src/share/vm/c1/c1_LIRGenerator.cpp

Tue, 30 Nov 2010 23:23:40 -0800

author
iveresov
date
Tue, 30 Nov 2010 23:23:40 -0800
changeset 2344
ac637b7220d1
parent 2314
f95d63e2154a
child 2349
5ddfcf4b079e
permissions
-rw-r--r--

6985015: C1 needs to support compressed oops
Summary: This change implements compressed oops for C1 for x64 and sparc. The changes are mostly on the codegen level, with a few exceptions when we do access things outside of the heap that are uncompressed from the IR. Compressed oops are now also enabled with tiered.
Reviewed-by: twisti, kvn, never, phh

     1 /*
     2  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "c1/c1_Compilation.hpp"
    27 #include "c1/c1_FrameMap.hpp"
    28 #include "c1/c1_Instruction.hpp"
    29 #include "c1/c1_LIRAssembler.hpp"
    30 #include "c1/c1_LIRGenerator.hpp"
    31 #include "c1/c1_ValueStack.hpp"
    32 #include "ci/ciArrayKlass.hpp"
    33 #include "ci/ciCPCache.hpp"
    34 #include "ci/ciInstance.hpp"
    35 #include "runtime/sharedRuntime.hpp"
    36 #include "runtime/stubRoutines.hpp"
    37 #include "utilities/bitMap.inline.hpp"
    38 #ifndef SERIALGC
    39 #include "gc_implementation/g1/heapRegion.hpp"
    40 #endif
    42 #ifdef ASSERT
    43 #define __ gen()->lir(__FILE__, __LINE__)->
    44 #else
    45 #define __ gen()->lir()->
    46 #endif
    48 // TODO: ARM - Use some recognizable constant which still fits architectural constraints
    49 #ifdef ARM
    50 #define PATCHED_ADDR  (204)
    51 #else
    52 #define PATCHED_ADDR  (max_jint)
    53 #endif
    55 void PhiResolverState::reset(int max_vregs) {
    56   // Initialize array sizes
    57   _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
    58   _virtual_operands.trunc_to(0);
    59   _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
    60   _other_operands.trunc_to(0);
    61   _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
    62   _vreg_table.trunc_to(0);
    63 }
    67 //--------------------------------------------------------------
    68 // PhiResolver
    70 // Resolves cycles:
    71 //
    72 //  r1 := r2  becomes  temp := r1
    73 //  r2 := r1           r1 := r2
    74 //                     r2 := temp
    75 // and orders moves:
    76 //
    77 //  r2 := r3  becomes  r1 := r2
    78 //  r1 := r2           r2 := r3
    80 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
    81  : _gen(gen)
    82  , _state(gen->resolver_state())
    83  , _temp(LIR_OprFact::illegalOpr)
    84 {
    85   // reinitialize the shared state arrays
    86   _state.reset(max_vregs);
    87 }
    90 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
    91   assert(src->is_valid(), "");
    92   assert(dest->is_valid(), "");
    93   __ move(src, dest);
    94 }
    97 void PhiResolver::move_temp_to(LIR_Opr dest) {
    98   assert(_temp->is_valid(), "");
    99   emit_move(_temp, dest);
   100   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
   101 }
   104 void PhiResolver::move_to_temp(LIR_Opr src) {
   105   assert(_temp->is_illegal(), "");
   106   _temp = _gen->new_register(src->type());
   107   emit_move(src, _temp);
   108 }
   111 // Traverse assignment graph in depth first order and generate moves in post order
   112 // ie. two assignments: b := c, a := b start with node c:
   113 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
   114 // Generates moves in this order: move b to a and move c to b
   115 // ie. cycle a := b, b := a start with node a
   116 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
   117 // Generates moves in this order: move b to temp, move a to b, move temp to a
   118 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
   119   if (!dest->visited()) {
   120     dest->set_visited();
   121     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
   122       move(dest, dest->destination_at(i));
   123     }
   124   } else if (!dest->start_node()) {
   125     // cylce in graph detected
   126     assert(_loop == NULL, "only one loop valid!");
   127     _loop = dest;
   128     move_to_temp(src->operand());
   129     return;
   130   } // else dest is a start node
   132   if (!dest->assigned()) {
   133     if (_loop == dest) {
   134       move_temp_to(dest->operand());
   135       dest->set_assigned();
   136     } else if (src != NULL) {
   137       emit_move(src->operand(), dest->operand());
   138       dest->set_assigned();
   139     }
   140   }
   141 }
   144 PhiResolver::~PhiResolver() {
   145   int i;
   146   // resolve any cycles in moves from and to virtual registers
   147   for (i = virtual_operands().length() - 1; i >= 0; i --) {
   148     ResolveNode* node = virtual_operands()[i];
   149     if (!node->visited()) {
   150       _loop = NULL;
   151       move(NULL, node);
   152       node->set_start_node();
   153       assert(_temp->is_illegal(), "move_temp_to() call missing");
   154     }
   155   }
   157   // generate move for move from non virtual register to abitrary destination
   158   for (i = other_operands().length() - 1; i >= 0; i --) {
   159     ResolveNode* node = other_operands()[i];
   160     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
   161       emit_move(node->operand(), node->destination_at(j)->operand());
   162     }
   163   }
   164 }
   167 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
   168   ResolveNode* node;
   169   if (opr->is_virtual()) {
   170     int vreg_num = opr->vreg_number();
   171     node = vreg_table().at_grow(vreg_num, NULL);
   172     assert(node == NULL || node->operand() == opr, "");
   173     if (node == NULL) {
   174       node = new ResolveNode(opr);
   175       vreg_table()[vreg_num] = node;
   176     }
   177     // Make sure that all virtual operands show up in the list when
   178     // they are used as the source of a move.
   179     if (source && !virtual_operands().contains(node)) {
   180       virtual_operands().append(node);
   181     }
   182   } else {
   183     assert(source, "");
   184     node = new ResolveNode(opr);
   185     other_operands().append(node);
   186   }
   187   return node;
   188 }
   191 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
   192   assert(dest->is_virtual(), "");
   193   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
   194   assert(src->is_valid(), "");
   195   assert(dest->is_valid(), "");
   196   ResolveNode* source = source_node(src);
   197   source->append(destination_node(dest));
   198 }
   201 //--------------------------------------------------------------
   202 // LIRItem
   204 void LIRItem::set_result(LIR_Opr opr) {
   205   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
   206   value()->set_operand(opr);
   208   if (opr->is_virtual()) {
   209     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
   210   }
   212   _result = opr;
   213 }
   215 void LIRItem::load_item() {
   216   if (result()->is_illegal()) {
   217     // update the items result
   218     _result = value()->operand();
   219   }
   220   if (!result()->is_register()) {
   221     LIR_Opr reg = _gen->new_register(value()->type());
   222     __ move(result(), reg);
   223     if (result()->is_constant()) {
   224       _result = reg;
   225     } else {
   226       set_result(reg);
   227     }
   228   }
   229 }
   232 void LIRItem::load_for_store(BasicType type) {
   233   if (_gen->can_store_as_constant(value(), type)) {
   234     _result = value()->operand();
   235     if (!_result->is_constant()) {
   236       _result = LIR_OprFact::value_type(value()->type());
   237     }
   238   } else if (type == T_BYTE || type == T_BOOLEAN) {
   239     load_byte_item();
   240   } else {
   241     load_item();
   242   }
   243 }
   245 void LIRItem::load_item_force(LIR_Opr reg) {
   246   LIR_Opr r = result();
   247   if (r != reg) {
   248 #if !defined(ARM) && !defined(E500V2)
   249     if (r->type() != reg->type()) {
   250       // moves between different types need an intervening spill slot
   251       r = _gen->force_to_spill(r, reg->type());
   252     }
   253 #endif
   254     __ move(r, reg);
   255     _result = reg;
   256   }
   257 }
   259 ciObject* LIRItem::get_jobject_constant() const {
   260   ObjectType* oc = type()->as_ObjectType();
   261   if (oc) {
   262     return oc->constant_value();
   263   }
   264   return NULL;
   265 }
   268 jint LIRItem::get_jint_constant() const {
   269   assert(is_constant() && value() != NULL, "");
   270   assert(type()->as_IntConstant() != NULL, "type check");
   271   return type()->as_IntConstant()->value();
   272 }
   275 jint LIRItem::get_address_constant() const {
   276   assert(is_constant() && value() != NULL, "");
   277   assert(type()->as_AddressConstant() != NULL, "type check");
   278   return type()->as_AddressConstant()->value();
   279 }
   282 jfloat LIRItem::get_jfloat_constant() const {
   283   assert(is_constant() && value() != NULL, "");
   284   assert(type()->as_FloatConstant() != NULL, "type check");
   285   return type()->as_FloatConstant()->value();
   286 }
   289 jdouble LIRItem::get_jdouble_constant() const {
   290   assert(is_constant() && value() != NULL, "");
   291   assert(type()->as_DoubleConstant() != NULL, "type check");
   292   return type()->as_DoubleConstant()->value();
   293 }
   296 jlong LIRItem::get_jlong_constant() const {
   297   assert(is_constant() && value() != NULL, "");
   298   assert(type()->as_LongConstant() != NULL, "type check");
   299   return type()->as_LongConstant()->value();
   300 }
   304 //--------------------------------------------------------------
   307 void LIRGenerator::init() {
   308   _bs = Universe::heap()->barrier_set();
   309 }
   312 void LIRGenerator::block_do_prolog(BlockBegin* block) {
   313 #ifndef PRODUCT
   314   if (PrintIRWithLIR) {
   315     block->print();
   316   }
   317 #endif
   319   // set up the list of LIR instructions
   320   assert(block->lir() == NULL, "LIR list already computed for this block");
   321   _lir = new LIR_List(compilation(), block);
   322   block->set_lir(_lir);
   324   __ branch_destination(block->label());
   326   if (LIRTraceExecution &&
   327       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
   328       !block->is_set(BlockBegin::exception_entry_flag)) {
   329     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
   330     trace_block_entry(block);
   331   }
   332 }
   335 void LIRGenerator::block_do_epilog(BlockBegin* block) {
   336 #ifndef PRODUCT
   337   if (PrintIRWithLIR) {
   338     tty->cr();
   339   }
   340 #endif
   342   // LIR_Opr for unpinned constants shouldn't be referenced by other
   343   // blocks so clear them out after processing the block.
