src/share/vm/opto/library_call.cpp

Thu, 08 Aug 2013 03:16:56 +0200

author
rbackman
date
Thu, 08 Aug 2013 03:16:56 +0200
changeset 5546
acedd49a1bce
parent 5353
b800986664f4
child 5637
29aa8936f03c
permissions
-rw-r--r--

8022675: Redundant class init check
Reviewed-by: kvn, twisti

     1 /*
     2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "classfile/vmSymbols.hpp"
    28 #include "compiler/compileBroker.hpp"
    29 #include "compiler/compileLog.hpp"
    30 #include "oops/objArrayKlass.hpp"
    31 #include "opto/addnode.hpp"
    32 #include "opto/callGenerator.hpp"
    33 #include "opto/cfgnode.hpp"
    34 #include "opto/idealKit.hpp"
    35 #include "opto/mulnode.hpp"
    36 #include "opto/parse.hpp"
    37 #include "opto/runtime.hpp"
    38 #include "opto/subnode.hpp"
    39 #include "prims/nativeLookup.hpp"
    40 #include "runtime/sharedRuntime.hpp"
    41 #include "trace/traceMacros.hpp"
    43 class LibraryIntrinsic : public InlineCallGenerator {
    44   // Extend the set of intrinsics known to the runtime:
    45  public:
    46  private:
    47   bool             _is_virtual;
    48   bool             _is_predicted;
    49   vmIntrinsics::ID _intrinsic_id;
    51  public:
    52   LibraryIntrinsic(ciMethod* m, bool is_virtual, bool is_predicted, vmIntrinsics::ID id)
    53     : InlineCallGenerator(m),
    54       _is_virtual(is_virtual),
    55       _is_predicted(is_predicted),
    56       _intrinsic_id(id)
    57   {
    58   }
    59   virtual bool is_intrinsic() const { return true; }
    60   virtual bool is_virtual()   const { return _is_virtual; }
    61   virtual bool is_predicted()   const { return _is_predicted; }
    62   virtual JVMState* generate(JVMState* jvms);
    63   virtual Node* generate_predicate(JVMState* jvms);
    64   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
    65 };
    68 // Local helper class for LibraryIntrinsic:
    69 class LibraryCallKit : public GraphKit {
    70  private:
    71   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
    72   Node*             _result;        // the result node, if any
    73   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
    75   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
    77  public:
    78   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
    79     : GraphKit(jvms),
    80       _intrinsic(intrinsic),
    81       _result(NULL)
    82   {
    83     // Check if this is a root compile.  In that case we don't have a caller.
    84     if (!jvms->has_method()) {
    85       _reexecute_sp = sp();
    86     } else {
    87       // Find out how many arguments the interpreter needs when deoptimizing
    88       // and save the stack pointer value so it can used by uncommon_trap.
    89       // We find the argument count by looking at the declared signature.
    90       bool ignored_will_link;
    91       ciSignature* declared_signature = NULL;
    92       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
    93       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
    94       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
    95     }
    96   }
    98   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
   100   ciMethod*         caller()    const    { return jvms()->method(); }
   101   int               bci()       const    { return jvms()->bci(); }
   102   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
   103   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
   104   ciMethod*         callee()    const    { return _intrinsic->method(); }
   106   bool try_to_inline();
   107   Node* try_to_predicate();
   109   void push_result() {
   110     // Push the result onto the stack.
   111     if (!stopped() && result() != NULL) {
   112       BasicType bt = result()->bottom_type()->basic_type();
   113       push_node(bt, result());
   114     }
   115   }
   117  private:
   118   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
   119     fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
   120   }
   122   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
   123   void  set_result(RegionNode* region, PhiNode* value);
   124   Node*     result() { return _result; }
   126   virtual int reexecute_sp() { return _reexecute_sp; }
   128   // Helper functions to inline natives
   129   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
   130   Node* generate_slow_guard(Node* test, RegionNode* region);
   131   Node* generate_fair_guard(Node* test, RegionNode* region);
   132   Node* generate_negative_guard(Node* index, RegionNode* region,
   133                                 // resulting CastII of index:
   134                                 Node* *pos_index = NULL);
   135   Node* generate_nonpositive_guard(Node* index, bool never_negative,
   136                                    // resulting CastII of index:
   137                                    Node* *pos_index = NULL);
   138   Node* generate_limit_guard(Node* offset, Node* subseq_length,
   139                              Node* array_length,
   140                              RegionNode* region);
   141   Node* generate_current_thread(Node* &tls_output);
   142   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
   143                               bool disjoint_bases, const char* &name, bool dest_uninitialized);
   144   Node* load_mirror_from_klass(Node* klass);
   145   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
   146                                       RegionNode* region, int null_path,
   147                                       int offset);
   148   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
   149                                RegionNode* region, int null_path) {
   150     int offset = java_lang_Class::klass_offset_in_bytes();
   151     return load_klass_from_mirror_common(mirror, never_see_null,
   152                                          region, null_path,
   153                                          offset);
   154   }
   155   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
   156                                      RegionNode* region, int null_path) {
   157     int offset = java_lang_Class::array_klass_offset_in_bytes();
   158     return load_klass_from_mirror_common(mirror, never_see_null,
   159                                          region, null_path,
   160                                          offset);
   161   }
   162   Node* generate_access_flags_guard(Node* kls,
   163                                     int modifier_mask, int modifier_bits,
   164                                     RegionNode* region);
   165   Node* generate_interface_guard(Node* kls, RegionNode* region);
   166   Node* generate_array_guard(Node* kls, RegionNode* region) {
   167     return generate_array_guard_common(kls, region, false, false);
   168   }
   169   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
   170     return generate_array_guard_common(kls, region, false, true);
   171   }
   172   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
   173     return generate_array_guard_common(kls, region, true, false);
   174   }
   175   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
   176     return generate_array_guard_common(kls, region, true, true);
   177   }
   178   Node* generate_array_guard_common(Node* kls, RegionNode* region,
   179                                     bool obj_array, bool not_array);
   180   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
   181   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
   182                                      bool is_virtual = false, bool is_static = false);
   183   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
   184     return generate_method_call(method_id, false, true);
   185   }
   186   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
   187     return generate_method_call(method_id, true, false);
   188   }
   189   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static);
   191   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
   192   Node* make_string_method_node(int opcode, Node* str1, Node* str2);
   193   bool inline_string_compareTo();
   194   bool inline_string_indexOf();
   195   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
   196   bool inline_string_equals();
   197   Node* round_double_node(Node* n);
   198   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
   199   bool inline_math_native(vmIntrinsics::ID id);
   200   bool inline_trig(vmIntrinsics::ID id);
   201   bool inline_math(vmIntrinsics::ID id);
   202   bool inline_exp();
   203   bool inline_pow();
   204   void finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
   205   bool inline_min_max(vmIntrinsics::ID id);
   206   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
   207   // This returns Type::AnyPtr, RawPtr, or OopPtr.
   208   int classify_unsafe_addr(Node* &base, Node* &offset);
   209   Node* make_unsafe_address(Node* base, Node* offset);
   210   // Helper for inline_unsafe_access.
   211   // Generates the guards that check whether the result of
   212   // Unsafe.getObject should be recorded in an SATB log buffer.
   213   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
   214   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
   215   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
   216   static bool klass_needs_init_guard(Node* kls);
   217   bool inline_unsafe_allocate();
   218   bool inline_unsafe_copyMemory();
   219   bool inline_native_currentThread();
   220 #ifdef TRACE_HAVE_INTRINSICS
   221   bool inline_native_classID();
   222   bool inline_native_threadID();
   223 #endif
   224   bool inline_native_time_funcs(address method, const char* funcName);
   225   bool inline_native_isInterrupted();
   226   bool inline_native_Class_query(vmIntrinsics::ID id);
   227   bool inline_native_subtype_check();
   229   bool inline_native_newArray();
   230   bool inline_native_getLength();
   231   bool inline_array_copyOf(bool is_copyOfRange);
   232   bool inline_array_equals();
   233   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
   234   bool inline_native_clone(bool is_virtual);
   235   bool inline_native_Reflection_getCallerClass();
   236   // Helper function for inlining native object hash method
   237   bool inline_native_hashcode(bool is_virtual, bool is_static);
   238   bool inline_native_getClass();
   240   // Helper functions for inlining arraycopy
   241   bool inline_arraycopy();
   242   void generate_arraycopy(const TypePtr* adr_type,
   243                           BasicType basic_elem_type,
   244                           Node* src,  Node* src_offset,
   245                           Node* dest, Node* dest_offset,
   246                           Node* copy_length,
   247                           bool disjoint_bases = false,
   248                           bool length_never_negative = false,
   249                           RegionNode* slow_region = NULL);
   250   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
   251                                                 RegionNode* slow_region);
   252   void generate_clear_array(const TypePtr* adr_type,
   253                             Node* dest,
   254                             BasicType basic_elem_type,
   255                             Node* slice_off,
   256                             Node* slice_len,
   257                             Node* slice_end);
   258   bool generate_block_arraycopy(const TypePtr* adr_type,
   259                                 BasicType basic_elem_type,
   260                                 AllocateNode* alloc,
   261                                 Node* src,  Node* src_offset,
   262                                 Node* dest, Node* dest_offset,
   263                                 Node* dest_size, bool dest_uninitialized);
   264   void generate_slow_arraycopy(const TypePtr* adr_type,
   265                                Node* src,  Node* src_offset,
   266                                Node* dest, Node* dest_offset,
   267                                Node* copy_length, bool dest_uninitialized);
   268   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
   269                                      Node* dest_elem_klass,
   270                                      Node* src,  Node* src_offset,
   271                                      Node* dest, Node* dest_offset,
   272                                      Node* copy_length, bool dest_uninitialized);
   273   Node* generate_generic_arraycopy(const TypePtr* adr_type,
   274                                    Node* src,  Node* src_offset,
   275                                    Node* dest, Node* dest_offset,
   276                                    Node* copy_length, bool dest_uninitialized);
   277   void generate_unchecked_arraycopy(const TypePtr* adr_type,
   278                                     BasicType basic_elem_type,
   279                                     bool disjoint_bases,
   280                                     Node* src,  Node* src_offset,
   281                                     Node* dest, Node* dest_offset,
   282                                     Node* copy_length, bool dest_uninitialized);
   283   typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
   284   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
   285   bool inline_unsafe_ordered_store(BasicType type);
   286   bool inline_unsafe_fence(vmIntrinsics::ID id);
   287   bool inline_fp_conversions(vmIntrinsics::ID id);
   288   bool inline_number_methods(vmIntrinsics::ID id);
   289   bool inline_reference_get();
   290   bool inline_aescrypt_Block(vmIntrinsics::ID id);
   291   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
   292   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
   293   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
   294   bool inline_encodeISOArray();
   295   bool inline_updateCRC32();
   296   bool inline_updateBytesCRC32();
   297   bool inline_updateByteBufferCRC32();
   298 };
   301 //---------------------------make_vm_intrinsic----------------------------
   302 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
   303   vmIntrinsics::ID id = m->intrinsic_id();
   304   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
   306   if (DisableIntrinsic[0] != '\0'
   307       && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
   308     // disabled by a user request on the command line:
   309     // example: -XX:DisableIntrinsic=_hashCode,_getClass
   310     return NULL;
   311   }
   313   if (!m->is_loaded()) {
   314     // do not attempt to inline unloaded methods
   315     return NULL;
   316   }
   318   // Only a few intrinsics implement a virtual dispatch.
   319   // They are expensive calls which are also frequently overridden.
   320   if (is_virtual) {
   321     switch (id) {
   322     case vmIntrinsics::_hashCode:
   323     case vmIntrinsics::_clone:
   324       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
   325       break;
   326     default:
   327       return NULL;
   328     }
   329   }
   331   // -XX:-InlineNatives disables nearly all intrinsics:
   332   if (!InlineNatives) {
   333     switch (id) {
   334     case vmIntrinsics::_indexOf:
   335     case vmIntrinsics::_compareTo:
   336     case vmIntrinsics::_equals:
   337     case vmIntrinsics::_equalsC:
   338     case vmIntrinsics::_getAndAddInt:
   339     case vmIntrinsics::_getAndAddLong:
   340     case vmIntrinsics::_getAndSetInt:
   341     case vmIntrinsics::_getAndSetLong:
   342     case vmIntrinsics::_getAndSetObject:
   343     case vmIntrinsics::_loadFence:
   344     case vmIntrinsics::_storeFence:
   345     case vmIntrinsics::_fullFence:
   346       break;  // InlineNatives does not control String.compareTo
   347     case vmIntrinsics::_Reference_get:
   348       break;  // InlineNatives does not control Reference.get
   349     default:
   350       return NULL;
   351     }
   352   }
   354   bool is_predicted = false;
   356   switch (id) {
   357   case vmIntrinsics::_compareTo:
   358     if (!SpecialStringCompareTo)  return NULL;
   359     if (!Matcher::match_rule_supported(Op_StrComp))  return NULL;
   360     break;
   361   case vmIntrinsics::_indexOf:
   362     if (!SpecialStringIndexOf)  return NULL;
   363     break;
   364   case vmIntrinsics::_equals:
   365     if (!SpecialStringEquals)  return NULL;
   366     if (!Matcher::match_rule_supported(Op_StrEquals))  return NULL;
   367     break;
   368   case vmIntrinsics::_equalsC:
   369     if (!SpecialArraysEquals)  return NULL;
   370     if (!Matcher::match_rule_supported(Op_AryEq))  return NULL;
   371     break;
   372   case vmIntrinsics::_arraycopy:
   373     if (!InlineArrayCopy)  return NULL;
   374     break;
   375   case vmIntrinsics::_copyMemory:
   376     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
   377     if (!InlineArrayCopy)  return NULL;
   378     break;
   379   case vmIntrinsics::_hashCode:
   380     if (!InlineObjectHash)  return NULL;
   381     break;
   382   case vmIntrinsics::_clone:
   383   case vmIntrinsics::_copyOf:
   384   case vmIntrinsics::_copyOfRange:
   385     if (!InlineObjectCopy)  return NULL;
   386     // These also use the arraycopy intrinsic mechanism:
   387     if (!InlineArrayCopy)  return NULL;
   388     break;
   389   case vmIntrinsics::_encodeISOArray:
   390     if (!SpecialEncodeISOArray)  return NULL;
   391     if (!Matcher::match_rule_supported(Op_EncodeISOArray))  return NULL;
   392     break;
   393   case vmIntrinsics::_checkIndex:
   394     // We do not intrinsify this.  The optimizer does fine with it.
   395     return NULL;
   397   case vmIntrinsics::_getCallerClass:
   398     if (!UseNewReflection)  return NULL;
   399     if (!InlineReflectionGetCallerClass)  return NULL;
   400     if (SystemDictionary::reflect_CallerSensitive_klass() == NULL)  return NULL;
   401     break;
   403   case vmIntrinsics::_bitCount_i:
   404     if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
   405     break;
   407   case vmIntrinsics::_bitCount_l:
   408     if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
   409     break;
   411   case vmIntrinsics::_numberOfLeadingZeros_i:
   412     if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
   413     break;
   415   case vmIntrinsics::_numberOfLeadingZeros_l:
   416     if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
   417     break;
   419   case vmIntrinsics::_numberOfTrailingZeros_i:
   420     if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
   421     break;
   423   case vmIntrinsics::_numberOfTrailingZeros_l:
   424     if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
   425     break;
   427   case vmIntrinsics::_reverseBytes_c:
   428     if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return NULL;
   429     break;
   430   case vmIntrinsics::_reverseBytes_s:
   431     if (!Matcher::match_rule_supported(Op_ReverseBytesS))  return NULL;
   432     break;
   433   case vmIntrinsics::_reverseBytes_i:
   434     if (!Matcher::match_rule_supported(Op_ReverseBytesI))  return NULL;
   435     break;
   436   case vmIntrinsics::_reverseBytes_l:
   437     if (!Matcher::match_rule_supported(Op_ReverseBytesL))  return NULL;
   438     break;
   440   case vmIntrinsics::_Reference_get:
   441     // Use the intrinsic version of Reference.get() so that the value in
   442     // the referent field can be registered by the G1 pre-barrier code.
   443     // Also add memory barrier to prevent commoning reads from this field
   444     // across safepoint since GC can change it value.
   445     break;
   447   case vmIntrinsics::_compareAndSwapObject:
   448 #ifdef _LP64
   449     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
   450 #endif
   451     break;
   453   case vmIntrinsics::_compareAndSwapLong:
   454     if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
   455     break;
   457   case vmIntrinsics::_getAndAddInt:
   458     if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
   459     break;
   461   case vmIntrinsics::_getAndAddLong:
   462     if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
   463     break;
   465   case vmIntrinsics::_getAndSetInt:
   466     if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
   467     break;
   469   case vmIntrinsics::_getAndSetLong:
   470     if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
   471     break;
   473   case vmIntrinsics::_getAndSetObject:
   474 #ifdef _LP64
   475     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
   476     if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
   477     break;
   478 #else
   479     if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
   480     break;
   481 #endif
   483   case vmIntrinsics::_aescrypt_encryptBlock:
   484   case vmIntrinsics::_aescrypt_decryptBlock:
   485     if (!UseAESIntrinsics) return NULL;
   486     break;
   488   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
   489   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
   490     if (!UseAESIntrinsics) return NULL;
   491     // these two require the predicated logic
   492     is_predicted = true;
   493     break;
   495   case vmIntrinsics::_updateCRC32:
   496   case vmIntrinsics::_updateBytesCRC32:
   497   case vmIntrinsics::_updateByteBufferCRC32:
   498     if (!UseCRC32Intrinsics) return NULL;
   499     break;
   501  default:
   502     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
   503     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
   504     break;
   505   }
   507   // -XX:-InlineClassNatives disables natives from the Class class.
   508   // The flag applies to all reflective calls, notably Array.newArray
   509   // (visible to Java programmers as Array.newInstance).
   510   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
   511       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
   512     if (!InlineClassNatives)  return NULL;
   513   }
   515   // -XX:-InlineThreadNatives disables natives from the Thread class.
   516   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
   517     if (!InlineThreadNatives)  return NULL;
   518   }
   520   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
   521   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
   522       m->holder()->name() == ciSymbol::java_lang_Float() ||
   523       m->holder()->name() == ciSymbol::java_lang_Double()) {
   524     if (!InlineMathNatives)  return NULL;
   525   }
   527   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
   528   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
   529     if (!InlineUnsafeOps)  return NULL;
   530   }
   532   return new LibraryIntrinsic(m, is_virtual, is_predicted, (vmIntrinsics::ID) id);
   533 }
   535 //----------------------register_library_intrinsics-----------------------
   536 // Initialize this file's data structures, for each Compile instance.
   537 void Compile::register_library_intrinsics() {
   538   // Nothing to do here.
   539 }
   541 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
   542   LibraryCallKit kit(jvms, this);
   543   Compile* C = kit.C;
   544   int nodes = C->unique();
   545 #ifndef PRODUCT
   546   if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
   547     char buf[1000];
   548     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
   549     tty->print_cr("Intrinsic %s", str);
   550   }
   551 #endif
   552   ciMethod* callee = kit.callee();
   553   const int bci    = kit.bci();
   555   // Try to inline the intrinsic.
   556   if (kit.try_to_inline()) {
   557     if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
   558       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
   559     }
   560     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
   561     if (C->log()) {
   562       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
   563                      vmIntrinsics::name_at(intrinsic_id()),
   564                      (is_virtual() ? " virtual='1'" : ""),
   565                      C->unique() - nodes);
   566     }
   567     // Push the result from the inlined method onto the stack.
   568     kit.push_result();
   569     return kit.transfer_exceptions_into_jvms();
   570   }
   572   // The intrinsic bailed out
   573   if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
   574     if (jvms->has_method()) {
   575       // Not a root compile.
   576       const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
   577       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
   578     } else {
   579       // Root compile
   580       tty->print("Did not generate intrinsic %s%s at bci:%d in",
   581                vmIntrinsics::name_at(intrinsic_id()),
   582                (is_virtual() ? " (virtual)" : ""), bci);
   583     }
   584   }
   585   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
   586   return NULL;
   587 }
   589 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms) {
   590   LibraryCallKit kit(jvms, this);
   591   Compile* C = kit.C;
   592   int nodes = C->unique();
   593 #ifndef PRODUCT
   594   assert(is_predicted(), "sanity");
   595   if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
   596     char buf[1000];
   597     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
   598     tty->print_cr("Predicate for intrinsic %s", str);
   599   }
   600 #endif
   601   ciMethod* callee = kit.callee();
   602   const int bci    = kit.bci();
   604   Node* slow_ctl = kit.try_to_predicate();
   605   if (!kit.failing()) {
   606     if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
   607       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
   608     }
   609     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
   610     if (C->log()) {
   611       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
   612                      vmIntrinsics::name_at(intrinsic_id()),
   613                      (is_virtual() ? " virtual='1'" : ""),
   614                      C->unique() - nodes);
   615     }
   616     return slow_ctl; // Could be NULL if the check folds.
   617   }
   619   // The intrinsic bailed out
   620   if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
   621     if (jvms->has_method()) {
   622       // Not a root compile.
   623       const char* msg = "failed to generate predicate for intrinsic";
   624       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
   625     } else {
   626       // Root compile
   627       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
   628                                         vmIntrinsics::name_at(intrinsic_id()),
   629                                         (is_virtual() ? " (virtual)" : ""), bci);
   630     }
   631   }
   632   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
   633   return NULL;
   634 }
   636 bool LibraryCallKit::try_to_inline() {
   637   // Handle symbolic names for otherwise undistinguished boolean switches:
   638   const bool is_store       = true;
   639   const bool is_native_ptr  = true;
   640   const bool is_static      = true;
   641   const bool is_volatile    = true;
   643   if (!jvms()->has_method()) {
   644     // Root JVMState has a null method.
   645     assert(map()->memory()->Opcode() == Op_Parm, "");
   646     // Insert the memory aliasing node
   647     set_all_memory(reset_memory());
   648   }
   649   assert(merged_memory(), "");
   652   switch (intrinsic_id()) {
   653   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
   654   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
   655   case vmIntrinsics::_getClass:                 return inline_native_getClass();
   657   case vmIntrinsics::_dsin:
   658   case vmIntrinsics::_dcos:
   659   case vmIntrinsics::_dtan:
   660   case vmIntrinsics::_dabs:
   661   case vmIntrinsics::_datan2:
   662   case vmIntrinsics::_dsqrt:
   663   case vmIntrinsics::_dexp:
   664   case vmIntrinsics::_dlog:
   665   case vmIntrinsics::_dlog10:
   666   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
   668   case vmIntrinsics::_min:
   669   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
   671   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
   673   case vmIntrinsics::_compareTo:                return inline_string_compareTo();
   674   case vmIntrinsics::_indexOf:                  return inline_string_indexOf();
   675   case vmIntrinsics::_equals:                   return inline_string_equals();
   677   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile);
   678   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile);
   679   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile);
   680   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
   681   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
   682   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
   683   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
   684   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
   685   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
   687   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile);
   688   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile);
   689   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile);
   690   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
   691   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
   692   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
   693   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
   694   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
   695   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
   697   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile);
   698   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile);
   699   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile);
   700   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile);
   701   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile);
   702   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
   703   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
   704   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile);
   706   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile);
   707   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile);
   708   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile);
   709   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile);
   710   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile);
   711   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
   712   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
   713   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile);
   715   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile);
   716   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile);
   717   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile);
   718   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile);
   719   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile);
   720   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile);
   721   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile);
   722   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile);
   723   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile);
   725   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile);
   726   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile);
   727   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile);
   728   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile);
   729   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile);
   730   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile);
   731   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile);
   732   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile);
   733   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile);
   735   case vmIntrinsics::_prefetchRead:             return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
   736   case vmIntrinsics::_prefetchWrite:            return inline_unsafe_prefetch(!is_native_ptr,  is_store, !is_static);
   737   case vmIntrinsics::_prefetchReadStatic:       return inline_unsafe_prefetch(!is_native_ptr, !is_store,  is_static);
   738   case vmIntrinsics::_prefetchWriteStatic:      return inline_unsafe_prefetch(!is_native_ptr,  is_store,  is_static);
   740   case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
   741   case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
   742   case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
   744   case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
   745   case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
   746   case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
   748   case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
   749   case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
   750   case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
   751   case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
   752   case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
   754   case vmIntrinsics::_loadFence:
   755   case vmIntrinsics::_storeFence:
   756   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
   758   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
   759   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
   761 #ifdef TRACE_HAVE_INTRINSICS
   762   case vmIntrinsics::_classID:                  return inline_native_classID();
   763   case vmIntrinsics::_threadID:                 return inline_native_threadID();
   764   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
   765 #endif
   766   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
   767   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
   768   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
   769   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
   770   case vmIntrinsics::_newArray:                 return inline_native_newArray();
   771   case vmIntrinsics::_getLength:                return inline_native_getLength();
   772   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
   773   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
   774   case vmIntrinsics::_equalsC:                  return inline_array_equals();
   775   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
   777   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
   779   case vmIntrinsics::_isInstance:
   780   case vmIntrinsics::_getModifiers:
   781   case vmIntrinsics::_isInterface:
   782   case vmIntrinsics::_isArray:
   783   case vmIntrinsics::_isPrimitive:
   784   case vmIntrinsics::_getSuperclass:
   785   case vmIntrinsics::_getComponentType:
   786   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
   788   case vmIntrinsics::_floatToRawIntBits:
   789   case vmIntrinsics::_floatToIntBits:
   790   case vmIntrinsics::_intBitsToFloat:
   791   case vmIntrinsics::_doubleToRawLongBits:
   792   case vmIntrinsics::_doubleToLongBits:
   793   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
   795   case vmIntrinsics::_numberOfLeadingZeros_i:
   796   case vmIntrinsics::_numberOfLeadingZeros_l:
   797   case vmIntrinsics::_numberOfTrailingZeros_i:
   798   case vmIntrinsics::_numberOfTrailingZeros_l:
   799   case vmIntrinsics::_bitCount_i:
   800   case vmIntrinsics::_bitCount_l:
   801   case vmIntrinsics::_reverseBytes_i:
   802   case vmIntrinsics::_reverseBytes_l:
   803   case vmIntrinsics::_reverseBytes_s:
   804   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
   806   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
   808   case vmIntrinsics::_Reference_get:            return inline_reference_get();
   810   case vmIntrinsics::_aescrypt_encryptBlock:
   811   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
   813   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
   814   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
   815     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
   817   case vmIntrinsics::_encodeISOArray:
   818     return inline_encodeISOArray();
   820   case vmIntrinsics::_updateCRC32:
   821     return inline_updateCRC32();
   822   case vmIntrinsics::_updateBytesCRC32:
   823     return inline_updateBytesCRC32();
   824   case vmIntrinsics::_updateByteBufferCRC32:
   825     return inline_updateByteBufferCRC32();
   827   default:
   828     // If you get here, it may be that someone has added a new intrinsic
   829     // to the list in vmSymbols.hpp without implementing it here.
