src/cpu/x86/vm/c1_LIRGenerator_x86.cpp

Tue, 30 Nov 2010 23:23:40 -0800

author
iveresov
date
Tue, 30 Nov 2010 23:23:40 -0800
changeset 2344
ac637b7220d1
parent 2314
f95d63e2154a
child 2347
0cb042fd2d4b
permissions
-rw-r--r--

6985015: C1 needs to support compressed oops
Summary: This change implements compressed oops for C1 for x64 and sparc. The changes are mostly on the codegen level, with a few exceptions when we do access things outside of the heap that are uncompressed from the IR. Compressed oops are now also enabled with tiered.
Reviewed-by: twisti, kvn, never, phh

     1 /*
     2  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "c1/c1_Compilation.hpp"
    27 #include "c1/c1_FrameMap.hpp"
    28 #include "c1/c1_Instruction.hpp"
    29 #include "c1/c1_LIRAssembler.hpp"
    30 #include "c1/c1_LIRGenerator.hpp"
    31 #include "c1/c1_Runtime1.hpp"
    32 #include "c1/c1_ValueStack.hpp"
    33 #include "ci/ciArray.hpp"
    34 #include "ci/ciObjArrayKlass.hpp"
    35 #include "ci/ciTypeArrayKlass.hpp"
    36 #include "runtime/sharedRuntime.hpp"
    37 #include "runtime/stubRoutines.hpp"
    38 #include "vmreg_x86.inline.hpp"
    40 #ifdef ASSERT
    41 #define __ gen()->lir(__FILE__, __LINE__)->
    42 #else
    43 #define __ gen()->lir()->
    44 #endif
    46 // Item will be loaded into a byte register; Intel only
    47 void LIRItem::load_byte_item() {
    48   load_item();
    49   LIR_Opr res = result();
    51   if (!res->is_virtual() || !_gen->is_vreg_flag_set(res, LIRGenerator::byte_reg)) {
    52     // make sure that it is a byte register
    53     assert(!value()->type()->is_float() && !value()->type()->is_double(),
    54            "can't load floats in byte register");
    55     LIR_Opr reg = _gen->rlock_byte(T_BYTE);
    56     __ move(res, reg);
    58     _result = reg;
    59   }
    60 }
    63 void LIRItem::load_nonconstant() {
    64   LIR_Opr r = value()->operand();
    65   if (r->is_constant()) {
    66     _result = r;
    67   } else {
    68     load_item();
    69   }
    70 }
    72 //--------------------------------------------------------------
    73 //               LIRGenerator
    74 //--------------------------------------------------------------
    77 LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::rax_oop_opr; }
    78 LIR_Opr LIRGenerator::exceptionPcOpr()  { return FrameMap::rdx_opr; }
    79 LIR_Opr LIRGenerator::divInOpr()        { return FrameMap::rax_opr; }
    80 LIR_Opr LIRGenerator::divOutOpr()       { return FrameMap::rax_opr; }
    81 LIR_Opr LIRGenerator::remOutOpr()       { return FrameMap::rdx_opr; }
    82 LIR_Opr LIRGenerator::shiftCountOpr()   { return FrameMap::rcx_opr; }
    83 LIR_Opr LIRGenerator::syncTempOpr()     { return FrameMap::rax_opr; }
    84 LIR_Opr LIRGenerator::getThreadTemp()   { return LIR_OprFact::illegalOpr; }
    87 LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) {
    88   LIR_Opr opr;
    89   switch (type->tag()) {
    90     case intTag:     opr = FrameMap::rax_opr;          break;
    91     case objectTag:  opr = FrameMap::rax_oop_opr;      break;
    92     case longTag:    opr = FrameMap::long0_opr;        break;
    93     case floatTag:   opr = UseSSE >= 1 ? FrameMap::xmm0_float_opr  : FrameMap::fpu0_float_opr;  break;
    94     case doubleTag:  opr = UseSSE >= 2 ? FrameMap::xmm0_double_opr : FrameMap::fpu0_double_opr;  break;
    96     case addressTag:
    97     default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
    98   }
   100   assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
   101   return opr;
   102 }
   105 LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
   106   LIR_Opr reg = new_register(T_INT);
   107   set_vreg_flag(reg, LIRGenerator::byte_reg);
   108   return reg;
   109 }
   112 //--------- loading items into registers --------------------------------
   115 // i486 instructions can inline constants
   116 bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
   117   if (type == T_SHORT || type == T_CHAR) {
   118     // there is no immediate move of word values in asembler_i486.?pp
   119     return false;
   120   }
   121   Constant* c = v->as_Constant();
   122   if (c && c->state_before() == NULL) {
   123     // constants of any type can be stored directly, except for
   124     // unloaded object constants.
   125     return true;
   126   }
   127   return false;
   128 }
   131 bool LIRGenerator::can_inline_as_constant(Value v) const {
   132   if (v->type()->tag() == longTag) return false;
   133   return v->type()->tag() != objectTag ||
   134     (v->type()->is_constant() && v->type()->as_ObjectType()->constant_value()->is_null_object());
   135 }
   138 bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const {
   139   if (c->type() == T_LONG) return false;
   140   return c->type() != T_OBJECT || c->as_jobject() == NULL;
   141 }
   144 LIR_Opr LIRGenerator::safepoint_poll_register() {
   145   return LIR_OprFact::illegalOpr;
   146 }
   149 LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
   150                                             int shift, int disp, BasicType type) {
   151   assert(base->is_register(), "must be");
   152   if (index->is_constant()) {
   153     return new LIR_Address(base,
   154                            (index->as_constant_ptr()->as_jint() << shift) + disp,
   155                            type);
   156   } else {
   157     return new LIR_Address(base, index, (LIR_Address::Scale)shift, disp, type);
   158   }
   159 }
   162 LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr,
   163                                               BasicType type, bool needs_card_mark) {
   164   int offset_in_bytes = arrayOopDesc::base_offset_in_bytes(type);
   166   LIR_Address* addr;
   167   if (index_opr->is_constant()) {
   168     int elem_size = type2aelembytes(type);
   169     addr = new LIR_Address(array_opr,
   170                            offset_in_bytes + index_opr->as_jint() * elem_size, type);
   171   } else {
   172 #ifdef _LP64
   173     if (index_opr->type() == T_INT) {
   174       LIR_Opr tmp = new_register(T_LONG);
   175       __ convert(Bytecodes::_i2l, index_opr, tmp);
   176       index_opr = tmp;
   177     }
   178 #endif // _LP64
   179     addr =  new LIR_Address(array_opr,
   180                             index_opr,
   181                             LIR_Address::scale(type),
   182                             offset_in_bytes, type);
   183   }
   184   if (needs_card_mark) {
   185     // This store will need a precise card mark, so go ahead and
   186     // compute the full adddres instead of computing once for the
   187     // store and again for the card mark.