   344   for (int i = 0; i < _unpinned_constants.length(); i++) {
   345     _unpinned_constants.at(i)->clear_operand();
   346   }
   347   _unpinned_constants.trunc_to(0);
   349   // clear our any registers for other local constants
   350   _constants.trunc_to(0);
   351   _reg_for_constants.trunc_to(0);
   352 }
   355 void LIRGenerator::block_do(BlockBegin* block) {
   356   CHECK_BAILOUT();
   358   block_do_prolog(block);
   359   set_block(block);
   361   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
   362     if (instr->is_pinned()) do_root(instr);
   363   }
   365   set_block(NULL);
   366   block_do_epilog(block);
   367 }
   370 //-------------------------LIRGenerator-----------------------------
   372 // This is where the tree-walk starts; instr must be root;
   373 void LIRGenerator::do_root(Value instr) {
   374   CHECK_BAILOUT();
   376   InstructionMark im(compilation(), instr);
   378   assert(instr->is_pinned(), "use only with roots");
   379   assert(instr->subst() == instr, "shouldn't have missed substitution");
   381   instr->visit(this);
   383   assert(!instr->has_uses() || instr->operand()->is_valid() ||
   384          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
   385 }
   388 // This is called for each node in tree; the walk stops if a root is reached
   389 void LIRGenerator::walk(Value instr) {
   390   InstructionMark im(compilation(), instr);
   391   //stop walk when encounter a root
   392   if (instr->is_pinned() && instr->as_Phi() == NULL || instr->operand()->is_valid()) {
   393     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
   394   } else {
   395     assert(instr->subst() == instr, "shouldn't have missed substitution");
   396     instr->visit(this);
   397     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
   398   }
   399 }
   402 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
   403   assert(state != NULL, "state must be defined");
   405   ValueStack* s = state;
   406   for_each_state(s) {
   407     if (s->kind() == ValueStack::EmptyExceptionState) {
   408       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
   409       continue;
   410     }
   412     int index;
   413     Value value;
   414     for_each_stack_value(s, index, value) {
   415       assert(value->subst() == value, "missed substitution");
   416       if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
   417         walk(value);
   418         assert(value->operand()->is_valid(), "must be evaluated now");
   419       }
   420     }
   422     int bci = s->bci();
   423     IRScope* scope = s->scope();
   424     ciMethod* method = scope->method();
   426     MethodLivenessResult liveness = method->liveness_at_bci(bci);
   427     if (bci == SynchronizationEntryBCI) {
   428       if (x->as_ExceptionObject() || x->as_Throw()) {
   429         // all locals are dead on exit from the synthetic unlocker
   430         liveness.clear();
   431       } else {
   432         assert(x->as_MonitorEnter(), "only other case is MonitorEnter");
   433       }
   434     }
   435     if (!liveness.is_valid()) {
   436       // Degenerate or breakpointed method.
   437       bailout("Degenerate or breakpointed method");
   438     } else {
   439       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
   440       for_each_local_value(s, index, value) {
   441         assert(value->subst() == value, "missed substition");
   442         if (liveness.at(index) && !value->type()->is_illegal()) {
   443           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
   444             walk(value);
   445             assert(value->operand()->is_valid(), "must be evaluated now");
   446           }
   447         } else {
   448           // NULL out this local so that linear scan can assume that all non-NULL values are live.
   449           s->invalidate_local(index);
   450         }
   451       }
   452     }
   453   }
   455   return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers());
   456 }
   459 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
   460   return state_for(x, x->exception_state());
   461 }
   464 void LIRGenerator::jobject2reg_with_patching(LIR_Opr r, ciObject* obj, CodeEmitInfo* info) {
   465   if (!obj->is_loaded() || PatchALot) {
   466     assert(info != NULL, "info must be set if class is not loaded");
   467     __ oop2reg_patch(NULL, r, info);
   468   } else {
   469     // no patching needed
   470     __ oop2reg(obj->constant_encoding(), r);
   471   }
   472 }
   475 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
   476                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
   477   CodeStub* stub = new RangeCheckStub(range_check_info, index);
   478   if (index->is_constant()) {
   479     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
   480                 index->as_jint(), null_check_info);
   481     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
   482   } else {
   483     cmp_reg_mem(lir_cond_aboveEqual, index, array,
   484                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
   485     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
   486   }
   487 }
   490 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
   491   CodeStub* stub = new RangeCheckStub(info, index, true);
   492   if (index->is_constant()) {
   493     cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
   494     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
   495   } else {
   496     cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
   497                 java_nio_Buffer::limit_offset(), T_INT, info);
   498     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
   499   }
   500   __ move(index, result);
   501 }
   505 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
   506   LIR_Opr result_op = result;
   507   LIR_Opr left_op   = left;
   508   LIR_Opr right_op  = right;
   510   if (TwoOperandLIRForm && left_op != result_op) {
   511     assert(right_op != result_op, "malformed");
   512     __ move(left_op, result_op);
   513     left_op = result_op;
   514   }
   516   switch(code) {
   517     case Bytecodes::_dadd:
   518     case Bytecodes::_fadd:
   519     case Bytecodes::_ladd:
   520     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
   521     case Bytecodes::_fmul:
   522     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
   524     case Bytecodes::_dmul:
   525       {
   526         if (is_strictfp) {
   527           __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
   528         } else {
   529           __ mul(left_op, right_op, result_op); break;
   530         }
   531       }
   532       break;
   534     case Bytecodes::_imul:
   535       {
   536         bool    did_strength_reduce = false;
   538         if (right->is_constant()) {
   539           int c = right->as_jint();
   540           if (is_power_of_2(c)) {
   541             // do not need tmp here
   542             __ shift_left(left_op, exact_log2(c), result_op);
   543             did_strength_reduce = true;
   544           } else {
   545             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
   546           }
   547         }
   548         // we couldn't strength reduce so just emit the multiply
   549         if (!did_strength_reduce) {
   550           __ mul(left_op, right_op, result_op);
   551         }
   552       }
   553       break;
   555     case Bytecodes::_dsub:
   556     case Bytecodes::_fsub:
   557     case Bytecodes::_lsub:
   558     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
   560     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
   561     // ldiv and lrem are implemented with a direct runtime call
   563     case Bytecodes::_ddiv:
   564       {
   565         if (is_strictfp) {
   566           __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
   567         } else {
   568           __ div (left_op, right_op, result_op); break;
   569         }
   570       }
   571       break;
   573     case Bytecodes::_drem:
   574     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
   576     default: ShouldNotReachHere();
   577   }
   578 }
   581 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
   582   arithmetic_op(code, result, left, right, false, tmp);
   583 }
   586 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
   587   arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
   588 }
   591 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
   592   arithmetic_op(code, result, left, right, is_strictfp, tmp);
   593 }
   596 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
   597   if (TwoOperandLIRForm && value != result_op) {
   598     assert(count != result_op, "malformed");
   599     __ move(value, result_op);
   600     value = result_op;
   601   }
   603   assert(count->is_constant() || count->is_register(), "must be");
   604   switch(code) {
   605   case Bytecodes::_ishl:
   606   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
   607   case Bytecodes::_ishr:
   608   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
   609   case Bytecodes::_iushr:
   610   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
   611   default: ShouldNotReachHere();
   612   }
   613 }
   616 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
   617   if (TwoOperandLIRForm && left_op != result_op) {
   618     assert(right_op != result_op, "malformed");
   619     __ move(left_op, result_op);
   620     left_op = result_op;
   621   }
   623   switch(code) {
   624     case Bytecodes::_iand:
   625     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
   627     case Bytecodes::_ior:
   628     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
   630     case Bytecodes::_ixor:
   631     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
   633     default: ShouldNotReachHere();
   634   }
   635 }
   638 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
   639   if (!GenerateSynchronizationCode) return;
   640   // for slow path, use debug info for state after successful locking
   641   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
   642   __ load_stack_address_monitor(monitor_no, lock);
   643   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
   644   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
   645 }
   648 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
   649   if (!GenerateSynchronizationCode) return;
   650   // setup registers
   651   LIR_Opr hdr = lock;
   652   lock = new_hdr;
   653   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
   654   __ load_stack_address_monitor(monitor_no, lock);
   655   __ unlock_object(hdr, object, lock, scratch, slow_path);
   656 }
   659 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
   660   jobject2reg_with_patching(klass_reg, klass, info);
   661   // If klass is not loaded we do not know if the klass has finalizers:
   662   if (UseFastNewInstance && klass->is_loaded()
   663       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
   665     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
   667     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
   669     assert(klass->is_loaded(), "must be loaded");
   670     // allocate space for instance
   671     assert(klass->size_helper() >= 0, "illegal instance size");
   672     const int instance_size = align_object_size(klass->size_helper());
   673     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
   674                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
   675   } else {
   676     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
   677     __ branch(lir_cond_always, T_ILLEGAL, slow_path);
   678     __ branch_destination(slow_path->continuation());
   679   }
   680 }
   683 static bool is_constant_zero(Instruction* inst) {
   684   IntConstant* c = inst->type()->as_IntConstant();
   685   if (c) {
   686     return (c->value() == 0);
   687   }
   688   return false;
   689 }
   692 static bool positive_constant(Instruction* inst) {
   693   IntConstant* c = inst->type()->as_IntConstant();
   694   if (c) {
   695     return (c->value() >= 0);
   696   }
   697   return false;
   698 }
   701 static ciArrayKlass* as_array_klass(ciType* type) {
   702   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
   703     return (ciArrayKlass*)type;
   704   } else {
   705     return NULL;
   706   }
   707 }
   709 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
   710   Instruction* src     = x->argument_at(0);
   711   Instruction* src_pos = x->argument_at(1);
   712   Instruction* dst     = x->argument_at(2);
   713   Instruction* dst_pos = x->argument_at(3);
   714   Instruction* length  = x->argument_at(4);
   716   // first try to identify the likely type of the arrays involved
   717   ciArrayKlass* expected_type = NULL;
   718   bool is_exact = false;
   719   {
   720     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
   721     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
   722     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
   723     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
   724     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
   725       // the types exactly match so the type is fully known
   726       is_exact = true;
   727       expected_type = src_exact_type;
   728     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
   729       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
   730       ciArrayKlass* src_type = NULL;
   731       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
   732         src_type = (ciArrayKlass*) src_exact_type;
   733       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
   734         src_type = (ciArrayKlass*) src_declared_type;
   735       }
   736       if (src_type != NULL) {
   737         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
   738           is_exact = true;
   739           expected_type = dst_type;
   740         }
   741       }
   742     }
   743     // at least pass along a good guess
   744     if (expected_type == NULL) expected_type = dst_exact_type;
   745     if (expected_type == NULL) expected_type = src_declared_type;
   746     if (expected_type == NULL) expected_type = dst_declared_type;
   747   }
   749   // if a probable array type has been identified, figure out if any
   750   // of the required checks for a fast case can be elided.
   751   int flags = LIR_OpArrayCopy::all_flags;
   752   if (expected_type != NULL) {
   753     // try to skip null checks
   754     if (src->as_NewArray() != NULL)
   755       flags &= ~LIR_OpArrayCopy::src_null_check;
   756     if (dst->as_NewArray() != NULL)
   757       flags &= ~LIR_OpArrayCopy::dst_null_check;
   759     // check from incoming constant values
   760     if (positive_constant(src_pos))
   761       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
   762     if (positive_constant(dst_pos))
   763       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
   764     if (positive_constant(length))
   765       flags &= ~LIR_OpArrayCopy::length_positive_check;
   767     // see if the range check can be elided, which might also imply
   768     // that src or dst is non-null.