   830 #ifndef PRODUCT
   831     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
   832       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
   833                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
   834     }
   835 #endif
   836     return false;
   837   }
   838 }
   840 Node* LibraryCallKit::try_to_predicate() {
   841   if (!jvms()->has_method()) {
   842     // Root JVMState has a null method.
   843     assert(map()->memory()->Opcode() == Op_Parm, "");
   844     // Insert the memory aliasing node
   845     set_all_memory(reset_memory());
   846   }
   847   assert(merged_memory(), "");
   849   switch (intrinsic_id()) {
   850   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
   851     return inline_cipherBlockChaining_AESCrypt_predicate(false);
   852   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
   853     return inline_cipherBlockChaining_AESCrypt_predicate(true);
   855   default:
   856     // If you get here, it may be that someone has added a new intrinsic
   857     // to the list in vmSymbols.hpp without implementing it here.
   858 #ifndef PRODUCT
   859     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
   860       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
   861                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
   862     }
   863 #endif
   864     Node* slow_ctl = control();
   865     set_control(top()); // No fast path instrinsic
   866     return slow_ctl;
   867   }
   868 }
   870 //------------------------------set_result-------------------------------
   871 // Helper function for finishing intrinsics.
   872 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
   873   record_for_igvn(region);
   874   set_control(_gvn.transform(region));
   875   set_result( _gvn.transform(value));
   876   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
   877 }
   879 //------------------------------generate_guard---------------------------
   880 // Helper function for generating guarded fast-slow graph structures.
   881 // The given 'test', if true, guards a slow path.  If the test fails
   882 // then a fast path can be taken.  (We generally hope it fails.)
   883 // In all cases, GraphKit::control() is updated to the fast path.
   884 // The returned value represents the control for the slow path.
   885 // The return value is never 'top'; it is either a valid control
   886 // or NULL if it is obvious that the slow path can never be taken.
   887 // Also, if region and the slow control are not NULL, the slow edge
   888 // is appended to the region.
   889 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
   890   if (stopped()) {
   891     // Already short circuited.
   892     return NULL;
   893   }
   895   // Build an if node and its projections.
   896   // If test is true we take the slow path, which we assume is uncommon.
   897   if (_gvn.type(test) == TypeInt::ZERO) {
   898     // The slow branch is never taken.  No need to build this guard.
   899     return NULL;
   900   }
   902   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
   904   Node* if_slow = _gvn.transform(new (C) IfTrueNode(iff));
   905   if (if_slow == top()) {
   906     // The slow branch is never taken.  No need to build this guard.
   907     return NULL;
   908   }
   910   if (region != NULL)
   911     region->add_req(if_slow);
   913   Node* if_fast = _gvn.transform(new (C) IfFalseNode(iff));
   914   set_control(if_fast);
   916   return if_slow;
   917 }
   919 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
   920   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
   921 }
   922 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
   923   return generate_guard(test, region, PROB_FAIR);
   924 }
   926 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
   927                                                      Node* *pos_index) {
   928   if (stopped())
   929     return NULL;                // already stopped
   930   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
   931     return NULL;                // index is already adequately typed
   932   Node* cmp_lt = _gvn.transform(new (C) CmpINode(index, intcon(0)));
   933   Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
   934   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
   935   if (is_neg != NULL && pos_index != NULL) {
   936     // Emulate effect of Parse::adjust_map_after_if.
   937     Node* ccast = new (C) CastIINode(index, TypeInt::POS);
   938     ccast->set_req(0, control());
   939     (*pos_index) = _gvn.transform(ccast);
   940   }
   941   return is_neg;
   942 }
   944 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
   945                                                         Node* *pos_index) {
   946   if (stopped())
   947     return NULL;                // already stopped
   948   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
   949     return NULL;                // index is already adequately typed
   950   Node* cmp_le = _gvn.transform(new (C) CmpINode(index, intcon(0)));
   951   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
   952   Node* bol_le = _gvn.transform(new (C) BoolNode(cmp_le, le_or_eq));
   953   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
   954   if (is_notp != NULL && pos_index != NULL) {
   955     // Emulate effect of Parse::adjust_map_after_if.
   956     Node* ccast = new (C) CastIINode(index, TypeInt::POS1);
   957     ccast->set_req(0, control());
   958     (*pos_index) = _gvn.transform(ccast);
   959   }
   960   return is_notp;
   961 }
   963 // Make sure that 'position' is a valid limit index, in [0..length].
   964 // There are two equivalent plans for checking this:
   965 //   A. (offset + copyLength)  unsigned<=  arrayLength
   966 //   B. offset  <=  (arrayLength - copyLength)
   967 // We require that all of the values above, except for the sum and
   968 // difference, are already known to be non-negative.
   969 // Plan A is robust in the face of overflow, if offset and copyLength
   970 // are both hugely positive.
   971 //
   972 // Plan B is less direct and intuitive, but it does not overflow at
   973 // all, since the difference of two non-negatives is always
   974 // representable.  Whenever Java methods must perform the equivalent
   975 // check they generally use Plan B instead of Plan A.
   976 // For the moment we use Plan A.
   977 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
   978                                                   Node* subseq_length,
   979                                                   Node* array_length,
   980                                                   RegionNode* region) {
   981   if (stopped())
   982     return NULL;                // already stopped
   983   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
   984   if (zero_offset && subseq_length->eqv_uncast(array_length))
   985     return NULL;                // common case of whole-array copy
   986   Node* last = subseq_length;
   987   if (!zero_offset)             // last += offset
   988     last = _gvn.transform(new (C) AddINode(last, offset));
   989   Node* cmp_lt = _gvn.transform(new (C) CmpUNode(array_length, last));
   990   Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
   991   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
   992   return is_over;
   993 }
   996 //--------------------------generate_current_thread--------------------
   997 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
   998   ciKlass*    thread_klass = env()->Thread_klass();
   999   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
  1000   Node* thread = _gvn.transform(new (C) ThreadLocalNode());
  1001   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
  1002   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
  1003   tls_output = thread;
  1004   return threadObj;
  1008 //------------------------------make_string_method_node------------------------
  1009 // Helper method for String intrinsic functions. This version is called
  1010 // with str1 and str2 pointing to String object nodes.
  1011 //
  1012 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
  1013   Node* no_ctrl = NULL;
  1015   // Get start addr of string
  1016   Node* str1_value   = load_String_value(no_ctrl, str1);
  1017   Node* str1_offset  = load_String_offset(no_ctrl, str1);
  1018   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
  1020   // Get length of string 1
  1021   Node* str1_len  = load_String_length(no_ctrl, str1);
  1023   Node* str2_value   = load_String_value(no_ctrl, str2);
  1024   Node* str2_offset  = load_String_offset(no_ctrl, str2);
  1025   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
  1027   Node* str2_len = NULL;
  1028   Node* result = NULL;
  1030   switch (opcode) {
  1031   case Op_StrIndexOf:
  1032     // Get length of string 2
  1033     str2_len = load_String_length(no_ctrl, str2);
  1035     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
  1036                                  str1_start, str1_len, str2_start, str2_len);
  1037     break;
  1038   case Op_StrComp:
  1039     // Get length of string 2
  1040     str2_len = load_String_length(no_ctrl, str2);
  1042     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
  1043                                  str1_start, str1_len, str2_start, str2_len);
  1044     break;
  1045   case Op_StrEquals:
  1046     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
  1047                                str1_start, str2_start, str1_len);
  1048     break;
  1049   default:
  1050     ShouldNotReachHere();
  1051     return NULL;
  1054   // All these intrinsics have checks.
  1055   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1057   return _gvn.transform(result);
  1060 // Helper method for String intrinsic functions. This version is called
  1061 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
  1062 // to Int nodes containing the lenghts of str1 and str2.
  1063 //
  1064 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
  1065   Node* result = NULL;
  1066   switch (opcode) {
  1067   case Op_StrIndexOf:
  1068     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
  1069                                  str1_start, cnt1, str2_start, cnt2);
  1070     break;
  1071   case Op_StrComp:
  1072     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
  1073                                  str1_start, cnt1, str2_start, cnt2);
  1074     break;
  1075   case Op_StrEquals:
  1076     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
  1077                                  str1_start, str2_start, cnt1);
  1078     break;
  1079   default:
  1080     ShouldNotReachHere();
  1081     return NULL;
  1084   // All these intrinsics have checks.
  1085   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1087   return _gvn.transform(result);
  1090 //------------------------------inline_string_compareTo------------------------
  1091 // public int java.lang.String.compareTo(String anotherString);
  1092 bool LibraryCallKit::inline_string_compareTo() {
  1093   Node* receiver = null_check(argument(0));
  1094   Node* arg      = null_check(argument(1));
  1095   if (stopped()) {
  1096     return true;
  1098   set_result(make_string_method_node(Op_StrComp, receiver, arg));
  1099   return true;
  1102 //------------------------------inline_string_equals------------------------
  1103 bool LibraryCallKit::inline_string_equals() {
  1104   Node* receiver = null_check_receiver();
  1105   // NOTE: Do not null check argument for String.equals() because spec
  1106   // allows to specify NULL as argument.
  1107   Node* argument = this->argument(1);
  1108   if (stopped()) {
  1109     return true;
  1112   // paths (plus control) merge
  1113   RegionNode* region = new (C) RegionNode(5);
  1114   Node* phi = new (C) PhiNode(region, TypeInt::BOOL);
  1116   // does source == target string?
  1117   Node* cmp = _gvn.transform(new (C) CmpPNode(receiver, argument));
  1118   Node* bol = _gvn.transform(new (C) BoolNode(cmp, BoolTest::eq));
  1120   Node* if_eq = generate_slow_guard(bol, NULL);
  1121   if (if_eq != NULL) {
  1122     // receiver == argument
  1123     phi->init_req(2, intcon(1));
  1124     region->init_req(2, if_eq);
  1127   // get String klass for instanceOf
  1128   ciInstanceKlass* klass = env()->String_klass();
  1130   if (!stopped()) {
  1131     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
  1132     Node* cmp  = _gvn.transform(new (C) CmpINode(inst, intcon(1)));
  1133     Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
  1135     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
  1136     //instanceOf == true, fallthrough
  1138     if (inst_false != NULL) {
  1139       phi->init_req(3, intcon(0));
  1140       region->init_req(3, inst_false);
  1144   if (!stopped()) {
  1145     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
  1147     // Properly cast the argument to String
  1148     argument = _gvn.transform(new (C) CheckCastPPNode(control(), argument, string_type));
  1149     // This path is taken only when argument's type is String:NotNull.
  1150     argument = cast_not_null(argument, false);
  1152     Node* no_ctrl = NULL;
  1154     // Get start addr of receiver
  1155     Node* receiver_val    = load_String_value(no_ctrl, receiver);
  1156     Node* receiver_offset = load_String_offset(no_ctrl, receiver);
  1157     Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
  1159     // Get length of receiver
  1160     Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
  1162     // Get start addr of argument
  1163     Node* argument_val    = load_String_value(no_ctrl, argument);
  1164     Node* argument_offset = load_String_offset(no_ctrl, argument);
  1165     Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
  1167     // Get length of argument
  1168     Node* argument_cnt  = load_String_length(no_ctrl, argument);
  1170     // Check for receiver count != argument count
  1171     Node* cmp = _gvn.transform(new(C) CmpINode(receiver_cnt, argument_cnt));
  1172     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::ne));
  1173     Node* if_ne = generate_slow_guard(bol, NULL);
  1174     if (if_ne != NULL) {
  1175       phi->init_req(4, intcon(0));
  1176       region->init_req(4, if_ne);
  1179     // Check for count == 0 is done by assembler code for StrEquals.
  1181     if (!stopped()) {
  1182       Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
  1183       phi->init_req(1, equals);
  1184       region->init_req(1, control());
  1188   // post merge
  1189   set_control(_gvn.transform(region));
  1190   record_for_igvn(region);
  1192   set_result(_gvn.transform(phi));
  1193   return true;
  1196 //------------------------------inline_array_equals----------------------------
  1197 bool LibraryCallKit::inline_array_equals() {
  1198   Node* arg1 = argument(0);
  1199   Node* arg2 = argument(1);
  1200   set_result(_gvn.transform(new (C) AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
  1201   return true;
  1204 // Java version of String.indexOf(constant string)
  1205 // class StringDecl {
  1206 //   StringDecl(char[] ca) {
  1207 //     offset = 0;
  1208 //     count = ca.length;
  1209 //     value = ca;
  1210 //   }
  1211 //   int offset;
  1212 //   int count;
  1213 //   char[] value;
  1214 // }
  1215 //
  1216 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
  1217 //                             int targetOffset, int cache_i, int md2) {
  1218 //   int cache = cache_i;
  1219 //   int sourceOffset = string_object.offset;
  1220 //   int sourceCount = string_object.count;
  1221 //   int targetCount = target_object.length;
  1222 //
  1223 //   int targetCountLess1 = targetCount - 1;
  1224 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
  1225 //
  1226 //   char[] source = string_object.value;
  1227 //   char[] target = target_object;
  1228 //   int lastChar = target[targetCountLess1];
  1229 //
  1230 //  outer_loop:
  1231 //   for (int i = sourceOffset; i < sourceEnd; ) {
  1232 //     int src = source[i + targetCountLess1];
  1233 //     if (src == lastChar) {
  1234 //       // With random strings and a 4-character alphabet,
  1235 //       // reverse matching at this point sets up 0.8% fewer
  1236 //       // frames, but (paradoxically) makes 0.3% more probes.
  1237 //       // Since those probes are nearer the lastChar probe,
  1238 //       // there is may be a net D$ win with reverse matching.
  1239 //       // But, reversing loop inhibits unroll of inner loop
  1240 //       // for unknown reason.  So, does running outer loop from
  1241 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
  1242 //       for (int j = 0; j < targetCountLess1; j++) {
  1243 //         if (target[targetOffset + j] != source[i+j]) {
  1244 //           if ((cache & (1 << source[i+j])) == 0) {
  1245 //             if (md2 < j+1) {
  1246 //               i += j+1;
  1247 //               continue outer_loop;
  1248 //             }
  1249 //           }
  1250 //           i += md2;
  1251 //           continue outer_loop;
  1252 //         }
  1253 //       }
  1254 //       return i - sourceOffset;
  1255 //     }
  1256 //     if ((cache & (1 << src)) == 0) {
  1257 //       i += targetCountLess1;
  1258 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
  1259 //     i++;
  1260 //   }
  1261 //   return -1;
  1262 // }
  1264 //------------------------------string_indexOf------------------------
  1265 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
  1266                                      jint cache_i, jint md2_i) {
  1268   Node* no_ctrl  = NULL;
  1269   float likely   = PROB_LIKELY(0.9);
  1270   float unlikely = PROB_UNLIKELY(0.9);
  1272   const int nargs = 0; // no arguments to push back for uncommon trap in predicate
  1274   Node* source        = load_String_value(no_ctrl, string_object);
  1275   Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
  1276   Node* sourceCount   = load_String_length(no_ctrl, string_object);
  1278   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)));
  1279   jint target_length = target_array->length();
  1280   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
  1281   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
  1283   IdealKit kit(this, false, true);
  1284 #define __ kit.
  1285   Node* zero             = __ ConI(0);
  1286   Node* one              = __ ConI(1);
  1287   Node* cache            = __ ConI(cache_i);
  1288   Node* md2              = __ ConI(md2_i);
  1289   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
  1290   Node* targetCount      = __ ConI(target_length);
  1291   Node* targetCountLess1 = __ ConI(target_length - 1);
  1292   Node* targetOffset     = __ ConI(targetOffset_i);
  1293   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
  1295   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
  1296   Node* outer_loop = __ make_label(2 /* goto */);
  1297   Node* return_    = __ make_label(1);
  1299   __ set(rtn,__ ConI(-1));
  1300   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
  1301        Node* i2  = __ AddI(__ value(i), targetCountLess1);
  1302        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
  1303        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
  1304        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
  1305          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
  1306               Node* tpj = __ AddI(targetOffset, __ value(j));
  1307               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
  1308               Node* ipj  = __ AddI(__ value(i), __ value(j));
  1309               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
  1310               __ if_then(targ, BoolTest::ne, src2); {
  1311                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
  1312                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
  1313                     __ increment(i, __ AddI(__ value(j), one));
  1314                     __ goto_(outer_loop);
  1315                   } __ end_if(); __ dead(j);
  1316                 }__ end_if(); __ dead(j);
  1317                 __ increment(i, md2);
  1318                 __ goto_(outer_loop);
  1319               }__ end_if();
  1320               __ increment(j, one);
  1321          }__ end_loop(); __ dead(j);
  1322          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
  1323          __ goto_(return_);
  1324        }__ end_if();
  1325        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
  1326          __ increment(i, targetCountLess1);
  1327        }__ end_if();
  1328        __ increment(i, one);
  1329        __ bind(outer_loop);
  1330   }__ end_loop(); __ dead(i);
  1331   __ bind(return_);
  1333   // Final sync IdealKit and GraphKit.
  1334   final_sync(kit);
  1335   Node* result = __ value(rtn);
  1336 #undef __
  1337   C->set_has_loops(true);
  1338   return result;
  1341 //------------------------------inline_string_indexOf------------------------
  1342 bool LibraryCallKit::inline_string_indexOf() {
  1343   Node* receiver = argument(0);
  1344   Node* arg      = argument(1);
  1346   Node* result;
  1347   // Disable the use of pcmpestri until it can be guaranteed that
  1348   // the load doesn't cross into the uncommited space.
  1349   if (Matcher::has_match_rule(Op_StrIndexOf) &&
  1350       UseSSE42Intrinsics) {
  1351     // Generate SSE4.2 version of indexOf
  1352     // We currently only have match rules that use SSE4.2
  1354     receiver = null_check(receiver);
  1355     arg      = null_check(arg);
  1356     if (stopped()) {
  1357       return true;
  1360     ciInstanceKlass* str_klass = env()->String_klass();
  1361     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
  1363     // Make the merge point
  1364     RegionNode* result_rgn = new (C) RegionNode(4);
  1365     Node*       result_phi = new (C) PhiNode(result_rgn, TypeInt::INT);
  1366     Node* no_ctrl  = NULL;
  1368     // Get start addr of source string
  1369     Node* source = load_String_value(no_ctrl, receiver);
  1370     Node* source_offset = load_String_offset(no_ctrl, receiver);
  1371     Node* source_start = array_element_address(source, source_offset, T_CHAR);
  1373     // Get length of source string
  1374     Node* source_cnt  = load_String_length(no_ctrl, receiver);
  1376     // Get start addr of substring
  1377     Node* substr = load_String_value(no_ctrl, arg);
  1378     Node* substr_offset = load_String_offset(no_ctrl, arg);
  1379     Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
  1381     // Get length of source string
  1382     Node* substr_cnt  = load_String_length(no_ctrl, arg);
  1384     // Check for substr count > string count
  1385     Node* cmp = _gvn.transform(new(C) CmpINode(substr_cnt, source_cnt));
  1386     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::gt));
  1387     Node* if_gt = generate_slow_guard(bol, NULL);
  1388     if (if_gt != NULL) {
  1389       result_phi->init_req(2, intcon(-1));
  1390       result_rgn->init_req(2, if_gt);
  1393     if (!stopped()) {
  1394       // Check for substr count == 0
  1395       cmp = _gvn.transform(new(C) CmpINode(substr_cnt, intcon(0)));
  1396       bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
  1397       Node* if_zero = generate_slow_guard(bol, NULL);
  1398       if (if_zero != NULL) {
  1399         result_phi->init_req(3, intcon(0));
  1400         result_rgn->init_req(3, if_zero);
  1404     if (!stopped()) {
  1405       result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
  1406       result_phi->init_req(1, result);
  1407       result_rgn->init_req(1, control());
  1409     set_control(_gvn.transform(result_rgn));
  1410     record_for_igvn(result_rgn);
  1411     result = _gvn.transform(result_phi);
  1413   } else { // Use LibraryCallKit::string_indexOf
  1414     // don't intrinsify if argument isn't a constant string.
  1415     if (!arg->is_Con()) {
  1416      return false;
  1418     const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
  1419     if (str_type == NULL) {
  1420       return false;
  1422     ciInstanceKlass* klass = env()->String_klass();
  1423     ciObject* str_const = str_type->const_oop();
  1424     if (str_const == NULL || str_const->klass() != klass) {
  1425       return false;
  1427     ciInstance* str = str_const->as_instance();
  1428     assert(str != NULL, "must be instance");
  1430     ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
  1431     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
  1433     int o;
  1434     int c;
  1435     if (java_lang_String::has_offset_field()) {
  1436       o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
  1437       c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
  1438     } else {
  1439       o = 0;
  1440       c = pat->length();
  1443     // constant strings have no offset and count == length which
  1444     // simplifies the resulting code somewhat so lets optimize for that.
  1445     if (o != 0 || c != pat->length()) {
  1446      return false;
  1449     receiver = null_check(receiver, T_OBJECT);
  1450     // NOTE: No null check on the argument is needed since it's a constant String oop.
  1451     if (stopped()) {
  1452       return true;
  1455     // The null string as a pattern always returns 0 (match at beginning of string)
  1456     if (c == 0) {
  1457       set_result(intcon(0));
  1458       return true;
  1461     // Generate default indexOf
  1462     jchar lastChar = pat->char_at(o + (c - 1));
  1463     int cache = 0;
  1464     int i;
  1465     for (i = 0; i < c - 1; i++) {
  1466       assert(i < pat->length(), "out of range");
  1467       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
  1470     int md2 = c;
  1471     for (i = 0; i < c - 1; i++) {
  1472       assert(i < pat->length(), "out of range");
  1473       if (pat->char_at(o + i) == lastChar) {
  1474         md2 = (c - 1) - i;
  1478     result = string_indexOf(receiver, pat, o, cache, md2);
  1480   set_result(result);
  1481   return true;
  1484 //--------------------------round_double_node--------------------------------
  1485 // Round a double node if necessary.
  1486 Node* LibraryCallKit::round_double_node(Node* n) {
  1487   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
  1488     n = _gvn.transform(new (C) RoundDoubleNode(0, n));
  1489   return n;
  1492 //------------------------------inline_math-----------------------------------
  1493 // public static double Math.abs(double)
  1494 // public static double Math.sqrt(double)
  1495 // public static double Math.log(double)
  1496 // public static double Math.log10(double)
  1497 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
  1498   Node* arg = round_double_node(argument(0));
  1499   Node* n;
  1500   switch (id) {
  1501   case vmIntrinsics::_dabs:   n = new (C) AbsDNode(                arg);  break;
  1502   case vmIntrinsics::_dsqrt:  n = new (C) SqrtDNode(C, control(),  arg);  break;
  1503   case vmIntrinsics::_dlog:   n = new (C) LogDNode(C, control(),   arg);  break;
  1504   case vmIntrinsics::_dlog10: n = new (C) Log10DNode(C, control(), arg);  break;
  1505   default:  fatal_unexpected_iid(id);  break;
  1507   set_result(_gvn.transform(n));
  1508   return true;
  1511 //------------------------------inline_trig----------------------------------
  1512 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
  1513 // argument reduction which will turn into a fast/slow diamond.
  1514 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
  1515   Node* arg = round_double_node(argument(0));
  1516   Node* n = NULL;
  1518   switch (id) {
  1519   case vmIntrinsics::_dsin:  n = new (C) SinDNode(C, control(), arg);  break;
  1520   case vmIntrinsics::_dcos:  n = new (C) CosDNode(C, control(), arg);  break;
  1521   case vmIntrinsics::_dtan:  n = new (C) TanDNode(C, control(), arg);  break;
  1522   default:  fatal_unexpected_iid(id);  break;
  1524   n = _gvn.transform(n);
  1526   // Rounding required?  Check for argument reduction!
  1527   if (Matcher::strict_fp_requires_explicit_rounding) {
  1528     static const double     pi_4 =  0.7853981633974483;
  1529     static const double neg_pi_4 = -0.7853981633974483;
  1530     // pi/2 in 80-bit extended precision
  1531     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
  1532     // -pi/2 in 80-bit extended precision
  1533     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
  1534     // Cutoff value for using this argument reduction technique
  1535     //static const double    pi_2_minus_epsilon =  1.564660403643354;
  1536     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
  1538     // Pseudocode for sin:
  1539     // if (x <= Math.PI / 4.0) {
  1540     //   if (x >= -Math.PI / 4.0) return  fsin(x);
  1541     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
  1542     // } else {
  1543     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
  1544     // }
  1545     // return StrictMath.sin(x);
  1547     // Pseudocode for cos:
  1548     // if (x <= Math.PI / 4.0) {
  1549     //   if (x >= -Math.PI / 4.0) return  fcos(x);
  1550     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
  1551     // } else {
  1552     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
  1553     // }
  1554     // return StrictMath.cos(x);
  1556     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
  1557     // requires a special machine instruction to load it.  Instead we'll try
  1558     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
  1559     // probably do the math inside the SIN encoding.
