src/cpu/sparc/vm/stubGenerator_sparc.cpp

Tue, 30 Nov 2010 23:23:40 -0800

author
iveresov
date
Tue, 30 Nov 2010 23:23:40 -0800
changeset 2344
ac637b7220d1
parent 2314
f95d63e2154a
child 2595
d89a22843c62
permissions
-rw-r--r--

6985015: C1 needs to support compressed oops
Summary: This change implements compressed oops for C1 for x64 and sparc. The changes are mostly on the codegen level, with a few exceptions when we do access things outside of the heap that are uncompressed from the IR. Compressed oops are now also enabled with tiered.
Reviewed-by: twisti, kvn, never, phh

     1 /*
     2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "assembler_sparc.inline.hpp"
    28 #include "interpreter/interpreter.hpp"
    29 #include "nativeInst_sparc.hpp"
    30 #include "oops/instanceOop.hpp"
    31 #include "oops/methodOop.hpp"
    32 #include "oops/objArrayKlass.hpp"
    33 #include "oops/oop.inline.hpp"
    34 #include "prims/methodHandles.hpp"
    35 #include "runtime/frame.inline.hpp"
    36 #include "runtime/handles.inline.hpp"
    37 #include "runtime/sharedRuntime.hpp"
    38 #include "runtime/stubCodeGenerator.hpp"
    39 #include "runtime/stubRoutines.hpp"
    40 #include "utilities/top.hpp"
    41 #ifdef TARGET_OS_FAMILY_linux
    42 # include "thread_linux.inline.hpp"
    43 #endif
    44 #ifdef TARGET_OS_FAMILY_solaris
    45 # include "thread_solaris.inline.hpp"
    46 #endif
    47 #ifdef COMPILER2
    48 #include "opto/runtime.hpp"
    49 #endif
    51 // Declaration and definition of StubGenerator (no .hpp file).
    52 // For a more detailed description of the stub routine structure
    53 // see the comment in stubRoutines.hpp.
    55 #define __ _masm->
    57 #ifdef PRODUCT
    58 #define BLOCK_COMMENT(str) /* nothing */
    59 #else
    60 #define BLOCK_COMMENT(str) __ block_comment(str)
    61 #endif
    63 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
    65 // Note:  The register L7 is used as L7_thread_cache, and may not be used
    66 //        any other way within this module.
    69 static const Register& Lstub_temp = L2;
    71 // -------------------------------------------------------------------------------------------------------------------------
    72 // Stub Code definitions
    74 static address handle_unsafe_access() {
    75   JavaThread* thread = JavaThread::current();
    76   address pc  = thread->saved_exception_pc();
    77   address npc = thread->saved_exception_npc();
    78   // pc is the instruction which we must emulate
    79   // doing a no-op is fine:  return garbage from the load
    81   // request an async exception
    82   thread->set_pending_unsafe_access_error();
    84   // return address of next instruction to execute
    85   return npc;
    86 }
    88 class StubGenerator: public StubCodeGenerator {
    89  private:
    91 #ifdef PRODUCT
    92 #define inc_counter_np(a,b,c) (0)
    93 #else
    94 #define inc_counter_np(counter, t1, t2) \
    95   BLOCK_COMMENT("inc_counter " #counter); \
    96   __ inc_counter(&counter, t1, t2);
    97 #endif
    99   //----------------------------------------------------------------------------------------------------
   100   // Call stubs are used to call Java from C
   102   address generate_call_stub(address& return_pc) {
   103     StubCodeMark mark(this, "StubRoutines", "call_stub");
   104     address start = __ pc();
   106     // Incoming arguments:
   107     //
   108     // o0         : call wrapper address
   109     // o1         : result (address)
   110     // o2         : result type
   111     // o3         : method
   112     // o4         : (interpreter) entry point
   113     // o5         : parameters (address)
   114     // [sp + 0x5c]: parameter size (in words)
   115     // [sp + 0x60]: thread
   116     //
   117     // +---------------+ <--- sp + 0
   118     // |               |
   119     // . reg save area .
   120     // |               |
   121     // +---------------+ <--- sp + 0x40
   122     // |               |
   123     // . extra 7 slots .
   124     // |               |
   125     // +---------------+ <--- sp + 0x5c
   126     // |  param. size  |
   127     // +---------------+ <--- sp + 0x60
   128     // |    thread     |
   129     // +---------------+
   130     // |               |
   132     // note: if the link argument position changes, adjust
   133     //       the code in frame::entry_frame_call_wrapper()
   135     const Argument link           = Argument(0, false); // used only for GC
   136     const Argument result         = Argument(1, false);
   137     const Argument result_type    = Argument(2, false);
   138     const Argument method         = Argument(3, false);
   139     const Argument entry_point    = Argument(4, false);
   140     const Argument parameters     = Argument(5, false);
   141     const Argument parameter_size = Argument(6, false);
   142     const Argument thread         = Argument(7, false);
   144     // setup thread register
   145     __ ld_ptr(thread.as_address(), G2_thread);
   146     __ reinit_heapbase();
   148 #ifdef ASSERT
   149     // make sure we have no pending exceptions
   150     { const Register t = G3_scratch;
   151       Label L;
   152       __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), t);
   153       __ br_null(t, false, Assembler::pt, L);
   154       __ delayed()->nop();
   155       __ stop("StubRoutines::call_stub: entered with pending exception");
   156       __ bind(L);
   157     }
   158 #endif
   160     // create activation frame & allocate space for parameters
   161     { const Register t = G3_scratch;
   162       __ ld_ptr(parameter_size.as_address(), t);                // get parameter size (in words)
   163       __ add(t, frame::memory_parameter_word_sp_offset, t);     // add space for save area (in words)
   164       __ round_to(t, WordsPerLong);                             // make sure it is multiple of 2 (in words)
   165       __ sll(t, Interpreter::logStackElementSize, t);           // compute number of bytes
   166       __ neg(t);                                                // negate so it can be used with save
   167       __ save(SP, t, SP);                                       // setup new frame
   168     }
   170     // +---------------+ <--- sp + 0
   171     // |               |
   172     // . reg save area .
   173     // |               |
   174     // +---------------+ <--- sp + 0x40
   175     // |               |
   176     // . extra 7 slots .
   177     // |               |
   178     // +---------------+ <--- sp + 0x5c
   179     // |  empty slot   |      (only if parameter size is even)
   180     // +---------------+
   181     // |               |
   182     // .  parameters   .
   183     // |               |
   184     // +---------------+ <--- fp + 0
   185     // |               |
   186     // . reg save area .
   187     // |               |
   188     // +---------------+ <--- fp + 0x40
   189     // |               |
   190     // . extra 7 slots .
   191     // |               |
   192     // +---------------+ <--- fp + 0x5c
   193     // |  param. size  |
   194     // +---------------+ <--- fp + 0x60
   195     // |    thread     |
   196     // +---------------+
   197     // |               |
   199     // pass parameters if any
   200     BLOCK_COMMENT("pass parameters if any");
   201     { const Register src = parameters.as_in().as_register();
   202       const Register dst = Lentry_args;
   203       const Register tmp = G3_scratch;
   204       const Register cnt = G4_scratch;
   206       // test if any parameters & setup of Lentry_args
   207       Label exit;
   208       __ ld_ptr(parameter_size.as_in().as_address(), cnt);      // parameter counter
   209       __ add( FP, STACK_BIAS, dst );
   210       __ tst(cnt);
   211       __ br(Assembler::zero, false, Assembler::pn, exit);
   212       __ delayed()->sub(dst, BytesPerWord, dst);                 // setup Lentry_args
   214       // copy parameters if any
   215       Label loop;
   216       __ BIND(loop);
   217       // Store parameter value
   218       __ ld_ptr(src, 0, tmp);
   219       __ add(src, BytesPerWord, src);
   220       __ st_ptr(tmp, dst, 0);
   221       __ deccc(cnt);
   222       __ br(Assembler::greater, false, Assembler::pt, loop);
   223       __ delayed()->sub(dst, Interpreter::stackElementSize, dst);
   225       // done
   226       __ BIND(exit);
   227     }
   229     // setup parameters, method & call Java function
   230 #ifdef ASSERT
   231     // layout_activation_impl checks it's notion of saved SP against
   232     // this register, so if this changes update it as well.
   233     const Register saved_SP = Lscratch;
   234     __ mov(SP, saved_SP);                               // keep track of SP before call
   235 #endif
   237     // setup parameters
   238     const Register t = G3_scratch;
   239     __ ld_ptr(parameter_size.as_in().as_address(), t); // get parameter size (in words)
   240     __ sll(t, Interpreter::logStackElementSize, t);    // compute number of bytes
   241     __ sub(FP, t, Gargs);                              // setup parameter pointer
   242 #ifdef _LP64
   243     __ add( Gargs, STACK_BIAS, Gargs );                // Account for LP64 stack bias
   244 #endif
   245     __ mov(SP, O5_savedSP);
   248     // do the call
   249     //
   250     // the following register must be setup:
   251     //
   252     // G2_thread
   253     // G5_method
   254     // Gargs
   255     BLOCK_COMMENT("call Java function");
   256     __ jmpl(entry_point.as_in().as_register(), G0, O7);
   257     __ delayed()->mov(method.as_in().as_register(), G5_method);   // setup method
   259     BLOCK_COMMENT("call_stub_return_address:");
   260     return_pc = __ pc();
   262     // The callee, if it wasn't interpreted, can return with SP changed so
   263     // we can no longer assert of change of SP.
   265     // store result depending on type
   266     // (everything that is not T_OBJECT, T_LONG, T_FLOAT, or T_DOUBLE
   267     //  is treated as T_INT)
   268     { const Register addr = result     .as_in().as_register();
   269       const Register type = result_type.as_in().as_register();
   270       Label is_long, is_float, is_double, is_object, exit;
   271       __            cmp(type, T_OBJECT);  __ br(Assembler::equal, false, Assembler::pn, is_object);
   272       __ delayed()->cmp(type, T_FLOAT);   __ br(Assembler::equal, false, Assembler::pn, is_float);
   273       __ delayed()->cmp(type, T_DOUBLE);  __ br(Assembler::equal, false, Assembler::pn, is_double);
   274       __ delayed()->cmp(type, T_LONG);    __ br(Assembler::equal, false, Assembler::pn, is_long);
   275       __ delayed()->nop();
   277       // store int result
   278       __ st(O0, addr, G0);
   280       __ BIND(exit);
   281       __ ret();
   282       __ delayed()->restore();
   284       __ BIND(is_object);
   285       __ ba(false, exit);
   286       __ delayed()->st_ptr(O0, addr, G0);
   288       __ BIND(is_float);
   289       __ ba(false, exit);
   290       __ delayed()->stf(FloatRegisterImpl::S, F0, addr, G0);
   292       __ BIND(is_double);
   293       __ ba(false, exit);
   294       __ delayed()->stf(FloatRegisterImpl::D, F0, addr, G0);
   296       __ BIND(is_long);
   297 #ifdef _LP64
   298       __ ba(false, exit);
   299       __ delayed()->st_long(O0, addr, G0);      // store entire long
   300 #else
   301 #if defined(COMPILER2)
   302   // All return values are where we want them, except for Longs.  C2 returns
   303   // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
   304   // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
   305   // build we simply always use G1.
   306   // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
   307   // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
   308   // first which would move g1 -> O0/O1 and destroy the exception we were throwing.
   310       __ ba(false, exit);
   311       __ delayed()->stx(G1, addr, G0);  // store entire long
   312 #else
   313       __ st(O1, addr, BytesPerInt);
   314       __ ba(false, exit);
   315       __ delayed()->st(O0, addr, G0);
   316 #endif /* COMPILER2 */
   317 #endif /* _LP64 */
   318      }
   319      return start;
   320   }
   323   //----------------------------------------------------------------------------------------------------
   324   // Return point for a Java call if there's an exception thrown in Java code.
   325   // The exception is caught and transformed into a pending exception stored in
   326   // JavaThread that can be tested from within the VM.
   327   //
   328   // Oexception: exception oop
   330   address generate_catch_exception() {
   331     StubCodeMark mark(this, "StubRoutines", "catch_exception");
   333     address start = __ pc();
   334     // verify that thread corresponds
   335     __ verify_thread();
   337     const Register& temp_reg = Gtemp;
   338     Address pending_exception_addr    (G2_thread, Thread::pending_exception_offset());
   339     Address exception_file_offset_addr(G2_thread, Thread::exception_file_offset   ());
   340     Address exception_line_offset_addr(G2_thread, Thread::exception_line_offset   ());
   342     // set pending exception
   343     __ verify_oop(Oexception);
   344     __ st_ptr(Oexception, pending_exception_addr);
   345     __ set((intptr_t)__FILE__, temp_reg);
   346     __ st_ptr(temp_reg, exception_file_offset_addr);
   347     __ set((intptr_t)__LINE__, temp_reg);
   348     __ st(temp_reg, exception_line_offset_addr);
   350     // complete return to VM
   351     assert(StubRoutines::_call_stub_return_address != NULL, "must have been generated before");
   353     AddressLiteral stub_ret(StubRoutines::_call_stub_return_address);
   354     __ jump_to(stub_ret, temp_reg);
   355     __ delayed()->nop();
   357     return start;
   358   }
   361   //----------------------------------------------------------------------------------------------------
   362   // Continuation point for runtime calls returning with a pending exception
   363   // The pending exception check happened in the runtime or native call stub
   364   // The pending exception in Thread is converted into a Java-level exception
   365   //
   366   // Contract with Java-level exception handler: O0 = exception
   367   //                                             O1 = throwing pc
   369   address generate_forward_exception() {
   370     StubCodeMark mark(this, "StubRoutines", "forward_exception");
   371     address start = __ pc();
   373     // Upon entry, O7 has the return address returning into Java
   374     // (interpreted or compiled) code; i.e. the return address
   375     // becomes the throwing pc.
   377     const Register& handler_reg = Gtemp;
   379     Address exception_addr(G2_thread, Thread::pending_exception_offset());
   381 #ifdef ASSERT
   382     // make sure that this code is only executed if there is a pending exception
   383     { Label L;
   384       __ ld_ptr(exception_addr, Gtemp);
   385       __ br_notnull(Gtemp, false, Assembler::pt, L);
   386       __ delayed()->nop();
   387       __ stop("StubRoutines::forward exception: no pending exception (1)");
   388       __ bind(L);
   389     }
   390 #endif
   392     // compute exception handler into handler_reg
   393     __ get_thread();
   394     __ ld_ptr(exception_addr, Oexception);
   395     __ verify_oop(Oexception);
   396     __ save_frame(0);             // compensates for compiler weakness
   397     __ add(O7->after_save(), frame::pc_return_offset, Lscratch); // save the issuing PC
   398     BLOCK_COMMENT("call exception_handler_for_return_address");
   399     __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), G2_thread, Lscratch);
   400     __ mov(O0, handler_reg);
   401     __ restore();                 // compensates for compiler weakness
   403     __ ld_ptr(exception_addr, Oexception);
   404     __ add(O7, frame::pc_return_offset, Oissuing_pc); // save the issuing PC
   406 #ifdef ASSERT
   407     // make sure exception is set
   408     { Label L;
   409       __ br_notnull(Oexception, false, Assembler::pt, L);
   410       __ delayed()->nop();
   411       __ stop("StubRoutines::forward exception: no pending exception (2)");
   412       __ bind(L);
   413     }
   414 #endif
   415     // jump to exception handler
   416     __ jmp(handler_reg, 0);
   417     // clear pending exception
   418     __ delayed()->st_ptr(G0, exception_addr);
   420     return start;
   421   }
   424   //------------------------------------------------------------------------------------------------------------------------
   425   // Continuation point for throwing of implicit exceptions that are not handled in
   426   // the current activation. Fabricates an exception oop and initiates normal
   427   // exception dispatching in this frame. Only callee-saved registers are preserved
   428   // (through the normal register window / RegisterMap handling).
   429   // If the compiler needs all registers to be preserved between the fault
   430   // point and the exception handler then it must assume responsibility for that in
   431   // AbstractCompiler::continuation_for_implicit_null_exception or
   432   // continuation_for_implicit_division_by_zero_exception. All other implicit
   433   // exceptions (e.g., NullPointerException or AbstractMethodError on entry) are
   434   // either at call sites or otherwise assume that stack unwinding will be initiated,
   435   // so caller saved registers were assumed volatile in the compiler.
   437   // Note that we generate only this stub into a RuntimeStub, because it needs to be
   438   // properly traversed and ignored during GC, so we change the meaning of the "__"
   439   // macro within this method.