   769     ArrayLength* al = length->as_ArrayLength();
   770     if (al != NULL) {
   771       if (al->array() == src) {
   772         // it's the length of the source array
   773         flags &= ~LIR_OpArrayCopy::length_positive_check;
   774         flags &= ~LIR_OpArrayCopy::src_null_check;
   775         if (is_constant_zero(src_pos))
   776           flags &= ~LIR_OpArrayCopy::src_range_check;
   777       }
   778       if (al->array() == dst) {
   779         // it's the length of the destination array
   780         flags &= ~LIR_OpArrayCopy::length_positive_check;
   781         flags &= ~LIR_OpArrayCopy::dst_null_check;
   782         if (is_constant_zero(dst_pos))
   783           flags &= ~LIR_OpArrayCopy::dst_range_check;
   784       }
   785     }
   786     if (is_exact) {
   787       flags &= ~LIR_OpArrayCopy::type_check;
   788     }
   789   }
   791   if (src == dst) {
   792     // moving within a single array so no type checks are needed
   793     if (flags & LIR_OpArrayCopy::type_check) {
   794       flags &= ~LIR_OpArrayCopy::type_check;
   795     }
   796   }
   797   *flagsp = flags;
   798   *expected_typep = (ciArrayKlass*)expected_type;
   799 }
   802 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
   803   assert(opr->is_register(), "why spill if item is not register?");
   805   if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
   806     LIR_Opr result = new_register(T_FLOAT);
   807     set_vreg_flag(result, must_start_in_memory);
   808     assert(opr->is_register(), "only a register can be spilled");
   809     assert(opr->value_type()->is_float(), "rounding only for floats available");
   810     __ roundfp(opr, LIR_OprFact::illegalOpr, result);
   811     return result;
   812   }
   813   return opr;
   814 }
   817 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
   818   assert(type2size[t] == type2size[value->type()], "size mismatch");
   819   if (!value->is_register()) {
   820     // force into a register
   821     LIR_Opr r = new_register(value->type());
   822     __ move(value, r);
   823     value = r;
   824   }
   826   // create a spill location
   827   LIR_Opr tmp = new_register(t);
   828   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
   830   // move from register to spill
   831   __ move(value, tmp);
   832   return tmp;
   833 }
   835 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
   836   if (if_instr->should_profile()) {
   837     ciMethod* method = if_instr->profiled_method();
   838     assert(method != NULL, "method should be set if branch is profiled");
   839     ciMethodData* md = method->method_data();
   840     if (md == NULL) {
   841       bailout("out of memory building methodDataOop");
   842       return;
   843     }
   844     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
   845     assert(data != NULL, "must have profiling data");
   846     assert(data->is_BranchData(), "need BranchData for two-way branches");
   847     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
   848     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
   849     if (if_instr->is_swapped()) {
   850       int t = taken_count_offset;
   851       taken_count_offset = not_taken_count_offset;
   852       not_taken_count_offset = t;
   853     }
   855     LIR_Opr md_reg = new_register(T_OBJECT);
   856     __ oop2reg(md->constant_encoding(), md_reg);
   858     LIR_Opr data_offset_reg = new_pointer_register();
   859     __ cmove(lir_cond(cond),
   860              LIR_OprFact::intptrConst(taken_count_offset),
   861              LIR_OprFact::intptrConst(not_taken_count_offset),
   862              data_offset_reg);
   864     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
   865     LIR_Opr data_reg = new_pointer_register();
   866     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
   867     __ move(data_addr, data_reg);
   868     // Use leal instead of add to avoid destroying condition codes on x86
   869     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
   870     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
   871     __ move(data_reg, data_addr);
   872   }
   873 }
   875 // Phi technique:
   876 // This is about passing live values from one basic block to the other.
   877 // In code generated with Java it is rather rare that more than one
   878 // value is on the stack from one basic block to the other.
   879 // We optimize our technique for efficient passing of one value
   880 // (of type long, int, double..) but it can be extended.
   881 // When entering or leaving a basic block, all registers and all spill
   882 // slots are release and empty. We use the released registers
   883 // and spill slots to pass the live values from one block
   884 // to the other. The topmost value, i.e., the value on TOS of expression
   885 // stack is passed in registers. All other values are stored in spilling
   886 // area. Every Phi has an index which designates its spill slot
   887 // At exit of a basic block, we fill the register(s) and spill slots.
   888 // At entry of a basic block, the block_prolog sets up the content of phi nodes
   889 // and locks necessary registers and spilling slots.
   892 // move current value to referenced phi function
   893 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
   894   Phi* phi = sux_val->as_Phi();
   895   // cur_val can be null without phi being null in conjunction with inlining
   896   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
   897     LIR_Opr operand = cur_val->operand();
   898     if (cur_val->operand()->is_illegal()) {
   899       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
   900              "these can be produced lazily");
   901       operand = operand_for_instruction(cur_val);
   902     }
   903     resolver->move(operand, operand_for_instruction(phi));
   904   }
   905 }
   908 // Moves all stack values into their PHI position
   909 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
   910   BlockBegin* bb = block();
   911   if (bb->number_of_sux() == 1) {
   912     BlockBegin* sux = bb->sux_at(0);
   913     assert(sux->number_of_preds() > 0, "invalid CFG");
   915     // a block with only one predecessor never has phi functions
   916     if (sux->number_of_preds() > 1) {
   917       int max_phis = cur_state->stack_size() + cur_state->locals_size();
   918       PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
   920       ValueStack* sux_state = sux->state();
   921       Value sux_value;
   922       int index;
   924       assert(cur_state->scope() == sux_state->scope(), "not matching");
   925       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
   926       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
   928       for_each_stack_value(sux_state, index, sux_value) {
   929         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
   930       }
   932       for_each_local_value(sux_state, index, sux_value) {
   933         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
   934       }
   936       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
   937     }
   938   }
   939 }
   942 LIR_Opr LIRGenerator::new_register(BasicType type) {
   943   int vreg = _virtual_register_number;
   944   // add a little fudge factor for the bailout, since the bailout is
   945   // only checked periodically.  This gives a few extra registers to
   946   // hand out before we really run out, which helps us keep from
   947   // tripping over assertions.
   948   if (vreg + 20 >= LIR_OprDesc::vreg_max) {
   949     bailout("out of virtual registers");
   950     if (vreg + 2 >= LIR_OprDesc::vreg_max) {
   951       // wrap it around
   952       _virtual_register_number = LIR_OprDesc::vreg_base;
   953     }
   954   }
   955   _virtual_register_number += 1;
   956   return LIR_OprFact::virtual_register(vreg, type);
   957 }
   960 // Try to lock using register in hint
   961 LIR_Opr LIRGenerator::rlock(Value instr) {
   962   return new_register(instr->type());
   963 }
   966 // does an rlock and sets result
   967 LIR_Opr LIRGenerator::rlock_result(Value x) {
   968   LIR_Opr reg = rlock(x);
   969   set_result(x, reg);
   970   return reg;
   971 }
   974 // does an rlock and sets result
   975 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
   976   LIR_Opr reg;
   977   switch (type) {
   978   case T_BYTE:
   979   case T_BOOLEAN:
   980     reg = rlock_byte(type);
   981     break;
   982   default:
   983     reg = rlock(x);
   984     break;
   985   }
   987   set_result(x, reg);
   988   return reg;
   989 }
   992 //---------------------------------------------------------------------
   993 ciObject* LIRGenerator::get_jobject_constant(Value value) {
   994   ObjectType* oc = value->type()->as_ObjectType();
   995   if (oc) {
   996     return oc->constant_value();
   997   }
   998   return NULL;
   999 }
  1002 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
  1003   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
  1004   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
  1006   // no moves are created for phi functions at the begin of exception
  1007   // handlers, so assign operands manually here
  1008   for_each_phi_fun(block(), phi,
  1009                    operand_for_instruction(phi));
  1011   LIR_Opr thread_reg = getThreadPointer();
  1012   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
  1013                exceptionOopOpr());
  1014   __ move_wide(LIR_OprFact::oopConst(NULL),
  1015                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
  1016   __ move_wide(LIR_OprFact::oopConst(NULL),
  1017                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
  1019   LIR_Opr result = new_register(T_OBJECT);
  1020   __ move(exceptionOopOpr(), result);
  1021   set_result(x, result);
  1025 //----------------------------------------------------------------------
  1026 //----------------------------------------------------------------------
  1027 //----------------------------------------------------------------------
  1028 //----------------------------------------------------------------------
  1029 //                        visitor functions
  1030 //----------------------------------------------------------------------
  1031 //----------------------------------------------------------------------
  1032 //----------------------------------------------------------------------
  1033 //----------------------------------------------------------------------
  1035 void LIRGenerator::do_Phi(Phi* x) {
  1036   // phi functions are never visited directly
  1037   ShouldNotReachHere();
  1041 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
  1042 void LIRGenerator::do_Constant(Constant* x) {
  1043   if (x->state_before() != NULL) {
  1044     // Any constant with a ValueStack requires patching so emit the patch here
  1045     LIR_Opr reg = rlock_result(x);
  1046     CodeEmitInfo* info = state_for(x, x->state_before());
  1047     __ oop2reg_patch(NULL, reg, info);
  1048   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
  1049     if (!x->is_pinned()) {
  1050       // unpinned constants are handled specially so that they can be
  1051       // put into registers when they are used multiple times within a
  1052       // block.  After the block completes their operand will be
  1053       // cleared so that other blocks can't refer to that register.
  1054       set_result(x, load_constant(x));
  1055     } else {
  1056       LIR_Opr res = x->operand();
  1057       if (!res->is_valid()) {
  1058         res = LIR_OprFact::value_type(x->type());
  1060       if (res->is_constant()) {
  1061         LIR_Opr reg = rlock_result(x);
  1062         __ move(res, reg);
  1063       } else {
  1064         set_result(x, res);
  1067   } else {
  1068     set_result(x, LIR_OprFact::value_type(x->type()));
  1073 void LIRGenerator::do_Local(Local* x) {
  1074   // operand_for_instruction has the side effect of setting the result
  1075   // so there's no need to do it here.
  1076   operand_for_instruction(x);
  1080 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
  1081   Unimplemented();
  1085 void LIRGenerator::do_Return(Return* x) {
  1086   if (compilation()->env()->dtrace_method_probes()) {
  1087     BasicTypeList signature;
  1088     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
  1089     signature.append(T_OBJECT); // methodOop
  1090     LIR_OprList* args = new LIR_OprList();
  1091     args->append(getThreadPointer());
  1092     LIR_Opr meth = new_register(T_OBJECT);
  1093     __ oop2reg(method()->constant_encoding(), meth);
  1094     args->append(meth);
  1095     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
  1098   if (x->type()->is_void()) {
  1099     __ return_op(LIR_OprFact::illegalOpr);
  1100   } else {
  1101     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
  1102     LIRItem result(x->result(), this);
  1104     result.load_item_force(reg);
  1105     __ return_op(result.result());
  1107   set_no_result(x);
  1111 // Example: object.getClass ()
  1112 void LIRGenerator::do_getClass(Intrinsic* x) {
  1113   assert(x->number_of_arguments() == 1, "wrong type");
  1115   LIRItem rcvr(x->argument_at(0), this);
  1116   rcvr.load_item();
  1117   LIR_Opr result = rlock_result(x);
  1119   // need to perform the null check on the rcvr
  1120   CodeEmitInfo* info = NULL;
  1121   if (x->needs_null_check()) {
  1122     info = state_for(x);
  1124   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_OBJECT), result, info);
  1125   __ move_wide(new LIR_Address(result, Klass::java_mirror_offset_in_bytes() +
  1126                                klassOopDesc::klass_part_offset_in_bytes(), T_OBJECT), result);
  1130 // Example: Thread.currentThread()
  1131 void LIRGenerator::do_currentThread(Intrinsic* x) {
  1132   assert(x->number_of_arguments() == 0, "wrong type");
  1133   LIR_Opr reg = rlock_result(x);
  1134   __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
  1138 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
  1139   assert(x->number_of_arguments() == 1, "wrong type");
  1140   LIRItem receiver(x->argument_at(0), this);
  1142   receiver.load_item();
  1143   BasicTypeList signature;
  1144   signature.append(T_OBJECT); // receiver
  1145   LIR_OprList* args = new LIR_OprList();
  1146   args->append(receiver.result());
  1147   CodeEmitInfo* info = state_for(x, x->state());
  1148   call_runtime(&signature, args,
  1149                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
  1150                voidType, info);
  1152   set_no_result(x);
  1156 //------------------------local access--------------------------------------
  1158 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
  1159   if (x->operand()->is_illegal()) {
  1160     Constant* c = x->as_Constant();
  1161     if (c != NULL) {
  1162       x->set_operand(LIR_OprFact::value_type(c->type()));
  1163     } else {
  1164       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
  1165       // allocate a virtual register for this local or phi
  1166       x->set_operand(rlock(x));
  1167       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
  1170   return x->operand();
  1174 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
  1175   if (opr->is_virtual()) {
  1176     return instruction_for_vreg(opr->vreg_number());
  1178   return NULL;
  1182 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
  1183   if (reg_num < _instruction_for_operand.length()) {
  1184     return _instruction_for_operand.at(reg_num);
  1186   return NULL;
  1190 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
  1191   if (_vreg_flags.size_in_bits() == 0) {
  1192     BitMap2D temp(100, num_vreg_flags);
  1193     temp.clear();
  1194     _vreg_flags = temp;
  1196   _vreg_flags.at_put_grow(vreg_num, f, true);
  1199 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
  1200   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
  1201     return false;
  1203   return _vreg_flags.at(vreg_num, f);
  1207 // Block local constant handling.  This code is useful for keeping
  1208 // unpinned constants and constants which aren't exposed in the IR in
  1209 // registers.  Unpinned Constant instructions have their operands
  1210 // cleared when the block is finished so that other blocks can't end
  1211 // up referring to their registers.
