src/share/vm/opto/buildOopMap.cpp

Wed, 01 Jul 2009 20:22:18 -0700

author
kvn
date
Wed, 01 Jul 2009 20:22:18 -0700
changeset 1268
acba6af809c8
parent 1164
04fa5affa478
child 1279
bd02caa94611
permissions
-rw-r--r--

6840775: Multiple JVM crashes seen with 1.6.0_10 through 1.6.0_14
Summary: Put missed reference to allocated array in copyOf() intrinsic into OopMap for the call slow_arraycopy().
Reviewed-by: never

     1 /*
     2  * Copyright 2002-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_buildOopMap.cpp.incl"
    28 // The functions in this file builds OopMaps after all scheduling is done.
    29 //
    30 // OopMaps contain a list of all registers and stack-slots containing oops (so
    31 // they can be updated by GC).  OopMaps also contain a list of derived-pointer
    32 // base-pointer pairs.  When the base is moved, the derived pointer moves to
    33 // follow it.  Finally, any registers holding callee-save values are also
    34 // recorded.  These might contain oops, but only the caller knows.
    35 //
    36 // BuildOopMaps implements a simple forward reaching-defs solution.  At each
    37 // GC point we'll have the reaching-def Nodes.  If the reaching Nodes are
    38 // typed as pointers (no offset), then they are oops.  Pointers+offsets are
    39 // derived pointers, and bases can be found from them.  Finally, we'll also
    40 // track reaching callee-save values.  Note that a copy of a callee-save value
    41 // "kills" it's source, so that only 1 copy of a callee-save value is alive at
    42 // a time.
    43 //
    44 // We run a simple bitvector liveness pass to help trim out dead oops.  Due to
    45 // irreducible loops, we can have a reaching def of an oop that only reaches
    46 // along one path and no way to know if it's valid or not on the other path.
    47 // The bitvectors are quite dense and the liveness pass is fast.
    48 //
    49 // At GC points, we consult this information to build OopMaps.  All reaching
    50 // defs typed as oops are added to the OopMap.  Only 1 instance of a
    51 // callee-save register can be recorded.  For derived pointers, we'll have to
    52 // find and record the register holding the base.
    53 //
    54 // The reaching def's is a simple 1-pass worklist approach.  I tried a clever
    55 // breadth-first approach but it was worse (showed O(n^2) in the
    56 // pick-next-block code).
    57 //
    58 // The relevant data is kept in a struct of arrays (it could just as well be
    59 // an array of structs, but the struct-of-arrays is generally a little more
    60 // efficient).  The arrays are indexed by register number (including
    61 // stack-slots as registers) and so is bounded by 200 to 300 elements in
    62 // practice.  One array will map to a reaching def Node (or NULL for
    63 // conflict/dead).  The other array will map to a callee-saved register or
    64 // OptoReg::Bad for not-callee-saved.
    67 //------------------------------OopFlow----------------------------------------
    68 // Structure to pass around
    69 struct OopFlow : public ResourceObj {
    70   short *_callees;              // Array mapping register to callee-saved
    71   Node **_defs;                 // array mapping register to reaching def
    72                                 // or NULL if dead/conflict
    73   // OopFlow structs, when not being actively modified, describe the _end_ of
    74   // this block.
    75   Block *_b;                    // Block for this struct
    76   OopFlow *_next;               // Next free OopFlow
    77                                 // or NULL if dead/conflict
    78   Compile* C;
    80   OopFlow( short *callees, Node **defs, Compile* c ) : _callees(callees), _defs(defs),
    81     _b(NULL), _next(NULL), C(c) { }
    83   // Given reaching-defs for this block start, compute it for this block end
    84   void compute_reach( PhaseRegAlloc *regalloc, int max_reg, Dict *safehash );
    86   // Merge these two OopFlows into the 'this' pointer.