   440 #undef __
   441 #define __ masm->
   443   address generate_throw_exception(const char* name, address runtime_entry, bool restore_saved_exception_pc) {
   444 #ifdef ASSERT
   445     int insts_size = VerifyThread ? 1 * K : 600;
   446 #else
   447     int insts_size = VerifyThread ? 1 * K : 256;
   448 #endif /* ASSERT */
   449     int locs_size  = 32;
   451     CodeBuffer      code(name, insts_size, locs_size);
   452     MacroAssembler* masm = new MacroAssembler(&code);
   454     __ verify_thread();
   456     // This is an inlined and slightly modified version of call_VM
   457     // which has the ability to fetch the return PC out of thread-local storage
   458     __ assert_not_delayed();
   460     // Note that we always push a frame because on the SPARC
   461     // architecture, for all of our implicit exception kinds at call
   462     // sites, the implicit exception is taken before the callee frame
   463     // is pushed.
   464     __ save_frame(0);
   466     int frame_complete = __ offset();
   468     if (restore_saved_exception_pc) {
   469       __ ld_ptr(G2_thread, JavaThread::saved_exception_pc_offset(), I7);
   470       __ sub(I7, frame::pc_return_offset, I7);
   471     }
   473     // Note that we always have a runtime stub frame on the top of stack by this point
   474     Register last_java_sp = SP;
   475     // 64-bit last_java_sp is biased!
   476     __ set_last_Java_frame(last_java_sp, G0);
   477     if (VerifyThread)  __ mov(G2_thread, O0); // about to be smashed; pass early
   478     __ save_thread(noreg);
   479     // do the call
   480     BLOCK_COMMENT("call runtime_entry");
   481     __ call(runtime_entry, relocInfo::runtime_call_type);
   482     if (!VerifyThread)
   483       __ delayed()->mov(G2_thread, O0);  // pass thread as first argument
   484     else
   485       __ delayed()->nop();             // (thread already passed)
   486     __ restore_thread(noreg);
   487     __ reset_last_Java_frame();
   489     // check for pending exceptions. use Gtemp as scratch register.
   490 #ifdef ASSERT
   491     Label L;
   493     Address exception_addr(G2_thread, Thread::pending_exception_offset());
   494     Register scratch_reg = Gtemp;
   495     __ ld_ptr(exception_addr, scratch_reg);
   496     __ br_notnull(scratch_reg, false, Assembler::pt, L);
   497     __ delayed()->nop();
   498     __ should_not_reach_here();
   499     __ bind(L);
   500 #endif // ASSERT
   501     BLOCK_COMMENT("call forward_exception_entry");
   502     __ call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
   503     // we use O7 linkage so that forward_exception_entry has the issuing PC
   504     __ delayed()->restore();
   506     RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, masm->total_frame_size_in_bytes(0), NULL, false);
   507     return stub->entry_point();
   508   }
   510 #undef __
   511 #define __ _masm->
   514   // Generate a routine that sets all the registers so we
   515   // can tell if the stop routine prints them correctly.
   516   address generate_test_stop() {
   517     StubCodeMark mark(this, "StubRoutines", "test_stop");
   518     address start = __ pc();
   520     int i;
   522     __ save_frame(0);
   524     static jfloat zero = 0.0, one = 1.0;
   526     // put addr in L0, then load through L0 to F0
   527     __ set((intptr_t)&zero, L0);  __ ldf( FloatRegisterImpl::S, L0, 0, F0);
   528     __ set((intptr_t)&one,  L0);  __ ldf( FloatRegisterImpl::S, L0, 0, F1); // 1.0 to F1
   530     // use add to put 2..18 in F2..F18
   531     for ( i = 2;  i <= 18;  ++i ) {
   532       __ fadd( FloatRegisterImpl::S, F1, as_FloatRegister(i-1),  as_FloatRegister(i));
   533     }
   535     // Now put double 2 in F16, double 18 in F18
   536     __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, F2, F16 );
   537     __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, F18, F18 );
   539     // use add to put 20..32 in F20..F32
   540     for (i = 20; i < 32; i += 2) {
   541       __ fadd( FloatRegisterImpl::D, F16, as_FloatRegister(i-2),  as_FloatRegister(i));
   542     }
   544     // put 0..7 in i's, 8..15 in l's, 16..23 in o's, 24..31 in g's
   545     for ( i = 0; i < 8; ++i ) {
   546       if (i < 6) {
   547         __ set(     i, as_iRegister(i));
   548         __ set(16 + i, as_oRegister(i));
   549         __ set(24 + i, as_gRegister(i));
   550       }
   551       __ set( 8 + i, as_lRegister(i));
   552     }
   554     __ stop("testing stop");
   557     __ ret();
   558     __ delayed()->restore();
   560     return start;
   561   }
   564   address generate_stop_subroutine() {
   565     StubCodeMark mark(this, "StubRoutines", "stop_subroutine");
   566     address start = __ pc();
   568     __ stop_subroutine();
   570     return start;
   571   }
   573   address generate_flush_callers_register_windows() {
   574     StubCodeMark mark(this, "StubRoutines", "flush_callers_register_windows");
   575     address start = __ pc();
   577     __ flush_windows();
   578     __ retl(false);
   579     __ delayed()->add( FP, STACK_BIAS, O0 );
   580     // The returned value must be a stack pointer whose register save area
   581     // is flushed, and will stay flushed while the caller executes.
   583     return start;
   584   }
   586   // Helper functions for v8 atomic operations.
   587   //
   588   void get_v8_oop_lock_ptr(Register lock_ptr_reg, Register mark_oop_reg, Register scratch_reg) {
   589     if (mark_oop_reg == noreg) {
   590       address lock_ptr = (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr();
   591       __ set((intptr_t)lock_ptr, lock_ptr_reg);
   592     } else {
   593       assert(scratch_reg != noreg, "just checking");
   594       address lock_ptr = (address)StubRoutines::Sparc::_v8_oop_lock_cache;
   595       __ set((intptr_t)lock_ptr, lock_ptr_reg);
   596       __ and3(mark_oop_reg, StubRoutines::Sparc::v8_oop_lock_mask_in_place, scratch_reg);
   597       __ add(lock_ptr_reg, scratch_reg, lock_ptr_reg);
   598     }
   599   }
   601   void generate_v8_lock_prologue(Register lock_reg, Register lock_ptr_reg, Register yield_reg, Label& retry, Label& dontyield, Register mark_oop_reg = noreg, Register scratch_reg = noreg) {
   603     get_v8_oop_lock_ptr(lock_ptr_reg, mark_oop_reg, scratch_reg);
   604     __ set(StubRoutines::Sparc::locked, lock_reg);
   605     // Initialize yield counter
   606     __ mov(G0,yield_reg);
   608     __ BIND(retry);
   609     __ cmp(yield_reg, V8AtomicOperationUnderLockSpinCount);
   610     __ br(Assembler::less, false, Assembler::pt, dontyield);
   611     __ delayed()->nop();
   613     // This code can only be called from inside the VM, this
   614     // stub is only invoked from Atomic::add().  We do not
   615     // want to use call_VM, because _last_java_sp and such
   616     // must already be set.
   617     //
   618     // Save the regs and make space for a C call
   619     __ save(SP, -96, SP);
   620     __ save_all_globals_into_locals();
   621     BLOCK_COMMENT("call os::naked_sleep");
   622     __ call(CAST_FROM_FN_PTR(address, os::naked_sleep));
   623     __ delayed()->nop();
   624     __ restore_globals_from_locals();
   625     __ restore();
   626     // reset the counter
   627     __ mov(G0,yield_reg);
   629     __ BIND(dontyield);
   631     // try to get lock
   632     __ swap(lock_ptr_reg, 0, lock_reg);
   634     // did we get the lock?
   635     __ cmp(lock_reg, StubRoutines::Sparc::unlocked);
   636     __ br(Assembler::notEqual, true, Assembler::pn, retry);
   637     __ delayed()->add(yield_reg,1,yield_reg);
   639     // yes, got lock. do the operation here.
   640   }
   642   void generate_v8_lock_epilogue(Register lock_reg, Register lock_ptr_reg, Register yield_reg, Label& retry, Label& dontyield, Register mark_oop_reg = noreg, Register scratch_reg = noreg) {
   643     __ st(lock_reg, lock_ptr_reg, 0); // unlock
   644   }
   646   // Support for jint Atomic::xchg(jint exchange_value, volatile jint* dest).
   647   //
   648   // Arguments :
   649   //
   650   //      exchange_value: O0
   651   //      dest:           O1
   652   //
   653   // Results:
   654   //
   655   //     O0: the value previously stored in dest
   656   //
   657   address generate_atomic_xchg() {
   658     StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
   659     address start = __ pc();
   661     if (UseCASForSwap) {
   662       // Use CAS instead of swap, just in case the MP hardware
   663       // prefers to work with just one kind of synch. instruction.
   664       Label retry;
   665       __ BIND(retry);
   666       __ mov(O0, O3);       // scratch copy of exchange value
   667       __ ld(O1, 0, O2);     // observe the previous value
   668       // try to replace O2 with O3
   669       __ cas_under_lock(O1, O2, O3,
   670       (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr(),false);
   671       __ cmp(O2, O3);
   672       __ br(Assembler::notEqual, false, Assembler::pn, retry);
   673       __ delayed()->nop();
   675       __ retl(false);
   676       __ delayed()->mov(O2, O0);  // report previous value to caller
   678     } else {
   679       if (VM_Version::v9_instructions_work()) {
   680         __ retl(false);
   681         __ delayed()->swap(O1, 0, O0);
   682       } else {
   683         const Register& lock_reg = O2;
   684         const Register& lock_ptr_reg = O3;
   685         const Register& yield_reg = O4;
   687         Label retry;
   688         Label dontyield;
   690         generate_v8_lock_prologue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
   691         // got the lock, do the swap
   692         __ swap(O1, 0, O0);
   694         generate_v8_lock_epilogue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
   695         __ retl(false);
   696         __ delayed()->nop();
   697       }
   698     }
   700     return start;
   701   }
   704   // Support for jint Atomic::cmpxchg(jint exchange_value, volatile jint* dest, jint compare_value)
   705   //
   706   // Arguments :
   707   //
   708   //      exchange_value: O0
   709   //      dest:           O1
   710   //      compare_value:  O2
   711   //
   712   // Results:
   713   //
   714   //     O0: the value previously stored in dest
   715   //
   716   // Overwrites (v8): O3,O4,O5
   717   //
   718   address generate_atomic_cmpxchg() {
   719     StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg");
   720     address start = __ pc();
   722     // cmpxchg(dest, compare_value, exchange_value)
   723     __ cas_under_lock(O1, O2, O0,
   724       (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr(),false);
   725     __ retl(false);
   726     __ delayed()->nop();
   728     return start;
   729   }
   731   // Support for jlong Atomic::cmpxchg(jlong exchange_value, volatile jlong *dest, jlong compare_value)
   732   //
   733   // Arguments :
   734   //
   735   //      exchange_value: O1:O0
   736   //      dest:           O2
   737   //      compare_value:  O4:O3
   738   //
   739   // Results:
   740   //
   741   //     O1:O0: the value previously stored in dest
   742   //
   743   // This only works on V9, on V8 we don't generate any
   744   // code and just return NULL.
   745   //
   746   // Overwrites: G1,G2,G3
   747   //
   748   address generate_atomic_cmpxchg_long() {
   749     StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long");
   750     address start = __ pc();
   752     if (!VM_Version::supports_cx8())
   753         return NULL;;
   754     __ sllx(O0, 32, O0);
   755     __ srl(O1, 0, O1);
   756     __ or3(O0,O1,O0);      // O0 holds 64-bit value from compare_value
   757     __ sllx(O3, 32, O3);
   758     __ srl(O4, 0, O4);
   759     __ or3(O3,O4,O3);     // O3 holds 64-bit value from exchange_value
   760     __ casx(O2, O3, O0);
   761     __ srl(O0, 0, O1);    // unpacked return value in O1:O0
   762     __ retl(false);
   763     __ delayed()->srlx(O0, 32, O0);
   765     return start;
   766   }
   769   // Support for jint Atomic::add(jint add_value, volatile jint* dest).
   770   //
   771   // Arguments :
   772   //
   773   //      add_value: O0   (e.g., +1 or -1)
   774   //      dest:      O1
   775   //
   776   // Results:
   777   //
   778   //     O0: the new value stored in dest
   779   //
   780   // Overwrites (v9): O3
   781   // Overwrites (v8): O3,O4,O5
   782   //
   783   address generate_atomic_add() {
   784     StubCodeMark mark(this, "StubRoutines", "atomic_add");
   785     address start = __ pc();
   786     __ BIND(_atomic_add_stub);
   788     if (VM_Version::v9_instructions_work()) {
   789       Label(retry);
   790       __ BIND(retry);
   792       __ lduw(O1, 0, O2);
   793       __ add(O0,   O2, O3);
   794       __ cas(O1,   O2, O3);
   795       __ cmp(      O2, O3);
   796       __ br(Assembler::notEqual, false, Assembler::pn, retry);
   797       __ delayed()->nop();
   798       __ retl(false);
   799       __ delayed()->add(O0, O2, O0); // note that cas made O2==O3
   800     } else {
   801       const Register& lock_reg = O2;
   802       const Register& lock_ptr_reg = O3;
   803       const Register& value_reg = O4;
   804       const Register& yield_reg = O5;
   806       Label(retry);
   807       Label(dontyield);
   809       generate_v8_lock_prologue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
   810       // got lock, do the increment
   811       __ ld(O1, 0, value_reg);
   812       __ add(O0, value_reg, value_reg);
   813       __ st(value_reg, O1, 0);
   815       // %%% only for RMO and PSO
   816       __ membar(Assembler::StoreStore);
   818       generate_v8_lock_epilogue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
   820       __ retl(false);
   821       __ delayed()->mov(value_reg, O0);
   822     }
   824     return start;
   825   }
   826   Label _atomic_add_stub;  // called from other stubs
   829   //------------------------------------------------------------------------------------------------------------------------
   830   // The following routine generates a subroutine to throw an asynchronous
   831   // UnknownError when an unsafe access gets a fault that could not be
   832   // reasonably prevented by the programmer.  (Example: SIGBUS/OBJERR.)
   833   //
   834   // Arguments :
   835   //
   836   //      trapping PC:    O7
   837   //
   838   // Results:
   839   //     posts an asynchronous exception, skips the trapping instruction
   840   //
   842   address generate_handler_for_unsafe_access() {
   843     StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
   844     address start = __ pc();
   846     const int preserve_register_words = (64 * 2);
   847     Address preserve_addr(FP, (-preserve_register_words * wordSize) + STACK_BIAS);
   849     Register Lthread = L7_thread_cache;
   850     int i;
   852     __ save_frame(0);
   853     __ mov(G1, L1);
   854     __ mov(G2, L2);
   855     __ mov(G3, L3);
   856     __ mov(G4, L4);
   857     __ mov(G5, L5);
   858     for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
   859       __ stf(FloatRegisterImpl::D, as_FloatRegister(i), preserve_addr, i * wordSize);
   860     }
   862     address entry_point = CAST_FROM_FN_PTR(address, handle_unsafe_access);
   863     BLOCK_COMMENT("call handle_unsafe_access");
   864     __ call(entry_point, relocInfo::runtime_call_type);
   865     __ delayed()->nop();
   867     __ mov(L1, G1);
   868     __ mov(L2, G2);
   869     __ mov(L3, G3);
   870     __ mov(L4, G4);
   871     __ mov(L5, G5);
   872     for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
   873       __ ldf(FloatRegisterImpl::D, preserve_addr, as_FloatRegister(i), i * wordSize);
   874     }
   876     __ verify_thread();
   878     __ jmp(O0, 0);
   879     __ delayed()->restore();
   881     return start;
   882   }
   885   // Support for uint StubRoutine::Sparc::partial_subtype_check( Klass sub, Klass super );
   886   // Arguments :
   887   //
   888   //      ret  : O0, returned
   889   //      icc/xcc: set as O0 (depending on wordSize)
   890   //      sub  : O1, argument, not changed
   891   //      super: O2, argument, not changed
   892   //      raddr: O7, blown by call
   893   address generate_partial_subtype_check() {
   894     __ align(CodeEntryAlignment);
   895     StubCodeMark mark(this, "StubRoutines", "partial_subtype_check");
   896     address start = __ pc();
   897     Label miss;
   899 #if defined(COMPILER2) && !defined(_LP64)
   900     // Do not use a 'save' because it blows the 64-bit O registers.