  1213 LIR_Opr LIRGenerator::load_constant(Constant* x) {
  1214   assert(!x->is_pinned(), "only for unpinned constants");
  1215   _unpinned_constants.append(x);
  1216   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
  1220 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
  1221   BasicType t = c->type();
  1222   for (int i = 0; i < _constants.length(); i++) {
  1223     LIR_Const* other = _constants.at(i);
  1224     if (t == other->type()) {
  1225       switch (t) {
  1226       case T_INT:
  1227       case T_FLOAT:
  1228         if (c->as_jint_bits() != other->as_jint_bits()) continue;
  1229         break;
  1230       case T_LONG:
  1231       case T_DOUBLE:
  1232         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
  1233         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
  1234         break;
  1235       case T_OBJECT:
  1236         if (c->as_jobject() != other->as_jobject()) continue;
  1237         break;
  1239       return _reg_for_constants.at(i);
  1243   LIR_Opr result = new_register(t);
  1244   __ move((LIR_Opr)c, result);
  1245   _constants.append(c);
  1246   _reg_for_constants.append(result);
  1247   return result;
  1250 // Various barriers
  1252 void LIRGenerator::pre_barrier(LIR_Opr addr_opr, bool patch,  CodeEmitInfo* info) {
  1253   // Do the pre-write barrier, if any.
  1254   switch (_bs->kind()) {
  1255 #ifndef SERIALGC
  1256     case BarrierSet::G1SATBCT:
  1257     case BarrierSet::G1SATBCTLogging:
  1258       G1SATBCardTableModRef_pre_barrier(addr_opr, patch, info);
  1259       break;
  1260 #endif // SERIALGC
  1261     case BarrierSet::CardTableModRef:
  1262     case BarrierSet::CardTableExtension:
  1263       // No pre barriers
  1264       break;
  1265     case BarrierSet::ModRef:
  1266     case BarrierSet::Other:
  1267       // No pre barriers
  1268       break;
  1269     default      :
  1270       ShouldNotReachHere();
  1275 void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
  1276   switch (_bs->kind()) {
  1277 #ifndef SERIALGC
  1278     case BarrierSet::G1SATBCT:
  1279     case BarrierSet::G1SATBCTLogging:
  1280       G1SATBCardTableModRef_post_barrier(addr,  new_val);
  1281       break;
  1282 #endif // SERIALGC
  1283     case BarrierSet::CardTableModRef:
  1284     case BarrierSet::CardTableExtension:
  1285       CardTableModRef_post_barrier(addr,  new_val);
  1286       break;
  1287     case BarrierSet::ModRef:
  1288     case BarrierSet::Other:
  1289       // No post barriers
  1290       break;
  1291     default      :
  1292       ShouldNotReachHere();
  1296 ////////////////////////////////////////////////////////////////////////
  1297 #ifndef SERIALGC
  1299 void LIRGenerator::G1SATBCardTableModRef_pre_barrier(LIR_Opr addr_opr, bool patch,  CodeEmitInfo* info) {
  1300   if (G1DisablePreBarrier) return;
  1302   // First we test whether marking is in progress.
  1303   BasicType flag_type;
  1304   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
  1305     flag_type = T_INT;
  1306   } else {
  1307     guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
  1308               "Assumption");
  1309     flag_type = T_BYTE;
  1311   LIR_Opr thrd = getThreadPointer();
  1312   LIR_Address* mark_active_flag_addr =
  1313     new LIR_Address(thrd,
  1314                     in_bytes(JavaThread::satb_mark_queue_offset() +
  1315                              PtrQueue::byte_offset_of_active()),
  1316                     flag_type);
  1317   // Read the marking-in-progress flag.
  1318   LIR_Opr flag_val = new_register(T_INT);
  1319   __ load(mark_active_flag_addr, flag_val);
  1321   LIR_PatchCode pre_val_patch_code =
  1322     patch ? lir_patch_normal : lir_patch_none;
  1324   LIR_Opr pre_val = new_register(T_OBJECT);
  1326   __ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0));
  1327   if (!addr_opr->is_address()) {
  1328     assert(addr_opr->is_register(), "must be");
  1329     addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, T_OBJECT));
  1331   CodeStub* slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code,
  1332                                         info);
  1333   __ branch(lir_cond_notEqual, T_INT, slow);
  1334   __ branch_destination(slow->continuation());
  1337 void LIRGenerator::G1SATBCardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
  1338   if (G1DisablePostBarrier) return;
  1340   // If the "new_val" is a constant NULL, no barrier is necessary.
  1341   if (new_val->is_constant() &&
  1342       new_val->as_constant_ptr()->as_jobject() == NULL) return;
  1344   if (!new_val->is_register()) {
  1345     LIR_Opr new_val_reg = new_register(T_OBJECT);
  1346     if (new_val->is_constant()) {
  1347       __ move(new_val, new_val_reg);
  1348     } else {
  1349       __ leal(new_val, new_val_reg);
  1351     new_val = new_val_reg;
  1353   assert(new_val->is_register(), "must be a register at this point");
  1355   if (addr->is_address()) {
  1356     LIR_Address* address = addr->as_address_ptr();
  1357     LIR_Opr ptr = new_register(T_OBJECT);
  1358     if (!address->index()->is_valid() && address->disp() == 0) {
  1359       __ move(address->base(), ptr);
  1360     } else {
  1361       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
  1362       __ leal(addr, ptr);
  1364     addr = ptr;
  1366   assert(addr->is_register(), "must be a register at this point");
  1368   LIR_Opr xor_res = new_pointer_register();
  1369   LIR_Opr xor_shift_res = new_pointer_register();
  1370   if (TwoOperandLIRForm ) {
  1371     __ move(addr, xor_res);
  1372     __ logical_xor(xor_res, new_val, xor_res);
  1373     __ move(xor_res, xor_shift_res);
  1374     __ unsigned_shift_right(xor_shift_res,
  1375                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
  1376                             xor_shift_res,
  1377                             LIR_OprDesc::illegalOpr());
  1378   } else {
  1379     __ logical_xor(addr, new_val, xor_res);
  1380     __ unsigned_shift_right(xor_res,
  1381                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
  1382                             xor_shift_res,
  1383                             LIR_OprDesc::illegalOpr());
  1386   if (!new_val->is_register()) {
  1387     LIR_Opr new_val_reg = new_register(T_OBJECT);
  1388     __ leal(new_val, new_val_reg);
  1389     new_val = new_val_reg;
  1391   assert(new_val->is_register(), "must be a register at this point");
  1393   __ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD));
  1395   CodeStub* slow = new G1PostBarrierStub(addr, new_val);
  1396   __ branch(lir_cond_notEqual, LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow);
  1397   __ branch_destination(slow->continuation());
  1400 #endif // SERIALGC
  1401 ////////////////////////////////////////////////////////////////////////
  1403 void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
  1405   assert(sizeof(*((CardTableModRefBS*)_bs)->byte_map_base) == sizeof(jbyte), "adjust this code");
  1406   LIR_Const* card_table_base = new LIR_Const(((CardTableModRefBS*)_bs)->byte_map_base);
  1407   if (addr->is_address()) {
  1408     LIR_Address* address = addr->as_address_ptr();
  1409     LIR_Opr ptr = new_register(T_OBJECT);
  1410     if (!address->index()->is_valid() && address->disp() == 0) {
  1411       __ move(address->base(), ptr);
  1412     } else {
  1413       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
  1414       __ leal(addr, ptr);
  1416     addr = ptr;
  1418   assert(addr->is_register(), "must be a register at this point");
  1420 #ifdef ARM
  1421   // TODO: ARM - move to platform-dependent code
  1422   LIR_Opr tmp = FrameMap::R14_opr;
  1423   if (VM_Version::supports_movw()) {
  1424     __ move((LIR_Opr)card_table_base, tmp);
  1425   } else {
  1426     __ move(new LIR_Address(FrameMap::Rthread_opr, in_bytes(JavaThread::card_table_base_offset()), T_ADDRESS), tmp);
  1429   CardTableModRefBS* ct = (CardTableModRefBS*)_bs;
  1430   LIR_Address *card_addr = new LIR_Address(tmp, addr, (LIR_Address::Scale) -CardTableModRefBS::card_shift, 0, T_BYTE);
  1431   if(((int)ct->byte_map_base & 0xff) == 0) {
  1432     __ move(tmp, card_addr);
  1433   } else {
  1434     LIR_Opr tmp_zero = new_register(T_INT);
  1435     __ move(LIR_OprFact::intConst(0), tmp_zero);
  1436     __ move(tmp_zero, card_addr);
  1438 #else // ARM
  1439   LIR_Opr tmp = new_pointer_register();
  1440   if (TwoOperandLIRForm) {
  1441     __ move(addr, tmp);
  1442     __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
  1443   } else {
  1444     __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
  1446   if (can_inline_as_constant(card_table_base)) {
  1447     __ move(LIR_OprFact::intConst(0),
  1448               new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE));
  1449   } else {
  1450     __ move(LIR_OprFact::intConst(0),
  1451               new LIR_Address(tmp, load_constant(card_table_base),
  1452                               T_BYTE));
  1454 #endif // ARM
  1458 //------------------------field access--------------------------------------
  1460 // Comment copied form templateTable_i486.cpp
  1461 // ----------------------------------------------------------------------------
  1462 // Volatile variables demand their effects be made known to all CPU's in
  1463 // order.  Store buffers on most chips allow reads & writes to reorder; the
  1464 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
  1465 // memory barrier (i.e., it's not sufficient that the interpreter does not
  1466 // reorder volatile references, the hardware also must not reorder them).
  1467 //
  1468 // According to the new Java Memory Model (JMM):
  1469 // (1) All volatiles are serialized wrt to each other.
  1470 // ALSO reads & writes act as aquire & release, so:
  1471 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
  1472 // the read float up to before the read.  It's OK for non-volatile memory refs
  1473 // that happen before the volatile read to float down below it.
  1474 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
  1475 // that happen BEFORE the write float down to after the write.  It's OK for
  1476 // non-volatile memory refs that happen after the volatile write to float up
  1477 // before it.
  1478 //
  1479 // We only put in barriers around volatile refs (they are expensive), not
  1480 // _between_ memory refs (that would require us to track the flavor of the
  1481 // previous memory refs).  Requirements (2) and (3) require some barriers
  1482 // before volatile stores and after volatile loads.  These nearly cover
  1483 // requirement (1) but miss the volatile-store-volatile-load case.  This final
  1484 // case is placed after volatile-stores although it could just as well go
  1485 // before volatile-loads.