    87   void merge( OopFlow *flow, int max_reg );
    89   // Copy a 'flow' over an existing flow
    90   void clone( OopFlow *flow, int max_size);
    92   // Make a new OopFlow from scratch
    93   static OopFlow *make( Arena *A, int max_size, Compile* C );
    95   // Build an oopmap from the current flow info
    96   OopMap *build_oop_map( Node *n, int max_reg, PhaseRegAlloc *regalloc, int* live );
    97 };
    99 //------------------------------compute_reach----------------------------------
   100 // Given reaching-defs for this block start, compute it for this block end
   101 void OopFlow::compute_reach( PhaseRegAlloc *regalloc, int max_reg, Dict *safehash ) {
   103   for( uint i=0; i<_b->_nodes.size(); i++ ) {
   104     Node *n = _b->_nodes[i];
   106     if( n->jvms() ) {           // Build an OopMap here?
   107       JVMState *jvms = n->jvms();
   108       // no map needed for leaf calls
   109       if( n->is_MachSafePoint() && !n->is_MachCallLeaf() ) {
   110         int *live = (int*) (*safehash)[n];
   111         assert( live, "must find live" );
   112         n->as_MachSafePoint()->set_oop_map( build_oop_map(n,max_reg,regalloc, live) );
   113       }
   114     }
   116     // Assign new reaching def's.
   117     // Note that I padded the _defs and _callees arrays so it's legal
   118     // to index at _defs[OptoReg::Bad].
   119     OptoReg::Name first = regalloc->get_reg_first(n);
   120     OptoReg::Name second = regalloc->get_reg_second(n);
   121     _defs[first] = n;
   122     _defs[second] = n;
   124     // Pass callee-save info around copies
   125     int idx = n->is_Copy();
   126     if( idx ) {                 // Copies move callee-save info
   127       OptoReg::Name old_first = regalloc->get_reg_first(n->in(idx));
   128       OptoReg::Name old_second = regalloc->get_reg_second(n->in(idx));
   129       int tmp_first = _callees[old_first];
   130       int tmp_second = _callees[old_second];
   131       _callees[old_first] = OptoReg::Bad; // callee-save is moved, dead in old location
   132       _callees[old_second] = OptoReg::Bad;
   133       _callees[first] = tmp_first;
   134       _callees[second] = tmp_second;
   135     } else if( n->is_Phi() ) {  // Phis do not mod callee-saves
   136       assert( _callees[first] == _callees[regalloc->get_reg_first(n->in(1))], "" );
   137       assert( _callees[second] == _callees[regalloc->get_reg_second(n->in(1))], "" );
   138       assert( _callees[first] == _callees[regalloc->get_reg_first(n->in(n->req()-1))], "" );
   139       assert( _callees[second] == _callees[regalloc->get_reg_second(n->in(n->req()-1))], "" );
   140     } else {
   141       _callees[first] = OptoReg::Bad; // No longer holding a callee-save value
   142       _callees[second] = OptoReg::Bad;
   144       // Find base case for callee saves
   145       if( n->is_Proj() && n->in(0)->is_Start() ) {
   146         if( OptoReg::is_reg(first) &&
   147             regalloc->_matcher.is_save_on_entry(first) )
   148           _callees[first] = first;
   149         if( OptoReg::is_reg(second) &&
   150             regalloc->_matcher.is_save_on_entry(second) )
   151           _callees[second] = second;
   152       }
   153     }
   154   }
   155 }
   157 //------------------------------merge------------------------------------------
   158 // Merge the given flow into the 'this' flow
   159 void OopFlow::merge( OopFlow *flow, int max_reg ) {
   160   assert( _b == NULL, "merging into a happy flow" );
   161   assert( flow->_b, "this flow is still alive" );
   162   assert( flow != this, "no self flow" );
   164   // Do the merge.  If there are any differences, drop to 'bottom' which
   165   // is OptoReg::Bad or NULL depending.