   188     LIR_Opr tmp = new_pointer_register();
   189     __ leal(LIR_OprFact::address(addr), tmp);
   190     return new LIR_Address(tmp, type);
   191   } else {
   192     return addr;
   193   }
   194 }
   197 LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) {
   198   LIR_Opr r;
   199   if (type == T_LONG) {
   200     r = LIR_OprFact::longConst(x);
   201   } else if (type == T_INT) {
   202     r = LIR_OprFact::intConst(x);
   203   } else {
   204     ShouldNotReachHere();
   205   }
   206   return r;
   207 }
   209 void LIRGenerator::increment_counter(address counter, BasicType type, int step) {
   210   LIR_Opr pointer = new_pointer_register();
   211   __ move(LIR_OprFact::intptrConst(counter), pointer);
   212   LIR_Address* addr = new LIR_Address(pointer, type);
   213   increment_counter(addr, step);
   214 }
   217 void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
   218   __ add((LIR_Opr)addr, LIR_OprFact::intConst(step), (LIR_Opr)addr);
   219 }
   221 void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
   222   __ cmp_mem_int(condition, base, disp, c, info);
   223 }
   226 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) {
   227   __ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info);
   228 }
   231 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, LIR_Opr disp, BasicType type, CodeEmitInfo* info) {
   232   __ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info);
   233 }
   236 bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, int c, LIR_Opr result, LIR_Opr tmp) {
   237   if (tmp->is_valid()) {
   238     if (is_power_of_2(c + 1)) {
   239       __ move(left, tmp);
   240       __ shift_left(left, log2_intptr(c + 1), left);
   241       __ sub(left, tmp, result);
   242       return true;
   243     } else if (is_power_of_2(c - 1)) {
   244       __ move(left, tmp);
   245       __ shift_left(left, log2_intptr(c - 1), left);
   246       __ add(left, tmp, result);
   247       return true;
   248     }
   249   }
   250   return false;
   251 }
   254 void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) {
   255   BasicType type = item->type();
   256   __ store(item, new LIR_Address(FrameMap::rsp_opr, in_bytes(offset_from_sp), type));
   257 }
   259 //----------------------------------------------------------------------
   260 //             visitor functions
   261 //----------------------------------------------------------------------
   264 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
   265   assert(x->is_pinned(),"");
   266   bool needs_range_check = true;
   267   bool use_length = x->length() != NULL;
   268   bool obj_store = x->elt_type() == T_ARRAY || x->elt_type() == T_OBJECT;
   269   bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL ||
   270                                          !get_jobject_constant(x->value())->is_null_object());
   272   LIRItem array(x->array(), this);
   273   LIRItem index(x->index(), this);
   274   LIRItem value(x->value(), this);
   275   LIRItem length(this);
   277   array.load_item();
   278   index.load_nonconstant();
   280   if (use_length) {
   281     needs_range_check = x->compute_needs_range_check();
   282     if (needs_range_check) {
   283       length.set_instruction(x->length());
   284       length.load_item();
   285     }
   286   }
   287   if (needs_store_check) {
   288     value.load_item();
   289   } else {
   290     value.load_for_store(x->elt_type());
   291   }
   293   set_no_result(x);
   295   // the CodeEmitInfo must be duplicated for each different
   296   // LIR-instruction because spilling can occur anywhere between two
   297   // instructions and so the debug information must be different
   298   CodeEmitInfo* range_check_info = state_for(x);
   299   CodeEmitInfo* null_check_info = NULL;
   300   if (x->needs_null_check()) {
   301     null_check_info = new CodeEmitInfo(range_check_info);
   302   }
   304   // emit array address setup early so it schedules better
   305   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), obj_store);
   307   if (GenerateRangeChecks && needs_range_check) {
   308     if (use_length) {
   309       __ cmp(lir_cond_belowEqual, length.result(), index.result());
   310       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
   311     } else {
   312       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
   313       // range_check also does the null check
   314       null_check_info = NULL;
   315     }
   316   }
   318   if (GenerateArrayStoreCheck && needs_store_check) {
   319     LIR_Opr tmp1 = new_register(objectType);
   320     LIR_Opr tmp2 = new_register(objectType);
   321     LIR_Opr tmp3 = new_register(objectType);
   323     CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
   324     __ store_check(value.result(), array.result(), tmp1, tmp2, tmp3, store_check_info);
   325   }
   327   if (obj_store) {
   328     // Needs GC write barriers.
