src/share/vm/c1/c1_LinearScan.cpp

Tue, 30 Nov 2010 23:23:40 -0800

author
iveresov
date
Tue, 30 Nov 2010 23:23:40 -0800
changeset 2344
ac637b7220d1
parent 2314
f95d63e2154a
child 2404
7223744c2784
permissions
-rw-r--r--

6985015: C1 needs to support compressed oops
Summary: This change implements compressed oops for C1 for x64 and sparc. The changes are mostly on the codegen level, with a few exceptions when we do access things outside of the heap that are uncompressed from the IR. Compressed oops are now also enabled with tiered.
Reviewed-by: twisti, kvn, never, phh

     1 /*
     2  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "c1/c1_CFGPrinter.hpp"
    27 #include "c1/c1_CodeStubs.hpp"
    28 #include "c1/c1_Compilation.hpp"
    29 #include "c1/c1_FrameMap.hpp"
    30 #include "c1/c1_IR.hpp"
    31 #include "c1/c1_LIRGenerator.hpp"
    32 #include "c1/c1_LinearScan.hpp"
    33 #include "c1/c1_ValueStack.hpp"
    34 #include "utilities/bitMap.inline.hpp"
    35 #ifdef TARGET_ARCH_x86
    36 # include "vmreg_x86.inline.hpp"
    37 #endif
    38 #ifdef TARGET_ARCH_sparc
    39 # include "vmreg_sparc.inline.hpp"
    40 #endif
    41 #ifdef TARGET_ARCH_zero
    42 # include "vmreg_zero.inline.hpp"
    43 #endif
    46 #ifndef PRODUCT
    48   static LinearScanStatistic _stat_before_alloc;
    49   static LinearScanStatistic _stat_after_asign;
    50   static LinearScanStatistic _stat_final;
    52   static LinearScanTimers _total_timer;
    54   // helper macro for short definition of timer
    55   #define TIME_LINEAR_SCAN(timer_name)  TraceTime _block_timer("", _total_timer.timer(LinearScanTimers::timer_name), TimeLinearScan || TimeEachLinearScan, Verbose);
    57   // helper macro for short definition of trace-output inside code
    58   #define TRACE_LINEAR_SCAN(level, code)       \
    59     if (TraceLinearScanLevel >= level) {       \
    60       code;                                    \
    61     }
    63 #else
    65   #define TIME_LINEAR_SCAN(timer_name)
    66   #define TRACE_LINEAR_SCAN(level, code)
    68 #endif
    70 // Map BasicType to spill size in 32-bit words, matching VMReg's notion of words
    71 #ifdef _LP64
    72 static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 0, 1, -1};
    73 #else
    74 static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 0, 1, -1};
    75 #endif
    78 // Implementation of LinearScan
    80 LinearScan::LinearScan(IR* ir, LIRGenerator* gen, FrameMap* frame_map)
    81  : _compilation(ir->compilation())
    82  , _ir(ir)
    83  , _gen(gen)
    84  , _frame_map(frame_map)
    85  , _num_virtual_regs(gen->max_virtual_register_number())
    86  , _has_fpu_registers(false)
    87  , _num_calls(-1)
    88  , _max_spills(0)
    89  , _unused_spill_slot(-1)
    90  , _intervals(0)   // initialized later with correct length
    91  , _new_intervals_from_allocation(new IntervalList())
    92  , _sorted_intervals(NULL)
    93  , _lir_ops(0)     // initialized later with correct length
    94  , _block_of_op(0) // initialized later with correct length
    95  , _has_info(0)
    96  , _has_call(0)
    97  , _scope_value_cache(0) // initialized later with correct length
    98  , _interval_in_loop(0, 0) // initialized later with correct length
    99  , _cached_blocks(*ir->linear_scan_order())
   100 #ifdef X86
   101  , _fpu_stack_allocator(NULL)
   102 #endif
   103 {
   104   assert(this->ir() != NULL,          "check if valid");
   105   assert(this->compilation() != NULL, "check if valid");
   106   assert(this->gen() != NULL,         "check if valid");
   107   assert(this->frame_map() != NULL,   "check if valid");
   108 }
   111 // ********** functions for converting LIR-Operands to register numbers
   112 //
   113 // Emulate a flat register file comprising physical integer registers,
   114 // physical floating-point registers and virtual registers, in that order.
   115 // Virtual registers already have appropriate numbers, since V0 is
   116 // the number of physical registers.
   117 // Returns -1 for hi word if opr is a single word operand.
   118 //
   119 // Note: the inverse operation (calculating an operand for register numbers)
   120 //       is done in calc_operand_for_interval()
   122 int LinearScan::reg_num(LIR_Opr opr) {
   123   assert(opr->is_register(), "should not call this otherwise");
   125   if (opr->is_virtual_register()) {
   126     assert(opr->vreg_number() >= nof_regs, "found a virtual register with a fixed-register number");
   127     return opr->vreg_number();
   128   } else if (opr->is_single_cpu()) {
   129     return opr->cpu_regnr();
   130   } else if (opr->is_double_cpu()) {
   131     return opr->cpu_regnrLo();
   132 #ifdef X86
   133   } else if (opr->is_single_xmm()) {
   134     return opr->fpu_regnr() + pd_first_xmm_reg;
   135   } else if (opr->is_double_xmm()) {
   136     return opr->fpu_regnrLo() + pd_first_xmm_reg;
   137 #endif
   138   } else if (opr->is_single_fpu()) {
   139     return opr->fpu_regnr() + pd_first_fpu_reg;
   140   } else if (opr->is_double_fpu()) {
   141     return opr->fpu_regnrLo() + pd_first_fpu_reg;
   142   } else {
   143     ShouldNotReachHere();
   144     return -1;
   145   }
   146 }
   148 int LinearScan::reg_numHi(LIR_Opr opr) {
   149   assert(opr->is_register(), "should not call this otherwise");
   151   if (opr->is_virtual_register()) {
   152     return -1;
   153   } else if (opr->is_single_cpu()) {
   154     return -1;
   155   } else if (opr->is_double_cpu()) {
   156     return opr->cpu_regnrHi();
   157 #ifdef X86
   158   } else if (opr->is_single_xmm()) {
   159     return -1;
   160   } else if (opr->is_double_xmm()) {
   161     return -1;
   162 #endif
   163   } else if (opr->is_single_fpu()) {
   164     return -1;
   165   } else if (opr->is_double_fpu()) {
   166     return opr->fpu_regnrHi() + pd_first_fpu_reg;
   167   } else {
   168     ShouldNotReachHere();
   169     return -1;
   170   }
   171 }
   174 // ********** functions for classification of intervals
   176 bool LinearScan::is_precolored_interval(const Interval* i) {
   177   return i->reg_num() < LinearScan::nof_regs;
   178 }
   180 bool LinearScan::is_virtual_interval(const Interval* i) {
   181   return i->reg_num() >= LIR_OprDesc::vreg_base;
   182 }
   184 bool LinearScan::is_precolored_cpu_interval(const Interval* i) {
   185   return i->reg_num() < LinearScan::nof_cpu_regs;
   186 }
   188 bool LinearScan::is_virtual_cpu_interval(const Interval* i) {
   189 #if defined(__SOFTFP__) || defined(E500V2)
   190   return i->reg_num() >= LIR_OprDesc::vreg_base;
   191 #else
   192   return i->reg_num() >= LIR_OprDesc::vreg_base && (i->type() != T_FLOAT && i->type() != T_DOUBLE);
   193 #endif // __SOFTFP__ or E500V2
   194 }
   196 bool LinearScan::is_precolored_fpu_interval(const Interval* i) {
   197   return i->reg_num() >= LinearScan::nof_cpu_regs && i->reg_num() < LinearScan::nof_regs;
   198 }
   200 bool LinearScan::is_virtual_fpu_interval(const Interval* i) {
   201 #if defined(__SOFTFP__) || defined(E500V2)
   202   return false;
   203 #else
   204   return i->reg_num() >= LIR_OprDesc::vreg_base && (i->type() == T_FLOAT || i->type() == T_DOUBLE);
   205 #endif // __SOFTFP__ or E500V2
   206 }
   208 bool LinearScan::is_in_fpu_register(const Interval* i) {
   209   // fixed intervals not needed for FPU stack allocation
   210   return i->reg_num() >= nof_regs && pd_first_fpu_reg <= i->assigned_reg() && i->assigned_reg() <= pd_last_fpu_reg;
   211 }
   213 bool LinearScan::is_oop_interval(const Interval* i) {
   214   // fixed intervals never contain oops
   215   return i->reg_num() >= nof_regs && i->type() == T_OBJECT;
   216 }
   219 // ********** General helper functions
   221 // compute next unused stack index that can be used for spilling
   222 int LinearScan::allocate_spill_slot(bool double_word) {
   223   int spill_slot;
   224   if (double_word) {
   225     if ((_max_spills & 1) == 1) {
   226       // alignment of double-word values
   227       // the hole because of the alignment is filled with the next single-word value
   228       assert(_unused_spill_slot == -1, "wasting a spill slot");
   229       _unused_spill_slot = _max_spills;
   230       _max_spills++;
   231     }
   232     spill_slot = _max_spills;
   233     _max_spills += 2;
   235   } else if (_unused_spill_slot != -1) {
   236     // re-use hole that was the result of a previous double-word alignment
   237     spill_slot = _unused_spill_slot;
   238     _unused_spill_slot = -1;
   240   } else {
   241     spill_slot = _max_spills;
   242     _max_spills++;
   243   }
   245   int result = spill_slot + LinearScan::nof_regs + frame_map()->argcount();
   247   // the class OopMapValue uses only 11 bits for storing the name of the
   248   // oop location. So a stack slot bigger than 2^11 leads to an overflow
   249   // that is not reported in product builds. Prevent this by checking the
   250   // spill slot here (altough this value and the later used location name
   251   // are slightly different)
   252   if (result > 2000) {
   253     bailout("too many stack slots used");
   254   }
   256   return result;
   257 }
   259 void LinearScan::assign_spill_slot(Interval* it) {
   260   // assign the canonical spill slot of the parent (if a part of the interval
   261   // is already spilled) or allocate a new spill slot
   262   if (it->canonical_spill_slot() >= 0) {
   263     it->assign_reg(it->canonical_spill_slot());
   264   } else {
   265     int spill = allocate_spill_slot(type2spill_size[it->type()] == 2);
   266     it->set_canonical_spill_slot(spill);
   267     it->assign_reg(spill);
   268   }
   269 }
   271 void LinearScan::propagate_spill_slots() {
   272   if (!frame_map()->finalize_frame(max_spills())) {
   273     bailout("frame too large");
   274   }
   275 }
   277 // create a new interval with a predefined reg_num
   278 // (only used for parent intervals that are created during the building phase)
   279 Interval* LinearScan::create_interval(int reg_num) {
   280   assert(_intervals.at(reg_num) == NULL, "overwriting exisiting interval");
   282   Interval* interval = new Interval(reg_num);
   283   _intervals.at_put(reg_num, interval);
   285   // assign register number for precolored intervals
   286   if (reg_num < LIR_OprDesc::vreg_base) {
   287     interval->assign_reg(reg_num);
   288   }
   289   return interval;
   290 }
   292 // assign a new reg_num to the interval and append it to the list of intervals
   293 // (only used for child intervals that are created during register allocation)
   294 void LinearScan::append_interval(Interval* it) {
   295   it->set_reg_num(_intervals.length());
   296   _intervals.append(it);
   297   _new_intervals_from_allocation->append(it);
   298 }
   300 // copy the vreg-flags if an interval is split
   301 void LinearScan::copy_register_flags(Interval* from, Interval* to) {
   302   if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::byte_reg)) {
   303     gen()->set_vreg_flag(to->reg_num(), LIRGenerator::byte_reg);
   304   }
   305   if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::callee_saved)) {
   306     gen()->set_vreg_flag(to->reg_num(), LIRGenerator::callee_saved);
   307   }
   309   // Note: do not copy the must_start_in_memory flag because it is not necessary for child
   310   //       intervals (only the very beginning of the interval must be in memory)
   311 }
   314 // ********** spill move optimization
   315 // eliminate moves from register to stack if stack slot is known to be correct
   317 // called during building of intervals
   318 void LinearScan::change_spill_definition_pos(Interval* interval, int def_pos) {
   319   assert(interval->is_split_parent(), "can only be called for split parents");
   321   switch (interval->spill_state()) {
   322     case noDefinitionFound:
   323       assert(interval->spill_definition_pos() == -1, "must no be set before");
   324       interval->set_spill_definition_pos(def_pos);
   325       interval->set_spill_state(oneDefinitionFound);
   326       break;
   328     case oneDefinitionFound:
   329       assert(def_pos <= interval->spill_definition_pos(), "positions are processed in reverse order when intervals are created");
   330       if (def_pos < interval->spill_definition_pos() - 2) {
   331         // second definition found, so no spill optimization possible for this interval
   332         interval->set_spill_state(noOptimization);
   333       } else {
   334         // two consecutive definitions (because of two-operand LIR form)
   335         assert(block_of_op_with_id(def_pos) == block_of_op_with_id(interval->spill_definition_pos()), "block must be equal");
   336       }
   337       break;
   339     case noOptimization:
   340       // nothing to do
   341       break;
   343     default:
   344       assert(false, "other states not allowed at this time");
   345   }
   346 }
   348 // called during register allocation
   349 void LinearScan::change_spill_state(Interval* interval, int spill_pos) {
   350   switch (interval->spill_state()) {
   351     case oneDefinitionFound: {
   352       int def_loop_depth = block_of_op_with_id(interval->spill_definition_pos())->loop_depth();
   353       int spill_loop_depth = block_of_op_with_id(spill_pos)->loop_depth();
   355       if (def_loop_depth < spill_loop_depth) {
   356         // the loop depth of the spilling position is higher then the loop depth
   357         // at the definition of the interval -> move write to memory out of loop
   358         // by storing at definitin of the interval
   359         interval->set_spill_state(storeAtDefinition);
   360       } else {
   361         // the interval is currently spilled only once, so for now there is no
   362         // reason to store the interval at the definition
   363         interval->set_spill_state(oneMoveInserted);
   364       }
   365       break;
   366     }
   368     case oneMoveInserted: {
   369       // the interval is spilled more then once, so it is better to store it to
   370       // memory at the definition
   371       interval->set_spill_state(storeAtDefinition);
   372       break;
   373     }
   375     case storeAtDefinition:
   376     case startInMemory:
   377     case noOptimization:
   378     case noDefinitionFound:
   379       // nothing to do
   380       break;
   382     default:
   383       assert(false, "other states not allowed at this time");
   384   }
   385 }
   388 bool LinearScan::must_store_at_definition(const Interval* i) {
   389   return i->is_split_parent() && i->spill_state() == storeAtDefinition;
   390 }
   392 // called once before asignment of register numbers
   393 void LinearScan::eliminate_spill_moves() {
   394   TIME_LINEAR_SCAN(timer_eliminate_spill_moves);
   395   TRACE_LINEAR_SCAN(3, tty->print_cr("***** Eliminating unnecessary spill moves"));
   397   // collect all intervals that must be stored after their definion.
   398   // the list is sorted by Interval::spill_definition_pos
   399   Interval* interval;
   400   Interval* temp_list;
   401   create_unhandled_lists(&interval, &temp_list, must_store_at_definition, NULL);
   403 #ifdef ASSERT
   404   Interval* prev = NULL;
   405   Interval* temp = interval;
   406   while (temp != Interval::end()) {
   407     assert(temp->spill_definition_pos() > 0, "invalid spill definition pos");
   408     if (prev != NULL) {
   409       assert(temp->from() >= prev->from(), "intervals not sorted");
   410       assert(temp->spill_definition_pos() >= prev->spill_definition_pos(), "when intervals are sorted by from, then they must also be sorted by spill_definition_pos");
   411     }
   413     assert(temp->canonical_spill_slot() >= LinearScan::nof_regs, "interval has no spill slot assigned");
   414     assert(temp->spill_definition_pos() >= temp->from(), "invalid order");
   415     assert(temp->spill_definition_pos() <= temp->from() + 2, "only intervals defined once at their start-pos can be optimized");
   417     TRACE_LINEAR_SCAN(4, tty->print_cr("interval %d (from %d to %d) must be stored at %d", temp->reg_num(), temp->from(), temp->to(), temp->spill_definition_pos()));
   419     temp = temp->next();
   420   }
   421 #endif
   423   LIR_InsertionBuffer insertion_buffer;
   424   int num_blocks = block_count();
   425   for (int i = 0; i < num_blocks; i++) {
   426     BlockBegin* block = block_at(i);
   427     LIR_OpList* instructions = block->lir()->instructions_list();
   428     int         num_inst = instructions->length();
   429     bool        has_new = false;
   431     // iterate all instructions of the block. skip the first because it is always a label
   432     for (int j = 1; j < num_inst; j++) {
   433       LIR_Op* op = instructions->at(j);
   434       int op_id = op->id();
   436       if (op_id == -1) {
   437         // remove move from register to stack if the stack slot is guaranteed to be correct.
   438         // only moves that have been inserted by LinearScan can be removed.
   439         assert(op->code() == lir_move, "only moves can have a op_id of -1");
   440         assert(op->as_Op1() != NULL, "move must be LIR_Op1");
   441         assert(op->as_Op1()->result_opr()->is_virtual(), "LinearScan inserts only moves to virtual registers");
   443         LIR_Op1* op1 = (LIR_Op1*)op;
   444         Interval* interval = interval_at(op1->result_opr()->vreg_number());
   446         if (interval->assigned_reg() >= LinearScan::nof_regs && interval->always_in_memory()) {
   447           // move target is a stack slot that is always correct, so eliminate instruction
   448           TRACE_LINEAR_SCAN(4, tty->print_cr("eliminating move from interval %d to %d", op1->in_opr()->vreg_number(), op1->result_opr()->vreg_number()));
   449           instructions->at_put(j, NULL); // NULL-instructions are deleted by assign_reg_num
   450         }
   452       } else {
   453         // insert move from register to stack just after the beginning of the interval
   454         assert(interval == Interval::end() || interval->spill_definition_pos() >= op_id, "invalid order");
   455         assert(interval == Interval::end() || (interval->is_split_parent() && interval->spill_state() == storeAtDefinition), "invalid interval");
   457         while (interval != Interval::end() && interval->spill_definition_pos() == op_id) {
   458           if (!has_new) {
   459             // prepare insertion buffer (appended when all instructions of the block are processed)
   460             insertion_buffer.init(block->lir());
   461             has_new = true;
   462           }
   464           LIR_Opr from_opr = operand_for_interval(interval);
   465           LIR_Opr to_opr = canonical_spill_opr(interval);
   466           assert(from_opr->is_fixed_cpu() || from_opr->is_fixed_fpu(), "from operand must be a register");
   467           assert(to_opr->is_stack(), "to operand must be a stack slot");
   469           insertion_buffer.move(j, from_opr, to_opr);
   470           TRACE_LINEAR_SCAN(4, tty->print_cr("inserting move after definition of interval %d to stack slot %d at op_id %d", interval->reg_num(), interval->canonical_spill_slot() - LinearScan::nof_regs, op_id));
   472           interval = interval->next();
   473         }
   474       }
   475     } // end of instruction iteration
   477     if (has_new) {
   478       block->lir()->append(&insertion_buffer);
   479     }
   480   } // end of block iteration
   482   assert(interval == Interval::end(), "missed an interval");
   483 }
   486 // ********** Phase 1: number all instructions in all blocks
   487 // Compute depth-first and linear scan block orders, and number LIR_Op nodes for linear scan.
   489 void LinearScan::number_instructions() {
   490   {
   491     // dummy-timer to measure the cost of the timer itself
   492     // (this time is then subtracted from all other timers to get the real value)
   493     TIME_LINEAR_SCAN(timer_do_nothing);
   494   }
   495   TIME_LINEAR_SCAN(timer_number_instructions);
   497   // Assign IDs to LIR nodes and build a mapping, lir_ops, from ID to LIR_Op node.
   498   int num_blocks = block_count();
   499   int num_instructions = 0;
   500   int i;
   501   for (i = 0; i < num_blocks; i++) {
   502     num_instructions += block_at(i)->lir()->instructions_list()->length();
   503   }
   505   // initialize with correct length
   506   _lir_ops = LIR_OpArray(num_instructions);
   507   _block_of_op = BlockBeginArray(num_instructions);
   509   int op_id = 0;
   510   int idx = 0;
   512   for (i = 0; i < num_blocks; i++) {
   513     BlockBegin* block = block_at(i);
   514     block->set_first_lir_instruction_id(op_id);
   515     LIR_OpList* instructions = block->lir()->instructions_list();
   517     int num_inst = instructions->length();
   518     for (int j = 0; j < num_inst; j++) {
   519       LIR_Op* op = instructions->at(j);
   520       op->set_id(op_id);
   522       _lir_ops.at_put(idx, op);
   523       _block_of_op.at_put(idx, block);
   524       assert(lir_op_with_id(op_id) == op, "must match");
   526       idx++;
   527       op_id += 2; // numbering of lir_ops by two
   528     }
   529     block->set_last_lir_instruction_id(op_id - 2);
   530   }
   531   assert(idx == num_instructions, "must match");
   532   assert(idx * 2 == op_id, "must match");
   534   _has_call = BitMap(num_instructions); _has_call.clear();
   535   _has_info = BitMap(num_instructions); _has_info.clear();
   536 }
   539 // ********** Phase 2: compute local live sets separately for each block
   540 // (sets live_gen and live_kill for each block)
   542 void LinearScan::set_live_gen_kill(Value value, LIR_Op* op, BitMap& live_gen, BitMap& live_kill) {
   543   LIR_Opr opr = value->operand();
   544   Constant* con = value->as_Constant();
   546   // check some asumptions about debug information
   547   assert(!value->type()->is_illegal(), "if this local is used by the interpreter it shouldn't be of indeterminate type");
   548   assert(con == NULL || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "asumption: Constant instructions have only constant operands");
   549   assert(con != NULL || opr->is_virtual(), "asumption: non-Constant instructions have only virtual operands");
   551   if ((con == NULL || con->is_pinned()) && opr->is_register()) {
   552     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
   553     int reg = opr->vreg_number();
   554     if (!live_kill.at(reg)) {
   555       live_gen.set_bit(reg);
   556       TRACE_LINEAR_SCAN(4, tty->print_cr("  Setting live_gen for value %c%d, LIR op_id %d, register number %d", value->type()->tchar(), value->id(), op->id(), reg));
   557     }
   558   }
   559 }
   562 void LinearScan::compute_local_live_sets() {
   563   TIME_LINEAR_SCAN(timer_compute_local_live_sets);
   565   int  num_blocks = block_count();
   566   int  live_size = live_set_size();
   567   bool local_has_fpu_registers = false;
   568   int  local_num_calls = 0;
   569   LIR_OpVisitState visitor;
   571   BitMap2D local_interval_in_loop = BitMap2D(_num_virtual_regs, num_loops());
   572   local_interval_in_loop.clear();
   574   // iterate all blocks
   575   for (int i = 0; i < num_blocks; i++) {
   576     BlockBegin* block = block_at(i);
   578     BitMap live_gen(live_size);  live_gen.clear();
   579     BitMap live_kill(live_size); live_kill.clear();
   581     if (block->is_set(BlockBegin::exception_entry_flag)) {
   582       // Phi functions at the begin of an exception handler are
   583       // implicitly defined (= killed) at the beginning of the block.
   584       for_each_phi_fun(block, phi,
   585         live_kill.set_bit(phi->operand()->vreg_number())
   586       );
   587     }
   589     LIR_OpList* instructions = block->lir()->instructions_list();
   590     int num_inst = instructions->length();
   592     // iterate all instructions of the block. skip the first because it is always a label
   593     assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label");
   594     for (int j = 1; j < num_inst; j++) {
   595       LIR_Op* op = instructions->at(j);
   597       // visit operation to collect all operands
   598       visitor.visit(op);
   600       if (visitor.has_call()) {
   601         _has_call.set_bit(op->id() >> 1);
   602         local_num_calls++;
   603       }
   604       if (visitor.info_count() > 0) {
   605         _has_info.set_bit(op->id() >> 1);
   606       }
   608       // iterate input operands of instruction
   609       int k, n, reg;
   610       n = visitor.opr_count(LIR_OpVisitState::inputMode);
   611       for (k = 0; k < n; k++) {
   612         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k);
   613         assert(opr->is_register(), "visitor should only return register operands");
   615         if (opr->is_virtual_register()) {
   616           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
   617           reg = opr->vreg_number();
   618           if (!live_kill.at(reg)) {
   619             live_gen.set_bit(reg);
   620             TRACE_LINEAR_SCAN(4, tty->print_cr("  Setting live_gen for register %d at instruction %d", reg, op->id()));
   621           }
   622           if (block->loop_index() >= 0) {
   623             local_interval_in_loop.set_bit(reg, block->loop_index());
   624           }
   625           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
   626         }
   628 #ifdef ASSERT
   629         // fixed intervals are never live at block boundaries, so
   630         // they need not be processed in live sets.
   631         // this is checked by these assertions to be sure about it.
   632         // the entry block may have incoming values in registers, which is ok.
   633         if (!opr->is_virtual_register() && block != ir()->start()) {
   634           reg = reg_num(opr);
   635           if (is_processed_reg_num(reg)) {
   636             assert(live_kill.at(reg), "using fixed register that is not defined in this block");
   637           }
   638           reg = reg_numHi(opr);
   639           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
   640             assert(live_kill.at(reg), "using fixed register that is not defined in this block");
   641           }
   642         }
   643 #endif
   644       }
   646       // Add uses of live locals from interpreter's point of view for proper debug information generation
   647       n = visitor.info_count();
   648       for (k = 0; k < n; k++) {
   649         CodeEmitInfo* info = visitor.info_at(k);
   650         ValueStack* stack = info->stack();
   651         for_each_state_value(stack, value,
   652           set_live_gen_kill(value, op, live_gen, live_kill)
   653         );
   654       }
   656       // iterate temp operands of instruction
   657       n = visitor.opr_count(LIR_OpVisitState::tempMode);
   658       for (k = 0; k < n; k++) {
   659         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k);
   660         assert(opr->is_register(), "visitor should only return register operands");
   662         if (opr->is_virtual_register()) {
   663           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
   664           reg = opr->vreg_number();
   665           live_kill.set_bit(reg);
   666           if (block->loop_index() >= 0) {
   667             local_interval_in_loop.set_bit(reg, block->loop_index());
   668           }
   669           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
   670         }
   672 #ifdef ASSERT
   673         // fixed intervals are never live at block boundaries, so
   674         // they need not be processed in live sets
   675         // process them only in debug mode so that this can be checked
   676         if (!opr->is_virtual_register()) {
   677           reg = reg_num(opr);
   678           if (is_processed_reg_num(reg)) {
   679             live_kill.set_bit(reg_num(opr));
   680           }
   681           reg = reg_numHi(opr);
   682           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
   683             live_kill.set_bit(reg);
   684           }
   685         }
   686 #endif
   687       }
   689       // iterate output operands of instruction
   690       n = visitor.opr_count(LIR_OpVisitState::outputMode);
   691       for (k = 0; k < n; k++) {
   692         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k);
   693         assert(opr->is_register(), "visitor should only return register operands");
   695         if (opr->is_virtual_register()) {
   696           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
   697           reg = opr->vreg_number();
   698           live_kill.set_bit(reg);
   699           if (block->loop_index() >= 0) {
   700             local_interval_in_loop.set_bit(reg, block->loop_index());
   701           }
   702           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
   703         }
   705 #ifdef ASSERT
   706         // fixed intervals are never live at block boundaries, so
   707         // they need not be processed in live sets
   708         // process them only in debug mode so that this can be checked
   709         if (!opr->is_virtual_register()) {
   710           reg = reg_num(opr);
   711           if (is_processed_reg_num(reg)) {
   712             live_kill.set_bit(reg_num(opr));
   713           }
   714           reg = reg_numHi(opr);
   715           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
   716             live_kill.set_bit(reg);
   717           }
   718         }
   719 #endif
   720       }
   721     } // end of instruction iteration
   723     block->set_live_gen (live_gen);
   724     block->set_live_kill(live_kill);
   725     block->set_live_in  (BitMap(live_size)); block->live_in().clear();
   726     block->set_live_out (BitMap(live_size)); block->live_out().clear();
   728     TRACE_LINEAR_SCAN(4, tty->print("live_gen  B%d ", block->block_id()); print_bitmap(block->live_gen()));
   729     TRACE_LINEAR_SCAN(4, tty->print("live_kill B%d ", block->block_id()); print_bitmap(block->live_kill()));
   730   } // end of block iteration
   732   // propagate local calculated information into LinearScan object
   733   _has_fpu_registers = local_has_fpu_registers;
   734   compilation()->set_has_fpu_code(local_has_fpu_registers);
   736   _num_calls = local_num_calls;
   737   _interval_in_loop = local_interval_in_loop;
   738 }
   741 // ********** Phase 3: perform a backward dataflow analysis to compute global live sets
   742 // (sets live_in and live_out for each block)
   744 void LinearScan::compute_global_live_sets() {
   745   TIME_LINEAR_SCAN(timer_compute_global_live_sets);
   747   int  num_blocks = block_count();
   748   bool change_occurred;
   749   bool change_occurred_in_block;
   750   int  iteration_count = 0;
   751   BitMap live_out(live_set_size()); live_out.clear(); // scratch set for calculations
   753   // Perform a backward dataflow analysis to compute live_out and live_in for each block.
   754   // The loop is executed until a fixpoint is reached (no changes in an iteration)
   755   // Exception handlers must be processed because not all live values are
   756   // present in the state array, e.g. because of global value numbering
   757   do {
   758     change_occurred = false;
   760     // iterate all blocks in reverse order
   761     for (int i = num_blocks - 1; i >= 0; i--) {
   762       BlockBegin* block = block_at(i);
   764       change_occurred_in_block = false;
   766       // live_out(block) is the union of live_in(sux), for successors sux of block
   767       int n = block->number_of_sux();
   768       int e = block->number_of_exception_handlers();
   769       if (n + e > 0) {
   770         // block has successors
   771         if (n > 0) {
   772           live_out.set_from(block->sux_at(0)->live_in());
   773           for (int j = 1; j < n; j++) {
   774             live_out.set_union(block->sux_at(j)->live_in());
   775           }
   776         } else {
   777           live_out.clear();
   778         }
   779         for (int j = 0; j < e; j++) {
   780           live_out.set_union(block->exception_handler_at(j)->live_in());
   781         }
   783         if (!block->live_out().is_same(live_out)) {
   784           // A change occurred.  Swap the old and new live out sets to avoid copying.
   785           BitMap temp = block->live_out();
   786           block->set_live_out(live_out);
   787           live_out = temp;
   789           change_occurred = true;
   790           change_occurred_in_block = true;
   791         }
   792       }
   794       if (iteration_count == 0 || change_occurred_in_block) {
   795         // live_in(block) is the union of live_gen(block) with (live_out(block) & !live_kill(block))
   796         // note: live_in has to be computed only in first iteration or if live_out has changed!
   797         BitMap live_in = block->live_in();
   798         live_in.set_from(block->live_out());
   799         live_in.set_difference(block->live_kill());
   800         live_in.set_union(block->live_gen());
   801       }
   803 #ifndef PRODUCT
   804       if (TraceLinearScanLevel >= 4) {
   805         char c = ' ';
   806         if (iteration_count == 0 || change_occurred_in_block) {
   807           c = '*';
   808         }
   809         tty->print("(%d) live_in%c  B%d ", iteration_count, c, block->block_id()); print_bitmap(block->live_in());
   810         tty->print("(%d) live_out%c B%d ", iteration_count, c, block->block_id()); print_bitmap(block->live_out());
   811       }
   812 #endif
   813     }
   814     iteration_count++;
   816     if (change_occurred && iteration_count > 50) {
   817       BAILOUT("too many iterations in compute_global_live_sets");
   818     }
   819   } while (change_occurred);
   822 #ifdef ASSERT
   823   // check that fixed intervals are not live at block boundaries
   824   // (live set must be empty at fixed intervals)
   825   for (int i = 0; i < num_blocks; i++) {
   826     BlockBegin* block = block_at(i);
   827     for (int j = 0; j < LIR_OprDesc::vreg_base; j++) {
   828       assert(block->live_in().at(j)  == false, "live_in  set of fixed register must be empty");
   829       assert(block->live_out().at(j) == false, "live_out set of fixed register must be empty");
   830       assert(block->live_gen().at(j) == false, "live_gen set of fixed register must be empty");
   831     }
   832   }
   833 #endif
   835   // check that the live_in set of the first block is empty
   836   BitMap live_in_args(ir()->start()->live_in().size());
   837   live_in_args.clear();
   838   if (!ir()->start()->live_in().is_same(live_in_args)) {
   839 #ifdef ASSERT
   840     tty->print_cr("Error: live_in set of first block must be empty (when this fails, virtual registers are used before they are defined)");
   841     tty->print_cr("affected registers:");
   842     print_bitmap(ir()->start()->live_in());
   844     // print some additional information to simplify debugging
   845     for (unsigned int i = 0; i < ir()->start()->live_in().size(); i++) {
   846       if (ir()->start()->live_in().at(i)) {
   847         Instruction* instr = gen()->instruction_for_vreg(i);
   848         tty->print_cr("* vreg %d (HIR instruction %c%d)", i, instr == NULL ? ' ' : instr->type()->tchar(), instr == NULL ? 0 : instr->id());
   850         for (int j = 0; j < num_blocks; j++) {
   851           BlockBegin* block = block_at(j);
   852           if (block->live_gen().at(i)) {
   853             tty->print_cr("  used in block B%d", block->block_id());
   854           }
   855           if (block->live_kill().at(i)) {
   856             tty->print_cr("  defined in block B%d", block->block_id());
   857           }
   858         }
   859       }
   860     }
   862 #endif
   863     // when this fails, virtual registers are used before they are defined.