  1561     // Make the merge point
  1562     RegionNode* r = new (C) RegionNode(3);
  1563     Node* phi = new (C) PhiNode(r, Type::DOUBLE);
  1565     // Flatten arg so we need only 1 test
  1566     Node *abs = _gvn.transform(new (C) AbsDNode(arg));
  1567     // Node for PI/4 constant
  1568     Node *pi4 = makecon(TypeD::make(pi_4));
  1569     // Check PI/4 : abs(arg)
  1570     Node *cmp = _gvn.transform(new (C) CmpDNode(pi4,abs));
  1571     // Check: If PI/4 < abs(arg) then go slow
  1572     Node *bol = _gvn.transform(new (C) BoolNode( cmp, BoolTest::lt ));
  1573     // Branch either way
  1574     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  1575     set_control(opt_iff(r,iff));
  1577     // Set fast path result
  1578     phi->init_req(2, n);
  1580     // Slow path - non-blocking leaf call
  1581     Node* call = NULL;
  1582     switch (id) {
  1583     case vmIntrinsics::_dsin:
  1584       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1585                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
  1586                                "Sin", NULL, arg, top());
  1587       break;
  1588     case vmIntrinsics::_dcos:
  1589       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1590                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
  1591                                "Cos", NULL, arg, top());
  1592       break;
  1593     case vmIntrinsics::_dtan:
  1594       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1595                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
  1596                                "Tan", NULL, arg, top());
  1597       break;
  1599     assert(control()->in(0) == call, "");
  1600     Node* slow_result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  1601     r->init_req(1, control());
  1602     phi->init_req(1, slow_result);
  1604     // Post-merge
  1605     set_control(_gvn.transform(r));
  1606     record_for_igvn(r);
  1607     n = _gvn.transform(phi);
  1609     C->set_has_split_ifs(true); // Has chance for split-if optimization
  1611   set_result(n);
  1612   return true;
  1615 void LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
  1616   //-------------------
  1617   //result=(result.isNaN())? funcAddr():result;
  1618   // Check: If isNaN() by checking result!=result? then either trap
  1619   // or go to runtime
  1620   Node* cmpisnan = _gvn.transform(new (C) CmpDNode(result, result));
  1621   // Build the boolean node
  1622   Node* bolisnum = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::eq));
  1624   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
  1625     { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
  1626       // The pow or exp intrinsic returned a NaN, which requires a call
  1627       // to the runtime.  Recompile with the runtime call.
  1628       uncommon_trap(Deoptimization::Reason_intrinsic,
  1629                     Deoptimization::Action_make_not_entrant);
  1631     set_result(result);
  1632   } else {
  1633     // If this inlining ever returned NaN in the past, we compile a call
  1634     // to the runtime to properly handle corner cases
  1636     IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  1637     Node* if_slow = _gvn.transform(new (C) IfFalseNode(iff));
  1638     Node* if_fast = _gvn.transform(new (C) IfTrueNode(iff));
  1640     if (!if_slow->is_top()) {
  1641       RegionNode* result_region = new (C) RegionNode(3);
  1642       PhiNode*    result_val = new (C) PhiNode(result_region, Type::DOUBLE);
  1644       result_region->init_req(1, if_fast);
  1645       result_val->init_req(1, result);
  1647       set_control(if_slow);
  1649       const TypePtr* no_memory_effects = NULL;
  1650       Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
  1651                                    no_memory_effects,
  1652                                    x, top(), y, y ? top() : NULL);
  1653       Node* value = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+0));
  1654 #ifdef ASSERT
  1655       Node* value_top = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+1));
  1656       assert(value_top == top(), "second value must be top");
  1657 #endif
  1659       result_region->init_req(2, control());
  1660       result_val->init_req(2, value);
  1661       set_result(result_region, result_val);
  1662     } else {
  1663       set_result(result);
  1668 //------------------------------inline_exp-------------------------------------
  1669 // Inline exp instructions, if possible.  The Intel hardware only misses
  1670 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
  1671 bool LibraryCallKit::inline_exp() {
  1672   Node* arg = round_double_node(argument(0));
  1673   Node* n   = _gvn.transform(new (C) ExpDNode(C, control(), arg));
  1675   finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
  1677   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1678   return true;
  1681 //------------------------------inline_pow-------------------------------------
  1682 // Inline power instructions, if possible.
  1683 bool LibraryCallKit::inline_pow() {
  1684   // Pseudocode for pow
  1685   // if (x <= 0.0) {
  1686   //   long longy = (long)y;
  1687   //   if ((double)longy == y) { // if y is long
  1688   //     if (y + 1 == y) longy = 0; // huge number: even
  1689   //     result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
  1690   //   } else {
  1691   //     result = NaN;
  1692   //   }
  1693   // } else {
  1694   //   result = DPow(x,y);
  1695   // }
  1696   // if (result != result)?  {
  1697   //   result = uncommon_trap() or runtime_call();
  1698   // }
  1699   // return result;
  1701   Node* x = round_double_node(argument(0));
  1702   Node* y = round_double_node(argument(2));
  1704   Node* result = NULL;
  1706   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
  1707     // Short form: skip the fancy tests and just check for NaN result.
  1708     result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
  1709   } else {
  1710     // If this inlining ever returned NaN in the past, include all
  1711     // checks + call to the runtime.
  1713     // Set the merge point for If node with condition of (x <= 0.0)
  1714     // There are four possible paths to region node and phi node
  1715     RegionNode *r = new (C) RegionNode(4);
  1716     Node *phi = new (C) PhiNode(r, Type::DOUBLE);
  1718     // Build the first if node: if (x <= 0.0)
  1719     // Node for 0 constant
  1720     Node *zeronode = makecon(TypeD::ZERO);
  1721     // Check x:0
  1722     Node *cmp = _gvn.transform(new (C) CmpDNode(x, zeronode));
  1723     // Check: If (x<=0) then go complex path
  1724     Node *bol1 = _gvn.transform(new (C) BoolNode( cmp, BoolTest::le ));
  1725     // Branch either way
  1726     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1727     // Fast path taken; set region slot 3
  1728     Node *fast_taken = _gvn.transform(new (C) IfFalseNode(if1));
  1729     r->init_req(3,fast_taken); // Capture fast-control
  1731     // Fast path not-taken, i.e. slow path
  1732     Node *complex_path = _gvn.transform(new (C) IfTrueNode(if1));
  1734     // Set fast path result
  1735     Node *fast_result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
  1736     phi->init_req(3, fast_result);
  1738     // Complex path
  1739     // Build the second if node (if y is long)
  1740     // Node for (long)y
  1741     Node *longy = _gvn.transform(new (C) ConvD2LNode(y));
  1742     // Node for (double)((long) y)
  1743     Node *doublelongy= _gvn.transform(new (C) ConvL2DNode(longy));
  1744     // Check (double)((long) y) : y
  1745     Node *cmplongy= _gvn.transform(new (C) CmpDNode(doublelongy, y));
  1746     // Check if (y isn't long) then go to slow path
  1748     Node *bol2 = _gvn.transform(new (C) BoolNode( cmplongy, BoolTest::ne ));
  1749     // Branch either way
  1750     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1751     Node* ylong_path = _gvn.transform(new (C) IfFalseNode(if2));
  1753     Node *slow_path = _gvn.transform(new (C) IfTrueNode(if2));
  1755     // Calculate DPow(abs(x), y)*(1 & (long)y)
  1756     // Node for constant 1
  1757     Node *conone = longcon(1);
  1758     // 1& (long)y
  1759     Node *signnode= _gvn.transform(new (C) AndLNode(conone, longy));
  1761     // A huge number is always even. Detect a huge number by checking
  1762     // if y + 1 == y and set integer to be tested for parity to 0.
  1763     // Required for corner case:
  1764     // (long)9.223372036854776E18 = max_jlong
  1765     // (double)(long)9.223372036854776E18 = 9.223372036854776E18
  1766     // max_jlong is odd but 9.223372036854776E18 is even
  1767     Node* yplus1 = _gvn.transform(new (C) AddDNode(y, makecon(TypeD::make(1))));
  1768     Node *cmpyplus1= _gvn.transform(new (C) CmpDNode(yplus1, y));
  1769     Node *bolyplus1 = _gvn.transform(new (C) BoolNode( cmpyplus1, BoolTest::eq ));
  1770     Node* correctedsign = NULL;
  1771     if (ConditionalMoveLimit != 0) {
  1772       correctedsign = _gvn.transform( CMoveNode::make(C, NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
  1773     } else {
  1774       IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
  1775       RegionNode *r = new (C) RegionNode(3);
  1776       Node *phi = new (C) PhiNode(r, TypeLong::LONG);
  1777       r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyplus1)));
  1778       r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyplus1)));
  1779       phi->init_req(1, signnode);
  1780       phi->init_req(2, longcon(0));
  1781       correctedsign = _gvn.transform(phi);
  1782       ylong_path = _gvn.transform(r);
  1783       record_for_igvn(r);
  1786     // zero node
  1787     Node *conzero = longcon(0);
  1788     // Check (1&(long)y)==0?
  1789     Node *cmpeq1 = _gvn.transform(new (C) CmpLNode(correctedsign, conzero));
  1790     // Check if (1&(long)y)!=0?, if so the result is negative
  1791     Node *bol3 = _gvn.transform(new (C) BoolNode( cmpeq1, BoolTest::ne ));
  1792     // abs(x)
  1793     Node *absx=_gvn.transform(new (C) AbsDNode(x));
  1794     // abs(x)^y
  1795     Node *absxpowy = _gvn.transform(new (C) PowDNode(C, control(), absx, y));
  1796     // -abs(x)^y
  1797     Node *negabsxpowy = _gvn.transform(new (C) NegDNode (absxpowy));
  1798     // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
  1799     Node *signresult = NULL;
  1800     if (ConditionalMoveLimit != 0) {
  1801       signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
  1802     } else {
  1803       IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
  1804       RegionNode *r = new (C) RegionNode(3);
  1805       Node *phi = new (C) PhiNode(r, Type::DOUBLE);
  1806       r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyeven)));
  1807       r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyeven)));
  1808       phi->init_req(1, absxpowy);
  1809       phi->init_req(2, negabsxpowy);
  1810       signresult = _gvn.transform(phi);
  1811       ylong_path = _gvn.transform(r);
  1812       record_for_igvn(r);
  1814     // Set complex path fast result
  1815     r->init_req(2, ylong_path);
  1816     phi->init_req(2, signresult);
  1818     static const jlong nan_bits = CONST64(0x7ff8000000000000);
  1819     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
  1820     r->init_req(1,slow_path);
  1821     phi->init_req(1,slow_result);
  1823     // Post merge
  1824     set_control(_gvn.transform(r));
  1825     record_for_igvn(r);
  1826     result = _gvn.transform(phi);
  1829   finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
  1831   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1832   return true;
  1835 //------------------------------runtime_math-----------------------------
  1836 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
  1837   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
  1838          "must be (DD)D or (D)D type");
  1840   // Inputs
  1841   Node* a = round_double_node(argument(0));
  1842   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
  1844   const TypePtr* no_memory_effects = NULL;
  1845   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
  1846                                  no_memory_effects,
  1847                                  a, top(), b, b ? top() : NULL);
  1848   Node* value = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+0));
  1849 #ifdef ASSERT
  1850   Node* value_top = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+1));
  1851   assert(value_top == top(), "second value must be top");
  1852 #endif
  1854   set_result(value);
  1855   return true;
  1858 //------------------------------inline_math_native-----------------------------
  1859 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
  1860 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
  1861   switch (id) {
  1862     // These intrinsics are not properly supported on all hardware
  1863   case vmIntrinsics::_dcos:   return Matcher::has_match_rule(Op_CosD)   ? inline_trig(id) :
  1864     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
  1865   case vmIntrinsics::_dsin:   return Matcher::has_match_rule(Op_SinD)   ? inline_trig(id) :
  1866     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
  1867   case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
  1868     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
  1870   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD)   ? inline_math(id) :
  1871     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
  1872   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
  1873     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
  1875     // These intrinsics are supported on all hardware
  1876   case vmIntrinsics::_dsqrt:  return Matcher::has_match_rule(Op_SqrtD)  ? inline_math(id) : false;
  1877   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
  1879   case vmIntrinsics::_dexp:   return Matcher::has_match_rule(Op_ExpD)   ? inline_exp()    :
  1880     runtime_math(OptoRuntime::Math_D_D_Type(),  FN_PTR(SharedRuntime::dexp),  "EXP");
  1881   case vmIntrinsics::_dpow:   return Matcher::has_match_rule(Op_PowD)   ? inline_pow()    :
  1882     runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
  1883 #undef FN_PTR
  1885    // These intrinsics are not yet correctly implemented
  1886   case vmIntrinsics::_datan2:
  1887     return false;
  1889   default:
  1890     fatal_unexpected_iid(id);
  1891     return false;
  1895 static bool is_simple_name(Node* n) {
  1896   return (n->req() == 1         // constant
  1897           || (n->is_Type() && n->as_Type()->type()->singleton())
  1898           || n->is_Proj()       // parameter or return value
  1899           || n->is_Phi()        // local of some sort
  1900           );
  1903 //----------------------------inline_min_max-----------------------------------
  1904 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
  1905   set_result(generate_min_max(id, argument(0), argument(1)));
  1906   return true;
  1909 Node*
  1910 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
  1911   // These are the candidate return value:
  1912   Node* xvalue = x0;
  1913   Node* yvalue = y0;
  1915   if (xvalue == yvalue) {
  1916     return xvalue;
  1919   bool want_max = (id == vmIntrinsics::_max);
  1921   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
  1922   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
  1923   if (txvalue == NULL || tyvalue == NULL)  return top();
  1924   // This is not really necessary, but it is consistent with a
  1925   // hypothetical MaxINode::Value method:
  1926   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
  1928   // %%% This folding logic should (ideally) be in a different place.
  1929   // Some should be inside IfNode, and there to be a more reliable
  1930   // transformation of ?: style patterns into cmoves.  We also want
  1931   // more powerful optimizations around cmove and min/max.
  1933   // Try to find a dominating comparison of these guys.
  1934   // It can simplify the index computation for Arrays.copyOf
  1935   // and similar uses of System.arraycopy.
  1936   // First, compute the normalized version of CmpI(x, y).
  1937   int   cmp_op = Op_CmpI;
  1938   Node* xkey = xvalue;
  1939   Node* ykey = yvalue;
  1940   Node* ideal_cmpxy = _gvn.transform(new(C) CmpINode(xkey, ykey));
  1941   if (ideal_cmpxy->is_Cmp()) {
  1942     // E.g., if we have CmpI(length - offset, count),
  1943     // it might idealize to CmpI(length, count + offset)
  1944     cmp_op = ideal_cmpxy->Opcode();
  1945     xkey = ideal_cmpxy->in(1);
  1946     ykey = ideal_cmpxy->in(2);
  1949   // Start by locating any relevant comparisons.
  1950   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
  1951   Node* cmpxy = NULL;
  1952   Node* cmpyx = NULL;
  1953   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
  1954     Node* cmp = start_from->fast_out(k);
  1955     if (cmp->outcnt() > 0 &&            // must have prior uses
  1956         cmp->in(0) == NULL &&           // must be context-independent
  1957         cmp->Opcode() == cmp_op) {      // right kind of compare
  1958       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
  1959       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
  1963   const int NCMPS = 2;
  1964   Node* cmps[NCMPS] = { cmpxy, cmpyx };
  1965   int cmpn;
  1966   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  1967     if (cmps[cmpn] != NULL)  break;     // find a result
  1969   if (cmpn < NCMPS) {
  1970     // Look for a dominating test that tells us the min and max.
  1971     int depth = 0;                // Limit search depth for speed
  1972     Node* dom = control();
  1973     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
  1974       if (++depth >= 100)  break;
  1975       Node* ifproj = dom;
  1976       if (!ifproj->is_Proj())  continue;
  1977       Node* iff = ifproj->in(0);
  1978       if (!iff->is_If())  continue;
  1979       Node* bol = iff->in(1);
  1980       if (!bol->is_Bool())  continue;
  1981       Node* cmp = bol->in(1);
  1982       if (cmp == NULL)  continue;
  1983       for (cmpn = 0; cmpn < NCMPS; cmpn++)
  1984         if (cmps[cmpn] == cmp)  break;
  1985       if (cmpn == NCMPS)  continue;
  1986       BoolTest::mask btest = bol->as_Bool()->_test._test;
  1987       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
  1988       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
  1989       // At this point, we know that 'x btest y' is true.
  1990       switch (btest) {
  1991       case BoolTest::eq:
  1992         // They are proven equal, so we can collapse the min/max.
  1993         // Either value is the answer.  Choose the simpler.
  1994         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
  1995           return yvalue;
  1996         return xvalue;
  1997       case BoolTest::lt:          // x < y
  1998       case BoolTest::le:          // x <= y
  1999         return (want_max ? yvalue : xvalue);
  2000       case BoolTest::gt:          // x > y
  2001       case BoolTest::ge:          // x >= y
  2002         return (want_max ? xvalue : yvalue);
  2007   // We failed to find a dominating test.
  2008   // Let's pick a test that might GVN with prior tests.
  2009   Node*          best_bol   = NULL;
  2010   BoolTest::mask best_btest = BoolTest::illegal;
  2011   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  2012     Node* cmp = cmps[cmpn];
  2013     if (cmp == NULL)  continue;
  2014     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
  2015       Node* bol = cmp->fast_out(j);
  2016       if (!bol->is_Bool())  continue;
  2017       BoolTest::mask btest = bol->as_Bool()->_test._test;
  2018       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
  2019       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
  2020       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
  2021         best_bol   = bol->as_Bool();
  2022         best_btest = btest;
  2027   Node* answer_if_true  = NULL;
  2028   Node* answer_if_false = NULL;
  2029   switch (best_btest) {
  2030   default:
  2031     if (cmpxy == NULL)
  2032       cmpxy = ideal_cmpxy;
  2033     best_bol = _gvn.transform(new(C) BoolNode(cmpxy, BoolTest::lt));
  2034     // and fall through:
  2035   case BoolTest::lt:          // x < y
  2036   case BoolTest::le:          // x <= y
  2037     answer_if_true  = (want_max ? yvalue : xvalue);
  2038     answer_if_false = (want_max ? xvalue : yvalue);
  2039     break;
  2040   case BoolTest::gt:          // x > y
  2041   case BoolTest::ge:          // x >= y
  2042     answer_if_true  = (want_max ? xvalue : yvalue);
  2043     answer_if_false = (want_max ? yvalue : xvalue);
  2044     break;
  2047   jint hi, lo;
  2048   if (want_max) {
  2049     // We can sharpen the minimum.
  2050     hi = MAX2(txvalue->_hi, tyvalue->_hi);
  2051     lo = MAX2(txvalue->_lo, tyvalue->_lo);
  2052   } else {
  2053     // We can sharpen the maximum.
  2054     hi = MIN2(txvalue->_hi, tyvalue->_hi);
  2055     lo = MIN2(txvalue->_lo, tyvalue->_lo);
  2058   // Use a flow-free graph structure, to avoid creating excess control edges
  2059   // which could hinder other optimizations.
  2060   // Since Math.min/max is often used with arraycopy, we want
  2061   // tightly_coupled_allocation to be able to see beyond min/max expressions.
  2062   Node* cmov = CMoveNode::make(C, NULL, best_bol,
  2063                                answer_if_false, answer_if_true,
  2064                                TypeInt::make(lo, hi, widen));
  2066   return _gvn.transform(cmov);
  2068   /*
  2069   // This is not as desirable as it may seem, since Min and Max
  2070   // nodes do not have a full set of optimizations.
  2071   // And they would interfere, anyway, with 'if' optimizations
  2072   // and with CMoveI canonical forms.
  2073   switch (id) {
  2074   case vmIntrinsics::_min:
  2075     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
  2076   case vmIntrinsics::_max:
  2077     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
  2078   default:
  2079     ShouldNotReachHere();
  2081   */
  2084 inline int
  2085 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
  2086   const TypePtr* base_type = TypePtr::NULL_PTR;
  2087   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
  2088   if (base_type == NULL) {
  2089     // Unknown type.
  2090     return Type::AnyPtr;
  2091   } else if (base_type == TypePtr::NULL_PTR) {
  2092     // Since this is a NULL+long form, we have to switch to a rawptr.
  2093     base   = _gvn.transform(new (C) CastX2PNode(offset));
  2094     offset = MakeConX(0);
  2095     return Type::RawPtr;
  2096   } else if (base_type->base() == Type::RawPtr) {
  2097     return Type::RawPtr;
  2098   } else if (base_type->isa_oopptr()) {
  2099     // Base is never null => always a heap address.
  2100     if (base_type->ptr() == TypePtr::NotNull) {
  2101       return Type::OopPtr;
  2103     // Offset is small => always a heap address.
  2104     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
  2105     if (offset_type != NULL &&
  2106         base_type->offset() == 0 &&     // (should always be?)
  2107         offset_type->_lo >= 0 &&
  2108         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
  2109       return Type::OopPtr;
  2111     // Otherwise, it might either be oop+off or NULL+addr.
  2112     return Type::AnyPtr;
  2113   } else {
  2114     // No information:
  2115     return Type::AnyPtr;
  2119 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
  2120   int kind = classify_unsafe_addr(base, offset);
  2121   if (kind == Type::RawPtr) {
  2122     return basic_plus_adr(top(), base, offset);
  2123   } else {
  2124     return basic_plus_adr(base, offset);
  2128 //--------------------------inline_number_methods-----------------------------
  2129 // inline int     Integer.numberOfLeadingZeros(int)
  2130 // inline int        Long.numberOfLeadingZeros(long)
  2131 //
  2132 // inline int     Integer.numberOfTrailingZeros(int)
  2133 // inline int        Long.numberOfTrailingZeros(long)
  2134 //
  2135 // inline int     Integer.bitCount(int)
  2136 // inline int        Long.bitCount(long)
  2137 //
  2138 // inline char  Character.reverseBytes(char)
  2139 // inline short     Short.reverseBytes(short)
  2140 // inline int     Integer.reverseBytes(int)
  2141 // inline long       Long.reverseBytes(long)
  2142 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
  2143   Node* arg = argument(0);
  2144   Node* n;
  2145   switch (id) {
  2146   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new (C) CountLeadingZerosINode( arg);  break;
  2147   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new (C) CountLeadingZerosLNode( arg);  break;
  2148   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new (C) CountTrailingZerosINode(arg);  break;
  2149   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new (C) CountTrailingZerosLNode(arg);  break;
  2150   case vmIntrinsics::_bitCount_i:               n = new (C) PopCountINode(          arg);  break;
  2151   case vmIntrinsics::_bitCount_l:               n = new (C) PopCountLNode(          arg);  break;
  2152   case vmIntrinsics::_reverseBytes_c:           n = new (C) ReverseBytesUSNode(0,   arg);  break;
  2153   case vmIntrinsics::_reverseBytes_s:           n = new (C) ReverseBytesSNode( 0,   arg);  break;
  2154   case vmIntrinsics::_reverseBytes_i:           n = new (C) ReverseBytesINode( 0,   arg);  break;
  2155   case vmIntrinsics::_reverseBytes_l:           n = new (C) ReverseBytesLNode( 0,   arg);  break;
  2156   default:  fatal_unexpected_iid(id);  break;
  2158   set_result(_gvn.transform(n));
  2159   return true;
  2162 //----------------------------inline_unsafe_access----------------------------
  2164 const static BasicType T_ADDRESS_HOLDER = T_LONG;
  2166 // Helper that guards and inserts a pre-barrier.
  2167 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
  2168                                         Node* pre_val, bool need_mem_bar) {
  2169   // We could be accessing the referent field of a reference object. If so, when G1
  2170   // is enabled, we need to log the value in the referent field in an SATB buffer.
  2171   // This routine performs some compile time filters and generates suitable
  2172   // runtime filters that guard the pre-barrier code.
  2173   // Also add memory barrier for non volatile load from the referent field
  2174   // to prevent commoning of loads across safepoint.
  2175   if (!UseG1GC && !need_mem_bar)
  2176     return;
  2178   // Some compile time checks.
  2180   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
  2181   const TypeX* otype = offset->find_intptr_t_type();
  2182   if (otype != NULL && otype->is_con() &&
  2183       otype->get_con() != java_lang_ref_Reference::referent_offset) {
  2184     // Constant offset but not the reference_offset so just return
  2185     return;
  2188   // We only need to generate the runtime guards for instances.
  2189   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
  2190   if (btype != NULL) {
  2191     if (btype->isa_aryptr()) {
  2192       // Array type so nothing to do
  2193       return;
  2196     const TypeInstPtr* itype = btype->isa_instptr();
  2197     if (itype != NULL) {
  2198       // Can the klass of base_oop be statically determined to be
  2199       // _not_ a sub-class of Reference and _not_ Object?
  2200       ciKlass* klass = itype->klass();
  2201       if ( klass->is_loaded() &&
  2202           !klass->is_subtype_of(env()->Reference_klass()) &&
  2203           !env()->Object_klass()->is_subtype_of(klass)) {
  2204         return;
  2209   // The compile time filters did not reject base_oop/offset so
  2210   // we need to generate the following runtime filters
  2211   //
  2212   // if (offset == java_lang_ref_Reference::_reference_offset) {
  2213   //   if (instance_of(base, java.lang.ref.Reference)) {
  2214   //     pre_barrier(_, pre_val, ...);
  2215   //   }
  2216   // }
  2218   float likely   = PROB_LIKELY(  0.999);
  2219   float unlikely = PROB_UNLIKELY(0.999);
  2221   IdealKit ideal(this);
  2222 #define __ ideal.
  2224   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
  2226   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
  2227       // Update graphKit memory and control from IdealKit.
  2228       sync_kit(ideal);
  2230       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
  2231       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
  2233       // Update IdealKit memory and control from graphKit.
  2234       __ sync_kit(this);
  2236       Node* one = __ ConI(1);
  2237       // is_instof == 0 if base_oop == NULL
  2238       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
  2240         // Update graphKit from IdeakKit.
  2241         sync_kit(ideal);
  2243         // Use the pre-barrier to record the value in the referent field
  2244         pre_barrier(false /* do_load */,
  2245                     __ ctrl(),
  2246                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
  2247                     pre_val /* pre_val */,
  2248                     T_OBJECT);
  2249         if (need_mem_bar) {
  2250           // Add memory barrier to prevent commoning reads from this field
  2251           // across safepoint since GC can change its value.
