator<(int)                              {} // do not use
  1249  public:
  1250   DUIterator_Last() { }
  1251   // initialize to garbage
  1253   void operator--()
  1254     { _outp--;              VDUI_ONLY(verify_step(1));  }
  1256   void operator-=(uint n)
  1257     { _outp -= n;           VDUI_ONLY(verify_step(n));  }
  1259   bool operator>=(DUIterator_Last& limit) {
  1260     I_VDUI_ONLY(*this, this->verify(_node, true));
  1261     I_VDUI_ONLY(limit, limit.verify_limit());
  1262     return _outp >= limit._outp;
  1265   void operator=(const DUIterator_Last& that)
  1266     { DUIterator_Fast::operator=(that); }
  1267 };
  1269 DUIterator_Last Node::last_outs(DUIterator_Last& imin) const {
  1270   // Assign a limit pointer to the reference argument:
  1271   imin = DUIterator_Last(this, 0);
  1272   // Return the initial pointer:
  1273   return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1);
  1275 Node* Node::last_out(DUIterator_Last& i) const {
  1276   I_VDUI_ONLY(i, i.verify(this));
  1277   return debug_only(i._last=) *i._outp;
  1280 #endif //OPTO_DU_ITERATOR_ASSERT
  1282 #undef I_VDUI_ONLY
  1283 #undef VDUI_ONLY
  1285 // An Iterator that truly follows the iterator pattern.  Doesn't
  1286 // support deletion but could be made to.
  1287 //
  1288 //   for (SimpleDUIterator i(n); i.has_next(); i.next()) {
  1289 //     Node* m = i.get();
  1290 //
  1291 class SimpleDUIterator : public StackObj {
  1292  private:
  1293   Node* node;
  1294   DUIterator_Fast i;
  1295   DUIterator_Fast imax;
  1296  public:
  1297   SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {}
  1298   bool has_next() { return i < imax; }
  1299   void next() { i++; }
  1300   Node* get() { return node->fast_out(i); }
  1301 };
  1304 //-----------------------------------------------------------------------------
  1305 // Map dense integer indices to Nodes.  Uses classic doubling-array trick.
  1306 // Abstractly provides an infinite array of Node*'s, initialized to NULL.
  1307 // Note that the constructor just zeros things, and since I use Arena
  1308 // allocation I do not need a destructor to reclaim storage.
  1309 class Node_Array : public ResourceObj {
  1310   friend class VMStructs;
  1311 protected:
  1312   Arena *_a;                    // Arena to allocate in
  1313   uint   _max;
  1314   Node **_nodes;
  1315   void   grow( uint i );        // Grow array node to fit
  1316 public:
  1317   Node_Array(Arena *a) : _a(a), _max(OptoNodeListSize) {
  1318     _nodes = NEW_ARENA_ARRAY( a, Node *, OptoNodeListSize );
  1319     for( int i = 0; i < OptoNodeListSize; i++ ) {
  1320       _nodes[i] = NULL;
  1324   Node_Array(Node_Array *na) : _a(na->_a), _max(na->_max), _nodes(na->_nodes) {}
  1325   Node *operator[] ( uint i ) const // Lookup, or NULL for not mapped
  1326   { return (i<_max) ? _nodes[i] : (Node*)NULL; }
  1327   Node *at( uint i ) const { assert(i<_max,"oob"); return _nodes[i]; }
  1328   Node **adr() { return _nodes; }
  1329   // Extend the mapping: index i maps to Node *n.