   864     assert(false, "live_in set of first block must be empty");
   865     // bailout of if this occurs in product mode.
   866     bailout("live_in set of first block not empty");
   867   }
   868 }
   871 // ********** Phase 4: build intervals
   872 // (fills the list _intervals)
   874 void LinearScan::add_use(Value value, int from, int to, IntervalUseKind use_kind) {
   875   assert(!value->type()->is_illegal(), "if this value is used by the interpreter it shouldn't be of indeterminate type");
   876   LIR_Opr opr = value->operand();
   877   Constant* con = value->as_Constant();
   879   if ((con == NULL || con->is_pinned()) && opr->is_register()) {
   880     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
   881     add_use(opr, from, to, use_kind);
   882   }
   883 }
   886 void LinearScan::add_def(LIR_Opr opr, int def_pos, IntervalUseKind use_kind) {
   887   TRACE_LINEAR_SCAN(2, tty->print(" def "); opr->print(tty); tty->print_cr(" def_pos %d (%d)", def_pos, use_kind));
   888   assert(opr->is_register(), "should not be called otherwise");
   890   if (opr->is_virtual_register()) {
   891     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
   892     add_def(opr->vreg_number(), def_pos, use_kind, opr->type_register());
   894   } else {
   895     int reg = reg_num(opr);
   896     if (is_processed_reg_num(reg)) {
   897       add_def(reg, def_pos, use_kind, opr->type_register());
   898     }
   899     reg = reg_numHi(opr);
   900     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
   901       add_def(reg, def_pos, use_kind, opr->type_register());
   902     }
   903   }
   904 }
   906 void LinearScan::add_use(LIR_Opr opr, int from, int to, IntervalUseKind use_kind) {
   907   TRACE_LINEAR_SCAN(2, tty->print(" use "); opr->print(tty); tty->print_cr(" from %d to %d (%d)", from, to, use_kind));
   908   assert(opr->is_register(), "should not be called otherwise");
   910   if (opr->is_virtual_register()) {
   911     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
   912     add_use(opr->vreg_number(), from, to, use_kind, opr->type_register());
   914   } else {
   915     int reg = reg_num(opr);
   916     if (is_processed_reg_num(reg)) {
   917       add_use(reg, from, to, use_kind, opr->type_register());
   918     }
   919     reg = reg_numHi(opr);
   920     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
   921       add_use(reg, from, to, use_kind, opr->type_register());
   922     }
   923   }
   924 }
   926 void LinearScan::add_temp(LIR_Opr opr, int temp_pos, IntervalUseKind use_kind) {
   927   TRACE_LINEAR_SCAN(2, tty->print(" temp "); opr->print(tty); tty->print_cr(" temp_pos %d (%d)", temp_pos, use_kind));
   928   assert(opr->is_register(), "should not be called otherwise");
   930   if (opr->is_virtual_register()) {
   931     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
   932     add_temp(opr->vreg_number(), temp_pos, use_kind, opr->type_register());
   934   } else {
   935     int reg = reg_num(opr);
   936     if (is_processed_reg_num(reg)) {
   937       add_temp(reg, temp_pos, use_kind, opr->type_register());
   938     }
   939     reg = reg_numHi(opr);
   940     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
   941       add_temp(reg, temp_pos, use_kind, opr->type_register());
   942     }
   943   }
   944 }
   947 void LinearScan::add_def(int reg_num, int def_pos, IntervalUseKind use_kind, BasicType type) {
   948   Interval* interval = interval_at(reg_num);
   949   if (interval != NULL) {
   950     assert(interval->reg_num() == reg_num, "wrong interval");
   952     if (type != T_ILLEGAL) {
   953       interval->set_type(type);
   954     }
   956     Range* r = interval->first();
   957     if (r->from() <= def_pos) {
   958       // Update the starting point (when a range is first created for a use, its
   959       // start is the beginning of the current block until a def is encountered.)
   960       r->set_from(def_pos);
   961       interval->add_use_pos(def_pos, use_kind);
   963     } else {
   964       // Dead value - make vacuous interval
   965       // also add use_kind for dead intervals
   966       interval->add_range(def_pos, def_pos + 1);
   967       interval->add_use_pos(def_pos, use_kind);
   968       TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: def of reg %d at %d occurs without use", reg_num, def_pos));
   969     }
   971   } else {
   972     // Dead value - make vacuous interval
   973     // also add use_kind for dead intervals
   974     interval = create_interval(reg_num);
   975     if (type != T_ILLEGAL) {
   976       interval->set_type(type);
   977     }
   979     interval->add_range(def_pos, def_pos + 1);
   980     interval->add_use_pos(def_pos, use_kind);
   981     TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: dead value %d at %d in live intervals", reg_num, def_pos));
   982   }
   984   change_spill_definition_pos(interval, def_pos);
   985   if (use_kind == noUse && interval->spill_state() <= startInMemory) {
   986         // detection of method-parameters and roundfp-results
   987         // TODO: move this directly to position where use-kind is computed
   988     interval->set_spill_state(startInMemory);
   989   }
   990 }
   992 void LinearScan::add_use(int reg_num, int from, int to, IntervalUseKind use_kind, BasicType type) {
   993   Interval* interval = interval_at(reg_num);
   994   if (interval == NULL) {
   995     interval = create_interval(reg_num);
   996   }
   997   assert(interval->reg_num() == reg_num, "wrong interval");
   999   if (type != T_ILLEGAL) {
  1000     interval->set_type(type);
  1003   interval->add_range(from, to);
  1004   interval->add_use_pos(to, use_kind);
  1007 void LinearScan::add_temp(int reg_num, int temp_pos, IntervalUseKind use_kind, BasicType type) {
  1008   Interval* interval = interval_at(reg_num);
  1009   if (interval == NULL) {
  1010     interval = create_interval(reg_num);
  1012   assert(interval->reg_num() == reg_num, "wrong interval");
  1014   if (type != T_ILLEGAL) {
  1015     interval->set_type(type);
  1018   interval->add_range(temp_pos, temp_pos + 1);
  1019   interval->add_use_pos(temp_pos, use_kind);
  1023 // the results of this functions are used for optimizing spilling and reloading
  1024 // if the functions return shouldHaveRegister and the interval is spilled,
  1025 // it is not reloaded to a register.
  1026 IntervalUseKind LinearScan::use_kind_of_output_operand(LIR_Op* op, LIR_Opr opr) {
  1027   if (op->code() == lir_move) {
  1028     assert(op->as_Op1() != NULL, "lir_move must be LIR_Op1");
  1029     LIR_Op1* move = (LIR_Op1*)op;
  1030     LIR_Opr res = move->result_opr();
  1031     bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory);
  1033     if (result_in_memory) {
  1034       // Begin of an interval with must_start_in_memory set.
  1035       // This interval will always get a stack slot first, so return noUse.
  1036       return noUse;
  1038     } else if (move->in_opr()->is_stack()) {
  1039       // method argument (condition must be equal to handle_method_arguments)
  1040       return noUse;
  1042     } else if (move->in_opr()->is_register() && move->result_opr()->is_register()) {
  1043       // Move from register to register
  1044       if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) {
  1045         // special handling of phi-function moves inside osr-entry blocks
  1046         // input operand must have a register instead of output operand (leads to better register allocation)
  1047         return shouldHaveRegister;
  1052   if (opr->is_virtual() &&
  1053       gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::must_start_in_memory)) {
  1054     // result is a stack-slot, so prevent immediate reloading
  1055     return noUse;
  1058   // all other operands require a register
  1059   return mustHaveRegister;
  1062 IntervalUseKind LinearScan::use_kind_of_input_operand(LIR_Op* op, LIR_Opr opr) {
  1063   if (op->code() == lir_move) {
  1064     assert(op->as_Op1() != NULL, "lir_move must be LIR_Op1");
  1065     LIR_Op1* move = (LIR_Op1*)op;
  1066     LIR_Opr res = move->result_opr();
  1067     bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory);
  1069     if (result_in_memory) {
  1070       // Move to an interval with must_start_in_memory set.
  1071       // To avoid moves from stack to stack (not allowed) force the input operand to a register
  1072       return mustHaveRegister;
  1074     } else if (move->in_opr()->is_register() && move->result_opr()->is_register()) {
  1075       // Move from register to register
  1076       if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) {
  1077         // special handling of phi-function moves inside osr-entry blocks
  1078         // input operand must have a register instead of output operand (leads to better register allocation)
  1079         return mustHaveRegister;
  1082       // The input operand is not forced to a register (moves from stack to register are allowed),
  1083       // but it is faster if the input operand is in a register
  1084       return shouldHaveRegister;
  1089 #ifdef X86
  1090   if (op->code() == lir_cmove) {
  1091     // conditional moves can handle stack operands
  1092     assert(op->result_opr()->is_register(), "result must always be in a register");
  1093     return shouldHaveRegister;
  1096   // optimizations for second input operand of arithmehtic operations on Intel
  1097   // this operand is allowed to be on the stack in some cases
  1098   BasicType opr_type = opr->type_register();
  1099   if (opr_type == T_FLOAT || opr_type == T_DOUBLE) {
  1100     if ((UseSSE == 1 && opr_type == T_FLOAT) || UseSSE >= 2) {
  1101       // SSE float instruction (T_DOUBLE only supported with SSE2)
  1102       switch (op->code()) {
  1103         case lir_cmp:
  1104         case lir_add:
  1105         case lir_sub:
  1106         case lir_mul:
  1107         case lir_div:
  1109           assert(op->as_Op2() != NULL, "must be LIR_Op2");
  1110           LIR_Op2* op2 = (LIR_Op2*)op;
  1111           if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
  1112             assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
  1113             return shouldHaveRegister;
  1117     } else {
  1118       // FPU stack float instruction
  1119       switch (op->code()) {
  1120         case lir_add:
  1121         case lir_sub:
  1122         case lir_mul:
  1123         case lir_div:
  1125           assert(op->as_Op2() != NULL, "must be LIR_Op2");
  1126           LIR_Op2* op2 = (LIR_Op2*)op;
  1127           if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
  1128             assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
  1129             return shouldHaveRegister;
  1135   } else if (opr_type != T_LONG) {
  1136     // integer instruction (note: long operands must always be in register)
  1137     switch (op->code()) {
  1138       case lir_cmp:
  1139       case lir_add:
  1140       case lir_sub:
  1141       case lir_logic_and:
  1142       case lir_logic_or:
  1143       case lir_logic_xor:
  1145         assert(op->as_Op2() != NULL, "must be LIR_Op2");
  1146         LIR_Op2* op2 = (LIR_Op2*)op;
  1147         if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
  1148           assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
  1149           return shouldHaveRegister;
  1154 #endif // X86
  1156   // all other operands require a register
  1157   return mustHaveRegister;
  1161 void LinearScan::handle_method_arguments(LIR_Op* op) {
  1162   // special handling for method arguments (moves from stack to virtual register):
  1163   // the interval gets no register assigned, but the stack slot.
  1164   // it is split before the first use by the register allocator.
  1166   if (op->code() == lir_move) {
  1167     assert(op->as_Op1() != NULL, "must be LIR_Op1");
  1168     LIR_Op1* move = (LIR_Op1*)op;
  1170     if (move->in_opr()->is_stack()) {
  1171 #ifdef ASSERT
  1172       int arg_size = compilation()->method()->arg_size();
  1173       LIR_Opr o = move->in_opr();
  1174       if (o->is_single_stack()) {
  1175         assert(o->single_stack_ix() >= 0 && o->single_stack_ix() < arg_size, "out of range");
  1176       } else if (o->is_double_stack()) {
  1177         assert(o->double_stack_ix() >= 0 && o->double_stack_ix() < arg_size, "out of range");
  1178       } else {
  1179         ShouldNotReachHere();
  1182       assert(move->id() > 0, "invalid id");
  1183       assert(block_of_op_with_id(move->id())->number_of_preds() == 0, "move from stack must be in first block");
  1184       assert(move->result_opr()->is_virtual(), "result of move must be a virtual register");
  1186       TRACE_LINEAR_SCAN(4, tty->print_cr("found move from stack slot %d to vreg %d", o->is_single_stack() ? o->single_stack_ix() : o->double_stack_ix(), reg_num(move->result_opr())));
  1187 #endif
  1189       Interval* interval = interval_at(reg_num(move->result_opr()));
  1191       int stack_slot = LinearScan::nof_regs + (move->in_opr()->is_single_stack() ? move->in_opr()->single_stack_ix() : move->in_opr()->double_stack_ix());
  1192       interval->set_canonical_spill_slot(stack_slot);
  1193       interval->assign_reg(stack_slot);
  1198 void LinearScan::handle_doubleword_moves(LIR_Op* op) {
  1199   // special handling for doubleword move from memory to register:
  1200   // in this case the registers of the input address and the result
  1201   // registers must not overlap -> add a temp range for the input registers
  1202   if (op->code() == lir_move) {
  1203     assert(op->as_Op1() != NULL, "must be LIR_Op1");
  1204     LIR_Op1* move = (LIR_Op1*)op;
  1206     if (move->result_opr()->is_double_cpu() && move->in_opr()->is_pointer()) {
  1207       LIR_Address* address = move->in_opr()->as_address_ptr();
  1208       if (address != NULL) {
  1209         if (address->base()->is_valid()) {
  1210           add_temp(address->base(), op->id(), noUse);
  1212         if (address->index()->is_valid()) {
  1213           add_temp(address->index(), op->id(), noUse);
  1220 void LinearScan::add_register_hints(LIR_Op* op) {
  1221   switch (op->code()) {
  1222     case lir_move:      // fall through
  1223     case lir_convert: {
  1224       assert(op->as_Op1() != NULL, "lir_move, lir_convert must be LIR_Op1");
  1225       LIR_Op1* move = (LIR_Op1*)op;
  1227       LIR_Opr move_from = move->in_opr();
  1228       LIR_Opr move_to = move->result_opr();
  1230       if (move_to->is_register() && move_from->is_register()) {
  1231         Interval* from = interval_at(reg_num(move_from));
  1232         Interval* to = interval_at(reg_num(move_to));
  1233         if (from != NULL && to != NULL) {
  1234           to->set_register_hint(from);
  1235           TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d", move->id(), from->reg_num(), to->reg_num()));
  1238       break;
  1240     case lir_cmove: {
  1241       assert(op->as_Op2() != NULL, "lir_cmove must be LIR_Op2");
  1242       LIR_Op2* cmove = (LIR_Op2*)op;
  1244       LIR_Opr move_from = cmove->in_opr1();
  1245       LIR_Opr move_to = cmove->result_opr();
  1247       if (move_to->is_register() && move_from->is_register()) {
  1248         Interval* from = interval_at(reg_num(move_from));
  1249         Interval* to = interval_at(reg_num(move_to));
  1250         if (from != NULL && to != NULL) {
  1251           to->set_register_hint(from);
  1252           TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d", cmove->id(), from->reg_num(), to->reg_num()));
  1255       break;
  1261 void LinearScan::build_intervals() {
  1262   TIME_LINEAR_SCAN(timer_build_intervals);
  1264   // initialize interval list with expected number of intervals
  1265   // (32 is added to have some space for split children without having to resize the list)
  1266   _intervals = IntervalList(num_virtual_regs() + 32);
  1267   // initialize all slots that are used by build_intervals
  1268   _intervals.at_put_grow(num_virtual_regs() - 1, NULL, NULL);
  1270   // create a list with all caller-save registers (cpu, fpu, xmm)
  1271   // when an instruction is a call, a temp range is created for all these registers
  1272   int num_caller_save_registers = 0;
  1273   int caller_save_registers[LinearScan::nof_regs];
  1275   int i;
  1276   for (i = 0; i < FrameMap::nof_caller_save_cpu_regs(); i++) {
  1277     LIR_Opr opr = FrameMap::caller_save_cpu_reg_at(i);
  1278     assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
  1279     assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
  1280     caller_save_registers[num_caller_save_registers++] = reg_num(opr);
  1283   // temp ranges for fpu registers are only created when the method has
  1284   // virtual fpu operands. Otherwise no allocation for fpu registers is
  1285   // perfomed and so the temp ranges would be useless
  1286   if (has_fpu_registers()) {
  1287 #ifdef X86
  1288     if (UseSSE < 2) {
  1289 #endif
  1290       for (i = 0; i < FrameMap::nof_caller_save_fpu_regs; i++) {
  1291         LIR_Opr opr = FrameMap::caller_save_fpu_reg_at(i);
  1292         assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
  1293         assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
  1294         caller_save_registers[num_caller_save_registers++] = reg_num(opr);
  1296 #ifdef X86
  1298     if (UseSSE > 0) {
  1299       for (i = 0; i < FrameMap::nof_caller_save_xmm_regs; i++) {
  1300         LIR_Opr opr = FrameMap::caller_save_xmm_reg_at(i);
  1301         assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
  1302         assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
  1303         caller_save_registers[num_caller_save_registers++] = reg_num(opr);
  1306 #endif
  1308   assert(num_caller_save_registers <= LinearScan::nof_regs, "out of bounds");
  1311   LIR_OpVisitState visitor;
  1313   // iterate all blocks in reverse order
  1314   for (i = block_count() - 1; i >= 0; i--) {
  1315     BlockBegin* block = block_at(i);
  1316     LIR_OpList* instructions = block->lir()->instructions_list();
  1317     int         block_from =   block->first_lir_instruction_id();
  1318     int         block_to =     block->last_lir_instruction_id();
  1320     assert(block_from == instructions->at(0)->id(), "must be");
  1321     assert(block_to   == instructions->at(instructions->length() - 1)->id(), "must be");
  1323     // Update intervals for registers live at the end of this block;
  1324     BitMap live = block->live_out();
  1325     int size = (int)live.size();
  1326     for (int number = (int)live.get_next_one_offset(0, size); number < size; number = (int)live.get_next_one_offset(number + 1, size)) {
  1327       assert(live.at(number), "should not stop here otherwise");
  1328       assert(number >= LIR_OprDesc::vreg_base, "fixed intervals must not be live on block bounds");
  1329       TRACE_LINEAR_SCAN(2, tty->print_cr("live in %d to %d", number, block_to + 2));
  1331       add_use(number, block_from, block_to + 2, noUse, T_ILLEGAL);
  1333       // add special use positions for loop-end blocks when the
  1334       // interval is used anywhere inside this loop.  It's possible
  1335       // that the block was part of a non-natural loop, so it might
  1336       // have an invalid loop index.
  1337       if (block->is_set(BlockBegin::linear_scan_loop_end_flag) &&
  1338           block->loop_index() != -1 &&
  1339           is_interval_in_loop(number, block->loop_index())) {
  1340         interval_at(number)->add_use_pos(block_to + 1, loopEndMarker);
  1344     // iterate all instructions of the block in reverse order.
  1345     // skip the first instruction because it is always a label
  1346     // definitions of intervals are processed before uses
  1347     assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label");
  1348     for (int j = instructions->length() - 1; j >= 1; j--) {
  1349       LIR_Op* op = instructions->at(j);
  1350       int op_id = op->id();
  1352       // visit operation to collect all operands
  1353       visitor.visit(op);
  1355       // add a temp range for each register if operation destroys caller-save registers
  1356       if (visitor.has_call()) {
  1357         for (int k = 0; k < num_caller_save_registers; k++) {
  1358           add_temp(caller_save_registers[k], op_id, noUse, T_ILLEGAL);
  1360         TRACE_LINEAR_SCAN(4, tty->print_cr("operation destroys all caller-save registers"));
  1363       // Add any platform dependent temps
  1364       pd_add_temps(op);
  1366       // visit definitions (output and temp operands)
  1367       int k, n;
  1368       n = visitor.opr_count(LIR_OpVisitState::outputMode);
  1369       for (k = 0; k < n; k++) {
  1370         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k);
  1371         assert(opr->is_register(), "visitor should only return register operands");
  1372         add_def(opr, op_id, use_kind_of_output_operand(op, opr));
  1375       n = visitor.opr_count(LIR_OpVisitState::tempMode);
  1376       for (k = 0; k < n; k++) {
  1377         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k);
  1378         assert(opr->is_register(), "visitor should only return register operands");
  1379         add_temp(opr, op_id, mustHaveRegister);
  1382       // visit uses (input operands)
  1383       n = visitor.opr_count(LIR_OpVisitState::inputMode);
  1384       for (k = 0; k < n; k++) {
  1385         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k);
  1386         assert(opr->is_register(), "visitor should only return register operands");
  1387         add_use(opr, block_from, op_id, use_kind_of_input_operand(op, opr));
  1390       // Add uses of live locals from interpreter's point of view for proper
  1391       // debug information generation
  1392       // Treat these operands as temp values (if the life range is extended
  1393       // to a call site, the value would be in a register at the call otherwise)
  1394       n = visitor.info_count();
  1395       for (k = 0; k < n; k++) {
  1396         CodeEmitInfo* info = visitor.info_at(k);
  1397         ValueStack* stack = info->stack();
  1398         for_each_state_value(stack, value,
  1399           add_use(value, block_from, op_id + 1, noUse);
  1400         );
  1403       // special steps for some instructions (especially moves)
  1404       handle_method_arguments(op);
  1405       handle_doubleword_moves(op);
  1406       add_register_hints(op);
  1408     } // end of instruction iteration
  1409   } // end of block iteration
  1412   // add the range [0, 1[ to all fixed intervals
  1413   // -> the register allocator need not handle unhandled fixed intervals
  1414   for (int n = 0; n < LinearScan::nof_regs; n++) {
  1415     Interval* interval = interval_at(n);
  1416     if (interval != NULL) {
  1417       interval->add_range(0, 1);
  1423 // ********** Phase 5: actual register allocation
  1425 int LinearScan::interval_cmp(Interval** a, Interval** b) {
  1426   if (*a != NULL) {
  1427     if (*b != NULL) {
  1428       return (*a)->from() - (*b)->from();
  1429     } else {
  1430       return -1;
  1432   } else {
  1433     if (*b != NULL) {
  1434       return 1;
  1435     } else {
  1436       return 0;
  1441 #ifndef PRODUCT
  1442 bool LinearScan::is_sorted(IntervalArray* intervals) {
  1443   int from = -1;
  1444   int i, j;
  1445   for (i = 0; i < intervals->length(); i ++) {
  1446     Interval* it = intervals->at(i);
  1447     if (it != NULL) {
  1448       if (from > it->from()) {
  1449         assert(false, "");
  1450         return false;
  1452       from = it->from();
  1456   // check in both directions if sorted list and unsorted list contain same intervals
  1457   for (i = 0; i < interval_count(); i++) {
  1458     if (interval_at(i) != NULL) {
  1459       int num_found = 0;
  1460       for (j = 0; j < intervals->length(); j++) {
  1461         if (interval_at(i) == intervals->at(j)) {
  1462           num_found++;
  1465       assert(num_found == 1, "lists do not contain same intervals");
  1468   for (j = 0; j < intervals->length(); j++) {
  1469     int num_found = 0;
  1470     for (i = 0; i < interval_count(); i++) {
  1471       if (interval_at(i) == intervals->at(j)) {
  1472         num_found++;
  1475     assert(num_found == 1, "lists do not contain same intervals");
  1478   return true;
  1480 #endif
  1482 void LinearScan::add_to_list(Interval** first, Interval** prev, Interval* interval) {
  1483   if (*prev != NULL) {
  1484     (*prev)->set_next(interval);
  1485   } else {
  1486     *first = interval;
  1488   *prev = interval;
  1491 void LinearScan::create_unhandled_lists(Interval** list1, Interval** list2, bool (is_list1)(const Interval* i), bool (is_list2)(const Interval* i)) {
  1492   assert(is_sorted(_sorted_intervals), "interval list is not sorted");
  1494   *list1 = *list2 = Interval::end();
  1496   Interval* list1_prev = NULL;
  1497   Interval* list2_prev = NULL;
  1498   Interval* v;
  1500   const int n = _sorted_intervals->length();
  1501   for (int i = 0; i < n; i++) {
  1502     v = _sorted_intervals->at(i);
  1503     if (v == NULL) continue;
  1505     if (is_list1(v)) {
  1506       add_to_list(list1, &list1_prev, v);
  1507     } else if (is_list2 == NULL || is_list2(v)) {
  1508       add_to_list(list2, &list2_prev, v);
  1512   if (list1_prev != NULL) list1_prev->set_next(Interval::end());
  1513   if (list2_prev != NULL) list2_prev->set_next(Interval::end());
  1515   assert(list1_prev == NULL || list1_prev->next() == Interval::end(), "linear list ends not with sentinel");
  1516   assert(list2_prev == NULL || list2_prev->next() == Interval::end(), "linear list ends not with sentinel");
  1520 void LinearScan::sort_intervals_before_allocation() {
  1521   TIME_LINEAR_SCAN(timer_sort_intervals_before);
  1523   IntervalList* unsorted_list = &_intervals;
  1524   int unsorted_len = unsorted_list->length();
  1525   int sorted_len = 0;
  1526   int unsorted_idx;
  1527   int sorted_idx = 0;
  1528   int sorted_from_max = -1;
  1530   // calc number of items for sorted list (sorted list must not contain NULL values)
  1531   for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) {
  1532     if (unsorted_list->at(unsorted_idx) != NULL) {
  1533       sorted_len++;
  1536   IntervalArray* sorted_list = new IntervalArray(sorted_len);
  1538   // special sorting algorithm: the original interval-list is almost sorted,
  1539   // only some intervals are swapped. So this is much faster than a complete QuickSort
  1540   for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) {
  1541     Interval* cur_interval = unsorted_list->at(unsorted_idx);
  1543     if (cur_interval != NULL) {
  1544       int cur_from = cur_interval->from();
  1546       if (sorted_from_max <= cur_from) {
  1547         sorted_list->at_put(sorted_idx++, cur_interval);
  1548         sorted_from_max = cur_interval->from();
  1549       } else {
  1550         // the asumption that the intervals are already sorted failed,
  1551         // so this interval must be sorted in manually
  1552         int j;
  1553         for (j = sorted_idx - 1; j >= 0 && cur_from < sorted_list->at(j)->from(); j--) {
  1554           sorted_list->at_put(j + 1, sorted_list->at(j));
  1556         sorted_list->at_put(j + 1, cur_interval);
  1557         sorted_idx++;
  1561   _sorted_intervals = sorted_list;
  1564 void LinearScan::sort_intervals_after_allocation() {
  1565   TIME_LINEAR_SCAN(timer_sort_intervals_after);
  1567   IntervalArray* old_list      = _sorted_intervals;
  1568   IntervalList*  new_list      = _new_intervals_from_allocation;
  1569   int old_len = old_list->length();
  1570   int new_len = new_list->length();
  1572   if (new_len == 0) {
  1573     // no intervals have been added during allocation, so sorted list is already up to date
  1574     return;
  1577   // conventional sort-algorithm for new intervals
  1578   new_list->sort(interval_cmp);
  1580   // merge old and new list (both already sorted) into one combined list
  1581   IntervalArray* combined_list = new IntervalArray(old_len + new_len);
  1582   int old_idx = 0;
  1583   int new_idx = 0;
  1585   while (old_idx + new_idx < old_len + new_len) {
  1586     if (new_idx >= new_len || (old_idx < old_len && old_list->at(old_idx)->from() <= new_list->at(new_idx)->from())) {
  1587       combined_list->at_put(old_idx + new_idx, old_list->at(old_idx));
  1588       old_idx++;
  1589     } else {
  1590       combined_list->at_put(old_idx + new_idx, new_list->at(new_idx));
  1591       new_idx++;
  1595   _sorted_intervals = combined_list;
  1599 void LinearScan::allocate_registers() {
  1600   TIME_LINEAR_SCAN(timer_allocate_registers);
  1602   Interval* precolored_cpu_intervals, *not_precolored_cpu_intervals;
  1603   Interval* precolored_fpu_intervals, *not_precolored_fpu_intervals;
  1605   create_unhandled_lists(&precolored_cpu_intervals, &not_precolored_cpu_intervals, is_precolored_cpu_interval, is_virtual_cpu_interval);
  1606   if (has_fpu_registers()) {
  1607     create_unhandled_lists(&precolored_fpu_intervals, &not_precolored_fpu_intervals, is_precolored_fpu_interval, is_virtual_fpu_interval);
  1608 #ifdef ASSERT
  1609   } else {
  1610     // fpu register allocation is omitted because no virtual fpu registers are present
  1611     // just check this again...
  1612     create_unhandled_lists(&precolored_fpu_intervals, &not_precolored_fpu_intervals, is_precolored_fpu_interval, is_virtual_fpu_interval);
  1613     assert(not_precolored_fpu_intervals == Interval::end(), "missed an uncolored fpu interval");
  1614 #endif
  1617   // allocate cpu registers
  1618   LinearScanWalker cpu_lsw(this, precolored_cpu_intervals, not_precolored_cpu_intervals);
  1619   cpu_lsw.walk();
  1620   cpu_lsw.finish_allocation();
  1622   if (has_fpu_registers()) {
  1623     // allocate fpu registers
  1624     LinearScanWalker fpu_lsw(this, precolored_fpu_intervals, not_precolored_fpu_intervals);
  1625     fpu_lsw.walk();
  1626     fpu_lsw.finish_allocation();
  1631 // ********** Phase 6: resolve data flow
  1632 // (insert moves at edges between blocks if intervals have been split)
  1634 // wrapper for Interval::split_child_at_op_id that performs a bailout in product mode
  1635 // instead of returning NULL
  1636 Interval* LinearScan::split_child_at_op_id(Interval* interval, int op_id, LIR_OpVisitState::OprMode mode) {
  1637   Interval* result = interval->split_child_at_op_id(op_id, mode);
  1638   if (result != NULL) {
  1639     return result;
  1642   assert(false, "must find an interval, but do a clean bailout in product mode");
  1643   result = new Interval(LIR_OprDesc::vreg_base);
  1644   result->assign_reg(0);
  1645   result->set_type(T_INT);
  1646   BAILOUT_("LinearScan: interval is NULL", result);
  1650 Interval* LinearScan::interval_at_block_begin(BlockBegin* block, int reg_num) {
  1651   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
  1652   assert(interval_at(reg_num) != NULL, "no interval found");
  1654   return split_child_at_op_id(interval_at(reg_num), block->first_lir_instruction_id(), LIR_OpVisitState::outputMode);
  1657 Interval* LinearScan::interval_at_block_end(BlockBegin* block, int reg_num) {
  1658   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
  1659   assert(interval_at(reg_num) != NULL, "no interval found");
  1661   return split_child_at_op_id(interval_at(reg_num), block->last_lir_instruction_id() + 1, LIR_OpVisitState::outputMode);
  1664 Interval* LinearScan::interval_at_op_id(int reg_num, int op_id) {
  1665   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
  1666   assert(interval_at(reg_num) != NULL, "no interval found");
  1668   return split_child_at_op_id(interval_at(reg_num), op_id, LIR_OpVisitState::inputMode);
  1672 void LinearScan::resolve_collect_mappings(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) {
  1673   DEBUG_ONLY(move_resolver.check_empty());
  1675   const int num_regs = num_virtual_regs();
  1676   const int size = live_set_size();
  1677   const BitMap live_at_edge = to_block->live_in();
  1679   // visit all registers where the live_at_edge bit is set
  1680   for (int r = (int)live_at_edge.get_next_one_offset(0, size); r < size; r = (int)live_at_edge.get_next_one_offset(r + 1, size)) {
  1681     assert(r < num_regs, "live information set for not exisiting interval");
  1682     assert(from_block->live_out().at(r) && to_block->live_in().at(r), "interval not live at this edge");
  1684     Interval* from_interval = interval_at_block_end(from_block, r);
  1685     Interval* to_interval = interval_at_block_begin(to_block, r);
  1687     if (from_interval != to_interval && (from_interval->assigned_reg() != to_interval->assigned_reg() || from_interval->assigned_regHi() != to_interval->assigned_regHi())) {
  1688       // need to insert move instruction
  1689       move_resolver.add_mapping(from_interval, to_interval);
  1695 void LinearScan::resolve_find_insert_pos(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) {
  1696   if (from_block->number_of_sux() <= 1) {
  1697     TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at end of from_block B%d", from_block->block_id()));
  1699     LIR_OpList* instructions = from_block->lir()->instructions_list();
  1700     LIR_OpBranch* branch = instructions->last()->as_OpBranch();
  1701     if (branch != NULL) {
  1702       // insert moves before branch
  1703       assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump");
  1704       move_resolver.set_insert_position(from_block->lir(), instructions->length() - 2);
  1705     } else {
  1706       move_resolver.set_insert_position(from_block->lir(), instructions->length() - 1);
  1709   } else {
  1710     TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at beginning of to_block B%d", to_block->block_id()));
  1711 #ifdef ASSERT
  1712     assert(from_block->lir()->instructions_list()->at(0)->as_OpLabel() != NULL, "block does not start with a label");
  1714     // because the number of predecessor edges matches the number of
  1715     // successor edges, blocks which are reached by switch statements
  1716     // may have be more than one predecessor but it will be guaranteed
  1717     // that all predecessors will be the same.