  1488 void LIRGenerator::do_StoreField(StoreField* x) {
  1489   bool needs_patching = x->needs_patching();
  1490   bool is_volatile = x->field()->is_volatile();
  1491   BasicType field_type = x->field_type();
  1492   bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
  1494   CodeEmitInfo* info = NULL;
  1495   if (needs_patching) {
  1496     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
  1497     info = state_for(x, x->state_before());
  1498   } else if (x->needs_null_check()) {
  1499     NullCheck* nc = x->explicit_null_check();
  1500     if (nc == NULL) {
  1501       info = state_for(x);
  1502     } else {
  1503       info = state_for(nc);
  1508   LIRItem object(x->obj(), this);
  1509   LIRItem value(x->value(),  this);
  1511   object.load_item();
  1513   if (is_volatile || needs_patching) {
  1514     // load item if field is volatile (fewer special cases for volatiles)
  1515     // load item if field not initialized
  1516     // load item if field not constant
  1517     // because of code patching we cannot inline constants
  1518     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
  1519       value.load_byte_item();
  1520     } else  {
  1521       value.load_item();
  1523   } else {
  1524     value.load_for_store(field_type);
  1527   set_no_result(x);
  1529 #ifndef PRODUCT
  1530   if (PrintNotLoaded && needs_patching) {
  1531     tty->print_cr("   ###class not loaded at store_%s bci %d",
  1532                   x->is_static() ?  "static" : "field", x->printable_bci());
  1534 #endif
  1536   if (x->needs_null_check() &&
  1537       (needs_patching ||
  1538        MacroAssembler::needs_explicit_null_check(x->offset()))) {
  1539     // emit an explicit null check because the offset is too large
  1540     __ null_check(object.result(), new CodeEmitInfo(info));
  1543   LIR_Address* address;
  1544   if (needs_patching) {
  1545     // we need to patch the offset in the instruction so don't allow
  1546     // generate_address to try to be smart about emitting the -1.
  1547     // Otherwise the patching code won't know how to find the
  1548     // instruction to patch.
  1549     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
  1550   } else {
  1551     address = generate_address(object.result(), x->offset(), field_type);
  1554   if (is_volatile && os::is_MP()) {
  1555     __ membar_release();
  1558   if (is_oop) {
  1559     // Do the pre-write barrier, if any.
  1560     pre_barrier(LIR_OprFact::address(address),
  1561                 needs_patching,
  1562                 (info ? new CodeEmitInfo(info) : NULL));
  1565   if (is_volatile) {
  1566     assert(!needs_patching && x->is_loaded(),
  1567            "how do we know it's volatile if it's not loaded");
  1568     volatile_field_store(value.result(), address, info);
  1569   } else {
  1570     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
  1571     __ store(value.result(), address, info, patch_code);
  1574   if (is_oop) {
  1575     // Store to object so mark the card of the header
  1576     post_barrier(object.result(), value.result());
  1579   if (is_volatile && os::is_MP()) {
  1580     __ membar();
  1585 void LIRGenerator::do_LoadField(LoadField* x) {
  1586   bool needs_patching = x->needs_patching();
  1587   bool is_volatile = x->field()->is_volatile();
  1588   BasicType field_type = x->field_type();
  1590   CodeEmitInfo* info = NULL;
  1591   if (needs_patching) {
  1592     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
  1593     info = state_for(x, x->state_before());
  1594   } else if (x->needs_null_check()) {
  1595     NullCheck* nc = x->explicit_null_check();
  1596     if (nc == NULL) {
  1597       info = state_for(x);
  1598     } else {
  1599       info = state_for(nc);
  1603   LIRItem object(x->obj(), this);
  1605   object.load_item();
  1607 #ifndef PRODUCT
  1608   if (PrintNotLoaded && needs_patching) {
  1609     tty->print_cr("   ###class not loaded at load_%s bci %d",
  1610                   x->is_static() ?  "static" : "field", x->printable_bci());
  1612 #endif
  1614   if (x->needs_null_check() &&
  1615       (needs_patching ||
  1616        MacroAssembler::needs_explicit_null_check(x->offset()))) {
  1617     // emit an explicit null check because the offset is too large
  1618     __ null_check(object.result(), new CodeEmitInfo(info));
  1621   LIR_Opr reg = rlock_result(x, field_type);
  1622   LIR_Address* address;
  1623   if (needs_patching) {
  1624     // we need to patch the offset in the instruction so don't allow
  1625     // generate_address to try to be smart about emitting the -1.
  1626     // Otherwise the patching code won't know how to find the
  1627     // instruction to patch.
  1628     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
  1629   } else {
  1630     address = generate_address(object.result(), x->offset(), field_type);
  1633   if (is_volatile) {
  1634     assert(!needs_patching && x->is_loaded(),
  1635            "how do we know it's volatile if it's not loaded");
  1636     volatile_field_load(address, reg, info);
  1637   } else {
  1638     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
  1639     __ load(address, reg, info, patch_code);
  1642   if (is_volatile && os::is_MP()) {
  1643     __ membar_acquire();
  1648 //------------------------java.nio.Buffer.checkIndex------------------------
  1650 // int java.nio.Buffer.checkIndex(int)
  1651 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
  1652   // NOTE: by the time we are in checkIndex() we are guaranteed that
  1653   // the buffer is non-null (because checkIndex is package-private and
  1654   // only called from within other methods in the buffer).
  1655   assert(x->number_of_arguments() == 2, "wrong type");
  1656   LIRItem buf  (x->argument_at(0), this);
  1657   LIRItem index(x->argument_at(1), this);
  1658   buf.load_item();
  1659   index.load_item();
  1661   LIR_Opr result = rlock_result(x);
  1662   if (GenerateRangeChecks) {
  1663     CodeEmitInfo* info = state_for(x);
  1664     CodeStub* stub = new RangeCheckStub(info, index.result(), true);
  1665     if (index.result()->is_constant()) {
  1666       cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
  1667       __ branch(lir_cond_belowEqual, T_INT, stub);
  1668     } else {
  1669       cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
  1670                   java_nio_Buffer::limit_offset(), T_INT, info);
  1671       __ branch(lir_cond_aboveEqual, T_INT, stub);
  1673     __ move(index.result(), result);
  1674   } else {
  1675     // Just load the index into the result register
  1676     __ move(index.result(), result);
  1681 //------------------------array access--------------------------------------
  1684 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
  1685   LIRItem array(x->array(), this);
  1686   array.load_item();
  1687   LIR_Opr reg = rlock_result(x);
  1689   CodeEmitInfo* info = NULL;
  1690   if (x->needs_null_check()) {
  1691     NullCheck* nc = x->explicit_null_check();
  1692     if (nc == NULL) {
  1693       info = state_for(x);
  1694     } else {
  1695       info = state_for(nc);
  1698   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
  1702 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
  1703   bool use_length = x->length() != NULL;
  1704   LIRItem array(x->array(), this);
  1705   LIRItem index(x->index(), this);
  1706   LIRItem length(this);
  1707   bool needs_range_check = true;
  1709   if (use_length) {
  1710     needs_range_check = x->compute_needs_range_check();
  1711     if (needs_range_check) {
  1712       length.set_instruction(x->length());
  1713       length.load_item();
  1717   array.load_item();
  1718   if (index.is_constant() && can_inline_as_constant(x->index())) {
  1719     // let it be a constant
  1720     index.dont_load_item();
  1721   } else {
  1722     index.load_item();
  1725   CodeEmitInfo* range_check_info = state_for(x);
  1726   CodeEmitInfo* null_check_info = NULL;
  1727   if (x->needs_null_check()) {
  1728     NullCheck* nc = x->explicit_null_check();
  1729     if (nc != NULL) {
  1730       null_check_info = state_for(nc);
  1731     } else {
  1732       null_check_info = range_check_info;
  1736   // emit array address setup early so it schedules better
  1737   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
  1739   if (GenerateRangeChecks && needs_range_check) {
  1740     if (use_length) {
  1741       // TODO: use a (modified) version of array_range_check that does not require a
  1742       //       constant length to be loaded to a register
  1743       __ cmp(lir_cond_belowEqual, length.result(), index.result());
  1744       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
  1745     } else {
  1746       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
  1747       // The range check performs the null check, so clear it out for the load
  1748       null_check_info = NULL;
  1752   __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
  1756 void LIRGenerator::do_NullCheck(NullCheck* x) {
  1757   if (x->can_trap()) {
  1758     LIRItem value(x->obj(), this);
  1759     value.load_item();
  1760     CodeEmitInfo* info = state_for(x);
  1761     __ null_check(value.result(), info);
  1766 void LIRGenerator::do_Throw(Throw* x) {
  1767   LIRItem exception(x->exception(), this);
  1768   exception.load_item();
  1769   set_no_result(x);
  1770   LIR_Opr exception_opr = exception.result();
  1771   CodeEmitInfo* info = state_for(x, x->state());
  1773 #ifndef PRODUCT
  1774   if (PrintC1Statistics) {
  1775     increment_counter(Runtime1::throw_count_address(), T_INT);
  1777 #endif
  1779   // check if the instruction has an xhandler in any of the nested scopes
  1780   bool unwind = false;
  1781   if (info->exception_handlers()->length() == 0) {
  1782     // this throw is not inside an xhandler
  1783     unwind = true;
  1784   } else {
  1785     // get some idea of the throw type
  1786     bool type_is_exact = true;
  1787     ciType* throw_type = x->exception()->exact_type();
  1788     if (throw_type == NULL) {
  1789       type_is_exact = false;
  1790       throw_type = x->exception()->declared_type();
  1792     if (throw_type != NULL && throw_type->is_instance_klass()) {
  1793       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
  1794       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
  1798   // do null check before moving exception oop into fixed register
  1799   // to avoid a fixed interval with an oop during the null check.
  1800   // Use a copy of the CodeEmitInfo because debug information is
  1801   // different for null_check and throw.
  1802   if (GenerateCompilerNullChecks &&
  1803       (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL)) {
  1804     // if the exception object wasn't created using new then it might be null.