   901     __ add(SP,-4*wordSize,SP);  // Make space for 4 temps (stack must be 2 words aligned)
   902     __ st_ptr(L0,SP,(frame::register_save_words+0)*wordSize);
   903     __ st_ptr(L1,SP,(frame::register_save_words+1)*wordSize);
   904     __ st_ptr(L2,SP,(frame::register_save_words+2)*wordSize);
   905     __ st_ptr(L3,SP,(frame::register_save_words+3)*wordSize);
   906     Register Rret   = O0;
   907     Register Rsub   = O1;
   908     Register Rsuper = O2;
   909 #else
   910     __ save_frame(0);
   911     Register Rret   = I0;
   912     Register Rsub   = I1;
   913     Register Rsuper = I2;
   914 #endif
   916     Register L0_ary_len = L0;
   917     Register L1_ary_ptr = L1;
   918     Register L2_super   = L2;
   919     Register L3_index   = L3;
   921     __ check_klass_subtype_slow_path(Rsub, Rsuper,
   922                                      L0, L1, L2, L3,
   923                                      NULL, &miss);
   925     // Match falls through here.
   926     __ addcc(G0,0,Rret);        // set Z flags, Z result
   928 #if defined(COMPILER2) && !defined(_LP64)
   929     __ ld_ptr(SP,(frame::register_save_words+0)*wordSize,L0);
   930     __ ld_ptr(SP,(frame::register_save_words+1)*wordSize,L1);
   931     __ ld_ptr(SP,(frame::register_save_words+2)*wordSize,L2);
   932     __ ld_ptr(SP,(frame::register_save_words+3)*wordSize,L3);
   933     __ retl();                  // Result in Rret is zero; flags set to Z
   934     __ delayed()->add(SP,4*wordSize,SP);
   935 #else
   936     __ ret();                   // Result in Rret is zero; flags set to Z
   937     __ delayed()->restore();
   938 #endif
   940     __ BIND(miss);
   941     __ addcc(G0,1,Rret);        // set NZ flags, NZ result
   943 #if defined(COMPILER2) && !defined(_LP64)
   944     __ ld_ptr(SP,(frame::register_save_words+0)*wordSize,L0);
   945     __ ld_ptr(SP,(frame::register_save_words+1)*wordSize,L1);
   946     __ ld_ptr(SP,(frame::register_save_words+2)*wordSize,L2);
   947     __ ld_ptr(SP,(frame::register_save_words+3)*wordSize,L3);
   948     __ retl();                  // Result in Rret is != 0; flags set to NZ
   949     __ delayed()->add(SP,4*wordSize,SP);
   950 #else
   951     __ ret();                   // Result in Rret is != 0; flags set to NZ
   952     __ delayed()->restore();
   953 #endif
   955     return start;
   956   }
   959   // Called from MacroAssembler::verify_oop
   960   //
   961   address generate_verify_oop_subroutine() {
   962     StubCodeMark mark(this, "StubRoutines", "verify_oop_stub");
   964     address start = __ pc();
   966     __ verify_oop_subroutine();
   968     return start;
   969   }
   971   static address disjoint_byte_copy_entry;
   972   static address disjoint_short_copy_entry;
   973   static address disjoint_int_copy_entry;
   974   static address disjoint_long_copy_entry;
   975   static address disjoint_oop_copy_entry;
   977   static address byte_copy_entry;
   978   static address short_copy_entry;
   979   static address int_copy_entry;
   980   static address long_copy_entry;
   981   static address oop_copy_entry;
   983   static address checkcast_copy_entry;
   985   //
   986   // Verify that a register contains clean 32-bits positive value
   987   // (high 32-bits are 0) so it could be used in 64-bits shifts (sllx, srax).
   988   //
   989   //  Input:
   990   //    Rint  -  32-bits value
   991   //    Rtmp  -  scratch
   992   //
   993   void assert_clean_int(Register Rint, Register Rtmp) {
   994 #if defined(ASSERT) && defined(_LP64)
   995     __ signx(Rint, Rtmp);
   996     __ cmp(Rint, Rtmp);
   997     __ breakpoint_trap(Assembler::notEqual, Assembler::xcc);
   998 #endif
   999   }
  1001   //
  1002   //  Generate overlap test for array copy stubs
  1003   //
  1004   //  Input:
  1005   //    O0    -  array1
  1006   //    O1    -  array2
  1007   //    O2    -  element count
  1008   //
  1009   //  Kills temps:  O3, O4
  1010   //
  1011   void array_overlap_test(address no_overlap_target, int log2_elem_size) {
  1012     assert(no_overlap_target != NULL, "must be generated");
  1013     array_overlap_test(no_overlap_target, NULL, log2_elem_size);
  1015   void array_overlap_test(Label& L_no_overlap, int log2_elem_size) {
  1016     array_overlap_test(NULL, &L_no_overlap, log2_elem_size);
  1018   void array_overlap_test(address no_overlap_target, Label* NOLp, int log2_elem_size) {
  1019     const Register from       = O0;
  1020     const Register to         = O1;
  1021     const Register count      = O2;
  1022     const Register to_from    = O3; // to - from
  1023     const Register byte_count = O4; // count << log2_elem_size
  1025       __ subcc(to, from, to_from);
  1026       __ sll_ptr(count, log2_elem_size, byte_count);
  1027       if (NOLp == NULL)
  1028         __ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, no_overlap_target);
  1029       else
  1030         __ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, (*NOLp));
  1031       __ delayed()->cmp(to_from, byte_count);
  1032       if (NOLp == NULL)
  1033         __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, no_overlap_target);
  1034       else
  1035         __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, (*NOLp));
  1036       __ delayed()->nop();
  1039   //
  1040   //  Generate pre-write barrier for array.
  1041   //
  1042   //  Input:
  1043   //     addr     - register containing starting address
  1044   //     count    - register containing element count
  1045   //     tmp      - scratch register
  1046   //
  1047   //  The input registers are overwritten.
  1048   //
  1049   void gen_write_ref_array_pre_barrier(Register addr, Register count) {
  1050     BarrierSet* bs = Universe::heap()->barrier_set();
  1051     if (bs->has_write_ref_pre_barrier()) {
  1052       assert(bs->has_write_ref_array_pre_opt(),
  1053              "Else unsupported barrier set.");
  1055       __ save_frame(0);
  1056       // Save the necessary global regs... will be used after.
  1057       if (addr->is_global()) {
  1058         __ mov(addr, L0);
  1060       if (count->is_global()) {
  1061         __ mov(count, L1);
  1063       __ mov(addr->after_save(), O0);
  1064       // Get the count into O1
  1065       __ call(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre));
  1066       __ delayed()->mov(count->after_save(), O1);
  1067       if (addr->is_global()) {
  1068         __ mov(L0, addr);
  1070       if (count->is_global()) {
  1071         __ mov(L1, count);
  1073       __ restore();
  1076   //
  1077   //  Generate post-write barrier for array.
  1078   //
  1079   //  Input:
  1080   //     addr     - register containing starting address
  1081   //     count    - register containing element count
  1082   //     tmp      - scratch register
  1083   //
  1084   //  The input registers are overwritten.
  1085   //
  1086   void gen_write_ref_array_post_barrier(Register addr, Register count,
  1087                                    Register tmp) {
  1088     BarrierSet* bs = Universe::heap()->barrier_set();
  1090     switch (bs->kind()) {
  1091       case BarrierSet::G1SATBCT:
  1092       case BarrierSet::G1SATBCTLogging:
  1094           // Get some new fresh output registers.
  1095           __ save_frame(0);
  1096           __ mov(addr->after_save(), O0);
  1097           __ call(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post));
  1098           __ delayed()->mov(count->after_save(), O1);
  1099           __ restore();
  1101         break;
  1102       case BarrierSet::CardTableModRef:
  1103       case BarrierSet::CardTableExtension:
  1105           CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  1106           assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  1107           assert_different_registers(addr, count, tmp);
  1109           Label L_loop;
  1111           __ sll_ptr(count, LogBytesPerHeapOop, count);
  1112           __ sub(count, BytesPerHeapOop, count);
  1113           __ add(count, addr, count);
  1114           // Use two shifts to clear out those low order two bits! (Cannot opt. into 1.)
  1115           __ srl_ptr(addr, CardTableModRefBS::card_shift, addr);
  1116           __ srl_ptr(count, CardTableModRefBS::card_shift, count);
  1117           __ sub(count, addr, count);
  1118           AddressLiteral rs(ct->byte_map_base);
  1119           __ set(rs, tmp);
  1120         __ BIND(L_loop);
  1121           __ stb(G0, tmp, addr);
  1122           __ subcc(count, 1, count);
  1123           __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
  1124           __ delayed()->add(addr, 1, addr);
  1126         break;
  1127       case BarrierSet::ModRef:
  1128         break;
  1129       default:
  1130         ShouldNotReachHere();
  1135   // Copy big chunks forward with shift
  1136   //
  1137   // Inputs:
  1138   //   from      - source arrays
  1139   //   to        - destination array aligned to 8-bytes
  1140   //   count     - elements count to copy >= the count equivalent to 16 bytes
  1141   //   count_dec - elements count's decrement equivalent to 16 bytes
  1142   //   L_copy_bytes - copy exit label
  1143   //
  1144   void copy_16_bytes_forward_with_shift(Register from, Register to,
  1145                      Register count, int count_dec, Label& L_copy_bytes) {
  1146     Label L_loop, L_aligned_copy, L_copy_last_bytes;
  1148     // if both arrays have the same alignment mod 8, do 8 bytes aligned copy
  1149       __ andcc(from, 7, G1); // misaligned bytes
  1150       __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
  1151       __ delayed()->nop();
  1153     const Register left_shift  = G1; // left  shift bit counter
  1154     const Register right_shift = G5; // right shift bit counter
  1156       __ sll(G1, LogBitsPerByte, left_shift);
  1157       __ mov(64, right_shift);
  1158       __ sub(right_shift, left_shift, right_shift);
  1160     //
  1161     // Load 2 aligned 8-bytes chunks and use one from previous iteration
  1162     // to form 2 aligned 8-bytes chunks to store.
  1163     //
  1164       __ deccc(count, count_dec); // Pre-decrement 'count'
  1165       __ andn(from, 7, from);     // Align address
  1166       __ ldx(from, 0, O3);
  1167       __ inc(from, 8);
  1168       __ align(OptoLoopAlignment);
  1169     __ BIND(L_loop);
  1170       __ ldx(from, 0, O4);
  1171       __ deccc(count, count_dec); // Can we do next iteration after this one?
  1172       __ ldx(from, 8, G4);
  1173       __ inc(to, 16);
  1174       __ inc(from, 16);
  1175       __ sllx(O3, left_shift,  O3);
  1176       __ srlx(O4, right_shift, G3);
  1177       __ bset(G3, O3);
  1178       __ stx(O3, to, -16);
  1179       __ sllx(O4, left_shift,  O4);
  1180       __ srlx(G4, right_shift, G3);
  1181       __ bset(G3, O4);
  1182       __ stx(O4, to, -8);
  1183       __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
  1184       __ delayed()->mov(G4, O3);
  1186       __ inccc(count, count_dec>>1 ); // + 8 bytes
  1187       __ brx(Assembler::negative, true, Assembler::pn, L_copy_last_bytes);
  1188       __ delayed()->inc(count, count_dec>>1); // restore 'count'
  1190       // copy 8 bytes, part of them already loaded in O3
  1191       __ ldx(from, 0, O4);
  1192       __ inc(to, 8);
  1193       __ inc(from, 8);
  1194       __ sllx(O3, left_shift,  O3);
  1195       __ srlx(O4, right_shift, G3);
  1196       __ bset(O3, G3);
  1197       __ stx(G3, to, -8);
  1199     __ BIND(L_copy_last_bytes);
  1200       __ srl(right_shift, LogBitsPerByte, right_shift); // misaligned bytes
  1201       __ br(Assembler::always, false, Assembler::pt, L_copy_bytes);
  1202       __ delayed()->sub(from, right_shift, from);       // restore address
  1204     __ BIND(L_aligned_copy);
  1207   // Copy big chunks backward with shift
  1208   //
  1209   // Inputs:
  1210   //   end_from  - source arrays end address
  1211   //   end_to    - destination array end address aligned to 8-bytes
  1212   //   count     - elements count to copy >= the count equivalent to 16 bytes
  1213   //   count_dec - elements count's decrement equivalent to 16 bytes
  1214   //   L_aligned_copy - aligned copy exit label
  1215   //   L_copy_bytes   - copy exit label
  1216   //
  1217   void copy_16_bytes_backward_with_shift(Register end_from, Register end_to,
  1218                      Register count, int count_dec,
  1219                      Label& L_aligned_copy, Label& L_copy_bytes) {
  1220     Label L_loop, L_copy_last_bytes;
  1222     // if both arrays have the same alignment mod 8, do 8 bytes aligned copy
  1223       __ andcc(end_from, 7, G1); // misaligned bytes
  1224       __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
  1225       __ delayed()->deccc(count, count_dec); // Pre-decrement 'count'
  1227     const Register left_shift  = G1; // left  shift bit counter
  1228     const Register right_shift = G5; // right shift bit counter
  1230       __ sll(G1, LogBitsPerByte, left_shift);
  1231       __ mov(64, right_shift);
  1232       __ sub(right_shift, left_shift, right_shift);
  1234     //
  1235     // Load 2 aligned 8-bytes chunks and use one from previous iteration
  1236     // to form 2 aligned 8-bytes chunks to store.
  1237     //
  1238       __ andn(end_from, 7, end_from);     // Align address
  1239       __ ldx(end_from, 0, O3);
  1240       __ align(OptoLoopAlignment);
  1241     __ BIND(L_loop);
  1242       __ ldx(end_from, -8, O4);
  1243       __ deccc(count, count_dec); // Can we do next iteration after this one?
  1244       __ ldx(end_from, -16, G4);
  1245       __ dec(end_to, 16);
  1246       __ dec(end_from, 16);
  1247       __ srlx(O3, right_shift, O3);
  1248       __ sllx(O4, left_shift,  G3);
  1249       __ bset(G3, O3);
  1250       __ stx(O3, end_to, 8);
  1251       __ srlx(O4, right_shift, O4);
  1252       __ sllx(G4, left_shift,  G3);
  1253       __ bset(G3, O4);
  1254       __ stx(O4, end_to, 0);
  1255       __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
  1256       __ delayed()->mov(G4, O3);
  1258       __ inccc(count, count_dec>>1 ); // + 8 bytes
  1259       __ brx(Assembler::negative, true, Assembler::pn, L_copy_last_bytes);
  1260       __ delayed()->inc(count, count_dec>>1); // restore 'count'
  1262       // copy 8 bytes, part of them already loaded in O3
  1263       __ ldx(end_from, -8, O4);
  1264       __ dec(end_to, 8);
  1265       __ dec(end_from, 8);
  1266       __ srlx(O3, right_shift, O3);
  1267       __ sllx(O4, left_shift,  G3);
  1268       __ bset(O3, G3);
  1269       __ stx(G3, end_to, 0);
  1271     __ BIND(L_copy_last_bytes);
  1272       __ srl(left_shift, LogBitsPerByte, left_shift);    // misaligned bytes
  1273       __ br(Assembler::always, false, Assembler::pt, L_copy_bytes);
  1274       __ delayed()->add(end_from, left_shift, end_from); // restore address
  1277   //
  1278   //  Generate stub for disjoint byte copy.  If "aligned" is true, the
  1279   //  "from" and "to" addresses are assumed to be heapword aligned.