   329     pre_barrier(LIR_OprFact::address(array_addr), false, NULL);
   330     __ move(value.result(), array_addr, null_check_info);
   331     // Seems to be a precise
   332     post_barrier(LIR_OprFact::address(array_addr), value.result());
   333   } else {
   334     __ move(value.result(), array_addr, null_check_info);
   335   }
   336 }
   339 void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
   340   assert(x->is_pinned(),"");
   341   LIRItem obj(x->obj(), this);
   342   obj.load_item();
   344   set_no_result(x);
   346   // "lock" stores the address of the monitor stack slot, so this is not an oop
   347   LIR_Opr lock = new_register(T_INT);
   348   // Need a scratch register for biased locking on x86
   349   LIR_Opr scratch = LIR_OprFact::illegalOpr;
   350   if (UseBiasedLocking) {
   351     scratch = new_register(T_INT);
   352   }
   354   CodeEmitInfo* info_for_exception = NULL;
   355   if (x->needs_null_check()) {
   356     info_for_exception = state_for(x);
   357   }
   358   // this CodeEmitInfo must not have the xhandlers because here the
   359   // object is already locked (xhandlers expect object to be unlocked)
   360   CodeEmitInfo* info = state_for(x, x->state(), true);
   361   monitor_enter(obj.result(), lock, syncTempOpr(), scratch,
   362                         x->monitor_no(), info_for_exception, info);
   363 }
   366 void LIRGenerator::do_MonitorExit(MonitorExit* x) {
   367   assert(x->is_pinned(),"");
   369   LIRItem obj(x->obj(), this);
   370   obj.dont_load_item();
   372   LIR_Opr lock = new_register(T_INT);
   373   LIR_Opr obj_temp = new_register(T_INT);
   374   set_no_result(x);
   375   monitor_exit(obj_temp, lock, syncTempOpr(), LIR_OprFact::illegalOpr, x->monitor_no());
   376 }
   379 // _ineg, _lneg, _fneg, _dneg
   380 void LIRGenerator::do_NegateOp(NegateOp* x) {
   381   LIRItem value(x->x(), this);
   382   value.set_destroys_register();
   383   value.load_item();
   384   LIR_Opr reg = rlock(x);
   385   __ negate(value.result(), reg);
   387   set_result(x, round_item(reg));
   388 }
   391 // for  _fadd, _fmul, _fsub, _fdiv, _frem
   392 //      _dadd, _dmul, _dsub, _ddiv, _drem
   393 void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
   394   LIRItem left(x->x(),  this);
   395   LIRItem right(x->y(), this);
   396   LIRItem* left_arg  = &left;
   397   LIRItem* right_arg = &right;
   398   assert(!left.is_stack() || !right.is_stack(), "can't both be memory operands");
   399   bool must_load_both = (x->op() == Bytecodes::_frem || x->op() == Bytecodes::_drem);
   400   if (left.is_register() || x->x()->type()->is_constant() || must_load_both) {
   401     left.load_item();
   402   } else {
   403     left.dont_load_item();
   404   }
   406   // do not load right operand if it is a constant.  only 0 and 1 are
   407   // loaded because there are special instructions for loading them
   408   // without memory access (not needed for SSE2 instructions)
   409   bool must_load_right = false;
   410   if (right.is_constant()) {
   411     LIR_Const* c = right.result()->as_constant_ptr();
   412     assert(c != NULL, "invalid constant");
   413     assert(c->type() == T_FLOAT || c->type() == T_DOUBLE, "invalid type");
   415     if (c->type() == T_FLOAT) {
   416       must_load_right = UseSSE < 1 && (c->is_one_float() || c->is_zero_float());
   417     } else {
   418       must_load_right = UseSSE < 2 && (c->is_one_double() || c->is_zero_double());
   419     }
   420   }
   422   if (must_load_both) {
   423     // frem and drem destroy also right operand, so move it to a new register
   424     right.set_destroys_register();
   425     right.load_item();
   426   } else if (right.is_register() || must_load_right) {
   427     right.load_item();
   428   } else {
   429     right.dont_load_item();
   430   }
   431   LIR_Opr reg = rlock(x);
   432   LIR_Opr tmp = LIR_OprFact::illegalOpr;
   433   if (x->is_strictfp() && (x->op() == Bytecodes::_dmul || x->op() == Bytecodes::_ddiv)) {
   434     tmp = new_register(T_DOUBLE);
   435   }
   437   if ((UseSSE >= 1 && x->op() == Bytecodes::_frem) || (UseSSE >= 2 && x->op() == Bytecodes::_drem)) {
   438     // special handling for frem and drem: no SSE instruction, so must use FPU with temporary fpu stack slots
   439     LIR_Opr fpu0, fpu1;
   440     if (x->op() == Bytecodes::_frem) {
   441       fpu0 = LIR_OprFact::single_fpu(0);
   442       fpu1 = LIR_OprFact::single_fpu(1);
   443     } else {
   444       fpu0 = LIR_OprFact::double_fpu(0);
   445       fpu1 = LIR_OprFact::double_fpu(1);
   446     }
   447     __ move(right.result(), fpu1); // order of left and right operand is important!
   448     __ move(left.result(), fpu0);
   449     __ rem (fpu0, fpu1, fpu0);
   450     __ move(fpu0, reg);
   452   } else {
   453     arithmetic_op_fpu(x->op(), reg, left.result(), right.result(), x->is_strictfp(), tmp);
   454   }
   456   set_result(x, round_item(reg));
   457 }
   460 // for  _ladd, _lmul, _lsub, _ldiv, _lrem
   461 void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
   462   if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem ) {
   463     // long division is implemented as a direct call into the runtime
   464     LIRItem left(x->x(), this);
   465     LIRItem right(x->y(), this);
   467     // the check for division by zero destroys the right operand
   468     right.set_destroys_register();
   470     BasicTypeList signature(2);
   471     signature.append(T_LONG);
   472     signature.append(T_LONG);
   473     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
   475     // check for division by zero (destroys registers of right operand!)
   476     CodeEmitInfo* info = state_for(x);
   478     const LIR_Opr result_reg = result_register_for(x->type());
   479     left.load_item_force(cc->at(1));
   480     right.load_item();
   482     __ move(right.result(), cc->at(0));
   484     __ cmp(lir_cond_equal, right.result(), LIR_OprFact::longConst(0));
   485     __ branch(lir_cond_equal, T_LONG, new DivByZeroStub(info));
   487     address entry;
   488     switch (x->op()) {
   489     case Bytecodes::_lrem:
   490       entry = CAST_FROM_FN_PTR(address, SharedRuntime::lrem);
   491       break; // check if dividend is 0 is done elsewhere
   492     case Bytecodes::_ldiv:
   493       entry = CAST_FROM_FN_PTR(address, SharedRuntime::ldiv);
   494       break; // check if dividend is 0 is done elsewhere
   495     case Bytecodes::_lmul:
   496       entry = CAST_FROM_FN_PTR(address, SharedRuntime::lmul);
   497       break;
   498     default:
   499       ShouldNotReachHere();
   500     }
   502     LIR_Opr result = rlock_result(x);
   503     __ call_runtime_leaf(entry, getThreadTemp(), result_reg, cc->args());
   504     __ move(result_reg, result);
   505   } else if (x->op() == Bytecodes::_lmul) {
   506     // missing test if instr is commutative and if we should swap
   507     LIRItem left(x->x(), this);
   508     LIRItem right(x->y(), this);
   510     // right register is destroyed by the long mul, so it must be
   511     // copied to a new register.
   512     right.set_destroys_register();
   514     left.load_item();
   515     right.load_item();
   517     LIR_Opr reg = FrameMap::long0_opr;
   518     arithmetic_op_long(x->op(), reg, left.result(), right.result(), NULL);
   519     LIR_Opr result = rlock_result(x);
   520     __ move(reg, result);
   521   } else {
   522     // missing test if instr is commutative and if we should swap
   523     LIRItem left(x->x(), this);
   524     LIRItem right(x->y(), this);
   526     left.load_item();
   527     // don't load constants to save register
   528     right.load_nonconstant();
   529     rlock_result(x);
   530     arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL);
   531   }
   532 }
   536 // for: _iadd, _imul, _isub, _idiv, _irem
   537 void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
   538   if (x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem) {
   539     // The requirements for division and modulo
   540     // input : rax,: dividend                         min_int
   541     //         reg: divisor   (may not be rax,/rdx)   -1
   542     //
   543     // output: rax,: quotient  (= rax, idiv reg)       min_int
   544     //         rdx: remainder (= rax, irem reg)       0
   546     // rax, and rdx will be destroyed
   548     // Note: does this invalidate the spec ???