  1718     for (int i = 0; i < to_block->number_of_preds(); i++) {
  1719       assert(from_block == to_block->pred_at(i), "all critical edges must be broken");
  1721 #endif
  1723     move_resolver.set_insert_position(to_block->lir(), 0);
  1728 // insert necessary moves (spilling or reloading) at edges between blocks if interval has been split
  1729 void LinearScan::resolve_data_flow() {
  1730   TIME_LINEAR_SCAN(timer_resolve_data_flow);
  1732   int num_blocks = block_count();
  1733   MoveResolver move_resolver(this);
  1734   BitMap block_completed(num_blocks);  block_completed.clear();
  1735   BitMap already_resolved(num_blocks); already_resolved.clear();
  1737   int i;
  1738   for (i = 0; i < num_blocks; i++) {
  1739     BlockBegin* block = block_at(i);
  1741     // check if block has only one predecessor and only one successor
  1742     if (block->number_of_preds() == 1 && block->number_of_sux() == 1 && block->number_of_exception_handlers() == 0) {
  1743       LIR_OpList* instructions = block->lir()->instructions_list();
  1744       assert(instructions->at(0)->code() == lir_label, "block must start with label");
  1745       assert(instructions->last()->code() == lir_branch, "block with successors must end with branch");
  1746       assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block with successor must end with unconditional branch");
  1748       // check if block is empty (only label and branch)
  1749       if (instructions->length() == 2) {
  1750         BlockBegin* pred = block->pred_at(0);
  1751         BlockBegin* sux = block->sux_at(0);
  1753         // prevent optimization of two consecutive blocks
  1754         if (!block_completed.at(pred->linear_scan_number()) && !block_completed.at(sux->linear_scan_number())) {
  1755           TRACE_LINEAR_SCAN(3, tty->print_cr("**** optimizing empty block B%d (pred: B%d, sux: B%d)", block->block_id(), pred->block_id(), sux->block_id()));
  1756           block_completed.set_bit(block->linear_scan_number());
  1758           // directly resolve between pred and sux (without looking at the empty block between)
  1759           resolve_collect_mappings(pred, sux, move_resolver);
  1760           if (move_resolver.has_mappings()) {
  1761             move_resolver.set_insert_position(block->lir(), 0);
  1762             move_resolver.resolve_and_append_moves();
  1770   for (i = 0; i < num_blocks; i++) {
  1771     if (!block_completed.at(i)) {
  1772       BlockBegin* from_block = block_at(i);
  1773       already_resolved.set_from(block_completed);
  1775       int num_sux = from_block->number_of_sux();
  1776       for (int s = 0; s < num_sux; s++) {
  1777         BlockBegin* to_block = from_block->sux_at(s);
  1779         // check for duplicate edges between the same blocks (can happen with switch blocks)
  1780         if (!already_resolved.at(to_block->linear_scan_number())) {
  1781           TRACE_LINEAR_SCAN(3, tty->print_cr("**** processing edge between B%d and B%d", from_block->block_id(), to_block->block_id()));
  1782           already_resolved.set_bit(to_block->linear_scan_number());
  1784           // collect all intervals that have been split between from_block and to_block
  1785           resolve_collect_mappings(from_block, to_block, move_resolver);
  1786           if (move_resolver.has_mappings()) {
  1787             resolve_find_insert_pos(from_block, to_block, move_resolver);
  1788             move_resolver.resolve_and_append_moves();
  1797 void LinearScan::resolve_exception_entry(BlockBegin* block, int reg_num, MoveResolver &move_resolver) {
  1798   if (interval_at(reg_num) == NULL) {
  1799     // if a phi function is never used, no interval is created -> ignore this
  1800     return;
  1803   Interval* interval = interval_at_block_begin(block, reg_num);
  1804   int reg = interval->assigned_reg();
  1805   int regHi = interval->assigned_regHi();
  1807   if ((reg < nof_regs && interval->always_in_memory()) ||
  1808       (use_fpu_stack_allocation() && reg >= pd_first_fpu_reg && reg <= pd_last_fpu_reg)) {
  1809     // the interval is split to get a short range that is located on the stack
  1810     // in the following two cases:
  1811     // * the interval started in memory (e.g. method parameter), but is currently in a register
  1812     //   this is an optimization for exception handling that reduces the number of moves that
  1813     //   are necessary for resolving the states when an exception uses this exception handler
  1814     // * the interval would be on the fpu stack at the begin of the exception handler
  1815     //   this is not allowed because of the complicated fpu stack handling on Intel
  1817     // range that will be spilled to memory
  1818     int from_op_id = block->first_lir_instruction_id();
  1819     int to_op_id = from_op_id + 1;  // short live range of length 1
  1820     assert(interval->from() <= from_op_id && interval->to() >= to_op_id,
  1821            "no split allowed between exception entry and first instruction");
  1823     if (interval->from() != from_op_id) {
  1824       // the part before from_op_id is unchanged
  1825       interval = interval->split(from_op_id);
  1826       interval->assign_reg(reg, regHi);
  1827       append_interval(interval);
  1829     assert(interval->from() == from_op_id, "must be true now");
  1831     Interval* spilled_part = interval;
  1832     if (interval->to() != to_op_id) {
  1833       // the part after to_op_id is unchanged
  1834       spilled_part = interval->split_from_start(to_op_id);
  1835       append_interval(spilled_part);
  1836       move_resolver.add_mapping(spilled_part, interval);
  1838     assign_spill_slot(spilled_part);
  1840     assert(spilled_part->from() == from_op_id && spilled_part->to() == to_op_id, "just checking");
  1844 void LinearScan::resolve_exception_entry(BlockBegin* block, MoveResolver &move_resolver) {
  1845   assert(block->is_set(BlockBegin::exception_entry_flag), "should not call otherwise");
  1846   DEBUG_ONLY(move_resolver.check_empty());
  1848   // visit all registers where the live_in bit is set
  1849   int size = live_set_size();
  1850   for (int r = (int)block->live_in().get_next_one_offset(0, size); r < size; r = (int)block->live_in().get_next_one_offset(r + 1, size)) {
  1851     resolve_exception_entry(block, r, move_resolver);
  1854   // the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately
  1855   for_each_phi_fun(block, phi,
  1856     resolve_exception_entry(block, phi->operand()->vreg_number(), move_resolver)
  1857   );
  1859   if (move_resolver.has_mappings()) {
  1860     // insert moves after first instruction
  1861     move_resolver.set_insert_position(block->lir(), 1);
  1862     move_resolver.resolve_and_append_moves();
  1867 void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, int reg_num, Phi* phi, MoveResolver &move_resolver) {
  1868   if (interval_at(reg_num) == NULL) {
  1869     // if a phi function is never used, no interval is created -> ignore this
  1870     return;
  1873   // the computation of to_interval is equal to resolve_collect_mappings,
  1874   // but from_interval is more complicated because of phi functions
  1875   BlockBegin* to_block = handler->entry_block();
  1876   Interval* to_interval = interval_at_block_begin(to_block, reg_num);
  1878   if (phi != NULL) {
  1879     // phi function of the exception entry block
  1880     // no moves are created for this phi function in the LIR_Generator, so the
  1881     // interval at the throwing instruction must be searched using the operands
  1882     // of the phi function
  1883     Value from_value = phi->operand_at(handler->phi_operand());
  1885     // with phi functions it can happen that the same from_value is used in
  1886     // multiple mappings, so notify move-resolver that this is allowed
  1887     move_resolver.set_multiple_reads_allowed();
  1889     Constant* con = from_value->as_Constant();
  1890     if (con != NULL && !con->is_pinned()) {
  1891       // unpinned constants may have no register, so add mapping from constant to interval
  1892       move_resolver.add_mapping(LIR_OprFact::value_type(con->type()), to_interval);
  1893     } else {
  1894       // search split child at the throwing op_id
  1895       Interval* from_interval = interval_at_op_id(from_value->operand()->vreg_number(), throwing_op_id);
  1896       move_resolver.add_mapping(from_interval, to_interval);
  1899   } else {
  1900     // no phi function, so use reg_num also for from_interval
  1901     // search split child at the throwing op_id
  1902     Interval* from_interval = interval_at_op_id(reg_num, throwing_op_id);
  1903     if (from_interval != to_interval) {
  1904       // optimization to reduce number of moves: when to_interval is on stack and
  1905       // the stack slot is known to be always correct, then no move is necessary
  1906       if (!from_interval->always_in_memory() || from_interval->canonical_spill_slot() != to_interval->assigned_reg()) {
  1907         move_resolver.add_mapping(from_interval, to_interval);
  1913 void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, MoveResolver &move_resolver) {
  1914   TRACE_LINEAR_SCAN(4, tty->print_cr("resolving exception handler B%d: throwing_op_id=%d", handler->entry_block()->block_id(), throwing_op_id));
  1916   DEBUG_ONLY(move_resolver.check_empty());
  1917   assert(handler->lir_op_id() == -1, "already processed this xhandler");
  1918   DEBUG_ONLY(handler->set_lir_op_id(throwing_op_id));
  1919   assert(handler->entry_code() == NULL, "code already present");
  1921   // visit all registers where the live_in bit is set
  1922   BlockBegin* block = handler->entry_block();
  1923   int size = live_set_size();
  1924   for (int r = (int)block->live_in().get_next_one_offset(0, size); r < size; r = (int)block->live_in().get_next_one_offset(r + 1, size)) {
  1925     resolve_exception_edge(handler, throwing_op_id, r, NULL, move_resolver);
  1928   // the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately
  1929   for_each_phi_fun(block, phi,
  1930     resolve_exception_edge(handler, throwing_op_id, phi->operand()->vreg_number(), phi, move_resolver)
  1931   );
  1933   if (move_resolver.has_mappings()) {
  1934     LIR_List* entry_code = new LIR_List(compilation());
  1935     move_resolver.set_insert_position(entry_code, 0);
  1936     move_resolver.resolve_and_append_moves();
  1938     entry_code->jump(handler->entry_block());
  1939     handler->set_entry_code(entry_code);
  1944 void LinearScan::resolve_exception_handlers() {
  1945   MoveResolver move_resolver(this);
  1946   LIR_OpVisitState visitor;
  1947   int num_blocks = block_count();
  1949   int i;
  1950   for (i = 0; i < num_blocks; i++) {
  1951     BlockBegin* block = block_at(i);
  1952     if (block->is_set(BlockBegin::exception_entry_flag)) {
  1953       resolve_exception_entry(block, move_resolver);
  1957   for (i = 0; i < num_blocks; i++) {
  1958     BlockBegin* block = block_at(i);
  1959     LIR_List* ops = block->lir();
  1960     int num_ops = ops->length();
  1962     // iterate all instructions of the block. skip the first because it is always a label
  1963     assert(visitor.no_operands(ops->at(0)), "first operation must always be a label");
  1964     for (int j = 1; j < num_ops; j++) {
  1965       LIR_Op* op = ops->at(j);
  1966       int op_id = op->id();
  1968       if (op_id != -1 && has_info(op_id)) {
  1969         // visit operation to collect all operands
  1970         visitor.visit(op);
  1971         assert(visitor.info_count() > 0, "should not visit otherwise");
  1973         XHandlers* xhandlers = visitor.all_xhandler();
  1974         int n = xhandlers->length();
  1975         for (int k = 0; k < n; k++) {
  1976           resolve_exception_edge(xhandlers->handler_at(k), op_id, move_resolver);
  1979 #ifdef ASSERT
  1980       } else {
  1981         visitor.visit(op);
  1982         assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
  1983 #endif
  1990 // ********** Phase 7: assign register numbers back to LIR
  1991 // (includes computation of debug information and oop maps)
  1993 VMReg LinearScan::vm_reg_for_interval(Interval* interval) {
  1994   VMReg reg = interval->cached_vm_reg();
  1995   if (!reg->is_valid() ) {
  1996     reg = vm_reg_for_operand(operand_for_interval(interval));
  1997     interval->set_cached_vm_reg(reg);
  1999   assert(reg == vm_reg_for_operand(operand_for_interval(interval)), "wrong cached value");
  2000   return reg;
  2003 VMReg LinearScan::vm_reg_for_operand(LIR_Opr opr) {
  2004   assert(opr->is_oop(), "currently only implemented for oop operands");
  2005   return frame_map()->regname(opr);
  2009 LIR_Opr LinearScan::operand_for_interval(Interval* interval) {
  2010   LIR_Opr opr = interval->cached_opr();
  2011   if (opr->is_illegal()) {
  2012     opr = calc_operand_for_interval(interval);
  2013     interval->set_cached_opr(opr);
  2016   assert(opr == calc_operand_for_interval(interval), "wrong cached value");
  2017   return opr;
  2020 LIR_Opr LinearScan::calc_operand_for_interval(const Interval* interval) {
  2021   int assigned_reg = interval->assigned_reg();
  2022   BasicType type = interval->type();
  2024   if (assigned_reg >= nof_regs) {
  2025     // stack slot
  2026     assert(interval->assigned_regHi() == any_reg, "must not have hi register");
  2027     return LIR_OprFact::stack(assigned_reg - nof_regs, type);
  2029   } else {
  2030     // register
  2031     switch (type) {
  2032       case T_OBJECT: {
  2033         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
  2034         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
  2035         return LIR_OprFact::single_cpu_oop(assigned_reg);
  2038       case T_ADDRESS: {
  2039         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
  2040         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
  2041         return LIR_OprFact::single_cpu_address(assigned_reg);
  2044 #ifdef __SOFTFP__
  2045       case T_FLOAT:  // fall through
  2046 #endif // __SOFTFP__
  2047       case T_INT: {
  2048         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
  2049         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
  2050         return LIR_OprFact::single_cpu(assigned_reg);
  2053 #ifdef __SOFTFP__
  2054       case T_DOUBLE:  // fall through
  2055 #endif // __SOFTFP__
  2056       case T_LONG: {
  2057         int assigned_regHi = interval->assigned_regHi();
  2058         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
  2059         assert(num_physical_regs(T_LONG) == 1 ||
  2060                (assigned_regHi >= pd_first_cpu_reg && assigned_regHi <= pd_last_cpu_reg), "no cpu register");
  2062         assert(assigned_reg != assigned_regHi, "invalid allocation");
  2063         assert(num_physical_regs(T_LONG) == 1 || assigned_reg < assigned_regHi,
  2064                "register numbers must be sorted (ensure that e.g. a move from eax,ebx to ebx,eax can not occur)");
  2065         assert((assigned_regHi != any_reg) ^ (num_physical_regs(T_LONG) == 1), "must be match");
  2066         if (requires_adjacent_regs(T_LONG)) {
  2067           assert(assigned_reg % 2 == 0 && assigned_reg + 1 == assigned_regHi, "must be sequential and even");
  2070 #ifdef _LP64
  2071         return LIR_OprFact::double_cpu(assigned_reg, assigned_reg);
  2072 #else
  2073 #if defined(SPARC) || defined(PPC)
  2074         return LIR_OprFact::double_cpu(assigned_regHi, assigned_reg);
  2075 #else
  2076         return LIR_OprFact::double_cpu(assigned_reg, assigned_regHi);
  2077 #endif // SPARC
  2078 #endif // LP64
  2081 #ifndef __SOFTFP__
  2082       case T_FLOAT: {
  2083 #ifdef X86
  2084         if (UseSSE >= 1) {
  2085           assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= pd_last_xmm_reg, "no xmm register");
  2086           assert(interval->assigned_regHi() == any_reg, "must not have hi register");
  2087           return LIR_OprFact::single_xmm(assigned_reg - pd_first_xmm_reg);
  2089 #endif
  2091         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
  2092         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
  2093         return LIR_OprFact::single_fpu(assigned_reg - pd_first_fpu_reg);
  2096       case T_DOUBLE: {
  2097 #ifdef X86
  2098         if (UseSSE >= 2) {
  2099           assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= pd_last_xmm_reg, "no xmm register");
  2100           assert(interval->assigned_regHi() == any_reg, "must not have hi register (double xmm values are stored in one register)");
  2101           return LIR_OprFact::double_xmm(assigned_reg - pd_first_xmm_reg);
  2103 #endif
  2105 #ifdef SPARC
  2106         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
  2107         assert(interval->assigned_regHi() >= pd_first_fpu_reg && interval->assigned_regHi() <= pd_last_fpu_reg, "no fpu register");
  2108         assert(assigned_reg % 2 == 0 && assigned_reg + 1 == interval->assigned_regHi(), "must be sequential and even");
  2109         LIR_Opr result = LIR_OprFact::double_fpu(interval->assigned_regHi() - pd_first_fpu_reg, assigned_reg - pd_first_fpu_reg);
  2110 #elif defined(ARM)
  2111         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
  2112         assert(interval->assigned_regHi() >= pd_first_fpu_reg && interval->assigned_regHi() <= pd_last_fpu_reg, "no fpu register");
  2113         assert(assigned_reg % 2 == 0 && assigned_reg + 1 == interval->assigned_regHi(), "must be sequential and even");
  2114         LIR_Opr result = LIR_OprFact::double_fpu(assigned_reg - pd_first_fpu_reg, interval->assigned_regHi() - pd_first_fpu_reg);
  2115 #else
  2116         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
  2117         assert(interval->assigned_regHi() == any_reg, "must not have hi register (double fpu values are stored in one register on Intel)");
  2118         LIR_Opr result = LIR_OprFact::double_fpu(assigned_reg - pd_first_fpu_reg);
  2119 #endif
  2120         return result;
  2122 #endif // __SOFTFP__
  2124       default: {
  2125         ShouldNotReachHere();
  2126         return LIR_OprFact::illegalOpr;
  2132 LIR_Opr LinearScan::canonical_spill_opr(Interval* interval) {
  2133   assert(interval->canonical_spill_slot() >= nof_regs, "canonical spill slot not set");
  2134   return LIR_OprFact::stack(interval->canonical_spill_slot() - nof_regs, interval->type());
  2137 LIR_Opr LinearScan::color_lir_opr(LIR_Opr opr, int op_id, LIR_OpVisitState::OprMode mode) {
  2138   assert(opr->is_virtual(), "should not call this otherwise");
  2140   Interval* interval = interval_at(opr->vreg_number());
  2141   assert(interval != NULL, "interval must exist");
  2143   if (op_id != -1) {
  2144 #ifdef ASSERT
  2145     BlockBegin* block = block_of_op_with_id(op_id);
  2146     if (block->number_of_sux() <= 1 && op_id == block->last_lir_instruction_id()) {
  2147       // check if spill moves could have been appended at the end of this block, but
  2148       // before the branch instruction. So the split child information for this branch would
  2149       // be incorrect.
  2150       LIR_OpBranch* branch = block->lir()->instructions_list()->last()->as_OpBranch();
  2151       if (branch != NULL) {
  2152         if (block->live_out().at(opr->vreg_number())) {
  2153           assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump");
  2154           assert(false, "can't get split child for the last branch of a block because the information would be incorrect (moves are inserted before the branch in resolve_data_flow)");
  2158 #endif
  2160     // operands are not changed when an interval is split during allocation,
  2161     // so search the right interval here
  2162     interval = split_child_at_op_id(interval, op_id, mode);
  2165   LIR_Opr res = operand_for_interval(interval);
  2167 #ifdef X86
  2168   // new semantic for is_last_use: not only set on definite end of interval,
  2169   // but also before hole
  2170   // This may still miss some cases (e.g. for dead values), but it is not necessary that the
  2171   // last use information is completely correct
  2172   // information is only needed for fpu stack allocation
  2173   if (res->is_fpu_register()) {
  2174     if (opr->is_last_use() || op_id == interval->to() || (op_id != -1 && interval->has_hole_between(op_id, op_id + 1))) {
  2175       assert(op_id == -1 || !is_block_begin(op_id), "holes at begin of block may also result from control flow");
  2176       res = res->make_last_use();
  2179 #endif
  2181   assert(!gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::callee_saved) || !FrameMap::is_caller_save_register(res), "bad allocation");
  2183   return res;
  2187 #ifdef ASSERT
  2188 // some methods used to check correctness of debug information
  2190 void assert_no_register_values(GrowableArray<ScopeValue*>* values) {
  2191   if (values == NULL) {
  2192     return;
  2195   for (int i = 0; i < values->length(); i++) {
  2196     ScopeValue* value = values->at(i);
  2198     if (value->is_location()) {
  2199       Location location = ((LocationValue*)value)->location();
  2200       assert(location.where() == Location::on_stack, "value is in register");
  2205 void assert_no_register_values(GrowableArray<MonitorValue*>* values) {
  2206   if (values == NULL) {
  2207     return;
  2210   for (int i = 0; i < values->length(); i++) {
  2211     MonitorValue* value = values->at(i);
  2213     if (value->owner()->is_location()) {
  2214       Location location = ((LocationValue*)value->owner())->location();
  2215       assert(location.where() == Location::on_stack, "owner is in register");
  2217     assert(value->basic_lock().where() == Location::on_stack, "basic_lock is in register");
  2221 void assert_equal(Location l1, Location l2) {
  2222   assert(l1.where() == l2.where() && l1.type() == l2.type() && l1.offset() == l2.offset(), "");
  2225 void assert_equal(ScopeValue* v1, ScopeValue* v2) {
  2226   if (v1->is_location()) {
  2227     assert(v2->is_location(), "");
  2228     assert_equal(((LocationValue*)v1)->location(), ((LocationValue*)v2)->location());
  2229   } else if (v1->is_constant_int()) {
  2230     assert(v2->is_constant_int(), "");
  2231     assert(((ConstantIntValue*)v1)->value() == ((ConstantIntValue*)v2)->value(), "");
  2232   } else if (v1->is_constant_double()) {
  2233     assert(v2->is_constant_double(), "");
  2234     assert(((ConstantDoubleValue*)v1)->value() == ((ConstantDoubleValue*)v2)->value(), "");
  2235   } else if (v1->is_constant_long()) {
  2236     assert(v2->is_constant_long(), "");
  2237     assert(((ConstantLongValue*)v1)->value() == ((ConstantLongValue*)v2)->value(), "");
  2238   } else if (v1->is_constant_oop()) {
  2239     assert(v2->is_constant_oop(), "");
  2240     assert(((ConstantOopWriteValue*)v1)->value() == ((ConstantOopWriteValue*)v2)->value(), "");
  2241   } else {
  2242     ShouldNotReachHere();
  2246 void assert_equal(MonitorValue* m1, MonitorValue* m2) {
  2247   assert_equal(m1->owner(), m2->owner());
  2248   assert_equal(m1->basic_lock(), m2->basic_lock());
  2251 void assert_equal(IRScopeDebugInfo* d1, IRScopeDebugInfo* d2) {
  2252   assert(d1->scope() == d2->scope(), "not equal");
  2253   assert(d1->bci() == d2->bci(), "not equal");
  2255   if (d1->locals() != NULL) {
  2256     assert(d1->locals() != NULL && d2->locals() != NULL, "not equal");
  2257     assert(d1->locals()->length() == d2->locals()->length(), "not equal");
  2258     for (int i = 0; i < d1->locals()->length(); i++) {
  2259       assert_equal(d1->locals()->at(i), d2->locals()->at(i));
  2261   } else {
  2262     assert(d1->locals() == NULL && d2->locals() == NULL, "not equal");
  2265   if (d1->expressions() != NULL) {
  2266     assert(d1->expressions() != NULL && d2->expressions() != NULL, "not equal");
  2267     assert(d1->expressions()->length() == d2->expressions()->length(), "not equal");
  2268     for (int i = 0; i < d1->expressions()->length(); i++) {
  2269       assert_equal(d1->expressions()->at(i), d2->expressions()->at(i));
  2271   } else {
  2272     assert(d1->expressions() == NULL && d2->expressions() == NULL, "not equal");
  2275   if (d1->monitors() != NULL) {
  2276     assert(d1->monitors() != NULL && d2->monitors() != NULL, "not equal");
  2277     assert(d1->monitors()->length() == d2->monitors()->length(), "not equal");
  2278     for (int i = 0; i < d1->monitors()->length(); i++) {
  2279       assert_equal(d1->monitors()->at(i), d2->monitors()->at(i));
  2281   } else {
  2282     assert(d1->monitors() == NULL && d2->monitors() == NULL, "not equal");
  2285   if (d1->caller() != NULL) {
  2286     assert(d1->caller() != NULL && d2->caller() != NULL, "not equal");
  2287     assert_equal(d1->caller(), d2->caller());
  2288   } else {
  2289     assert(d1->caller() == NULL && d2->caller() == NULL, "not equal");
  2293 void check_stack_depth(CodeEmitInfo* info, int stack_end) {
  2294   if (info->stack()->bci() != SynchronizationEntryBCI && !info->scope()->method()->is_native()) {
  2295     Bytecodes::Code code = info->scope()->method()->java_code_at_bci(info->stack()->bci());
  2296     switch (code) {
  2297       case Bytecodes::_ifnull    : // fall through
  2298       case Bytecodes::_ifnonnull : // fall through
  2299       case Bytecodes::_ifeq      : // fall through
  2300       case Bytecodes::_ifne      : // fall through
  2301       case Bytecodes::_iflt      : // fall through
  2302       case Bytecodes::_ifge      : // fall through
  2303       case Bytecodes::_ifgt      : // fall through
  2304       case Bytecodes::_ifle      : // fall through
  2305       case Bytecodes::_if_icmpeq : // fall through
  2306       case Bytecodes::_if_icmpne : // fall through
  2307       case Bytecodes::_if_icmplt : // fall through
  2308       case Bytecodes::_if_icmpge : // fall through
  2309       case Bytecodes::_if_icmpgt : // fall through
  2310       case Bytecodes::_if_icmple : // fall through
  2311       case Bytecodes::_if_acmpeq : // fall through
  2312       case Bytecodes::_if_acmpne :
  2313         assert(stack_end >= -Bytecodes::depth(code), "must have non-empty expression stack at if bytecode");
  2314         break;
  2319 #endif // ASSERT
  2322 IntervalWalker* LinearScan::init_compute_oop_maps() {
  2323   // setup lists of potential oops for walking
  2324   Interval* oop_intervals;
  2325   Interval* non_oop_intervals;
  2327   create_unhandled_lists(&oop_intervals, &non_oop_intervals, is_oop_interval, NULL);
  2329   // intervals that have no oops inside need not to be processed
  2330   // to ensure a walking until the last instruction id, add a dummy interval
  2331   // with a high operation id
  2332   non_oop_intervals = new Interval(any_reg);
  2333   non_oop_intervals->add_range(max_jint - 2, max_jint - 1);
  2335   return new IntervalWalker(this, oop_intervals, non_oop_intervals);
  2339 OopMap* LinearScan::compute_oop_map(IntervalWalker* iw, LIR_Op* op, CodeEmitInfo* info, bool is_call_site) {
  2340   TRACE_LINEAR_SCAN(3, tty->print_cr("creating oop map at op_id %d", op->id()));
  2342   // walk before the current operation -> intervals that start at
  2343   // the operation (= output operands of the operation) are not
  2344   // included in the oop map
  2345   iw->walk_before(op->id());
  2347   int frame_size = frame_map()->framesize();
  2348   int arg_count = frame_map()->oop_map_arg_count();
  2349   OopMap* map = new OopMap(frame_size, arg_count);
  2351   // Check if this is a patch site.
  2352   bool is_patch_info = false;
  2353   if (op->code() == lir_move) {
  2354     assert(!is_call_site, "move must not be a call site");
  2355     assert(op->as_Op1() != NULL, "move must be LIR_Op1");
  2356     LIR_Op1* move = (LIR_Op1*)op;
  2358     is_patch_info = move->patch_code() != lir_patch_none;
  2361   // Iterate through active intervals
  2362   for (Interval* interval = iw->active_first(fixedKind); interval != Interval::end(); interval = interval->next()) {
  2363     int assigned_reg = interval->assigned_reg();
  2365     assert(interval->current_from() <= op->id() && op->id() <= interval->current_to(), "interval should not be active otherwise");
  2366     assert(interval->assigned_regHi() == any_reg, "oop must be single word");
  2367     assert(interval->reg_num() >= LIR_OprDesc::vreg_base, "fixed interval found");
  2369     // Check if this range covers the instruction. Intervals that
  2370     // start or end at the current operation are not included in the
  2371     // oop map, except in the case of patching moves.  For patching
  2372     // moves, any intervals which end at this instruction are included
  2373     // in the oop map since we may safepoint while doing the patch
  2374     // before we've consumed the inputs.