  2252           insert_mem_bar(Op_MemBarCPUOrder);
  2254         // Update IdealKit from graphKit.
  2255         __ sync_kit(this);
  2257       } __ end_if(); // _ref_type != ref_none
  2258   } __ end_if(); // offset == referent_offset
  2260   // Final sync IdealKit and GraphKit.
  2261   final_sync(ideal);
  2262 #undef __
  2266 // Interpret Unsafe.fieldOffset cookies correctly:
  2267 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
  2269 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
  2270   // Attempt to infer a sharper value type from the offset and base type.
  2271   ciKlass* sharpened_klass = NULL;
  2273   // See if it is an instance field, with an object type.
  2274   if (alias_type->field() != NULL) {
  2275     assert(!is_native_ptr, "native pointer op cannot use a java address");
  2276     if (alias_type->field()->type()->is_klass()) {
  2277       sharpened_klass = alias_type->field()->type()->as_klass();
  2281   // See if it is a narrow oop array.
  2282   if (adr_type->isa_aryptr()) {
  2283     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
  2284       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
  2285       if (elem_type != NULL) {
  2286         sharpened_klass = elem_type->klass();
  2291   // The sharpened class might be unloaded if there is no class loader
  2292   // contraint in place.
  2293   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
  2294     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
  2296 #ifndef PRODUCT
  2297     if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
  2298       tty->print("  from base type: ");  adr_type->dump();
  2299       tty->print("  sharpened value: ");  tjp->dump();
  2301 #endif
  2302     // Sharpen the value type.
  2303     return tjp;
  2305   return NULL;
  2308 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
  2309   if (callee()->is_static())  return false;  // caller must have the capability!
  2311 #ifndef PRODUCT
  2313     ResourceMark rm;
  2314     // Check the signatures.
  2315     ciSignature* sig = callee()->signature();
  2316 #ifdef ASSERT
  2317     if (!is_store) {
  2318       // Object getObject(Object base, int/long offset), etc.
  2319       BasicType rtype = sig->return_type()->basic_type();
  2320       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
  2321           rtype = T_ADDRESS;  // it is really a C void*
  2322       assert(rtype == type, "getter must return the expected value");
  2323       if (!is_native_ptr) {
  2324         assert(sig->count() == 2, "oop getter has 2 arguments");
  2325         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
  2326         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
  2327       } else {
  2328         assert(sig->count() == 1, "native getter has 1 argument");
  2329         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
  2331     } else {
  2332       // void putObject(Object base, int/long offset, Object x), etc.
  2333       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
  2334       if (!is_native_ptr) {
  2335         assert(sig->count() == 3, "oop putter has 3 arguments");
  2336         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
  2337         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
  2338       } else {
  2339         assert(sig->count() == 2, "native putter has 2 arguments");
  2340         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
  2342       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
  2343       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
  2344         vtype = T_ADDRESS;  // it is really a C void*
  2345       assert(vtype == type, "putter must accept the expected value");
  2347 #endif // ASSERT
  2349 #endif //PRODUCT
  2351   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2353   Node* receiver = argument(0);  // type: oop
  2355   // Build address expression.  See the code in inline_unsafe_prefetch.
  2356   Node* adr;
  2357   Node* heap_base_oop = top();
  2358   Node* offset = top();
  2359   Node* val;
  2361   if (!is_native_ptr) {
  2362     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  2363     Node* base = argument(1);  // type: oop
  2364     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  2365     offset = argument(2);  // type: long
  2366     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2367     // to be plain byte offsets, which are also the same as those accepted
  2368     // by oopDesc::field_base.
  2369     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  2370            "fieldOffset must be byte-scaled");
  2371     // 32-bit machines ignore the high half!
  2372     offset = ConvL2X(offset);
  2373     adr = make_unsafe_address(base, offset);
  2374     heap_base_oop = base;
  2375     val = is_store ? argument(4) : NULL;
  2376   } else {
  2377     Node* ptr = argument(1);  // type: long
  2378     ptr = ConvL2X(ptr);  // adjust Java long to machine word
  2379     adr = make_unsafe_address(NULL, ptr);
  2380     val = is_store ? argument(3) : NULL;
  2383   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2385   // First guess at the value type.
  2386   const Type *value_type = Type::get_const_basic_type(type);
  2388   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
  2389   // there was not enough information to nail it down.
  2390   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2391   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  2393   // We will need memory barriers unless we can determine a unique
  2394   // alias category for this reference.  (Note:  If for some reason
  2395   // the barriers get omitted and the unsafe reference begins to "pollute"
  2396   // the alias analysis of the rest of the graph, either Compile::can_alias
  2397   // or Compile::must_alias will throw a diagnostic assert.)
  2398   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
  2400   // If we are reading the value of the referent field of a Reference
  2401   // object (either by using Unsafe directly or through reflection)
  2402   // then, if G1 is enabled, we need to record the referent in an
  2403   // SATB log buffer using the pre-barrier mechanism.
  2404   // Also we need to add memory barrier to prevent commoning reads
  2405   // from this field across safepoint since GC can change its value.
  2406   bool need_read_barrier = !is_native_ptr && !is_store &&
  2407                            offset != top() && heap_base_oop != top();
  2409   if (!is_store && type == T_OBJECT) {
  2410     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
  2411     if (tjp != NULL) {
  2412       value_type = tjp;
  2416   receiver = null_check(receiver);
  2417   if (stopped()) {
  2418     return true;
  2420   // Heap pointers get a null-check from the interpreter,
  2421   // as a courtesy.  However, this is not guaranteed by Unsafe,
  2422   // and it is not possible to fully distinguish unintended nulls
  2423   // from intended ones in this API.
  2425   if (is_volatile) {
  2426     // We need to emit leading and trailing CPU membars (see below) in
  2427     // addition to memory membars when is_volatile. This is a little
  2428     // too strong, but avoids the need to insert per-alias-type
  2429     // volatile membars (for stores; compare Parse::do_put_xxx), which
  2430     // we cannot do effectively here because we probably only have a
  2431     // rough approximation of type.
  2432     need_mem_bar = true;
  2433     // For Stores, place a memory ordering barrier now.
  2434     if (is_store)
  2435       insert_mem_bar(Op_MemBarRelease);
  2438   // Memory barrier to prevent normal and 'unsafe' accesses from
  2439   // bypassing each other.  Happens after null checks, so the
  2440   // exception paths do not take memory state from the memory barrier,
  2441   // so there's no problems making a strong assert about mixing users
  2442   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
  2443   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
  2444   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  2446   if (!is_store) {
  2447     Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
  2448     // load value
  2449     switch (type) {
  2450     case T_BOOLEAN:
  2451     case T_CHAR:
  2452     case T_BYTE:
  2453     case T_SHORT:
  2454     case T_INT:
  2455     case T_LONG:
  2456     case T_FLOAT:
  2457     case T_DOUBLE:
  2458       break;
  2459     case T_OBJECT:
  2460       if (need_read_barrier) {
  2461         insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
  2463       break;
  2464     case T_ADDRESS:
  2465       // Cast to an int type.
  2466       p = _gvn.transform(new (C) CastP2XNode(NULL, p));
  2467       p = ConvX2L(p);
  2468       break;
  2469     default:
  2470       fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
  2471       break;
  2473     // The load node has the control of the preceding MemBarCPUOrder.  All
  2474     // following nodes will have the control of the MemBarCPUOrder inserted at
  2475     // the end of this method.  So, pushing the load onto the stack at a later
  2476     // point is fine.
  2477     set_result(p);
  2478   } else {
  2479     // place effect of store into memory
  2480     switch (type) {
  2481     case T_DOUBLE:
  2482       val = dstore_rounding(val);
  2483       break;
  2484     case T_ADDRESS:
  2485       // Repackage the long as a pointer.
  2486       val = ConvL2X(val);
  2487       val = _gvn.transform(new (C) CastX2PNode(val));
  2488       break;
  2491     if (type != T_OBJECT ) {
  2492       (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
  2493     } else {
  2494       // Possibly an oop being stored to Java heap or native memory
  2495       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
  2496         // oop to Java heap.
  2497         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
  2498       } else {
  2499         // We can't tell at compile time if we are storing in the Java heap or outside
  2500         // of it. So we need to emit code to conditionally do the proper type of
  2501         // store.
  2503         IdealKit ideal(this);
  2504 #define __ ideal.
  2505         // QQQ who knows what probability is here??
  2506         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
  2507           // Sync IdealKit and graphKit.
  2508           sync_kit(ideal);
  2509           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
  2510           // Update IdealKit memory.
  2511           __ sync_kit(this);
  2512         } __ else_(); {
  2513           __ store(__ ctrl(), adr, val, type, alias_type->index(), is_volatile);
  2514         } __ end_if();
  2515         // Final sync IdealKit and GraphKit.
  2516         final_sync(ideal);
  2517 #undef __
  2522   if (is_volatile) {
  2523     if (!is_store)
  2524       insert_mem_bar(Op_MemBarAcquire);
  2525     else
  2526       insert_mem_bar(Op_MemBarVolatile);
  2529   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  2531   return true;
  2534 //----------------------------inline_unsafe_prefetch----------------------------
  2536 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
  2537 #ifndef PRODUCT
  2539     ResourceMark rm;
  2540     // Check the signatures.
  2541     ciSignature* sig = callee()->signature();
  2542 #ifdef ASSERT
  2543     // Object getObject(Object base, int/long offset), etc.
  2544     BasicType rtype = sig->return_type()->basic_type();
  2545     if (!is_native_ptr) {
  2546       assert(sig->count() == 2, "oop prefetch has 2 arguments");
  2547       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
  2548       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
  2549     } else {
  2550       assert(sig->count() == 1, "native prefetch has 1 argument");
  2551       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
  2553 #endif // ASSERT
  2555 #endif // !PRODUCT
  2557   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2559   const int idx = is_static ? 0 : 1;
  2560   if (!is_static) {
  2561     null_check_receiver();
  2562     if (stopped()) {
  2563       return true;
  2567   // Build address expression.  See the code in inline_unsafe_access.
  2568   Node *adr;
  2569   if (!is_native_ptr) {
  2570     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  2571     Node* base   = argument(idx + 0);  // type: oop
  2572     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  2573     Node* offset = argument(idx + 1);  // type: long
  2574     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2575     // to be plain byte offsets, which are also the same as those accepted
  2576     // by oopDesc::field_base.
  2577     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  2578            "fieldOffset must be byte-scaled");
  2579     // 32-bit machines ignore the high half!
  2580     offset = ConvL2X(offset);
  2581     adr = make_unsafe_address(base, offset);
  2582   } else {
  2583     Node* ptr = argument(idx + 0);  // type: long
  2584     ptr = ConvL2X(ptr);  // adjust Java long to machine word
  2585     adr = make_unsafe_address(NULL, ptr);
  2588   // Generate the read or write prefetch
  2589   Node *prefetch;
  2590   if (is_store) {
  2591     prefetch = new (C) PrefetchWriteNode(i_o(), adr);
  2592   } else {
  2593     prefetch = new (C) PrefetchReadNode(i_o(), adr);
  2595   prefetch->init_req(0, control());
  2596   set_i_o(_gvn.transform(prefetch));
  2598   return true;
  2601 //----------------------------inline_unsafe_load_store----------------------------
  2602 // This method serves a couple of different customers (depending on LoadStoreKind):
  2603 //
  2604 // LS_cmpxchg:
  2605 //   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
  2606 //   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
  2607 //   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
  2608 //
  2609 // LS_xadd:
  2610 //   public int  getAndAddInt( Object o, long offset, int  delta)
  2611 //   public long getAndAddLong(Object o, long offset, long delta)
  2612 //
  2613 // LS_xchg:
  2614 //   int    getAndSet(Object o, long offset, int    newValue)
  2615 //   long   getAndSet(Object o, long offset, long   newValue)
  2616 //   Object getAndSet(Object o, long offset, Object newValue)
  2617 //
  2618 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
  2619   // This basic scheme here is the same as inline_unsafe_access, but
  2620   // differs in enough details that combining them would make the code
  2621   // overly confusing.  (This is a true fact! I originally combined
  2622   // them, but even I was confused by it!) As much code/comments as
  2623   // possible are retained from inline_unsafe_access though to make
  2624   // the correspondences clearer. - dl
  2626   if (callee()->is_static())  return false;  // caller must have the capability!
  2628 #ifndef PRODUCT
  2629   BasicType rtype;
  2631     ResourceMark rm;
  2632     // Check the signatures.
  2633     ciSignature* sig = callee()->signature();
  2634     rtype = sig->return_type()->basic_type();
  2635     if (kind == LS_xadd || kind == LS_xchg) {
  2636       // Check the signatures.
  2637 #ifdef ASSERT
  2638       assert(rtype == type, "get and set must return the expected type");
  2639       assert(sig->count() == 3, "get and set has 3 arguments");
  2640       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
  2641       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
  2642       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
  2643 #endif // ASSERT
  2644     } else if (kind == LS_cmpxchg) {
  2645       // Check the signatures.
  2646 #ifdef ASSERT
  2647       assert(rtype == T_BOOLEAN, "CAS must return boolean");
  2648       assert(sig->count() == 4, "CAS has 4 arguments");
  2649       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
  2650       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
  2651 #endif // ASSERT
  2652     } else {
  2653       ShouldNotReachHere();
  2656 #endif //PRODUCT
  2658   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2660   // Get arguments:
  2661   Node* receiver = NULL;
  2662   Node* base     = NULL;
  2663   Node* offset   = NULL;
  2664   Node* oldval   = NULL;
  2665   Node* newval   = NULL;
  2666   if (kind == LS_cmpxchg) {
  2667     const bool two_slot_type = type2size[type] == 2;
  2668     receiver = argument(0);  // type: oop
  2669     base     = argument(1);  // type: oop
  2670     offset   = argument(2);  // type: long
  2671     oldval   = argument(4);  // type: oop, int, or long
  2672     newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
  2673   } else if (kind == LS_xadd || kind == LS_xchg){
  2674     receiver = argument(0);  // type: oop
  2675     base     = argument(1);  // type: oop
  2676     offset   = argument(2);  // type: long
  2677     oldval   = NULL;
  2678     newval   = argument(4);  // type: oop, int, or long
  2681   // Null check receiver.
  2682   receiver = null_check(receiver);
  2683   if (stopped()) {
  2684     return true;
  2687   // Build field offset expression.
  2688   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2689   // to be plain byte offsets, which are also the same as those accepted
  2690   // by oopDesc::field_base.
  2691   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  2692   // 32-bit machines ignore the high half of long offsets
  2693   offset = ConvL2X(offset);
  2694   Node* adr = make_unsafe_address(base, offset);
  2695   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2697   // For CAS, unlike inline_unsafe_access, there seems no point in
  2698   // trying to refine types. Just use the coarse types here.
  2699   const Type *value_type = Type::get_const_basic_type(type);
  2700   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2701   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  2703   if (kind == LS_xchg && type == T_OBJECT) {
  2704     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
  2705     if (tjp != NULL) {
  2706       value_type = tjp;
  2710   int alias_idx = C->get_alias_index(adr_type);
  2712   // Memory-model-wise, a LoadStore acts like a little synchronized
  2713   // block, so needs barriers on each side.  These don't translate
  2714   // into actual barriers on most machines, but we still need rest of
  2715   // compiler to respect ordering.
  2717   insert_mem_bar(Op_MemBarRelease);
  2718   insert_mem_bar(Op_MemBarCPUOrder);
  2720   // 4984716: MemBars must be inserted before this
  2721   //          memory node in order to avoid a false
  2722   //          dependency which will confuse the scheduler.
  2723   Node *mem = memory(alias_idx);
  2725   // For now, we handle only those cases that actually exist: ints,
  2726   // longs, and Object. Adding others should be straightforward.
  2727   Node* load_store;
  2728   switch(type) {
  2729   case T_INT:
  2730     if (kind == LS_xadd) {
  2731       load_store = _gvn.transform(new (C) GetAndAddINode(control(), mem, adr, newval, adr_type));
  2732     } else if (kind == LS_xchg) {
  2733       load_store = _gvn.transform(new (C) GetAndSetINode(control(), mem, adr, newval, adr_type));
  2734     } else if (kind == LS_cmpxchg) {
  2735       load_store = _gvn.transform(new (C) CompareAndSwapINode(control(), mem, adr, newval, oldval));
  2736     } else {
  2737       ShouldNotReachHere();
  2739     break;
  2740   case T_LONG:
  2741     if (kind == LS_xadd) {
  2742       load_store = _gvn.transform(new (C) GetAndAddLNode(control(), mem, adr, newval, adr_type));
  2743     } else if (kind == LS_xchg) {
  2744       load_store = _gvn.transform(new (C) GetAndSetLNode(control(), mem, adr, newval, adr_type));
  2745     } else if (kind == LS_cmpxchg) {
  2746       load_store = _gvn.transform(new (C) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
  2747     } else {
  2748       ShouldNotReachHere();
  2750     break;
  2751   case T_OBJECT:
  2752     // Transformation of a value which could be NULL pointer (CastPP #NULL)
  2753     // could be delayed during Parse (for example, in adjust_map_after_if()).
  2754     // Execute transformation here to avoid barrier generation in such case.
  2755     if (_gvn.type(newval) == TypePtr::NULL_PTR)
  2756       newval = _gvn.makecon(TypePtr::NULL_PTR);
  2758     // Reference stores need a store barrier.
  2759     pre_barrier(true /* do_load*/,
  2760                 control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
  2761                 NULL /* pre_val*/,
  2762                 T_OBJECT);
  2763 #ifdef _LP64
  2764     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  2765       Node *newval_enc = _gvn.transform(new (C) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
  2766       if (kind == LS_xchg) {
  2767         load_store = _gvn.transform(new (C) GetAndSetNNode(control(), mem, adr,
  2768                                                               newval_enc, adr_type, value_type->make_narrowoop()));
  2769       } else {
  2770         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
  2771         Node *oldval_enc = _gvn.transform(new (C) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
  2772         load_store = _gvn.transform(new (C) CompareAndSwapNNode(control(), mem, adr,
  2773                                                                    newval_enc, oldval_enc));
  2775     } else
  2776 #endif
  2778       if (kind == LS_xchg) {
  2779         load_store = _gvn.transform(new (C) GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
  2780       } else {
  2781         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
  2782         load_store = _gvn.transform(new (C) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
  2785     post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
  2786     break;
  2787   default:
  2788     fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
  2789     break;
  2792   // SCMemProjNodes represent the memory state of a LoadStore. Their
  2793   // main role is to prevent LoadStore nodes from being optimized away
  2794   // when their results aren't used.
  2795   Node* proj = _gvn.transform(new (C) SCMemProjNode(load_store));
  2796   set_memory(proj, alias_idx);
  2798   // Add the trailing membar surrounding the access
  2799   insert_mem_bar(Op_MemBarCPUOrder);
  2800   insert_mem_bar(Op_MemBarAcquire);
  2802 #ifdef _LP64
  2803   if (type == T_OBJECT && adr->bottom_type()->is_ptr_to_narrowoop() && kind == LS_xchg) {
  2804     load_store = _gvn.transform(new (C) DecodeNNode(load_store, load_store->get_ptr_type()));
  2806 #endif
  2808   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
  2809   set_result(load_store);
  2810   return true;
  2813 //----------------------------inline_unsafe_ordered_store----------------------
  2814 // public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
  2815 // public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
  2816 // public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
  2817 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
  2818   // This is another variant of inline_unsafe_access, differing in
  2819   // that it always issues store-store ("release") barrier and ensures
  2820   // store-atomicity (which only matters for "long").
  2822   if (callee()->is_static())  return false;  // caller must have the capability!
  2824 #ifndef PRODUCT
  2826     ResourceMark rm;
  2827     // Check the signatures.
  2828     ciSignature* sig = callee()->signature();
  2829 #ifdef ASSERT
  2830     BasicType rtype = sig->return_type()->basic_type();
  2831     assert(rtype == T_VOID, "must return void");
  2832     assert(sig->count() == 3, "has 3 arguments");
  2833     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
  2834     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
  2835 #endif // ASSERT
  2837 #endif //PRODUCT
  2839   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2841   // Get arguments:
  2842   Node* receiver = argument(0);  // type: oop
  2843   Node* base     = argument(1);  // type: oop
  2844   Node* offset   = argument(2);  // type: long
  2845   Node* val      = argument(4);  // type: oop, int, or long
  2847   // Null check receiver.
  2848   receiver = null_check(receiver);
  2849   if (stopped()) {
  2850     return true;
  2853   // Build field offset expression.
  2854   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  2855   // 32-bit machines ignore the high half of long offsets
  2856   offset = ConvL2X(offset);
  2857   Node* adr = make_unsafe_address(base, offset);
  2858   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2859   const Type *value_type = Type::get_const_basic_type(type);
  2860   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2862   insert_mem_bar(Op_MemBarRelease);
  2863   insert_mem_bar(Op_MemBarCPUOrder);
  2864   // Ensure that the store is atomic for longs:
  2865   const bool require_atomic_access = true;
  2866   Node* store;
  2867   if (type == T_OBJECT) // reference stores need a store barrier.
  2868     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type);
  2869   else {
  2870     store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
  2872   insert_mem_bar(Op_MemBarCPUOrder);
  2873   return true;
  2876 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
  2877   // Regardless of form, don't allow previous ld/st to move down,
  2878   // then issue acquire, release, or volatile mem_bar.
  2879   insert_mem_bar(Op_MemBarCPUOrder);
  2880   switch(id) {
  2881     case vmIntrinsics::_loadFence:
  2882       insert_mem_bar(Op_MemBarAcquire);
  2883       return true;
  2884     case vmIntrinsics::_storeFence:
  2885       insert_mem_bar(Op_MemBarRelease);
  2886       return true;
  2887     case vmIntrinsics::_fullFence:
  2888       insert_mem_bar(Op_MemBarVolatile);
  2889       return true;
  2890     default:
  2891       fatal_unexpected_iid(id);
  2892       return false;
  2896 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
  2897   if (!kls->is_Con()) {
  2898     return true;
  2900   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
  2901   if (klsptr == NULL) {
  2902     return true;
  2904   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
  2905   // don't need a guard for a klass that is already initialized
  2906   return !ik->is_initialized();
  2909 //----------------------------inline_unsafe_allocate---------------------------
  2910 // public native Object sun.misc.Unsafe.allocateInstance(Class<?> cls);
  2911 bool LibraryCallKit::inline_unsafe_allocate() {
  2912   if (callee()->is_static())  return false;  // caller must have the capability!
  2914   null_check_receiver();  // null-check, then ignore
  2915   Node* cls = null_check(argument(1));
  2916   if (stopped())  return true;
  2918   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
  2919   kls = null_check(kls);
  2920   if (stopped())  return true;  // argument was like int.class
  2922   Node* test = NULL;
  2923   if (LibraryCallKit::klass_needs_init_guard(kls)) {
  2924     // Note:  The argument might still be an illegal value like
  2925     // Serializable.class or Object[].class.   The runtime will handle it.
  2926     // But we must make an explicit check for initialization.
  2927     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
  2928     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
  2929     // can generate code to load it as unsigned byte.
  2930     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN);
  2931     Node* bits = intcon(InstanceKlass::fully_initialized);
  2932     test = _gvn.transform(new (C) SubINode(inst, bits));
  2933     // The 'test' is non-zero if we need to take a slow path.
  2936   Node* obj = new_instance(kls, test);
  2937   set_result(obj);
  2938   return true;
  2941 #ifdef TRACE_HAVE_INTRINSICS
  2942 /*
  2943  * oop -> myklass
  2944  * myklass->trace_id |= USED
  2945  * return myklass->trace_id & ~0x3
  2946  */
  2947 bool LibraryCallKit::inline_native_classID() {
  2948   null_check_receiver();  // null-check, then ignore
  2949   Node* cls = null_check(argument(1), T_OBJECT);
  2950   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
  2951   kls = null_check(kls, T_OBJECT);
  2952   ByteSize offset = TRACE_ID_OFFSET;
  2953   Node* insp = basic_plus_adr(kls, in_bytes(offset));
  2954   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG);
  2955   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
  2956   Node* andl = _gvn.transform(new (C) AndLNode(tvalue, bits));
  2957   Node* clsused = longcon(0x01l); // set the class bit
  2958   Node* orl = _gvn.transform(new (C) OrLNode(tvalue, clsused));
  2960   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
  2961   store_to_memory(control(), insp, orl, T_LONG, adr_type);
  2962   set_result(andl);
  2963   return true;
  2966 bool LibraryCallKit::inline_native_threadID() {
  2967   Node* tls_ptr = NULL;
  2968   Node* cur_thr = generate_current_thread(tls_ptr);
  2969   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
  2970   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
  2971   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
  2973   Node* threadid = NULL;
  2974   size_t thread_id_size = OSThread::thread_id_size();
  2975   if (thread_id_size == (size_t) BytesPerLong) {
  2976     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG));
  2977   } else if (thread_id_size == (size_t) BytesPerInt) {
  2978     threadid = make_load(control(), p, TypeInt::INT, T_INT);
  2979   } else {
  2980     ShouldNotReachHere();
  2982   set_result(threadid);
  2983   return true;
  2985 #endif
  2987 //------------------------inline_native_time_funcs--------------
  2988 // inline code for System.currentTimeMillis() and System.nanoTime()
  2989 // these have the same type and signature
  2990 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
  2991   const TypeFunc* tf = OptoRuntime::void_long_Type();
  2992   const TypePtr* no_memory_effects = NULL;
  2993   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
  2994   Node* value = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+0));
  2995 #ifdef ASSERT
  2996   Node* value_top = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+1));
  2997   assert(value_top == top(), "second value must be top");
  2998 #endif
  2999   set_result(value);
  3000   return true;
  3003 //------------------------inline_native_currentThread------------------
  3004 bool LibraryCallKit::inline_native_currentThread() {
  3005   Node* junk = NULL;
  3006   set_result(generate_current_thread(junk));
  3007   return true;
  3010 //------------------------inline_native_isInterrupted------------------
  3011 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
  3012 bool LibraryCallKit::inline_native_isInterrupted() {
  3013   // Add a fast path to t.isInterrupted(clear_int):
  3014   //   (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
  3015   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
  3016   // So, in the common case that the interrupt bit is false,
  3017   // we avoid making a call into the VM.  Even if the interrupt bit
  3018   // is true, if the clear_int argument is false, we avoid the VM call.