  1330   void map( uint i, Node *n ) { if( i>=_max ) grow(i); _nodes[i] = n; }
  1331   void insert( uint i, Node *n );
  1332   void remove( uint i );        // Remove, preserving order
  1333   void sort( C_sort_func_t func);
  1334   void reset( Arena *new_a );   // Zap mapping to empty; reclaim storage
  1335   void clear();                 // Set all entries to NULL, keep storage
  1336   uint Size() const { return _max; }
  1337   void dump() const;
  1338 };
  1340 class Node_List : public Node_Array {
  1341   friend class VMStructs;
  1342   uint _cnt;
  1343 public:
  1344   Node_List() : Node_Array(Thread::current()->resource_area()), _cnt(0) {}
  1345   Node_List(Arena *a) : Node_Array(a), _cnt(0) {}
  1346   bool contains(Node* n) {
  1347     for (uint e = 0; e < size(); e++) {
  1348       if (at(e) == n) return true;
  1350     return false;
  1352   void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; }
  1353   void remove( uint i ) { Node_Array::remove(i); _cnt--; }
  1354   void push( Node *b ) { map(_cnt++,b); }
  1355   void yank( Node *n );         // Find and remove
  1356   Node *pop() { return _nodes[--_cnt]; }
  1357   Node *rpop() { Node *b = _nodes[0]; _nodes[0]=_nodes[--_cnt]; return b;}
  1358   void clear() { _cnt = 0; Node_Array::clear(); } // retain storage
  1359   uint size() const { return _cnt; }
  1360   void dump() const;
  1361 };
  1363 //------------------------------Unique_Node_List-------------------------------
  1364 class Unique_Node_List : public Node_List {
  1365   friend class VMStructs;
  1366   VectorSet _in_worklist;
  1367   uint _clock_index;            // Index in list where to pop from next
  1368 public:
  1369   Unique_Node_List() : Node_List(), _in_worklist(Thread::current()->resource_area()), _clock_index(0) {}
  1370   Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {}
  1372   void remove( Node *n );
  1373   bool member( Node *n ) { return _in_worklist.test(n->_idx) != 0; }
  1374   VectorSet &member_set(){ return _in_worklist; }
  1376   void push( Node *b ) {
  1377     if( !_in_worklist.test_set(b->_idx) )
  1378       Node_List::push(b);
  1380   Node *pop() {
  1381     if( _clock_index >= size() ) _clock_index = 0;
  1382     Node *b = at(_clock_index);
  1383     map( _clock_index, Node_List::pop());
  1384     if (size() != 0) _clock_index++; // Always start from 0
  1385     _in_worklist >>= b->_idx;
  1386     return b;
  1388   Node *remove( uint i ) {
  1389     Node *b = Node_List::at(i);
  1390     _in_worklist >>= b->_idx;
  1391     map(i,Node_List::pop());
  1392     return b;
  1394   void yank( Node *n ) { _in_worklist >>= n->_idx; Node_List::yank(n); }
  1395   void  clear() {
  1396     _in_worklist.Clear();        // Discards storage but grows automatically
  1397     Node_List::clear();
  1398     _clock_index = 0;
  1401   // Used after parsing to remove useless nodes before Iterative GVN
  1402   void remove_useless_nodes(VectorSet &useful);
  1404 #ifndef PRODUCT
  1405   void print_set() const { _in_worklist.print(); }
  1406 #endif
  1407 };
  1409 // Inline definition of Compile::record_for_igvn must be deferred to this point.
  1410 inline void Compile::record_for_igvn(Node* n) {
  1411   _for_igvn->push(n);
  1414 //------------------------------Node_Stack-------------------------------------
  1415 class Node_Stack {
  1416   friend class VMStructs;
  1417 protected:
  1418   struct INode {
  1419     Node *node; // Processed node
  1420     uint  indx; // Index of next node's child
  1421   };
  1422   INode *_inode_top; // tos, stack grows up
  1423   INode *_inode_max; // End of _inodes == _inodes + _max
  1424   INode *_inodes;    // Array storage for the stack
  1425   Arena *_a;         // Arena to allocate in
  1426   void grow();
  1427 public:
  1428   Node_Stack(int size) {
  1429     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
  1430     _a = Thread::current()->resource_area();
  1431     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
  1432     _inode_max = _inodes + max;
  1433     _inode_top = _inodes - 1; // stack is empty
  1436   Node_Stack(Arena *a, int size) : _a(a) {
  1437     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
  1438     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
  1439     _inode_max = _inodes + max;
  1440     _inode_top = _inodes - 1; // stack is empty
  1443   void pop() {
  1444     assert(_inode_top >= _inodes, "node stack underflow");
  1445     --_inode_top;
  1447   void push(Node *n, uint i) {
  1448     ++_inode_top;
  1449     if (_inode_top >= _inode_max) grow();
  1450     INode *top = _inode_top; // optimization
  1451     top->node = n;
  1452     top->indx = i;
  1454   Node *node() const {
  1455     return _inode_top->node;
  1457   Node* node_at(uint i) const {
  1458     assert(_inodes + i <= _inode_top, "in range");
  1459     return _inodes[i].node;
  1461   uint index() const {
  1462     return _inode_top->indx;
  1464   uint index_at(uint i) const {
  1465     assert(_inodes + i <= _inode_top, "in range");
  1466     return _inodes[i].indx;
  1468   void set_node(Node *n) {
  1469     _inode_top->node = n;
  1471   void set_index(uint i) {
  1472     _inode_top->indx = i;
  1474   uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes,  sizeof(INode)); } // Max size
  1475   uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes,  sizeof(INode)); } // Current size
  1476   bool is_nonempty() const { return (_inode_top >= _inodes); }
  1477   bool is_empty() const { return (_inode_top < _inodes); }
  1478   void clear() { _inode_top = _inodes - 1; } // retain storage
  1480   // Node_Stack is used to map nodes.