   549     LIRItem right(x->y(), this);
   550     LIRItem left(x->x() , this);   // visit left second, so that the is_register test is valid
   552     // call state_for before load_item_force because state_for may
   553     // force the evaluation of other instructions that are needed for
   554     // correct debug info.  Otherwise the live range of the fix
   555     // register might be too long.
   556     CodeEmitInfo* info = state_for(x);
   558     left.load_item_force(divInOpr());
   560     right.load_item();
   562     LIR_Opr result = rlock_result(x);
   563     LIR_Opr result_reg;
   564     if (x->op() == Bytecodes::_idiv) {
   565       result_reg = divOutOpr();
   566     } else {
   567       result_reg = remOutOpr();
   568     }
   570     if (!ImplicitDiv0Checks) {
   571       __ cmp(lir_cond_equal, right.result(), LIR_OprFact::intConst(0));
   572       __ branch(lir_cond_equal, T_INT, new DivByZeroStub(info));
   573     }
   574     LIR_Opr tmp = FrameMap::rdx_opr; // idiv and irem use rdx in their implementation
   575     if (x->op() == Bytecodes::_irem) {
   576       __ irem(left.result(), right.result(), result_reg, tmp, info);
   577     } else if (x->op() == Bytecodes::_idiv) {
   578       __ idiv(left.result(), right.result(), result_reg, tmp, info);
   579     } else {
   580       ShouldNotReachHere();
   581     }
   583     __ move(result_reg, result);
   584   } else {
   585     // missing test if instr is commutative and if we should swap
   586     LIRItem left(x->x(),  this);
   587     LIRItem right(x->y(), this);
   588     LIRItem* left_arg = &left;
   589     LIRItem* right_arg = &right;
   590     if (x->is_commutative() && left.is_stack() && right.is_register()) {
   591       // swap them if left is real stack (or cached) and right is real register(not cached)
   592       left_arg = &right;
   593       right_arg = &left;
   594     }
   596     left_arg->load_item();
   598     // do not need to load right, as we can handle stack and constants
   599     if (x->op() == Bytecodes::_imul ) {
   600       // check if we can use shift instead
   601       bool use_constant = false;
   602       bool use_tmp = false;
   603       if (right_arg->is_constant()) {
   604         int iconst = right_arg->get_jint_constant();
   605         if (iconst > 0) {
   606           if (is_power_of_2(iconst)) {
   607             use_constant = true;
   608           } else if (is_power_of_2(iconst - 1) || is_power_of_2(iconst + 1)) {
   609             use_constant = true;
   610             use_tmp = true;
   611           }
   612         }
   613       }
   614       if (use_constant) {
   615         right_arg->dont_load_item();
   616       } else {
   617         right_arg->load_item();
   618       }
   619       LIR_Opr tmp = LIR_OprFact::illegalOpr;
   620       if (use_tmp) {
   621         tmp = new_register(T_INT);
   622       }
   623       rlock_result(x);
   625       arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
   626     } else {
   627       right_arg->dont_load_item();
   628       rlock_result(x);
   629       LIR_Opr tmp = LIR_OprFact::illegalOpr;
   630       arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
   631     }
   632   }
   633 }
   636 void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
   637   // when an operand with use count 1 is the left operand, then it is
   638   // likely that no move for 2-operand-LIR-form is necessary
   639   if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
   640     x->swap_operands();
   641   }
   643   ValueTag tag = x->type()->tag();
   644   assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
   645   switch (tag) {
   646     case floatTag:
   647     case doubleTag:  do_ArithmeticOp_FPU(x);  return;
   648     case longTag:    do_ArithmeticOp_Long(x); return;
   649     case intTag:     do_ArithmeticOp_Int(x);  return;
   650   }
   651   ShouldNotReachHere();
   652 }
   655 // _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
   656 void LIRGenerator::do_ShiftOp(ShiftOp* x) {
   657   // count must always be in rcx
   658   LIRItem value(x->x(), this);
   659   LIRItem count(x->y(), this);
   661   ValueTag elemType = x->type()->tag();
   662   bool must_load_count = !count.is_constant() || elemType == longTag;
   663   if (must_load_count) {
   664     // count for long must be in register
   665     count.load_item_force(shiftCountOpr());
   666   } else {
   667     count.dont_load_item();
   668   }
   669   value.load_item();
   670   LIR_Opr reg = rlock_result(x);
   672   shift_op(x->op(), reg, value.result(), count.result(), LIR_OprFact::illegalOpr);
   673 }
   676 // _iand, _land, _ior, _lor, _ixor, _lxor
   677 void LIRGenerator::do_LogicOp(LogicOp* x) {
   678   // when an operand with use count 1 is the left operand, then it is
   679   // likely that no move for 2-operand-LIR-form is necessary
   680   if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
   681     x->swap_operands();
   682   }
   684   LIRItem left(x->x(), this);
   685   LIRItem right(x->y(), this);
   687   left.load_item();
   688   right.load_nonconstant();
   689   LIR_Opr reg = rlock_result(x);
   691   logic_op(x->op(), reg, left.result(), right.result());
   692 }
   696 // _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
   697 void LIRGenerator::do_CompareOp(CompareOp* x) {
   698   LIRItem left(x->x(), this);
   699   LIRItem right(x->y(), this);
   700   ValueTag tag = x->x()->type()->tag();
   701   if (tag == longTag) {
   702     left.set_destroys_register();
   703   }
   704   left.load_item();
   705   right.load_item();
   706   LIR_Opr reg = rlock_result(x);
   708   if (x->x()->type()->is_float_kind()) {
   709     Bytecodes::Code code = x->op();
   710     __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
   711   } else if (x->x()->type()->tag() == longTag) {
   712     __ lcmp2int(left.result(), right.result(), reg);
   713   } else {
   714     Unimplemented();
   715   }
   716 }
   719 void LIRGenerator::do_AttemptUpdate(Intrinsic* x) {
   720   assert(x->number_of_arguments() == 3, "wrong type");
   721   LIRItem obj       (x->argument_at(0), this);  // AtomicLong object
   722   LIRItem cmp_value (x->argument_at(1), this);  // value to compare with field
   723   LIRItem new_value (x->argument_at(2), this);  // replace field with new_value if it matches cmp_value
   725   // compare value must be in rdx,eax (hi,lo); may be destroyed by cmpxchg8 instruction
   726   cmp_value.load_item_force(FrameMap::long0_opr);
   728   // new value must be in rcx,ebx (hi,lo)
   729   new_value.load_item_force(FrameMap::long1_opr);
   731   // object pointer register is overwritten with field address