  2375     if (is_patch_info || op->id() < interval->current_to()) {
  2377       // caller-save registers must not be included into oop-maps at calls
  2378       assert(!is_call_site || assigned_reg >= nof_regs || !is_caller_save(assigned_reg), "interval is in a caller-save register at a call -> register will be overwritten");
  2380       VMReg name = vm_reg_for_interval(interval);
  2381       map->set_oop(name);
  2383       // Spill optimization: when the stack value is guaranteed to be always correct,
  2384       // then it must be added to the oop map even if the interval is currently in a register
  2385       if (interval->always_in_memory() &&
  2386           op->id() > interval->spill_definition_pos() &&
  2387           interval->assigned_reg() != interval->canonical_spill_slot()) {
  2388         assert(interval->spill_definition_pos() > 0, "position not set correctly");
  2389         assert(interval->canonical_spill_slot() >= LinearScan::nof_regs, "no spill slot assigned");
  2390         assert(interval->assigned_reg() < LinearScan::nof_regs, "interval is on stack, so stack slot is registered twice");
  2392         map->set_oop(frame_map()->slot_regname(interval->canonical_spill_slot() - LinearScan::nof_regs));
  2397   // add oops from lock stack
  2398   assert(info->stack() != NULL, "CodeEmitInfo must always have a stack");
  2399   int locks_count = info->stack()->total_locks_size();
  2400   for (int i = 0; i < locks_count; i++) {
  2401     map->set_oop(frame_map()->monitor_object_regname(i));
  2404   return map;
  2408 void LinearScan::compute_oop_map(IntervalWalker* iw, const LIR_OpVisitState &visitor, LIR_Op* op) {
  2409   assert(visitor.info_count() > 0, "no oop map needed");
  2411   // compute oop_map only for first CodeEmitInfo
  2412   // because it is (in most cases) equal for all other infos of the same operation
  2413   CodeEmitInfo* first_info = visitor.info_at(0);
  2414   OopMap* first_oop_map = compute_oop_map(iw, op, first_info, visitor.has_call());
  2416   for (int i = 0; i < visitor.info_count(); i++) {
  2417     CodeEmitInfo* info = visitor.info_at(i);
  2418     OopMap* oop_map = first_oop_map;
  2420     if (info->stack()->locks_size() != first_info->stack()->locks_size()) {
  2421       // this info has a different number of locks then the precomputed oop map
  2422       // (possible for lock and unlock instructions) -> compute oop map with
  2423       // correct lock information
  2424       oop_map = compute_oop_map(iw, op, info, visitor.has_call());
  2427     if (info->_oop_map == NULL) {
  2428       info->_oop_map = oop_map;
  2429     } else {
  2430       // a CodeEmitInfo can not be shared between different LIR-instructions
  2431       // because interval splitting can occur anywhere between two instructions
  2432       // and so the oop maps must be different
  2433       // -> check if the already set oop_map is exactly the one calculated for this operation
  2434       assert(info->_oop_map == oop_map, "same CodeEmitInfo used for multiple LIR instructions");
  2440 // frequently used constants
  2441 ConstantOopWriteValue LinearScan::_oop_null_scope_value = ConstantOopWriteValue(NULL);
  2442 ConstantIntValue      LinearScan::_int_m1_scope_value = ConstantIntValue(-1);
  2443 ConstantIntValue      LinearScan::_int_0_scope_value =  ConstantIntValue(0);
  2444 ConstantIntValue      LinearScan::_int_1_scope_value =  ConstantIntValue(1);
  2445 ConstantIntValue      LinearScan::_int_2_scope_value =  ConstantIntValue(2);
  2446 LocationValue         _illegal_value = LocationValue(Location());
  2448 void LinearScan::init_compute_debug_info() {
  2449   // cache for frequently used scope values
  2450   // (cpu registers and stack slots)
  2451   _scope_value_cache = ScopeValueArray((LinearScan::nof_cpu_regs + frame_map()->argcount() + max_spills()) * 2, NULL);
  2454 MonitorValue* LinearScan::location_for_monitor_index(int monitor_index) {
  2455   Location loc;
  2456   if (!frame_map()->location_for_monitor_object(monitor_index, &loc)) {
  2457     bailout("too large frame");
  2459   ScopeValue* object_scope_value = new LocationValue(loc);
  2461   if (!frame_map()->location_for_monitor_lock(monitor_index, &loc)) {
  2462     bailout("too large frame");
  2464   return new MonitorValue(object_scope_value, loc);
  2467 LocationValue* LinearScan::location_for_name(int name, Location::Type loc_type) {
  2468   Location loc;
  2469   if (!frame_map()->locations_for_slot(name, loc_type, &loc)) {
  2470     bailout("too large frame");
  2472   return new LocationValue(loc);
  2476 int LinearScan::append_scope_value_for_constant(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) {
  2477   assert(opr->is_constant(), "should not be called otherwise");
  2479   LIR_Const* c = opr->as_constant_ptr();
  2480   BasicType t = c->type();
  2481   switch (t) {
  2482     case T_OBJECT: {
  2483       jobject value = c->as_jobject();
  2484       if (value == NULL) {
  2485         scope_values->append(&_oop_null_scope_value);
  2486       } else {
  2487         scope_values->append(new ConstantOopWriteValue(c->as_jobject()));
  2489       return 1;
  2492     case T_INT: // fall through
  2493     case T_FLOAT: {
  2494       int value = c->as_jint_bits();
  2495       switch (value) {
  2496         case -1: scope_values->append(&_int_m1_scope_value); break;
  2497         case 0:  scope_values->append(&_int_0_scope_value); break;
  2498         case 1:  scope_values->append(&_int_1_scope_value); break;
  2499         case 2:  scope_values->append(&_int_2_scope_value); break;
  2500         default: scope_values->append(new ConstantIntValue(c->as_jint_bits())); break;
  2502       return 1;
  2505     case T_LONG: // fall through
  2506     case T_DOUBLE: {
  2507 #ifdef _LP64
  2508       scope_values->append(&_int_0_scope_value);
  2509       scope_values->append(new ConstantLongValue(c->as_jlong_bits()));
  2510 #else
  2511       if (hi_word_offset_in_bytes > lo_word_offset_in_bytes) {
  2512         scope_values->append(new ConstantIntValue(c->as_jint_hi_bits()));
  2513         scope_values->append(new ConstantIntValue(c->as_jint_lo_bits()));
  2514       } else {
  2515         scope_values->append(new ConstantIntValue(c->as_jint_lo_bits()));
  2516         scope_values->append(new ConstantIntValue(c->as_jint_hi_bits()));
  2518 #endif
  2519       return 2;
  2522     case T_ADDRESS: {
  2523 #ifdef _LP64
  2524       scope_values->append(new ConstantLongValue(c->as_jint()));
  2525 #else
  2526       scope_values->append(new ConstantIntValue(c->as_jint()));
  2527 #endif
  2528       return 1;
  2531     default:
  2532       ShouldNotReachHere();
  2533       return -1;
  2537 int LinearScan::append_scope_value_for_operand(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) {
  2538   if (opr->is_single_stack()) {
  2539     int stack_idx = opr->single_stack_ix();
  2540     bool is_oop = opr->is_oop_register();
  2541     int cache_idx = (stack_idx + LinearScan::nof_cpu_regs) * 2 + (is_oop ? 1 : 0);
  2543     ScopeValue* sv = _scope_value_cache.at(cache_idx);
  2544     if (sv == NULL) {
  2545       Location::Type loc_type = is_oop ? Location::oop : Location::normal;
  2546       sv = location_for_name(stack_idx, loc_type);
  2547       _scope_value_cache.at_put(cache_idx, sv);
  2550     // check if cached value is correct
  2551     DEBUG_ONLY(assert_equal(sv, location_for_name(stack_idx, is_oop ? Location::oop : Location::normal)));
  2553     scope_values->append(sv);
  2554     return 1;
  2556   } else if (opr->is_single_cpu()) {
  2557     bool is_oop = opr->is_oop_register();
  2558     int cache_idx = opr->cpu_regnr() * 2 + (is_oop ? 1 : 0);
  2559     Location::Type int_loc_type = NOT_LP64(Location::normal) LP64_ONLY(Location::int_in_long);
  2561     ScopeValue* sv = _scope_value_cache.at(cache_idx);
  2562     if (sv == NULL) {
  2563       Location::Type loc_type = is_oop ? Location::oop : int_loc_type;
  2564       VMReg rname = frame_map()->regname(opr);
  2565       sv = new LocationValue(Location::new_reg_loc(loc_type, rname));
  2566       _scope_value_cache.at_put(cache_idx, sv);
  2569     // check if cached value is correct
  2570     DEBUG_ONLY(assert_equal(sv, new LocationValue(Location::new_reg_loc(is_oop ? Location::oop : int_loc_type, frame_map()->regname(opr)))));
  2572     scope_values->append(sv);
  2573     return 1;
  2575 #ifdef X86
  2576   } else if (opr->is_single_xmm()) {
  2577     VMReg rname = opr->as_xmm_float_reg()->as_VMReg();
  2578     LocationValue* sv = new LocationValue(Location::new_reg_loc(Location::normal, rname));
  2580     scope_values->append(sv);
  2581     return 1;
  2582 #endif
  2584   } else if (opr->is_single_fpu()) {
  2585 #ifdef X86
  2586     // the exact location of fpu stack values is only known
  2587     // during fpu stack allocation, so the stack allocator object
  2588     // must be present
  2589     assert(use_fpu_stack_allocation(), "should not have float stack values without fpu stack allocation (all floats must be SSE2)");
  2590     assert(_fpu_stack_allocator != NULL, "must be present");
  2591     opr = _fpu_stack_allocator->to_fpu_stack(opr);
  2592 #endif
  2594     Location::Type loc_type = float_saved_as_double ? Location::float_in_dbl : Location::normal;
  2595     VMReg rname = frame_map()->fpu_regname(opr->fpu_regnr());
  2596     LocationValue* sv = new LocationValue(Location::new_reg_loc(loc_type, rname));
  2598     scope_values->append(sv);
  2599     return 1;
  2601   } else {
  2602     // double-size operands
  2604     ScopeValue* first;
  2605     ScopeValue* second;
  2607     if (opr->is_double_stack()) {
  2608 #ifdef _LP64
  2609       Location loc1;
  2610       Location::Type loc_type = opr->type() == T_LONG ? Location::lng : Location::dbl;
  2611       if (!frame_map()->locations_for_slot(opr->double_stack_ix(), loc_type, &loc1, NULL)) {
  2612         bailout("too large frame");
  2614       // Does this reverse on x86 vs. sparc?
  2615       first =  new LocationValue(loc1);
  2616       second = &_int_0_scope_value;
  2617 #else
  2618       Location loc1, loc2;
  2619       if (!frame_map()->locations_for_slot(opr->double_stack_ix(), Location::normal, &loc1, &loc2)) {
  2620         bailout("too large frame");
  2622       first =  new LocationValue(loc1);
  2623       second = new LocationValue(loc2);
  2624 #endif // _LP64
  2626     } else if (opr->is_double_cpu()) {
  2627 #ifdef _LP64
  2628       VMReg rname_first = opr->as_register_lo()->as_VMReg();
  2629       first = new LocationValue(Location::new_reg_loc(Location::lng, rname_first));
  2630       second = &_int_0_scope_value;
  2631 #else
  2632       VMReg rname_first = opr->as_register_lo()->as_VMReg();
  2633       VMReg rname_second = opr->as_register_hi()->as_VMReg();
  2635       if (hi_word_offset_in_bytes < lo_word_offset_in_bytes) {
  2636         // lo/hi and swapped relative to first and second, so swap them
  2637         VMReg tmp = rname_first;
  2638         rname_first = rname_second;
  2639         rname_second = tmp;
  2642       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
  2643       second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
  2644 #endif //_LP64
  2647 #ifdef X86
  2648     } else if (opr->is_double_xmm()) {
  2649       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation");
  2650       VMReg rname_first  = opr->as_xmm_double_reg()->as_VMReg();
  2651 #  ifdef _LP64
  2652       first = new LocationValue(Location::new_reg_loc(Location::dbl, rname_first));
  2653       second = &_int_0_scope_value;
  2654 #  else
  2655       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
  2656       // %%% This is probably a waste but we'll keep things as they were for now
  2657       if (true) {
  2658         VMReg rname_second = rname_first->next();
  2659         second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
  2661 #  endif
  2662 #endif
  2664     } else if (opr->is_double_fpu()) {
  2665       // On SPARC, fpu_regnrLo/fpu_regnrHi represents the two halves of
  2666       // the double as float registers in the native ordering. On X86,
  2667       // fpu_regnrLo is a FPU stack slot whose VMReg represents
  2668       // the low-order word of the double and fpu_regnrLo + 1 is the
  2669       // name for the other half.  *first and *second must represent the
  2670       // least and most significant words, respectively.
  2672 #ifdef X86
  2673       // the exact location of fpu stack values is only known
  2674       // during fpu stack allocation, so the stack allocator object
  2675       // must be present
  2676       assert(use_fpu_stack_allocation(), "should not have float stack values without fpu stack allocation (all floats must be SSE2)");
  2677       assert(_fpu_stack_allocator != NULL, "must be present");
  2678       opr = _fpu_stack_allocator->to_fpu_stack(opr);
  2680       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation (only fpu_regnrHi is used)");
  2681 #endif
  2682 #ifdef SPARC
  2683       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi() + 1, "assumed in calculation (only fpu_regnrHi is used)");
  2684 #endif
  2685 #ifdef ARM
  2686       assert(opr->fpu_regnrHi() == opr->fpu_regnrLo() + 1, "assumed in calculation (only fpu_regnrLo is used)");
  2687 #endif
  2688 #ifdef PPC
  2689       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation (only fpu_regnrHi is used)");
  2690 #endif
  2692       VMReg rname_first = frame_map()->fpu_regname(opr->fpu_regnrHi());
  2693 #ifdef _LP64
  2694       first = new LocationValue(Location::new_reg_loc(Location::dbl, rname_first));
  2695       second = &_int_0_scope_value;
  2696 #else
  2697       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
  2698       // %%% This is probably a waste but we'll keep things as they were for now
  2699       if (true) {
  2700         VMReg rname_second = rname_first->next();
  2701         second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
  2703 #endif
  2705     } else {
  2706       ShouldNotReachHere();
  2707       first = NULL;
  2708       second = NULL;
  2711     assert(first != NULL && second != NULL, "must be set");
  2712     // The convention the interpreter uses is that the second local
  2713     // holds the first raw word of the native double representation.
  2714     // This is actually reasonable, since locals and stack arrays
  2715     // grow downwards in all implementations.
  2716     // (If, on some machine, the interpreter's Java locals or stack
  2717     // were to grow upwards, the embedded doubles would be word-swapped.)
  2718     scope_values->append(second);
  2719     scope_values->append(first);
  2720     return 2;
  2725 int LinearScan::append_scope_value(int op_id, Value value, GrowableArray<ScopeValue*>* scope_values) {
  2726   if (value != NULL) {
  2727     LIR_Opr opr = value->operand();
  2728     Constant* con = value->as_Constant();
  2730     assert(con == NULL || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "asumption: Constant instructions have only constant operands (or illegal if constant is optimized away)");
  2731     assert(con != NULL || opr->is_virtual(), "asumption: non-Constant instructions have only virtual operands");
  2733     if (con != NULL && !con->is_pinned() && !opr->is_constant()) {
  2734       // Unpinned constants may have a virtual operand for a part of the lifetime
  2735       // or may be illegal when it was optimized away,
  2736       // so always use a constant operand
  2737       opr = LIR_OprFact::value_type(con->type());
  2739     assert(opr->is_virtual() || opr->is_constant(), "other cases not allowed here");
  2741     if (opr->is_virtual()) {
  2742       LIR_OpVisitState::OprMode mode = LIR_OpVisitState::inputMode;
  2744       BlockBegin* block = block_of_op_with_id(op_id);
  2745       if (block->number_of_sux() == 1 && op_id == block->last_lir_instruction_id()) {
  2746         // generating debug information for the last instruction of a block.
  2747         // if this instruction is a branch, spill moves are inserted before this branch
  2748         // and so the wrong operand would be returned (spill moves at block boundaries are not
  2749         // considered in the live ranges of intervals)
  2750         // Solution: use the first op_id of the branch target block instead.
  2751         if (block->lir()->instructions_list()->last()->as_OpBranch() != NULL) {
  2752           if (block->live_out().at(opr->vreg_number())) {
  2753             op_id = block->sux_at(0)->first_lir_instruction_id();
  2754             mode = LIR_OpVisitState::outputMode;
  2759       // Get current location of operand
  2760       // The operand must be live because debug information is considered when building the intervals
  2761       // if the interval is not live, color_lir_opr will cause an assertion failure
  2762       opr = color_lir_opr(opr, op_id, mode);
  2763       assert(!has_call(op_id) || opr->is_stack() || !is_caller_save(reg_num(opr)), "can not have caller-save register operands at calls");
  2765       // Append to ScopeValue array
  2766       return append_scope_value_for_operand(opr, scope_values);
  2768     } else {
  2769       assert(value->as_Constant() != NULL, "all other instructions have only virtual operands");
  2770       assert(opr->is_constant(), "operand must be constant");
  2772       return append_scope_value_for_constant(opr, scope_values);
  2774   } else {
  2775     // append a dummy value because real value not needed
  2776     scope_values->append(&_illegal_value);
  2777     return 1;
  2782 IRScopeDebugInfo* LinearScan::compute_debug_info_for_scope(int op_id, IRScope* cur_scope, ValueStack* cur_state, ValueStack* innermost_state) {
  2783   IRScopeDebugInfo* caller_debug_info = NULL;
  2785   ValueStack* caller_state = cur_state->caller_state();
  2786   if (caller_state != NULL) {
  2787     // process recursively to compute outermost scope first
  2788     caller_debug_info = compute_debug_info_for_scope(op_id, cur_scope->caller(), caller_state, innermost_state);
  2791   // initialize these to null.
  2792   // If we don't need deopt info or there are no locals, expressions or monitors,
  2793   // then these get recorded as no information and avoids the allocation of 0 length arrays.
  2794   GrowableArray<ScopeValue*>*   locals      = NULL;
  2795   GrowableArray<ScopeValue*>*   expressions = NULL;
  2796   GrowableArray<MonitorValue*>* monitors    = NULL;
  2798   // describe local variable values
  2799   int nof_locals = cur_state->locals_size();
  2800   if (nof_locals > 0) {
  2801     locals = new GrowableArray<ScopeValue*>(nof_locals);
  2803     int pos = 0;
  2804     while (pos < nof_locals) {
  2805       assert(pos < cur_state->locals_size(), "why not?");
  2807       Value local = cur_state->local_at(pos);
  2808       pos += append_scope_value(op_id, local, locals);
  2810       assert(locals->length() == pos, "must match");
  2812     assert(locals->length() == cur_scope->method()->max_locals(), "wrong number of locals");
  2813     assert(locals->length() == cur_state->locals_size(), "wrong number of locals");
  2814   } else if (cur_scope->method()->max_locals() > 0) {
  2815     assert(cur_state->kind() == ValueStack::EmptyExceptionState, "should be");
  2816     nof_locals = cur_scope->method()->max_locals();
  2817     locals = new GrowableArray<ScopeValue*>(nof_locals);
  2818     for(int i = 0; i < nof_locals; i++) {
  2819       locals->append(&_illegal_value);
  2823   // describe expression stack
  2824   int nof_stack = cur_state->stack_size();
  2825   if (nof_stack > 0) {
  2826     expressions = new GrowableArray<ScopeValue*>(nof_stack);
  2828     int pos = 0;
  2829     while (pos < nof_stack) {
  2830       Value expression = cur_state->stack_at_inc(pos);
  2831       append_scope_value(op_id, expression, expressions);
  2833       assert(expressions->length() == pos, "must match");
  2835     assert(expressions->length() == cur_state->stack_size(), "wrong number of stack entries");
  2838   // describe monitors
  2839   int nof_locks = cur_state->locks_size();
  2840   if (nof_locks > 0) {
  2841     int lock_offset = cur_state->caller_state() != NULL ? cur_state->caller_state()->total_locks_size() : 0;
  2842     monitors = new GrowableArray<MonitorValue*>(nof_locks);
  2843     for (int i = 0; i < nof_locks; i++) {
  2844       monitors->append(location_for_monitor_index(lock_offset + i));
  2848   return new IRScopeDebugInfo(cur_scope, cur_state->bci(), locals, expressions, monitors, caller_debug_info);
  2852 void LinearScan::compute_debug_info(CodeEmitInfo* info, int op_id) {
  2853   TRACE_LINEAR_SCAN(3, tty->print_cr("creating debug information at op_id %d", op_id));
  2855   IRScope* innermost_scope = info->scope();
  2856   ValueStack* innermost_state = info->stack();
  2858   assert(innermost_scope != NULL && innermost_state != NULL, "why is it missing?");
  2860   DEBUG_ONLY(check_stack_depth(info, innermost_state->stack_size()));
  2862   if (info->_scope_debug_info == NULL) {
  2863     // compute debug information
  2864     info->_scope_debug_info = compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state);
  2865   } else {
  2866     // debug information already set. Check that it is correct from the current point of view
  2867     DEBUG_ONLY(assert_equal(info->_scope_debug_info, compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state)));
  2872 void LinearScan::assign_reg_num(LIR_OpList* instructions, IntervalWalker* iw) {
  2873   LIR_OpVisitState visitor;
  2874   int num_inst = instructions->length();
  2875   bool has_dead = false;
  2877   for (int j = 0; j < num_inst; j++) {
  2878     LIR_Op* op = instructions->at(j);
  2879     if (op == NULL) {  // this can happen when spill-moves are removed in eliminate_spill_moves
  2880       has_dead = true;
  2881       continue;
  2883     int op_id = op->id();
  2885     // visit instruction to get list of operands
  2886     visitor.visit(op);
  2888     // iterate all modes of the visitor and process all virtual operands
  2889     for_each_visitor_mode(mode) {
  2890       int n = visitor.opr_count(mode);
  2891       for (int k = 0; k < n; k++) {
  2892         LIR_Opr opr = visitor.opr_at(mode, k);
  2893         if (opr->is_virtual_register()) {
  2894           visitor.set_opr_at(mode, k, color_lir_opr(opr, op_id, mode));
  2899     if (visitor.info_count() > 0) {
  2900       // exception handling
  2901       if (compilation()->has_exception_handlers()) {
  2902         XHandlers* xhandlers = visitor.all_xhandler();
  2903         int n = xhandlers->length();
  2904         for (int k = 0; k < n; k++) {
  2905           XHandler* handler = xhandlers->handler_at(k);
  2906           if (handler->entry_code() != NULL) {
  2907             assign_reg_num(handler->entry_code()->instructions_list(), NULL);
  2910       } else {
  2911         assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
  2914       // compute oop map
  2915       assert(iw != NULL, "needed for compute_oop_map");
  2916       compute_oop_map(iw, visitor, op);
  2918       // compute debug information
  2919       if (!use_fpu_stack_allocation()) {
  2920         // compute debug information if fpu stack allocation is not needed.
  2921         // when fpu stack allocation is needed, the debug information can not
  2922         // be computed here because the exact location of fpu operands is not known
  2923         // -> debug information is created inside the fpu stack allocator
  2924         int n = visitor.info_count();
  2925         for (int k = 0; k < n; k++) {
  2926           compute_debug_info(visitor.info_at(k), op_id);
  2931 #ifdef ASSERT
  2932     // make sure we haven't made the op invalid.
  2933     op->verify();
  2934 #endif
  2936     // remove useless moves
  2937     if (op->code() == lir_move) {
  2938       assert(op->as_Op1() != NULL, "move must be LIR_Op1");
  2939       LIR_Op1* move = (LIR_Op1*)op;
  2940       LIR_Opr src = move->in_opr();
  2941       LIR_Opr dst = move->result_opr();
  2942       if (dst == src ||
  2943           !dst->is_pointer() && !src->is_pointer() &&
  2944           src->is_same_register(dst)) {
  2945         instructions->at_put(j, NULL);
  2946         has_dead = true;
  2951   if (has_dead) {
  2952     // iterate all instructions of the block and remove all null-values.
  2953     int insert_point = 0;
  2954     for (int j = 0; j < num_inst; j++) {
  2955       LIR_Op* op = instructions->at(j);
  2956       if (op != NULL) {
  2957         if (insert_point != j) {
  2958           instructions->at_put(insert_point, op);
  2960         insert_point++;
  2963     instructions->truncate(insert_point);
  2967 void LinearScan::assign_reg_num() {
  2968   TIME_LINEAR_SCAN(timer_assign_reg_num);
  2970   init_compute_debug_info();
  2971   IntervalWalker* iw = init_compute_oop_maps();
  2973   int num_blocks = block_count();
  2974   for (int i = 0; i < num_blocks; i++) {
  2975     BlockBegin* block = block_at(i);
  2976     assign_reg_num(block->lir()->instructions_list(), iw);
  2981 void LinearScan::do_linear_scan() {
  2982   NOT_PRODUCT(_total_timer.begin_method());
  2984   number_instructions();
  2986   NOT_PRODUCT(print_lir(1, "Before Register Allocation"));
  2988   compute_local_live_sets();
  2989   compute_global_live_sets();
  2990   CHECK_BAILOUT();
  2992   build_intervals();
  2993   CHECK_BAILOUT();
  2994   sort_intervals_before_allocation();
  2996   NOT_PRODUCT(print_intervals("Before Register Allocation"));
  2997   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_before_alloc));
  2999   allocate_registers();
  3000   CHECK_BAILOUT();
  3002   resolve_data_flow();
  3003   if (compilation()->has_exception_handlers()) {
  3004     resolve_exception_handlers();
  3006   // fill in number of spill slots into frame_map
  3007   propagate_spill_slots();
  3008   CHECK_BAILOUT();
  3010   NOT_PRODUCT(print_intervals("After Register Allocation"));
  3011   NOT_PRODUCT(print_lir(2, "LIR after register allocation:"));
  3013   sort_intervals_after_allocation();
  3015   DEBUG_ONLY(verify());
  3017   eliminate_spill_moves();
  3018   assign_reg_num();
  3019   CHECK_BAILOUT();
  3021   NOT_PRODUCT(print_lir(2, "LIR after assignment of register numbers:"));
  3022   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_after_asign));
  3024   { TIME_LINEAR_SCAN(timer_allocate_fpu_stack);
  3026     if (use_fpu_stack_allocation()) {
  3027       allocate_fpu_stack(); // Only has effect on Intel
  3028       NOT_PRODUCT(print_lir(2, "LIR after FPU stack allocation:"));
  3032   { TIME_LINEAR_SCAN(timer_optimize_lir);
  3034     EdgeMoveOptimizer::optimize(ir()->code());
  3035     ControlFlowOptimizer::optimize(ir()->code());
  3036     // check that cfg is still correct after optimizations
  3037     ir()->verify();
  3040   NOT_PRODUCT(print_lir(1, "Before Code Generation", false));
  3041   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_final));
  3042   NOT_PRODUCT(_total_timer.end_method(this));
  3046 // ********** Printing functions
  3048 #ifndef PRODUCT
  3050 void LinearScan::print_timers(double total) {
  3051   _total_timer.print(total);
  3054 void LinearScan::print_statistics() {
  3055   _stat_before_alloc.print("before allocation");
  3056   _stat_after_asign.print("after assignment of register");
  3057   _stat_final.print("after optimization");
  3060 void LinearScan::print_bitmap(BitMap& b) {
  3061   for (unsigned int i = 0; i < b.size(); i++) {
  3062     if (b.at(i)) tty->print("%d ", i);
  3064   tty->cr();
  3067 void LinearScan::print_intervals(const char* label) {
  3068   if (TraceLinearScanLevel >= 1) {
  3069     int i;
  3070     tty->cr();
  3071     tty->print_cr("%s", label);
  3073     for (i = 0; i < interval_count(); i++) {
  3074       Interval* interval = interval_at(i);
  3075       if (interval != NULL) {
  3076         interval->print();
  3080     tty->cr();
  3081     tty->print_cr("--- Basic Blocks ---");
  3082     for (i = 0; i < block_count(); i++) {
  3083       BlockBegin* block = block_at(i);
  3084       tty->print("B%d [%d, %d, %d, %d] ", block->block_id(), block->first_lir_instruction_id(), block->last_lir_instruction_id(), block->loop_index(), block->loop_depth());
  3086     tty->cr();
  3087     tty->cr();
  3090   if (PrintCFGToFile) {
  3091     CFGPrinter::print_intervals(&_intervals, label);
  3095 void LinearScan::print_lir(int level, const char* label, bool hir_valid) {
  3096   if (TraceLinearScanLevel >= level) {
  3097     tty->cr();
  3098     tty->print_cr("%s", label);
  3099     print_LIR(ir()->linear_scan_order());
  3100     tty->cr();
  3103   if (level == 1 && PrintCFGToFile) {
  3104     CFGPrinter::print_cfg(ir()->linear_scan_order(), label, hir_valid, true);
  3108 #endif //PRODUCT
  3111 // ********** verification functions for allocation
  3112 // (check that all intervals have a correct register and that no registers are overwritten)
  3113 #ifdef ASSERT
  3115 void LinearScan::verify() {
  3116   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying intervals ******************************************"));
  3117   verify_intervals();
  3119   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that no oops are in fixed intervals ****************"));
  3120   verify_no_oops_in_fixed_intervals();
  3122   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that unpinned constants are not alive across block boundaries"));
  3123   verify_constants();
  3125   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying register allocation ********************************"));
  3126   verify_registers();
  3128   TRACE_LINEAR_SCAN(2, tty->print_cr("********* no errors found **********************************************"));
  3131 void LinearScan::verify_intervals() {
  3132   int len = interval_count();
  3133   bool has_error = false;
  3135   for (int i = 0; i < len; i++) {
  3136     Interval* i1 = interval_at(i);
  3137     if (i1 == NULL) continue;
  3139     i1->check_split_children();
  3141     if (i1->reg_num() != i) {
  3142       tty->print_cr("Interval %d is on position %d in list", i1->reg_num(), i); i1->print(); tty->cr();
  3143       has_error = true;
  3146     if (i1->reg_num() >= LIR_OprDesc::vreg_base && i1->type() == T_ILLEGAL) {
  3147       tty->print_cr("Interval %d has no type assigned", i1->reg_num()); i1->print(); tty->cr();
  3148       has_error = true;
  3151     if (i1->assigned_reg() == any_reg) {
  3152       tty->print_cr("Interval %d has no register assigned", i1->reg_num()); i1->print(); tty->cr();
  3153       has_error = true;
  3156     if (i1->assigned_reg() == i1->assigned_regHi()) {
  3157       tty->print_cr("Interval %d: low and high register equal", i1->reg_num()); i1->print(); tty->cr();
  3158       has_error = true;
  3161     if (!is_processed_reg_num(i1->assigned_reg())) {
  3162       tty->print_cr("Can not have an Interval for an ignored register"); i1->print(); tty->cr();
  3163       has_error = true;
  3166     if (i1->first() == Range::end()) {
  3167       tty->print_cr("Interval %d has no Range", i1->reg_num()); i1->print(); tty->cr();
  3168       has_error = true;
  3171     for (Range* r = i1->first(); r != Range::end(); r = r->next()) {
  3172       if (r->from() >= r->to()) {
  3173         tty->print_cr("Interval %d has zero length range", i1->reg_num()); i1->print(); tty->cr();
  3174         has_error = true;
  3178     for (int j = i + 1; j < len; j++) {
  3179       Interval* i2 = interval_at(j);
  3180       if (i2 == NULL) continue;
  3182       // special intervals that are created in MoveResolver
  3183       // -> ignore them because the range information has no meaning there
  3184       if (i1->from() == 1 && i1->to() == 2) continue;
  3185       if (i2->from() == 1 && i2->to() == 2) continue;
  3187       int r1 = i1->assigned_reg();
  3188       int r1Hi = i1->assigned_regHi();
  3189       int r2 = i2->assigned_reg();
  3190       int r2Hi = i2->assigned_regHi();
  3191       if (i1->intersects(i2) && (r1 == r2 || r1 == r2Hi || (r1Hi != any_reg && (r1Hi == r2 || r1Hi == r2Hi)))) {
  3192         tty->print_cr("Intervals %d and %d overlap and have the same register assigned", i1->reg_num(), i2->reg_num());
  3193         i1->print(); tty->cr();
  3194         i2->print(); tty->cr();
  3195         has_error = true;
  3200   assert(has_error == false, "register allocation invalid");
  3204 void LinearScan::verify_no_oops_in_fixed_intervals() {
  3205   Interval* fixed_intervals;
  3206   Interval* other_intervals;
  3207   create_unhandled_lists(&fixed_intervals, &other_intervals, is_precolored_cpu_interval, NULL);
  3209   // to ensure a walking until the last instruction id, add a dummy interval
  3210   // with a high operation id
  3211   other_intervals = new Interval(any_reg);
  3212   other_intervals->add_range(max_jint - 2, max_jint - 1);
  3213   IntervalWalker* iw = new IntervalWalker(this, fixed_intervals, other_intervals);
  3215   LIR_OpVisitState visitor;
  3216   for (int i = 0; i < block_count(); i++) {
  3217     BlockBegin* block = block_at(i);
  3219     LIR_OpList* instructions = block->lir()->instructions_list();
  3221     for (int j = 0; j < instructions->length(); j++) {
  3222       LIR_Op* op = instructions->at(j);
  3223       int op_id = op->id();
  3225       visitor.visit(op);
  3227       if (visitor.info_count() > 0) {
  3228         iw->walk_before(op->id());
  3229         bool check_live = true;
  3230         if (op->code() == lir_move) {
  3231           LIR_Op1* move = (LIR_Op1*)op;
  3232           check_live = (move->patch_code() == lir_patch_none);
  3234         LIR_OpBranch* branch = op->as_OpBranch();
  3235         if (branch != NULL && branch->stub() != NULL && branch->stub()->is_exception_throw_stub()) {
  3236           // Don't bother checking the stub in this case since the
  3237           // exception stub will never return to normal control flow.
  3238           check_live = false;
  3241         // Make sure none of the fixed registers is live across an
  3242         // oopmap since we can't handle that correctly.
  3243         if (check_live) {
  3244           for (Interval* interval = iw->active_first(fixedKind);
  3245                interval != Interval::end();
  3246                interval = interval->next()) {
  3247             if (interval->current_to() > op->id() + 1) {
  3248               // This interval is live out of this op so make sure
  3249               // that this interval represents some value that's
  3250               // referenced by this op either as an input or output.