  1280   //
  1281   // Arguments for generated stub:
  1282   //      from:  O0
  1283   //      to:    O1
  1284   //      count: O2 treated as signed
  1285   //
  1286   address generate_disjoint_byte_copy(bool aligned, const char * name) {
  1287     __ align(CodeEntryAlignment);
  1288     StubCodeMark mark(this, "StubRoutines", name);
  1289     address start = __ pc();
  1291     Label L_skip_alignment, L_align;
  1292     Label L_copy_byte, L_copy_byte_loop, L_exit;
  1294     const Register from      = O0;   // source array address
  1295     const Register to        = O1;   // destination array address
  1296     const Register count     = O2;   // elements count
  1297     const Register offset    = O5;   // offset from start of arrays
  1298     // O3, O4, G3, G4 are used as temp registers
  1300     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
  1302     if (!aligned)  disjoint_byte_copy_entry = __ pc();
  1303     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1304     if (!aligned)  BLOCK_COMMENT("Entry:");
  1306     // for short arrays, just do single element copy
  1307     __ cmp(count, 23); // 16 + 7
  1308     __ brx(Assembler::less, false, Assembler::pn, L_copy_byte);
  1309     __ delayed()->mov(G0, offset);
  1311     if (aligned) {
  1312       // 'aligned' == true when it is known statically during compilation
  1313       // of this arraycopy call site that both 'from' and 'to' addresses
  1314       // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
  1315       //
  1316       // Aligned arrays have 4 bytes alignment in 32-bits VM
  1317       // and 8 bytes - in 64-bits VM. So we do it only for 32-bits VM
  1318       //
  1319 #ifndef _LP64
  1320       // copy a 4-bytes word if necessary to align 'to' to 8 bytes
  1321       __ andcc(to, 7, G0);
  1322       __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment);
  1323       __ delayed()->ld(from, 0, O3);
  1324       __ inc(from, 4);
  1325       __ inc(to, 4);
  1326       __ dec(count, 4);
  1327       __ st(O3, to, -4);
  1328     __ BIND(L_skip_alignment);
  1329 #endif
  1330     } else {
  1331       // copy bytes to align 'to' on 8 byte boundary
  1332       __ andcc(to, 7, G1); // misaligned bytes
  1333       __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
  1334       __ delayed()->neg(G1);
  1335       __ inc(G1, 8);       // bytes need to copy to next 8-bytes alignment
  1336       __ sub(count, G1, count);
  1337     __ BIND(L_align);
  1338       __ ldub(from, 0, O3);
  1339       __ deccc(G1);
  1340       __ inc(from);
  1341       __ stb(O3, to, 0);
  1342       __ br(Assembler::notZero, false, Assembler::pt, L_align);
  1343       __ delayed()->inc(to);
  1344     __ BIND(L_skip_alignment);
  1346 #ifdef _LP64
  1347     if (!aligned)
  1348 #endif
  1350       // Copy with shift 16 bytes per iteration if arrays do not have
  1351       // the same alignment mod 8, otherwise fall through to the next
  1352       // code for aligned copy.
  1353       // The compare above (count >= 23) guarantes 'count' >= 16 bytes.
  1354       // Also jump over aligned copy after the copy with shift completed.
  1356       copy_16_bytes_forward_with_shift(from, to, count, 16, L_copy_byte);
  1359     // Both array are 8 bytes aligned, copy 16 bytes at a time
  1360       __ and3(count, 7, G4); // Save count
  1361       __ srl(count, 3, count);
  1362      generate_disjoint_long_copy_core(aligned);
  1363       __ mov(G4, count);     // Restore count
  1365     // copy tailing bytes
  1366     __ BIND(L_copy_byte);
  1367       __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
  1368       __ delayed()->nop();
  1369       __ align(OptoLoopAlignment);
  1370     __ BIND(L_copy_byte_loop);
  1371       __ ldub(from, offset, O3);
  1372       __ deccc(count);
  1373       __ stb(O3, to, offset);
  1374       __ brx(Assembler::notZero, false, Assembler::pt, L_copy_byte_loop);
  1375       __ delayed()->inc(offset);
  1377     __ BIND(L_exit);
  1378       // O3, O4 are used as temp registers
  1379       inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr, O3, O4);
  1380       __ retl();
  1381       __ delayed()->mov(G0, O0); // return 0
  1382     return start;
  1385   //
  1386   //  Generate stub for conjoint byte copy.  If "aligned" is true, the
  1387   //  "from" and "to" addresses are assumed to be heapword aligned.
  1388   //
  1389   // Arguments for generated stub:
  1390   //      from:  O0
  1391   //      to:    O1
  1392   //      count: O2 treated as signed
  1393   //
  1394   address generate_conjoint_byte_copy(bool aligned, const char * name) {
  1395     // Do reverse copy.
  1397     __ align(CodeEntryAlignment);
  1398     StubCodeMark mark(this, "StubRoutines", name);
  1399     address start = __ pc();
  1400     address nooverlap_target = aligned ?
  1401         StubRoutines::arrayof_jbyte_disjoint_arraycopy() :
  1402         disjoint_byte_copy_entry;
  1404     Label L_skip_alignment, L_align, L_aligned_copy;
  1405     Label L_copy_byte, L_copy_byte_loop, L_exit;
  1407     const Register from      = O0;   // source array address
  1408     const Register to        = O1;   // destination array address
  1409     const Register count     = O2;   // elements count
  1410     const Register end_from  = from; // source array end address
  1411     const Register end_to    = to;   // destination array end address
  1413     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
  1415     if (!aligned)  byte_copy_entry = __ pc();
  1416     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1417     if (!aligned)  BLOCK_COMMENT("Entry:");
  1419     array_overlap_test(nooverlap_target, 0);
  1421     __ add(to, count, end_to);       // offset after last copied element
  1423     // for short arrays, just do single element copy
  1424     __ cmp(count, 23); // 16 + 7
  1425     __ brx(Assembler::less, false, Assembler::pn, L_copy_byte);
  1426     __ delayed()->add(from, count, end_from);
  1429       // Align end of arrays since they could be not aligned even
  1430       // when arrays itself are aligned.
  1432       // copy bytes to align 'end_to' on 8 byte boundary
  1433       __ andcc(end_to, 7, G1); // misaligned bytes
  1434       __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
  1435       __ delayed()->nop();
  1436       __ sub(count, G1, count);
  1437     __ BIND(L_align);
  1438       __ dec(end_from);
  1439       __ dec(end_to);
  1440       __ ldub(end_from, 0, O3);
  1441       __ deccc(G1);
  1442       __ brx(Assembler::notZero, false, Assembler::pt, L_align);
  1443       __ delayed()->stb(O3, end_to, 0);
  1444     __ BIND(L_skip_alignment);
  1446 #ifdef _LP64
  1447     if (aligned) {
  1448       // Both arrays are aligned to 8-bytes in 64-bits VM.
  1449       // The 'count' is decremented in copy_16_bytes_backward_with_shift()
  1450       // in unaligned case.
  1451       __ dec(count, 16);
  1452     } else
  1453 #endif
  1455       // Copy with shift 16 bytes per iteration if arrays do not have
  1456       // the same alignment mod 8, otherwise jump to the next
  1457       // code for aligned copy (and substracting 16 from 'count' before jump).
  1458       // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
  1459       // Also jump over aligned copy after the copy with shift completed.
  1461       copy_16_bytes_backward_with_shift(end_from, end_to, count, 16,
  1462                                         L_aligned_copy, L_copy_byte);
  1464     // copy 4 elements (16 bytes) at a time
  1465       __ align(OptoLoopAlignment);
  1466     __ BIND(L_aligned_copy);
  1467       __ dec(end_from, 16);
  1468       __ ldx(end_from, 8, O3);
  1469       __ ldx(end_from, 0, O4);
  1470       __ dec(end_to, 16);
  1471       __ deccc(count, 16);
  1472       __ stx(O3, end_to, 8);
  1473       __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
  1474       __ delayed()->stx(O4, end_to, 0);
  1475       __ inc(count, 16);
  1477     // copy 1 element (2 bytes) at a time
  1478     __ BIND(L_copy_byte);
  1479       __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
  1480       __ delayed()->nop();
  1481       __ align(OptoLoopAlignment);
  1482     __ BIND(L_copy_byte_loop);
  1483       __ dec(end_from);
  1484       __ dec(end_to);
  1485       __ ldub(end_from, 0, O4);
  1486       __ deccc(count);
  1487       __ brx(Assembler::greater, false, Assembler::pt, L_copy_byte_loop);
  1488       __ delayed()->stb(O4, end_to, 0);
  1490     __ BIND(L_exit);
  1491     // O3, O4 are used as temp registers
  1492     inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr, O3, O4);
  1493     __ retl();
  1494     __ delayed()->mov(G0, O0); // return 0
  1495     return start;
  1498   //
  1499   //  Generate stub for disjoint short copy.  If "aligned" is true, the
  1500   //  "from" and "to" addresses are assumed to be heapword aligned.
  1501   //
  1502   // Arguments for generated stub:
  1503   //      from:  O0
  1504   //      to:    O1
  1505   //      count: O2 treated as signed
  1506   //
  1507   address generate_disjoint_short_copy(bool aligned, const char * name) {
  1508     __ align(CodeEntryAlignment);
  1509     StubCodeMark mark(this, "StubRoutines", name);
  1510     address start = __ pc();
  1512     Label L_skip_alignment, L_skip_alignment2;
  1513     Label L_copy_2_bytes, L_copy_2_bytes_loop, L_exit;
  1515     const Register from      = O0;   // source array address
  1516     const Register to        = O1;   // destination array address
  1517     const Register count     = O2;   // elements count
  1518     const Register offset    = O5;   // offset from start of arrays
  1519     // O3, O4, G3, G4 are used as temp registers
  1521     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
  1523     if (!aligned)  disjoint_short_copy_entry = __ pc();
  1524     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1525     if (!aligned)  BLOCK_COMMENT("Entry:");
  1527     // for short arrays, just do single element copy
  1528     __ cmp(count, 11); // 8 + 3  (22 bytes)
  1529     __ brx(Assembler::less, false, Assembler::pn, L_copy_2_bytes);
  1530     __ delayed()->mov(G0, offset);
  1532     if (aligned) {
  1533       // 'aligned' == true when it is known statically during compilation
  1534       // of this arraycopy call site that both 'from' and 'to' addresses
  1535       // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
  1536       //
  1537       // Aligned arrays have 4 bytes alignment in 32-bits VM
  1538       // and 8 bytes - in 64-bits VM.
  1539       //
  1540 #ifndef _LP64
  1541       // copy a 2-elements word if necessary to align 'to' to 8 bytes
  1542       __ andcc(to, 7, G0);
  1543       __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
  1544       __ delayed()->ld(from, 0, O3);
  1545       __ inc(from, 4);
  1546       __ inc(to, 4);
  1547       __ dec(count, 2);
  1548       __ st(O3, to, -4);
  1549     __ BIND(L_skip_alignment);
  1550 #endif
  1551     } else {
  1552       // copy 1 element if necessary to align 'to' on an 4 bytes
  1553       __ andcc(to, 3, G0);
  1554       __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
  1555       __ delayed()->lduh(from, 0, O3);
  1556       __ inc(from, 2);
  1557       __ inc(to, 2);
  1558       __ dec(count);
  1559       __ sth(O3, to, -2);
  1560     __ BIND(L_skip_alignment);
  1562       // copy 2 elements to align 'to' on an 8 byte boundary
  1563       __ andcc(to, 7, G0);
  1564       __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment2);
  1565       __ delayed()->lduh(from, 0, O3);
  1566       __ dec(count, 2);
  1567       __ lduh(from, 2, O4);
  1568       __ inc(from, 4);
  1569       __ inc(to, 4);
  1570       __ sth(O3, to, -4);
  1571       __ sth(O4, to, -2);
  1572     __ BIND(L_skip_alignment2);
  1574 #ifdef _LP64
  1575     if (!aligned)
  1576 #endif
  1578       // Copy with shift 16 bytes per iteration if arrays do not have
  1579       // the same alignment mod 8, otherwise fall through to the next
  1580       // code for aligned copy.
  1581       // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
  1582       // Also jump over aligned copy after the copy with shift completed.
  1584       copy_16_bytes_forward_with_shift(from, to, count, 8, L_copy_2_bytes);
  1587     // Both array are 8 bytes aligned, copy 16 bytes at a time
  1588       __ and3(count, 3, G4); // Save
  1589       __ srl(count, 2, count);
  1590      generate_disjoint_long_copy_core(aligned);
  1591       __ mov(G4, count); // restore
  1593     // copy 1 element at a time
  1594     __ BIND(L_copy_2_bytes);
  1595       __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
  1596       __ delayed()->nop();
  1597       __ align(OptoLoopAlignment);
  1598     __ BIND(L_copy_2_bytes_loop);
  1599       __ lduh(from, offset, O3);
  1600       __ deccc(count);
  1601       __ sth(O3, to, offset);
  1602       __ brx(Assembler::notZero, false, Assembler::pt, L_copy_2_bytes_loop);
  1603       __ delayed()->inc(offset, 2);
  1605     __ BIND(L_exit);
  1606       // O3, O4 are used as temp registers
  1607       inc_counter_np(SharedRuntime::_jshort_array_copy_ctr, O3, O4);
  1608       __ retl();
  1609       __ delayed()->mov(G0, O0); // return 0
  1610     return start;
  1613   //
  1614   //  Generate stub for disjoint short fill.  If "aligned" is true, the
  1615   //  "to" address is assumed to be heapword aligned.
  1616   //
  1617   // Arguments for generated stub:
  1618   //      to:    O0
  1619   //      value: O1
  1620   //      count: O2 treated as signed
  1621   //
  1622   address generate_fill(BasicType t, bool aligned, const char* name) {
  1623     __ align(CodeEntryAlignment);
  1624     StubCodeMark mark(this, "StubRoutines", name);
  1625     address start = __ pc();
  1627     const Register to        = O0;   // source array address
  1628     const Register value     = O1;   // fill value
  1629     const Register count     = O2;   // elements count
  1630     // O3 is used as a temp register
  1632     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
  1634     Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
  1635     Label L_fill_2_bytes, L_fill_elements, L_fill_32_bytes;
  1637     int shift = -1;
  1638     switch (t) {
  1639        case T_BYTE:
  1640         shift = 2;
  1641         break;
  1642        case T_SHORT:
  1643         shift = 1;
  1644         break;
  1645       case T_INT:
  1646          shift = 0;
  1647         break;
  1648       default: ShouldNotReachHere();
  1651     BLOCK_COMMENT("Entry:");
  1653     if (t == T_BYTE) {
  1654       // Zero extend value
  1655       __ and3(value, 0xff, value);
  1656       __ sllx(value, 8, O3);
  1657       __ or3(value, O3, value);
  1659     if (t == T_SHORT) {
  1660       // Zero extend value
  1661       __ sllx(value, 48, value);
  1662       __ srlx(value, 48, value);
  1664     if (t == T_BYTE || t == T_SHORT) {
  1665       __ sllx(value, 16, O3);
  1666       __ or3(value, O3, value);
  1669     __ cmp(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
  1670     __ brx(Assembler::lessUnsigned, false, Assembler::pn, L_fill_elements); // use unsigned cmp
  1671     __ delayed()->andcc(count, 1, G0);
  1673     if (!aligned && (t == T_BYTE || t == T_SHORT)) {
  1674       // align source address at 4 bytes address boundary
  1675       if (t == T_BYTE) {
  1676         // One byte misalignment happens only for byte arrays
  1677         __ andcc(to, 1, G0);
  1678         __ br(Assembler::zero, false, Assembler::pt, L_skip_align1);
  1679         __ delayed()->nop();
  1680         __ stb(value, to, 0);
  1681         __ inc(to, 1);
  1682         __ dec(count, 1);
  1683         __ BIND(L_skip_align1);
  1685       // Two bytes misalignment happens only for byte and short (char) arrays
  1686       __ andcc(to, 2, G0);
  1687       __ br(Assembler::zero, false, Assembler::pt, L_skip_align2);
  1688       __ delayed()->nop();
  1689       __ sth(value, to, 0);
  1690       __ inc(to, 2);
  1691       __ dec(count, 1 << (shift - 1));
  1692       __ BIND(L_skip_align2);
  1694 #ifdef _LP64
  1695     if (!aligned) {
  1696 #endif
  1697     // align to 8 bytes, we know we are 4 byte aligned to start
  1698     __ andcc(to, 7, G0);
  1699     __ br(Assembler::zero, false, Assembler::pt, L_fill_32_bytes);
  1700     __ delayed()->nop();
  1701     __ stw(value, to, 0);
  1702     __ inc(to, 4);
  1703     __ dec(count, 1 << shift);
  1704     __ BIND(L_fill_32_bytes);
  1705 #ifdef _LP64
  1707 #endif
  1709     if (t == T_INT) {
  1710       // Zero extend value
  1711       __ srl(value, 0, value);
  1713     if (t == T_BYTE || t == T_SHORT || t == T_INT) {
  1714       __ sllx(value, 32, O3);
  1715       __ or3(value, O3, value);
  1718     Label L_check_fill_8_bytes;
  1719     // Fill 32-byte chunks
  1720     __ subcc(count, 8 << shift, count);
  1721     __ brx(Assembler::less, false, Assembler::pt, L_check_fill_8_bytes);
  1722     __ delayed()->nop();
  1724     Label L_fill_32_bytes_loop, L_fill_4_bytes;
  1725     __ align(16);
  1726     __ BIND(L_fill_32_bytes_loop);
  1728     __ stx(value, to, 0);
  1729     __ stx(value, to, 8);
  1730     __ stx(value, to, 16);
  1731     __ stx(value, to, 24);
  1733     __ subcc(count, 8 << shift, count);
  1734     __ brx(Assembler::greaterEqual, false, Assembler::pt, L_fill_32_bytes_loop);
  1735     __ delayed()->add(to, 32, to);
  1737     __ BIND(L_check_fill_8_bytes);
  1738     __ addcc(count, 8 << shift, count);
  1739     __ brx(Assembler::zero, false, Assembler::pn, L_exit);
  1740     __ delayed()->subcc(count, 1 << (shift + 1), count);
  1741     __ brx(Assembler::less, false, Assembler::pn, L_fill_4_bytes);
  1742     __ delayed()->andcc(count, 1<<shift, G0);
  1744     //
  1745     // length is too short, just fill 8 bytes at a time
  1746     //
  1747     Label L_fill_8_bytes_loop;
  1748     __ BIND(L_fill_8_bytes_loop);
  1749     __ stx(value, to, 0);
  1750     __ subcc(count, 1 << (shift + 1), count);
  1751     __ brx(Assembler::greaterEqual, false, Assembler::pn, L_fill_8_bytes_loop);
  1752     __ delayed()->add(to, 8, to);
  1754     // fill trailing 4 bytes
  1755     __ andcc(count, 1<<shift, G0);  // in delay slot of branches
  1756     if (t == T_INT) {
  1757       __ BIND(L_fill_elements);
  1759     __ BIND(L_fill_4_bytes);
  1760     __ brx(Assembler::zero, false, Assembler::pt, L_fill_2_bytes);
  1761     if (t == T_BYTE || t == T_SHORT) {
  1762       __ delayed()->andcc(count, 1<<(shift-1), G0);
  1763     } else {
  1764       __ delayed()->nop();
  1766     __ stw(value, to, 0);
  1767     if (t == T_BYTE || t == T_SHORT) {
  1768       __ inc(to, 4);
  1769       // fill trailing 2 bytes
  1770       __ andcc(count, 1<<(shift-1), G0); // in delay slot of branches
  1771       __ BIND(L_fill_2_bytes);
  1772       __ brx(Assembler::zero, false, Assembler::pt, L_fill_byte);
  1773       __ delayed()->andcc(count, 1, count);
  1774       __ sth(value, to, 0);
  1775       if (t == T_BYTE) {
  1776         __ inc(to, 2);
  1777         // fill trailing byte
  1778         __ andcc(count, 1, count);  // in delay slot of branches
  1779         __ BIND(L_fill_byte);
  1780         __ brx(Assembler::zero, false, Assembler::pt, L_exit);
  1781         __ delayed()->nop();
  1782         __ stb(value, to, 0);
  1783       } else {
  1784         __ BIND(L_fill_byte);
  1786     } else {
  1787       __ BIND(L_fill_2_bytes);
  1789     __ BIND(L_exit);
  1790     __ retl();
  1791     __ delayed()->nop();
  1793     // Handle copies less than 8 bytes.  Int is handled elsewhere.