   732   obj.load_item();
   734   // generate compare-and-swap; produces zero condition if swap occurs
   735   int value_offset = sun_misc_AtomicLongCSImpl::value_offset();
   736   LIR_Opr addr = obj.result();
   737   __ add(addr, LIR_OprFact::intConst(value_offset), addr);
   738   LIR_Opr t1 = LIR_OprFact::illegalOpr;  // no temp needed
   739   LIR_Opr t2 = LIR_OprFact::illegalOpr;  // no temp needed
   740   __ cas_long(addr, cmp_value.result(), new_value.result(), t1, t2);
   742   // generate conditional move of boolean result
   743   LIR_Opr result = rlock_result(x);
   744   __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0), result);
   745 }
   748 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
   749   assert(x->number_of_arguments() == 4, "wrong type");
   750   LIRItem obj   (x->argument_at(0), this);  // object
   751   LIRItem offset(x->argument_at(1), this);  // offset of field
   752   LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
   753   LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
   755   assert(obj.type()->tag() == objectTag, "invalid type");
   757   // In 64bit the type can be long, sparc doesn't have this assert
   758   // assert(offset.type()->tag() == intTag, "invalid type");
   760   assert(cmp.type()->tag() == type->tag(), "invalid type");
   761   assert(val.type()->tag() == type->tag(), "invalid type");
   763   // get address of field
   764   obj.load_item();
   765   offset.load_nonconstant();
   767   if (type == objectType) {
   768     cmp.load_item_force(FrameMap::rax_oop_opr);
   769     val.load_item();
   770   } else if (type == intType) {
   771     cmp.load_item_force(FrameMap::rax_opr);
   772     val.load_item();
   773   } else if (type == longType) {
   774     cmp.load_item_force(FrameMap::long0_opr);
   775     val.load_item_force(FrameMap::long1_opr);
   776   } else {
   777     ShouldNotReachHere();
   778   }
   780   LIR_Opr addr = new_pointer_register();
   781   LIR_Address* a;
   782   if(offset.result()->is_constant()) {
   783     a = new LIR_Address(obj.result(),
   784                         NOT_LP64(offset.result()->as_constant_ptr()->as_jint()) LP64_ONLY((int)offset.result()->as_constant_ptr()->as_jlong()),
   785                         as_BasicType(type));
   786   } else {
   787     a = new LIR_Address(obj.result(),
   788                         offset.result(),
   789                         LIR_Address::times_1,
   790                         0,
   791                         as_BasicType(type));
   792   }
   793   __ leal(LIR_OprFact::address(a), addr);
   795   if (type == objectType) {  // Write-barrier needed for Object fields.
   796     // Do the pre-write barrier, if any.
   797     pre_barrier(addr, false, NULL);
   798   }
   800   LIR_Opr ill = LIR_OprFact::illegalOpr;  // for convenience
   801   if (type == objectType)
   802     __ cas_obj(addr, cmp.result(), val.result(), ill, ill);
   803   else if (type == intType)
   804     __ cas_int(addr, cmp.result(), val.result(), ill, ill);
   805   else if (type == longType)
   806     __ cas_long(addr, cmp.result(), val.result(), ill, ill);
   807   else {
   808     ShouldNotReachHere();
   809   }
   811   // generate conditional move of boolean result
   812   LIR_Opr result = rlock_result(x);
   813   __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0), result);
   814   if (type == objectType) {   // Write-barrier needed for Object fields.
   815     // Seems to be precise
   816     post_barrier(addr, val.result());
   817   }
   818 }
   821 void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
   822   assert(x->number_of_arguments() == 1, "wrong type");
   823   LIRItem value(x->argument_at(0), this);
   825   bool use_fpu = false;
   826   if (UseSSE >= 2) {
   827     switch(x->id()) {
   828       case vmIntrinsics::_dsin:
   829       case vmIntrinsics::_dcos:
   830       case vmIntrinsics::_dtan:
   831       case vmIntrinsics::_dlog:
   832       case vmIntrinsics::_dlog10:
   833         use_fpu = true;
   834     }
   835   } else {
   836     value.set_destroys_register();
   837   }
   839   value.load_item();
   841   LIR_Opr calc_input = value.result();
   842   LIR_Opr calc_result = rlock_result(x);
   844   // sin and cos need two free fpu stack slots, so register two temporary operands
   845   LIR_Opr tmp1 = FrameMap::caller_save_fpu_reg_at(0);
   846   LIR_Opr tmp2 = FrameMap::caller_save_fpu_reg_at(1);
   848   if (use_fpu) {
   849     LIR_Opr tmp = FrameMap::fpu0_double_opr;
   850     __ move(calc_input, tmp);
   852     calc_input = tmp;
   853     calc_result = tmp;
   854     tmp1 = FrameMap::caller_save_fpu_reg_at(1);
   855     tmp2 = FrameMap::caller_save_fpu_reg_at(2);
   856   }
   858   switch(x->id()) {
   859     case vmIntrinsics::_dabs:   __ abs  (calc_input, calc_result, LIR_OprFact::illegalOpr); break;
   860     case vmIntrinsics::_dsqrt:  __ sqrt (calc_input, calc_result, LIR_OprFact::illegalOpr); break;
   861     case vmIntrinsics::_dsin:   __ sin  (calc_input, calc_result, tmp1, tmp2);              break;
   862     case vmIntrinsics::_dcos:   __ cos  (calc_input, calc_result, tmp1, tmp2);              break;
   863     case vmIntrinsics::_dtan:   __ tan  (calc_input, calc_result, tmp1, tmp2);              break;
   864     case vmIntrinsics::_dlog:   __ log  (calc_input, calc_result, tmp1);                    break;
   865     case vmIntrinsics::_dlog10: __ log10(calc_input, calc_result, tmp1);                    break;
   866     default:                    ShouldNotReachHere();
   867   }
   869   if (use_fpu) {
   870     __ move(calc_result, x->operand());
   871   }
   872 }
   875 void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
   876   assert(x->number_of_arguments() == 5, "wrong type");
   877   LIRItem src(x->argument_at(0), this);
   878   LIRItem src_pos(x->argument_at(1), this);
   879   LIRItem dst(x->argument_at(2), this);
   880   LIRItem dst_pos(x->argument_at(3), this);
   881   LIRItem length(x->argument_at(4), this);
   883   // operands for arraycopy must use fixed registers, otherwise
   884   // LinearScan will fail allocation (because arraycopy always needs a
   885   // call)
   887 #ifndef _LP64
   888   src.load_item_force     (FrameMap::rcx_oop_opr);
   889   src_pos.load_item_force (FrameMap::rdx_opr);
   890   dst.load_item_force     (FrameMap::rax_oop_opr);
   891   dst_pos.load_item_force (FrameMap::rbx_opr);
   892   length.load_item_force  (FrameMap::rdi_opr);
   893   LIR_Opr tmp =           (FrameMap::rsi_opr);
   894 #else
   896   // The java calling convention will give us enough registers
   897   // so that on the stub side the args will be perfect already.