  1805     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
  1808   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
  1809     // we need to go through the exception lookup path to get JVMTI
  1810     // notification done
  1811     unwind = false;
  1814   // move exception oop into fixed register
  1815   __ move(exception_opr, exceptionOopOpr());
  1817   if (unwind) {
  1818     __ unwind_exception(exceptionOopOpr());
  1819   } else {
  1820     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
  1825 void LIRGenerator::do_RoundFP(RoundFP* x) {
  1826   LIRItem input(x->input(), this);
  1827   input.load_item();
  1828   LIR_Opr input_opr = input.result();
  1829   assert(input_opr->is_register(), "why round if value is not in a register?");
  1830   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
  1831   if (input_opr->is_single_fpu()) {
  1832     set_result(x, round_item(input_opr)); // This code path not currently taken
  1833   } else {
  1834     LIR_Opr result = new_register(T_DOUBLE);
  1835     set_vreg_flag(result, must_start_in_memory);
  1836     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
  1837     set_result(x, result);
  1841 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
  1842   LIRItem base(x->base(), this);
  1843   LIRItem idx(this);
  1845   base.load_item();
  1846   if (x->has_index()) {
  1847     idx.set_instruction(x->index());
  1848     idx.load_nonconstant();
  1851   LIR_Opr reg = rlock_result(x, x->basic_type());
  1853   int   log2_scale = 0;
  1854   if (x->has_index()) {
  1855     assert(x->index()->type()->tag() == intTag, "should not find non-int index");
  1856     log2_scale = x->log2_scale();
  1859   assert(!x->has_index() || idx.value() == x->index(), "should match");
  1861   LIR_Opr base_op = base.result();
  1862 #ifndef _LP64
  1863   if (x->base()->type()->tag() == longTag) {
  1864     base_op = new_register(T_INT);
  1865     __ convert(Bytecodes::_l2i, base.result(), base_op);
  1866   } else {
  1867     assert(x->base()->type()->tag() == intTag, "must be");
  1869 #endif
  1871   BasicType dst_type = x->basic_type();
  1872   LIR_Opr index_op = idx.result();
  1874   LIR_Address* addr;
  1875   if (index_op->is_constant()) {
  1876     assert(log2_scale == 0, "must not have a scale");
  1877     addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
  1878   } else {
  1879 #ifdef X86
  1880 #ifdef _LP64
  1881     if (!index_op->is_illegal() && index_op->type() == T_INT) {
  1882       LIR_Opr tmp = new_pointer_register();
  1883       __ convert(Bytecodes::_i2l, index_op, tmp);
  1884       index_op = tmp;
  1886 #endif
  1887     addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
  1888 #elif defined(ARM)
  1889     addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
  1890 #else
  1891     if (index_op->is_illegal() || log2_scale == 0) {
  1892 #ifdef _LP64
  1893       if (!index_op->is_illegal() && index_op->type() == T_INT) {
  1894         LIR_Opr tmp = new_pointer_register();
  1895         __ convert(Bytecodes::_i2l, index_op, tmp);
  1896         index_op = tmp;
  1898 #endif
  1899       addr = new LIR_Address(base_op, index_op, dst_type);
  1900     } else {
  1901       LIR_Opr tmp = new_pointer_register();
  1902       __ shift_left(index_op, log2_scale, tmp);
  1903       addr = new LIR_Address(base_op, tmp, dst_type);
  1905 #endif
  1908   if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
  1909     __ unaligned_move(addr, reg);
  1910   } else {
  1911     if (dst_type == T_OBJECT && x->is_wide()) {
  1912       __ move_wide(addr, reg);
  1913     } else {
  1914       __ move(addr, reg);
  1920 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
  1921   int  log2_scale = 0;
  1922   BasicType type = x->basic_type();
  1924   if (x->has_index()) {
  1925     assert(x->index()->type()->tag() == intTag, "should not find non-int index");
  1926     log2_scale = x->log2_scale();
  1929   LIRItem base(x->base(), this);
  1930   LIRItem value(x->value(), this);
  1931   LIRItem idx(this);
  1933   base.load_item();
  1934   if (x->has_index()) {
  1935     idx.set_instruction(x->index());
  1936     idx.load_item();
  1939   if (type == T_BYTE || type == T_BOOLEAN) {
  1940     value.load_byte_item();
  1941   } else {
  1942     value.load_item();
  1945   set_no_result(x);
  1947   LIR_Opr base_op = base.result();
  1948 #ifndef _LP64
  1949   if (x->base()->type()->tag() == longTag) {
  1950     base_op = new_register(T_INT);
  1951     __ convert(Bytecodes::_l2i, base.result(), base_op);
  1952   } else {
  1953     assert(x->base()->type()->tag() == intTag, "must be");
  1955 #endif
  1957   LIR_Opr index_op = idx.result();
  1958   if (log2_scale != 0) {
  1959     // temporary fix (platform dependent code without shift on Intel would be better)
  1960     index_op = new_pointer_register();
  1961 #ifdef _LP64
  1962     if(idx.result()->type() == T_INT) {
  1963       __ convert(Bytecodes::_i2l, idx.result(), index_op);
  1964     } else {
  1965 #endif
  1966       // TODO: ARM also allows embedded shift in the address
  1967       __ move(idx.result(), index_op);
  1968 #ifdef _LP64
  1970 #endif
  1971     __ shift_left(index_op, log2_scale, index_op);
  1973 #ifdef _LP64
  1974   else if(!index_op->is_illegal() && index_op->type() == T_INT) {
  1975     LIR_Opr tmp = new_pointer_register();
  1976     __ convert(Bytecodes::_i2l, index_op, tmp);
  1977     index_op = tmp;
  1979 #endif
  1981   LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
  1982   __ move(value.result(), addr);
  1986 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
  1987   BasicType type = x->basic_type();
  1988   LIRItem src(x->object(), this);
  1989   LIRItem off(x->offset(), this);
  1991   off.load_item();
  1992   src.load_item();
  1994   LIR_Opr reg = reg = rlock_result(x, x->basic_type());
  1996   if (x->is_volatile() && os::is_MP()) __ membar_acquire();
  1997   get_Object_unsafe(reg, src.result(), off.result(), type, x->is_volatile());
  1998   if (x->is_volatile() && os::is_MP()) __ membar();
  2002 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
  2003   BasicType type = x->basic_type();
  2004   LIRItem src(x->object(), this);
  2005   LIRItem off(x->offset(), this);
  2006   LIRItem data(x->value(), this);
  2008   src.load_item();
  2009   if (type == T_BOOLEAN || type == T_BYTE) {
  2010     data.load_byte_item();
  2011   } else {
  2012     data.load_item();
  2014   off.load_item();
  2016   set_no_result(x);
  2018   if (x->is_volatile() && os::is_MP()) __ membar_release();
  2019   put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
  2023 void LIRGenerator::do_UnsafePrefetch(UnsafePrefetch* x, bool is_store) {
  2024   LIRItem src(x->object(), this);
  2025   LIRItem off(x->offset(), this);
  2027   src.load_item();
  2028   if (off.is_constant() && can_inline_as_constant(x->offset())) {
  2029     // let it be a constant
  2030     off.dont_load_item();
  2031   } else {
  2032     off.load_item();
  2035   set_no_result(x);
  2037   LIR_Address* addr = generate_address(src.result(), off.result(), 0, 0, T_BYTE);
  2038   __ prefetch(addr, is_store);
  2042 void LIRGenerator::do_UnsafePrefetchRead(UnsafePrefetchRead* x) {
  2043   do_UnsafePrefetch(x, false);
  2047 void LIRGenerator::do_UnsafePrefetchWrite(UnsafePrefetchWrite* x) {
  2048   do_UnsafePrefetch(x, true);
  2052 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
  2053   int lng = x->length();
  2055   for (int i = 0; i < lng; i++) {
  2056     SwitchRange* one_range = x->at(i);
  2057     int low_key = one_range->low_key();
  2058     int high_key = one_range->high_key();
  2059     BlockBegin* dest = one_range->sux();
  2060     if (low_key == high_key) {
  2061       __ cmp(lir_cond_equal, value, low_key);
  2062       __ branch(lir_cond_equal, T_INT, dest);
  2063     } else if (high_key - low_key == 1) {
  2064       __ cmp(lir_cond_equal, value, low_key);
  2065       __ branch(lir_cond_equal, T_INT, dest);
  2066       __ cmp(lir_cond_equal, value, high_key);
  2067       __ branch(lir_cond_equal, T_INT, dest);
  2068     } else {
  2069       LabelObj* L = new LabelObj();
  2070       __ cmp(lir_cond_less, value, low_key);
  2071       __ branch(lir_cond_less, L->label());
  2072       __ cmp(lir_cond_lessEqual, value, high_key);
  2073       __ branch(lir_cond_lessEqual, T_INT, dest);
  2074       __ branch_destination(L->label());
  2077   __ jump(default_sux);
  2081 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
  2082   SwitchRangeList* res = new SwitchRangeList();
  2083   int len = x->length();
  2084   if (len > 0) {
  2085     BlockBegin* sux = x->sux_at(0);
  2086     int key = x->lo_key();
  2087     BlockBegin* default_sux = x->default_sux();
  2088     SwitchRange* range = new SwitchRange(key, sux);
  2089     for (int i = 0; i < len; i++, key++) {
  2090       BlockBegin* new_sux = x->sux_at(i);
  2091       if (sux == new_sux) {
  2092         // still in same range
  2093         range->set_high_key(key);
  2094       } else {
  2095         // skip tests which explicitly dispatch to the default
  2096         if (sux != default_sux) {
  2097           res->append(range);
  2099         range = new SwitchRange(key, new_sux);
  2101       sux = new_sux;
  2103     if (res->length() == 0 || res->last() != range)  res->append(range);
  2105   return res;
  2109 // we expect the keys to be sorted by increasing value
  2110 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
  2111   SwitchRangeList* res = new SwitchRangeList();
  2112   int len = x->length();
  2113   if (len > 0) {
  2114     BlockBegin* default_sux = x->default_sux();
  2115     int key = x->key_at(0);
  2116     BlockBegin* sux = x->sux_at(0);
  2117     SwitchRange* range = new SwitchRange(key, sux);
  2118     for (int i = 1; i < len; i++) {
  2119       int new_key = x->key_at(i);
  2120       BlockBegin* new_sux = x->sux_at(i);
  2121       if (key+1 == new_key && sux == new_sux) {
  2122         // still in same range
  2123         range->set_high_key(new_key);
  2124       } else {
  2125         // skip tests which explicitly dispatch to the default
  2126         if (range->sux() != default_sux) {
  2127           res->append(range);
  2129         range = new SwitchRange(new_key, new_sux);
  2131       key = new_key;
  2132       sux = new_sux;
  2134     if (res->length() == 0 || res->last() != range)  res->append(range);
  2136   return res;
  2140 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
  2141   LIRItem tag(x->tag(), this);
  2142   tag.load_item();
  2143   set_no_result(x);
  2145   if (x->is_safepoint()) {
  2146     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
  2149   // move values into phi locations
  2150   move_to_phi(x->state());
  2152   int lo_key = x->lo_key();
  2153   int hi_key = x->hi_key();
  2154   int len = x->length();
  2155   LIR_Opr value = tag.result();
  2156   if (UseTableRanges) {
  2157     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
  2158   } else {
  2159     for (int i = 0; i < len; i++) {
  2160       __ cmp(lir_cond_equal, value, i + lo_key);
  2161       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
  2163     __ jump(x->default_sux());
  2168 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
  2169   LIRItem tag(x->tag(), this);
  2170   tag.load_item();
  2171   set_no_result(x);
  2173   if (x->is_safepoint()) {
  2174     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
  2177   // move values into phi locations
  2178   move_to_phi(x->state());
  2180   LIR_Opr value = tag.result();
  2181   if (UseTableRanges) {
  2182     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
  2183   } else {
  2184     int len = x->length();
  2185     for (int i = 0; i < len; i++) {
  2186       __ cmp(lir_cond_equal, value, x->key_at(i));
  2187       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
  2189     __ jump(x->default_sux());
  2194 void LIRGenerator::do_Goto(Goto* x) {
  2195   set_no_result(x);
  2197   if (block()->next()->as_OsrEntry()) {
  2198     // need to free up storage used for OSR entry point
  2199     LIR_Opr osrBuffer = block()->next()->operand();
  2200     BasicTypeList signature;
  2201     signature.append(T_INT);
  2202     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
  2203     __ move(osrBuffer, cc->args()->at(0));
  2204     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
  2205                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
  2208   if (x->is_safepoint()) {
  2209     ValueStack* state = x->state_before() ? x->state_before() : x->state();
  2211     // increment backedge counter if needed
  2212     CodeEmitInfo* info = state_for(x, state);
  2213     increment_backedge_counter(info, info->stack()->bci());
  2214     CodeEmitInfo* safepoint_info = state_for(x, state);
  2215     __ safepoint(safepoint_poll_register(), safepoint_info);
  2218   // Gotos can be folded Ifs, handle this case.