  3019   // However, if the receiver is not currentThread, we must call the VM,
  3020   // because there must be some locking done around the operation.
  3022   // We only go to the fast case code if we pass two guards.
  3023   // Paths which do not pass are accumulated in the slow_region.
  3025   enum {
  3026     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
  3027     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
  3028     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
  3029     PATH_LIMIT
  3030   };
  3032   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
  3033   // out of the function.
  3034   insert_mem_bar(Op_MemBarCPUOrder);
  3036   RegionNode* result_rgn = new (C) RegionNode(PATH_LIMIT);
  3037   PhiNode*    result_val = new (C) PhiNode(result_rgn, TypeInt::BOOL);
  3039   RegionNode* slow_region = new (C) RegionNode(1);
  3040   record_for_igvn(slow_region);
  3042   // (a) Receiving thread must be the current thread.
  3043   Node* rec_thr = argument(0);
  3044   Node* tls_ptr = NULL;
  3045   Node* cur_thr = generate_current_thread(tls_ptr);
  3046   Node* cmp_thr = _gvn.transform(new (C) CmpPNode(cur_thr, rec_thr));
  3047   Node* bol_thr = _gvn.transform(new (C) BoolNode(cmp_thr, BoolTest::ne));
  3049   generate_slow_guard(bol_thr, slow_region);
  3051   // (b) Interrupt bit on TLS must be false.
  3052   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
  3053   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
  3054   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
  3056   // Set the control input on the field _interrupted read to prevent it floating up.
  3057   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT);
  3058   Node* cmp_bit = _gvn.transform(new (C) CmpINode(int_bit, intcon(0)));
  3059   Node* bol_bit = _gvn.transform(new (C) BoolNode(cmp_bit, BoolTest::ne));
  3061   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
  3063   // First fast path:  if (!TLS._interrupted) return false;
  3064   Node* false_bit = _gvn.transform(new (C) IfFalseNode(iff_bit));
  3065   result_rgn->init_req(no_int_result_path, false_bit);
  3066   result_val->init_req(no_int_result_path, intcon(0));
  3068   // drop through to next case
  3069   set_control( _gvn.transform(new (C) IfTrueNode(iff_bit)));
  3071   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
  3072   Node* clr_arg = argument(1);
  3073   Node* cmp_arg = _gvn.transform(new (C) CmpINode(clr_arg, intcon(0)));
  3074   Node* bol_arg = _gvn.transform(new (C) BoolNode(cmp_arg, BoolTest::ne));
  3075   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
  3077   // Second fast path:  ... else if (!clear_int) return true;
  3078   Node* false_arg = _gvn.transform(new (C) IfFalseNode(iff_arg));
  3079   result_rgn->init_req(no_clear_result_path, false_arg);
  3080   result_val->init_req(no_clear_result_path, intcon(1));
  3082   // drop through to next case
  3083   set_control( _gvn.transform(new (C) IfTrueNode(iff_arg)));
  3085   // (d) Otherwise, go to the slow path.
  3086   slow_region->add_req(control());
  3087   set_control( _gvn.transform(slow_region));
  3089   if (stopped()) {
  3090     // There is no slow path.
  3091     result_rgn->init_req(slow_result_path, top());
  3092     result_val->init_req(slow_result_path, top());
  3093   } else {
  3094     // non-virtual because it is a private non-static
  3095     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
  3097     Node* slow_val = set_results_for_java_call(slow_call);
  3098     // this->control() comes from set_results_for_java_call
  3100     Node* fast_io  = slow_call->in(TypeFunc::I_O);
  3101     Node* fast_mem = slow_call->in(TypeFunc::Memory);
  3103     // These two phis are pre-filled with copies of of the fast IO and Memory
  3104     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
  3105     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
  3107     result_rgn->init_req(slow_result_path, control());
  3108     result_io ->init_req(slow_result_path, i_o());
  3109     result_mem->init_req(slow_result_path, reset_memory());
  3110     result_val->init_req(slow_result_path, slow_val);
  3112     set_all_memory(_gvn.transform(result_mem));
  3113     set_i_o(       _gvn.transform(result_io));
  3116   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3117   set_result(result_rgn, result_val);
  3118   return true;
  3121 //---------------------------load_mirror_from_klass----------------------------
  3122 // Given a klass oop, load its java mirror (a java.lang.Class oop).
  3123 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
  3124   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
  3125   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
  3128 //-----------------------load_klass_from_mirror_common-------------------------
  3129 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
  3130 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
  3131 // and branch to the given path on the region.
  3132 // If never_see_null, take an uncommon trap on null, so we can optimistically
  3133 // compile for the non-null case.
  3134 // If the region is NULL, force never_see_null = true.
  3135 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
  3136                                                     bool never_see_null,
  3137                                                     RegionNode* region,
  3138                                                     int null_path,
  3139                                                     int offset) {
  3140   if (region == NULL)  never_see_null = true;
  3141   Node* p = basic_plus_adr(mirror, offset);
  3142   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  3143   Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
  3144   Node* null_ctl = top();
  3145   kls = null_check_oop(kls, &null_ctl, never_see_null);
  3146   if (region != NULL) {
  3147     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
  3148     region->init_req(null_path, null_ctl);
  3149   } else {
  3150     assert(null_ctl == top(), "no loose ends");
  3152   return kls;
  3155 //--------------------(inline_native_Class_query helpers)---------------------
  3156 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
  3157 // Fall through if (mods & mask) == bits, take the guard otherwise.
  3158 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
  3159   // Branch around if the given klass has the given modifier bit set.
  3160   // Like generate_guard, adds a new path onto the region.
  3161   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
  3162   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
  3163   Node* mask = intcon(modifier_mask);
  3164   Node* bits = intcon(modifier_bits);
  3165   Node* mbit = _gvn.transform(new (C) AndINode(mods, mask));
  3166   Node* cmp  = _gvn.transform(new (C) CmpINode(mbit, bits));
  3167   Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
  3168   return generate_fair_guard(bol, region);
  3170 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
  3171   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
  3174 //-------------------------inline_native_Class_query-------------------
  3175 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
  3176   const Type* return_type = TypeInt::BOOL;
  3177   Node* prim_return_value = top();  // what happens if it's a primitive class?
  3178   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3179   bool expect_prim = false;     // most of these guys expect to work on refs
  3181   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
  3183   Node* mirror = argument(0);
  3184   Node* obj    = top();
  3186   switch (id) {
  3187   case vmIntrinsics::_isInstance:
  3188     // nothing is an instance of a primitive type
  3189     prim_return_value = intcon(0);
  3190     obj = argument(1);
  3191     break;
  3192   case vmIntrinsics::_getModifiers:
  3193     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  3194     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
  3195     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
  3196     break;
  3197   case vmIntrinsics::_isInterface:
  3198     prim_return_value = intcon(0);
  3199     break;
  3200   case vmIntrinsics::_isArray:
  3201     prim_return_value = intcon(0);
  3202     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
  3203     break;
  3204   case vmIntrinsics::_isPrimitive:
  3205     prim_return_value = intcon(1);
  3206     expect_prim = true;  // obviously
  3207     break;
  3208   case vmIntrinsics::_getSuperclass:
  3209     prim_return_value = null();
  3210     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  3211     break;
  3212   case vmIntrinsics::_getComponentType:
  3213     prim_return_value = null();
  3214     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  3215     break;
  3216   case vmIntrinsics::_getClassAccessFlags:
  3217     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  3218     return_type = TypeInt::INT;  // not bool!  6297094
  3219     break;
  3220   default:
  3221     fatal_unexpected_iid(id);
  3222     break;
  3225   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
  3226   if (mirror_con == NULL)  return false;  // cannot happen?
  3228 #ifndef PRODUCT
  3229   if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
  3230     ciType* k = mirror_con->java_mirror_type();
  3231     if (k) {
  3232       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
  3233       k->print_name();
  3234       tty->cr();
  3237 #endif
  3239   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
  3240   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
  3241   record_for_igvn(region);
  3242   PhiNode* phi = new (C) PhiNode(region, return_type);
  3244   // The mirror will never be null of Reflection.getClassAccessFlags, however
  3245   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
  3246   // if it is. See bug 4774291.
  3248   // For Reflection.getClassAccessFlags(), the null check occurs in
  3249   // the wrong place; see inline_unsafe_access(), above, for a similar
  3250   // situation.
  3251   mirror = null_check(mirror);
  3252   // If mirror or obj is dead, only null-path is taken.
  3253   if (stopped())  return true;
  3255   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
  3257   // Now load the mirror's klass metaobject, and null-check it.
  3258   // Side-effects region with the control path if the klass is null.
  3259   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
  3260   // If kls is null, we have a primitive mirror.
  3261   phi->init_req(_prim_path, prim_return_value);
  3262   if (stopped()) { set_result(region, phi); return true; }
  3264   Node* p;  // handy temp
  3265   Node* null_ctl;
  3267   // Now that we have the non-null klass, we can perform the real query.
  3268   // For constant classes, the query will constant-fold in LoadNode::Value.
  3269   Node* query_value = top();
  3270   switch (id) {
  3271   case vmIntrinsics::_isInstance:
  3272     // nothing is an instance of a primitive type
  3273     query_value = gen_instanceof(obj, kls);
  3274     break;
  3276   case vmIntrinsics::_getModifiers:
  3277     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
  3278     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
  3279     break;
  3281   case vmIntrinsics::_isInterface:
  3282     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  3283     if (generate_interface_guard(kls, region) != NULL)
  3284       // A guard was added.  If the guard is taken, it was an interface.
  3285       phi->add_req(intcon(1));
  3286     // If we fall through, it's a plain class.
  3287     query_value = intcon(0);
  3288     break;
  3290   case vmIntrinsics::_isArray:
  3291     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
  3292     if (generate_array_guard(kls, region) != NULL)
  3293       // A guard was added.  If the guard is taken, it was an array.
  3294       phi->add_req(intcon(1));
  3295     // If we fall through, it's a plain class.
  3296     query_value = intcon(0);
  3297     break;
  3299   case vmIntrinsics::_isPrimitive:
  3300     query_value = intcon(0); // "normal" path produces false
  3301     break;
  3303   case vmIntrinsics::_getSuperclass:
  3304     // The rules here are somewhat unfortunate, but we can still do better
  3305     // with random logic than with a JNI call.
  3306     // Interfaces store null or Object as _super, but must report null.
  3307     // Arrays store an intermediate super as _super, but must report Object.
  3308     // Other types can report the actual _super.
  3309     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  3310     if (generate_interface_guard(kls, region) != NULL)
  3311       // A guard was added.  If the guard is taken, it was an interface.
  3312       phi->add_req(null());
  3313     if (generate_array_guard(kls, region) != NULL)
  3314       // A guard was added.  If the guard is taken, it was an array.
  3315       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
  3316     // If we fall through, it's a plain class.  Get its _super.
  3317     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
  3318     kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
  3319     null_ctl = top();
  3320     kls = null_check_oop(kls, &null_ctl);
  3321     if (null_ctl != top()) {
  3322       // If the guard is taken, Object.superClass is null (both klass and mirror).
  3323       region->add_req(null_ctl);
  3324       phi   ->add_req(null());
  3326     if (!stopped()) {
  3327       query_value = load_mirror_from_klass(kls);
  3329     break;
  3331   case vmIntrinsics::_getComponentType:
  3332     if (generate_array_guard(kls, region) != NULL) {
  3333       // Be sure to pin the oop load to the guard edge just created:
  3334       Node* is_array_ctrl = region->in(region->req()-1);
  3335       Node* cma = basic_plus_adr(kls, in_bytes(ArrayKlass::component_mirror_offset()));
  3336       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
  3337       phi->add_req(cmo);
  3339     query_value = null();  // non-array case is null
  3340     break;
  3342   case vmIntrinsics::_getClassAccessFlags:
  3343     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
  3344     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
  3345     break;
  3347   default:
  3348     fatal_unexpected_iid(id);
  3349     break;
  3352   // Fall-through is the normal case of a query to a real class.
  3353   phi->init_req(1, query_value);
  3354   region->init_req(1, control());
  3356   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3357   set_result(region, phi);
  3358   return true;
  3361 //--------------------------inline_native_subtype_check------------------------
  3362 // This intrinsic takes the JNI calls out of the heart of
  3363 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
  3364 bool LibraryCallKit::inline_native_subtype_check() {
  3365   // Pull both arguments off the stack.
  3366   Node* args[2];                // two java.lang.Class mirrors: superc, subc
  3367   args[0] = argument(0);
  3368   args[1] = argument(1);
  3369   Node* klasses[2];             // corresponding Klasses: superk, subk
  3370   klasses[0] = klasses[1] = top();
  3372   enum {
  3373     // A full decision tree on {superc is prim, subc is prim}:
  3374     _prim_0_path = 1,           // {P,N} => false
  3375                                 // {P,P} & superc!=subc => false
  3376     _prim_same_path,            // {P,P} & superc==subc => true
  3377     _prim_1_path,               // {N,P} => false
  3378     _ref_subtype_path,          // {N,N} & subtype check wins => true
  3379     _both_ref_path,             // {N,N} & subtype check loses => false
  3380     PATH_LIMIT
  3381   };
  3383   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
  3384   Node*       phi    = new (C) PhiNode(region, TypeInt::BOOL);
  3385   record_for_igvn(region);
  3387   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
  3388   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  3389   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
  3391   // First null-check both mirrors and load each mirror's klass metaobject.
  3392   int which_arg;
  3393   for (which_arg = 0; which_arg <= 1; which_arg++) {
  3394     Node* arg = args[which_arg];
  3395     arg = null_check(arg);
  3396     if (stopped())  break;
  3397     args[which_arg] = arg;
  3399     Node* p = basic_plus_adr(arg, class_klass_offset);
  3400     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
  3401     klasses[which_arg] = _gvn.transform(kls);
  3404   // Having loaded both klasses, test each for null.
  3405   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3406   for (which_arg = 0; which_arg <= 1; which_arg++) {
  3407     Node* kls = klasses[which_arg];
  3408     Node* null_ctl = top();
  3409     kls = null_check_oop(kls, &null_ctl, never_see_null);
  3410     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
  3411     region->init_req(prim_path, null_ctl);
  3412     if (stopped())  break;
  3413     klasses[which_arg] = kls;
  3416   if (!stopped()) {
  3417     // now we have two reference types, in klasses[0..1]
  3418     Node* subk   = klasses[1];  // the argument to isAssignableFrom
  3419     Node* superk = klasses[0];  // the receiver
  3420     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
  3421     // now we have a successful reference subtype check
  3422     region->set_req(_ref_subtype_path, control());
  3425   // If both operands are primitive (both klasses null), then
  3426   // we must return true when they are identical primitives.
  3427   // It is convenient to test this after the first null klass check.
  3428   set_control(region->in(_prim_0_path)); // go back to first null check
  3429   if (!stopped()) {
  3430     // Since superc is primitive, make a guard for the superc==subc case.
  3431     Node* cmp_eq = _gvn.transform(new (C) CmpPNode(args[0], args[1]));
  3432     Node* bol_eq = _gvn.transform(new (C) BoolNode(cmp_eq, BoolTest::eq));
  3433     generate_guard(bol_eq, region, PROB_FAIR);
  3434     if (region->req() == PATH_LIMIT+1) {
  3435       // A guard was added.  If the added guard is taken, superc==subc.
  3436       region->swap_edges(PATH_LIMIT, _prim_same_path);
  3437       region->del_req(PATH_LIMIT);
  3439     region->set_req(_prim_0_path, control()); // Not equal after all.
  3442   // these are the only paths that produce 'true':
  3443   phi->set_req(_prim_same_path,   intcon(1));
  3444   phi->set_req(_ref_subtype_path, intcon(1));
  3446   // pull together the cases:
  3447   assert(region->req() == PATH_LIMIT, "sane region");
  3448   for (uint i = 1; i < region->req(); i++) {
  3449     Node* ctl = region->in(i);
  3450     if (ctl == NULL || ctl == top()) {
  3451       region->set_req(i, top());
  3452       phi   ->set_req(i, top());
  3453     } else if (phi->in(i) == NULL) {
  3454       phi->set_req(i, intcon(0)); // all other paths produce 'false'
  3458   set_control(_gvn.transform(region));
  3459   set_result(_gvn.transform(phi));
  3460   return true;
  3463 //---------------------generate_array_guard_common------------------------
  3464 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
  3465                                                   bool obj_array, bool not_array) {
  3466   // If obj_array/non_array==false/false:
  3467   // Branch around if the given klass is in fact an array (either obj or prim).
  3468   // If obj_array/non_array==false/true:
  3469   // Branch around if the given klass is not an array klass of any kind.
  3470   // If obj_array/non_array==true/true:
  3471   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
  3472   // If obj_array/non_array==true/false:
  3473   // Branch around if the kls is an oop array (Object[] or subtype)
  3474   //
  3475   // Like generate_guard, adds a new path onto the region.
  3476   jint  layout_con = 0;
  3477   Node* layout_val = get_layout_helper(kls, layout_con);
  3478   if (layout_val == NULL) {
  3479     bool query = (obj_array
  3480                   ? Klass::layout_helper_is_objArray(layout_con)
  3481                   : Klass::layout_helper_is_array(layout_con));
  3482     if (query == not_array) {
  3483       return NULL;                       // never a branch
  3484     } else {                             // always a branch
  3485       Node* always_branch = control();
  3486       if (region != NULL)
  3487         region->add_req(always_branch);
  3488       set_control(top());
  3489       return always_branch;
  3492   // Now test the correct condition.
  3493   jint  nval = (obj_array
  3494                 ? ((jint)Klass::_lh_array_tag_type_value
  3495                    <<    Klass::_lh_array_tag_shift)
  3496                 : Klass::_lh_neutral_value);
  3497   Node* cmp = _gvn.transform(new(C) CmpINode(layout_val, intcon(nval)));
  3498   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
  3499   // invert the test if we are looking for a non-array
  3500   if (not_array)  btest = BoolTest(btest).negate();
  3501   Node* bol = _gvn.transform(new(C) BoolNode(cmp, btest));
  3502   return generate_fair_guard(bol, region);
  3506 //-----------------------inline_native_newArray--------------------------
  3507 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
  3508 bool LibraryCallKit::inline_native_newArray() {
  3509   Node* mirror    = argument(0);
  3510   Node* count_val = argument(1);
  3512   mirror = null_check(mirror);
  3513   // If mirror or obj is dead, only null-path is taken.
  3514   if (stopped())  return true;
  3516   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
  3517   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
  3518   PhiNode*    result_val = new(C) PhiNode(result_reg,
  3519                                           TypeInstPtr::NOTNULL);
  3520   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
  3521   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
  3522                                           TypePtr::BOTTOM);
  3524   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3525   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
  3526                                                   result_reg, _slow_path);
  3527   Node* normal_ctl   = control();
  3528   Node* no_array_ctl = result_reg->in(_slow_path);
  3530   // Generate code for the slow case.  We make a call to newArray().
  3531   set_control(no_array_ctl);
  3532   if (!stopped()) {
  3533     // Either the input type is void.class, or else the
  3534     // array klass has not yet been cached.  Either the
  3535     // ensuing call will throw an exception, or else it
  3536     // will cache the array klass for next time.
  3537     PreserveJVMState pjvms(this);
  3538     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
  3539     Node* slow_result = set_results_for_java_call(slow_call);
  3540     // this->control() comes from set_results_for_java_call
  3541     result_reg->set_req(_slow_path, control());
  3542     result_val->set_req(_slow_path, slow_result);
  3543     result_io ->set_req(_slow_path, i_o());
  3544     result_mem->set_req(_slow_path, reset_memory());
  3547   set_control(normal_ctl);
  3548   if (!stopped()) {
  3549     // Normal case:  The array type has been cached in the java.lang.Class.
  3550     // The following call works fine even if the array type is polymorphic.
  3551     // It could be a dynamic mix of int[], boolean[], Object[], etc.
  3552     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
  3553     result_reg->init_req(_normal_path, control());
  3554     result_val->init_req(_normal_path, obj);
  3555     result_io ->init_req(_normal_path, i_o());
  3556     result_mem->init_req(_normal_path, reset_memory());
  3559   // Return the combined state.
  3560   set_i_o(        _gvn.transform(result_io)  );
  3561   set_all_memory( _gvn.transform(result_mem));
  3563   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3564   set_result(result_reg, result_val);
  3565   return true;
  3568 //----------------------inline_native_getLength--------------------------
  3569 // public static native int java.lang.reflect.Array.getLength(Object array);
  3570 bool LibraryCallKit::inline_native_getLength() {
  3571   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  3573   Node* array = null_check(argument(0));
  3574   // If array is dead, only null-path is taken.
  3575   if (stopped())  return true;
  3577   // Deoptimize if it is a non-array.
  3578   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
  3580   if (non_array != NULL) {
  3581     PreserveJVMState pjvms(this);
  3582     set_control(non_array);
  3583     uncommon_trap(Deoptimization::Reason_intrinsic,
  3584                   Deoptimization::Action_maybe_recompile);
  3587   // If control is dead, only non-array-path is taken.
  3588   if (stopped())  return true;
  3590   // The works fine even if the array type is polymorphic.
  3591   // It could be a dynamic mix of int[], boolean[], Object[], etc.
  3592   Node* result = load_array_length(array);
  3594   C->set_has_split_ifs(true);  // Has chance for split-if optimization
  3595   set_result(result);
  3596   return true;
  3599 //------------------------inline_array_copyOf----------------------------
  3600 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
  3601 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
  3602 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
  3603   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  3605   // Get the arguments.
  3606   Node* original          = argument(0);
  3607   Node* start             = is_copyOfRange? argument(1): intcon(0);
  3608   Node* end               = is_copyOfRange? argument(2): argument(1);
  3609   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
  3611   Node* newcopy;
  3613   // Set the original stack and the reexecute bit for the interpreter to reexecute
  3614   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
  3615   { PreserveReexecuteState preexecs(this);
  3616     jvms()->set_should_reexecute(true);
  3618     array_type_mirror = null_check(array_type_mirror);
  3619     original          = null_check(original);
  3621     // Check if a null path was taken unconditionally.
  3622     if (stopped())  return true;
  3624     Node* orig_length = load_array_length(original);
  3626     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
  3627     klass_node = null_check(klass_node);
  3629     RegionNode* bailout = new (C) RegionNode(1);
  3630     record_for_igvn(bailout);
  3632     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
  3633     // Bail out if that is so.
  3634     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
  3635     if (not_objArray != NULL) {
  3636       // Improve the klass node's type from the new optimistic assumption:
  3637       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
  3638       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
  3639       Node* cast = new (C) CastPPNode(klass_node, akls);
  3640       cast->init_req(0, control());
  3641       klass_node = _gvn.transform(cast);
  3644     // Bail out if either start or end is negative.
  3645     generate_negative_guard(start, bailout, &start);
  3646     generate_negative_guard(end,   bailout, &end);
  3648     Node* length = end;
  3649     if (_gvn.type(start) != TypeInt::ZERO) {
  3650       length = _gvn.transform(new (C) SubINode(end, start));
  3653     // Bail out if length is negative.
  3654     // Without this the new_array would throw
  3655     // NegativeArraySizeException but IllegalArgumentException is what
  3656     // should be thrown
  3657     generate_negative_guard(length, bailout, &length);
  3659     if (bailout->req() > 1) {
  3660       PreserveJVMState pjvms(this);
  3661       set_control(_gvn.transform(bailout));
  3662       uncommon_trap(Deoptimization::Reason_intrinsic,
  3663                     Deoptimization::Action_maybe_recompile);
  3666     if (!stopped()) {
  3667       // How many elements will we copy from the original?
  3668       // The answer is MinI(orig_length - start, length).
  3669       Node* orig_tail = _gvn.transform(new (C) SubINode(orig_length, start));
  3670       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
  3672       newcopy = new_array(klass_node, length, 0);  // no argments to push
  3674       // Generate a direct call to the right arraycopy function(s).
  3675       // We know the copy is disjoint but we might not know if the
  3676       // oop stores need checking.
  3677       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
  3678       // This will fail a store-check if x contains any non-nulls.
  3679       bool disjoint_bases = true;
  3680       // if start > orig_length then the length of the copy may be
  3681       // negative.
  3682       bool length_never_negative = !is_copyOfRange;
  3683       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  3684                          original, start, newcopy, intcon(0), moved,
  3685                          disjoint_bases, length_never_negative);
  3687   } // original reexecute is set back here
  3689   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3690   if (!stopped()) {
  3691     set_result(newcopy);
  3693   return true;
  3697 //----------------------generate_virtual_guard---------------------------
  3698 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
  3699 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
  3700                                              RegionNode* slow_region) {
  3701   ciMethod* method = callee();
  3702   int vtable_index = method->vtable_index();
  3703   // Get the Method* out of the appropriate vtable entry.
  3704   int entry_offset  = (InstanceKlass::vtable_start_offset() +
  3705                      vtable_index*vtableEntry::size()) * wordSize +
  3706                      vtableEntry::method_offset_in_bytes();
  3707   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
  3708   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS);
  3710   // Compare the target method with the expected method (e.g., Object.hashCode).
  3711   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
  3713   Node* native_call = makecon(native_call_addr);
  3714   Node* chk_native  = _gvn.transform(new(C) CmpPNode(target_call, native_call));
  3715   Node* test_native = _gvn.transform(new(C) BoolNode(chk_native, BoolTest::ne));
  3717   return generate_slow_guard(test_native, slow_region);
  3720 //-----------------------generate_method_call----------------------------
  3721 // Use generate_method_call to make a slow-call to the real
  3722 // method if the fast path fails.  An alternative would be to
  3723 // use a stub like OptoRuntime::slow_arraycopy_Java.