   166   for( int i=0; i<max_reg; i++ ) {
   167     // Merge the callee-save's
   168     if( _callees[i] != flow->_callees[i] )
   169       _callees[i] = OptoReg::Bad;
   170     // Merge the reaching defs
   171     if( _defs[i] != flow->_defs[i] )
   172       _defs[i] = NULL;
   173   }
   175 }
   177 //------------------------------clone------------------------------------------
   178 void OopFlow::clone( OopFlow *flow, int max_size ) {
   179   _b = flow->_b;
   180   memcpy( _callees, flow->_callees, sizeof(short)*max_size);
   181   memcpy( _defs   , flow->_defs   , sizeof(Node*)*max_size);
   182 }
   184 //------------------------------make-------------------------------------------
   185 OopFlow *OopFlow::make( Arena *A, int max_size, Compile* C ) {
   186   short *callees = NEW_ARENA_ARRAY(A,short,max_size+1);
   187   Node **defs    = NEW_ARENA_ARRAY(A,Node*,max_size+1);
   188   debug_only( memset(defs,0,(max_size+1)*sizeof(Node*)) );
   189   OopFlow *flow = new (A) OopFlow(callees+1, defs+1, C);
   190   assert( &flow->_callees[OptoReg::Bad] == callees, "Ok to index at OptoReg::Bad" );
   191   assert( &flow->_defs   [OptoReg::Bad] == defs   , "Ok to index at OptoReg::Bad" );
   192   return flow;
   193 }
   195 //------------------------------bit twiddlers----------------------------------
   196 static int get_live_bit( int *live, int reg ) {
   197   return live[reg>>LogBitsPerInt] &   (1<<(reg&(BitsPerInt-1))); }
   198 static void set_live_bit( int *live, int reg ) {
   199          live[reg>>LogBitsPerInt] |=  (1<<(reg&(BitsPerInt-1))); }
   200 static void clr_live_bit( int *live, int reg ) {
   201          live[reg>>LogBitsPerInt] &= ~(1<<(reg&(BitsPerInt-1))); }
   203 //------------------------------build_oop_map----------------------------------
   204 // Build an oopmap from the current flow info
   205 OopMap *OopFlow::build_oop_map( Node *n, int max_reg, PhaseRegAlloc *regalloc, int* live ) {
   206   int framesize = regalloc->_framesize;
   207   int max_inarg_slot = OptoReg::reg2stack(regalloc->_matcher._new_SP);
   208   debug_only( char *dup_check = NEW_RESOURCE_ARRAY(char,OptoReg::stack0());
   209               memset(dup_check,0,OptoReg::stack0()) );
   211   OopMap *omap = new OopMap( framesize,  max_inarg_slot );
   212   MachCallNode *mcall = n->is_MachCall() ? n->as_MachCall() : NULL;
   213   JVMState* jvms = n->jvms();
   215   // For all registers do...
   216   for( int reg=0; reg<max_reg; reg++ ) {
   217     if( get_live_bit(live,reg) == 0 )
   218       continue;                 // Ignore if not live
   220     // %%% C2 can use 2 OptoRegs when the physical register is only one 64bit
   221     // register in that case we'll get an non-concrete register for the second
   222     // half. We only need to tell the map the register once!
   223     //
   224     // However for the moment we disable this change and leave things as they
   225     // were.
   227     VMReg r = OptoReg::as_VMReg(OptoReg::Name(reg), framesize, max_inarg_slot);
   229     if (false && r->is_reg() && !r->is_concrete()) {
   230       continue;
   231     }
   233     // See if dead (no reaching def).
   234     Node *def = _defs[reg];     // Get reaching def
   235     assert( def, "since live better have reaching def" );
   237     // Classify the reaching def as oop, derived, callee-save, dead, or other
   238     const Type *t = def->bottom_type();
   239     if( t->isa_oop_ptr() ) {    // Oop or derived?
   240       assert( !OptoReg::is_valid(_callees[reg]), "oop can't be callee save" );
   241 #ifdef _LP64
   242       // 64-bit pointers record oop-ishness on 2 aligned adjacent registers.