  1794     if (t == T_BYTE) {
  1795       __ BIND(L_fill_elements);
  1796       Label L_fill_2, L_fill_4;
  1797       // in delay slot __ andcc(count, 1, G0);
  1798       __ brx(Assembler::zero, false, Assembler::pt, L_fill_2);
  1799       __ delayed()->andcc(count, 2, G0);
  1800       __ stb(value, to, 0);
  1801       __ inc(to, 1);
  1802       __ BIND(L_fill_2);
  1803       __ brx(Assembler::zero, false, Assembler::pt, L_fill_4);
  1804       __ delayed()->andcc(count, 4, G0);
  1805       __ stb(value, to, 0);
  1806       __ stb(value, to, 1);
  1807       __ inc(to, 2);
  1808       __ BIND(L_fill_4);
  1809       __ brx(Assembler::zero, false, Assembler::pt, L_exit);
  1810       __ delayed()->nop();
  1811       __ stb(value, to, 0);
  1812       __ stb(value, to, 1);
  1813       __ stb(value, to, 2);
  1814       __ retl();
  1815       __ delayed()->stb(value, to, 3);
  1818     if (t == T_SHORT) {
  1819       Label L_fill_2;
  1820       __ BIND(L_fill_elements);
  1821       // in delay slot __ andcc(count, 1, G0);
  1822       __ brx(Assembler::zero, false, Assembler::pt, L_fill_2);
  1823       __ delayed()->andcc(count, 2, G0);
  1824       __ sth(value, to, 0);
  1825       __ inc(to, 2);
  1826       __ BIND(L_fill_2);
  1827       __ brx(Assembler::zero, false, Assembler::pt, L_exit);
  1828       __ delayed()->nop();
  1829       __ sth(value, to, 0);
  1830       __ retl();
  1831       __ delayed()->sth(value, to, 2);
  1833     return start;
  1836   //
  1837   //  Generate stub for conjoint short copy.  If "aligned" is true, the
  1838   //  "from" and "to" addresses are assumed to be heapword aligned.
  1839   //
  1840   // Arguments for generated stub:
  1841   //      from:  O0
  1842   //      to:    O1
  1843   //      count: O2 treated as signed
  1844   //
  1845   address generate_conjoint_short_copy(bool aligned, const char * name) {
  1846     // Do reverse copy.
  1848     __ align(CodeEntryAlignment);
  1849     StubCodeMark mark(this, "StubRoutines", name);
  1850     address start = __ pc();
  1851     address nooverlap_target = aligned ?
  1852         StubRoutines::arrayof_jshort_disjoint_arraycopy() :
  1853         disjoint_short_copy_entry;
  1855     Label L_skip_alignment, L_skip_alignment2, L_aligned_copy;
  1856     Label L_copy_2_bytes, L_copy_2_bytes_loop, L_exit;
  1858     const Register from      = O0;   // source array address
  1859     const Register to        = O1;   // destination array address
  1860     const Register count     = O2;   // elements count
  1861     const Register end_from  = from; // source array end address
  1862     const Register end_to    = to;   // destination array end address
  1864     const Register byte_count = O3;  // bytes count to copy
  1866     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
  1868     if (!aligned)  short_copy_entry = __ pc();
  1869     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1870     if (!aligned)  BLOCK_COMMENT("Entry:");
  1872     array_overlap_test(nooverlap_target, 1);
  1874     __ sllx(count, LogBytesPerShort, byte_count);
  1875     __ add(to, byte_count, end_to);  // offset after last copied element
  1877     // for short arrays, just do single element copy
  1878     __ cmp(count, 11); // 8 + 3  (22 bytes)
  1879     __ brx(Assembler::less, false, Assembler::pn, L_copy_2_bytes);
  1880     __ delayed()->add(from, byte_count, end_from);
  1883       // Align end of arrays since they could be not aligned even
  1884       // when arrays itself are aligned.
  1886       // copy 1 element if necessary to align 'end_to' on an 4 bytes
  1887       __ andcc(end_to, 3, G0);
  1888       __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
  1889       __ delayed()->lduh(end_from, -2, O3);
  1890       __ dec(end_from, 2);
  1891       __ dec(end_to, 2);
  1892       __ dec(count);
  1893       __ sth(O3, end_to, 0);
  1894     __ BIND(L_skip_alignment);
  1896       // copy 2 elements to align 'end_to' on an 8 byte boundary
  1897       __ andcc(end_to, 7, G0);
  1898       __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment2);
  1899       __ delayed()->lduh(end_from, -2, O3);
  1900       __ dec(count, 2);
  1901       __ lduh(end_from, -4, O4);
  1902       __ dec(end_from, 4);
  1903       __ dec(end_to, 4);
  1904       __ sth(O3, end_to, 2);
  1905       __ sth(O4, end_to, 0);
  1906     __ BIND(L_skip_alignment2);
  1908 #ifdef _LP64
  1909     if (aligned) {
  1910       // Both arrays are aligned to 8-bytes in 64-bits VM.
  1911       // The 'count' is decremented in copy_16_bytes_backward_with_shift()
  1912       // in unaligned case.
  1913       __ dec(count, 8);
  1914     } else
  1915 #endif
  1917       // Copy with shift 16 bytes per iteration if arrays do not have
  1918       // the same alignment mod 8, otherwise jump to the next
  1919       // code for aligned copy (and substracting 8 from 'count' before jump).
  1920       // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
  1921       // Also jump over aligned copy after the copy with shift completed.
  1923       copy_16_bytes_backward_with_shift(end_from, end_to, count, 8,
  1924                                         L_aligned_copy, L_copy_2_bytes);
  1926     // copy 4 elements (16 bytes) at a time
  1927       __ align(OptoLoopAlignment);
  1928     __ BIND(L_aligned_copy);
  1929       __ dec(end_from, 16);
  1930       __ ldx(end_from, 8, O3);
  1931       __ ldx(end_from, 0, O4);
  1932       __ dec(end_to, 16);
  1933       __ deccc(count, 8);
  1934       __ stx(O3, end_to, 8);
  1935       __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
  1936       __ delayed()->stx(O4, end_to, 0);
  1937       __ inc(count, 8);
  1939     // copy 1 element (2 bytes) at a time
  1940     __ BIND(L_copy_2_bytes);
  1941       __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
  1942       __ delayed()->nop();
  1943     __ BIND(L_copy_2_bytes_loop);
  1944       __ dec(end_from, 2);
  1945       __ dec(end_to, 2);
  1946       __ lduh(end_from, 0, O4);
  1947       __ deccc(count);
  1948       __ brx(Assembler::greater, false, Assembler::pt, L_copy_2_bytes_loop);
  1949       __ delayed()->sth(O4, end_to, 0);
  1951     __ BIND(L_exit);
  1952     // O3, O4 are used as temp registers
  1953     inc_counter_np(SharedRuntime::_jshort_array_copy_ctr, O3, O4);
  1954     __ retl();
  1955     __ delayed()->mov(G0, O0); // return 0
  1956     return start;
  1959   //
  1960   //  Generate core code for disjoint int copy (and oop copy on 32-bit).
  1961   //  If "aligned" is true, the "from" and "to" addresses are assumed
  1962   //  to be heapword aligned.
  1963   //
  1964   // Arguments:
  1965   //      from:  O0
  1966   //      to:    O1
  1967   //      count: O2 treated as signed
  1968   //
  1969   void generate_disjoint_int_copy_core(bool aligned) {
  1971     Label L_skip_alignment, L_aligned_copy;
  1972     Label L_copy_16_bytes,  L_copy_4_bytes, L_copy_4_bytes_loop, L_exit;
  1974     const Register from      = O0;   // source array address
  1975     const Register to        = O1;   // destination array address
  1976     const Register count     = O2;   // elements count
  1977     const Register offset    = O5;   // offset from start of arrays
  1978     // O3, O4, G3, G4 are used as temp registers
  1980     // 'aligned' == true when it is known statically during compilation
  1981     // of this arraycopy call site that both 'from' and 'to' addresses
  1982     // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
  1983     //
  1984     // Aligned arrays have 4 bytes alignment in 32-bits VM
  1985     // and 8 bytes - in 64-bits VM.
  1986     //
  1987 #ifdef _LP64
  1988     if (!aligned)
  1989 #endif
  1991       // The next check could be put under 'ifndef' since the code in
  1992       // generate_disjoint_long_copy_core() has own checks and set 'offset'.
  1994       // for short arrays, just do single element copy
  1995       __ cmp(count, 5); // 4 + 1 (20 bytes)
  1996       __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_4_bytes);
  1997       __ delayed()->mov(G0, offset);
  1999       // copy 1 element to align 'to' on an 8 byte boundary
  2000       __ andcc(to, 7, G0);
  2001       __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
  2002       __ delayed()->ld(from, 0, O3);
  2003       __ inc(from, 4);
  2004       __ inc(to, 4);
  2005       __ dec(count);
  2006       __ st(O3, to, -4);
  2007     __ BIND(L_skip_alignment);
  2009     // if arrays have same alignment mod 8, do 4 elements copy
  2010       __ andcc(from, 7, G0);
  2011       __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
  2012       __ delayed()->ld(from, 0, O3);
  2014     //
  2015     // Load 2 aligned 8-bytes chunks and use one from previous iteration
  2016     // to form 2 aligned 8-bytes chunks to store.
  2017     //
  2018     // copy_16_bytes_forward_with_shift() is not used here since this
  2019     // code is more optimal.
  2021     // copy with shift 4 elements (16 bytes) at a time
  2022       __ dec(count, 4);   // The cmp at the beginning guaranty count >= 4
  2024       __ align(OptoLoopAlignment);
  2025     __ BIND(L_copy_16_bytes);
  2026       __ ldx(from, 4, O4);
  2027       __ deccc(count, 4); // Can we do next iteration after this one?
  2028       __ ldx(from, 12, G4);
  2029       __ inc(to, 16);
  2030       __ inc(from, 16);
  2031       __ sllx(O3, 32, O3);
  2032       __ srlx(O4, 32, G3);
  2033       __ bset(G3, O3);
  2034       __ stx(O3, to, -16);
  2035       __ sllx(O4, 32, O4);
  2036       __ srlx(G4, 32, G3);
  2037       __ bset(G3, O4);
  2038       __ stx(O4, to, -8);
  2039       __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
  2040       __ delayed()->mov(G4, O3);
  2042       __ br(Assembler::always, false, Assembler::pt, L_copy_4_bytes);
  2043       __ delayed()->inc(count, 4); // restore 'count'
  2045     __ BIND(L_aligned_copy);
  2047     // copy 4 elements (16 bytes) at a time
  2048       __ and3(count, 1, G4); // Save
  2049       __ srl(count, 1, count);
  2050      generate_disjoint_long_copy_core(aligned);
  2051       __ mov(G4, count);     // Restore
  2053     // copy 1 element at a time
  2054     __ BIND(L_copy_4_bytes);
  2055       __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
  2056       __ delayed()->nop();
  2057     __ BIND(L_copy_4_bytes_loop);
  2058       __ ld(from, offset, O3);
  2059       __ deccc(count);
  2060       __ st(O3, to, offset);
  2061       __ brx(Assembler::notZero, false, Assembler::pt, L_copy_4_bytes_loop);
  2062       __ delayed()->inc(offset, 4);
  2063     __ BIND(L_exit);
  2066   //
  2067   //  Generate stub for disjoint int copy.  If "aligned" is true, the
  2068   //  "from" and "to" addresses are assumed to be heapword aligned.
  2069   //
  2070   // Arguments for generated stub:
  2071   //      from:  O0
  2072   //      to:    O1
  2073   //      count: O2 treated as signed
  2074   //
  2075   address generate_disjoint_int_copy(bool aligned, const char * name) {
  2076     __ align(CodeEntryAlignment);
  2077     StubCodeMark mark(this, "StubRoutines", name);
  2078     address start = __ pc();
  2080     const Register count = O2;
  2081     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
  2083     if (!aligned)  disjoint_int_copy_entry = __ pc();
  2084     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  2085     if (!aligned)  BLOCK_COMMENT("Entry:");
  2087     generate_disjoint_int_copy_core(aligned);
  2089     // O3, O4 are used as temp registers
  2090     inc_counter_np(SharedRuntime::_jint_array_copy_ctr, O3, O4);
  2091     __ retl();
  2092     __ delayed()->mov(G0, O0); // return 0
  2093     return start;
  2096   //
  2097   //  Generate core code for conjoint int copy (and oop copy on 32-bit).
  2098   //  If "aligned" is true, the "from" and "to" addresses are assumed
  2099   //  to be heapword aligned.
  2100   //
  2101   // Arguments:
  2102   //      from:  O0
  2103   //      to:    O1
  2104   //      count: O2 treated as signed
  2105   //
  2106   void generate_conjoint_int_copy_core(bool aligned) {
  2107     // Do reverse copy.
  2109     Label L_skip_alignment, L_aligned_copy;
  2110     Label L_copy_16_bytes,  L_copy_4_bytes, L_copy_4_bytes_loop, L_exit;
  2112     const Register from      = O0;   // source array address
  2113     const Register to        = O1;   // destination array address
  2114     const Register count     = O2;   // elements count
  2115     const Register end_from  = from; // source array end address
  2116     const Register end_to    = to;   // destination array end address
  2117     // O3, O4, O5, G3 are used as temp registers
  2119     const Register byte_count = O3;  // bytes count to copy
  2121       __ sllx(count, LogBytesPerInt, byte_count);
  2122       __ add(to, byte_count, end_to); // offset after last copied element
  2124       __ cmp(count, 5); // for short arrays, just do single element copy
  2125       __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_4_bytes);
  2126       __ delayed()->add(from, byte_count, end_from);
  2128     // copy 1 element to align 'to' on an 8 byte boundary
  2129       __ andcc(end_to, 7, G0);
  2130       __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
  2131       __ delayed()->nop();
  2132       __ dec(count);
  2133       __ dec(end_from, 4);
  2134       __ dec(end_to,   4);
  2135       __ ld(end_from, 0, O4);
  2136       __ st(O4, end_to, 0);
  2137     __ BIND(L_skip_alignment);
  2139     // Check if 'end_from' and 'end_to' has the same alignment.