  3724 // This only works for expanding the current library call,
  3725 // not another intrinsic.  (E.g., don't use this for making an
  3726 // arraycopy call inside of the copyOf intrinsic.)
  3727 CallJavaNode*
  3728 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
  3729   // When compiling the intrinsic method itself, do not use this technique.
  3730   guarantee(callee() != C->method(), "cannot make slow-call to self");
  3732   ciMethod* method = callee();
  3733   // ensure the JVMS we have will be correct for this call
  3734   guarantee(method_id == method->intrinsic_id(), "must match");
  3736   const TypeFunc* tf = TypeFunc::make(method);
  3737   CallJavaNode* slow_call;
  3738   if (is_static) {
  3739     assert(!is_virtual, "");
  3740     slow_call = new(C) CallStaticJavaNode(C, tf,
  3741                            SharedRuntime::get_resolve_static_call_stub(),
  3742                            method, bci());
  3743   } else if (is_virtual) {
  3744     null_check_receiver();
  3745     int vtable_index = Method::invalid_vtable_index;
  3746     if (UseInlineCaches) {
  3747       // Suppress the vtable call
  3748     } else {
  3749       // hashCode and clone are not a miranda methods,
  3750       // so the vtable index is fixed.
  3751       // No need to use the linkResolver to get it.
  3752        vtable_index = method->vtable_index();
  3754     slow_call = new(C) CallDynamicJavaNode(tf,
  3755                           SharedRuntime::get_resolve_virtual_call_stub(),
  3756                           method, vtable_index, bci());
  3757   } else {  // neither virtual nor static:  opt_virtual
  3758     null_check_receiver();
  3759     slow_call = new(C) CallStaticJavaNode(C, tf,
  3760                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
  3761                                 method, bci());
  3762     slow_call->set_optimized_virtual(true);
  3764   set_arguments_for_java_call(slow_call);
  3765   set_edges_for_java_call(slow_call);
  3766   return slow_call;
  3770 //------------------------------inline_native_hashcode--------------------
  3771 // Build special case code for calls to hashCode on an object.
  3772 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
  3773   assert(is_static == callee()->is_static(), "correct intrinsic selection");
  3774   assert(!(is_virtual && is_static), "either virtual, special, or static");
  3776   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
  3778   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
  3779   PhiNode*    result_val = new(C) PhiNode(result_reg,
  3780                                           TypeInt::INT);
  3781   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
  3782   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
  3783                                           TypePtr::BOTTOM);
  3784   Node* obj = NULL;
  3785   if (!is_static) {
  3786     // Check for hashing null object
  3787     obj = null_check_receiver();
  3788     if (stopped())  return true;        // unconditionally null
  3789     result_reg->init_req(_null_path, top());
  3790     result_val->init_req(_null_path, top());
  3791   } else {
  3792     // Do a null check, and return zero if null.
  3793     // System.identityHashCode(null) == 0
  3794     obj = argument(0);
  3795     Node* null_ctl = top();
  3796     obj = null_check_oop(obj, &null_ctl);
  3797     result_reg->init_req(_null_path, null_ctl);
  3798     result_val->init_req(_null_path, _gvn.intcon(0));
  3801   // Unconditionally null?  Then return right away.
  3802   if (stopped()) {
  3803     set_control( result_reg->in(_null_path));
  3804     if (!stopped())
  3805       set_result(result_val->in(_null_path));
  3806     return true;
  3809   // After null check, get the object's klass.
  3810   Node* obj_klass = load_object_klass(obj);
  3812   // This call may be virtual (invokevirtual) or bound (invokespecial).
  3813   // For each case we generate slightly different code.
  3815   // We only go to the fast case code if we pass a number of guards.  The
  3816   // paths which do not pass are accumulated in the slow_region.
  3817   RegionNode* slow_region = new (C) RegionNode(1);
  3818   record_for_igvn(slow_region);
  3820   // If this is a virtual call, we generate a funny guard.  We pull out
  3821   // the vtable entry corresponding to hashCode() from the target object.
  3822   // If the target method which we are calling happens to be the native
  3823   // Object hashCode() method, we pass the guard.  We do not need this
  3824   // guard for non-virtual calls -- the caller is known to be the native
  3825   // Object hashCode().
  3826   if (is_virtual) {
  3827     generate_virtual_guard(obj_klass, slow_region);
  3830   // Get the header out of the object, use LoadMarkNode when available
  3831   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
  3832   Node* header = make_load(control(), header_addr, TypeX_X, TypeX_X->basic_type());
  3834   // Test the header to see if it is unlocked.
  3835   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
  3836   Node *lmasked_header = _gvn.transform(new (C) AndXNode(header, lock_mask));
  3837   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
  3838   Node *chk_unlocked   = _gvn.transform(new (C) CmpXNode( lmasked_header, unlocked_val));
  3839   Node *test_unlocked  = _gvn.transform(new (C) BoolNode( chk_unlocked, BoolTest::ne));
  3841   generate_slow_guard(test_unlocked, slow_region);
  3843   // Get the hash value and check to see that it has been properly assigned.
  3844   // We depend on hash_mask being at most 32 bits and avoid the use of
  3845   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
  3846   // vm: see markOop.hpp.
  3847   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
  3848   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
  3849   Node *hshifted_header= _gvn.transform(new (C) URShiftXNode(header, hash_shift));
  3850   // This hack lets the hash bits live anywhere in the mark object now, as long
  3851   // as the shift drops the relevant bits into the low 32 bits.  Note that
  3852   // Java spec says that HashCode is an int so there's no point in capturing
  3853   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
  3854   hshifted_header      = ConvX2I(hshifted_header);
  3855   Node *hash_val       = _gvn.transform(new (C) AndINode(hshifted_header, hash_mask));
  3857   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
  3858   Node *chk_assigned   = _gvn.transform(new (C) CmpINode( hash_val, no_hash_val));
  3859   Node *test_assigned  = _gvn.transform(new (C) BoolNode( chk_assigned, BoolTest::eq));
  3861   generate_slow_guard(test_assigned, slow_region);
  3863   Node* init_mem = reset_memory();
  3864   // fill in the rest of the null path:
  3865   result_io ->init_req(_null_path, i_o());
  3866   result_mem->init_req(_null_path, init_mem);
  3868   result_val->init_req(_fast_path, hash_val);
  3869   result_reg->init_req(_fast_path, control());
  3870   result_io ->init_req(_fast_path, i_o());
  3871   result_mem->init_req(_fast_path, init_mem);
  3873   // Generate code for the slow case.  We make a call to hashCode().
  3874   set_control(_gvn.transform(slow_region));
  3875   if (!stopped()) {
  3876     // No need for PreserveJVMState, because we're using up the present state.
  3877     set_all_memory(init_mem);
  3878     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
  3879     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
  3880     Node* slow_result = set_results_for_java_call(slow_call);
  3881     // this->control() comes from set_results_for_java_call
  3882     result_reg->init_req(_slow_path, control());
  3883     result_val->init_req(_slow_path, slow_result);
  3884     result_io  ->set_req(_slow_path, i_o());
  3885     result_mem ->set_req(_slow_path, reset_memory());
  3888   // Return the combined state.
  3889   set_i_o(        _gvn.transform(result_io)  );
  3890   set_all_memory( _gvn.transform(result_mem));
  3892   set_result(result_reg, result_val);
  3893   return true;
  3896 //---------------------------inline_native_getClass----------------------------
  3897 // public final native Class<?> java.lang.Object.getClass();
  3898 //
  3899 // Build special case code for calls to getClass on an object.
  3900 bool LibraryCallKit::inline_native_getClass() {
  3901   Node* obj = null_check_receiver();
  3902   if (stopped())  return true;
  3903   set_result(load_mirror_from_klass(load_object_klass(obj)));
  3904   return true;
  3907 //-----------------inline_native_Reflection_getCallerClass---------------------
  3908 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
  3909 //
  3910 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
  3911 //
  3912 // NOTE: This code must perform the same logic as JVM_GetCallerClass
  3913 // in that it must skip particular security frames and checks for
  3914 // caller sensitive methods.
  3915 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
  3916 #ifndef PRODUCT
  3917   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3918     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
  3920 #endif
  3922   if (!jvms()->has_method()) {
  3923 #ifndef PRODUCT
  3924     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3925       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
  3927 #endif
  3928     return false;
  3931   // Walk back up the JVM state to find the caller at the required
  3932   // depth.
  3933   JVMState* caller_jvms = jvms();
  3935   // Cf. JVM_GetCallerClass
  3936   // NOTE: Start the loop at depth 1 because the current JVM state does
  3937   // not include the Reflection.getCallerClass() frame.
  3938   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
  3939     ciMethod* m = caller_jvms->method();
  3940     switch (n) {
  3941     case 0:
  3942       fatal("current JVM state does not include the Reflection.getCallerClass frame");
  3943       break;
  3944     case 1:
  3945       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
  3946       if (!m->caller_sensitive()) {
  3947 #ifndef PRODUCT
  3948         if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3949           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
  3951 #endif
  3952         return false;  // bail-out; let JVM_GetCallerClass do the work
  3954       break;
  3955     default:
  3956       if (!m->is_ignored_by_security_stack_walk()) {
  3957         // We have reached the desired frame; return the holder class.
  3958         // Acquire method holder as java.lang.Class and push as constant.
  3959         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
  3960         ciInstance* caller_mirror = caller_klass->java_mirror();
  3961         set_result(makecon(TypeInstPtr::make(caller_mirror)));
  3963 #ifndef PRODUCT
  3964         if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3965           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
  3966           tty->print_cr("  JVM state at this point:");
  3967           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
  3968             ciMethod* m = jvms()->of_depth(i)->method();
  3969             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
  3972 #endif
  3973         return true;
  3975       break;
  3979 #ifndef PRODUCT
  3980   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3981     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
  3982     tty->print_cr("  JVM state at this point:");
  3983     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
  3984       ciMethod* m = jvms()->of_depth(i)->method();
  3985       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
  3988 #endif
  3990   return false;  // bail-out; let JVM_GetCallerClass do the work
  3993 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
  3994   Node* arg = argument(0);
  3995   Node* result;
  3997   switch (id) {
  3998   case vmIntrinsics::_floatToRawIntBits:    result = new (C) MoveF2INode(arg);  break;
  3999   case vmIntrinsics::_intBitsToFloat:       result = new (C) MoveI2FNode(arg);  break;
  4000   case vmIntrinsics::_doubleToRawLongBits:  result = new (C) MoveD2LNode(arg);  break;
  4001   case vmIntrinsics::_longBitsToDouble:     result = new (C) MoveL2DNode(arg);  break;
  4003   case vmIntrinsics::_doubleToLongBits: {
  4004     // two paths (plus control) merge in a wood
  4005     RegionNode *r = new (C) RegionNode(3);
  4006     Node *phi = new (C) PhiNode(r, TypeLong::LONG);
  4008     Node *cmpisnan = _gvn.transform(new (C) CmpDNode(arg, arg));
  4009     // Build the boolean node
  4010     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
  4012     // Branch either way.
  4013     // NaN case is less traveled, which makes all the difference.
  4014     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  4015     Node *opt_isnan = _gvn.transform(ifisnan);
  4016     assert( opt_isnan->is_If(), "Expect an IfNode");
  4017     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  4018     Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
  4020     set_control(iftrue);
  4022     static const jlong nan_bits = CONST64(0x7ff8000000000000);
  4023     Node *slow_result = longcon(nan_bits); // return NaN
  4024     phi->init_req(1, _gvn.transform( slow_result ));
  4025     r->init_req(1, iftrue);
  4027     // Else fall through
  4028     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
  4029     set_control(iffalse);
  4031     phi->init_req(2, _gvn.transform(new (C) MoveD2LNode(arg)));
  4032     r->init_req(2, iffalse);
  4034     // Post merge
  4035     set_control(_gvn.transform(r));
  4036     record_for_igvn(r);
  4038     C->set_has_split_ifs(true); // Has chance for split-if optimization
  4039     result = phi;
  4040     assert(result->bottom_type()->isa_long(), "must be");
  4041     break;
  4044   case vmIntrinsics::_floatToIntBits: {
  4045     // two paths (plus control) merge in a wood
  4046     RegionNode *r = new (C) RegionNode(3);
  4047     Node *phi = new (C) PhiNode(r, TypeInt::INT);
  4049     Node *cmpisnan = _gvn.transform(new (C) CmpFNode(arg, arg));
  4050     // Build the boolean node
  4051     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
  4053     // Branch either way.
  4054     // NaN case is less traveled, which makes all the difference.
  4055     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  4056     Node *opt_isnan = _gvn.transform(ifisnan);
  4057     assert( opt_isnan->is_If(), "Expect an IfNode");
  4058     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  4059     Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
  4061     set_control(iftrue);
  4063     static const jint nan_bits = 0x7fc00000;
  4064     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
  4065     phi->init_req(1, _gvn.transform( slow_result ));
  4066     r->init_req(1, iftrue);
  4068     // Else fall through
  4069     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
  4070     set_control(iffalse);
  4072     phi->init_req(2, _gvn.transform(new (C) MoveF2INode(arg)));
  4073     r->init_req(2, iffalse);
  4075     // Post merge
  4076     set_control(_gvn.transform(r));
  4077     record_for_igvn(r);
  4079     C->set_has_split_ifs(true); // Has chance for split-if optimization
  4080     result = phi;
  4081     assert(result->bottom_type()->isa_int(), "must be");
  4082     break;
  4085   default:
  4086     fatal_unexpected_iid(id);
  4087     break;
  4089   set_result(_gvn.transform(result));
  4090   return true;
  4093 #ifdef _LP64
  4094 #define XTOP ,top() /*additional argument*/
  4095 #else  //_LP64
  4096 #define XTOP        /*no additional argument*/
  4097 #endif //_LP64
  4099 //----------------------inline_unsafe_copyMemory-------------------------
  4100 // public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
  4101 bool LibraryCallKit::inline_unsafe_copyMemory() {
  4102   if (callee()->is_static())  return false;  // caller must have the capability!
  4103   null_check_receiver();  // null-check receiver
  4104   if (stopped())  return true;
  4106   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  4108   Node* src_ptr =         argument(1);   // type: oop
  4109   Node* src_off = ConvL2X(argument(2));  // type: long
  4110   Node* dst_ptr =         argument(4);   // type: oop
  4111   Node* dst_off = ConvL2X(argument(5));  // type: long
  4112   Node* size    = ConvL2X(argument(7));  // type: long
  4114   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  4115          "fieldOffset must be byte-scaled");
  4117   Node* src = make_unsafe_address(src_ptr, src_off);
  4118   Node* dst = make_unsafe_address(dst_ptr, dst_off);
  4120   // Conservatively insert a memory barrier on all memory slices.
  4121   // Do not let writes of the copy source or destination float below the copy.
  4122   insert_mem_bar(Op_MemBarCPUOrder);
  4124   // Call it.  Note that the length argument is not scaled.
  4125   make_runtime_call(RC_LEAF|RC_NO_FP,
  4126                     OptoRuntime::fast_arraycopy_Type(),
  4127                     StubRoutines::unsafe_arraycopy(),
  4128                     "unsafe_arraycopy",
  4129                     TypeRawPtr::BOTTOM,
  4130                     src, dst, size XTOP);
  4132   // Do not let reads of the copy destination float above the copy.
  4133   insert_mem_bar(Op_MemBarCPUOrder);
  4135   return true;
  4138 //------------------------clone_coping-----------------------------------
  4139 // Helper function for inline_native_clone.
  4140 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
  4141   assert(obj_size != NULL, "");
  4142   Node* raw_obj = alloc_obj->in(1);
  4143   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
  4145   AllocateNode* alloc = NULL;
  4146   if (ReduceBulkZeroing) {
  4147     // We will be completely responsible for initializing this object -
  4148     // mark Initialize node as complete.
  4149     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
  4150     // The object was just allocated - there should be no any stores!
  4151     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
  4152     // Mark as complete_with_arraycopy so that on AllocateNode
  4153     // expansion, we know this AllocateNode is initialized by an array
  4154     // copy and a StoreStore barrier exists after the array copy.
  4155     alloc->initialization()->set_complete_with_arraycopy();
  4158   // Copy the fastest available way.
  4159   // TODO: generate fields copies for small objects instead.
  4160   Node* src  = obj;
  4161   Node* dest = alloc_obj;
  4162   Node* size = _gvn.transform(obj_size);
  4164   // Exclude the header but include array length to copy by 8 bytes words.
  4165   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
  4166   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
  4167                             instanceOopDesc::base_offset_in_bytes();
  4168   // base_off:
  4169   // 8  - 32-bit VM
  4170   // 12 - 64-bit VM, compressed klass
  4171   // 16 - 64-bit VM, normal klass
  4172   if (base_off % BytesPerLong != 0) {
  4173     assert(UseCompressedKlassPointers, "");
  4174     if (is_array) {
  4175       // Exclude length to copy by 8 bytes words.
  4176       base_off += sizeof(int);
  4177     } else {
  4178       // Include klass to copy by 8 bytes words.
  4179       base_off = instanceOopDesc::klass_offset_in_bytes();
  4181     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
  4183   src  = basic_plus_adr(src,  base_off);
  4184   dest = basic_plus_adr(dest, base_off);
  4186   // Compute the length also, if needed:
  4187   Node* countx = size;
  4188   countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(base_off)));
  4189   countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong) ));
  4191   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
  4192   bool disjoint_bases = true;
  4193   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
  4194                                src, NULL, dest, NULL, countx,
  4195                                /*dest_uninitialized*/true);
  4197   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
  4198   if (card_mark) {
  4199     assert(!is_array, "");
  4200     // Put in store barrier for any and all oops we are sticking
  4201     // into this object.  (We could avoid this if we could prove
  4202     // that the object type contains no oop fields at all.)
  4203     Node* no_particular_value = NULL;
  4204     Node* no_particular_field = NULL;
  4205     int raw_adr_idx = Compile::AliasIdxRaw;
  4206     post_barrier(control(),
  4207                  memory(raw_adr_type),
  4208                  alloc_obj,
  4209                  no_particular_field,
  4210                  raw_adr_idx,
  4211                  no_particular_value,
  4212                  T_OBJECT,
  4213                  false);
  4216   // Do not let reads from the cloned object float above the arraycopy.
  4217   if (alloc != NULL) {
  4218     // Do not let stores that initialize this object be reordered with
  4219     // a subsequent store that would make this object accessible by
  4220     // other threads.
  4221     // Record what AllocateNode this StoreStore protects so that
  4222     // escape analysis can go from the MemBarStoreStoreNode to the
  4223     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
  4224     // based on the escape status of the AllocateNode.
  4225     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
  4226   } else {
  4227     insert_mem_bar(Op_MemBarCPUOrder);
  4231 //------------------------inline_native_clone----------------------------
  4232 // protected native Object java.lang.Object.clone();
  4233 //
  4234 // Here are the simple edge cases:
  4235 //  null receiver => normal trap
  4236 //  virtual and clone was overridden => slow path to out-of-line clone
  4237 //  not cloneable or finalizer => slow path to out-of-line Object.clone
  4238 //
  4239 // The general case has two steps, allocation and copying.
  4240 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
  4241 //
  4242 // Copying also has two cases, oop arrays and everything else.
  4243 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
  4244 // Everything else uses the tight inline loop supplied by CopyArrayNode.
  4245 //
  4246 // These steps fold up nicely if and when the cloned object's klass
  4247 // can be sharply typed as an object array, a type array, or an instance.
  4248 //
  4249 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
  4250   PhiNode* result_val;
  4252   // Set the reexecute bit for the interpreter to reexecute
  4253   // the bytecode that invokes Object.clone if deoptimization happens.
  4254   { PreserveReexecuteState preexecs(this);
  4255     jvms()->set_should_reexecute(true);
  4257     Node* obj = null_check_receiver();
  4258     if (stopped())  return true;
  4260     Node* obj_klass = load_object_klass(obj);
  4261     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
  4262     const TypeOopPtr*   toop   = ((tklass != NULL)
  4263                                 ? tklass->as_instance_type()
  4264                                 : TypeInstPtr::NOTNULL);
  4266     // Conservatively insert a memory barrier on all memory slices.
  4267     // Do not let writes into the original float below the clone.
  4268     insert_mem_bar(Op_MemBarCPUOrder);
  4270     // paths into result_reg:
  4271     enum {
  4272       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
  4273       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
  4274       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
  4275       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
  4276       PATH_LIMIT
  4277     };
  4278     RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
  4279     result_val             = new(C) PhiNode(result_reg,
  4280                                             TypeInstPtr::NOTNULL);
  4281     PhiNode*    result_i_o = new(C) PhiNode(result_reg, Type::ABIO);
  4282     PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
  4283                                             TypePtr::BOTTOM);
  4284     record_for_igvn(result_reg);
  4286     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
  4287     int raw_adr_idx = Compile::AliasIdxRaw;
  4289     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
  4290     if (array_ctl != NULL) {
  4291       // It's an array.
  4292       PreserveJVMState pjvms(this);
  4293       set_control(array_ctl);
  4294       Node* obj_length = load_array_length(obj);
  4295       Node* obj_size  = NULL;
  4296       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
  4298       if (!use_ReduceInitialCardMarks()) {
  4299         // If it is an oop array, it requires very special treatment,
  4300         // because card marking is required on each card of the array.
  4301         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
  4302         if (is_obja != NULL) {
  4303           PreserveJVMState pjvms2(this);
  4304           set_control(is_obja);
  4305           // Generate a direct call to the right arraycopy function(s).
  4306           bool disjoint_bases = true;
  4307           bool length_never_negative = true;
  4308           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  4309                              obj, intcon(0), alloc_obj, intcon(0),
  4310                              obj_length,
  4311                              disjoint_bases, length_never_negative);
  4312           result_reg->init_req(_objArray_path, control());
  4313           result_val->init_req(_objArray_path, alloc_obj);
  4314           result_i_o ->set_req(_objArray_path, i_o());
  4315           result_mem ->set_req(_objArray_path, reset_memory());
  4318       // Otherwise, there are no card marks to worry about.
  4319       // (We can dispense with card marks if we know the allocation
  4320       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
  4321       //  causes the non-eden paths to take compensating steps to
  4322       //  simulate a fresh allocation, so that no further
  4323       //  card marks are required in compiled code to initialize
  4324       //  the object.)
  4326       if (!stopped()) {
  4327         copy_to_clone(obj, alloc_obj, obj_size, true, false);
  4329         // Present the results of the copy.
  4330         result_reg->init_req(_array_path, control());
  4331         result_val->init_req(_array_path, alloc_obj);
  4332         result_i_o ->set_req(_array_path, i_o());
  4333         result_mem ->set_req(_array_path, reset_memory());
  4337     // We only go to the instance fast case code if we pass a number of guards.
  4338     // The paths which do not pass are accumulated in the slow_region.
  4339     RegionNode* slow_region = new (C) RegionNode(1);
  4340     record_for_igvn(slow_region);
  4341     if (!stopped()) {
  4342       // It's an instance (we did array above).  Make the slow-path tests.
  4343       // If this is a virtual call, we generate a funny guard.  We grab
  4344       // the vtable entry corresponding to clone() from the target object.
  4345       // If the target method which we are calling happens to be the
  4346       // Object clone() method, we pass the guard.  We do not need this
  4347       // guard for non-virtual calls; the caller is known to be the native
  4348       // Object clone().
  4349       if (is_virtual) {
  4350         generate_virtual_guard(obj_klass, slow_region);
  4353       // The object must be cloneable and must not have a finalizer.
  4354       // Both of these conditions may be checked in a single test.
  4355       // We could optimize the cloneable test further, but we don't care.
  4356       generate_access_flags_guard(obj_klass,
  4357                                   // Test both conditions:
  4358                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
  4359                                   // Must be cloneable but not finalizer:
  4360                                   JVM_ACC_IS_CLONEABLE,
  4361                                   slow_region);
  4364     if (!stopped()) {
  4365       // It's an instance, and it passed the slow-path tests.
  4366       PreserveJVMState pjvms(this);
  4367       Node* obj_size  = NULL;
  4368       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size);
  4370       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
  4372       // Present the results of the slow call.
  4373       result_reg->init_req(_instance_path, control());
  4374       result_val->init_req(_instance_path, alloc_obj);
  4375       result_i_o ->set_req(_instance_path, i_o());
  4376       result_mem ->set_req(_instance_path, reset_memory());
  4379     // Generate code for the slow case.  We make a call to clone().
  4380     set_control(_gvn.transform(slow_region));
  4381     if (!stopped()) {
  4382       PreserveJVMState pjvms(this);
  4383       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
  4384       Node* slow_result = set_results_for_java_call(slow_call);
  4385       // this->control() comes from set_results_for_java_call
  4386       result_reg->init_req(_slow_path, control());
  4387       result_val->init_req(_slow_path, slow_result);
  4388       result_i_o ->set_req(_slow_path, i_o());
  4389       result_mem ->set_req(_slow_path, reset_memory());
  4392     // Return the combined state.
  4393     set_control(    _gvn.transform(result_reg));
  4394     set_i_o(        _gvn.transform(result_i_o));
  4395     set_all_memory( _gvn.transform(result_mem));
  4396   } // original reexecute is set back here
  4398   set_result(_gvn.transform(result_val));
  4399   return true;
  4402 //------------------------------basictype2arraycopy----------------------------
  4403 address LibraryCallKit::basictype2arraycopy(BasicType t,
  4404                                             Node* src_offset,
  4405                                             Node* dest_offset,
  4406                                             bool disjoint_bases,
  4407                                             const char* &name,
  4408                                             bool dest_uninitialized) {
  4409   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
  4410   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
  4412   bool aligned = false;
  4413   bool disjoint = disjoint_bases;
  4415   // if the offsets are the same, we can treat the memory regions as
  4416   // disjoint, because either the memory regions are in different arrays,
  4417   // or they are identical (which we can treat as disjoint.)  We can also
  4418   // treat a copy with a destination index  less that the source index
  4419   // as disjoint since a low->high copy will work correctly in this case.