   243       // Make sure both are record from the same reaching def, but do not
   244       // put both into the oopmap.
   245       if( (reg&1) == 1 ) {      // High half of oop-pair?
   246         assert( _defs[reg-1] == _defs[reg], "both halves from same reaching def" );
   247         continue;               // Do not record high parts in oopmap
   248       }
   249 #endif
   251       // Check for a legal reg name in the oopMap and bailout if it is not.
   252       if (!omap->legal_vm_reg_name(r)) {
   253         regalloc->C->record_method_not_compilable("illegal oopMap register name");
   254         continue;
   255       }
   256       if( t->is_ptr()->_offset == 0 ) { // Not derived?
   257         if( mcall ) {
   258           // Outgoing argument GC mask responsibility belongs to the callee,
   259           // not the caller.  Inspect the inputs to the call, to see if
   260           // this live-range is one of them.
   261           uint cnt = mcall->tf()->domain()->cnt();
   262           uint j;
   263           for( j = TypeFunc::Parms; j < cnt; j++)
   264             if( mcall->in(j) == def )
   265               break;            // reaching def is an argument oop
   266           if( j < cnt )         // arg oops dont go in GC map
   267             continue;           // Continue on to the next register
   268         }
   269         omap->set_oop(r);
   270       } else {                  // Else it's derived.
   271         // Find the base of the derived value.
   272         uint i;
   273         // Fast, common case, scan
   274         for( i = jvms->oopoff(); i < n->req(); i+=2 )
   275           if( n->in(i) == def ) break; // Common case
   276         if( i == n->req() ) {   // Missed, try a more generous scan
   277           // Scan again, but this time peek through copies
   278           for( i = jvms->oopoff(); i < n->req(); i+=2 ) {
   279             Node *m = n->in(i); // Get initial derived value
   280             while( 1 ) {
   281               Node *d = def;    // Get initial reaching def
   282               while( 1 ) {      // Follow copies of reaching def to end
   283                 if( m == d ) goto found; // breaks 3 loops
   284                 int idx = d->is_Copy();
   285                 if( !idx ) break;
   286                 d = d->in(idx);     // Link through copy
   287               }
   288               int idx = m->is_Copy();
   289               if( !idx ) break;
   290               m = m->in(idx);
   291             }
   292           }
   293           guarantee( 0, "must find derived/base pair" );
   294         }
   295       found: ;
   296         Node *base = n->in(i+1); // Base is other half of pair
   297         int breg = regalloc->get_reg_first(base);
   298         VMReg b = OptoReg::as_VMReg(OptoReg::Name(breg), framesize, max_inarg_slot);
   300         // I record liveness at safepoints BEFORE I make the inputs
   301         // live.  This is because argument oops are NOT live at a
   302         // safepoint (or at least they cannot appear in the oopmap).
   303         // Thus bases of base/derived pairs might not be in the
   304         // liveness data but they need to appear in the oopmap.
   305         if( get_live_bit(live,breg) == 0 ) {// Not live?
   306           // Flag it, so next derived pointer won't re-insert into oopmap
   307           set_live_bit(live,breg);
   308           // Already missed our turn?
   309           if( breg < reg ) {
   310             if (b->is_stack() || b->is_concrete() || true ) {
   311               omap->set_oop( b);
   312             }
   313           }
   314         }
   315         if (b->is_stack() || b->is_concrete() || true ) {
   316           omap->set_derived_oop( r, b);
   317         }
   318       }
   320     } else if( t->isa_narrowoop() ) {
   321       assert( !OptoReg::is_valid(_callees[reg]), "oop can't be callee save" );
   322       // Check for a legal reg name in the oopMap and bailout if it is not.