  3251               bool ok = false;
  3252               for_each_visitor_mode(mode) {
  3253                 int n = visitor.opr_count(mode);
  3254                 for (int k = 0; k < n; k++) {
  3255                   LIR_Opr opr = visitor.opr_at(mode, k);
  3256                   if (opr->is_fixed_cpu()) {
  3257                     if (interval_at(reg_num(opr)) == interval) {
  3258                       ok = true;
  3259                       break;
  3261                     int hi = reg_numHi(opr);
  3262                     if (hi != -1 && interval_at(hi) == interval) {
  3263                       ok = true;
  3264                       break;
  3269               assert(ok, "fixed intervals should never be live across an oopmap point");
  3275       // oop-maps at calls do not contain registers, so check is not needed
  3276       if (!visitor.has_call()) {
  3278         for_each_visitor_mode(mode) {
  3279           int n = visitor.opr_count(mode);
  3280           for (int k = 0; k < n; k++) {
  3281             LIR_Opr opr = visitor.opr_at(mode, k);
  3283             if (opr->is_fixed_cpu() && opr->is_oop()) {
  3284               // operand is a non-virtual cpu register and contains an oop
  3285               TRACE_LINEAR_SCAN(4, op->print_on(tty); tty->print("checking operand "); opr->print(); tty->cr());
  3287               Interval* interval = interval_at(reg_num(opr));
  3288               assert(interval != NULL, "no interval");
  3290               if (mode == LIR_OpVisitState::inputMode) {
  3291                 if (interval->to() >= op_id + 1) {
  3292                   assert(interval->to() < op_id + 2 ||
  3293                          interval->has_hole_between(op_id, op_id + 2),
  3294                          "oop input operand live after instruction");
  3296               } else if (mode == LIR_OpVisitState::outputMode) {
  3297                 if (interval->from() <= op_id - 1) {
  3298                   assert(interval->has_hole_between(op_id - 1, op_id),
  3299                          "oop input operand live after instruction");
  3311 void LinearScan::verify_constants() {
  3312   int num_regs = num_virtual_regs();
  3313   int size = live_set_size();
  3314   int num_blocks = block_count();
  3316   for (int i = 0; i < num_blocks; i++) {
  3317     BlockBegin* block = block_at(i);
  3318     BitMap live_at_edge = block->live_in();
  3320     // visit all registers where the live_at_edge bit is set
  3321     for (int r = (int)live_at_edge.get_next_one_offset(0, size); r < size; r = (int)live_at_edge.get_next_one_offset(r + 1, size)) {
  3322       TRACE_LINEAR_SCAN(4, tty->print("checking interval %d of block B%d", r, block->block_id()));
  3324       Value value = gen()->instruction_for_vreg(r);
  3326       assert(value != NULL, "all intervals live across block boundaries must have Value");
  3327       assert(value->operand()->is_register() && value->operand()->is_virtual(), "value must have virtual operand");
  3328       assert(value->operand()->vreg_number() == r, "register number must match");
  3329       // TKR assert(value->as_Constant() == NULL || value->is_pinned(), "only pinned constants can be alive accross block boundaries");
  3335 class RegisterVerifier: public StackObj {
  3336  private:
  3337   LinearScan*   _allocator;
  3338   BlockList     _work_list;      // all blocks that must be processed
  3339   IntervalsList _saved_states;   // saved information of previous check
  3341   // simplified access to methods of LinearScan
  3342   Compilation*  compilation() const              { return _allocator->compilation(); }
  3343   Interval*     interval_at(int reg_num) const   { return _allocator->interval_at(reg_num); }
  3344   int           reg_num(LIR_Opr opr) const       { return _allocator->reg_num(opr); }
  3346   // currently, only registers are processed
  3347   int           state_size()                     { return LinearScan::nof_regs; }
  3349   // accessors
  3350   IntervalList* state_for_block(BlockBegin* block) { return _saved_states.at(block->block_id()); }
  3351   void          set_state_for_block(BlockBegin* block, IntervalList* saved_state) { _saved_states.at_put(block->block_id(), saved_state); }
  3352   void          add_to_work_list(BlockBegin* block) { if (!_work_list.contains(block)) _work_list.append(block); }
  3354   // helper functions
  3355   IntervalList* copy(IntervalList* input_state);
  3356   void          state_put(IntervalList* input_state, int reg, Interval* interval);
  3357   bool          check_state(IntervalList* input_state, int reg, Interval* interval);
  3359   void process_block(BlockBegin* block);
  3360   void process_xhandler(XHandler* xhandler, IntervalList* input_state);
  3361   void process_successor(BlockBegin* block, IntervalList* input_state);
  3362   void process_operations(LIR_List* ops, IntervalList* input_state);
  3364  public:
  3365   RegisterVerifier(LinearScan* allocator)
  3366     : _allocator(allocator)
  3367     , _work_list(16)
  3368     , _saved_states(BlockBegin::number_of_blocks(), NULL)
  3369   { }
  3371   void verify(BlockBegin* start);
  3372 };
  3375 // entry function from LinearScan that starts the verification
  3376 void LinearScan::verify_registers() {
  3377   RegisterVerifier verifier(this);
  3378   verifier.verify(block_at(0));
  3382 void RegisterVerifier::verify(BlockBegin* start) {
  3383   // setup input registers (method arguments) for first block
  3384   IntervalList* input_state = new IntervalList(state_size(), NULL);
  3385   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
  3386   for (int n = 0; n < args->length(); n++) {
  3387     LIR_Opr opr = args->at(n);
  3388     if (opr->is_register()) {
  3389       Interval* interval = interval_at(reg_num(opr));
  3391       if (interval->assigned_reg() < state_size()) {
  3392         input_state->at_put(interval->assigned_reg(), interval);
  3394       if (interval->assigned_regHi() != LinearScan::any_reg && interval->assigned_regHi() < state_size()) {
  3395         input_state->at_put(interval->assigned_regHi(), interval);
  3400   set_state_for_block(start, input_state);
  3401   add_to_work_list(start);
  3403   // main loop for verification
  3404   do {
  3405     BlockBegin* block = _work_list.at(0);
  3406     _work_list.remove_at(0);
  3408     process_block(block);
  3409   } while (!_work_list.is_empty());
  3412 void RegisterVerifier::process_block(BlockBegin* block) {
  3413   TRACE_LINEAR_SCAN(2, tty->cr(); tty->print_cr("process_block B%d", block->block_id()));
  3415   // must copy state because it is modified
  3416   IntervalList* input_state = copy(state_for_block(block));
  3418   if (TraceLinearScanLevel >= 4) {
  3419     tty->print_cr("Input-State of intervals:");
  3420     tty->print("    ");
  3421     for (int i = 0; i < state_size(); i++) {
  3422       if (input_state->at(i) != NULL) {
  3423         tty->print(" %4d", input_state->at(i)->reg_num());
  3424       } else {
  3425         tty->print("   __");
  3428     tty->cr();
  3429     tty->cr();
  3432   // process all operations of the block
  3433   process_operations(block->lir(), input_state);
  3435   // iterate all successors
  3436   for (int i = 0; i < block->number_of_sux(); i++) {
  3437     process_successor(block->sux_at(i), input_state);
  3441 void RegisterVerifier::process_xhandler(XHandler* xhandler, IntervalList* input_state) {
  3442   TRACE_LINEAR_SCAN(2, tty->print_cr("process_xhandler B%d", xhandler->entry_block()->block_id()));
  3444   // must copy state because it is modified
  3445   input_state = copy(input_state);
  3447   if (xhandler->entry_code() != NULL) {
  3448     process_operations(xhandler->entry_code(), input_state);
  3450   process_successor(xhandler->entry_block(), input_state);
  3453 void RegisterVerifier::process_successor(BlockBegin* block, IntervalList* input_state) {
  3454   IntervalList* saved_state = state_for_block(block);
  3456   if (saved_state != NULL) {
  3457     // this block was already processed before.
  3458     // check if new input_state is consistent with saved_state
  3460     bool saved_state_correct = true;
  3461     for (int i = 0; i < state_size(); i++) {
  3462       if (input_state->at(i) != saved_state->at(i)) {
  3463         // current input_state and previous saved_state assume a different
  3464         // interval in this register -> assume that this register is invalid
  3465         if (saved_state->at(i) != NULL) {
  3466           // invalidate old calculation only if it assumed that
  3467           // register was valid. when the register was already invalid,
  3468           // then the old calculation was correct.
  3469           saved_state_correct = false;
  3470           saved_state->at_put(i, NULL);
  3472           TRACE_LINEAR_SCAN(4, tty->print_cr("process_successor B%d: invalidating slot %d", block->block_id(), i));
  3477     if (saved_state_correct) {
  3478       // already processed block with correct input_state
  3479       TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: previous visit already correct", block->block_id()));
  3480     } else {
  3481       // must re-visit this block
  3482       TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: must re-visit because input state changed", block->block_id()));
  3483       add_to_work_list(block);
  3486   } else {
  3487     // block was not processed before, so set initial input_state
  3488     TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: initial visit", block->block_id()));
  3490     set_state_for_block(block, copy(input_state));
  3491     add_to_work_list(block);
  3496 IntervalList* RegisterVerifier::copy(IntervalList* input_state) {
  3497   IntervalList* copy_state = new IntervalList(input_state->length());
  3498   copy_state->push_all(input_state);
  3499   return copy_state;
  3502 void RegisterVerifier::state_put(IntervalList* input_state, int reg, Interval* interval) {
  3503   if (reg != LinearScan::any_reg && reg < state_size()) {
  3504     if (interval != NULL) {
  3505       TRACE_LINEAR_SCAN(4, tty->print_cr("        reg[%d] = %d", reg, interval->reg_num()));
  3506     } else if (input_state->at(reg) != NULL) {
  3507       TRACE_LINEAR_SCAN(4, tty->print_cr("        reg[%d] = NULL", reg));
  3510     input_state->at_put(reg, interval);
  3514 bool RegisterVerifier::check_state(IntervalList* input_state, int reg, Interval* interval) {
  3515   if (reg != LinearScan::any_reg && reg < state_size()) {
  3516     if (input_state->at(reg) != interval) {
  3517       tty->print_cr("!! Error in register allocation: register %d does not contain interval %d", reg, interval->reg_num());
  3518       return true;
  3521   return false;
  3524 void RegisterVerifier::process_operations(LIR_List* ops, IntervalList* input_state) {
  3525   // visit all instructions of the block
  3526   LIR_OpVisitState visitor;
  3527   bool has_error = false;
  3529   for (int i = 0; i < ops->length(); i++) {
  3530     LIR_Op* op = ops->at(i);
  3531     visitor.visit(op);
  3533     TRACE_LINEAR_SCAN(4, op->print_on(tty));
  3535     // check if input operands are correct
  3536     int j;
  3537     int n = visitor.opr_count(LIR_OpVisitState::inputMode);
  3538     for (j = 0; j < n; j++) {
  3539       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, j);
  3540       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
  3541         Interval* interval = interval_at(reg_num(opr));
  3542         if (op->id() != -1) {
  3543           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::inputMode);
  3546         has_error |= check_state(input_state, interval->assigned_reg(),   interval->split_parent());
  3547         has_error |= check_state(input_state, interval->assigned_regHi(), interval->split_parent());
  3549         // When an operand is marked with is_last_use, then the fpu stack allocator
  3550         // removes the register from the fpu stack -> the register contains no value
  3551         if (opr->is_last_use()) {
  3552           state_put(input_state, interval->assigned_reg(),   NULL);
  3553           state_put(input_state, interval->assigned_regHi(), NULL);
  3558     // invalidate all caller save registers at calls
  3559     if (visitor.has_call()) {
  3560       for (j = 0; j < FrameMap::nof_caller_save_cpu_regs(); j++) {
  3561         state_put(input_state, reg_num(FrameMap::caller_save_cpu_reg_at(j)), NULL);
  3563       for (j = 0; j < FrameMap::nof_caller_save_fpu_regs; j++) {
  3564         state_put(input_state, reg_num(FrameMap::caller_save_fpu_reg_at(j)), NULL);
  3567 #ifdef X86
  3568       for (j = 0; j < FrameMap::nof_caller_save_xmm_regs; j++) {
  3569         state_put(input_state, reg_num(FrameMap::caller_save_xmm_reg_at(j)), NULL);
  3571 #endif
  3574     // process xhandler before output and temp operands
  3575     XHandlers* xhandlers = visitor.all_xhandler();
  3576     n = xhandlers->length();
  3577     for (int k = 0; k < n; k++) {
  3578       process_xhandler(xhandlers->handler_at(k), input_state);
  3581     // set temp operands (some operations use temp operands also as output operands, so can't set them NULL)
  3582     n = visitor.opr_count(LIR_OpVisitState::tempMode);
  3583     for (j = 0; j < n; j++) {
  3584       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, j);
  3585       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
  3586         Interval* interval = interval_at(reg_num(opr));
  3587         if (op->id() != -1) {
  3588           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::tempMode);
  3591         state_put(input_state, interval->assigned_reg(),   interval->split_parent());
  3592         state_put(input_state, interval->assigned_regHi(), interval->split_parent());
  3596     // set output operands
  3597     n = visitor.opr_count(LIR_OpVisitState::outputMode);
  3598     for (j = 0; j < n; j++) {
  3599       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, j);
  3600       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
  3601         Interval* interval = interval_at(reg_num(opr));
  3602         if (op->id() != -1) {
  3603           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::outputMode);
  3606         state_put(input_state, interval->assigned_reg(),   interval->split_parent());
  3607         state_put(input_state, interval->assigned_regHi(), interval->split_parent());
  3611   assert(has_error == false, "Error in register allocation");
  3614 #endif // ASSERT
  3618 // **** Implementation of MoveResolver ******************************
  3620 MoveResolver::MoveResolver(LinearScan* allocator) :
  3621   _allocator(allocator),
  3622   _multiple_reads_allowed(false),
  3623   _mapping_from(8),
  3624   _mapping_from_opr(8),
  3625   _mapping_to(8),
  3626   _insert_list(NULL),
  3627   _insert_idx(-1),
  3628   _insertion_buffer()
  3630   for (int i = 0; i < LinearScan::nof_regs; i++) {
  3631     _register_blocked[i] = 0;
  3633   DEBUG_ONLY(check_empty());
  3637 #ifdef ASSERT
  3639 void MoveResolver::check_empty() {
  3640   assert(_mapping_from.length() == 0 && _mapping_from_opr.length() == 0 && _mapping_to.length() == 0, "list must be empty before and after processing");
  3641   for (int i = 0; i < LinearScan::nof_regs; i++) {
  3642     assert(register_blocked(i) == 0, "register map must be empty before and after processing");
  3644   assert(_multiple_reads_allowed == false, "must have default value");
  3647 void MoveResolver::verify_before_resolve() {
  3648   assert(_mapping_from.length() == _mapping_from_opr.length(), "length must be equal");
  3649   assert(_mapping_from.length() == _mapping_to.length(), "length must be equal");
  3650   assert(_insert_list != NULL && _insert_idx != -1, "insert position not set");
  3652   int i, j;
  3653   if (!_multiple_reads_allowed) {
  3654     for (i = 0; i < _mapping_from.length(); i++) {
  3655       for (j = i + 1; j < _mapping_from.length(); j++) {
  3656         assert(_mapping_from.at(i) == NULL || _mapping_from.at(i) != _mapping_from.at(j), "cannot read from same interval twice");
  3661   for (i = 0; i < _mapping_to.length(); i++) {
  3662     for (j = i + 1; j < _mapping_to.length(); j++) {
  3663       assert(_mapping_to.at(i) != _mapping_to.at(j), "cannot write to same interval twice");
  3668   BitMap used_regs(LinearScan::nof_regs + allocator()->frame_map()->argcount() + allocator()->max_spills());
  3669   used_regs.clear();
  3670   if (!_multiple_reads_allowed) {
  3671     for (i = 0; i < _mapping_from.length(); i++) {
  3672       Interval* it = _mapping_from.at(i);
  3673       if (it != NULL) {
  3674         assert(!used_regs.at(it->assigned_reg()), "cannot read from same register twice");
  3675         used_regs.set_bit(it->assigned_reg());
  3677         if (it->assigned_regHi() != LinearScan::any_reg) {
  3678           assert(!used_regs.at(it->assigned_regHi()), "cannot read from same register twice");
  3679           used_regs.set_bit(it->assigned_regHi());
  3685   used_regs.clear();
  3686   for (i = 0; i < _mapping_to.length(); i++) {
  3687     Interval* it = _mapping_to.at(i);
  3688     assert(!used_regs.at(it->assigned_reg()), "cannot write to same register twice");
  3689     used_regs.set_bit(it->assigned_reg());
  3691     if (it->assigned_regHi() != LinearScan::any_reg) {
  3692       assert(!used_regs.at(it->assigned_regHi()), "cannot write to same register twice");
  3693       used_regs.set_bit(it->assigned_regHi());
  3697   used_regs.clear();
  3698   for (i = 0; i < _mapping_from.length(); i++) {
  3699     Interval* it = _mapping_from.at(i);
  3700     if (it != NULL && it->assigned_reg() >= LinearScan::nof_regs) {
  3701       used_regs.set_bit(it->assigned_reg());
  3704   for (i = 0; i < _mapping_to.length(); i++) {
  3705     Interval* it = _mapping_to.at(i);
  3706     assert(!used_regs.at(it->assigned_reg()) || it->assigned_reg() == _mapping_from.at(i)->assigned_reg(), "stack slots used in _mapping_from must be disjoint to _mapping_to");
  3710 #endif // ASSERT
  3713 // mark assigned_reg and assigned_regHi of the interval as blocked
  3714 void MoveResolver::block_registers(Interval* it) {
  3715   int reg = it->assigned_reg();
  3716   if (reg < LinearScan::nof_regs) {
  3717     assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used");
  3718     set_register_blocked(reg, 1);
  3720   reg = it->assigned_regHi();
  3721   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
  3722     assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used");
  3723     set_register_blocked(reg, 1);
  3727 // mark assigned_reg and assigned_regHi of the interval as unblocked
  3728 void MoveResolver::unblock_registers(Interval* it) {
  3729   int reg = it->assigned_reg();
  3730   if (reg < LinearScan::nof_regs) {
  3731     assert(register_blocked(reg) > 0, "register already marked as unused");
  3732     set_register_blocked(reg, -1);
  3734   reg = it->assigned_regHi();
  3735   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
  3736     assert(register_blocked(reg) > 0, "register already marked as unused");
  3737     set_register_blocked(reg, -1);
  3741 // check if assigned_reg and assigned_regHi of the to-interval are not blocked (or only blocked by from)
  3742 bool MoveResolver::save_to_process_move(Interval* from, Interval* to) {
  3743   int from_reg = -1;
  3744   int from_regHi = -1;
  3745   if (from != NULL) {
  3746     from_reg = from->assigned_reg();
  3747     from_regHi = from->assigned_regHi();
  3750   int reg = to->assigned_reg();
  3751   if (reg < LinearScan::nof_regs) {
  3752     if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) {
  3753       return false;
  3756   reg = to->assigned_regHi();
  3757   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
  3758     if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) {
  3759       return false;
  3763   return true;
  3767 void MoveResolver::create_insertion_buffer(LIR_List* list) {
  3768   assert(!_insertion_buffer.initialized(), "overwriting existing buffer");
  3769   _insertion_buffer.init(list);
  3772 void MoveResolver::append_insertion_buffer() {
  3773   if (_insertion_buffer.initialized()) {
  3774     _insertion_buffer.lir_list()->append(&_insertion_buffer);
  3776   assert(!_insertion_buffer.initialized(), "must be uninitialized now");
  3778   _insert_list = NULL;
  3779   _insert_idx = -1;
  3782 void MoveResolver::insert_move(Interval* from_interval, Interval* to_interval) {
  3783   assert(from_interval->reg_num() != to_interval->reg_num(), "from and to interval equal");
  3784   assert(from_interval->type() == to_interval->type(), "move between different types");
  3785   assert(_insert_list != NULL && _insert_idx != -1, "must setup insert position first");
  3786   assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer");
  3788   LIR_Opr from_opr = LIR_OprFact::virtual_register(from_interval->reg_num(), from_interval->type());
  3789   LIR_Opr to_opr = LIR_OprFact::virtual_register(to_interval->reg_num(), to_interval->type());
  3791   if (!_multiple_reads_allowed) {
  3792     // the last_use flag is an optimization for FPU stack allocation. When the same
  3793     // input interval is used in more than one move, then it is too difficult to determine
  3794     // if this move is really the last use.
  3795     from_opr = from_opr->make_last_use();
  3797   _insertion_buffer.move(_insert_idx, from_opr, to_opr);
  3799   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: inserted move from register %d (%d, %d) to %d (%d, %d)", from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
  3802 void MoveResolver::insert_move(LIR_Opr from_opr, Interval* to_interval) {
  3803   assert(from_opr->type() == to_interval->type(), "move between different types");
  3804   assert(_insert_list != NULL && _insert_idx != -1, "must setup insert position first");
  3805   assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer");
  3807   LIR_Opr to_opr = LIR_OprFact::virtual_register(to_interval->reg_num(), to_interval->type());
  3808   _insertion_buffer.move(_insert_idx, from_opr, to_opr);
  3810   TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: inserted move from constant "); from_opr->print(); tty->print_cr("  to %d (%d, %d)", to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
  3814 void MoveResolver::resolve_mappings() {
  3815   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: resolving mappings for Block B%d, index %d", _insert_list->block() != NULL ? _insert_list->block()->block_id() : -1, _insert_idx));
  3816   DEBUG_ONLY(verify_before_resolve());
  3818   // Block all registers that are used as input operands of a move.
  3819   // When a register is blocked, no move to this register is emitted.
  3820   // This is necessary for detecting cycles in moves.
  3821   int i;
  3822   for (i = _mapping_from.length() - 1; i >= 0; i--) {
  3823     Interval* from_interval = _mapping_from.at(i);
  3824     if (from_interval != NULL) {
  3825       block_registers(from_interval);
  3829   int spill_candidate = -1;
  3830   while (_mapping_from.length() > 0) {
  3831     bool processed_interval = false;
  3833     for (i = _mapping_from.length() - 1; i >= 0; i--) {
  3834       Interval* from_interval = _mapping_from.at(i);
  3835       Interval* to_interval = _mapping_to.at(i);
  3837       if (save_to_process_move(from_interval, to_interval)) {
  3838         // this inverval can be processed because target is free
  3839         if (from_interval != NULL) {
  3840           insert_move(from_interval, to_interval);
  3841           unblock_registers(from_interval);
  3842         } else {
  3843           insert_move(_mapping_from_opr.at(i), to_interval);
  3845         _mapping_from.remove_at(i);
  3846         _mapping_from_opr.remove_at(i);
  3847         _mapping_to.remove_at(i);
  3849         processed_interval = true;
  3850       } else if (from_interval != NULL && from_interval->assigned_reg() < LinearScan::nof_regs) {
  3851         // this interval cannot be processed now because target is not free
  3852         // it starts in a register, so it is a possible candidate for spilling
  3853         spill_candidate = i;
  3857     if (!processed_interval) {
  3858       // no move could be processed because there is a cycle in the move list
  3859       // (e.g. r1 -> r2, r2 -> r1), so one interval must be spilled to memory
  3860       assert(spill_candidate != -1, "no interval in register for spilling found");
  3862       // create a new spill interval and assign a stack slot to it
  3863       Interval* from_interval = _mapping_from.at(spill_candidate);
  3864       Interval* spill_interval = new Interval(-1);
  3865       spill_interval->set_type(from_interval->type());
  3867       // add a dummy range because real position is difficult to calculate
  3868       // Note: this range is a special case when the integrity of the allocation is checked
  3869       spill_interval->add_range(1, 2);
  3871       //       do not allocate a new spill slot for temporary interval, but
  3872       //       use spill slot assigned to from_interval. Otherwise moves from
  3873       //       one stack slot to another can happen (not allowed by LIR_Assembler
  3874       int spill_slot = from_interval->canonical_spill_slot();
  3875       if (spill_slot < 0) {
  3876         spill_slot = allocator()->allocate_spill_slot(type2spill_size[spill_interval->type()] == 2);
  3877         from_interval->set_canonical_spill_slot(spill_slot);
  3879       spill_interval->assign_reg(spill_slot);
  3880       allocator()->append_interval(spill_interval);
  3882       TRACE_LINEAR_SCAN(4, tty->print_cr("created new Interval %d for spilling", spill_interval->reg_num()));
  3884       // insert a move from register to stack and update the mapping
  3885       insert_move(from_interval, spill_interval);
  3886       _mapping_from.at_put(spill_candidate, spill_interval);
  3887       unblock_registers(from_interval);
  3891   // reset to default value
  3892   _multiple_reads_allowed = false;
  3894   // check that all intervals have been processed
  3895   DEBUG_ONLY(check_empty());
  3899 void MoveResolver::set_insert_position(LIR_List* insert_list, int insert_idx) {
  3900   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: setting insert position to Block B%d, index %d", insert_list->block() != NULL ? insert_list->block()->block_id() : -1, insert_idx));
  3901   assert(_insert_list == NULL && _insert_idx == -1, "use move_insert_position instead of set_insert_position when data already set");
  3903   create_insertion_buffer(insert_list);
  3904   _insert_list = insert_list;
  3905   _insert_idx = insert_idx;
  3908 void MoveResolver::move_insert_position(LIR_List* insert_list, int insert_idx) {
  3909   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: moving insert position to Block B%d, index %d", insert_list->block() != NULL ? insert_list->block()->block_id() : -1, insert_idx));
  3911   if (_insert_list != NULL && (insert_list != _insert_list || insert_idx != _insert_idx)) {
  3912     // insert position changed -> resolve current mappings
  3913     resolve_mappings();
  3916   if (insert_list != _insert_list) {
  3917     // block changed -> append insertion_buffer because it is
  3918     // bound to a specific block and create a new insertion_buffer
  3919     append_insertion_buffer();
  3920     create_insertion_buffer(insert_list);
  3923   _insert_list = insert_list;
  3924   _insert_idx = insert_idx;
  3927 void MoveResolver::add_mapping(Interval* from_interval, Interval* to_interval) {
  3928   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: adding mapping from %d (%d, %d) to %d (%d, %d)", from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
  3930   _mapping_from.append(from_interval);
  3931   _mapping_from_opr.append(LIR_OprFact::illegalOpr);
  3932   _mapping_to.append(to_interval);
  3936 void MoveResolver::add_mapping(LIR_Opr from_opr, Interval* to_interval) {
  3937   TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: adding mapping from "); from_opr->print(); tty->print_cr(" to %d (%d, %d)", to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
  3938   assert(from_opr->is_constant(), "only for constants");
  3940   _mapping_from.append(NULL);
  3941   _mapping_from_opr.append(from_opr);
  3942   _mapping_to.append(to_interval);
  3945 void MoveResolver::resolve_and_append_moves() {
  3946   if (has_mappings()) {
  3947     resolve_mappings();
  3949   append_insertion_buffer();
  3954 // **** Implementation of Range *************************************
  3956 Range::Range(int from, int to, Range* next) :
  3957   _from(from),
  3958   _to(to),
  3959   _next(next)
  3963 // initialize sentinel
  3964 Range* Range::_end = NULL;
  3965 void Range::initialize(Arena* arena) {
  3966   _end = new (arena) Range(max_jint, max_jint, NULL);
  3969 int Range::intersects_at(Range* r2) const {
  3970   const Range* r1 = this;
  3972   assert(r1 != NULL && r2 != NULL, "null ranges not allowed");
  3973   assert(r1 != _end && r2 != _end, "empty ranges not allowed");
  3975   do {
  3976     if (r1->from() < r2->from()) {
  3977       if (r1->to() <= r2->from()) {
  3978         r1 = r1->next(); if (r1 == _end) return -1;
  3979       } else {
  3980         return r2->from();
  3982     } else if (r2->from() < r1->from()) {
  3983       if (r2->to() <= r1->from()) {
  3984         r2 = r2->next(); if (r2 == _end) return -1;
  3985       } else {
  3986         return r1->from();
  3988     } else { // r1->from() == r2->from()
  3989       if (r1->from() == r1->to()) {
  3990         r1 = r1->next(); if (r1 == _end) return -1;
  3991       } else if (r2->from() == r2->to()) {
  3992         r2 = r2->next(); if (r2 == _end) return -1;
  3993       } else {
  3994         return r1->from();
  3997   } while (true);
  4000 #ifndef PRODUCT
  4001 void Range::print(outputStream* out) const {
  4002   out->print("[%d, %d[ ", _from, _to);
  4004 #endif
  4008 // **** Implementation of Interval **********************************
  4010 // initialize sentinel
  4011 Interval* Interval::_end = NULL;
  4012 void Interval::initialize(Arena* arena) {
  4013   Range::initialize(arena);
  4014   _end = new (arena) Interval(-1);
  4017 Interval::Interval(int reg_num) :
  4018   _reg_num(reg_num),
  4019   _type(T_ILLEGAL),
  4020   _first(Range::end()),
  4021   _use_pos_and_kinds(12),
  4022   _current(Range::end()),
  4023   _next(_end),
  4024   _state(invalidState),
  4025   _assigned_reg(LinearScan::any_reg),
  4026   _assigned_regHi(LinearScan::any_reg),
  4027   _cached_to(-1),
  4028   _cached_opr(LIR_OprFact::illegalOpr),
  4029   _cached_vm_reg(VMRegImpl::Bad()),
  4030   _split_children(0),
  4031   _canonical_spill_slot(-1),
  4032   _insert_move_when_activated(false),
  4033   _register_hint(NULL),
  4034   _spill_state(noDefinitionFound),
  4035   _spill_definition_pos(-1)
  4037   _split_parent = this;
  4038   _current_split_child = this;
  4041 int Interval::calc_to() {
  4042   assert(_first != Range::end(), "interval has no range");
  4044   Range* r = _first;
  4045   while (r->next() != Range::end()) {
  4046     r = r->next();
  4048   return r->to();
  4052 #ifdef ASSERT
  4053 // consistency check of split-children
  4054 void Interval::check_split_children() {
  4055   if (_split_children.length() > 0) {
  4056     assert(is_split_parent(), "only split parents can have children");
  4058     for (int i = 0; i < _split_children.length(); i++) {
  4059       Interval* i1 = _split_children.at(i);
  4061       assert(i1->split_parent() == this, "not a split child of this interval");
  4062       assert(i1->type() == type(), "must be equal for all split children");
  4063       assert(i1->canonical_spill_slot() == canonical_spill_slot(), "must be equal for all split children");
  4065       for (int j = i + 1; j < _split_children.length(); j++) {
  4066         Interval* i2 = _split_children.at(j);
  4068         assert(i1->reg_num() != i2->reg_num(), "same register number");
  4070         if (i1->from() < i2->from()) {
  4071           assert(i1->to() <= i2->from() && i1->to() < i2->to(), "intervals overlapping");
  4072         } else {
  4073           assert(i2->from() < i1->from(), "intervals start at same op_id");
  4074           assert(i2->to() <= i1->from() && i2->to() < i1->to(), "intervals overlapping");
  4080 #endif // ASSERT
  4082 Interval* Interval::register_hint(bool search_split_child) const {
  4083   if (!search_split_child) {
  4084     return _register_hint;
  4087   if (_register_hint != NULL) {
  4088     assert(_register_hint->is_split_parent(), "ony split parents are valid hint registers");
  4090     if (_register_hint->assigned_reg() >= 0 && _register_hint->assigned_reg() < LinearScan::nof_regs) {
  4091       return _register_hint;
  4093     } else if (_register_hint->_split_children.length() > 0) {
  4094       // search the first split child that has a register assigned
  4095       int len = _register_hint->_split_children.length();
  4096       for (int i = 0; i < len; i++) {
  4097         Interval* cur = _register_hint->_split_children.at(i);
  4099         if (cur->assigned_reg() >= 0 && cur->assigned_reg() < LinearScan::nof_regs) {
  4100           return cur;
  4106   // no hint interval found that has a register assigned
  4107   return NULL;
  4111 Interval* Interval::split_child_at_op_id(int op_id, LIR_OpVisitState::OprMode mode) {
  4112   assert(is_split_parent(), "can only be called for split parents");
  4113   assert(op_id >= 0, "invalid op_id (method can not be called for spill moves)");
  4115   Interval* result;
  4116   if (_split_children.length() == 0) {
  4117     result = this;
  4118   } else {
  4119     result = NULL;
  4120     int len = _split_children.length();
  4122     // in outputMode, the end of the interval (op_id == cur->to()) is not valid
  4123     int to_offset = (mode == LIR_OpVisitState::outputMode ? 0 : 1);
  4125     int i;
  4126     for (i = 0; i < len; i++) {
  4127       Interval* cur = _split_children.at(i);
  4128       if (cur->from() <= op_id && op_id < cur->to() + to_offset) {
  4129         if (i > 0) {
  4130           // exchange current split child to start of list (faster access for next call)
  4131           _split_children.at_put(i, _split_children.at(0));
  4132           _split_children.at_put(0, cur);
  4135         // interval found
  4136         result = cur;
  4137         break;
  4141 #ifdef ASSERT
  4142     for (i = 0; i < len; i++) {
  4143       Interval* tmp = _split_children.at(i);
  4144       if (tmp != result && tmp->from() <= op_id && op_id < tmp->to() + to_offset) {
  4145         tty->print_cr("two valid result intervals found for op_id %d: %d and %d", op_id, result->reg_num(), tmp->reg_num());
  4146         result->print();
  4147         tmp->print();
  4148         assert(false, "two valid result intervals found");
  4151 #endif
  4154   assert(result != NULL, "no matching interval found");
  4155   assert(result->covers(op_id, mode), "op_id not covered by interval");
  4157   return result;
  4161 // returns the last split child that ends before the given op_id
  4162 Interval* Interval::split_child_before_op_id(int op_id) {
  4163   assert(op_id >= 0, "invalid op_id");
  4165   Interval* parent = split_parent();
  4166   Interval* result = NULL;
  4168   int len = parent->_split_children.length();
  4169   assert(len > 0, "no split children available");
  4171   for (int i = len - 1; i >= 0; i--) {
  4172     Interval* cur = parent->_split_children.at(i);
  4173     if (cur->to() <= op_id && (result == NULL || result->to() < cur->to())) {
  4174       result = cur;
  4178   assert(result != NULL, "no split child found");
  4179   return result;
  4183 // checks if op_id is covered by any split child
  4184 bool Interval::split_child_covers(int op_id, LIR_OpVisitState::OprMode mode) {
  4185   assert(is_split_parent(), "can only be called for split parents");
  4186   assert(op_id >= 0, "invalid op_id (method can not be called for spill moves)");
  4188   if (_split_children.length() == 0) {
  4189     // simple case if interval was not split
  4190     return covers(op_id, mode);
  4192   } else {
  4193     // extended case: check all split children
  4194     int len = _split_children.length();
  4195     for (int i = 0; i < len; i++) {
  4196       Interval* cur = _split_children.at(i);
  4197       if (cur->covers(op_id, mode)) {
  4198         return true;
  4201     return false;
  4206 // Note: use positions are sorted descending -> first use has highest index
  4207 int Interval::first_usage(IntervalUseKind min_use_kind) const {
  4208   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
  4210   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
  4211     if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) {
  4212       return _use_pos_and_kinds.at(i);
  4215   return max_jint;
  4218 int Interval::next_usage(IntervalUseKind min_use_kind, int from) const {
  4219   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
  4221   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
  4222     if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) >= min_use_kind) {
  4223       return _use_pos_and_kinds.at(i);
  4226   return max_jint;
  4229 int Interval::next_usage_exact(IntervalUseKind exact_use_kind, int from) const {
  4230   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
  4232   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
  4233     if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) == exact_use_kind) {
  4234       return _use_pos_and_kinds.at(i);
  4237   return max_jint;
  4240 int Interval::previous_usage(IntervalUseKind min_use_kind, int from) const {
  4241   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
  4243   int prev = 0;
  4244   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
  4245     if (_use_pos_and_kinds.at(i) > from) {
  4246       return prev;
  4248     if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) {
  4249       prev = _use_pos_and_kinds.at(i);
  4252   return prev;
  4255 void Interval::add_use_pos(int pos, IntervalUseKind use_kind) {
  4256   assert(covers(pos, LIR_OpVisitState::inputMode), "use position not covered by live range");
  4258   // do not add use positions for precolored intervals because
  4259   // they are never used
  4260   if (use_kind != noUse && reg_num() >= LIR_OprDesc::vreg_base) {
  4261 #ifdef ASSERT
  4262     assert(_use_pos_and_kinds.length() % 2 == 0, "must be");
  4263     for (int i = 0; i < _use_pos_and_kinds.length(); i += 2) {
  4264       assert(pos <= _use_pos_and_kinds.at(i), "already added a use-position with lower position");
  4265       assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
  4266       if (i > 0) {
  4267         assert(_use_pos_and_kinds.at(i) < _use_pos_and_kinds.at(i - 2), "not sorted descending");
  4270 #endif
  4272     // Note: add_use is called in descending order, so list gets sorted
  4273     //       automatically by just appending new use positions
  4274     int len = _use_pos_and_kinds.length();
  4275     if (len == 0 || _use_pos_and_kinds.at(len - 2) > pos) {
  4276       _use_pos_and_kinds.append(pos);
  4277       _use_pos_and_kinds.append(use_kind);
  4278     } else if (_use_pos_and_kinds.at(len - 1) < use_kind) {
  4279       assert(_use_pos_and_kinds.at(len - 2) == pos, "list not sorted correctly");
  4280       _use_pos_and_kinds.at_put(len - 1, use_kind);
  4285 void Interval::add_range(int from, int to) {
  4286   assert(from < to, "invalid range");
  4287   assert(first() == Range::end() || to < first()->next()->from(), "not inserting at begin of interval");
  4288   assert(from <= first()->to(), "not inserting at begin of interval");
  4290   if (first()->from() <= to) {
  4291     // join intersecting ranges
  4292     first()->set_from(MIN2(from, first()->from()));
  4293     first()->set_to  (MAX2(to,   first()->to()));
  4294   } else {
  4295     // insert new range
  4296     _first = new Range(from, to, first());
  4300 Interval* Interval::new_split_child() {
  4301   // allocate new interval
  4302   Interval* result = new Interval(-1);
  4303   result->set_type(type());
  4305   Interval* parent = split_parent();
  4306   result->_split_parent = parent;
  4307   result->set_register_hint(parent);
  4309   // insert new interval in children-list of parent
  4310   if (parent->_split_children.length() == 0) {
  4311     assert(is_split_parent(), "list must be initialized at first split");
  4313     parent->_split_children = IntervalList(4);
  4314     parent->_split_children.append(this);
  4316   parent->_split_children.append(result);
  4318   return result;
  4321 // split this interval at the specified position and return
  4322 // the remainder as a new interval.