   898   // On the other slow/special case side we call C and the arg
   899   // positions are not similar enough to pick one as the best.
   900   // Also because the java calling convention is a "shifted" version
   901   // of the C convention we can process the java args trivially into C
   902   // args without worry of overwriting during the xfer
   904   src.load_item_force     (FrameMap::as_oop_opr(j_rarg0));
   905   src_pos.load_item_force (FrameMap::as_opr(j_rarg1));
   906   dst.load_item_force     (FrameMap::as_oop_opr(j_rarg2));
   907   dst_pos.load_item_force (FrameMap::as_opr(j_rarg3));
   908   length.load_item_force  (FrameMap::as_opr(j_rarg4));
   910   LIR_Opr tmp =           FrameMap::as_opr(j_rarg5);
   911 #endif // LP64
   913   set_no_result(x);
   915   int flags;
   916   ciArrayKlass* expected_type;
   917   arraycopy_helper(x, &flags, &expected_type);
   919   CodeEmitInfo* info = state_for(x, x->state()); // we may want to have stack (deoptimization?)
   920   __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(), length.result(), tmp, expected_type, flags, info); // does add_safepoint
   921 }
   924 // _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f
   925 // _i2b, _i2c, _i2s
   926 LIR_Opr fixed_register_for(BasicType type) {
   927   switch (type) {
   928     case T_FLOAT:  return FrameMap::fpu0_float_opr;
   929     case T_DOUBLE: return FrameMap::fpu0_double_opr;
   930     case T_INT:    return FrameMap::rax_opr;
   931     case T_LONG:   return FrameMap::long0_opr;
   932     default:       ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
   933   }
   934 }
   936 void LIRGenerator::do_Convert(Convert* x) {
   937   // flags that vary for the different operations and different SSE-settings
   938   bool fixed_input, fixed_result, round_result, needs_stub;
   940   switch (x->op()) {
   941     case Bytecodes::_i2l: // fall through
   942     case Bytecodes::_l2i: // fall through
   943     case Bytecodes::_i2b: // fall through
   944     case Bytecodes::_i2c: // fall through
   945     case Bytecodes::_i2s: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = false; break;
   947     case Bytecodes::_f2d: fixed_input = UseSSE == 1; fixed_result = false;       round_result = false;      needs_stub = false; break;
   948     case Bytecodes::_d2f: fixed_input = false;       fixed_result = UseSSE == 1; round_result = UseSSE < 1; needs_stub = false; break;
   949     case Bytecodes::_i2f: fixed_input = false;       fixed_result = false;       round_result = UseSSE < 1; needs_stub = false; break;
   950     case Bytecodes::_i2d: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = false; break;
   951     case Bytecodes::_f2i: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = true;  break;
   952     case Bytecodes::_d2i: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = true;  break;
   953     case Bytecodes::_l2f: fixed_input = false;       fixed_result = UseSSE >= 1; round_result = UseSSE < 1; needs_stub = false; break;
   954     case Bytecodes::_l2d: fixed_input = false;       fixed_result = UseSSE >= 2; round_result = UseSSE < 2; needs_stub = false; break;
   955     case Bytecodes::_f2l: fixed_input = true;        fixed_result = true;        round_result = false;      needs_stub = false; break;
   956     case Bytecodes::_d2l: fixed_input = true;        fixed_result = true;        round_result = false;      needs_stub = false; break;
   957     default: ShouldNotReachHere();
   958   }
   960   LIRItem value(x->value(), this);
   961   value.load_item();
   962   LIR_Opr input = value.result();
   963   LIR_Opr result = rlock(x);
   965   // arguments of lir_convert
   966   LIR_Opr conv_input = input;
   967   LIR_Opr conv_result = result;
   968   ConversionStub* stub = NULL;
   970   if (fixed_input) {
   971     conv_input = fixed_register_for(input->type());
   972     __ move(input, conv_input);
   973   }
   975   assert(fixed_result == false || round_result == false, "cannot set both");
   976   if (fixed_result) {
   977     conv_result = fixed_register_for(result->type());
   978   } else if (round_result) {
   979     result = new_register(result->type());
   980     set_vreg_flag(result, must_start_in_memory);
   981   }
   983   if (needs_stub) {
   984     stub = new ConversionStub(x->op(), conv_input, conv_result);
   985   }
   987   __ convert(x->op(), conv_input, conv_result, stub);
   989   if (result != conv_result) {
   990     __ move(conv_result, result);
   991   }
   993   assert(result->is_virtual(), "result must be virtual register");
   994   set_result(x, result);
   995 }
   998 void LIRGenerator::do_NewInstance(NewInstance* x) {
   999 #ifndef PRODUCT
  1000   if (PrintNotLoaded && !x->klass()->is_loaded()) {
  1001     tty->print_cr("   ###class not loaded at new bci %d", x->printable_bci());
  1003 #endif
  1004   CodeEmitInfo* info = state_for(x, x->state());
  1005   LIR_Opr reg = result_register_for(x->type());
  1006   LIR_Opr klass_reg = new_register(objectType);
  1007   new_instance(reg, x->klass(),
  1008                        FrameMap::rcx_oop_opr,
  1009                        FrameMap::rdi_oop_opr,
  1010                        FrameMap::rsi_oop_opr,
  1011                        LIR_OprFact::illegalOpr,
  1012                        FrameMap::rdx_oop_opr, info);
  1013   LIR_Opr result = rlock_result(x);
  1014   __ move(reg, result);
  1018 void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
  1019   CodeEmitInfo* info = state_for(x, x->state());
  1021   LIRItem length(x->length(), this);
  1022   length.load_item_force(FrameMap::rbx_opr);
  1024   LIR_Opr reg = result_register_for(x->type());
  1025   LIR_Opr tmp1 = FrameMap::rcx_oop_opr;
  1026   LIR_Opr tmp2 = FrameMap::rsi_oop_opr;
  1027   LIR_Opr tmp3 = FrameMap::rdi_oop_opr;
  1028   LIR_Opr tmp4 = reg;
  1029   LIR_Opr klass_reg = FrameMap::rdx_oop_opr;
  1030   LIR_Opr len = length.result();
  1031   BasicType elem_type = x->elt_type();
  1033   __ oop2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg);
  1035   CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
  1036   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path);
  1038   LIR_Opr result = rlock_result(x);
  1039   __ move(reg, result);
  1043 void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
  1044   LIRItem length(x->length(), this);
  1045   // in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction
  1046   // and therefore provide the state before the parameters have been consumed
  1047   CodeEmitInfo* patching_info = NULL;
  1048   if (!x->klass()->is_loaded() || PatchALot) {
  1049     patching_info =  state_for(x, x->state_before());