   323       if (!omap->legal_vm_reg_name(r)) {
   324         regalloc->C->record_method_not_compilable("illegal oopMap register name");
   325         continue;
   326       }
   327       if( mcall ) {
   328           // Outgoing argument GC mask responsibility belongs to the callee,
   329           // not the caller.  Inspect the inputs to the call, to see if
   330           // this live-range is one of them.
   331         uint cnt = mcall->tf()->domain()->cnt();
   332         uint j;
   333         for( j = TypeFunc::Parms; j < cnt; j++)
   334           if( mcall->in(j) == def )
   335             break;            // reaching def is an argument oop
   336         if( j < cnt )         // arg oops dont go in GC map
   337           continue;           // Continue on to the next register
   338       }
   339       omap->set_narrowoop(r);
   340     } else if( OptoReg::is_valid(_callees[reg])) { // callee-save?
   341       // It's a callee-save value
   342       assert( dup_check[_callees[reg]]==0, "trying to callee save same reg twice" );
   343       debug_only( dup_check[_callees[reg]]=1; )
   344       VMReg callee = OptoReg::as_VMReg(OptoReg::Name(_callees[reg]));
   345       if ( callee->is_concrete() || true ) {
   346         omap->set_callee_saved( r, callee);
   347       }
   349     } else {
   350       // Other - some reaching non-oop value
   351       omap->set_value( r);
   352 #ifdef ASSERT
   353       if( t->isa_rawptr() && C->cfg()->_raw_oops.member(def) ) {
   354         def->dump();
   355         n->dump();
   356         assert(false, "there should be a oop in OopMap instead of a live raw oop at safepoint");
   357       }
   358 #endif
   359     }
   361   }
   363 #ifdef ASSERT
   364   /* Nice, Intel-only assert
   365   int cnt_callee_saves=0;
   366   int reg2 = 0;
   367   while (OptoReg::is_reg(reg2)) {
   368     if( dup_check[reg2] != 0) cnt_callee_saves++;
   369     assert( cnt_callee_saves==3 || cnt_callee_saves==5, "missed some callee-save" );
   370     reg2++;
   371   }
   372   */
   373 #endif
   375 #ifdef ASSERT
   376   for( OopMapStream oms1(omap, OopMapValue::derived_oop_value); !oms1.is_done(); oms1.next()) {
   377     OopMapValue omv1 = oms1.current();
   378     bool found = false;
   379     for( OopMapStream oms2(omap,OopMapValue::oop_value); !oms2.is_done(); oms2.next()) {
   380       if( omv1.content_reg() == oms2.current().reg() ) {
   381         found = true;
   382         break;
   383       }
   384     }
   385     assert( found, "derived with no base in oopmap" );
   386   }
   387 #endif
   389   return omap;
   390 }
   392 //------------------------------do_liveness------------------------------------
   393 // Compute backwards liveness on registers
   394 static void do_liveness( PhaseRegAlloc *regalloc, PhaseCFG *cfg, Block_List *worklist, int max_reg_ints, Arena *A, Dict *safehash ) {
   395   int *live = NEW_ARENA_ARRAY(A, int, (cfg->_num_blocks+1) * max_reg_ints);
   396   int *tmp_live = &live[cfg->_num_blocks * max_reg_ints];
   397   Node *root = cfg->C->root();
   398   // On CISC platforms, get the node representing the stack pointer  that regalloc
   399   // used for spills
   400   Node *fp = NodeSentinel;
   401   if (UseCISCSpill && root->req() > 1) {
   402     fp = root->in(1)->in(TypeFunc::FramePtr);
   403   }
   404   memset( live, 0, cfg->_num_blocks * (max_reg_ints<<LogBytesPerInt) );
   405   // Push preds onto worklist
   406   for( uint i=1; i<root->req(); i++ )
   407     worklist->push(cfg->_bbs[root->in(i)->_idx]);
   409   // ZKM.jar includes tiny infinite loops which are unreached from below.
   410   // If we missed any blocks, we'll retry here after pushing all missed
   411   // blocks on the worklist.  Normally this outer loop never trips more
   412   // than once.