  2219   if (x->should_profile()) {
  2220     ciMethod* method = x->profiled_method();
  2221     assert(method != NULL, "method should be set if branch is profiled");
  2222     ciMethodData* md = method->method_data();
  2223     if (md == NULL) {
  2224       bailout("out of memory building methodDataOop");
  2225       return;
  2227     ciProfileData* data = md->bci_to_data(x->profiled_bci());
  2228     assert(data != NULL, "must have profiling data");
  2229     int offset;
  2230     if (x->direction() == Goto::taken) {
  2231       assert(data->is_BranchData(), "need BranchData for two-way branches");
  2232       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
  2233     } else if (x->direction() == Goto::not_taken) {
  2234       assert(data->is_BranchData(), "need BranchData for two-way branches");
  2235       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
  2236     } else {
  2237       assert(data->is_JumpData(), "need JumpData for branches");
  2238       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
  2240     LIR_Opr md_reg = new_register(T_OBJECT);
  2241     __ oop2reg(md->constant_encoding(), md_reg);
  2243     increment_counter(new LIR_Address(md_reg, offset,
  2244                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
  2247   // emit phi-instruction move after safepoint since this simplifies
  2248   // describing the state as the safepoint.
  2249   move_to_phi(x->state());
  2251   __ jump(x->default_sux());
  2255 void LIRGenerator::do_Base(Base* x) {
  2256   __ std_entry(LIR_OprFact::illegalOpr);
  2257   // Emit moves from physical registers / stack slots to virtual registers
  2258   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
  2259   IRScope* irScope = compilation()->hir()->top_scope();
  2260   int java_index = 0;
  2261   for (int i = 0; i < args->length(); i++) {
  2262     LIR_Opr src = args->at(i);
  2263     assert(!src->is_illegal(), "check");
  2264     BasicType t = src->type();
  2266     // Types which are smaller than int are passed as int, so
  2267     // correct the type which passed.
  2268     switch (t) {
  2269     case T_BYTE:
  2270     case T_BOOLEAN:
  2271     case T_SHORT:
  2272     case T_CHAR:
  2273       t = T_INT;
  2274       break;
  2277     LIR_Opr dest = new_register(t);
  2278     __ move(src, dest);
  2280     // Assign new location to Local instruction for this local
  2281     Local* local = x->state()->local_at(java_index)->as_Local();
  2282     assert(local != NULL, "Locals for incoming arguments must have been created");
  2283 #ifndef __SOFTFP__
  2284     // The java calling convention passes double as long and float as int.
  2285     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
  2286 #endif // __SOFTFP__
  2287     local->set_operand(dest);
  2288     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
  2289     java_index += type2size[t];
  2292   if (compilation()->env()->dtrace_method_probes()) {
  2293     BasicTypeList signature;
  2294     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
  2295     signature.append(T_OBJECT); // methodOop
  2296     LIR_OprList* args = new LIR_OprList();
  2297     args->append(getThreadPointer());
  2298     LIR_Opr meth = new_register(T_OBJECT);
  2299     __ oop2reg(method()->constant_encoding(), meth);
  2300     args->append(meth);
  2301     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
  2304   if (method()->is_synchronized()) {
  2305     LIR_Opr obj;
  2306     if (method()->is_static()) {
  2307       obj = new_register(T_OBJECT);
  2308       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
  2309     } else {
  2310       Local* receiver = x->state()->local_at(0)->as_Local();
  2311       assert(receiver != NULL, "must already exist");
  2312       obj = receiver->operand();
  2314     assert(obj->is_valid(), "must be valid");
  2316     if (method()->is_synchronized() && GenerateSynchronizationCode) {
  2317       LIR_Opr lock = new_register(T_INT);
  2318       __ load_stack_address_monitor(0, lock);
  2320       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL);
  2321       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
  2323       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
  2324       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
  2328   // increment invocation counters if needed
  2329   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
  2330     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL);
  2331     increment_invocation_counter(info);
  2334   // all blocks with a successor must end with an unconditional jump
  2335   // to the successor even if they are consecutive
  2336   __ jump(x->default_sux());
  2340 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
  2341   // construct our frame and model the production of incoming pointer
  2342   // to the OSR buffer.
  2343   __ osr_entry(LIR_Assembler::osrBufferPointer());
  2344   LIR_Opr result = rlock_result(x);
  2345   __ move(LIR_Assembler::osrBufferPointer(), result);
  2349 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
  2350   int i = (x->has_receiver() || x->is_invokedynamic()) ? 1 : 0;
  2351   for (; i < args->length(); i++) {
  2352     LIRItem* param = args->at(i);
  2353     LIR_Opr loc = arg_list->at(i);
  2354     if (loc->is_register()) {
  2355       param->load_item_force(loc);
  2356     } else {
  2357       LIR_Address* addr = loc->as_address_ptr();
  2358       param->load_for_store(addr->type());
  2359       if (addr->type() == T_OBJECT) {
  2360         __ move_wide(param->result(), addr);
  2361       } else
  2362         if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
  2363           __ unaligned_move(param->result(), addr);
  2364         } else {
  2365           __ move(param->result(), addr);
  2370   if (x->has_receiver()) {
  2371     LIRItem* receiver = args->at(0);
  2372     LIR_Opr loc = arg_list->at(0);
  2373     if (loc->is_register()) {
  2374       receiver->load_item_force(loc);
  2375     } else {
  2376       assert(loc->is_address(), "just checking");
  2377       receiver->load_for_store(T_OBJECT);
  2378       __ move_wide(receiver->result(), loc->as_address_ptr());
  2384 // Visits all arguments, returns appropriate items without loading them
  2385 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
  2386   LIRItemList* argument_items = new LIRItemList();
  2387   if (x->has_receiver()) {
  2388     LIRItem* receiver = new LIRItem(x->receiver(), this);
  2389     argument_items->append(receiver);
  2391   if (x->is_invokedynamic()) {
  2392     // Insert a dummy for the synthetic MethodHandle argument.
  2393     argument_items->append(NULL);
  2395   int idx = x->has_receiver() ? 1 : 0;
  2396   for (int i = 0; i < x->number_of_arguments(); i++) {
  2397     LIRItem* param = new LIRItem(x->argument_at(i), this);
  2398     argument_items->append(param);
  2399     idx += (param->type()->is_double_word() ? 2 : 1);
  2401   return argument_items;
  2405 // The invoke with receiver has following phases:
  2406 //   a) traverse and load/lock receiver;
  2407 //   b) traverse all arguments -> item-array (invoke_visit_argument)
  2408 //   c) push receiver on stack
  2409 //   d) load each of the items and push on stack
  2410 //   e) unlock receiver
  2411 //   f) move receiver into receiver-register %o0
  2412 //   g) lock result registers and emit call operation
  2413 //
  2414 // Before issuing a call, we must spill-save all values on stack
  2415 // that are in caller-save register. "spill-save" moves thos registers
  2416 // either in a free callee-save register or spills them if no free
  2417 // callee save register is available.
  2418 //
  2419 // The problem is where to invoke spill-save.
  2420 // - if invoked between e) and f), we may lock callee save
  2421 //   register in "spill-save" that destroys the receiver register
  2422 //   before f) is executed
  2423 // - if we rearange the f) to be earlier, by loading %o0, it
  2424 //   may destroy a value on the stack that is currently in %o0
  2425 //   and is waiting to be spilled
  2426 // - if we keep the receiver locked while doing spill-save,
  2427 //   we cannot spill it as it is spill-locked
  2428 //
  2429 void LIRGenerator::do_Invoke(Invoke* x) {
  2430   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
  2432   LIR_OprList* arg_list = cc->args();
  2433   LIRItemList* args = invoke_visit_arguments(x);
  2434   LIR_Opr receiver = LIR_OprFact::illegalOpr;
  2436   // setup result register
  2437   LIR_Opr result_register = LIR_OprFact::illegalOpr;
  2438   if (x->type() != voidType) {
  2439     result_register = result_register_for(x->type());
  2442   CodeEmitInfo* info = state_for(x, x->state());
  2444   // invokedynamics can deoptimize.
  2445   CodeEmitInfo* deopt_info = x->is_invokedynamic() ? state_for(x, x->state_before()) : NULL;
  2447   invoke_load_arguments(x, args, arg_list);
  2449   if (x->has_receiver()) {
  2450     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
  2451     receiver = args->at(0)->result();
  2454   // emit invoke code
  2455   bool optimized = x->target_is_loaded() && x->target_is_final();
  2456   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
  2458   // JSR 292
  2459   // Preserve the SP over MethodHandle call sites.
  2460   ciMethod* target = x->target();
  2461   if (target->is_method_handle_invoke()) {
  2462     info->set_is_method_handle_invoke(true);
  2463     __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
  2466   switch (x->code()) {
  2467     case Bytecodes::_invokestatic:
  2468       __ call_static(target, result_register,
  2469                      SharedRuntime::get_resolve_static_call_stub(),
  2470                      arg_list, info);
  2471       break;
  2472     case Bytecodes::_invokespecial:
  2473     case Bytecodes::_invokevirtual:
  2474     case Bytecodes::_invokeinterface:
  2475       // for final target we still produce an inline cache, in order
  2476       // to be able to call mixed mode
  2477       if (x->code() == Bytecodes::_invokespecial || optimized) {
  2478         __ call_opt_virtual(target, receiver, result_register,
  2479                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
  2480                             arg_list, info);
  2481       } else if (x->vtable_index() < 0) {
  2482         __ call_icvirtual(target, receiver, result_register,
  2483                           SharedRuntime::get_resolve_virtual_call_stub(),
  2484                           arg_list, info);
  2485       } else {
  2486         int entry_offset = instanceKlass::vtable_start_offset() + x->vtable_index() * vtableEntry::size();
  2487         int vtable_offset = entry_offset * wordSize + vtableEntry::method_offset_in_bytes();
  2488         __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
  2490       break;
  2491     case Bytecodes::_invokedynamic: {
  2492       ciBytecodeStream bcs(x->scope()->method());
  2493       bcs.force_bci(x->state()->bci());
  2494       assert(bcs.cur_bc() == Bytecodes::_invokedynamic, "wrong stream");
  2495       ciCPCache* cpcache = bcs.get_cpcache();
  2497       // Get CallSite offset from constant pool cache pointer.
  2498       int index = bcs.get_method_index();
  2499       size_t call_site_offset = cpcache->get_f1_offset(index);
  2501       // If this invokedynamic call site hasn't been executed yet in
  2502       // the interpreter, the CallSite object in the constant pool
  2503       // cache is still null and we need to deoptimize.
  2504       if (cpcache->is_f1_null_at(index)) {
  2505         // Cannot re-use same xhandlers for multiple CodeEmitInfos, so
  2506         // clone all handlers.  This is handled transparently in other
  2507         // places by the CodeEmitInfo cloning logic but is handled
  2508         // specially here because a stub isn't being used.
  2509         x->set_exception_handlers(new XHandlers(x->exception_handlers()));
  2511         DeoptimizeStub* deopt_stub = new DeoptimizeStub(deopt_info);
  2512         __ jump(deopt_stub);
  2515       // Use the receiver register for the synthetic MethodHandle
  2516       // argument.
  2517       receiver = LIR_Assembler::receiverOpr();
  2518       LIR_Opr tmp = new_register(objectType);
  2520       // Load CallSite object from constant pool cache.