  1481   Node* find(uint idx) const;
  1482 };
  1485 //-----------------------------Node_Notes--------------------------------------
  1486 // Debugging or profiling annotations loosely and sparsely associated
  1487 // with some nodes.  See Compile::node_notes_at for the accessor.
  1488 class Node_Notes VALUE_OBJ_CLASS_SPEC {
  1489   friend class VMStructs;
  1490   JVMState* _jvms;
  1492 public:
  1493   Node_Notes(JVMState* jvms = NULL) {
  1494     _jvms = jvms;
  1497   JVMState* jvms()            { return _jvms; }
  1498   void  set_jvms(JVMState* x) {        _jvms = x; }
  1500   // True if there is nothing here.
  1501   bool is_clear() {
  1502     return (_jvms == NULL);
  1505   // Make there be nothing here.
  1506   void clear() {
  1507     _jvms = NULL;
  1510   // Make a new, clean node notes.
  1511   static Node_Notes* make(Compile* C) {
  1512     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
  1513     nn->clear();
  1514     return nn;
  1517   Node_Notes* clone(Compile* C) {
  1518     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
  1519     (*nn) = (*this);
  1520     return nn;
  1523   // Absorb any information from source.
  1524   bool update_from(Node_Notes* source) {
  1525     bool changed = false;
  1526     if (source != NULL) {
  1527       if (source->jvms() != NULL) {
  1528         set_jvms(source->jvms());
  1529         changed = true;
  1532     return changed;
  1534 };
  1536 // Inlined accessors for Compile::node_nodes that require the preceding class:
  1537 inline Node_Notes*
  1538 Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr,
  1539                            int idx, bool can_grow) {
  1540   assert(idx >= 0, "oob");
  1541   int block_idx = (idx >> _log2_node_notes_block_size);
  1542   int grow_by = (block_idx - (arr == NULL? 0: arr->length()));
  1543   if (grow_by >= 0) {
  1544     if (!can_grow)  return NULL;
  1545     grow_node_notes(arr, grow_by + 1);
  1547   // (Every element of arr is a sub-array of length _node_notes_block_size.)
  1548   return arr->at(block_idx) + (idx & (_node_notes_block_size-1));
  1551 inline bool
  1552 Compile::set_node_notes_at(int idx, Node_Notes* value) {
  1553   if (value == NULL || value->is_clear())
  1554     return false;  // nothing to write => write nothing
  1555   Node_Notes* loc = locate_node_notes(_node_note_array, idx, true);
  1556   assert(loc != NULL, "");
  1557   return loc->update_from(value);
  1561 //------------------------------TypeNode---------------------------------------
  1562 // Node with a Type constant.
  1563 class TypeNode : public Node {
  1564 protected:
  1565   virtual uint hash() const;    // Check the type
  1566   virtual uint cmp( const Node &n ) const;
  1567   virtual uint size_of() const; // Size is bigger
  1568   const Type* const _type;
  1569 public:
  1570   void set_type(const Type* t) {
  1571     assert(t != NULL, "sanity");
  1572     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
  1573     *(const Type**)&_type = t;   // cast away const-ness
  1574     // If this node is in the hash table, make sure it doesn't need a rehash.
  1575     assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
  1577   const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
  1578   TypeNode( const Type *t, uint required ) : Node(required), _type(t) {
  1579     init_class_id(Class_Type);
  1581   virtual const Type *Value( PhaseTransform *phase ) const;
  1582   virtual const Type *bottom_type() const;
  1583   virtual       uint  ideal_reg() const;
  1584 #ifndef PRODUCT
  1585   virtual void dump_spec(outputStream *st) const;
  1586 #endif
  1587 };
  1589 #endif // SHARE_VM_OPTO_NODE_HPP

mercurial