  1052   CodeEmitInfo* info = state_for(x, x->state());
  1054   const LIR_Opr reg = result_register_for(x->type());
  1055   LIR_Opr tmp1 = FrameMap::rcx_oop_opr;
  1056   LIR_Opr tmp2 = FrameMap::rsi_oop_opr;
  1057   LIR_Opr tmp3 = FrameMap::rdi_oop_opr;
  1058   LIR_Opr tmp4 = reg;
  1059   LIR_Opr klass_reg = FrameMap::rdx_oop_opr;
  1061   length.load_item_force(FrameMap::rbx_opr);
  1062   LIR_Opr len = length.result();
  1064   CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info);
  1065   ciObject* obj = (ciObject*) ciObjArrayKlass::make(x->klass());
  1066   if (obj == ciEnv::unloaded_ciobjarrayklass()) {
  1067     BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
  1069   jobject2reg_with_patching(klass_reg, obj, patching_info);
  1070   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path);
  1072   LIR_Opr result = rlock_result(x);
  1073   __ move(reg, result);
  1077 void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
  1078   Values* dims = x->dims();
  1079   int i = dims->length();
  1080   LIRItemList* items = new LIRItemList(dims->length(), NULL);
  1081   while (i-- > 0) {
  1082     LIRItem* size = new LIRItem(dims->at(i), this);
  1083     items->at_put(i, size);
  1086   // Evaluate state_for early since it may emit code.
  1087   CodeEmitInfo* patching_info = NULL;
  1088   if (!x->klass()->is_loaded() || PatchALot) {
  1089     patching_info = state_for(x, x->state_before());
  1091     // cannot re-use same xhandlers for multiple CodeEmitInfos, so
  1092     // clone all handlers.  This is handled transparently in other
  1093     // places by the CodeEmitInfo cloning logic but is handled
  1094     // specially here because a stub isn't being used.
  1095     x->set_exception_handlers(new XHandlers(x->exception_handlers()));
  1097   CodeEmitInfo* info = state_for(x, x->state());
  1099   i = dims->length();
  1100   while (i-- > 0) {
  1101     LIRItem* size = items->at(i);
  1102     size->load_nonconstant();
  1104     store_stack_parameter(size->result(), in_ByteSize(i*4));
  1107   LIR_Opr reg = result_register_for(x->type());
  1108   jobject2reg_with_patching(reg, x->klass(), patching_info);
  1110   LIR_Opr rank = FrameMap::rbx_opr;
  1111   __ move(LIR_OprFact::intConst(x->rank()), rank);
  1112   LIR_Opr varargs = FrameMap::rcx_opr;
  1113   __ move(FrameMap::rsp_opr, varargs);
  1114   LIR_OprList* args = new LIR_OprList(3);
  1115   args->append(reg);
  1116   args->append(rank);
  1117   args->append(varargs);
  1118   __ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id),
  1119                   LIR_OprFact::illegalOpr,
  1120                   reg, args, info);
  1122   LIR_Opr result = rlock_result(x);
  1123   __ move(reg, result);
  1127 void LIRGenerator::do_BlockBegin(BlockBegin* x) {
  1128   // nothing to do for now
  1132 void LIRGenerator::do_CheckCast(CheckCast* x) {
  1133   LIRItem obj(x->obj(), this);
  1135   CodeEmitInfo* patching_info = NULL;
  1136   if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check())) {
  1137     // must do this before locking the destination register as an oop register,
  1138     // and before the obj is loaded (the latter is for deoptimization)
  1139     patching_info = state_for(x, x->state_before());
  1141   obj.load_item();
  1143   // info for exceptions
  1144   CodeEmitInfo* info_for_exception = state_for(x);
  1146   CodeStub* stub;
  1147   if (x->is_incompatible_class_change_check()) {
  1148     assert(patching_info == NULL, "can't patch this");
  1149     stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception);
  1150   } else {
  1151     stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception);
  1153   LIR_Opr reg = rlock_result(x);
  1154   LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
  1155   if (!x->klass()->is_loaded() || UseCompressedOops) {
  1156     tmp3 = new_register(objectType);
  1158   __ checkcast(reg, obj.result(), x->klass(),
  1159                new_register(objectType), new_register(objectType), tmp3,
  1160                x->direct_compare(), info_for_exception, patching_info, stub,
  1161                x->profiled_method(), x->profiled_bci());
  1165 void LIRGenerator::do_InstanceOf(InstanceOf* x) {
  1166   LIRItem obj(x->obj(), this);
  1168   // result and test object may not be in same register
  1169   LIR_Opr reg = rlock_result(x);
  1170   CodeEmitInfo* patching_info = NULL;
  1171   if ((!x->klass()->is_loaded() || PatchALot)) {
  1172     // must do this before locking the destination register as an oop register
  1173     patching_info = state_for(x, x->state_before());
  1175   obj.load_item();
  1176   LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
  1177   if (!x->klass()->is_loaded() || UseCompressedOops) {
  1178     tmp3 = new_register(objectType);
  1180   __ instanceof(reg, obj.result(), x->klass(),
  1181                 new_register(objectType), new_register(objectType), tmp3,
  1182                 x->direct_compare(), patching_info, x->profiled_method(), x->profiled_bci());
  1186 void LIRGenerator::do_If(If* x) {
  1187   assert(x->number_of_sux() == 2, "inconsistency");
  1188   ValueTag tag = x->x()->type()->tag();
  1189   bool is_safepoint = x->is_safepoint();
  1191   If::Condition cond = x->cond();
  1193   LIRItem xitem(x->x(), this);
  1194   LIRItem yitem(x->y(), this);
  1195   LIRItem* xin = &xitem;
  1196   LIRItem* yin = &yitem;
  1198   if (tag == longTag) {
  1199     // for longs, only conditions "eql", "neq", "lss", "geq" are valid;
  1200     // mirror for other conditions
  1201     if (cond == If::gtr || cond == If::leq) {
  1202       cond = Instruction::mirror(cond);
  1203       xin = &yitem;
  1204       yin = &xitem;
  1206     xin->set_destroys_register();
  1208   xin->load_item();
  1209   if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 && (cond == If::eql || cond == If::neq)) {
  1210     // inline long zero
  1211     yin->dont_load_item();
  1212   } else if (tag == longTag || tag == floatTag || tag == doubleTag) {
  1213     // longs cannot handle constants at right side
  1214     yin->load_item();
  1215   } else {
  1216     yin->dont_load_item();
  1219   // add safepoint before generating condition code so it can be recomputed
  1220   if (x->is_safepoint()) {
  1221     // increment backedge counter if needed
  1222     increment_backedge_counter(state_for(x, x->state_before()), x->profiled_bci());
  1223     __ safepoint(LIR_OprFact::illegalOpr, state_for(x, x->state_before()));
  1225   set_no_result(x);
  1227   LIR_Opr left = xin->result();
  1228   LIR_Opr right = yin->result();
  1229   __ cmp(lir_cond(cond), left, right);
  1230   // Generate branch profiling. Profiling code doesn't kill flags.