   413   while( 1 ) {
   415     while( worklist->size() ) { // Standard worklist algorithm
   416       Block *b = worklist->rpop();
   418       // Copy first successor into my tmp_live space
   419       int s0num = b->_succs[0]->_pre_order;
   420       int *t = &live[s0num*max_reg_ints];
   421       for( int i=0; i<max_reg_ints; i++ )
   422         tmp_live[i] = t[i];
   424       // OR in the remaining live registers
   425       for( uint j=1; j<b->_num_succs; j++ ) {
   426         uint sjnum = b->_succs[j]->_pre_order;
   427         int *t = &live[sjnum*max_reg_ints];
   428         for( int i=0; i<max_reg_ints; i++ )
   429           tmp_live[i] |= t[i];
   430       }
   432       // Now walk tmp_live up the block backwards, computing live
   433       for( int k=b->_nodes.size()-1; k>=0; k-- ) {
   434         Node *n = b->_nodes[k];
   435         // KILL def'd bits
   436         int first = regalloc->get_reg_first(n);
   437         int second = regalloc->get_reg_second(n);
   438         if( OptoReg::is_valid(first) ) clr_live_bit(tmp_live,first);
   439         if( OptoReg::is_valid(second) ) clr_live_bit(tmp_live,second);
   441         MachNode *m = n->is_Mach() ? n->as_Mach() : NULL;
   443         // Check if m is potentially a CISC alternate instruction (i.e, possibly
   444         // synthesized by RegAlloc from a conventional instruction and a
   445         // spilled input)
   446         bool is_cisc_alternate = false;
   447         if (UseCISCSpill && m) {
   448           is_cisc_alternate = m->is_cisc_alternate();
   449         }
   451         // GEN use'd bits
   452         for( uint l=1; l<n->req(); l++ ) {
   453           Node *def = n->in(l);
   454           assert(def != 0, "input edge required");
   455           int first = regalloc->get_reg_first(def);
   456           int second = regalloc->get_reg_second(def);
   457           if( OptoReg::is_valid(first) ) set_live_bit(tmp_live,first);
   458           if( OptoReg::is_valid(second) ) set_live_bit(tmp_live,second);
   459           // If we use the stack pointer in a cisc-alternative instruction,
   460           // check for use as a memory operand.  Then reconstruct the RegName
   461           // for this stack location, and set the appropriate bit in the
   462           // live vector 4987749.
   463           if (is_cisc_alternate && def == fp) {
   464             const TypePtr *adr_type = NULL;
   465             intptr_t offset;
   466             const Node* base = m->get_base_and_disp(offset, adr_type);
   467             if (base == NodeSentinel) {
   468               // Machnode has multiple memory inputs. We are unable to reason
   469               // with these, but are presuming (with trepidation) that not any of
   470               // them are oops. This can be fixed by making get_base_and_disp()
   471               // look at a specific input instead of all inputs.
   472               assert(!def->bottom_type()->isa_oop_ptr(), "expecting non-oop mem input");
   473             } else if (base != fp || offset == Type::OffsetBot) {
   474               // Do nothing: the fp operand is either not from a memory use
   475               // (base == NULL) OR the fp is used in a non-memory context
   476               // (base is some other register) OR the offset is not constant,
   477               // so it is not a stack slot.
   478             } else {
   479               assert(offset >= 0, "unexpected negative offset");
   480               offset -= (offset % jintSize);  // count the whole word
   481               int stack_reg = regalloc->offset2reg(offset);
   482               if (OptoReg::is_stack(stack_reg)) {
   483                 set_live_bit(tmp_live, stack_reg);
   484               } else {
   485                 assert(false, "stack_reg not on stack?");
   486               }
   487             }
   488           }
   489         }
   491         if( n->jvms() ) {       // Record liveness at safepoint
   493           // This placement of this stanza means inputs to calls are
   494           // considered live at the callsite's OopMap.  Argument oops are
   495           // hence live, but NOT included in the oopmap.  See cutout in
   496           // build_oop_map.  Debug oops are live (and in OopMap).