  4323 //
  4324 // when an interval is split, a bi-directional link is established between the original interval
  4325 // (the split parent) and the intervals that are split off this interval (the split children)
  4326 // When a split child is split again, the new created interval is also a direct child
  4327 // of the original parent (there is no tree of split children stored, but a flat list)
  4328 // All split children are spilled to the same stack slot (stored in _canonical_spill_slot)
  4329 //
  4330 // Note: The new interval has no valid reg_num
  4331 Interval* Interval::split(int split_pos) {
  4332   assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals");
  4334   // allocate new interval
  4335   Interval* result = new_split_child();
  4337   // split the ranges
  4338   Range* prev = NULL;
  4339   Range* cur = _first;
  4340   while (cur != Range::end() && cur->to() <= split_pos) {
  4341     prev = cur;
  4342     cur = cur->next();
  4344   assert(cur != Range::end(), "split interval after end of last range");
  4346   if (cur->from() < split_pos) {
  4347     result->_first = new Range(split_pos, cur->to(), cur->next());
  4348     cur->set_to(split_pos);
  4349     cur->set_next(Range::end());
  4351   } else {
  4352     assert(prev != NULL, "split before start of first range");
  4353     result->_first = cur;
  4354     prev->set_next(Range::end());
  4356   result->_current = result->_first;
  4357   _cached_to = -1; // clear cached value
  4359   // split list of use positions
  4360   int total_len = _use_pos_and_kinds.length();
  4361   int start_idx = total_len - 2;
  4362   while (start_idx >= 0 && _use_pos_and_kinds.at(start_idx) < split_pos) {
  4363     start_idx -= 2;
  4366   intStack new_use_pos_and_kinds(total_len - start_idx);
  4367   int i;
  4368   for (i = start_idx + 2; i < total_len; i++) {
  4369     new_use_pos_and_kinds.append(_use_pos_and_kinds.at(i));
  4372   _use_pos_and_kinds.truncate(start_idx + 2);
  4373   result->_use_pos_and_kinds = _use_pos_and_kinds;
  4374   _use_pos_and_kinds = new_use_pos_and_kinds;
  4376 #ifdef ASSERT
  4377   assert(_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos");
  4378   assert(result->_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos");
  4379   assert(_use_pos_and_kinds.length() + result->_use_pos_and_kinds.length() == total_len, "missed some entries");
  4381   for (i = 0; i < _use_pos_and_kinds.length(); i += 2) {
  4382     assert(_use_pos_and_kinds.at(i) < split_pos, "must be");
  4383     assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
  4385   for (i = 0; i < result->_use_pos_and_kinds.length(); i += 2) {
  4386     assert(result->_use_pos_and_kinds.at(i) >= split_pos, "must be");
  4387     assert(result->_use_pos_and_kinds.at(i + 1) >= firstValidKind && result->_use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
  4389 #endif
  4391   return result;
  4394 // split this interval at the specified position and return
  4395 // the head as a new interval (the original interval is the tail)
  4396 //
  4397 // Currently, only the first range can be split, and the new interval
  4398 // must not have split positions
  4399 Interval* Interval::split_from_start(int split_pos) {
  4400   assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals");
  4401   assert(split_pos > from() && split_pos < to(), "can only split inside interval");
  4402   assert(split_pos > _first->from() && split_pos <= _first->to(), "can only split inside first range");
  4403   assert(first_usage(noUse) > split_pos, "can not split when use positions are present");
  4405   // allocate new interval
  4406   Interval* result = new_split_child();
  4408   // the new created interval has only one range (checked by assertion above),
  4409   // so the splitting of the ranges is very simple
  4410   result->add_range(_first->from(), split_pos);
  4412   if (split_pos == _first->to()) {
  4413     assert(_first->next() != Range::end(), "must not be at end");
  4414     _first = _first->next();
  4415   } else {
  4416     _first->set_from(split_pos);
  4419   return result;
  4423 // returns true if the op_id is inside the interval
  4424 bool Interval::covers(int op_id, LIR_OpVisitState::OprMode mode) const {
  4425   Range* cur  = _first;
  4427   while (cur != Range::end() && cur->to() < op_id) {
  4428     cur = cur->next();
  4430   if (cur != Range::end()) {
  4431     assert(cur->to() != cur->next()->from(), "ranges not separated");
  4433     if (mode == LIR_OpVisitState::outputMode) {
  4434       return cur->from() <= op_id && op_id < cur->to();
  4435     } else {
  4436       return cur->from() <= op_id && op_id <= cur->to();
  4439   return false;
  4442 // returns true if the interval has any hole between hole_from and hole_to
  4443 // (even if the hole has only the length 1)
  4444 bool Interval::has_hole_between(int hole_from, int hole_to) {
  4445   assert(hole_from < hole_to, "check");
  4446   assert(from() <= hole_from && hole_to <= to(), "index out of interval");
  4448   Range* cur  = _first;
  4449   while (cur != Range::end()) {
  4450     assert(cur->to() < cur->next()->from(), "no space between ranges");
  4452     // hole-range starts before this range -> hole
  4453     if (hole_from < cur->from()) {
  4454       return true;
  4456     // hole-range completely inside this range -> no hole
  4457     } else if (hole_to <= cur->to()) {
  4458       return false;
  4460     // overlapping of hole-range with this range -> hole
  4461     } else if (hole_from <= cur->to()) {
  4462       return true;
  4465     cur = cur->next();
  4468   return false;
  4472 #ifndef PRODUCT
  4473 void Interval::print(outputStream* out) const {
  4474   const char* SpillState2Name[] = { "no definition", "no spill store", "one spill store", "store at definition", "start in memory", "no optimization" };
  4475   const char* UseKind2Name[] = { "N", "L", "S", "M" };
  4477   const char* type_name;
  4478   LIR_Opr opr = LIR_OprFact::illegal();
  4479   if (reg_num() < LIR_OprDesc::vreg_base) {
  4480     type_name = "fixed";
  4481     // need a temporary operand for fixed intervals because type() cannot be called
  4482     if (assigned_reg() >= pd_first_cpu_reg && assigned_reg() <= pd_last_cpu_reg) {
  4483       opr = LIR_OprFact::single_cpu(assigned_reg());
  4484     } else if (assigned_reg() >= pd_first_fpu_reg && assigned_reg() <= pd_last_fpu_reg) {
  4485       opr = LIR_OprFact::single_fpu(assigned_reg() - pd_first_fpu_reg);
  4486 #ifdef X86
  4487     } else if (assigned_reg() >= pd_first_xmm_reg && assigned_reg() <= pd_last_xmm_reg) {
  4488       opr = LIR_OprFact::single_xmm(assigned_reg() - pd_first_xmm_reg);
  4489 #endif
  4490     } else {
  4491       ShouldNotReachHere();
  4493   } else {
  4494     type_name = type2name(type());
  4495     if (assigned_reg() != -1) {
  4496       opr = LinearScan::calc_operand_for_interval(this);
  4500   out->print("%d %s ", reg_num(), type_name);
  4501   if (opr->is_valid()) {
  4502     out->print("\"");
  4503     opr->print(out);
  4504     out->print("\" ");
  4506   out->print("%d %d ", split_parent()->reg_num(), (register_hint(false) != NULL ? register_hint(false)->reg_num() : -1));
  4508   // print ranges
  4509   Range* cur = _first;
  4510   while (cur != Range::end()) {
  4511     cur->print(out);
  4512     cur = cur->next();
  4513     assert(cur != NULL, "range list not closed with range sentinel");
  4516   // print use positions
  4517   int prev = 0;
  4518   assert(_use_pos_and_kinds.length() % 2 == 0, "must be");
  4519   for (int i =_use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
  4520     assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
  4521     assert(prev < _use_pos_and_kinds.at(i), "use positions not sorted");
  4523     out->print("%d %s ", _use_pos_and_kinds.at(i), UseKind2Name[_use_pos_and_kinds.at(i + 1)]);
  4524     prev = _use_pos_and_kinds.at(i);
  4527   out->print(" \"%s\"", SpillState2Name[spill_state()]);
  4528   out->cr();
  4530 #endif
  4534 // **** Implementation of IntervalWalker ****************************
  4536 IntervalWalker::IntervalWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first)
  4537  : _compilation(allocator->compilation())
  4538  , _allocator(allocator)
  4540   _unhandled_first[fixedKind] = unhandled_fixed_first;
  4541   _unhandled_first[anyKind]   = unhandled_any_first;
  4542   _active_first[fixedKind]    = Interval::end();
  4543   _inactive_first[fixedKind]  = Interval::end();
  4544   _active_first[anyKind]      = Interval::end();
  4545   _inactive_first[anyKind]    = Interval::end();
  4546   _current_position = -1;
  4547   _current = NULL;
  4548   next_interval();
  4552 // append interval at top of list
  4553 void IntervalWalker::append_unsorted(Interval** list, Interval* interval) {
  4554   interval->set_next(*list); *list = interval;
  4558 // append interval in order of current range from()
  4559 void IntervalWalker::append_sorted(Interval** list, Interval* interval) {
  4560   Interval* prev = NULL;
  4561   Interval* cur  = *list;
  4562   while (cur->current_from() < interval->current_from()) {
  4563     prev = cur; cur = cur->next();
  4565   if (prev == NULL) {
  4566     *list = interval;
  4567   } else {
  4568     prev->set_next(interval);
  4570   interval->set_next(cur);
  4573 void IntervalWalker::append_to_unhandled(Interval** list, Interval* interval) {
  4574   assert(interval->from() >= current()->current_from(), "cannot append new interval before current walk position");
  4576   Interval* prev = NULL;
  4577   Interval* cur  = *list;
  4578   while (cur->from() < interval->from() || (cur->from() == interval->from() && cur->first_usage(noUse) < interval->first_usage(noUse))) {
  4579     prev = cur; cur = cur->next();
  4581   if (prev == NULL) {
  4582     *list = interval;
  4583   } else {
  4584     prev->set_next(interval);
  4586   interval->set_next(cur);
  4590 inline bool IntervalWalker::remove_from_list(Interval** list, Interval* i) {
  4591   while (*list != Interval::end() && *list != i) {
  4592     list = (*list)->next_addr();
  4594   if (*list != Interval::end()) {
  4595     assert(*list == i, "check");
  4596     *list = (*list)->next();
  4597     return true;
  4598   } else {
  4599     return false;
  4603 void IntervalWalker::remove_from_list(Interval* i) {
  4604   bool deleted;
  4606   if (i->state() == activeState) {
  4607     deleted = remove_from_list(active_first_addr(anyKind), i);
  4608   } else {
  4609     assert(i->state() == inactiveState, "invalid state");
  4610     deleted = remove_from_list(inactive_first_addr(anyKind), i);
  4613   assert(deleted, "interval has not been found in list");
  4617 void IntervalWalker::walk_to(IntervalState state, int from) {
  4618   assert (state == activeState || state == inactiveState, "wrong state");
  4619   for_each_interval_kind(kind) {
  4620     Interval** prev = state == activeState ? active_first_addr(kind) : inactive_first_addr(kind);
  4621     Interval* next   = *prev;
  4622     while (next->current_from() <= from) {
  4623       Interval* cur = next;
  4624       next = cur->next();
  4626       bool range_has_changed = false;
  4627       while (cur->current_to() <= from) {
  4628         cur->next_range();
  4629         range_has_changed = true;
  4632       // also handle move from inactive list to active list
  4633       range_has_changed = range_has_changed || (state == inactiveState && cur->current_from() <= from);
  4635       if (range_has_changed) {
  4636         // remove cur from list
  4637         *prev = next;
  4638         if (cur->current_at_end()) {
  4639           // move to handled state (not maintained as a list)
  4640           cur->set_state(handledState);
  4641           interval_moved(cur, kind, state, handledState);
  4642         } else if (cur->current_from() <= from){
  4643           // sort into active list
  4644           append_sorted(active_first_addr(kind), cur);
  4645           cur->set_state(activeState);
  4646           if (*prev == cur) {
  4647             assert(state == activeState, "check");
  4648             prev = cur->next_addr();
  4650           interval_moved(cur, kind, state, activeState);
  4651         } else {
  4652           // sort into inactive list
  4653           append_sorted(inactive_first_addr(kind), cur);
  4654           cur->set_state(inactiveState);
  4655           if (*prev == cur) {
  4656             assert(state == inactiveState, "check");
  4657             prev = cur->next_addr();
  4659           interval_moved(cur, kind, state, inactiveState);
  4661       } else {
  4662         prev = cur->next_addr();
  4663         continue;
  4670 void IntervalWalker::next_interval() {
  4671   IntervalKind kind;
  4672   Interval* any   = _unhandled_first[anyKind];
  4673   Interval* fixed = _unhandled_first[fixedKind];
  4675   if (any != Interval::end()) {
  4676     // intervals may start at same position -> prefer fixed interval
  4677     kind = fixed != Interval::end() && fixed->from() <= any->from() ? fixedKind : anyKind;
  4679     assert (kind == fixedKind && fixed->from() <= any->from() ||
  4680             kind == anyKind   && any->from() <= fixed->from(), "wrong interval!!!");
  4681     assert(any == Interval::end() || fixed == Interval::end() || any->from() != fixed->from() || kind == fixedKind, "if fixed and any-Interval start at same position, fixed must be processed first");
  4683   } else if (fixed != Interval::end()) {
  4684     kind = fixedKind;
  4685   } else {
  4686     _current = NULL; return;
  4688   _current_kind = kind;
  4689   _current = _unhandled_first[kind];
  4690   _unhandled_first[kind] = _current->next();
  4691   _current->set_next(Interval::end());
  4692   _current->rewind_range();
  4696 void IntervalWalker::walk_to(int lir_op_id) {
  4697   assert(_current_position <= lir_op_id, "can not walk backwards");
  4698   while (current() != NULL) {
  4699     bool is_active = current()->from() <= lir_op_id;
  4700     int id = is_active ? current()->from() : lir_op_id;
  4702     TRACE_LINEAR_SCAN(2, if (_current_position < id) { tty->cr(); tty->print_cr("walk_to(%d) **************************************************************", id); })
  4704     // set _current_position prior to call of walk_to
  4705     _current_position = id;
  4707     // call walk_to even if _current_position == id
  4708     walk_to(activeState, id);
  4709     walk_to(inactiveState, id);
  4711     if (is_active) {
  4712       current()->set_state(activeState);
  4713       if (activate_current()) {
  4714         append_sorted(active_first_addr(current_kind()), current());
  4715         interval_moved(current(), current_kind(), unhandledState, activeState);
  4718       next_interval();
  4719     } else {
  4720       return;
  4725 void IntervalWalker::interval_moved(Interval* interval, IntervalKind kind, IntervalState from, IntervalState to) {
  4726 #ifndef PRODUCT
  4727   if (TraceLinearScanLevel >= 4) {
  4728     #define print_state(state) \
  4729     switch(state) {\
  4730       case unhandledState: tty->print("unhandled"); break;\
  4731       case activeState: tty->print("active"); break;\
  4732       case inactiveState: tty->print("inactive"); break;\
  4733       case handledState: tty->print("handled"); break;\
  4734       default: ShouldNotReachHere(); \
  4737     print_state(from); tty->print(" to "); print_state(to);
  4738     tty->fill_to(23);
  4739     interval->print();
  4741     #undef print_state
  4743 #endif
  4748 // **** Implementation of LinearScanWalker **************************
  4750 LinearScanWalker::LinearScanWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first)
  4751   : IntervalWalker(allocator, unhandled_fixed_first, unhandled_any_first)
  4752   , _move_resolver(allocator)
  4754   for (int i = 0; i < LinearScan::nof_regs; i++) {
  4755     _spill_intervals[i] = new IntervalList(2);
  4760 inline void LinearScanWalker::init_use_lists(bool only_process_use_pos) {
  4761   for (int i = _first_reg; i <= _last_reg; i++) {
  4762     _use_pos[i] = max_jint;
  4764     if (!only_process_use_pos) {
  4765       _block_pos[i] = max_jint;
  4766       _spill_intervals[i]->clear();
  4771 inline void LinearScanWalker::exclude_from_use(int reg) {
  4772   assert(reg < LinearScan::nof_regs, "interval must have a register assigned (stack slots not allowed)");
  4773   if (reg >= _first_reg && reg <= _last_reg) {
  4774     _use_pos[reg] = 0;
  4777 inline void LinearScanWalker::exclude_from_use(Interval* i) {
  4778   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
  4780   exclude_from_use(i->assigned_reg());
  4781   exclude_from_use(i->assigned_regHi());
  4784 inline void LinearScanWalker::set_use_pos(int reg, Interval* i, int use_pos, bool only_process_use_pos) {
  4785   assert(use_pos != 0, "must use exclude_from_use to set use_pos to 0");
  4787   if (reg >= _first_reg && reg <= _last_reg) {
  4788     if (_use_pos[reg] > use_pos) {
  4789       _use_pos[reg] = use_pos;
  4791     if (!only_process_use_pos) {
  4792       _spill_intervals[reg]->append(i);
  4796 inline void LinearScanWalker::set_use_pos(Interval* i, int use_pos, bool only_process_use_pos) {
  4797   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
  4798   if (use_pos != -1) {
  4799     set_use_pos(i->assigned_reg(), i, use_pos, only_process_use_pos);
  4800     set_use_pos(i->assigned_regHi(), i, use_pos, only_process_use_pos);
  4804 inline void LinearScanWalker::set_block_pos(int reg, Interval* i, int block_pos) {
  4805   if (reg >= _first_reg && reg <= _last_reg) {
  4806     if (_block_pos[reg] > block_pos) {
  4807       _block_pos[reg] = block_pos;
  4809     if (_use_pos[reg] > block_pos) {
  4810       _use_pos[reg] = block_pos;
  4814 inline void LinearScanWalker::set_block_pos(Interval* i, int block_pos) {
  4815   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
  4816   if (block_pos != -1) {
  4817     set_block_pos(i->assigned_reg(), i, block_pos);
  4818     set_block_pos(i->assigned_regHi(), i, block_pos);
  4823 void LinearScanWalker::free_exclude_active_fixed() {
  4824   Interval* list = active_first(fixedKind);
  4825   while (list != Interval::end()) {
  4826     assert(list->assigned_reg() < LinearScan::nof_regs, "active interval must have a register assigned");
  4827     exclude_from_use(list);
  4828     list = list->next();
  4832 void LinearScanWalker::free_exclude_active_any() {
  4833   Interval* list = active_first(anyKind);
  4834   while (list != Interval::end()) {
  4835     exclude_from_use(list);
  4836     list = list->next();
  4840 void LinearScanWalker::free_collect_inactive_fixed(Interval* cur) {
  4841   Interval* list = inactive_first(fixedKind);
  4842   while (list != Interval::end()) {
  4843     if (cur->to() <= list->current_from()) {
  4844       assert(list->current_intersects_at(cur) == -1, "must not intersect");
  4845       set_use_pos(list, list->current_from(), true);
  4846     } else {
  4847       set_use_pos(list, list->current_intersects_at(cur), true);
  4849     list = list->next();
  4853 void LinearScanWalker::free_collect_inactive_any(Interval* cur) {
  4854   Interval* list = inactive_first(anyKind);
  4855   while (list != Interval::end()) {
  4856     set_use_pos(list, list->current_intersects_at(cur), true);
  4857     list = list->next();
  4861 void LinearScanWalker::free_collect_unhandled(IntervalKind kind, Interval* cur) {
  4862   Interval* list = unhandled_first(kind);
  4863   while (list != Interval::end()) {
  4864     set_use_pos(list, list->intersects_at(cur), true);
  4865     if (kind == fixedKind && cur->to() <= list->from()) {
  4866       set_use_pos(list, list->from(), true);
  4868     list = list->next();
  4872 void LinearScanWalker::spill_exclude_active_fixed() {
  4873   Interval* list = active_first(fixedKind);
  4874   while (list != Interval::end()) {
  4875     exclude_from_use(list);
  4876     list = list->next();
  4880 void LinearScanWalker::spill_block_unhandled_fixed(Interval* cur) {
  4881   Interval* list = unhandled_first(fixedKind);
  4882   while (list != Interval::end()) {
  4883     set_block_pos(list, list->intersects_at(cur));
  4884     list = list->next();
  4888 void LinearScanWalker::spill_block_inactive_fixed(Interval* cur) {
  4889   Interval* list = inactive_first(fixedKind);
  4890   while (list != Interval::end()) {
  4891     if (cur->to() > list->current_from()) {
  4892       set_block_pos(list, list->current_intersects_at(cur));
  4893     } else {
  4894       assert(list->current_intersects_at(cur) == -1, "invalid optimization: intervals intersect");
  4897     list = list->next();
  4901 void LinearScanWalker::spill_collect_active_any() {
  4902   Interval* list = active_first(anyKind);
  4903   while (list != Interval::end()) {
  4904     set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false);
  4905     list = list->next();
  4909 void LinearScanWalker::spill_collect_inactive_any(Interval* cur) {
  4910   Interval* list = inactive_first(anyKind);
  4911   while (list != Interval::end()) {
  4912     if (list->current_intersects(cur)) {
  4913       set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false);
  4915     list = list->next();
  4920 void LinearScanWalker::insert_move(int op_id, Interval* src_it, Interval* dst_it) {
  4921   // output all moves here. When source and target are equal, the move is
  4922   // optimized away later in assign_reg_nums
  4924   op_id = (op_id + 1) & ~1;
  4925   BlockBegin* op_block = allocator()->block_of_op_with_id(op_id);
  4926   assert(op_id > 0 && allocator()->block_of_op_with_id(op_id - 2) == op_block, "cannot insert move at block boundary");
  4928   // calculate index of instruction inside instruction list of current block
  4929   // the minimal index (for a block with no spill moves) can be calculated because the
  4930   // numbering of instructions is known.
  4931   // When the block already contains spill moves, the index must be increased until the
  4932   // correct index is reached.
  4933   LIR_OpList* list = op_block->lir()->instructions_list();
  4934   int index = (op_id - list->at(0)->id()) / 2;
  4935   assert(list->at(index)->id() <= op_id, "error in calculation");
  4937   while (list->at(index)->id() != op_id) {
  4938     index++;
  4939     assert(0 <= index && index < list->length(), "index out of bounds");
  4941   assert(1 <= index && index < list->length(), "index out of bounds");
  4942   assert(list->at(index)->id() == op_id, "error in calculation");
  4944   // insert new instruction before instruction at position index
  4945   _move_resolver.move_insert_position(op_block->lir(), index - 1);
  4946   _move_resolver.add_mapping(src_it, dst_it);
  4950 int LinearScanWalker::find_optimal_split_pos(BlockBegin* min_block, BlockBegin* max_block, int max_split_pos) {
  4951   int from_block_nr = min_block->linear_scan_number();
  4952   int to_block_nr = max_block->linear_scan_number();
  4954   assert(0 <= from_block_nr && from_block_nr < block_count(), "out of range");
  4955   assert(0 <= to_block_nr && to_block_nr < block_count(), "out of range");
  4956   assert(from_block_nr < to_block_nr, "must cross block boundary");
  4958   // Try to split at end of max_block. If this would be after
  4959   // max_split_pos, then use the begin of max_block
  4960   int optimal_split_pos = max_block->last_lir_instruction_id() + 2;
  4961   if (optimal_split_pos > max_split_pos) {
  4962     optimal_split_pos = max_block->first_lir_instruction_id();
  4965   int min_loop_depth = max_block->loop_depth();
  4966   for (int i = to_block_nr - 1; i >= from_block_nr; i--) {
  4967     BlockBegin* cur = block_at(i);
  4969     if (cur->loop_depth() < min_loop_depth) {
  4970       // block with lower loop-depth found -> split at the end of this block
  4971       min_loop_depth = cur->loop_depth();
  4972       optimal_split_pos = cur->last_lir_instruction_id() + 2;
  4975   assert(optimal_split_pos > allocator()->max_lir_op_id() || allocator()->is_block_begin(optimal_split_pos), "algorithm must move split pos to block boundary");
  4977   return optimal_split_pos;
  4981 int LinearScanWalker::find_optimal_split_pos(Interval* it, int min_split_pos, int max_split_pos, bool do_loop_optimization) {
  4982   int optimal_split_pos = -1;
  4983   if (min_split_pos == max_split_pos) {
  4984     // trivial case, no optimization of split position possible
  4985     TRACE_LINEAR_SCAN(4, tty->print_cr("      min-pos and max-pos are equal, no optimization possible"));
  4986     optimal_split_pos = min_split_pos;
  4988   } else {
  4989     assert(min_split_pos < max_split_pos, "must be true then");
  4990     assert(min_split_pos > 0, "cannot access min_split_pos - 1 otherwise");
  4992     // reason for using min_split_pos - 1: when the minimal split pos is exactly at the
  4993     // beginning of a block, then min_split_pos is also a possible split position.
  4994     // Use the block before as min_block, because then min_block->last_lir_instruction_id() + 2 == min_split_pos
  4995     BlockBegin* min_block = allocator()->block_of_op_with_id(min_split_pos - 1);
  4997     // reason for using max_split_pos - 1: otherwise there would be an assertion failure
  4998     // when an interval ends at the end of the last block of the method
  4999     // (in this case, max_split_pos == allocator()->max_lir_op_id() + 2, and there is no
  5000     // block at this op_id)
  5001     BlockBegin* max_block = allocator()->block_of_op_with_id(max_split_pos - 1);
  5003     assert(min_block->linear_scan_number() <= max_block->linear_scan_number(), "invalid order");
  5004     if (min_block == max_block) {
  5005       // split position cannot be moved to block boundary, so split as late as possible
  5006       TRACE_LINEAR_SCAN(4, tty->print_cr("      cannot move split pos to block boundary because min_pos and max_pos are in same block"));
  5007       optimal_split_pos = max_split_pos;
  5009     } else if (it->has_hole_between(max_split_pos - 1, max_split_pos) && !allocator()->is_block_begin(max_split_pos)) {
  5010       // Do not move split position if the interval has a hole before max_split_pos.
  5011       // Intervals resulting from Phi-Functions have more than one definition (marked
  5012       // as mustHaveRegister) with a hole before each definition. When the register is needed
  5013       // for the second definition, an earlier reloading is unnecessary.
  5014       TRACE_LINEAR_SCAN(4, tty->print_cr("      interval has hole just before max_split_pos, so splitting at max_split_pos"));
  5015       optimal_split_pos = max_split_pos;
  5017     } else {
  5018       // seach optimal block boundary between min_split_pos and max_split_pos
  5019       TRACE_LINEAR_SCAN(4, tty->print_cr("      moving split pos to optimal block boundary between block B%d and B%d", min_block->block_id(), max_block->block_id()));
  5021       if (do_loop_optimization) {
  5022         // Loop optimization: if a loop-end marker is found between min- and max-position,
  5023         // then split before this loop
  5024         int loop_end_pos = it->next_usage_exact(loopEndMarker, min_block->last_lir_instruction_id() + 2);
  5025         TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization: loop end found at pos %d", loop_end_pos));
  5027         assert(loop_end_pos > min_split_pos, "invalid order");
  5028         if (loop_end_pos < max_split_pos) {
  5029           // loop-end marker found between min- and max-position
  5030           // if it is not the end marker for the same loop as the min-position, then move
  5031           // the max-position to this loop block.