  2140       __ andcc(end_from, 7, G0);
  2141       __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
  2142       __ delayed()->dec(count, 4); // The cmp at the start guaranty cnt >= 4
  2144     // copy with shift 4 elements (16 bytes) at a time
  2145     //
  2146     // Load 2 aligned 8-bytes chunks and use one from previous iteration
  2147     // to form 2 aligned 8-bytes chunks to store.
  2148     //
  2149       __ ldx(end_from, -4, O3);
  2150       __ align(OptoLoopAlignment);
  2151     __ BIND(L_copy_16_bytes);
  2152       __ ldx(end_from, -12, O4);
  2153       __ deccc(count, 4);
  2154       __ ldx(end_from, -20, O5);
  2155       __ dec(end_to, 16);
  2156       __ dec(end_from, 16);
  2157       __ srlx(O3, 32, O3);
  2158       __ sllx(O4, 32, G3);
  2159       __ bset(G3, O3);
  2160       __ stx(O3, end_to, 8);
  2161       __ srlx(O4, 32, O4);
  2162       __ sllx(O5, 32, G3);
  2163       __ bset(O4, G3);
  2164       __ stx(G3, end_to, 0);
  2165       __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
  2166       __ delayed()->mov(O5, O3);
  2168       __ br(Assembler::always, false, Assembler::pt, L_copy_4_bytes);
  2169       __ delayed()->inc(count, 4);
  2171     // copy 4 elements (16 bytes) at a time
  2172       __ align(OptoLoopAlignment);
  2173     __ BIND(L_aligned_copy);
  2174       __ dec(end_from, 16);
  2175       __ ldx(end_from, 8, O3);
  2176       __ ldx(end_from, 0, O4);
  2177       __ dec(end_to, 16);
  2178       __ deccc(count, 4);
  2179       __ stx(O3, end_to, 8);
  2180       __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
  2181       __ delayed()->stx(O4, end_to, 0);
  2182       __ inc(count, 4);
  2184     // copy 1 element (4 bytes) at a time
  2185     __ BIND(L_copy_4_bytes);
  2186       __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
  2187       __ delayed()->nop();
  2188     __ BIND(L_copy_4_bytes_loop);
  2189       __ dec(end_from, 4);
  2190       __ dec(end_to, 4);
  2191       __ ld(end_from, 0, O4);
  2192       __ deccc(count);
  2193       __ brx(Assembler::greater, false, Assembler::pt, L_copy_4_bytes_loop);
  2194       __ delayed()->st(O4, end_to, 0);
  2195     __ BIND(L_exit);
  2198   //
  2199   //  Generate stub for conjoint int copy.  If "aligned" is true, the
  2200   //  "from" and "to" addresses are assumed to be heapword aligned.
  2201   //
  2202   // Arguments for generated stub:
  2203   //      from:  O0
  2204   //      to:    O1
  2205   //      count: O2 treated as signed
  2206   //
  2207   address generate_conjoint_int_copy(bool aligned, const char * name) {
  2208     __ align(CodeEntryAlignment);
  2209     StubCodeMark mark(this, "StubRoutines", name);
  2210     address start = __ pc();
  2212     address nooverlap_target = aligned ?
  2213         StubRoutines::arrayof_jint_disjoint_arraycopy() :
  2214         disjoint_int_copy_entry;
  2216     assert_clean_int(O2, O3);     // Make sure 'count' is clean int.
  2218     if (!aligned)  int_copy_entry = __ pc();
  2219     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  2220     if (!aligned)  BLOCK_COMMENT("Entry:");
  2222     array_overlap_test(nooverlap_target, 2);
  2224     generate_conjoint_int_copy_core(aligned);
  2226     // O3, O4 are used as temp registers
  2227     inc_counter_np(SharedRuntime::_jint_array_copy_ctr, O3, O4);
  2228     __ retl();
  2229     __ delayed()->mov(G0, O0); // return 0
  2230     return start;
  2233   //
  2234   //  Generate core code for disjoint long copy (and oop copy on 64-bit).
  2235   //  "aligned" is ignored, because we must make the stronger
  2236   //  assumption that both addresses are always 64-bit aligned.
  2237   //
  2238   // Arguments:
  2239   //      from:  O0
  2240   //      to:    O1
  2241   //      count: O2 treated as signed
  2242   //
  2243   // count -= 2;
  2244   // if ( count >= 0 ) { // >= 2 elements
  2245   //   if ( count > 6) { // >= 8 elements
  2246   //     count -= 6; // original count - 8
  2247   //     do {
  2248   //       copy_8_elements;
  2249   //       count -= 8;
  2250   //     } while ( count >= 0 );
  2251   //     count += 6;
  2252   //   }
  2253   //   if ( count >= 0 ) { // >= 2 elements
  2254   //     do {
  2255   //       copy_2_elements;
  2256   //     } while ( (count=count-2) >= 0 );
  2257   //   }
  2258   // }
  2259   // count += 2;
  2260   // if ( count != 0 ) { // 1 element left
  2261   //   copy_1_element;
  2262   // }
  2263   //
  2264   void generate_disjoint_long_copy_core(bool aligned) {
  2265     Label L_copy_8_bytes, L_copy_16_bytes, L_exit;
  2266     const Register from    = O0;  // source array address
  2267     const Register to      = O1;  // destination array address
  2268     const Register count   = O2;  // elements count
  2269     const Register offset0 = O4;  // element offset
  2270     const Register offset8 = O5;  // next element offset
  2272       __ deccc(count, 2);
  2273       __ mov(G0, offset0);   // offset from start of arrays (0)
  2274       __ brx(Assembler::negative, false, Assembler::pn, L_copy_8_bytes );
  2275       __ delayed()->add(offset0, 8, offset8);
  2277     // Copy by 64 bytes chunks
  2278     Label L_copy_64_bytes;
  2279     const Register from64 = O3;  // source address
  2280     const Register to64   = G3;  // destination address
  2281       __ subcc(count, 6, O3);
  2282       __ brx(Assembler::negative, false, Assembler::pt, L_copy_16_bytes );
  2283       __ delayed()->mov(to,   to64);
  2284       // Now we can use O4(offset0), O5(offset8) as temps
  2285       __ mov(O3, count);
  2286       __ mov(from, from64);
  2288       __ align(OptoLoopAlignment);
  2289     __ BIND(L_copy_64_bytes);
  2290       for( int off = 0; off < 64; off += 16 ) {
  2291         __ ldx(from64,  off+0, O4);
  2292         __ ldx(from64,  off+8, O5);
  2293         __ stx(O4, to64,  off+0);
  2294         __ stx(O5, to64,  off+8);
  2296       __ deccc(count, 8);
  2297       __ inc(from64, 64);
  2298       __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_64_bytes);
  2299       __ delayed()->inc(to64, 64);
  2301       // Restore O4(offset0), O5(offset8)
  2302       __ sub(from64, from, offset0);
  2303       __ inccc(count, 6);
  2304       __ brx(Assembler::negative, false, Assembler::pn, L_copy_8_bytes );
  2305       __ delayed()->add(offset0, 8, offset8);
  2307       // Copy by 16 bytes chunks
  2308       __ align(OptoLoopAlignment);
  2309     __ BIND(L_copy_16_bytes);
  2310       __ ldx(from, offset0, O3);
  2311       __ ldx(from, offset8, G3);
  2312       __ deccc(count, 2);
  2313       __ stx(O3, to, offset0);
  2314       __ inc(offset0, 16);
  2315       __ stx(G3, to, offset8);
  2316       __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
  2317       __ delayed()->inc(offset8, 16);
  2319       // Copy last 8 bytes
  2320     __ BIND(L_copy_8_bytes);
  2321       __ inccc(count, 2);
  2322       __ brx(Assembler::zero, true, Assembler::pn, L_exit );
  2323       __ delayed()->mov(offset0, offset8); // Set O5 used by other stubs
  2324       __ ldx(from, offset0, O3);
  2325       __ stx(O3, to, offset0);
  2326     __ BIND(L_exit);
  2329   //
  2330   //  Generate stub for disjoint long copy.
  2331   //  "aligned" is ignored, because we must make the stronger
  2332   //  assumption that both addresses are always 64-bit aligned.
  2333   //
  2334   // Arguments for generated stub:
  2335   //      from:  O0
  2336   //      to:    O1
  2337   //      count: O2 treated as signed
  2338   //
  2339   address generate_disjoint_long_copy(bool aligned, const char * name) {
  2340     __ align(CodeEntryAlignment);
  2341     StubCodeMark mark(this, "StubRoutines", name);
  2342     address start = __ pc();
  2344     assert_clean_int(O2, O3);     // Make sure 'count' is clean int.
  2346     if (!aligned)  disjoint_long_copy_entry = __ pc();
  2347     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  2348     if (!aligned)  BLOCK_COMMENT("Entry:");
  2350     generate_disjoint_long_copy_core(aligned);
  2352     // O3, O4 are used as temp registers
  2353     inc_counter_np(SharedRuntime::_jlong_array_copy_ctr, O3, O4);
  2354     __ retl();
  2355     __ delayed()->mov(G0, O0); // return 0
  2356     return start;
  2359   //
  2360   //  Generate core code for conjoint long copy (and oop copy on 64-bit).
  2361   //  "aligned" is ignored, because we must make the stronger
  2362   //  assumption that both addresses are always 64-bit aligned.
  2363   //
  2364   // Arguments:
  2365   //      from:  O0
  2366   //      to:    O1
  2367   //      count: O2 treated as signed
  2368   //
  2369   void generate_conjoint_long_copy_core(bool aligned) {
  2370     // Do reverse copy.
  2371     Label L_copy_8_bytes, L_copy_16_bytes, L_exit;
  2372     const Register from    = O0;  // source array address
  2373     const Register to      = O1;  // destination array address
  2374     const Register count   = O2;  // elements count
  2375     const Register offset8 = O4;  // element offset
  2376     const Register offset0 = O5;  // previous element offset
  2378       __ subcc(count, 1, count);
  2379       __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_8_bytes );
  2380       __ delayed()->sllx(count, LogBytesPerLong, offset8);
  2381       __ sub(offset8, 8, offset0);
  2382       __ align(OptoLoopAlignment);
  2383     __ BIND(L_copy_16_bytes);
  2384       __ ldx(from, offset8, O2);
  2385       __ ldx(from, offset0, O3);
  2386       __ stx(O2, to, offset8);
  2387       __ deccc(offset8, 16);      // use offset8 as counter
  2388       __ stx(O3, to, offset0);
  2389       __ brx(Assembler::greater, false, Assembler::pt, L_copy_16_bytes);
  2390       __ delayed()->dec(offset0, 16);
  2392     __ BIND(L_copy_8_bytes);
  2393       __ brx(Assembler::negative, false, Assembler::pn, L_exit );
  2394       __ delayed()->nop();
  2395       __ ldx(from, 0, O3);
  2396       __ stx(O3, to, 0);
  2397     __ BIND(L_exit);
  2400   //  Generate stub for conjoint long copy.
  2401   //  "aligned" is ignored, because we must make the stronger
  2402   //  assumption that both addresses are always 64-bit aligned.
  2403   //
  2404   // Arguments for generated stub:
  2405   //      from:  O0
  2406   //      to:    O1
  2407   //      count: O2 treated as signed
  2408   //
  2409   address generate_conjoint_long_copy(bool aligned, const char * name) {
  2410     __ align(CodeEntryAlignment);
  2411     StubCodeMark mark(this, "StubRoutines", name);
  2412     address start = __ pc();
  2414     assert(!aligned, "usage");
  2415     address nooverlap_target = disjoint_long_copy_entry;
  2417     assert_clean_int(O2, O3);     // Make sure 'count' is clean int.
  2419     if (!aligned)  long_copy_entry = __ pc();
  2420     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  2421     if (!aligned)  BLOCK_COMMENT("Entry:");
  2423     array_overlap_test(nooverlap_target, 3);
  2425     generate_conjoint_long_copy_core(aligned);
  2427     // O3, O4 are used as temp registers
  2428     inc_counter_np(SharedRuntime::_jlong_array_copy_ctr, O3, O4);
  2429     __ retl();
  2430     __ delayed()->mov(G0, O0); // return 0
  2431     return start;
  2434   //  Generate stub for disjoint oop copy.  If "aligned" is true, the
  2435   //  "from" and "to" addresses are assumed to be heapword aligned.
  2436   //
  2437   // Arguments for generated stub:
  2438   //      from:  O0
  2439   //      to:    O1
  2440   //      count: O2 treated as signed
  2441   //
  2442   address generate_disjoint_oop_copy(bool aligned, const char * name) {
  2444     const Register from  = O0;  // source array address
  2445     const Register to    = O1;  // destination array address
  2446     const Register count = O2;  // elements count
  2448     __ align(CodeEntryAlignment);
  2449     StubCodeMark mark(this, "StubRoutines", name);
  2450     address start = __ pc();
  2452     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
  2454     if (!aligned)  disjoint_oop_copy_entry = __ pc();
  2455     // caller can pass a 64-bit byte count here
  2456     if (!aligned)  BLOCK_COMMENT("Entry:");
  2458     // save arguments for barrier generation
  2459     __ mov(to, G1);
  2460     __ mov(count, G5);
  2461     gen_write_ref_array_pre_barrier(G1, G5);
  2462   #ifdef _LP64
  2463     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
  2464     if (UseCompressedOops) {
  2465       generate_disjoint_int_copy_core(aligned);
  2466     } else {
  2467       generate_disjoint_long_copy_core(aligned);
  2469   #else
  2470     generate_disjoint_int_copy_core(aligned);
  2471   #endif
  2472     // O0 is used as temp register
  2473     gen_write_ref_array_post_barrier(G1, G5, O0);
  2475     // O3, O4 are used as temp registers
  2476     inc_counter_np(SharedRuntime::_oop_array_copy_ctr, O3, O4);
  2477     __ retl();
  2478     __ delayed()->mov(G0, O0); // return 0
  2479     return start;
  2482   //  Generate stub for conjoint oop copy.  If "aligned" is true, the
  2483   //  "from" and "to" addresses are assumed to be heapword aligned.
  2484   //
  2485   // Arguments for generated stub:
  2486   //      from:  O0
  2487   //      to:    O1
  2488   //      count: O2 treated as signed
  2489   //
  2490   address generate_conjoint_oop_copy(bool aligned, const char * name) {
  2492     const Register from  = O0;  // source array address
  2493     const Register to    = O1;  // destination array address
  2494     const Register count = O2;  // elements count
  2496     __ align(CodeEntryAlignment);
  2497     StubCodeMark mark(this, "StubRoutines", name);
  2498     address start = __ pc();
  2500     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
  2502     if (!aligned)  oop_copy_entry = __ pc();
  2503     // caller can pass a 64-bit byte count here
  2504     if (!aligned)  BLOCK_COMMENT("Entry:");
  2506     // save arguments for barrier generation
  2507     __ mov(to, G1);
  2508     __ mov(count, G5);
  2510     gen_write_ref_array_pre_barrier(G1, G5);
  2512     address nooverlap_target = aligned ?
  2513         StubRoutines::arrayof_oop_disjoint_arraycopy() :
  2514         disjoint_oop_copy_entry;
  2516     array_overlap_test(nooverlap_target, LogBytesPerHeapOop);
  2518   #ifdef _LP64
  2519     if (UseCompressedOops) {
  2520       generate_conjoint_int_copy_core(aligned);
  2521     } else {
  2522       generate_conjoint_long_copy_core(aligned);
  2524   #else
  2525     generate_conjoint_int_copy_core(aligned);
  2526   #endif
  2528     // O0 is used as temp register
  2529     gen_write_ref_array_post_barrier(G1, G5, O0);
  2531     // O3, O4 are used as temp registers
  2532     inc_counter_np(SharedRuntime::_oop_array_copy_ctr, O3, O4);
  2533     __ retl();
  2534     __ delayed()->mov(G0, O0); // return 0
  2535     return start;
  2539   // Helper for generating a dynamic type check.
  2540   // Smashes only the given temp registers.