  1231   profile_branch(x, cond);
  1232   move_to_phi(x->state());
  1233   if (x->x()->type()->is_float_kind()) {
  1234     __ branch(lir_cond(cond), right->type(), x->tsux(), x->usux());
  1235   } else {
  1236     __ branch(lir_cond(cond), right->type(), x->tsux());
  1238   assert(x->default_sux() == x->fsux(), "wrong destination above");
  1239   __ jump(x->default_sux());
  1243 LIR_Opr LIRGenerator::getThreadPointer() {
  1244 #ifdef _LP64
  1245   return FrameMap::as_pointer_opr(r15_thread);
  1246 #else
  1247   LIR_Opr result = new_register(T_INT);
  1248   __ get_thread(result);
  1249   return result;
  1250 #endif //
  1253 void LIRGenerator::trace_block_entry(BlockBegin* block) {
  1254   store_stack_parameter(LIR_OprFact::intConst(block->block_id()), in_ByteSize(0));
  1255   LIR_OprList* args = new LIR_OprList();
  1256   address func = CAST_FROM_FN_PTR(address, Runtime1::trace_block_entry);
  1257   __ call_runtime_leaf(func, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, args);
  1261 void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
  1262                                         CodeEmitInfo* info) {
  1263   if (address->type() == T_LONG) {
  1264     address = new LIR_Address(address->base(),
  1265                               address->index(), address->scale(),
  1266                               address->disp(), T_DOUBLE);
  1267     // Transfer the value atomically by using FP moves.  This means
  1268     // the value has to be moved between CPU and FPU registers.  It
  1269     // always has to be moved through spill slot since there's no
  1270     // quick way to pack the value into an SSE register.
  1271     LIR_Opr temp_double = new_register(T_DOUBLE);
  1272     LIR_Opr spill = new_register(T_LONG);
  1273     set_vreg_flag(spill, must_start_in_memory);
  1274     __ move(value, spill);
  1275     __ volatile_move(spill, temp_double, T_LONG);
  1276     __ volatile_move(temp_double, LIR_OprFact::address(address), T_LONG, info);
  1277   } else {
  1278     __ store(value, address, info);
  1284 void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
  1285                                        CodeEmitInfo* info) {
  1286   if (address->type() == T_LONG) {
  1287     address = new LIR_Address(address->base(),
  1288                               address->index(), address->scale(),
  1289                               address->disp(), T_DOUBLE);
  1290     // Transfer the value atomically by using FP moves.  This means
  1291     // the value has to be moved between CPU and FPU registers.  In
  1292     // SSE0 and SSE1 mode it has to be moved through spill slot but in
  1293     // SSE2+ mode it can be moved directly.
  1294     LIR_Opr temp_double = new_register(T_DOUBLE);
  1295     __ volatile_move(LIR_OprFact::address(address), temp_double, T_LONG, info);
  1296     __ volatile_move(temp_double, result, T_LONG);
  1297     if (UseSSE < 2) {
  1298       // no spill slot needed in SSE2 mode because xmm->cpu register move is possible
  1299       set_vreg_flag(result, must_start_in_memory);
  1301   } else {
  1302     __ load(address, result, info);
  1306 void LIRGenerator::get_Object_unsafe(LIR_Opr dst, LIR_Opr src, LIR_Opr offset,
  1307                                      BasicType type, bool is_volatile) {
  1308   if (is_volatile && type == T_LONG) {
  1309     LIR_Address* addr = new LIR_Address(src, offset, T_DOUBLE);
  1310     LIR_Opr tmp = new_register(T_DOUBLE);
  1311     __ load(addr, tmp);
  1312     LIR_Opr spill = new_register(T_LONG);
  1313     set_vreg_flag(spill, must_start_in_memory);
  1314     __ move(tmp, spill);
  1315     __ move(spill, dst);
  1316   } else {
  1317     LIR_Address* addr = new LIR_Address(src, offset, type);
  1318     __ load(addr, dst);
  1323 void LIRGenerator::put_Object_unsafe(LIR_Opr src, LIR_Opr offset, LIR_Opr data,
  1324                                      BasicType type, bool is_volatile) {
  1325   if (is_volatile && type == T_LONG) {
  1326     LIR_Address* addr = new LIR_Address(src, offset, T_DOUBLE);
  1327     LIR_Opr tmp = new_register(T_DOUBLE);
  1328     LIR_Opr spill = new_register(T_DOUBLE);
  1329     set_vreg_flag(spill, must_start_in_memory);
  1330     __ move(data, spill);
  1331     __ move(spill, tmp);
  1332     __ move(tmp, addr);
  1333   } else {
  1334     LIR_Address* addr = new LIR_Address(src, offset, type);
  1335     bool is_obj = (type == T_ARRAY || type == T_OBJECT);
  1336     if (is_obj) {
  1337       // Do the pre-write barrier, if any.
  1338       pre_barrier(LIR_OprFact::address(addr), false, NULL);
  1339       __ move(data, addr);
  1340       assert(src->is_register(), "must be register");
  1341       // Seems to be a precise address
  1342       post_barrier(LIR_OprFact::address(addr), data);
  1343     } else {
  1344       __ move(data, addr);

mercurial