  5032           // Desired result: uses tagged as shouldHaveRegister inside a loop cause a reloading
  5033           // of the interval (normally, only mustHaveRegister causes a reloading)
  5034           BlockBegin* loop_block = allocator()->block_of_op_with_id(loop_end_pos);
  5036           TRACE_LINEAR_SCAN(4, tty->print_cr("      interval is used in loop that ends in block B%d, so trying to move max_block back from B%d to B%d", loop_block->block_id(), max_block->block_id(), loop_block->block_id()));
  5037           assert(loop_block != min_block, "loop_block and min_block must be different because block boundary is needed between");
  5039           optimal_split_pos = find_optimal_split_pos(min_block, loop_block, loop_block->last_lir_instruction_id() + 2);
  5040           if (optimal_split_pos == loop_block->last_lir_instruction_id() + 2) {
  5041             optimal_split_pos = -1;
  5042             TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization not necessary"));
  5043           } else {
  5044             TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization successful"));
  5049       if (optimal_split_pos == -1) {
  5050         // not calculated by loop optimization
  5051         optimal_split_pos = find_optimal_split_pos(min_block, max_block, max_split_pos);
  5055   TRACE_LINEAR_SCAN(4, tty->print_cr("      optimal split position: %d", optimal_split_pos));
  5057   return optimal_split_pos;
  5061 /*
  5062   split an interval at the optimal position between min_split_pos and
  5063   max_split_pos in two parts:
  5064   1) the left part has already a location assigned
  5065   2) the right part is sorted into to the unhandled-list
  5066 */
  5067 void LinearScanWalker::split_before_usage(Interval* it, int min_split_pos, int max_split_pos) {
  5068   TRACE_LINEAR_SCAN(2, tty->print   ("----- splitting interval: "); it->print());
  5069   TRACE_LINEAR_SCAN(2, tty->print_cr("      between %d and %d", min_split_pos, max_split_pos));
  5071   assert(it->from() < min_split_pos,         "cannot split at start of interval");
  5072   assert(current_position() < min_split_pos, "cannot split before current position");
  5073   assert(min_split_pos <= max_split_pos,     "invalid order");
  5074   assert(max_split_pos <= it->to(),          "cannot split after end of interval");
  5076   int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, true);
  5078   assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range");
  5079   assert(optimal_split_pos <= it->to(),  "cannot split after end of interval");
  5080   assert(optimal_split_pos > it->from(), "cannot split at start of interval");
  5082   if (optimal_split_pos == it->to() && it->next_usage(mustHaveRegister, min_split_pos) == max_jint) {
  5083     // the split position would be just before the end of the interval
  5084     // -> no split at all necessary
  5085     TRACE_LINEAR_SCAN(4, tty->print_cr("      no split necessary because optimal split position is at end of interval"));
  5086     return;
  5089   // must calculate this before the actual split is performed and before split position is moved to odd op_id
  5090   bool move_necessary = !allocator()->is_block_begin(optimal_split_pos) && !it->has_hole_between(optimal_split_pos - 1, optimal_split_pos);
  5092   if (!allocator()->is_block_begin(optimal_split_pos)) {
  5093     // move position before actual instruction (odd op_id)
  5094     optimal_split_pos = (optimal_split_pos - 1) | 1;
  5097   TRACE_LINEAR_SCAN(4, tty->print_cr("      splitting at position %d", optimal_split_pos));
  5098   assert(allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary");
  5099   assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary");
  5101   Interval* split_part = it->split(optimal_split_pos);
  5103   allocator()->append_interval(split_part);
  5104   allocator()->copy_register_flags(it, split_part);
  5105   split_part->set_insert_move_when_activated(move_necessary);
  5106   append_to_unhandled(unhandled_first_addr(anyKind), split_part);
  5108   TRACE_LINEAR_SCAN(2, tty->print_cr("      split interval in two parts (insert_move_when_activated: %d)", move_necessary));
  5109   TRACE_LINEAR_SCAN(2, tty->print   ("      "); it->print());
  5110   TRACE_LINEAR_SCAN(2, tty->print   ("      "); split_part->print());
  5113 /*
  5114   split an interval at the optimal position between min_split_pos and
  5115   max_split_pos in two parts:
  5116   1) the left part has already a location assigned
  5117   2) the right part is always on the stack and therefore ignored in further processing
  5118 */
  5119 void LinearScanWalker::split_for_spilling(Interval* it) {
  5120   // calculate allowed range of splitting position
  5121   int max_split_pos = current_position();
  5122   int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, max_split_pos) + 1, it->from());
  5124   TRACE_LINEAR_SCAN(2, tty->print   ("----- splitting and spilling interval: "); it->print());
  5125   TRACE_LINEAR_SCAN(2, tty->print_cr("      between %d and %d", min_split_pos, max_split_pos));
  5127   assert(it->state() == activeState,     "why spill interval that is not active?");
  5128   assert(it->from() <= min_split_pos,    "cannot split before start of interval");
  5129   assert(min_split_pos <= max_split_pos, "invalid order");
  5130   assert(max_split_pos < it->to(),       "cannot split at end end of interval");
  5131   assert(current_position() < it->to(),  "interval must not end before current position");
  5133   if (min_split_pos == it->from()) {
  5134     // the whole interval is never used, so spill it entirely to memory
  5135     TRACE_LINEAR_SCAN(2, tty->print_cr("      spilling entire interval because split pos is at beginning of interval"));
  5136     assert(it->first_usage(shouldHaveRegister) > current_position(), "interval must not have use position before current_position");
  5138     allocator()->assign_spill_slot(it);
  5139     allocator()->change_spill_state(it, min_split_pos);
  5141     // Also kick parent intervals out of register to memory when they have no use
  5142     // position. This avoids short interval in register surrounded by intervals in
  5143     // memory -> avoid useless moves from memory to register and back
  5144     Interval* parent = it;
  5145     while (parent != NULL && parent->is_split_child()) {
  5146       parent = parent->split_child_before_op_id(parent->from());
  5148       if (parent->assigned_reg() < LinearScan::nof_regs) {
  5149         if (parent->first_usage(shouldHaveRegister) == max_jint) {
  5150           // parent is never used, so kick it out of its assigned register
  5151           TRACE_LINEAR_SCAN(4, tty->print_cr("      kicking out interval %d out of its register because it is never used", parent->reg_num()));
  5152           allocator()->assign_spill_slot(parent);
  5153         } else {
  5154           // do not go further back because the register is actually used by the interval
  5155           parent = NULL;
  5160   } else {
  5161     // search optimal split pos, split interval and spill only the right hand part
  5162     int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, false);
  5164     assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range");
  5165     assert(optimal_split_pos < it->to(), "cannot split at end of interval");
  5166     assert(optimal_split_pos >= it->from(), "cannot split before start of interval");
  5168     if (!allocator()->is_block_begin(optimal_split_pos)) {
  5169       // move position before actual instruction (odd op_id)
  5170       optimal_split_pos = (optimal_split_pos - 1) | 1;
  5173     TRACE_LINEAR_SCAN(4, tty->print_cr("      splitting at position %d", optimal_split_pos));
  5174     assert(allocator()->is_block_begin(optimal_split_pos)  || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary");
  5175     assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary");
  5177     Interval* spilled_part = it->split(optimal_split_pos);
  5178     allocator()->append_interval(spilled_part);
  5179     allocator()->assign_spill_slot(spilled_part);
  5180     allocator()->change_spill_state(spilled_part, optimal_split_pos);
  5182     if (!allocator()->is_block_begin(optimal_split_pos)) {
  5183       TRACE_LINEAR_SCAN(4, tty->print_cr("      inserting move from interval %d to %d", it->reg_num(), spilled_part->reg_num()));
  5184       insert_move(optimal_split_pos, it, spilled_part);
  5187     // the current_split_child is needed later when moves are inserted for reloading
  5188     assert(spilled_part->current_split_child() == it, "overwriting wrong current_split_child");
  5189     spilled_part->make_current_split_child();
  5191     TRACE_LINEAR_SCAN(2, tty->print_cr("      split interval in two parts"));
  5192     TRACE_LINEAR_SCAN(2, tty->print   ("      "); it->print());
  5193     TRACE_LINEAR_SCAN(2, tty->print   ("      "); spilled_part->print());
  5198 void LinearScanWalker::split_stack_interval(Interval* it) {
  5199   int min_split_pos = current_position() + 1;
  5200   int max_split_pos = MIN2(it->first_usage(shouldHaveRegister), it->to());
  5202   split_before_usage(it, min_split_pos, max_split_pos);
  5205 void LinearScanWalker::split_when_partial_register_available(Interval* it, int register_available_until) {
  5206   int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, register_available_until), it->from() + 1);
  5207   int max_split_pos = register_available_until;
  5209   split_before_usage(it, min_split_pos, max_split_pos);
  5212 void LinearScanWalker::split_and_spill_interval(Interval* it) {
  5213   assert(it->state() == activeState || it->state() == inactiveState, "other states not allowed");
  5215   int current_pos = current_position();
  5216   if (it->state() == inactiveState) {
  5217     // the interval is currently inactive, so no spill slot is needed for now.
  5218     // when the split part is activated, the interval has a new chance to get a register,
  5219     // so in the best case no stack slot is necessary
  5220     assert(it->has_hole_between(current_pos - 1, current_pos + 1), "interval can not be inactive otherwise");
  5221     split_before_usage(it, current_pos + 1, current_pos + 1);
  5223   } else {
  5224     // search the position where the interval must have a register and split
  5225     // at the optimal position before.
  5226     // The new created part is added to the unhandled list and will get a register
  5227     // when it is activated
  5228     int min_split_pos = current_pos + 1;
  5229     int max_split_pos = MIN2(it->next_usage(mustHaveRegister, min_split_pos), it->to());
  5231     split_before_usage(it, min_split_pos, max_split_pos);
  5233     assert(it->next_usage(mustHaveRegister, current_pos) == max_jint, "the remaining part is spilled to stack and therefore has no register");
  5234     split_for_spilling(it);
  5239 int LinearScanWalker::find_free_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split) {
  5240   int min_full_reg = any_reg;
  5241   int max_partial_reg = any_reg;
  5243   for (int i = _first_reg; i <= _last_reg; i++) {
  5244     if (i == ignore_reg) {
  5245       // this register must be ignored
  5247     } else if (_use_pos[i] >= interval_to) {
  5248       // this register is free for the full interval
  5249       if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) {
  5250         min_full_reg = i;
  5252     } else if (_use_pos[i] > reg_needed_until) {
  5253       // this register is at least free until reg_needed_until
  5254       if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) {
  5255         max_partial_reg = i;
  5260   if (min_full_reg != any_reg) {
  5261     return min_full_reg;
  5262   } else if (max_partial_reg != any_reg) {
  5263     *need_split = true;
  5264     return max_partial_reg;
  5265   } else {
  5266     return any_reg;
  5270 int LinearScanWalker::find_free_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split) {
  5271   assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm");
  5273   int min_full_reg = any_reg;
  5274   int max_partial_reg = any_reg;
  5276   for (int i = _first_reg; i < _last_reg; i+=2) {
  5277     if (_use_pos[i] >= interval_to && _use_pos[i + 1] >= interval_to) {
  5278       // this register is free for the full interval
  5279       if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) {
  5280         min_full_reg = i;
  5282     } else if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) {
  5283       // this register is at least free until reg_needed_until
  5284       if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) {
  5285         max_partial_reg = i;
  5290   if (min_full_reg != any_reg) {
  5291     return min_full_reg;
  5292   } else if (max_partial_reg != any_reg) {
  5293     *need_split = true;
  5294     return max_partial_reg;
  5295   } else {
  5296     return any_reg;
  5301 bool LinearScanWalker::alloc_free_reg(Interval* cur) {
  5302   TRACE_LINEAR_SCAN(2, tty->print("trying to find free register for "); cur->print());
  5304   init_use_lists(true);
  5305   free_exclude_active_fixed();
  5306   free_exclude_active_any();
  5307   free_collect_inactive_fixed(cur);
  5308   free_collect_inactive_any(cur);
  5309 //  free_collect_unhandled(fixedKind, cur);
  5310   assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0");
  5312   // _use_pos contains the start of the next interval that has this register assigned
  5313   // (either as a fixed register or a normal allocated register in the past)
  5314   // only intervals overlapping with cur are processed, non-overlapping invervals can be ignored safely
  5315   TRACE_LINEAR_SCAN(4, tty->print_cr("      state of registers:"));
  5316   TRACE_LINEAR_SCAN(4, for (int i = _first_reg; i <= _last_reg; i++) tty->print_cr("      reg %d: use_pos: %d", i, _use_pos[i]));
  5318   int hint_reg, hint_regHi;
  5319   Interval* register_hint = cur->register_hint();
  5320   if (register_hint != NULL) {
  5321     hint_reg = register_hint->assigned_reg();
  5322     hint_regHi = register_hint->assigned_regHi();
  5324     if (allocator()->is_precolored_cpu_interval(register_hint)) {
  5325       assert(hint_reg != any_reg && hint_regHi == any_reg, "must be for fixed intervals");
  5326       hint_regHi = hint_reg + 1;  // connect e.g. eax-edx
  5328     TRACE_LINEAR_SCAN(4, tty->print("      hint registers %d, %d from interval ", hint_reg, hint_regHi); register_hint->print());
  5330   } else {
  5331     hint_reg = any_reg;
  5332     hint_regHi = any_reg;
  5334   assert(hint_reg == any_reg || hint_reg != hint_regHi, "hint reg and regHi equal");
  5335   assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned to interval");
  5337   // the register must be free at least until this position
  5338   int reg_needed_until = cur->from() + 1;
  5339   int interval_to = cur->to();
  5341   bool need_split = false;
  5342   int split_pos = -1;
  5343   int reg = any_reg;
  5344   int regHi = any_reg;
  5346   if (_adjacent_regs) {
  5347     reg = find_free_double_reg(reg_needed_until, interval_to, hint_reg, &need_split);
  5348     regHi = reg + 1;
  5349     if (reg == any_reg) {
  5350       return false;
  5352     split_pos = MIN2(_use_pos[reg], _use_pos[regHi]);
  5354   } else {
  5355     reg = find_free_reg(reg_needed_until, interval_to, hint_reg, any_reg, &need_split);
  5356     if (reg == any_reg) {
  5357       return false;
  5359     split_pos = _use_pos[reg];
  5361     if (_num_phys_regs == 2) {
  5362       regHi = find_free_reg(reg_needed_until, interval_to, hint_regHi, reg, &need_split);
  5364       if (_use_pos[reg] < interval_to && regHi == any_reg) {
  5365         // do not split interval if only one register can be assigned until the split pos
  5366         // (when one register is found for the whole interval, split&spill is only
  5367         // performed for the hi register)
  5368         return false;
  5370       } else if (regHi != any_reg) {
  5371         split_pos = MIN2(split_pos, _use_pos[regHi]);
  5373         // sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax
  5374         if (reg > regHi) {
  5375           int temp = reg;
  5376           reg = regHi;
  5377           regHi = temp;
  5383   cur->assign_reg(reg, regHi);
  5384   TRACE_LINEAR_SCAN(2, tty->print_cr("selected register %d, %d", reg, regHi));
  5386   assert(split_pos > 0, "invalid split_pos");
  5387   if (need_split) {
  5388     // register not available for full interval, so split it
  5389     split_when_partial_register_available(cur, split_pos);
  5392   // only return true if interval is completely assigned
  5393   return _num_phys_regs == 1 || regHi != any_reg;
  5397 int LinearScanWalker::find_locked_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split) {
  5398   int max_reg = any_reg;
  5400   for (int i = _first_reg; i <= _last_reg; i++) {
  5401     if (i == ignore_reg) {
  5402       // this register must be ignored
  5404     } else if (_use_pos[i] > reg_needed_until) {
  5405       if (max_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_reg] && max_reg != hint_reg)) {
  5406         max_reg = i;
  5411   if (max_reg != any_reg && _block_pos[max_reg] <= interval_to) {
  5412     *need_split = true;
  5415   return max_reg;
  5418 int LinearScanWalker::find_locked_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split) {
  5419   assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm");
  5421   int max_reg = any_reg;
  5423   for (int i = _first_reg; i < _last_reg; i+=2) {
  5424     if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) {
  5425       if (max_reg == any_reg || _use_pos[i] > _use_pos[max_reg]) {
  5426         max_reg = i;
  5431   if (_block_pos[max_reg] <= interval_to || _block_pos[max_reg + 1] <= interval_to) {
  5432     *need_split = true;
  5435   return max_reg;
  5438 void LinearScanWalker::split_and_spill_intersecting_intervals(int reg, int regHi) {
  5439   assert(reg != any_reg, "no register assigned");
  5441   for (int i = 0; i < _spill_intervals[reg]->length(); i++) {
  5442     Interval* it = _spill_intervals[reg]->at(i);
  5443     remove_from_list(it);
  5444     split_and_spill_interval(it);
  5447   if (regHi != any_reg) {
  5448     IntervalList* processed = _spill_intervals[reg];
  5449     for (int i = 0; i < _spill_intervals[regHi]->length(); i++) {
  5450       Interval* it = _spill_intervals[regHi]->at(i);
  5451       if (processed->index_of(it) == -1) {
  5452         remove_from_list(it);
  5453         split_and_spill_interval(it);
  5460 // Split an Interval and spill it to memory so that cur can be placed in a register
  5461 void LinearScanWalker::alloc_locked_reg(Interval* cur) {
  5462   TRACE_LINEAR_SCAN(2, tty->print("need to split and spill to get register for "); cur->print());
  5464   // collect current usage of registers
  5465   init_use_lists(false);
  5466   spill_exclude_active_fixed();
  5467 //  spill_block_unhandled_fixed(cur);
  5468   assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0");
  5469   spill_block_inactive_fixed(cur);
  5470   spill_collect_active_any();
  5471   spill_collect_inactive_any(cur);
  5473 #ifndef PRODUCT
  5474   if (TraceLinearScanLevel >= 4) {
  5475     tty->print_cr("      state of registers:");
  5476     for (int i = _first_reg; i <= _last_reg; i++) {
  5477       tty->print("      reg %d: use_pos: %d, block_pos: %d, intervals: ", i, _use_pos[i], _block_pos[i]);
  5478       for (int j = 0; j < _spill_intervals[i]->length(); j++) {
  5479         tty->print("%d ", _spill_intervals[i]->at(j)->reg_num());
  5481       tty->cr();
  5484 #endif
  5486   // the register must be free at least until this position
  5487   int reg_needed_until = MIN2(cur->first_usage(mustHaveRegister), cur->from() + 1);
  5488   int interval_to = cur->to();
  5489   assert (reg_needed_until > 0 && reg_needed_until < max_jint, "interval has no use");
  5491   int split_pos = 0;
  5492   int use_pos = 0;
  5493   bool need_split = false;
  5494   int reg, regHi;
  5496   if (_adjacent_regs) {
  5497     reg = find_locked_double_reg(reg_needed_until, interval_to, any_reg, &need_split);
  5498     regHi = reg + 1;
  5500     if (reg != any_reg) {
  5501       use_pos = MIN2(_use_pos[reg], _use_pos[regHi]);
  5502       split_pos = MIN2(_block_pos[reg], _block_pos[regHi]);
  5504   } else {
  5505     reg = find_locked_reg(reg_needed_until, interval_to, any_reg, cur->assigned_reg(), &need_split);
  5506     regHi = any_reg;
  5508     if (reg != any_reg) {
  5509       use_pos = _use_pos[reg];
  5510       split_pos = _block_pos[reg];
  5512       if (_num_phys_regs == 2) {
  5513         if (cur->assigned_reg() != any_reg) {
  5514           regHi = reg;
  5515           reg = cur->assigned_reg();
  5516         } else {
  5517           regHi = find_locked_reg(reg_needed_until, interval_to, any_reg, reg, &need_split);
  5518           if (regHi != any_reg) {
  5519             use_pos = MIN2(use_pos, _use_pos[regHi]);
  5520             split_pos = MIN2(split_pos, _block_pos[regHi]);
  5524         if (regHi != any_reg && reg > regHi) {
  5525           // sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax
  5526           int temp = reg;
  5527           reg = regHi;
  5528           regHi = temp;
  5534   if (reg == any_reg || (_num_phys_regs == 2 && regHi == any_reg) || use_pos <= cur->first_usage(mustHaveRegister)) {
  5535     // the first use of cur is later than the spilling position -> spill cur
  5536     TRACE_LINEAR_SCAN(4, tty->print_cr("able to spill current interval. first_usage(register): %d, use_pos: %d", cur->first_usage(mustHaveRegister), use_pos));
  5538     if (cur->first_usage(mustHaveRegister) <= cur->from() + 1) {
  5539       assert(false, "cannot spill interval that is used in first instruction (possible reason: no register found)");
  5540       // assign a reasonable register and do a bailout in product mode to avoid errors
  5541       allocator()->assign_spill_slot(cur);
  5542       BAILOUT("LinearScan: no register found");
  5545     split_and_spill_interval(cur);
  5546   } else {
  5547     TRACE_LINEAR_SCAN(4, tty->print_cr("decided to use register %d, %d", reg, regHi));
  5548     assert(reg != any_reg && (_num_phys_regs == 1 || regHi != any_reg), "no register found");
  5549     assert(split_pos > 0, "invalid split_pos");
  5550     assert(need_split == false || split_pos > cur->from(), "splitting interval at from");
  5552     cur->assign_reg(reg, regHi);
  5553     if (need_split) {
  5554       // register not available for full interval, so split it
  5555       split_when_partial_register_available(cur, split_pos);
  5558     // perform splitting and spilling for all affected intervalls
  5559     split_and_spill_intersecting_intervals(reg, regHi);
  5563 bool LinearScanWalker::no_allocation_possible(Interval* cur) {
  5564 #ifdef X86
  5565   // fast calculation of intervals that can never get a register because the
  5566   // the next instruction is a call that blocks all registers
  5567   // Note: this does not work if callee-saved registers are available (e.g. on Sparc)
  5569   // check if this interval is the result of a split operation
  5570   // (an interval got a register until this position)
  5571   int pos = cur->from();
  5572   if ((pos & 1) == 1) {
  5573     // the current instruction is a call that blocks all registers
  5574     if (pos < allocator()->max_lir_op_id() && allocator()->has_call(pos + 1)) {
  5575       TRACE_LINEAR_SCAN(4, tty->print_cr("      free register cannot be available because all registers blocked by following call"));
  5577       // safety check that there is really no register available
  5578       assert(alloc_free_reg(cur) == false, "found a register for this interval");
  5579       return true;
  5583 #endif
  5584   return false;
  5587 void LinearScanWalker::init_vars_for_alloc(Interval* cur) {
  5588   BasicType type = cur->type();
  5589   _num_phys_regs = LinearScan::num_physical_regs(type);
  5590   _adjacent_regs = LinearScan::requires_adjacent_regs(type);
  5592   if (pd_init_regs_for_alloc(cur)) {
  5593     // the appropriate register range was selected.
  5594   } else if (type == T_FLOAT || type == T_DOUBLE) {
  5595     _first_reg = pd_first_fpu_reg;
  5596     _last_reg = pd_last_fpu_reg;
  5597   } else {
  5598     _first_reg = pd_first_cpu_reg;
  5599     _last_reg = FrameMap::last_cpu_reg();
  5602   assert(0 <= _first_reg && _first_reg < LinearScan::nof_regs, "out of range");
  5603   assert(0 <= _last_reg && _last_reg < LinearScan::nof_regs, "out of range");
  5607 bool LinearScanWalker::is_move(LIR_Op* op, Interval* from, Interval* to) {
  5608   if (op->code() != lir_move) {
  5609     return false;
  5611   assert(op->as_Op1() != NULL, "move must be LIR_Op1");
  5613   LIR_Opr in = ((LIR_Op1*)op)->in_opr();
  5614   LIR_Opr res = ((LIR_Op1*)op)->result_opr();
  5615   return in->is_virtual() && res->is_virtual() && in->vreg_number() == from->reg_num() && res->vreg_number() == to->reg_num();
  5618 // optimization (especially for phi functions of nested loops):
  5619 // assign same spill slot to non-intersecting intervals
  5620 void LinearScanWalker::combine_spilled_intervals(Interval* cur) {
  5621   if (cur->is_split_child()) {
  5622     // optimization is only suitable for split parents
  5623     return;
  5626   Interval* register_hint = cur->register_hint(false);
  5627   if (register_hint == NULL) {
  5628     // cur is not the target of a move, otherwise register_hint would be set
  5629     return;
  5631   assert(register_hint->is_split_parent(), "register hint must be split parent");
  5633   if (cur->spill_state() != noOptimization || register_hint->spill_state() != noOptimization) {
  5634     // combining the stack slots for intervals where spill move optimization is applied
  5635     // is not benefitial and would cause problems
  5636     return;
  5639   int begin_pos = cur->from();
  5640   int end_pos = cur->to();
  5641   if (end_pos > allocator()->max_lir_op_id() || (begin_pos & 1) != 0 || (end_pos & 1) != 0) {
  5642     // safety check that lir_op_with_id is allowed
  5643     return;
  5646   if (!is_move(allocator()->lir_op_with_id(begin_pos), register_hint, cur) || !is_move(allocator()->lir_op_with_id(end_pos), cur, register_hint)) {
  5647     // cur and register_hint are not connected with two moves
  5648     return;
  5651   Interval* begin_hint = register_hint->split_child_at_op_id(begin_pos, LIR_OpVisitState::inputMode);
  5652   Interval* end_hint = register_hint->split_child_at_op_id(end_pos, LIR_OpVisitState::outputMode);
  5653   if (begin_hint == end_hint || begin_hint->to() != begin_pos || end_hint->from() != end_pos) {
  5654     // register_hint must be split, otherwise the re-writing of use positions does not work
  5655     return;
  5658   assert(begin_hint->assigned_reg() != any_reg, "must have register assigned");
  5659   assert(end_hint->assigned_reg() == any_reg, "must not have register assigned");
  5660   assert(cur->first_usage(mustHaveRegister) == begin_pos, "must have use position at begin of interval because of move");
  5661   assert(end_hint->first_usage(mustHaveRegister) == end_pos, "must have use position at begin of interval because of move");
  5663   if (begin_hint->assigned_reg() < LinearScan::nof_regs) {
  5664     // register_hint is not spilled at begin_pos, so it would not be benefitial to immediately spill cur
  5665     return;
  5667   assert(register_hint->canonical_spill_slot() != -1, "must be set when part of interval was spilled");
  5669   // modify intervals such that cur gets the same stack slot as register_hint
  5670   // delete use positions to prevent the intervals to get a register at beginning
  5671   cur->set_canonical_spill_slot(register_hint->canonical_spill_slot());
  5672   cur->remove_first_use_pos();
  5673   end_hint->remove_first_use_pos();
  5677 // allocate a physical register or memory location to an interval
  5678 bool LinearScanWalker::activate_current() {
  5679   Interval* cur = current();
  5680   bool result = true;
  5682   TRACE_LINEAR_SCAN(2, tty->print   ("+++++ activating interval "); cur->print());
  5683   TRACE_LINEAR_SCAN(4, tty->print_cr("      split_parent: %d, insert_move_when_activated: %d", cur->split_parent()->reg_num(), cur->insert_move_when_activated()));
  5685   if (cur->assigned_reg() >= LinearScan::nof_regs) {
  5686     // activating an interval that has a stack slot assigned -> split it at first use position
  5687     // used for method parameters
  5688     TRACE_LINEAR_SCAN(4, tty->print_cr("      interval has spill slot assigned (method parameter) -> split it before first use"));
  5690     split_stack_interval(cur);
  5691     result = false;
  5693   } else if (allocator()->gen()->is_vreg_flag_set(cur->reg_num(), LIRGenerator::must_start_in_memory)) {
  5694     // activating an interval that must start in a stack slot, but may get a register later
  5695     // used for lir_roundfp: rounding is done by store to stack and reload later
  5696     TRACE_LINEAR_SCAN(4, tty->print_cr("      interval must start in stack slot -> split it before first use"));
  5697     assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned");
  5699     allocator()->assign_spill_slot(cur);
  5700     split_stack_interval(cur);
  5701     result = false;
  5703   } else if (cur->assigned_reg() == any_reg) {
  5704     // interval has not assigned register -> normal allocation
  5705     // (this is the normal case for most intervals)
  5706     TRACE_LINEAR_SCAN(4, tty->print_cr("      normal allocation of register"));
  5708     // assign same spill slot to non-intersecting intervals
  5709     combine_spilled_intervals(cur);
  5711     init_vars_for_alloc(cur);
  5712     if (no_allocation_possible(cur) || !alloc_free_reg(cur)) {
  5713       // no empty register available.
  5714       // split and spill another interval so that this interval gets a register
  5715       alloc_locked_reg(cur);
  5718     // spilled intervals need not be move to active-list
  5719     if (cur->assigned_reg() >= LinearScan::nof_regs) {
  5720       result = false;
  5724   // load spilled values that become active from stack slot to register
  5725   if (cur->insert_move_when_activated()) {
  5726     assert(cur->is_split_child(), "must be");
  5727     assert(cur->current_split_child() != NULL, "must be");
  5728     assert(cur->current_split_child()->reg_num() != cur->reg_num(), "cannot insert move between same interval");
  5729     TRACE_LINEAR_SCAN(4, tty->print_cr("Inserting move from interval %d to %d because insert_move_when_activated is set", cur->current_split_child()->reg_num(), cur->reg_num()));
  5731     insert_move(cur->from(), cur->current_split_child(), cur);
  5733   cur->make_current_split_child();
  5735   return result; // true = interval is moved to active list
  5739 // Implementation of EdgeMoveOptimizer
  5741 EdgeMoveOptimizer::EdgeMoveOptimizer() :
  5742   _edge_instructions(4),
  5743   _edge_instructions_idx(4)
  5747 void EdgeMoveOptimizer::optimize(BlockList* code) {
  5748   EdgeMoveOptimizer optimizer = EdgeMoveOptimizer();
  5750   // ignore the first block in the list (index 0 is not processed)
  5751   for (int i = code->length() - 1; i >= 1; i--) {
  5752     BlockBegin* block = code->at(i);
  5754     if (block->number_of_preds() > 1 && !block->is_set(BlockBegin::exception_entry_flag)) {
  5755       optimizer.optimize_moves_at_block_end(block);
  5757     if (block->number_of_sux() == 2) {
  5758       optimizer.optimize_moves_at_block_begin(block);
  5764 // clear all internal data structures
  5765 void EdgeMoveOptimizer::init_instructions() {
  5766   _edge_instructions.clear();
  5767   _edge_instructions_idx.clear();
  5770 // append a lir-instruction-list and the index of the current operation in to the list
  5771 void EdgeMoveOptimizer::append_instructions(LIR_OpList* instructions, int instructions_idx) {
  5772   _edge_instructions.append(instructions);
  5773   _edge_instructions_idx.append(instructions_idx);
  5776 // return the current operation of the given edge (predecessor or successor)
  5777 LIR_Op* EdgeMoveOptimizer::instruction_at(int edge) {
  5778   LIR_OpList* instructions = _edge_instructions.at(edge);
  5779   int idx = _edge_instructions_idx.at(edge);
  5781   if (idx < instructions->length()) {
  5782     return instructions->at(idx);
  5783   } else {
  5784     return NULL;
  5788 // removes the current operation of the given edge (predecessor or successor)
  5789 void EdgeMoveOptimizer::remove_cur_instruction(int edge, bool decrement_index) {
  5790   LIR_OpList* instructions = _edge_instructions.at(edge);
  5791   int idx = _edge_instructions_idx.at(edge);
  5792   instructions->remove_at(idx);
  5794   if (decrement_index) {
  5795     _edge_instructions_idx.at_put(edge, idx - 1);
  5800 bool EdgeMoveOptimizer::operations_different(LIR_Op* op1, LIR_Op* op2) {
  5801   if (op1 == NULL || op2 == NULL) {
  5802     // at least one block is already empty -> no optimization possible
  5803     return true;
  5806   if (op1->code() == lir_move && op2->code() == lir_move) {
  5807     assert(op1->as_Op1() != NULL, "move must be LIR_Op1");
  5808     assert(op2->as_Op1() != NULL, "move must be LIR_Op1");
  5809     LIR_Op1* move1 = (LIR_Op1*)op1;
  5810     LIR_Op1* move2 = (LIR_Op1*)op2;
  5811     if (move1->info() == move2->info() && move1->in_opr() == move2->in_opr() && move1->result_opr() == move2->result_opr()) {
  5812       // these moves are exactly equal and can be optimized
  5813       return false;
  5816   } else if (op1->code() == lir_fxch && op2->code() == lir_fxch) {
  5817     assert(op1->as_Op1() != NULL, "fxch must be LIR_Op1");
  5818     assert(op2->as_Op1() != NULL, "fxch must be LIR_Op1");
  5819     LIR_Op1* fxch1 = (LIR_Op1*)op1;
  5820     LIR_Op1* fxch2 = (LIR_Op1*)op2;
  5821     if (fxch1->in_opr()->as_jint() == fxch2->in_opr()->as_jint()) {
  5822       // equal FPU stack operations can be optimized
  5823       return false;
  5826   } else if (op1->code() == lir_fpop_raw && op2->code() == lir_fpop_raw) {
  5827     // equal FPU stack operations can be optimized
  5828     return false;
  5831   // no optimization possible
  5832   return true;
  5835 void EdgeMoveOptimizer::optimize_moves_at_block_end(BlockBegin* block) {
  5836   TRACE_LINEAR_SCAN(4, tty->print_cr("optimizing moves at end of block B%d", block->block_id()));
  5838   if (block->is_predecessor(block)) {
  5839     // currently we can't handle this correctly.