  2541   void generate_type_check(Register sub_klass,
  2542                            Register super_check_offset,
  2543                            Register super_klass,
  2544                            Register temp,
  2545                            Label& L_success) {
  2546     assert_different_registers(sub_klass, super_check_offset, super_klass, temp);
  2548     BLOCK_COMMENT("type_check:");
  2550     Label L_miss, L_pop_to_miss;
  2552     assert_clean_int(super_check_offset, temp);
  2554     __ check_klass_subtype_fast_path(sub_klass, super_klass, temp, noreg,
  2555                                      &L_success, &L_miss, NULL,
  2556                                      super_check_offset);
  2558     BLOCK_COMMENT("type_check_slow_path:");
  2559     __ save_frame(0);
  2560     __ check_klass_subtype_slow_path(sub_klass->after_save(),
  2561                                      super_klass->after_save(),
  2562                                      L0, L1, L2, L4,
  2563                                      NULL, &L_pop_to_miss);
  2564     __ ba(false, L_success);
  2565     __ delayed()->restore();
  2567     __ bind(L_pop_to_miss);
  2568     __ restore();
  2570     // Fall through on failure!
  2571     __ BIND(L_miss);
  2575   //  Generate stub for checked oop copy.
  2576   //
  2577   // Arguments for generated stub:
  2578   //      from:  O0
  2579   //      to:    O1
  2580   //      count: O2 treated as signed
  2581   //      ckoff: O3 (super_check_offset)
  2582   //      ckval: O4 (super_klass)
  2583   //      ret:   O0 zero for success; (-1^K) where K is partial transfer count
  2584   //
  2585   address generate_checkcast_copy(const char* name) {
  2587     const Register O0_from   = O0;      // source array address
  2588     const Register O1_to     = O1;      // destination array address
  2589     const Register O2_count  = O2;      // elements count
  2590     const Register O3_ckoff  = O3;      // super_check_offset
  2591     const Register O4_ckval  = O4;      // super_klass
  2593     const Register O5_offset = O5;      // loop var, with stride wordSize
  2594     const Register G1_remain = G1;      // loop var, with stride -1
  2595     const Register G3_oop    = G3;      // actual oop copied
  2596     const Register G4_klass  = G4;      // oop._klass
  2597     const Register G5_super  = G5;      // oop._klass._primary_supers[ckval]
  2599     __ align(CodeEntryAlignment);
  2600     StubCodeMark mark(this, "StubRoutines", name);
  2601     address start = __ pc();
  2603     gen_write_ref_array_pre_barrier(O1, O2);
  2605 #ifdef ASSERT
  2606     // We sometimes save a frame (see generate_type_check below).
  2607     // If this will cause trouble, let's fail now instead of later.
  2608     __ save_frame(0);
  2609     __ restore();
  2610 #endif
  2612     assert_clean_int(O2_count, G1);     // Make sure 'count' is clean int.
  2614 #ifdef ASSERT
  2615     // caller guarantees that the arrays really are different
  2616     // otherwise, we would have to make conjoint checks
  2617     { Label L;
  2618       __ mov(O3, G1);           // spill: overlap test smashes O3
  2619       __ mov(O4, G4);           // spill: overlap test smashes O4
  2620       array_overlap_test(L, LogBytesPerHeapOop);
  2621       __ stop("checkcast_copy within a single array");
  2622       __ bind(L);
  2623       __ mov(G1, O3);
  2624       __ mov(G4, O4);
  2626 #endif //ASSERT
  2628     checkcast_copy_entry = __ pc();
  2629     // caller can pass a 64-bit byte count here (from generic stub)
  2630     BLOCK_COMMENT("Entry:");
  2632     Label load_element, store_element, do_card_marks, fail, done;
  2633     __ addcc(O2_count, 0, G1_remain);   // initialize loop index, and test it
  2634     __ brx(Assembler::notZero, false, Assembler::pt, load_element);
  2635     __ delayed()->mov(G0, O5_offset);   // offset from start of arrays
  2637     // Empty array:  Nothing to do.
  2638     inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr, O3, O4);
  2639     __ retl();
  2640     __ delayed()->set(0, O0);           // return 0 on (trivial) success
  2642     // ======== begin loop ========
  2643     // (Loop is rotated; its entry is load_element.)
  2644     // Loop variables:
  2645     //   (O5 = 0; ; O5 += wordSize) --- offset from src, dest arrays
  2646     //   (O2 = len; O2 != 0; O2--) --- number of oops *remaining*
  2647     //   G3, G4, G5 --- current oop, oop.klass, oop.klass.super
  2648     __ align(OptoLoopAlignment);
  2650     __ BIND(store_element);
  2651     __ deccc(G1_remain);                // decrement the count
  2652     __ store_heap_oop(G3_oop, O1_to, O5_offset); // store the oop
  2653     __ inc(O5_offset, heapOopSize);     // step to next offset
  2654     __ brx(Assembler::zero, true, Assembler::pt, do_card_marks);
  2655     __ delayed()->set(0, O0);           // return -1 on success
  2657     // ======== loop entry is here ========
  2658     __ BIND(load_element);
  2659     __ load_heap_oop(O0_from, O5_offset, G3_oop);  // load the oop
  2660     __ br_null(G3_oop, true, Assembler::pt, store_element);
  2661     __ delayed()->nop();
  2663     __ load_klass(G3_oop, G4_klass); // query the object klass
  2665     generate_type_check(G4_klass, O3_ckoff, O4_ckval, G5_super,
  2666                         // branch to this on success:
  2667                         store_element);
  2668     // ======== end loop ========
  2670     // It was a real error; we must depend on the caller to finish the job.
  2671     // Register G1 has number of *remaining* oops, O2 number of *total* oops.
  2672     // Emit GC store barriers for the oops we have copied (O2 minus G1),
  2673     // and report their number to the caller.
  2674     __ BIND(fail);
  2675     __ subcc(O2_count, G1_remain, O2_count);
  2676     __ brx(Assembler::zero, false, Assembler::pt, done);
  2677     __ delayed()->not1(O2_count, O0);   // report (-1^K) to caller
  2679     __ BIND(do_card_marks);
  2680     gen_write_ref_array_post_barrier(O1_to, O2_count, O3);   // store check on O1[0..O2]
  2682     __ BIND(done);
  2683     inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr, O3, O4);
  2684     __ retl();
  2685     __ delayed()->nop();             // return value in 00
  2687     return start;
  2691   //  Generate 'unsafe' array copy stub
  2692   //  Though just as safe as the other stubs, it takes an unscaled
  2693   //  size_t argument instead of an element count.
  2694   //
  2695   // Arguments for generated stub:
  2696   //      from:  O0
  2697   //      to:    O1
  2698   //      count: O2 byte count, treated as ssize_t, can be zero
  2699   //
  2700   // Examines the alignment of the operands and dispatches
  2701   // to a long, int, short, or byte copy loop.
  2702   //
  2703   address generate_unsafe_copy(const char* name) {
  2705     const Register O0_from   = O0;      // source array address
  2706     const Register O1_to     = O1;      // destination array address
  2707     const Register O2_count  = O2;      // elements count
  2709     const Register G1_bits   = G1;      // test copy of low bits
  2711     __ align(CodeEntryAlignment);
  2712     StubCodeMark mark(this, "StubRoutines", name);
  2713     address start = __ pc();
  2715     // bump this on entry, not on exit:
  2716     inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr, G1, G3);
  2718     __ or3(O0_from, O1_to, G1_bits);
  2719     __ or3(O2_count,       G1_bits, G1_bits);
  2721     __ btst(BytesPerLong-1, G1_bits);
  2722     __ br(Assembler::zero, true, Assembler::pt,
  2723           long_copy_entry, relocInfo::runtime_call_type);
  2724     // scale the count on the way out:
  2725     __ delayed()->srax(O2_count, LogBytesPerLong, O2_count);
  2727     __ btst(BytesPerInt-1, G1_bits);
  2728     __ br(Assembler::zero, true, Assembler::pt,
  2729           int_copy_entry, relocInfo::runtime_call_type);
  2730     // scale the count on the way out:
  2731     __ delayed()->srax(O2_count, LogBytesPerInt, O2_count);
  2733     __ btst(BytesPerShort-1, G1_bits);
  2734     __ br(Assembler::zero, true, Assembler::pt,
  2735           short_copy_entry, relocInfo::runtime_call_type);
  2736     // scale the count on the way out:
  2737     __ delayed()->srax(O2_count, LogBytesPerShort, O2_count);
  2739     __ br(Assembler::always, false, Assembler::pt,
  2740           byte_copy_entry, relocInfo::runtime_call_type);
  2741     __ delayed()->nop();
  2743     return start;
  2747   // Perform range checks on the proposed arraycopy.
  2748   // Kills the two temps, but nothing else.
  2749   // Also, clean the sign bits of src_pos and dst_pos.
  2750   void arraycopy_range_checks(Register src,     // source array oop (O0)
  2751                               Register src_pos, // source position (O1)
  2752                               Register dst,     // destination array oo (O2)
  2753                               Register dst_pos, // destination position (O3)
  2754                               Register length,  // length of copy (O4)
  2755                               Register temp1, Register temp2,
  2756                               Label& L_failed) {
  2757     BLOCK_COMMENT("arraycopy_range_checks:");
  2759     //  if (src_pos + length > arrayOop(src)->length() ) FAIL;
  2761     const Register array_length = temp1;  // scratch
  2762     const Register end_pos      = temp2;  // scratch
  2764     // Note:  This next instruction may be in the delay slot of a branch:
  2765     __ add(length, src_pos, end_pos);  // src_pos + length
  2766     __ lduw(src, arrayOopDesc::length_offset_in_bytes(), array_length);
  2767     __ cmp(end_pos, array_length);
  2768     __ br(Assembler::greater, false, Assembler::pn, L_failed);
  2770     //  if (dst_pos + length > arrayOop(dst)->length() ) FAIL;
  2771     __ delayed()->add(length, dst_pos, end_pos); // dst_pos + length
  2772     __ lduw(dst, arrayOopDesc::length_offset_in_bytes(), array_length);
  2773     __ cmp(end_pos, array_length);
  2774     __ br(Assembler::greater, false, Assembler::pn, L_failed);
  2776     // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'.
  2777     // Move with sign extension can be used since they are positive.
  2778     __ delayed()->signx(src_pos, src_pos);
  2779     __ signx(dst_pos, dst_pos);
  2781     BLOCK_COMMENT("arraycopy_range_checks done");
  2785   //
  2786   //  Generate generic array copy stubs
  2787   //
  2788   //  Input:
  2789   //    O0    -  src oop
  2790   //    O1    -  src_pos
  2791   //    O2    -  dst oop
  2792   //    O3    -  dst_pos
  2793   //    O4    -  element count
  2794   //
  2795   //  Output:
  2796   //    O0 ==  0  -  success
  2797   //    O0 == -1  -  need to call System.arraycopy
  2798   //
  2799   address generate_generic_copy(const char *name) {
  2801     Label L_failed, L_objArray;
  2803     // Input registers
  2804     const Register src      = O0;  // source array oop
  2805     const Register src_pos  = O1;  // source position
  2806     const Register dst      = O2;  // destination array oop
  2807     const Register dst_pos  = O3;  // destination position
  2808     const Register length   = O4;  // elements count
  2810     // registers used as temp
  2811     const Register G3_src_klass = G3; // source array klass
  2812     const Register G4_dst_klass = G4; // destination array klass
  2813     const Register G5_lh        = G5; // layout handler
  2814     const Register O5_temp      = O5;
  2816     __ align(CodeEntryAlignment);
  2817     StubCodeMark mark(this, "StubRoutines", name);
  2818     address start = __ pc();
  2820     // bump this on entry, not on exit:
  2821     inc_counter_np(SharedRuntime::_generic_array_copy_ctr, G1, G3);
  2823     // In principle, the int arguments could be dirty.
  2824     //assert_clean_int(src_pos, G1);
  2825     //assert_clean_int(dst_pos, G1);
  2826     //assert_clean_int(length, G1);
  2828     //-----------------------------------------------------------------------
  2829     // Assembler stubs will be used for this call to arraycopy
  2830     // if the following conditions are met:
  2831     //
  2832     // (1) src and dst must not be null.
  2833     // (2) src_pos must not be negative.
  2834     // (3) dst_pos must not be negative.
  2835     // (4) length  must not be negative.
  2836     // (5) src klass and dst klass should be the same and not NULL.
  2837     // (6) src and dst should be arrays.
  2838     // (7) src_pos + length must not exceed length of src.
  2839     // (8) dst_pos + length must not exceed length of dst.
  2840     BLOCK_COMMENT("arraycopy initial argument checks");
  2842     //  if (src == NULL) return -1;
  2843     __ br_null(src, false, Assembler::pn, L_failed);
  2845     //  if (src_pos < 0) return -1;
  2846     __ delayed()->tst(src_pos);
  2847     __ br(Assembler::negative, false, Assembler::pn, L_failed);
  2848     __ delayed()->nop();
  2850     //  if (dst == NULL) return -1;
  2851     __ br_null(dst, false, Assembler::pn, L_failed);
  2853     //  if (dst_pos < 0) return -1;
  2854     __ delayed()->tst(dst_pos);
  2855     __ br(Assembler::negative, false, Assembler::pn, L_failed);
  2857     //  if (length < 0) return -1;
  2858     __ delayed()->tst(length);
  2859     __ br(Assembler::negative, false, Assembler::pn, L_failed);
  2861     BLOCK_COMMENT("arraycopy argument klass checks");
  2862     //  get src->klass()
  2863     if (UseCompressedOops) {
  2864       __ delayed()->nop(); // ??? not good
  2865       __ load_klass(src, G3_src_klass);
  2866     } else {
  2867       __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), G3_src_klass);
  2870 #ifdef ASSERT
  2871     //  assert(src->klass() != NULL);
  2872     BLOCK_COMMENT("assert klasses not null");
  2873     { Label L_a, L_b;
  2874       __ br_notnull(G3_src_klass, false, Assembler::pt, L_b); // it is broken if klass is NULL
  2875       __ delayed()->nop();
  2876       __ bind(L_a);
  2877       __ stop("broken null klass");
  2878       __ bind(L_b);
  2879       __ load_klass(dst, G4_dst_klass);
  2880       __ br_null(G4_dst_klass, false, Assembler::pn, L_a); // this would be broken also
  2881       __ delayed()->mov(G0, G4_dst_klass);      // scribble the temp
  2882       BLOCK_COMMENT("assert done");
  2884 #endif
  2886     // Load layout helper
  2887     //
  2888     //  |array_tag|     | header_size | element_type |     |log2_element_size|
  2889     // 32        30    24            16              8     2                 0
  2890     //
  2891     //   array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
  2892     //
  2894     int lh_offset = klassOopDesc::header_size() * HeapWordSize +
  2895                     Klass::layout_helper_offset_in_bytes();
  2897     // Load 32-bits signed value. Use br() instruction with it to check icc.
  2898     __ lduw(G3_src_klass, lh_offset, G5_lh);
  2900     if (UseCompressedOops) {
  2901       __ load_klass(dst, G4_dst_klass);
  2903     // Handle objArrays completely differently...
  2904     juint objArray_lh = Klass::array_layout_helper(T_OBJECT);
  2905     __ set(objArray_lh, O5_temp);
  2906     __ cmp(G5_lh,       O5_temp);
  2907     __ br(Assembler::equal, false, Assembler::pt, L_objArray);
  2908     if (UseCompressedOops) {
  2909       __ delayed()->nop();
  2910     } else {
  2911       __ delayed()->ld_ptr(dst, oopDesc::klass_offset_in_bytes(), G4_dst_klass);
  2914     //  if (src->klass() != dst->klass()) return -1;
  2915     __ cmp(G3_src_klass, G4_dst_klass);
  2916     __ brx(Assembler::notEqual, false, Assembler::pn, L_failed);
  2917     __ delayed()->nop();
  2919     //  if (!src->is_Array()) return -1;
  2920     __ cmp(G5_lh, Klass::_lh_neutral_value); // < 0
  2921     __ br(Assembler::greaterEqual, false, Assembler::pn, L_failed);
  2923     // At this point, it is known to be a typeArray (array_tag 0x3).