  2521       __ oop2reg(cpcache->constant_encoding(), tmp);
  2522       __ load(new LIR_Address(tmp, call_site_offset, T_OBJECT), tmp);
  2524       // Load target MethodHandle from CallSite object.
  2525       __ load(new LIR_Address(tmp, java_dyn_CallSite::target_offset_in_bytes(), T_OBJECT), receiver);
  2527       __ call_dynamic(target, receiver, result_register,
  2528                       SharedRuntime::get_resolve_opt_virtual_call_stub(),
  2529                       arg_list, info);
  2530       break;
  2532     default:
  2533       ShouldNotReachHere();
  2534       break;
  2537   // JSR 292
  2538   // Restore the SP after MethodHandle call sites.
  2539   if (target->is_method_handle_invoke()) {
  2540     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
  2543   if (x->type()->is_float() || x->type()->is_double()) {
  2544     // Force rounding of results from non-strictfp when in strictfp
  2545     // scope (or when we don't know the strictness of the callee, to
  2546     // be safe.)
  2547     if (method()->is_strict()) {
  2548       if (!x->target_is_loaded() || !x->target_is_strictfp()) {
  2549         result_register = round_item(result_register);
  2554   if (result_register->is_valid()) {
  2555     LIR_Opr result = rlock_result(x);
  2556     __ move(result_register, result);
  2561 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
  2562   assert(x->number_of_arguments() == 1, "wrong type");
  2563   LIRItem value       (x->argument_at(0), this);
  2564   LIR_Opr reg = rlock_result(x);
  2565   value.load_item();
  2566   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
  2567   __ move(tmp, reg);
  2572 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
  2573 void LIRGenerator::do_IfOp(IfOp* x) {
  2574 #ifdef ASSERT
  2576     ValueTag xtag = x->x()->type()->tag();
  2577     ValueTag ttag = x->tval()->type()->tag();
  2578     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
  2579     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
  2580     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
  2582 #endif
  2584   LIRItem left(x->x(), this);
  2585   LIRItem right(x->y(), this);
  2586   left.load_item();
  2587   if (can_inline_as_constant(right.value())) {
  2588     right.dont_load_item();
  2589   } else {
  2590     right.load_item();
  2593   LIRItem t_val(x->tval(), this);
  2594   LIRItem f_val(x->fval(), this);
  2595   t_val.dont_load_item();
  2596   f_val.dont_load_item();
  2597   LIR_Opr reg = rlock_result(x);
  2599   __ cmp(lir_cond(x->cond()), left.result(), right.result());
  2600   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg);
  2604 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
  2605   switch (x->id()) {
  2606   case vmIntrinsics::_intBitsToFloat      :
  2607   case vmIntrinsics::_doubleToRawLongBits :
  2608   case vmIntrinsics::_longBitsToDouble    :
  2609   case vmIntrinsics::_floatToRawIntBits   : {
  2610     do_FPIntrinsics(x);
  2611     break;
  2614   case vmIntrinsics::_currentTimeMillis: {
  2615     assert(x->number_of_arguments() == 0, "wrong type");
  2616     LIR_Opr reg = result_register_for(x->type());
  2617     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, os::javaTimeMillis), getThreadTemp(),
  2618                          reg, new LIR_OprList());
  2619     LIR_Opr result = rlock_result(x);
  2620     __ move(reg, result);
  2621     break;
  2624   case vmIntrinsics::_nanoTime: {
  2625     assert(x->number_of_arguments() == 0, "wrong type");
  2626     LIR_Opr reg = result_register_for(x->type());
  2627     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, os::javaTimeNanos), getThreadTemp(),
  2628                          reg, new LIR_OprList());
  2629     LIR_Opr result = rlock_result(x);
  2630     __ move(reg, result);
  2631     break;
  2634   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
  2635   case vmIntrinsics::_getClass:       do_getClass(x);      break;
  2636   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
  2638   case vmIntrinsics::_dlog:           // fall through
  2639   case vmIntrinsics::_dlog10:         // fall through
  2640   case vmIntrinsics::_dabs:           // fall through
  2641   case vmIntrinsics::_dsqrt:          // fall through
  2642   case vmIntrinsics::_dtan:           // fall through
  2643   case vmIntrinsics::_dsin :          // fall through
  2644   case vmIntrinsics::_dcos :          do_MathIntrinsic(x); break;
  2645   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
  2647   // java.nio.Buffer.checkIndex
  2648   case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
  2650   case vmIntrinsics::_compareAndSwapObject:
  2651     do_CompareAndSwap(x, objectType);
  2652     break;
  2653   case vmIntrinsics::_compareAndSwapInt:
  2654     do_CompareAndSwap(x, intType);
  2655     break;
  2656   case vmIntrinsics::_compareAndSwapLong:
  2657     do_CompareAndSwap(x, longType);
  2658     break;
  2660     // sun.misc.AtomicLongCSImpl.attemptUpdate
  2661   case vmIntrinsics::_attemptUpdate:
  2662     do_AttemptUpdate(x);
  2663     break;
  2665   default: ShouldNotReachHere(); break;
  2669 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
  2670   // Need recv in a temporary register so it interferes with the other temporaries
  2671   LIR_Opr recv = LIR_OprFact::illegalOpr;
  2672   LIR_Opr mdo = new_register(T_OBJECT);
  2673   // tmp is used to hold the counters on SPARC
  2674   LIR_Opr tmp = new_pointer_register();
  2675   if (x->recv() != NULL) {
  2676     LIRItem value(x->recv(), this);
  2677     value.load_item();
  2678     recv = new_register(T_OBJECT);
  2679     __ move(value.result(), recv);
  2681   __ profile_call(x->method(), x->bci_of_invoke(), mdo, recv, tmp, x->known_holder());
  2684 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
  2685   // We can safely ignore accessors here, since c2 will inline them anyway,
  2686   // accessors are also always mature.
  2687   if (!x->inlinee()->is_accessor()) {
  2688     CodeEmitInfo* info = state_for(x, x->state(), true);
  2689     // Increment invocation counter, don't notify the runtime, because we don't inline loops,
  2690     increment_event_counter_impl(info, x->inlinee(), 0, InvocationEntryBci, false, false);
  2694 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, int bci, bool backedge) {
  2695   int freq_log;
  2696   int level = compilation()->env()->comp_level();
  2697   if (level == CompLevel_limited_profile) {
  2698     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
  2699   } else if (level == CompLevel_full_profile) {
  2700     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
  2701   } else {
  2702     ShouldNotReachHere();
  2704   // Increment the appropriate invocation/backedge counter and notify the runtime.
  2705   increment_event_counter_impl(info, info->scope()->method(), (1 << freq_log) - 1, bci, backedge, true);
  2708 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
  2709                                                 ciMethod *method, int frequency,
  2710                                                 int bci, bool backedge, bool notify) {
  2711   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
  2712   int level = _compilation->env()->comp_level();
  2713   assert(level > CompLevel_simple, "Shouldn't be here");
  2715   int offset = -1;
  2716   LIR_Opr counter_holder = new_register(T_OBJECT);
  2717   LIR_Opr meth;
  2718   if (level == CompLevel_limited_profile) {
  2719     offset = in_bytes(backedge ? methodOopDesc::backedge_counter_offset() :
  2720                                  methodOopDesc::invocation_counter_offset());
  2721     __ oop2reg(method->constant_encoding(), counter_holder);
  2722     meth = counter_holder;
  2723   } else if (level == CompLevel_full_profile) {
  2724     offset = in_bytes(backedge ? methodDataOopDesc::backedge_counter_offset() :
  2725                                  methodDataOopDesc::invocation_counter_offset());
  2726     __ oop2reg(method->method_data()->constant_encoding(), counter_holder);
  2727     meth = new_register(T_OBJECT);
  2728     __ oop2reg(method->constant_encoding(), meth);
  2729   } else {
  2730     ShouldNotReachHere();
  2732   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
  2733   LIR_Opr result = new_register(T_INT);
  2734   __ load(counter, result);
  2735   __ add(result, LIR_OprFact::intConst(InvocationCounter::count_increment), result);
  2736   __ store(result, counter);
  2737   if (notify) {
  2738     LIR_Opr mask = load_immediate(frequency << InvocationCounter::count_shift, T_INT);
  2739     __ logical_and(result, mask, result);
  2740     __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
  2741     // The bci for info can point to cmp for if's we want the if bci
  2742     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
  2743     __ branch(lir_cond_equal, T_INT, overflow);
  2744     __ branch_destination(overflow->continuation());
  2748 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
  2749   LIRItemList args(1);
  2750   LIRItem value(arg1, this);
  2751   args.append(&value);
  2752   BasicTypeList signature;
  2753   signature.append(as_BasicType(arg1->type()));
  2755   return call_runtime(&signature, &args, entry, result_type, info);
  2759 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
  2760   LIRItemList args(2);
  2761   LIRItem value1(arg1, this);
  2762   LIRItem value2(arg2, this);
  2763   args.append(&value1);
  2764   args.append(&value2);
  2765   BasicTypeList signature;
  2766   signature.append(as_BasicType(arg1->type()));
  2767   signature.append(as_BasicType(arg2->type()));
  2769   return call_runtime(&signature, &args, entry, result_type, info);
  2773 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
  2774                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
  2775   // get a result register
  2776   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
  2777   LIR_Opr result = LIR_OprFact::illegalOpr;
  2778   if (result_type->tag() != voidTag) {
  2779     result = new_register(result_type);
  2780     phys_reg = result_register_for(result_type);
  2783   // move the arguments into the correct location
  2784   CallingConvention* cc = frame_map()->c_calling_convention(signature);
  2785   assert(cc->length() == args->length(), "argument mismatch");
  2786   for (int i = 0; i < args->length(); i++) {
  2787     LIR_Opr arg = args->at(i);
  2788     LIR_Opr loc = cc->at(i);
  2789     if (loc->is_register()) {
  2790       __ move(arg, loc);
  2791     } else {
  2792       LIR_Address* addr = loc->as_address_ptr();
  2793 //           if (!can_store_as_constant(arg)) {
  2794 //             LIR_Opr tmp = new_register(arg->type());
  2795 //             __ move(arg, tmp);
  2796 //             arg = tmp;
  2797 //           }
  2798       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
  2799         __ unaligned_move(arg, addr);
  2800       } else {
  2801         __ move(arg, addr);
  2806   if (info) {
  2807     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
  2808   } else {
  2809     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
  2811   if (result->is_valid()) {
  2812     __ move(phys_reg, result);
  2814   return result;
  2818 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
  2819                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
  2820   // get a result register
  2821   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
  2822   LIR_Opr result = LIR_OprFact::illegalOpr;
  2823   if (result_type->tag() != voidTag) {
  2824     result = new_register(result_type);
  2825     phys_reg = result_register_for(result_type);
  2828   // move the arguments into the correct location
  2829   CallingConvention* cc = frame_map()->c_calling_convention(signature);
  2831   assert(cc->length() == args->length(), "argument mismatch");
  2832   for (int i = 0; i < args->length(); i++) {
  2833     LIRItem* arg = args->at(i);
  2834     LIR_Opr loc = cc->at(i);
  2835     if (loc->is_register()) {
  2836       arg->load_item_force(loc);
  2837     } else {
  2838       LIR_Address* addr = loc->as_address_ptr();
  2839       arg->load_for_store(addr->type());
  2840       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
  2841         __ unaligned_move(arg->result(), addr);
  2842       } else {
  2843         __ move(arg->result(), addr);
  2848   if (info) {
  2849     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
  2850   } else {
  2851     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
  2853   if (result->is_valid()) {
  2854     __ move(phys_reg, result);
  2856   return result;

mercurial