   497           int *n_live = NEW_ARENA_ARRAY(A, int, max_reg_ints);
   498           for( int l=0; l<max_reg_ints; l++ )
   499             n_live[l] = tmp_live[l];
   500           safehash->Insert(n,n_live);
   501         }
   503       }
   505       // Now at block top, see if we have any changes.  If so, propagate
   506       // to prior blocks.
   507       int *old_live = &live[b->_pre_order*max_reg_ints];
   508       int l;
   509       for( l=0; l<max_reg_ints; l++ )
   510         if( tmp_live[l] != old_live[l] )
   511           break;
   512       if( l<max_reg_ints ) {     // Change!
   513         // Copy in new value
   514         for( l=0; l<max_reg_ints; l++ )
   515           old_live[l] = tmp_live[l];
   516         // Push preds onto worklist
   517         for( l=1; l<(int)b->num_preds(); l++ )
   518           worklist->push(cfg->_bbs[b->pred(l)->_idx]);
   519       }
   520     }
   522     // Scan for any missing safepoints.  Happens to infinite loops
   523     // ala ZKM.jar
   524     uint i;
   525     for( i=1; i<cfg->_num_blocks; i++ ) {
   526       Block *b = cfg->_blocks[i];
   527       uint j;
   528       for( j=1; j<b->_nodes.size(); j++ )
   529         if( b->_nodes[j]->jvms() &&
   530             (*safehash)[b->_nodes[j]] == NULL )
   531            break;
   532       if( j<b->_nodes.size() ) break;
   533     }
   534     if( i == cfg->_num_blocks )
   535       break;                    // Got 'em all
   536 #ifndef PRODUCT
   537     if( PrintOpto && Verbose )
   538       tty->print_cr("retripping live calc");
   539 #endif
   540     // Force the issue (expensively): recheck everybody
   541     for( i=1; i<cfg->_num_blocks; i++ )
   542       worklist->push(cfg->_blocks[i]);
   543   }
   545 }
   547 //------------------------------BuildOopMaps-----------------------------------
   548 // Collect GC mask info - where are all the OOPs?
   549 void Compile::BuildOopMaps() {
   550   NOT_PRODUCT( TracePhase t3("bldOopMaps", &_t_buildOopMaps, TimeCompiler); )
   551   // Can't resource-mark because I need to leave all those OopMaps around,
   552   // or else I need to resource-mark some arena other than the default.
   553   // ResourceMark rm;              // Reclaim all OopFlows when done
   554   int max_reg = _regalloc->_max_reg; // Current array extent
   556   Arena *A = Thread::current()->resource_area();
   557   Block_List worklist;          // Worklist of pending blocks
   559   int max_reg_ints = round_to(max_reg, BitsPerInt)>>LogBitsPerInt;
   560   Dict *safehash = NULL;        // Used for assert only
   561   // Compute a backwards liveness per register.  Needs a bitarray of
   562   // #blocks x (#registers, rounded up to ints)
   563   safehash = new Dict(cmpkey,hashkey,A);
   564   do_liveness( _regalloc, _cfg, &worklist, max_reg_ints, A, safehash );
   565   OopFlow *free_list = NULL;    // Free, unused
   567   // Array mapping blocks to completed oopflows
   568   OopFlow **flows = NEW_ARENA_ARRAY(A, OopFlow*, _cfg->_num_blocks);
   569   memset( flows, 0, _cfg->_num_blocks*sizeof(OopFlow*) );
   572   // Do the first block 'by hand' to prime the worklist
   573   Block *entry = _cfg->_blocks[1];
   574   OopFlow *rootflow = OopFlow::make(A,max_reg,this);
   575   // Initialize to 'bottom' (not 'top')
   576   memset( rootflow->_callees, OptoReg::Bad, max_reg*sizeof(short) );
   577   memset( rootflow->_defs   ,            0, max_reg*sizeof(Node*) );
   578   flows[entry->_pre_order] = rootflow;
   580   // Do the first block 'by hand' to prime the worklist
   581   rootflow->_b = entry;
   582   rootflow->compute_reach( _regalloc, max_reg, safehash );
   583   for( uint i=0; i<entry->_num_succs; i++ )
   584     worklist.push(entry->_succs[i]);
   586   // Now worklist contains blocks which have some, but perhaps not all,
   587   // predecessors visited.