  2924 #ifdef ASSERT
  2925     __ delayed()->nop();
  2926     { Label L;
  2927       jint lh_prim_tag_in_place = (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift);
  2928       __ set(lh_prim_tag_in_place, O5_temp);
  2929       __ cmp(G5_lh,                O5_temp);
  2930       __ br(Assembler::greaterEqual, false, Assembler::pt, L);
  2931       __ delayed()->nop();
  2932       __ stop("must be a primitive array");
  2933       __ bind(L);
  2935 #else
  2936     __ delayed();                               // match next insn to prev branch
  2937 #endif
  2939     arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
  2940                            O5_temp, G4_dst_klass, L_failed);
  2942     // typeArrayKlass
  2943     //
  2944     // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
  2945     // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
  2946     //
  2948     const Register G4_offset = G4_dst_klass;    // array offset
  2949     const Register G3_elsize = G3_src_klass;    // log2 element size
  2951     __ srl(G5_lh, Klass::_lh_header_size_shift, G4_offset);
  2952     __ and3(G4_offset, Klass::_lh_header_size_mask, G4_offset); // array_offset
  2953     __ add(src, G4_offset, src);       // src array offset
  2954     __ add(dst, G4_offset, dst);       // dst array offset
  2955     __ and3(G5_lh, Klass::_lh_log2_element_size_mask, G3_elsize); // log2 element size
  2957     // next registers should be set before the jump to corresponding stub
  2958     const Register from     = O0;  // source array address
  2959     const Register to       = O1;  // destination array address
  2960     const Register count    = O2;  // elements count
  2962     // 'from', 'to', 'count' registers should be set in this order
  2963     // since they are the same as 'src', 'src_pos', 'dst'.
  2965     BLOCK_COMMENT("scale indexes to element size");
  2966     __ sll_ptr(src_pos, G3_elsize, src_pos);
  2967     __ sll_ptr(dst_pos, G3_elsize, dst_pos);
  2968     __ add(src, src_pos, from);       // src_addr
  2969     __ add(dst, dst_pos, to);         // dst_addr
  2971     BLOCK_COMMENT("choose copy loop based on element size");
  2972     __ cmp(G3_elsize, 0);
  2973     __ br(Assembler::equal,true,Assembler::pt,StubRoutines::_jbyte_arraycopy);
  2974     __ delayed()->signx(length, count); // length
  2976     __ cmp(G3_elsize, LogBytesPerShort);
  2977     __ br(Assembler::equal,true,Assembler::pt,StubRoutines::_jshort_arraycopy);
  2978     __ delayed()->signx(length, count); // length
  2980     __ cmp(G3_elsize, LogBytesPerInt);
  2981     __ br(Assembler::equal,true,Assembler::pt,StubRoutines::_jint_arraycopy);
  2982     __ delayed()->signx(length, count); // length
  2983 #ifdef ASSERT
  2984     { Label L;
  2985       __ cmp(G3_elsize, LogBytesPerLong);
  2986       __ br(Assembler::equal, false, Assembler::pt, L);
  2987       __ delayed()->nop();
  2988       __ stop("must be long copy, but elsize is wrong");
  2989       __ bind(L);
  2991 #endif
  2992     __ br(Assembler::always,false,Assembler::pt,StubRoutines::_jlong_arraycopy);
  2993     __ delayed()->signx(length, count); // length
  2995     // objArrayKlass
  2996   __ BIND(L_objArray);
  2997     // live at this point:  G3_src_klass, G4_dst_klass, src[_pos], dst[_pos], length
  2999     Label L_plain_copy, L_checkcast_copy;
  3000     //  test array classes for subtyping
  3001     __ cmp(G3_src_klass, G4_dst_klass);         // usual case is exact equality
  3002     __ brx(Assembler::notEqual, true, Assembler::pn, L_checkcast_copy);
  3003     __ delayed()->lduw(G4_dst_klass, lh_offset, O5_temp); // hoisted from below
  3005     // Identically typed arrays can be copied without element-wise checks.
  3006     arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
  3007                            O5_temp, G5_lh, L_failed);
  3009     __ add(src, arrayOopDesc::base_offset_in_bytes(T_OBJECT), src); //src offset
  3010     __ add(dst, arrayOopDesc::base_offset_in_bytes(T_OBJECT), dst); //dst offset
  3011     __ sll_ptr(src_pos, LogBytesPerHeapOop, src_pos);
  3012     __ sll_ptr(dst_pos, LogBytesPerHeapOop, dst_pos);
  3013     __ add(src, src_pos, from);       // src_addr
  3014     __ add(dst, dst_pos, to);         // dst_addr
  3015   __ BIND(L_plain_copy);
  3016     __ br(Assembler::always, false, Assembler::pt,StubRoutines::_oop_arraycopy);
  3017     __ delayed()->signx(length, count); // length
  3019   __ BIND(L_checkcast_copy);
  3020     // live at this point:  G3_src_klass, G4_dst_klass
  3022       // Before looking at dst.length, make sure dst is also an objArray.
  3023       // lduw(G4_dst_klass, lh_offset, O5_temp); // hoisted to delay slot
  3024       __ cmp(G5_lh,                    O5_temp);
  3025       __ br(Assembler::notEqual, false, Assembler::pn, L_failed);
  3027       // It is safe to examine both src.length and dst.length.
  3028       __ delayed();                             // match next insn to prev branch
  3029       arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
  3030                              O5_temp, G5_lh, L_failed);
  3032       // Marshal the base address arguments now, freeing registers.
  3033       __ add(src, arrayOopDesc::base_offset_in_bytes(T_OBJECT), src); //src offset
  3034       __ add(dst, arrayOopDesc::base_offset_in_bytes(T_OBJECT), dst); //dst offset
  3035       __ sll_ptr(src_pos, LogBytesPerHeapOop, src_pos);
  3036       __ sll_ptr(dst_pos, LogBytesPerHeapOop, dst_pos);
  3037       __ add(src, src_pos, from);               // src_addr
  3038       __ add(dst, dst_pos, to);                 // dst_addr
  3039       __ signx(length, count);                  // length (reloaded)
  3041       Register sco_temp = O3;                   // this register is free now
  3042       assert_different_registers(from, to, count, sco_temp,
  3043                                  G4_dst_klass, G3_src_klass);
  3045       // Generate the type check.
  3046       int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
  3047                         Klass::super_check_offset_offset_in_bytes());
  3048       __ lduw(G4_dst_klass, sco_offset, sco_temp);
  3049       generate_type_check(G3_src_klass, sco_temp, G4_dst_klass,
  3050                           O5_temp, L_plain_copy);
  3052       // Fetch destination element klass from the objArrayKlass header.
  3053       int ek_offset = (klassOopDesc::header_size() * HeapWordSize +
  3054                        objArrayKlass::element_klass_offset_in_bytes());
  3056       // the checkcast_copy loop needs two extra arguments:
  3057       __ ld_ptr(G4_dst_klass, ek_offset, O4);   // dest elem klass
  3058       // lduw(O4, sco_offset, O3);              // sco of elem klass
  3060       __ br(Assembler::always, false, Assembler::pt, checkcast_copy_entry);
  3061       __ delayed()->lduw(O4, sco_offset, O3);
  3064   __ BIND(L_failed);
  3065     __ retl();
  3066     __ delayed()->sub(G0, 1, O0); // return -1
  3067     return start;
  3070   void generate_arraycopy_stubs() {
  3072     // Note:  the disjoint stubs must be generated first, some of
  3073     //        the conjoint stubs use them.
  3074     StubRoutines::_jbyte_disjoint_arraycopy  = generate_disjoint_byte_copy(false, "jbyte_disjoint_arraycopy");
  3075     StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, "jshort_disjoint_arraycopy");
  3076     StubRoutines::_jint_disjoint_arraycopy   = generate_disjoint_int_copy(false, "jint_disjoint_arraycopy");
  3077     StubRoutines::_jlong_disjoint_arraycopy  = generate_disjoint_long_copy(false, "jlong_disjoint_arraycopy");
  3078     StubRoutines::_oop_disjoint_arraycopy    = generate_disjoint_oop_copy(false, "oop_disjoint_arraycopy");
  3079     StubRoutines::_arrayof_jbyte_disjoint_arraycopy  = generate_disjoint_byte_copy(true, "arrayof_jbyte_disjoint_arraycopy");
  3080     StubRoutines::_arrayof_jshort_disjoint_arraycopy = generate_disjoint_short_copy(true, "arrayof_jshort_disjoint_arraycopy");
  3081     StubRoutines::_arrayof_jint_disjoint_arraycopy   = generate_disjoint_int_copy(true, "arrayof_jint_disjoint_arraycopy");
  3082     StubRoutines::_arrayof_jlong_disjoint_arraycopy  = generate_disjoint_long_copy(true, "arrayof_jlong_disjoint_arraycopy");
  3083     StubRoutines::_arrayof_oop_disjoint_arraycopy    =  generate_disjoint_oop_copy(true, "arrayof_oop_disjoint_arraycopy");
  3085     StubRoutines::_jbyte_arraycopy  = generate_conjoint_byte_copy(false, "jbyte_arraycopy");
  3086     StubRoutines::_jshort_arraycopy = generate_conjoint_short_copy(false, "jshort_arraycopy");
  3087     StubRoutines::_jint_arraycopy   = generate_conjoint_int_copy(false, "jint_arraycopy");
  3088     StubRoutines::_jlong_arraycopy  = generate_conjoint_long_copy(false, "jlong_arraycopy");
  3089     StubRoutines::_oop_arraycopy    = generate_conjoint_oop_copy(false, "oop_arraycopy");
  3090     StubRoutines::_arrayof_jbyte_arraycopy    = generate_conjoint_byte_copy(true, "arrayof_jbyte_arraycopy");
  3091     StubRoutines::_arrayof_jshort_arraycopy   = generate_conjoint_short_copy(true, "arrayof_jshort_arraycopy");
  3092 #ifdef _LP64
  3093     // since sizeof(jint) < sizeof(HeapWord), there's a different flavor:
  3094     StubRoutines::_arrayof_jint_arraycopy     = generate_conjoint_int_copy(true, "arrayof_jint_arraycopy");
  3095   #else
  3096     StubRoutines::_arrayof_jint_arraycopy     = StubRoutines::_jint_arraycopy;
  3097 #endif
  3098     StubRoutines::_arrayof_jlong_arraycopy    = StubRoutines::_jlong_arraycopy;
  3099     StubRoutines::_arrayof_oop_arraycopy      = StubRoutines::_oop_arraycopy;
  3101     StubRoutines::_checkcast_arraycopy = generate_checkcast_copy("checkcast_arraycopy");
  3102     StubRoutines::_unsafe_arraycopy    = generate_unsafe_copy("unsafe_arraycopy");
  3103     StubRoutines::_generic_arraycopy   = generate_generic_copy("generic_arraycopy");
  3105     StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
  3106     StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
  3107     StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
  3108     StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
  3109     StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
  3110     StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");
  3113   void generate_initial() {
  3114     // Generates all stubs and initializes the entry points
  3116     //------------------------------------------------------------------------------------------------------------------------
  3117     // entry points that exist in all platforms
  3118     // Note: This is code that could be shared among different platforms - however the benefit seems to be smaller than
  3119     //       the disadvantage of having a much more complicated generator structure. See also comment in stubRoutines.hpp.
  3120     StubRoutines::_forward_exception_entry                 = generate_forward_exception();
  3122     StubRoutines::_call_stub_entry                         = generate_call_stub(StubRoutines::_call_stub_return_address);
  3123     StubRoutines::_catch_exception_entry                   = generate_catch_exception();
  3125     //------------------------------------------------------------------------------------------------------------------------
  3126     // entry points that are platform specific
  3127     StubRoutines::Sparc::_test_stop_entry                  = generate_test_stop();
  3129     StubRoutines::Sparc::_stop_subroutine_entry            = generate_stop_subroutine();
  3130     StubRoutines::Sparc::_flush_callers_register_windows_entry = generate_flush_callers_register_windows();
  3132 #if !defined(COMPILER2) && !defined(_LP64)
  3133     StubRoutines::_atomic_xchg_entry         = generate_atomic_xchg();
  3134     StubRoutines::_atomic_cmpxchg_entry      = generate_atomic_cmpxchg();
  3135     StubRoutines::_atomic_add_entry          = generate_atomic_add();
  3136     StubRoutines::_atomic_xchg_ptr_entry     = StubRoutines::_atomic_xchg_entry;
  3137     StubRoutines::_atomic_cmpxchg_ptr_entry  = StubRoutines::_atomic_cmpxchg_entry;
  3138     StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long();
  3139     StubRoutines::_atomic_add_ptr_entry      = StubRoutines::_atomic_add_entry;
  3140 #endif  // COMPILER2 !=> _LP64
  3144   void generate_all() {
  3145     // Generates all stubs and initializes the entry points
  3147     // Generate partial_subtype_check first here since its code depends on
  3148     // UseZeroBaseCompressedOops which is defined after heap initialization.
  3149     StubRoutines::Sparc::_partial_subtype_check                = generate_partial_subtype_check();
  3150     // These entry points require SharedInfo::stack0 to be set up in non-core builds
  3151     StubRoutines::_throw_AbstractMethodError_entry         = generate_throw_exception("AbstractMethodError throw_exception",          CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError),  false);
  3152     StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError),  false);
  3153     StubRoutines::_throw_ArithmeticException_entry         = generate_throw_exception("ArithmeticException throw_exception",          CAST_FROM_FN_PTR(address, SharedRuntime::throw_ArithmeticException),  true);
  3154     StubRoutines::_throw_NullPointerException_entry        = generate_throw_exception("NullPointerException throw_exception",         CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException), true);
  3155     StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call), false);
  3156     StubRoutines::_throw_StackOverflowError_entry          = generate_throw_exception("StackOverflowError throw_exception",           CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError),   false);
  3158     StubRoutines::_handler_for_unsafe_access_entry =
  3159       generate_handler_for_unsafe_access();
  3161     // support for verify_oop (must happen after universe_init)
  3162     StubRoutines::_verify_oop_subroutine_entry     = generate_verify_oop_subroutine();
  3164     // arraycopy stubs used by compilers
  3165     generate_arraycopy_stubs();
  3167     // Don't initialize the platform math functions since sparc
  3168     // doesn't have intrinsics for these operations.
  3172  public:
  3173   StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
  3174     // replace the standard masm with a special one:
  3175     _masm = new MacroAssembler(code);
  3177     _stub_count = !all ? 0x100 : 0x200;
  3178     if (all) {
  3179       generate_all();
  3180     } else {
  3181       generate_initial();
  3184     // make sure this stub is available for all local calls
  3185     if (_atomic_add_stub.is_unbound()) {
  3186       // generate a second time, if necessary
  3187       (void) generate_atomic_add();
  3192  private:
  3193   int _stub_count;
  3194   void stub_prolog(StubCodeDesc* cdesc) {
  3195     # ifdef ASSERT
  3196       // put extra information in the stub code, to make it more readable
  3197 #ifdef _LP64
  3198 // Write the high part of the address
  3199 // [RGV] Check if there is a dependency on the size of this prolog
  3200       __ emit_data((intptr_t)cdesc >> 32,    relocInfo::none);
  3201 #endif
  3202       __ emit_data((intptr_t)cdesc,    relocInfo::none);
  3203       __ emit_data(++_stub_count, relocInfo::none);
  3204     # endif
  3205     align(true);
  3208   void align(bool at_header = false) {
  3209     // %%%%% move this constant somewhere else
  3210     // UltraSPARC cache line size is 8 instructions:
  3211     const unsigned int icache_line_size = 32;
  3212     const unsigned int icache_half_line_size = 16;
  3214     if (at_header) {
  3215       while ((intptr_t)(__ pc()) % icache_line_size != 0) {
  3216         __ emit_data(0, relocInfo::none);
  3218     } else {
  3219       while ((intptr_t)(__ pc()) % icache_half_line_size != 0) {
  3220         __ nop();
  3225 }; // end class declaration
  3228 address StubGenerator::disjoint_byte_copy_entry  = NULL;
  3229 address StubGenerator::disjoint_short_copy_entry = NULL;
  3230 address StubGenerator::disjoint_int_copy_entry   = NULL;
  3231 address StubGenerator::disjoint_long_copy_entry  = NULL;
  3232 address StubGenerator::disjoint_oop_copy_entry   = NULL;
  3234 address StubGenerator::byte_copy_entry  = NULL;
  3235 address StubGenerator::short_copy_entry = NULL;
  3236 address StubGenerator::int_copy_entry   = NULL;
  3237 address StubGenerator::long_copy_entry  = NULL;
  3238 address StubGenerator::oop_copy_entry   = NULL;
  3240 address StubGenerator::checkcast_copy_entry = NULL;
  3242 void StubGenerator_generate(CodeBuffer* code, bool all) {
  3243   StubGenerator g(code, all);

mercurial