  5840     return;
  5843   init_instructions();
  5844   int num_preds = block->number_of_preds();
  5845   assert(num_preds > 1, "do not call otherwise");
  5846   assert(!block->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed");
  5848   // setup a list with the lir-instructions of all predecessors
  5849   int i;
  5850   for (i = 0; i < num_preds; i++) {
  5851     BlockBegin* pred = block->pred_at(i);
  5852     LIR_OpList* pred_instructions = pred->lir()->instructions_list();
  5854     if (pred->number_of_sux() != 1) {
  5855       // this can happen with switch-statements where multiple edges are between
  5856       // the same blocks.
  5857       return;
  5860     assert(pred->number_of_sux() == 1, "can handle only one successor");
  5861     assert(pred->sux_at(0) == block, "invalid control flow");
  5862     assert(pred_instructions->last()->code() == lir_branch, "block with successor must end with branch");
  5863     assert(pred_instructions->last()->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
  5864     assert(pred_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch");
  5866     if (pred_instructions->last()->info() != NULL) {
  5867       // can not optimize instructions when debug info is needed
  5868       return;
  5871     // ignore the unconditional branch at the end of the block
  5872     append_instructions(pred_instructions, pred_instructions->length() - 2);
  5876   // process lir-instructions while all predecessors end with the same instruction
  5877   while (true) {
  5878     LIR_Op* op = instruction_at(0);
  5879     for (i = 1; i < num_preds; i++) {
  5880       if (operations_different(op, instruction_at(i))) {
  5881         // these instructions are different and cannot be optimized ->
  5882         // no further optimization possible
  5883         return;
  5887     TRACE_LINEAR_SCAN(4, tty->print("found instruction that is equal in all %d predecessors: ", num_preds); op->print());
  5889     // insert the instruction at the beginning of the current block
  5890     block->lir()->insert_before(1, op);
  5892     // delete the instruction at the end of all predecessors
  5893     for (i = 0; i < num_preds; i++) {
  5894       remove_cur_instruction(i, true);
  5900 void EdgeMoveOptimizer::optimize_moves_at_block_begin(BlockBegin* block) {
  5901   TRACE_LINEAR_SCAN(4, tty->print_cr("optimization moves at begin of block B%d", block->block_id()));
  5903   init_instructions();
  5904   int num_sux = block->number_of_sux();
  5906   LIR_OpList* cur_instructions = block->lir()->instructions_list();
  5908   assert(num_sux == 2, "method should not be called otherwise");
  5909   assert(cur_instructions->last()->code() == lir_branch, "block with successor must end with branch");
  5910   assert(cur_instructions->last()->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
  5911   assert(cur_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch");
  5913   if (cur_instructions->last()->info() != NULL) {
  5914     // can no optimize instructions when debug info is needed
  5915     return;
  5918   LIR_Op* branch = cur_instructions->at(cur_instructions->length() - 2);
  5919   if (branch->info() != NULL || (branch->code() != lir_branch && branch->code() != lir_cond_float_branch)) {
  5920     // not a valid case for optimization
  5921     // currently, only blocks that end with two branches (conditional branch followed
  5922     // by unconditional branch) are optimized
  5923     return;
  5926   // now it is guaranteed that the block ends with two branch instructions.
  5927   // the instructions are inserted at the end of the block before these two branches
  5928   int insert_idx = cur_instructions->length() - 2;
  5930   int i;
  5931 #ifdef ASSERT
  5932   for (i = insert_idx - 1; i >= 0; i--) {
  5933     LIR_Op* op = cur_instructions->at(i);
  5934     if ((op->code() == lir_branch || op->code() == lir_cond_float_branch) && ((LIR_OpBranch*)op)->block() != NULL) {
  5935       assert(false, "block with two successors can have only two branch instructions");
  5938 #endif
  5940   // setup a list with the lir-instructions of all successors
  5941   for (i = 0; i < num_sux; i++) {
  5942     BlockBegin* sux = block->sux_at(i);
  5943     LIR_OpList* sux_instructions = sux->lir()->instructions_list();
  5945     assert(sux_instructions->at(0)->code() == lir_label, "block must start with label");
  5947     if (sux->number_of_preds() != 1) {
  5948       // this can happen with switch-statements where multiple edges are between
  5949       // the same blocks.
  5950       return;
  5952     assert(sux->pred_at(0) == block, "invalid control flow");
  5953     assert(!sux->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed");
  5955     // ignore the label at the beginning of the block
  5956     append_instructions(sux_instructions, 1);
  5959   // process lir-instructions while all successors begin with the same instruction
  5960   while (true) {
  5961     LIR_Op* op = instruction_at(0);
  5962     for (i = 1; i < num_sux; i++) {
  5963       if (operations_different(op, instruction_at(i))) {
  5964         // these instructions are different and cannot be optimized ->
  5965         // no further optimization possible
  5966         return;
  5970     TRACE_LINEAR_SCAN(4, tty->print("----- found instruction that is equal in all %d successors: ", num_sux); op->print());
  5972     // insert instruction at end of current block
  5973     block->lir()->insert_before(insert_idx, op);
  5974     insert_idx++;
  5976     // delete the instructions at the beginning of all successors
  5977     for (i = 0; i < num_sux; i++) {
  5978       remove_cur_instruction(i, false);
  5984 // Implementation of ControlFlowOptimizer
  5986 ControlFlowOptimizer::ControlFlowOptimizer() :
  5987   _original_preds(4)
  5991 void ControlFlowOptimizer::optimize(BlockList* code) {
  5992   ControlFlowOptimizer optimizer = ControlFlowOptimizer();
  5994   // push the OSR entry block to the end so that we're not jumping over it.
  5995   BlockBegin* osr_entry = code->at(0)->end()->as_Base()->osr_entry();
  5996   if (osr_entry) {
  5997     int index = osr_entry->linear_scan_number();
  5998     assert(code->at(index) == osr_entry, "wrong index");
  5999     code->remove_at(index);
  6000     code->append(osr_entry);
  6003   optimizer.reorder_short_loops(code);
  6004   optimizer.delete_empty_blocks(code);
  6005   optimizer.delete_unnecessary_jumps(code);
  6006   optimizer.delete_jumps_to_return(code);
  6009 void ControlFlowOptimizer::reorder_short_loop(BlockList* code, BlockBegin* header_block, int header_idx) {
  6010   int i = header_idx + 1;
  6011   int max_end = MIN2(header_idx + ShortLoopSize, code->length());
  6012   while (i < max_end && code->at(i)->loop_depth() >= header_block->loop_depth()) {
  6013     i++;
  6016   if (i == code->length() || code->at(i)->loop_depth() < header_block->loop_depth()) {
  6017     int end_idx = i - 1;
  6018     BlockBegin* end_block = code->at(end_idx);
  6020     if (end_block->number_of_sux() == 1 && end_block->sux_at(0) == header_block) {
  6021       // short loop from header_idx to end_idx found -> reorder blocks such that
  6022       // the header_block is the last block instead of the first block of the loop
  6023       TRACE_LINEAR_SCAN(1, tty->print_cr("Reordering short loop: length %d, header B%d, end B%d",
  6024                                          end_idx - header_idx + 1,
  6025                                          header_block->block_id(), end_block->block_id()));
  6027       for (int j = header_idx; j < end_idx; j++) {
  6028         code->at_put(j, code->at(j + 1));
  6030       code->at_put(end_idx, header_block);
  6032       // correct the flags so that any loop alignment occurs in the right place.
  6033       assert(code->at(end_idx)->is_set(BlockBegin::backward_branch_target_flag), "must be backward branch target");
  6034       code->at(end_idx)->clear(BlockBegin::backward_branch_target_flag);
  6035       code->at(header_idx)->set(BlockBegin::backward_branch_target_flag);
  6040 void ControlFlowOptimizer::reorder_short_loops(BlockList* code) {
  6041   for (int i = code->length() - 1; i >= 0; i--) {
  6042     BlockBegin* block = code->at(i);
  6044     if (block->is_set(BlockBegin::linear_scan_loop_header_flag)) {
  6045       reorder_short_loop(code, block, i);
  6049   DEBUG_ONLY(verify(code));
  6052 // only blocks with exactly one successor can be deleted. Such blocks
  6053 // must always end with an unconditional branch to this successor
  6054 bool ControlFlowOptimizer::can_delete_block(BlockBegin* block) {
  6055   if (block->number_of_sux() != 1 || block->number_of_exception_handlers() != 0 || block->is_entry_block()) {
  6056     return false;
  6059   LIR_OpList* instructions = block->lir()->instructions_list();
  6061   assert(instructions->length() >= 2, "block must have label and branch");
  6062   assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label");
  6063   assert(instructions->last()->as_OpBranch() != NULL, "last instrcution must always be a branch");
  6064   assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "branch must be unconditional");
  6065   assert(instructions->last()->as_OpBranch()->block() == block->sux_at(0), "branch target must be the successor");
  6067   // block must have exactly one successor
  6069   if (instructions->length() == 2 && instructions->last()->info() == NULL) {
  6070     return true;
  6072   return false;
  6075 // substitute branch targets in all branch-instructions of this blocks
  6076 void ControlFlowOptimizer::substitute_branch_target(BlockBegin* block, BlockBegin* target_from, BlockBegin* target_to) {
  6077   TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting empty block: substituting from B%d to B%d inside B%d", target_from->block_id(), target_to->block_id(), block->block_id()));
  6079   LIR_OpList* instructions = block->lir()->instructions_list();
  6081   assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label");
  6082   for (int i = instructions->length() - 1; i >= 1; i--) {
  6083     LIR_Op* op = instructions->at(i);
  6085     if (op->code() == lir_branch || op->code() == lir_cond_float_branch) {
  6086       assert(op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
  6087       LIR_OpBranch* branch = (LIR_OpBranch*)op;
  6089       if (branch->block() == target_from) {
  6090         branch->change_block(target_to);
  6092       if (branch->ublock() == target_from) {
  6093         branch->change_ublock(target_to);
  6099 void ControlFlowOptimizer::delete_empty_blocks(BlockList* code) {
  6100   int old_pos = 0;
  6101   int new_pos = 0;
  6102   int num_blocks = code->length();
  6104   while (old_pos < num_blocks) {
  6105     BlockBegin* block = code->at(old_pos);
  6107     if (can_delete_block(block)) {
  6108       BlockBegin* new_target = block->sux_at(0);
  6110       // propagate backward branch target flag for correct code alignment
  6111       if (block->is_set(BlockBegin::backward_branch_target_flag)) {
  6112         new_target->set(BlockBegin::backward_branch_target_flag);
  6115       // collect a list with all predecessors that contains each predecessor only once
  6116       // the predecessors of cur are changed during the substitution, so a copy of the
  6117       // predecessor list is necessary
  6118       int j;
  6119       _original_preds.clear();
  6120       for (j = block->number_of_preds() - 1; j >= 0; j--) {
  6121         BlockBegin* pred = block->pred_at(j);
  6122         if (_original_preds.index_of(pred) == -1) {
  6123           _original_preds.append(pred);
  6127       for (j = _original_preds.length() - 1; j >= 0; j--) {
  6128         BlockBegin* pred = _original_preds.at(j);
  6129         substitute_branch_target(pred, block, new_target);
  6130         pred->substitute_sux(block, new_target);
  6132     } else {
  6133       // adjust position of this block in the block list if blocks before
  6134       // have been deleted
  6135       if (new_pos != old_pos) {
  6136         code->at_put(new_pos, code->at(old_pos));
  6138       new_pos++;
  6140     old_pos++;
  6142   code->truncate(new_pos);
  6144   DEBUG_ONLY(verify(code));
  6147 void ControlFlowOptimizer::delete_unnecessary_jumps(BlockList* code) {
  6148   // skip the last block because there a branch is always necessary
  6149   for (int i = code->length() - 2; i >= 0; i--) {
  6150     BlockBegin* block = code->at(i);
  6151     LIR_OpList* instructions = block->lir()->instructions_list();
  6153     LIR_Op* last_op = instructions->last();
  6154     if (last_op->code() == lir_branch) {
  6155       assert(last_op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
  6156       LIR_OpBranch* last_branch = (LIR_OpBranch*)last_op;
  6158       assert(last_branch->block() != NULL, "last branch must always have a block as target");
  6159       assert(last_branch->label() == last_branch->block()->label(), "must be equal");
  6161       if (last_branch->info() == NULL) {
  6162         if (last_branch->block() == code->at(i + 1)) {
  6164           TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting unconditional branch at end of block B%d", block->block_id()));
  6166           // delete last branch instruction
  6167           instructions->truncate(instructions->length() - 1);
  6169         } else {
  6170           LIR_Op* prev_op = instructions->at(instructions->length() - 2);
  6171           if (prev_op->code() == lir_branch || prev_op->code() == lir_cond_float_branch) {
  6172             assert(prev_op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
  6173             LIR_OpBranch* prev_branch = (LIR_OpBranch*)prev_op;
  6175             LIR_Op2* prev_cmp = NULL;
  6177             for(int j = instructions->length() - 3; j >= 0 && prev_cmp == NULL; j--) {
  6178               prev_op = instructions->at(j);
  6179               if(prev_op->code() == lir_cmp) {
  6180                 assert(prev_op->as_Op2() != NULL, "branch must be of type LIR_Op2");
  6181                 prev_cmp = (LIR_Op2*)prev_op;
  6182                 assert(prev_branch->cond() == prev_cmp->condition(), "should be the same");
  6185             assert(prev_cmp != NULL, "should have found comp instruction for branch");
  6186             if (prev_branch->block() == code->at(i + 1) && prev_branch->info() == NULL) {
  6188               TRACE_LINEAR_SCAN(3, tty->print_cr("Negating conditional branch and deleting unconditional branch at end of block B%d", block->block_id()));
  6190               // eliminate a conditional branch to the immediate successor
  6191               prev_branch->change_block(last_branch->block());
  6192               prev_branch->negate_cond();
  6193               prev_cmp->set_condition(prev_branch->cond());
  6194               instructions->truncate(instructions->length() - 1);
  6202   DEBUG_ONLY(verify(code));
  6205 void ControlFlowOptimizer::delete_jumps_to_return(BlockList* code) {
  6206 #ifdef ASSERT
  6207   BitMap return_converted(BlockBegin::number_of_blocks());
  6208   return_converted.clear();
  6209 #endif
  6211   for (int i = code->length() - 1; i >= 0; i--) {
  6212     BlockBegin* block = code->at(i);
  6213     LIR_OpList* cur_instructions = block->lir()->instructions_list();
  6214     LIR_Op*     cur_last_op = cur_instructions->last();
  6216     assert(cur_instructions->at(0)->code() == lir_label, "first instruction must always be a label");
  6217     if (cur_instructions->length() == 2 && cur_last_op->code() == lir_return) {
  6218       // the block contains only a label and a return
  6219       // if a predecessor ends with an unconditional jump to this block, then the jump
  6220       // can be replaced with a return instruction
  6221       //
  6222       // Note: the original block with only a return statement cannot be deleted completely
  6223       //       because the predecessors might have other (conditional) jumps to this block
  6224       //       -> this may lead to unnecesary return instructions in the final code
  6226       assert(cur_last_op->info() == NULL, "return instructions do not have debug information");
  6227       assert(block->number_of_sux() == 0 ||
  6228              (return_converted.at(block->block_id()) && block->number_of_sux() == 1),
  6229              "blocks that end with return must not have successors");
  6231       assert(cur_last_op->as_Op1() != NULL, "return must be LIR_Op1");
  6232       LIR_Opr return_opr = ((LIR_Op1*)cur_last_op)->in_opr();
  6234       for (int j = block->number_of_preds() - 1; j >= 0; j--) {
  6235         BlockBegin* pred = block->pred_at(j);
  6236         LIR_OpList* pred_instructions = pred->lir()->instructions_list();
  6237         LIR_Op*     pred_last_op = pred_instructions->last();
  6239         if (pred_last_op->code() == lir_branch) {
  6240           assert(pred_last_op->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
  6241           LIR_OpBranch* pred_last_branch = (LIR_OpBranch*)pred_last_op;
  6243           if (pred_last_branch->block() == block && pred_last_branch->cond() == lir_cond_always && pred_last_branch->info() == NULL) {
  6244             // replace the jump to a return with a direct return
  6245             // Note: currently the edge between the blocks is not deleted
  6246             pred_instructions->at_put(pred_instructions->length() - 1, new LIR_Op1(lir_return, return_opr));
  6247 #ifdef ASSERT
  6248             return_converted.set_bit(pred->block_id());
  6249 #endif
  6258 #ifdef ASSERT
  6259 void ControlFlowOptimizer::verify(BlockList* code) {
  6260   for (int i = 0; i < code->length(); i++) {
  6261     BlockBegin* block = code->at(i);
  6262     LIR_OpList* instructions = block->lir()->instructions_list();
  6264     int j;
  6265     for (j = 0; j < instructions->length(); j++) {
  6266       LIR_OpBranch* op_branch = instructions->at(j)->as_OpBranch();
  6268       if (op_branch != NULL) {
  6269         assert(op_branch->block() == NULL || code->index_of(op_branch->block()) != -1, "branch target not valid");
  6270         assert(op_branch->ublock() == NULL || code->index_of(op_branch->ublock()) != -1, "branch target not valid");
  6274     for (j = 0; j < block->number_of_sux() - 1; j++) {
  6275       BlockBegin* sux = block->sux_at(j);
  6276       assert(code->index_of(sux) != -1, "successor not valid");
  6279     for (j = 0; j < block->number_of_preds() - 1; j++) {
  6280       BlockBegin* pred = block->pred_at(j);
  6281       assert(code->index_of(pred) != -1, "successor not valid");
  6285 #endif
  6288 #ifndef PRODUCT
  6290 // Implementation of LinearStatistic
  6292 const char* LinearScanStatistic::counter_name(int counter_idx) {
  6293   switch (counter_idx) {
  6294     case counter_method:          return "compiled methods";
  6295     case counter_fpu_method:      return "methods using fpu";
  6296     case counter_loop_method:     return "methods with loops";
  6297     case counter_exception_method:return "methods with xhandler";
  6299     case counter_loop:            return "loops";
  6300     case counter_block:           return "blocks";
  6301     case counter_loop_block:      return "blocks inside loop";
  6302     case counter_exception_block: return "exception handler entries";
  6303     case counter_interval:        return "intervals";
  6304     case counter_fixed_interval:  return "fixed intervals";
  6305     case counter_range:           return "ranges";
  6306     case counter_fixed_range:     return "fixed ranges";
  6307     case counter_use_pos:         return "use positions";
  6308     case counter_fixed_use_pos:   return "fixed use positions";
  6309     case counter_spill_slots:     return "spill slots";
  6311     // counter for classes of lir instructions
  6312     case counter_instruction:     return "total instructions";
  6313     case counter_label:           return "labels";
  6314     case counter_entry:           return "method entries";
  6315     case counter_return:          return "method returns";
  6316     case counter_call:            return "method calls";
  6317     case counter_move:            return "moves";
  6318     case counter_cmp:             return "compare";
  6319     case counter_cond_branch:     return "conditional branches";
  6320     case counter_uncond_branch:   return "unconditional branches";
  6321     case counter_stub_branch:     return "branches to stub";
  6322     case counter_alu:             return "artithmetic + logic";
  6323     case counter_alloc:           return "allocations";
  6324     case counter_sync:            return "synchronisation";
  6325     case counter_throw:           return "throw";
  6326     case counter_unwind:          return "unwind";
  6327     case counter_typecheck:       return "type+null-checks";
  6328     case counter_fpu_stack:       return "fpu-stack";
  6329     case counter_misc_inst:       return "other instructions";
  6330     case counter_other_inst:      return "misc. instructions";
  6332     // counter for different types of moves
  6333     case counter_move_total:      return "total moves";
  6334     case counter_move_reg_reg:    return "register->register";
  6335     case counter_move_reg_stack:  return "register->stack";
  6336     case counter_move_stack_reg:  return "stack->register";
  6337     case counter_move_stack_stack:return "stack->stack";
  6338     case counter_move_reg_mem:    return "register->memory";
  6339     case counter_move_mem_reg:    return "memory->register";
  6340     case counter_move_const_any:  return "constant->any";
  6342     case blank_line_1:            return "";
  6343     case blank_line_2:            return "";
  6345     default: ShouldNotReachHere(); return "";
  6349 LinearScanStatistic::Counter LinearScanStatistic::base_counter(int counter_idx) {
  6350   if (counter_idx == counter_fpu_method || counter_idx == counter_loop_method || counter_idx == counter_exception_method) {
  6351     return counter_method;
  6352   } else if (counter_idx == counter_loop_block || counter_idx == counter_exception_block) {
  6353     return counter_block;
  6354   } else if (counter_idx >= counter_instruction && counter_idx <= counter_other_inst) {
  6355     return counter_instruction;
  6356   } else if (counter_idx >= counter_move_total && counter_idx <= counter_move_const_any) {
  6357     return counter_move_total;
  6359   return invalid_counter;
  6362 LinearScanStatistic::LinearScanStatistic() {
  6363   for (int i = 0; i < number_of_counters; i++) {
  6364     _counters_sum[i] = 0;
  6365     _counters_max[i] = -1;
  6370 // add the method-local numbers to the total sum
  6371 void LinearScanStatistic::sum_up(LinearScanStatistic &method_statistic) {
  6372   for (int i = 0; i < number_of_counters; i++) {
  6373     _counters_sum[i] += method_statistic._counters_sum[i];
  6374     _counters_max[i] = MAX2(_counters_max[i], method_statistic._counters_sum[i]);
  6378 void LinearScanStatistic::print(const char* title) {
  6379   if (CountLinearScan || TraceLinearScanLevel > 0) {
  6380     tty->cr();
  6381     tty->print_cr("***** LinearScan statistic - %s *****", title);
  6383     for (int i = 0; i < number_of_counters; i++) {
  6384       if (_counters_sum[i] > 0 || _counters_max[i] >= 0) {
  6385         tty->print("%25s: %8d", counter_name(i), _counters_sum[i]);
  6387         if (base_counter(i) != invalid_counter) {
  6388           tty->print("  (%5.1f%%) ", _counters_sum[i] * 100.0 / _counters_sum[base_counter(i)]);
  6389         } else {
  6390           tty->print("           ");
  6393         if (_counters_max[i] >= 0) {
  6394           tty->print("%8d", _counters_max[i]);
  6397       tty->cr();
  6402 void LinearScanStatistic::collect(LinearScan* allocator) {
  6403   inc_counter(counter_method);
  6404   if (allocator->has_fpu_registers()) {
  6405     inc_counter(counter_fpu_method);
  6407   if (allocator->num_loops() > 0) {
  6408     inc_counter(counter_loop_method);
  6410   inc_counter(counter_loop, allocator->num_loops());
  6411   inc_counter(counter_spill_slots, allocator->max_spills());
  6413   int i;
  6414   for (i = 0; i < allocator->interval_count(); i++) {
  6415     Interval* cur = allocator->interval_at(i);
  6417     if (cur != NULL) {
  6418       inc_counter(counter_interval);
  6419       inc_counter(counter_use_pos, cur->num_use_positions());
  6420       if (LinearScan::is_precolored_interval(cur)) {
  6421         inc_counter(counter_fixed_interval);
  6422         inc_counter(counter_fixed_use_pos, cur->num_use_positions());
  6425       Range* range = cur->first();
  6426       while (range != Range::end()) {
  6427         inc_counter(counter_range);
  6428         if (LinearScan::is_precolored_interval(cur)) {
  6429           inc_counter(counter_fixed_range);
  6431         range = range->next();
  6436   bool has_xhandlers = false;
  6437   // Note: only count blocks that are in code-emit order
  6438   for (i = 0; i < allocator->ir()->code()->length(); i++) {
  6439     BlockBegin* cur = allocator->ir()->code()->at(i);
  6441     inc_counter(counter_block);
  6442     if (cur->loop_depth() > 0) {
  6443       inc_counter(counter_loop_block);
  6445     if (cur->is_set(BlockBegin::exception_entry_flag)) {
  6446       inc_counter(counter_exception_block);
  6447       has_xhandlers = true;
  6450     LIR_OpList* instructions = cur->lir()->instructions_list();
  6451     for (int j = 0; j < instructions->length(); j++) {
  6452       LIR_Op* op = instructions->at(j);
  6454       inc_counter(counter_instruction);
  6456       switch (op->code()) {
  6457         case lir_label:           inc_counter(counter_label); break;
  6458         case lir_std_entry:
  6459         case lir_osr_entry:       inc_counter(counter_entry); break;
  6460         case lir_return:          inc_counter(counter_return); break;
  6462         case lir_rtcall:
  6463         case lir_static_call:
  6464         case lir_optvirtual_call:
  6465         case lir_virtual_call:    inc_counter(counter_call); break;
  6467         case lir_move: {
  6468           inc_counter(counter_move);
  6469           inc_counter(counter_move_total);
  6471           LIR_Opr in = op->as_Op1()->in_opr();
  6472           LIR_Opr res = op->as_Op1()->result_opr();
  6473           if (in->is_register()) {
  6474             if (res->is_register()) {
  6475               inc_counter(counter_move_reg_reg);
  6476             } else if (res->is_stack()) {
  6477               inc_counter(counter_move_reg_stack);
  6478             } else if (res->is_address()) {
  6479               inc_counter(counter_move_reg_mem);
  6480             } else {
  6481               ShouldNotReachHere();
  6483           } else if (in->is_stack()) {
  6484             if (res->is_register()) {
  6485               inc_counter(counter_move_stack_reg);
  6486             } else {
  6487               inc_counter(counter_move_stack_stack);
  6489           } else if (in->is_address()) {
  6490             assert(res->is_register(), "must be");
  6491             inc_counter(counter_move_mem_reg);
  6492           } else if (in->is_constant()) {
  6493             inc_counter(counter_move_const_any);
  6494           } else {
  6495             ShouldNotReachHere();
  6497           break;
  6500         case lir_cmp:             inc_counter(counter_cmp); break;
  6502         case lir_branch:
  6503         case lir_cond_float_branch: {
  6504           LIR_OpBranch* branch = op->as_OpBranch();
  6505           if (branch->block() == NULL) {
  6506             inc_counter(counter_stub_branch);
  6507           } else if (branch->cond() == lir_cond_always) {
  6508             inc_counter(counter_uncond_branch);
  6509           } else {
  6510             inc_counter(counter_cond_branch);
  6512           break;
  6515         case lir_neg:
  6516         case lir_add:
  6517         case lir_sub:
  6518         case lir_mul:
  6519         case lir_mul_strictfp:
  6520         case lir_div:
  6521         case lir_div_strictfp:
  6522         case lir_rem:
  6523         case lir_sqrt:
  6524         case lir_sin:
  6525         case lir_cos:
  6526         case lir_abs:
  6527         case lir_log10:
  6528         case lir_log:
  6529         case lir_logic_and:
  6530         case lir_logic_or:
  6531         case lir_logic_xor:
  6532         case lir_shl:
  6533         case lir_shr:
  6534         case lir_ushr:            inc_counter(counter_alu); break;
  6536         case lir_alloc_object:
  6537         case lir_alloc_array:     inc_counter(counter_alloc); break;
  6539         case lir_monaddr:
  6540         case lir_lock:
  6541         case lir_unlock:          inc_counter(counter_sync); break;
  6543         case lir_throw:           inc_counter(counter_throw); break;
  6545         case lir_unwind:          inc_counter(counter_unwind); break;
  6547         case lir_null_check:
  6548         case lir_leal:
  6549         case lir_instanceof:
  6550         case lir_checkcast:
  6551         case lir_store_check:     inc_counter(counter_typecheck); break;
  6553         case lir_fpop_raw:
  6554         case lir_fxch:
  6555         case lir_fld:             inc_counter(counter_fpu_stack); break;
  6557         case lir_nop:
  6558         case lir_push:
  6559         case lir_pop:
  6560         case lir_convert:
  6561         case lir_roundfp:
  6562         case lir_cmove:           inc_counter(counter_misc_inst); break;
  6564         default:                  inc_counter(counter_other_inst); break;
  6569   if (has_xhandlers) {
  6570     inc_counter(counter_exception_method);
  6574 void LinearScanStatistic::compute(LinearScan* allocator, LinearScanStatistic &global_statistic) {
  6575   if (CountLinearScan || TraceLinearScanLevel > 0) {
  6577     LinearScanStatistic local_statistic = LinearScanStatistic();
  6579     local_statistic.collect(allocator);
  6580     global_statistic.sum_up(local_statistic);
  6582     if (TraceLinearScanLevel > 2) {
  6583       local_statistic.print("current local statistic");
  6589 // Implementation of LinearTimers
  6591 LinearScanTimers::LinearScanTimers() {
  6592   for (int i = 0; i < number_of_timers; i++) {
  6593     timer(i)->reset();
  6597 const char* LinearScanTimers::timer_name(int idx) {
  6598   switch (idx) {
  6599     case timer_do_nothing:               return "Nothing (Time Check)";
  6600     case timer_number_instructions:      return "Number Instructions";
  6601     case timer_compute_local_live_sets:  return "Local Live Sets";
  6602     case timer_compute_global_live_sets: return "Global Live Sets";
  6603     case timer_build_intervals:          return "Build Intervals";
  6604     case timer_sort_intervals_before:    return "Sort Intervals Before";
  6605     case timer_allocate_registers:       return "Allocate Registers";
  6606     case timer_resolve_data_flow:        return "Resolve Data Flow";
  6607     case timer_sort_intervals_after:     return "Sort Intervals After";
  6608     case timer_eliminate_spill_moves:    return "Spill optimization";
  6609     case timer_assign_reg_num:           return "Assign Reg Num";
  6610     case timer_allocate_fpu_stack:       return "Allocate FPU Stack";
  6611     case timer_optimize_lir:             return "Optimize LIR";
  6612     default: ShouldNotReachHere();       return "";
  6616 void LinearScanTimers::begin_method() {
  6617   if (TimeEachLinearScan) {
  6618     // reset all timers to measure only current method
  6619     for (int i = 0; i < number_of_timers; i++) {
  6620       timer(i)->reset();
  6625 void LinearScanTimers::end_method(LinearScan* allocator) {
  6626   if (TimeEachLinearScan) {
  6628     double c = timer(timer_do_nothing)->seconds();
  6629     double total = 0;
  6630     for (int i = 1; i < number_of_timers; i++) {
  6631       total += timer(i)->seconds() - c;
  6634     if (total >= 0.0005) {
  6635       // print all information in one line for automatic processing
  6636       tty->print("@"); allocator->compilation()->method()->print_name();
  6638       tty->print("@ %d ", allocator->compilation()->method()->code_size());
  6639       tty->print("@ %d ", allocator->block_at(allocator->block_count() - 1)->last_lir_instruction_id() / 2);
  6640       tty->print("@ %d ", allocator->block_count());
  6641       tty->print("@ %d ", allocator->num_virtual_regs());
  6642       tty->print("@ %d ", allocator->interval_count());
  6643       tty->print("@ %d ", allocator->_num_calls);
  6644       tty->print("@ %d ", allocator->num_loops());
  6646       tty->print("@ %6.6f ", total);
  6647       for (int i = 1; i < number_of_timers; i++) {
  6648         tty->print("@ %4.1f ", ((timer(i)->seconds() - c) / total) * 100);
  6650       tty->cr();
  6655 void LinearScanTimers::print(double total_time) {
  6656   if (TimeLinearScan) {
  6657     // correction value: sum of dummy-timer that only measures the time that
  6658     // is necesary to start and stop itself
  6659     double c = timer(timer_do_nothing)->seconds();
  6661     for (int i = 0; i < number_of_timers; i++) {
  6662       double t = timer(i)->seconds();
  6663       tty->print_cr("    %25s: %6.3f s (%4.1f%%)  corrected: %6.3f s (%4.1f%%)", timer_name(i), t, (t / total_time) * 100.0, t - c, (t - c) / (total_time - 2 * number_of_timers * c) * 100);
  6668 #endif // #ifndef PRODUCT

mercurial