  4420   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
  4421       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
  4422     // both indices are constants
  4423     int s_offs = src_offset_inttype->get_con();
  4424     int d_offs = dest_offset_inttype->get_con();
  4425     int element_size = type2aelembytes(t);
  4426     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
  4427               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
  4428     if (s_offs >= d_offs)  disjoint = true;
  4429   } else if (src_offset == dest_offset && src_offset != NULL) {
  4430     // This can occur if the offsets are identical non-constants.
  4431     disjoint = true;
  4434   return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
  4438 //------------------------------inline_arraycopy-----------------------
  4439 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
  4440 //                                                      Object dest, int destPos,
  4441 //                                                      int length);
  4442 bool LibraryCallKit::inline_arraycopy() {
  4443   // Get the arguments.
  4444   Node* src         = argument(0);  // type: oop
  4445   Node* src_offset  = argument(1);  // type: int
  4446   Node* dest        = argument(2);  // type: oop
  4447   Node* dest_offset = argument(3);  // type: int
  4448   Node* length      = argument(4);  // type: int
  4450   // Compile time checks.  If any of these checks cannot be verified at compile time,
  4451   // we do not make a fast path for this call.  Instead, we let the call remain as it
  4452   // is.  The checks we choose to mandate at compile time are:
  4453   //
  4454   // (1) src and dest are arrays.
  4455   const Type* src_type  = src->Value(&_gvn);
  4456   const Type* dest_type = dest->Value(&_gvn);
  4457   const TypeAryPtr* top_src  = src_type->isa_aryptr();
  4458   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  4459   if (top_src  == NULL || top_src->klass()  == NULL ||
  4460       top_dest == NULL || top_dest->klass() == NULL) {
  4461     // Conservatively insert a memory barrier on all memory slices.
  4462     // Do not let writes into the source float below the arraycopy.
  4463     insert_mem_bar(Op_MemBarCPUOrder);
  4465     // Call StubRoutines::generic_arraycopy stub.
  4466     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
  4467                        src, src_offset, dest, dest_offset, length);
  4469     // Do not let reads from the destination float above the arraycopy.
  4470     // Since we cannot type the arrays, we don't know which slices
  4471     // might be affected.  We could restrict this barrier only to those
  4472     // memory slices which pertain to array elements--but don't bother.
  4473     if (!InsertMemBarAfterArraycopy)
  4474       // (If InsertMemBarAfterArraycopy, there is already one in place.)
  4475       insert_mem_bar(Op_MemBarCPUOrder);
  4476     return true;
  4479   // (2) src and dest arrays must have elements of the same BasicType
  4480   // Figure out the size and type of the elements we will be copying.
  4481   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
  4482   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
  4483   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
  4484   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
  4486   if (src_elem != dest_elem || dest_elem == T_VOID) {
  4487     // The component types are not the same or are not recognized.  Punt.
  4488     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
  4489     generate_slow_arraycopy(TypePtr::BOTTOM,
  4490                             src, src_offset, dest, dest_offset, length,
  4491                             /*dest_uninitialized*/false);
  4492     return true;
  4495   //---------------------------------------------------------------------------
  4496   // We will make a fast path for this call to arraycopy.
  4498   // We have the following tests left to perform:
  4499   //
  4500   // (3) src and dest must not be null.
  4501   // (4) src_offset must not be negative.
  4502   // (5) dest_offset must not be negative.
  4503   // (6) length must not be negative.
  4504   // (7) src_offset + length must not exceed length of src.
  4505   // (8) dest_offset + length must not exceed length of dest.
  4506   // (9) each element of an oop array must be assignable
  4508   RegionNode* slow_region = new (C) RegionNode(1);
  4509   record_for_igvn(slow_region);
  4511   // (3) operands must not be null
  4512   // We currently perform our null checks with the null_check routine.
  4513   // This means that the null exceptions will be reported in the caller
  4514   // rather than (correctly) reported inside of the native arraycopy call.
  4515   // This should be corrected, given time.  We do our null check with the
  4516   // stack pointer restored.
  4517   src  = null_check(src,  T_ARRAY);
  4518   dest = null_check(dest, T_ARRAY);
  4520   // (4) src_offset must not be negative.
  4521   generate_negative_guard(src_offset, slow_region);
  4523   // (5) dest_offset must not be negative.
  4524   generate_negative_guard(dest_offset, slow_region);
  4526   // (6) length must not be negative (moved to generate_arraycopy()).
  4527   // generate_negative_guard(length, slow_region);
  4529   // (7) src_offset + length must not exceed length of src.
  4530   generate_limit_guard(src_offset, length,
  4531                        load_array_length(src),
  4532                        slow_region);
  4534   // (8) dest_offset + length must not exceed length of dest.
  4535   generate_limit_guard(dest_offset, length,
  4536                        load_array_length(dest),
  4537                        slow_region);
  4539   // (9) each element of an oop array must be assignable
  4540   // The generate_arraycopy subroutine checks this.
  4542   // This is where the memory effects are placed:
  4543   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
  4544   generate_arraycopy(adr_type, dest_elem,
  4545                      src, src_offset, dest, dest_offset, length,
  4546                      false, false, slow_region);
  4548   return true;
  4551 //-----------------------------generate_arraycopy----------------------
  4552 // Generate an optimized call to arraycopy.
  4553 // Caller must guard against non-arrays.
  4554 // Caller must determine a common array basic-type for both arrays.
  4555 // Caller must validate offsets against array bounds.
  4556 // The slow_region has already collected guard failure paths
  4557 // (such as out of bounds length or non-conformable array types).
  4558 // The generated code has this shape, in general:
  4559 //
  4560 //     if (length == 0)  return   // via zero_path
  4561 //     slowval = -1
  4562 //     if (types unknown) {
  4563 //       slowval = call generic copy loop
  4564 //       if (slowval == 0)  return  // via checked_path
  4565 //     } else if (indexes in bounds) {
  4566 //       if ((is object array) && !(array type check)) {
  4567 //         slowval = call checked copy loop
  4568 //         if (slowval == 0)  return  // via checked_path
  4569 //       } else {
  4570 //         call bulk copy loop
  4571 //         return  // via fast_path
  4572 //       }
  4573 //     }
  4574 //     // adjust params for remaining work:
  4575 //     if (slowval != -1) {
  4576 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
  4577 //     }
  4578 //   slow_region:
  4579 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
  4580 //     return  // via slow_call_path
  4581 //
  4582 // This routine is used from several intrinsics:  System.arraycopy,
  4583 // Object.clone (the array subcase), and Arrays.copyOf[Range].
  4584 //
  4585 void
  4586 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
  4587                                    BasicType basic_elem_type,
  4588                                    Node* src,  Node* src_offset,
  4589                                    Node* dest, Node* dest_offset,
  4590                                    Node* copy_length,
  4591                                    bool disjoint_bases,
  4592                                    bool length_never_negative,
  4593                                    RegionNode* slow_region) {
  4595   if (slow_region == NULL) {
  4596     slow_region = new(C) RegionNode(1);
  4597     record_for_igvn(slow_region);
  4600   Node* original_dest      = dest;
  4601   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
  4602   bool  dest_uninitialized = false;
  4604   // See if this is the initialization of a newly-allocated array.
  4605   // If so, we will take responsibility here for initializing it to zero.
  4606   // (Note:  Because tightly_coupled_allocation performs checks on the
  4607   // out-edges of the dest, we need to avoid making derived pointers
  4608   // from it until we have checked its uses.)
  4609   if (ReduceBulkZeroing
  4610       && !ZeroTLAB              // pointless if already zeroed
  4611       && basic_elem_type != T_CONFLICT // avoid corner case
  4612       && !src->eqv_uncast(dest)
  4613       && ((alloc = tightly_coupled_allocation(dest, slow_region))
  4614           != NULL)
  4615       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
  4616       && alloc->maybe_set_complete(&_gvn)) {
  4617     // "You break it, you buy it."
  4618     InitializeNode* init = alloc->initialization();
  4619     assert(init->is_complete(), "we just did this");
  4620     init->set_complete_with_arraycopy();
  4621     assert(dest->is_CheckCastPP(), "sanity");
  4622     assert(dest->in(0)->in(0) == init, "dest pinned");
  4623     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
  4624     // From this point on, every exit path is responsible for
  4625     // initializing any non-copied parts of the object to zero.
  4626     // Also, if this flag is set we make sure that arraycopy interacts properly
  4627     // with G1, eliding pre-barriers. See CR 6627983.
  4628     dest_uninitialized = true;
  4629   } else {
  4630     // No zeroing elimination here.
  4631     alloc             = NULL;
  4632     //original_dest   = dest;
  4633     //dest_uninitialized = false;
  4636   // Results are placed here:
  4637   enum { fast_path        = 1,  // normal void-returning assembly stub
  4638          checked_path     = 2,  // special assembly stub with cleanup
  4639          slow_call_path   = 3,  // something went wrong; call the VM
  4640          zero_path        = 4,  // bypass when length of copy is zero
  4641          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
  4642          PATH_LIMIT       = 6
  4643   };
  4644   RegionNode* result_region = new(C) RegionNode(PATH_LIMIT);
  4645   PhiNode*    result_i_o    = new(C) PhiNode(result_region, Type::ABIO);
  4646   PhiNode*    result_memory = new(C) PhiNode(result_region, Type::MEMORY, adr_type);
  4647   record_for_igvn(result_region);
  4648   _gvn.set_type_bottom(result_i_o);
  4649   _gvn.set_type_bottom(result_memory);
  4650   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
  4652   // The slow_control path:
  4653   Node* slow_control;
  4654   Node* slow_i_o = i_o();
  4655   Node* slow_mem = memory(adr_type);
  4656   debug_only(slow_control = (Node*) badAddress);
  4658   // Checked control path:
  4659   Node* checked_control = top();
  4660   Node* checked_mem     = NULL;
  4661   Node* checked_i_o     = NULL;
  4662   Node* checked_value   = NULL;
  4664   if (basic_elem_type == T_CONFLICT) {
  4665     assert(!dest_uninitialized, "");
  4666     Node* cv = generate_generic_arraycopy(adr_type,
  4667                                           src, src_offset, dest, dest_offset,
  4668                                           copy_length, dest_uninitialized);
  4669     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  4670     checked_control = control();
  4671     checked_i_o     = i_o();
  4672     checked_mem     = memory(adr_type);
  4673     checked_value   = cv;
  4674     set_control(top());         // no fast path
  4677   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
  4678   if (not_pos != NULL) {
  4679     PreserveJVMState pjvms(this);
  4680     set_control(not_pos);
  4682     // (6) length must not be negative.
  4683     if (!length_never_negative) {
  4684       generate_negative_guard(copy_length, slow_region);
  4687     // copy_length is 0.
  4688     if (!stopped() && dest_uninitialized) {
  4689       Node* dest_length = alloc->in(AllocateNode::ALength);
  4690       if (copy_length->eqv_uncast(dest_length)
  4691           || _gvn.find_int_con(dest_length, 1) <= 0) {
  4692         // There is no zeroing to do. No need for a secondary raw memory barrier.
  4693       } else {
  4694         // Clear the whole thing since there are no source elements to copy.
  4695         generate_clear_array(adr_type, dest, basic_elem_type,
  4696                              intcon(0), NULL,
  4697                              alloc->in(AllocateNode::AllocSize));
  4698         // Use a secondary InitializeNode as raw memory barrier.
  4699         // Currently it is needed only on this path since other
  4700         // paths have stub or runtime calls as raw memory barriers.
  4701         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
  4702                                                        Compile::AliasIdxRaw,
  4703                                                        top())->as_Initialize();
  4704         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
  4708     // Present the results of the fast call.
  4709     result_region->init_req(zero_path, control());
  4710     result_i_o   ->init_req(zero_path, i_o());
  4711     result_memory->init_req(zero_path, memory(adr_type));
  4714   if (!stopped() && dest_uninitialized) {
  4715     // We have to initialize the *uncopied* part of the array to zero.
  4716     // The copy destination is the slice dest[off..off+len].  The other slices
  4717     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
  4718     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
  4719     Node* dest_length = alloc->in(AllocateNode::ALength);
  4720     Node* dest_tail   = _gvn.transform(new(C) AddINode(dest_offset,
  4721                                                           copy_length));
  4723     // If there is a head section that needs zeroing, do it now.
  4724     if (find_int_con(dest_offset, -1) != 0) {
  4725       generate_clear_array(adr_type, dest, basic_elem_type,
  4726                            intcon(0), dest_offset,
  4727                            NULL);
  4730     // Next, perform a dynamic check on the tail length.
  4731     // It is often zero, and we can win big if we prove this.
  4732     // There are two wins:  Avoid generating the ClearArray
  4733     // with its attendant messy index arithmetic, and upgrade
  4734     // the copy to a more hardware-friendly word size of 64 bits.
  4735     Node* tail_ctl = NULL;
  4736     if (!stopped() && !dest_tail->eqv_uncast(dest_length)) {
  4737       Node* cmp_lt   = _gvn.transform(new(C) CmpINode(dest_tail, dest_length));
  4738       Node* bol_lt   = _gvn.transform(new(C) BoolNode(cmp_lt, BoolTest::lt));
  4739       tail_ctl = generate_slow_guard(bol_lt, NULL);
  4740       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
  4743     // At this point, let's assume there is no tail.
  4744     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
  4745       // There is no tail.  Try an upgrade to a 64-bit copy.
  4746       bool didit = false;
  4747       { PreserveJVMState pjvms(this);
  4748         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
  4749                                          src, src_offset, dest, dest_offset,
  4750                                          dest_size, dest_uninitialized);
  4751         if (didit) {
  4752           // Present the results of the block-copying fast call.
  4753           result_region->init_req(bcopy_path, control());
  4754           result_i_o   ->init_req(bcopy_path, i_o());
  4755           result_memory->init_req(bcopy_path, memory(adr_type));
  4758       if (didit)
  4759         set_control(top());     // no regular fast path
  4762     // Clear the tail, if any.
  4763     if (tail_ctl != NULL) {
  4764       Node* notail_ctl = stopped() ? NULL : control();
  4765       set_control(tail_ctl);
  4766       if (notail_ctl == NULL) {
  4767         generate_clear_array(adr_type, dest, basic_elem_type,
  4768                              dest_tail, NULL,
  4769                              dest_size);
  4770       } else {
  4771         // Make a local merge.
  4772         Node* done_ctl = new(C) RegionNode(3);
  4773         Node* done_mem = new(C) PhiNode(done_ctl, Type::MEMORY, adr_type);
  4774         done_ctl->init_req(1, notail_ctl);
  4775         done_mem->init_req(1, memory(adr_type));
  4776         generate_clear_array(adr_type, dest, basic_elem_type,
  4777                              dest_tail, NULL,
  4778                              dest_size);
  4779         done_ctl->init_req(2, control());
  4780         done_mem->init_req(2, memory(adr_type));
  4781         set_control( _gvn.transform(done_ctl));
  4782         set_memory(  _gvn.transform(done_mem), adr_type );
  4787   BasicType copy_type = basic_elem_type;
  4788   assert(basic_elem_type != T_ARRAY, "caller must fix this");
  4789   if (!stopped() && copy_type == T_OBJECT) {
  4790     // If src and dest have compatible element types, we can copy bits.
  4791     // Types S[] and D[] are compatible if D is a supertype of S.
  4792     //
  4793     // If they are not, we will use checked_oop_disjoint_arraycopy,
  4794     // which performs a fast optimistic per-oop check, and backs off
  4795     // further to JVM_ArrayCopy on the first per-oop check that fails.
  4796     // (Actually, we don't move raw bits only; the GC requires card marks.)
  4798     // Get the Klass* for both src and dest
  4799     Node* src_klass  = load_object_klass(src);
  4800     Node* dest_klass = load_object_klass(dest);
  4802     // Generate the subtype check.
  4803     // This might fold up statically, or then again it might not.
  4804     //
  4805     // Non-static example:  Copying List<String>.elements to a new String[].
  4806     // The backing store for a List<String> is always an Object[],
  4807     // but its elements are always type String, if the generic types
  4808     // are correct at the source level.
  4809     //
  4810     // Test S[] against D[], not S against D, because (probably)
  4811     // the secondary supertype cache is less busy for S[] than S.
  4812     // This usually only matters when D is an interface.
  4813     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
  4814     // Plug failing path into checked_oop_disjoint_arraycopy
  4815     if (not_subtype_ctrl != top()) {
  4816       PreserveJVMState pjvms(this);
  4817       set_control(not_subtype_ctrl);
  4818       // (At this point we can assume disjoint_bases, since types differ.)
  4819       int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
  4820       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
  4821       Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
  4822       Node* dest_elem_klass = _gvn.transform(n1);
  4823       Node* cv = generate_checkcast_arraycopy(adr_type,
  4824                                               dest_elem_klass,
  4825                                               src, src_offset, dest, dest_offset,
  4826                                               ConvI2X(copy_length), dest_uninitialized);
  4827       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  4828       checked_control = control();
  4829       checked_i_o     = i_o();
  4830       checked_mem     = memory(adr_type);
  4831       checked_value   = cv;
  4833     // At this point we know we do not need type checks on oop stores.
  4835     // Let's see if we need card marks:
  4836     if (alloc != NULL && use_ReduceInitialCardMarks()) {
  4837       // If we do not need card marks, copy using the jint or jlong stub.
  4838       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
  4839       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
  4840              "sizes agree");
  4844   if (!stopped()) {
  4845     // Generate the fast path, if possible.
  4846     PreserveJVMState pjvms(this);
  4847     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
  4848                                  src, src_offset, dest, dest_offset,
  4849                                  ConvI2X(copy_length), dest_uninitialized);
  4851     // Present the results of the fast call.
  4852     result_region->init_req(fast_path, control());
  4853     result_i_o   ->init_req(fast_path, i_o());
  4854     result_memory->init_req(fast_path, memory(adr_type));
  4857   // Here are all the slow paths up to this point, in one bundle:
  4858   slow_control = top();
  4859   if (slow_region != NULL)
  4860     slow_control = _gvn.transform(slow_region);
  4861   DEBUG_ONLY(slow_region = (RegionNode*)badAddress);
  4863   set_control(checked_control);
  4864   if (!stopped()) {
  4865     // Clean up after the checked call.
  4866     // The returned value is either 0 or -1^K,
  4867     // where K = number of partially transferred array elements.
  4868     Node* cmp = _gvn.transform(new(C) CmpINode(checked_value, intcon(0)));
  4869     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
  4870     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
  4872     // If it is 0, we are done, so transfer to the end.
  4873     Node* checks_done = _gvn.transform(new(C) IfTrueNode(iff));
  4874     result_region->init_req(checked_path, checks_done);
  4875     result_i_o   ->init_req(checked_path, checked_i_o);
  4876     result_memory->init_req(checked_path, checked_mem);
  4878     // If it is not zero, merge into the slow call.
  4879     set_control( _gvn.transform(new(C) IfFalseNode(iff) ));
  4880     RegionNode* slow_reg2 = new(C) RegionNode(3);
  4881     PhiNode*    slow_i_o2 = new(C) PhiNode(slow_reg2, Type::ABIO);
  4882     PhiNode*    slow_mem2 = new(C) PhiNode(slow_reg2, Type::MEMORY, adr_type);
  4883     record_for_igvn(slow_reg2);
  4884     slow_reg2  ->init_req(1, slow_control);
  4885     slow_i_o2  ->init_req(1, slow_i_o);
  4886     slow_mem2  ->init_req(1, slow_mem);
  4887     slow_reg2  ->init_req(2, control());
  4888     slow_i_o2  ->init_req(2, checked_i_o);
  4889     slow_mem2  ->init_req(2, checked_mem);
  4891     slow_control = _gvn.transform(slow_reg2);
  4892     slow_i_o     = _gvn.transform(slow_i_o2);
  4893     slow_mem     = _gvn.transform(slow_mem2);
  4895     if (alloc != NULL) {
  4896       // We'll restart from the very beginning, after zeroing the whole thing.
  4897       // This can cause double writes, but that's OK since dest is brand new.
  4898       // So we ignore the low 31 bits of the value returned from the stub.
  4899     } else {
  4900       // We must continue the copy exactly where it failed, or else
  4901       // another thread might see the wrong number of writes to dest.
  4902       Node* checked_offset = _gvn.transform(new(C) XorINode(checked_value, intcon(-1)));
  4903       Node* slow_offset    = new(C) PhiNode(slow_reg2, TypeInt::INT);
  4904       slow_offset->init_req(1, intcon(0));
  4905       slow_offset->init_req(2, checked_offset);
  4906       slow_offset  = _gvn.transform(slow_offset);
  4908       // Adjust the arguments by the conditionally incoming offset.
  4909       Node* src_off_plus  = _gvn.transform(new(C) AddINode(src_offset,  slow_offset));
  4910       Node* dest_off_plus = _gvn.transform(new(C) AddINode(dest_offset, slow_offset));
  4911       Node* length_minus  = _gvn.transform(new(C) SubINode(copy_length, slow_offset));
  4913       // Tweak the node variables to adjust the code produced below:
  4914       src_offset  = src_off_plus;
  4915       dest_offset = dest_off_plus;
  4916       copy_length = length_minus;
  4920   set_control(slow_control);
  4921   if (!stopped()) {
  4922     // Generate the slow path, if needed.
  4923     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
  4925     set_memory(slow_mem, adr_type);
  4926     set_i_o(slow_i_o);
  4928     if (dest_uninitialized) {
  4929       generate_clear_array(adr_type, dest, basic_elem_type,
  4930                            intcon(0), NULL,
  4931                            alloc->in(AllocateNode::AllocSize));
  4934     generate_slow_arraycopy(adr_type,
  4935                             src, src_offset, dest, dest_offset,
  4936                             copy_length, /*dest_uninitialized*/false);
  4938     result_region->init_req(slow_call_path, control());
  4939     result_i_o   ->init_req(slow_call_path, i_o());
  4940     result_memory->init_req(slow_call_path, memory(adr_type));
  4943   // Remove unused edges.
  4944   for (uint i = 1; i < result_region->req(); i++) {
  4945     if (result_region->in(i) == NULL)
  4946       result_region->init_req(i, top());
  4949   // Finished; return the combined state.
  4950   set_control( _gvn.transform(result_region));
  4951   set_i_o(     _gvn.transform(result_i_o)    );
  4952   set_memory(  _gvn.transform(result_memory), adr_type );
  4954   // The memory edges above are precise in order to model effects around
  4955   // array copies accurately to allow value numbering of field loads around
  4956   // arraycopy.  Such field loads, both before and after, are common in Java
  4957   // collections and similar classes involving header/array data structures.
  4958   //
  4959   // But with low number of register or when some registers are used or killed
  4960   // by arraycopy calls it causes registers spilling on stack. See 6544710.
  4961   // The next memory barrier is added to avoid it. If the arraycopy can be
  4962   // optimized away (which it can, sometimes) then we can manually remove
  4963   // the membar also.
  4964   //
  4965   // Do not let reads from the cloned object float above the arraycopy.
  4966   if (alloc != NULL) {
  4967     // Do not let stores that initialize this object be reordered with
  4968     // a subsequent store that would make this object accessible by
  4969     // other threads.
  4970     // Record what AllocateNode this StoreStore protects so that
  4971     // escape analysis can go from the MemBarStoreStoreNode to the
  4972     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
  4973     // based on the escape status of the AllocateNode.
  4974     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
  4975   } else if (InsertMemBarAfterArraycopy)
  4976     insert_mem_bar(Op_MemBarCPUOrder);
  4980 // Helper function which determines if an arraycopy immediately follows
  4981 // an allocation, with no intervening tests or other escapes for the object.
  4982 AllocateArrayNode*
  4983 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
  4984                                            RegionNode* slow_region) {
  4985   if (stopped())             return NULL;  // no fast path
  4986   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
  4988   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
  4989   if (alloc == NULL)  return NULL;
  4991   Node* rawmem = memory(Compile::AliasIdxRaw);
  4992   // Is the allocation's memory state untouched?
  4993   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
  4994     // Bail out if there have been raw-memory effects since the allocation.
  4995     // (Example:  There might have been a call or safepoint.)
  4996     return NULL;
  4998   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
  4999   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
  5000     return NULL;
  5003   // There must be no unexpected observers of this allocation.
  5004   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
  5005     Node* obs = ptr->fast_out(i);
  5006     if (obs != this->map()) {
  5007       return NULL;
  5011   // This arraycopy must unconditionally follow the allocation of the ptr.
  5012   Node* alloc_ctl = ptr->in(0);
  5013   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
  5015   Node* ctl = control();
  5016   while (ctl != alloc_ctl) {
  5017     // There may be guards which feed into the slow_region.
  5018     // Any other control flow means that we might not get a chance
  5019     // to finish initializing the allocated object.
  5020     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
  5021       IfNode* iff = ctl->in(0)->as_If();
  5022       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
  5023       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
  5024       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
  5025         ctl = iff->in(0);       // This test feeds the known slow_region.
  5026         continue;
  5028       // One more try:  Various low-level checks bottom out in
  5029       // uncommon traps.  If the debug-info of the trap omits
  5030       // any reference to the allocation, as we've already
  5031       // observed, then there can be no objection to the trap.
  5032       bool found_trap = false;
  5033       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
  5034         Node* obs = not_ctl->fast_out(j);
  5035         if (obs->in(0) == not_ctl && obs->is_Call() &&
  5036             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
  5037           found_trap = true; break;
  5040       if (found_trap) {
  5041         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
  5042         continue;
  5045     return NULL;
  5048   // If we get this far, we have an allocation which immediately
  5049   // precedes the arraycopy, and we can take over zeroing the new object.
  5050   // The arraycopy will finish the initialization, and provide
  5051   // a new control state to which we will anchor the destination pointer.
  5053   return alloc;
  5056 // Helper for initialization of arrays, creating a ClearArray.
  5057 // It writes zero bits in [start..end), within the body of an array object.
  5058 // The memory effects are all chained onto the 'adr_type' alias category.
  5059 //
  5060 // Since the object is otherwise uninitialized, we are free
  5061 // to put a little "slop" around the edges of the cleared area,
  5062 // as long as it does not go back into the array's header,
  5063 // or beyond the array end within the heap.