   588   while( worklist.size() ) {
   589     // Scan for a block with all predecessors visited, or any randoms slob
   590     // otherwise.  All-preds-visited order allows me to recycle OopFlow
   591     // structures rapidly and cut down on the memory footprint.
   592     // Note: not all predecessors might be visited yet (must happen for
   593     // irreducible loops).  This is OK, since every live value must have the
   594     // SAME reaching def for the block, so any reaching def is OK.
   595     uint i;
   597     Block *b = worklist.pop();
   598     // Ignore root block
   599     if( b == _cfg->_broot ) continue;
   600     // Block is already done?  Happens if block has several predecessors,
   601     // he can get on the worklist more than once.
   602     if( flows[b->_pre_order] ) continue;
   604     // If this block has a visited predecessor AND that predecessor has this
   605     // last block as his only undone child, we can move the OopFlow from the
   606     // pred to this block.  Otherwise we have to grab a new OopFlow.
   607     OopFlow *flow = NULL;       // Flag for finding optimized flow
   608     Block *pred = (Block*)0xdeadbeef;
   609     uint j;
   610     // Scan this block's preds to find a done predecessor
   611     for( j=1; j<b->num_preds(); j++ ) {
   612       Block *p = _cfg->_bbs[b->pred(j)->_idx];
   613       OopFlow *p_flow = flows[p->_pre_order];
   614       if( p_flow ) {            // Predecessor is done
   615         assert( p_flow->_b == p, "cross check" );
   616         pred = p;               // Record some predecessor
   617         // If all successors of p are done except for 'b', then we can carry
   618         // p_flow forward to 'b' without copying, otherwise we have to draw
   619         // from the free_list and clone data.
   620         uint k;
   621         for( k=0; k<p->_num_succs; k++ )
   622           if( !flows[p->_succs[k]->_pre_order] &&
   623               p->_succs[k] != b )
   624             break;
   626         // Either carry-forward the now-unused OopFlow for b's use
   627         // or draw a new one from the free list
   628         if( k==p->_num_succs ) {
   629           flow = p_flow;
   630           break;                // Found an ideal pred, use him
   631         }
   632       }
   633     }
   635     if( flow ) {
   636       // We have an OopFlow that's the last-use of a predecessor.
   637       // Carry it forward.
   638     } else {                    // Draw a new OopFlow from the freelist
   639       if( !free_list )
   640         free_list = OopFlow::make(A,max_reg,C);
   641       flow = free_list;
   642       assert( flow->_b == NULL, "oopFlow is not free" );
   643       free_list = flow->_next;
   644       flow->_next = NULL;
   646       // Copy/clone over the data
   647       flow->clone(flows[pred->_pre_order], max_reg);
   648     }
   650     // Mark flow for block.  Blocks can only be flowed over once,
   651     // because after the first time they are guarded from entering
   652     // this code again.
   653     assert( flow->_b == pred, "have some prior flow" );
   654     flow->_b = NULL;
   656     // Now push flow forward
   657     flows[b->_pre_order] = flow;// Mark flow for this block
   658     flow->_b = b;
   659     flow->compute_reach( _regalloc, max_reg, safehash );
   661     // Now push children onto worklist
   662     for( i=0; i<b->_num_succs; i++ )
   663       worklist.push(b->_succs[i]);
   665   }
   666 }

mercurial