  5064 //
  5065 // The lower edge can be rounded down to the nearest jint and the
  5066 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
  5067 //
  5068 // Arguments:
  5069 //   adr_type           memory slice where writes are generated
  5070 //   dest               oop of the destination array
  5071 //   basic_elem_type    element type of the destination
  5072 //   slice_idx          array index of first element to store
  5073 //   slice_len          number of elements to store (or NULL)
  5074 //   dest_size          total size in bytes of the array object
  5075 //
  5076 // Exactly one of slice_len or dest_size must be non-NULL.
  5077 // If dest_size is non-NULL, zeroing extends to the end of the object.
  5078 // If slice_len is non-NULL, the slice_idx value must be a constant.
  5079 void
  5080 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
  5081                                      Node* dest,
  5082                                      BasicType basic_elem_type,
  5083                                      Node* slice_idx,
  5084                                      Node* slice_len,
  5085                                      Node* dest_size) {
  5086   // one or the other but not both of slice_len and dest_size:
  5087   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
  5088   if (slice_len == NULL)  slice_len = top();
  5089   if (dest_size == NULL)  dest_size = top();
  5091   // operate on this memory slice:
  5092   Node* mem = memory(adr_type); // memory slice to operate on
  5094   // scaling and rounding of indexes:
  5095   int scale = exact_log2(type2aelembytes(basic_elem_type));
  5096   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  5097   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
  5098   int bump_bit  = (-1 << scale) & BytesPerInt;
  5100   // determine constant starts and ends
  5101   const intptr_t BIG_NEG = -128;
  5102   assert(BIG_NEG + 2*abase < 0, "neg enough");
  5103   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
  5104   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
  5105   if (slice_len_con == 0) {
  5106     return;                     // nothing to do here
  5108   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
  5109   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
  5110   if (slice_idx_con >= 0 && slice_len_con >= 0) {
  5111     assert(end_con < 0, "not two cons");
  5112     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
  5113                        BytesPerLong);
  5116   if (start_con >= 0 && end_con >= 0) {
  5117     // Constant start and end.  Simple.
  5118     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5119                                        start_con, end_con, &_gvn);
  5120   } else if (start_con >= 0 && dest_size != top()) {
  5121     // Constant start, pre-rounded end after the tail of the array.
  5122     Node* end = dest_size;
  5123     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5124                                        start_con, end, &_gvn);
  5125   } else if (start_con >= 0 && slice_len != top()) {
  5126     // Constant start, non-constant end.  End needs rounding up.
  5127     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
  5128     intptr_t end_base  = abase + (slice_idx_con << scale);
  5129     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
  5130     Node*    end       = ConvI2X(slice_len);
  5131     if (scale != 0)
  5132       end = _gvn.transform(new(C) LShiftXNode(end, intcon(scale) ));
  5133     end_base += end_round;
  5134     end = _gvn.transform(new(C) AddXNode(end, MakeConX(end_base)));
  5135     end = _gvn.transform(new(C) AndXNode(end, MakeConX(~end_round)));
  5136     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5137                                        start_con, end, &_gvn);
  5138   } else if (start_con < 0 && dest_size != top()) {
  5139     // Non-constant start, pre-rounded end after the tail of the array.
  5140     // This is almost certainly a "round-to-end" operation.
  5141     Node* start = slice_idx;
  5142     start = ConvI2X(start);
  5143     if (scale != 0)
  5144       start = _gvn.transform(new(C) LShiftXNode( start, intcon(scale) ));
  5145     start = _gvn.transform(new(C) AddXNode(start, MakeConX(abase)));
  5146     if ((bump_bit | clear_low) != 0) {
  5147       int to_clear = (bump_bit | clear_low);
  5148       // Align up mod 8, then store a jint zero unconditionally
  5149       // just before the mod-8 boundary.
  5150       if (((abase + bump_bit) & ~to_clear) - bump_bit
  5151           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
  5152         bump_bit = 0;
  5153         assert((abase & to_clear) == 0, "array base must be long-aligned");
  5154       } else {
  5155         // Bump 'start' up to (or past) the next jint boundary:
  5156         start = _gvn.transform(new(C) AddXNode(start, MakeConX(bump_bit)));
  5157         assert((abase & clear_low) == 0, "array base must be int-aligned");
  5159       // Round bumped 'start' down to jlong boundary in body of array.
  5160       start = _gvn.transform(new(C) AndXNode(start, MakeConX(~to_clear)));
  5161       if (bump_bit != 0) {
  5162         // Store a zero to the immediately preceding jint:
  5163         Node* x1 = _gvn.transform(new(C) AddXNode(start, MakeConX(-bump_bit)));
  5164         Node* p1 = basic_plus_adr(dest, x1);
  5165         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT);
  5166         mem = _gvn.transform(mem);
  5169     Node* end = dest_size; // pre-rounded
  5170     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5171                                        start, end, &_gvn);
  5172   } else {
  5173     // Non-constant start, unrounded non-constant end.
  5174     // (Nobody zeroes a random midsection of an array using this routine.)
  5175     ShouldNotReachHere();       // fix caller
  5178   // Done.
  5179   set_memory(mem, adr_type);
  5183 bool
  5184 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
  5185                                          BasicType basic_elem_type,
  5186                                          AllocateNode* alloc,
  5187                                          Node* src,  Node* src_offset,
  5188                                          Node* dest, Node* dest_offset,
  5189                                          Node* dest_size, bool dest_uninitialized) {
  5190   // See if there is an advantage from block transfer.
  5191   int scale = exact_log2(type2aelembytes(basic_elem_type));
  5192   if (scale >= LogBytesPerLong)
  5193     return false;               // it is already a block transfer
  5195   // Look at the alignment of the starting offsets.
  5196   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  5198   intptr_t src_off_con  = (intptr_t) find_int_con(src_offset, -1);
  5199   intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
  5200   if (src_off_con < 0 || dest_off_con < 0)
  5201     // At present, we can only understand constants.
  5202     return false;
  5204   intptr_t src_off  = abase + (src_off_con  << scale);
  5205   intptr_t dest_off = abase + (dest_off_con << scale);
  5207   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
  5208     // Non-aligned; too bad.
  5209     // One more chance:  Pick off an initial 32-bit word.
  5210     // This is a common case, since abase can be odd mod 8.
  5211     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
  5212         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
  5213       Node* sptr = basic_plus_adr(src,  src_off);
  5214       Node* dptr = basic_plus_adr(dest, dest_off);
  5215       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
  5216       store_to_memory(control(), dptr, sval, T_INT, adr_type);
  5217       src_off += BytesPerInt;
  5218       dest_off += BytesPerInt;
  5219     } else {
  5220       return false;
  5223   assert(src_off % BytesPerLong == 0, "");
  5224   assert(dest_off % BytesPerLong == 0, "");
  5226   // Do this copy by giant steps.
  5227   Node* sptr  = basic_plus_adr(src,  src_off);
  5228   Node* dptr  = basic_plus_adr(dest, dest_off);
  5229   Node* countx = dest_size;
  5230   countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(dest_off)));
  5231   countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong)));
  5233   bool disjoint_bases = true;   // since alloc != NULL
  5234   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
  5235                                sptr, NULL, dptr, NULL, countx, dest_uninitialized);
  5237   return true;
  5241 // Helper function; generates code for the slow case.
  5242 // We make a call to a runtime method which emulates the native method,
  5243 // but without the native wrapper overhead.
  5244 void
  5245 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
  5246                                         Node* src,  Node* src_offset,
  5247                                         Node* dest, Node* dest_offset,
  5248                                         Node* copy_length, bool dest_uninitialized) {
  5249   assert(!dest_uninitialized, "Invariant");
  5250   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
  5251                                  OptoRuntime::slow_arraycopy_Type(),
  5252                                  OptoRuntime::slow_arraycopy_Java(),
  5253                                  "slow_arraycopy", adr_type,
  5254                                  src, src_offset, dest, dest_offset,
  5255                                  copy_length);
  5257   // Handle exceptions thrown by this fellow:
  5258   make_slow_call_ex(call, env()->Throwable_klass(), false);
  5261 // Helper function; generates code for cases requiring runtime checks.
  5262 Node*
  5263 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
  5264                                              Node* dest_elem_klass,
  5265                                              Node* src,  Node* src_offset,
  5266                                              Node* dest, Node* dest_offset,
  5267                                              Node* copy_length, bool dest_uninitialized) {
  5268   if (stopped())  return NULL;
  5270   address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
  5271   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  5272     return NULL;
  5275   // Pick out the parameters required to perform a store-check
  5276   // for the target array.  This is an optimistic check.  It will
  5277   // look in each non-null element's class, at the desired klass's
  5278   // super_check_offset, for the desired klass.
  5279   int sco_offset = in_bytes(Klass::super_check_offset_offset());
  5280   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
  5281   Node* n3 = new(C) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr());
  5282   Node* check_offset = ConvI2X(_gvn.transform(n3));
  5283   Node* check_value  = dest_elem_klass;
  5285   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
  5286   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
  5288   // (We know the arrays are never conjoint, because their types differ.)
  5289   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5290                                  OptoRuntime::checkcast_arraycopy_Type(),
  5291                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
  5292                                  // five arguments, of which two are
  5293                                  // intptr_t (jlong in LP64)
  5294                                  src_start, dest_start,
  5295                                  copy_length XTOP,
  5296                                  check_offset XTOP,
  5297                                  check_value);
  5299   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  5303 // Helper function; generates code for cases requiring runtime checks.
  5304 Node*
  5305 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
  5306                                            Node* src,  Node* src_offset,
  5307                                            Node* dest, Node* dest_offset,
  5308                                            Node* copy_length, bool dest_uninitialized) {
  5309   assert(!dest_uninitialized, "Invariant");
  5310   if (stopped())  return NULL;
  5311   address copyfunc_addr = StubRoutines::generic_arraycopy();
  5312   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  5313     return NULL;
  5316   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5317                     OptoRuntime::generic_arraycopy_Type(),
  5318                     copyfunc_addr, "generic_arraycopy", adr_type,
  5319                     src, src_offset, dest, dest_offset, copy_length);
  5321   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  5324 // Helper function; generates the fast out-of-line call to an arraycopy stub.
  5325 void
  5326 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
  5327                                              BasicType basic_elem_type,
  5328                                              bool disjoint_bases,
  5329                                              Node* src,  Node* src_offset,
  5330                                              Node* dest, Node* dest_offset,
  5331                                              Node* copy_length, bool dest_uninitialized) {
  5332   if (stopped())  return;               // nothing to do
  5334   Node* src_start  = src;
  5335   Node* dest_start = dest;
  5336   if (src_offset != NULL || dest_offset != NULL) {
  5337     assert(src_offset != NULL && dest_offset != NULL, "");
  5338     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
  5339     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
  5342   // Figure out which arraycopy runtime method to call.
  5343   const char* copyfunc_name = "arraycopy";
  5344   address     copyfunc_addr =
  5345       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
  5346                           disjoint_bases, copyfunc_name, dest_uninitialized);
  5348   // Call it.  Note that the count_ix value is not scaled to a byte-size.
  5349   make_runtime_call(RC_LEAF|RC_NO_FP,
  5350                     OptoRuntime::fast_arraycopy_Type(),
  5351                     copyfunc_addr, copyfunc_name, adr_type,
  5352                     src_start, dest_start, copy_length XTOP);
  5355 //-------------inline_encodeISOArray-----------------------------------
  5356 // encode char[] to byte[] in ISO_8859_1
  5357 bool LibraryCallKit::inline_encodeISOArray() {
  5358   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
  5359   // no receiver since it is static method
  5360   Node *src         = argument(0);
  5361   Node *src_offset  = argument(1);
  5362   Node *dst         = argument(2);
  5363   Node *dst_offset  = argument(3);
  5364   Node *length      = argument(4);
  5366   const Type* src_type = src->Value(&_gvn);
  5367   const Type* dst_type = dst->Value(&_gvn);
  5368   const TypeAryPtr* top_src = src_type->isa_aryptr();
  5369   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
  5370   if (top_src  == NULL || top_src->klass()  == NULL ||
  5371       top_dest == NULL || top_dest->klass() == NULL) {
  5372     // failed array check
  5373     return false;
  5376   // Figure out the size and type of the elements we will be copying.
  5377   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  5378   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  5379   if (src_elem != T_CHAR || dst_elem != T_BYTE) {
  5380     return false;
  5382   Node* src_start = array_element_address(src, src_offset, src_elem);
  5383   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
  5384   // 'src_start' points to src array + scaled offset
  5385   // 'dst_start' points to dst array + scaled offset
  5387   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
  5388   Node* enc = new (C) EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
  5389   enc = _gvn.transform(enc);
  5390   Node* res_mem = _gvn.transform(new (C) SCMemProjNode(enc));
  5391   set_memory(res_mem, mtype);
  5392   set_result(enc);
  5393   return true;
  5396 /**
  5397  * Calculate CRC32 for byte.
  5398  * int java.util.zip.CRC32.update(int crc, int b)
  5399  */
  5400 bool LibraryCallKit::inline_updateCRC32() {
  5401   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
  5402   assert(callee()->signature()->size() == 2, "update has 2 parameters");
  5403   // no receiver since it is static method
  5404   Node* crc  = argument(0); // type: int
  5405   Node* b    = argument(1); // type: int
  5407   /*
  5408    *    int c = ~ crc;
  5409    *    b = timesXtoThe32[(b ^ c) & 0xFF];
  5410    *    b = b ^ (c >>> 8);
  5411    *    crc = ~b;
  5412    */
  5414   Node* M1 = intcon(-1);
  5415   crc = _gvn.transform(new (C) XorINode(crc, M1));
  5416   Node* result = _gvn.transform(new (C) XorINode(crc, b));
  5417   result = _gvn.transform(new (C) AndINode(result, intcon(0xFF)));
  5419   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
  5420   Node* offset = _gvn.transform(new (C) LShiftINode(result, intcon(0x2)));
  5421   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
  5422   result = make_load(control(), adr, TypeInt::INT, T_INT);
  5424   crc = _gvn.transform(new (C) URShiftINode(crc, intcon(8)));
  5425   result = _gvn.transform(new (C) XorINode(crc, result));
  5426   result = _gvn.transform(new (C) XorINode(result, M1));
  5427   set_result(result);
  5428   return true;
  5431 /**
  5432  * Calculate CRC32 for byte[] array.
  5433  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
  5434  */
  5435 bool LibraryCallKit::inline_updateBytesCRC32() {
  5436   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
  5437   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
  5438   // no receiver since it is static method
  5439   Node* crc     = argument(0); // type: int
  5440   Node* src     = argument(1); // type: oop
  5441   Node* offset  = argument(2); // type: int
  5442   Node* length  = argument(3); // type: int
  5444   const Type* src_type = src->Value(&_gvn);
  5445   const TypeAryPtr* top_src = src_type->isa_aryptr();
  5446   if (top_src  == NULL || top_src->klass()  == NULL) {
  5447     // failed array check
  5448     return false;
  5451   // Figure out the size and type of the elements we will be copying.
  5452   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  5453   if (src_elem != T_BYTE) {
  5454     return false;
  5457   // 'src_start' points to src array + scaled offset
  5458   Node* src_start = array_element_address(src, offset, src_elem);
  5460   // We assume that range check is done by caller.
  5461   // TODO: generate range check (offset+length < src.length) in debug VM.
  5463   // Call the stub.
  5464   address stubAddr = StubRoutines::updateBytesCRC32();
  5465   const char *stubName = "updateBytesCRC32";
  5467   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
  5468                                  stubAddr, stubName, TypePtr::BOTTOM,
  5469                                  crc, src_start, length);
  5470   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  5471   set_result(result);
  5472   return true;
  5475 /**
  5476  * Calculate CRC32 for ByteBuffer.
  5477  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
  5478  */
  5479 bool LibraryCallKit::inline_updateByteBufferCRC32() {
  5480   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
  5481   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
  5482   // no receiver since it is static method
  5483   Node* crc     = argument(0); // type: int
  5484   Node* src     = argument(1); // type: long
  5485   Node* offset  = argument(3); // type: int
  5486   Node* length  = argument(4); // type: int
  5488   src = ConvL2X(src);  // adjust Java long to machine word
  5489   Node* base = _gvn.transform(new (C) CastX2PNode(src));
  5490   offset = ConvI2X(offset);
  5492   // 'src_start' points to src array + scaled offset
  5493   Node* src_start = basic_plus_adr(top(), base, offset);
  5495   // Call the stub.
  5496   address stubAddr = StubRoutines::updateBytesCRC32();
  5497   const char *stubName = "updateBytesCRC32";
  5499   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
  5500                                  stubAddr, stubName, TypePtr::BOTTOM,
  5501                                  crc, src_start, length);
  5502   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  5503   set_result(result);
  5504   return true;
  5507 //----------------------------inline_reference_get----------------------------
  5508 // public T java.lang.ref.Reference.get();
  5509 bool LibraryCallKit::inline_reference_get() {
  5510   const int referent_offset = java_lang_ref_Reference::referent_offset;
  5511   guarantee(referent_offset > 0, "should have already been set");
  5513   // Get the argument:
  5514   Node* reference_obj = null_check_receiver();
  5515   if (stopped()) return true;
  5517   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
  5519   ciInstanceKlass* klass = env()->Object_klass();
  5520   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
  5522   Node* no_ctrl = NULL;
  5523   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT);
  5525   // Use the pre-barrier to record the value in the referent field
  5526   pre_barrier(false /* do_load */,
  5527               control(),
  5528               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
  5529               result /* pre_val */,
  5530               T_OBJECT);
  5532   // Add memory barrier to prevent commoning reads from this field
  5533   // across safepoint since GC can change its value.
  5534   insert_mem_bar(Op_MemBarCPUOrder);
  5536   set_result(result);
  5537   return true;
  5541 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
  5542                                               bool is_exact=true, bool is_static=false) {
  5544   const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
  5545   assert(tinst != NULL, "obj is null");
  5546   assert(tinst->klass()->is_loaded(), "obj is not loaded");
  5547   assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
  5549   ciField* field = tinst->klass()->as_instance_klass()->get_field_by_name(ciSymbol::make(fieldName),
  5550                                                                           ciSymbol::make(fieldTypeString),
  5551                                                                           is_static);
  5552   if (field == NULL) return (Node *) NULL;
  5553   assert (field != NULL, "undefined field");
  5555   // Next code  copied from Parse::do_get_xxx():
  5557   // Compute address and memory type.
  5558   int offset  = field->offset_in_bytes();
  5559   bool is_vol = field->is_volatile();
  5560   ciType* field_klass = field->type();
  5561   assert(field_klass->is_loaded(), "should be loaded");
  5562   const TypePtr* adr_type = C->alias_type(field)->adr_type();
  5563   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
  5564   BasicType bt = field->layout_type();
  5566   // Build the resultant type of the load
  5567   const Type *type = TypeOopPtr::make_from_klass(field_klass->as_klass());
  5569   // Build the load.
  5570   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, is_vol);
  5571   return loadedField;
  5575 //------------------------------inline_aescrypt_Block-----------------------
  5576 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
  5577   address stubAddr;
  5578   const char *stubName;
  5579   assert(UseAES, "need AES instruction support");
  5581   switch(id) {
  5582   case vmIntrinsics::_aescrypt_encryptBlock:
  5583     stubAddr = StubRoutines::aescrypt_encryptBlock();
  5584     stubName = "aescrypt_encryptBlock";
  5585     break;
  5586   case vmIntrinsics::_aescrypt_decryptBlock:
  5587     stubAddr = StubRoutines::aescrypt_decryptBlock();
  5588     stubName = "aescrypt_decryptBlock";
  5589     break;
  5591   if (stubAddr == NULL) return false;
  5593   Node* aescrypt_object = argument(0);
  5594   Node* src             = argument(1);
  5595   Node* src_offset      = argument(2);
  5596   Node* dest            = argument(3);
  5597   Node* dest_offset     = argument(4);
  5599   // (1) src and dest are arrays.
  5600   const Type* src_type = src->Value(&_gvn);
  5601   const Type* dest_type = dest->Value(&_gvn);
  5602   const TypeAryPtr* top_src = src_type->isa_aryptr();
  5603   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  5604   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
  5606   // for the quick and dirty code we will skip all the checks.
  5607   // we are just trying to get the call to be generated.
  5608   Node* src_start  = src;
  5609   Node* dest_start = dest;
  5610   if (src_offset != NULL || dest_offset != NULL) {
  5611     assert(src_offset != NULL && dest_offset != NULL, "");
  5612     src_start  = array_element_address(src,  src_offset,  T_BYTE);
  5613     dest_start = array_element_address(dest, dest_offset, T_BYTE);
  5616   // now need to get the start of its expanded key array
  5617   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
  5618   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
  5619   if (k_start == NULL) return false;
  5621   // Call the stub.
  5622   make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
  5623                     stubAddr, stubName, TypePtr::BOTTOM,
  5624                     src_start, dest_start, k_start);
  5626   return true;
  5629 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
  5630 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
  5631   address stubAddr;
  5632   const char *stubName;
  5634   assert(UseAES, "need AES instruction support");
  5636   switch(id) {
  5637   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
  5638     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
  5639     stubName = "cipherBlockChaining_encryptAESCrypt";
  5640     break;
  5641   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
  5642     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
  5643     stubName = "cipherBlockChaining_decryptAESCrypt";
  5644     break;
  5646   if (stubAddr == NULL) return false;
  5648   Node* cipherBlockChaining_object = argument(0);
  5649   Node* src                        = argument(1);
  5650   Node* src_offset                 = argument(2);
  5651   Node* len                        = argument(3);
  5652   Node* dest                       = argument(4);
  5653   Node* dest_offset                = argument(5);
  5655   // (1) src and dest are arrays.
  5656   const Type* src_type = src->Value(&_gvn);
  5657   const Type* dest_type = dest->Value(&_gvn);
  5658   const TypeAryPtr* top_src = src_type->isa_aryptr();
  5659   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  5660   assert (top_src  != NULL && top_src->klass()  != NULL
  5661           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
  5663   // checks are the responsibility of the caller
  5664   Node* src_start  = src;
  5665   Node* dest_start = dest;
  5666   if (src_offset != NULL || dest_offset != NULL) {
  5667     assert(src_offset != NULL && dest_offset != NULL, "");
  5668     src_start  = array_element_address(src,  src_offset,  T_BYTE);
  5669     dest_start = array_element_address(dest, dest_offset, T_BYTE);
  5672   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
  5673   // (because of the predicated logic executed earlier).
  5674   // so we cast it here safely.
  5675   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
  5677   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
  5678   if (embeddedCipherObj == NULL) return false;
  5680   // cast it to what we know it will be at runtime
  5681   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
  5682   assert(tinst != NULL, "CBC obj is null");
  5683   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
  5684   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
  5685   if (!klass_AESCrypt->is_loaded()) return false;
  5687   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
  5688   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
  5689   const TypeOopPtr* xtype = aklass->as_instance_type();
  5690   Node* aescrypt_object = new(C) CheckCastPPNode(control(), embeddedCipherObj, xtype);
  5691   aescrypt_object = _gvn.transform(aescrypt_object);
  5693   // we need to get the start of the aescrypt_object's expanded key array
  5694   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
  5695   if (k_start == NULL) return false;
  5697   // similarly, get the start address of the r vector
  5698   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
  5699   if (objRvec == NULL) return false;
  5700   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
  5702   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
  5703   make_runtime_call(RC_LEAF|RC_NO_FP,
  5704                     OptoRuntime::cipherBlockChaining_aescrypt_Type(),
  5705                     stubAddr, stubName, TypePtr::BOTTOM,
  5706                     src_start, dest_start, k_start, r_start, len);
  5708   // return is void so no result needs to be pushed
  5710   return true;
  5713 //------------------------------get_key_start_from_aescrypt_object-----------------------
  5714 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
  5715   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
  5716   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
  5717   if (objAESCryptKey == NULL) return (Node *) NULL;
  5719   // now have the array, need to get the start address of the K array
  5720   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
  5721   return k_start;
  5724 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
  5725 // Return node representing slow path of predicate check.
  5726 // the pseudo code we want to emulate with this predicate is:
  5727 // for encryption:
  5728 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
  5729 // for decryption:
  5730 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
  5731 //    note cipher==plain is more conservative than the original java code but that's OK
  5732 //
  5733 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
  5734   // First, check receiver for NULL since it is virtual method.
  5735   Node* objCBC = argument(0);
  5736   objCBC = null_check(objCBC);
  5738   if (stopped()) return NULL; // Always NULL
  5740   // Load embeddedCipher field of CipherBlockChaining object.
  5741   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
  5743   // get AESCrypt klass for instanceOf check
  5744   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
  5745   // will have same classloader as CipherBlockChaining object
  5746   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
  5747   assert(tinst != NULL, "CBCobj is null");
  5748   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
  5750   // we want to do an instanceof comparison against the AESCrypt class
  5751   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
  5752   if (!klass_AESCrypt->is_loaded()) {
  5753     // if AESCrypt is not even loaded, we never take the intrinsic fast path
  5754     Node* ctrl = control();
  5755     set_control(top()); // no regular fast path
  5756     return ctrl;
  5758   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
  5760   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
  5761   Node* cmp_instof  = _gvn.transform(new (C) CmpINode(instof, intcon(1)));
  5762   Node* bool_instof  = _gvn.transform(new (C) BoolNode(cmp_instof, BoolTest::ne));
  5764   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
  5766   // for encryption, we are done
  5767   if (!decrypting)
  5768     return instof_false;  // even if it is NULL
  5770   // for decryption, we need to add a further check to avoid
  5771   // taking the intrinsic path when cipher and plain are the same
  5772   // see the original java code for why.
  5773   RegionNode* region = new(C) RegionNode(3);
  5774   region->init_req(1, instof_false);
  5775   Node* src = argument(1);
  5776   Node* dest = argument(4);
  5777   Node* cmp_src_dest = _gvn.transform(new (C) CmpPNode(src, dest));
  5778   Node* bool_src_dest = _gvn.transform(new (C) BoolNode(cmp_src_dest, BoolTest::eq));
  5779   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
  5780   region->init_req(2, src_dest_conjoint);
  5782   record_for_igvn(region);
  5783   return _gvn.transform(region);

mercurial