src/cpu/sparc/vm/sparc.ad

Tue, 30 Nov 2010 23:23:40 -0800

author
iveresov
date
Tue, 30 Nov 2010 23:23:40 -0800
changeset 2344
ac637b7220d1
parent 2270
885e464e1a40
child 2350
2f644f85485d
permissions
-rw-r--r--

6985015: C1 needs to support compressed oops
Summary: This change implements compressed oops for C1 for x64 and sparc. The changes are mostly on the codegen level, with a few exceptions when we do access things outside of the heap that are uncompressed from the IR. Compressed oops are now also enabled with tiered.
Reviewed-by: twisti, kvn, never, phh

     1 //
     2 // Copyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved.
     3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4 //
     5 // This code is free software; you can redistribute it and/or modify it
     6 // under the terms of the GNU General Public License version 2 only, as
     7 // published by the Free Software Foundation.
     8 //
     9 // This code is distributed in the hope that it will be useful, but WITHOUT
    10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12 // version 2 for more details (a copy is included in the LICENSE file that
    13 // accompanied this code).
    14 //
    15 // You should have received a copy of the GNU General Public License version
    16 // 2 along with this work; if not, write to the Free Software Foundation,
    17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18 //
    19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20 // or visit www.oracle.com if you need additional information or have any
    21 // questions.
    22 //
    23 //
    25 // SPARC Architecture Description File
    27 //----------REGISTER DEFINITION BLOCK------------------------------------------
    28 // This information is used by the matcher and the register allocator to
    29 // describe individual registers and classes of registers within the target
    30 // archtecture.
    31 register %{
    32 //----------Architecture Description Register Definitions----------------------
    33 // General Registers
    34 // "reg_def"  name ( register save type, C convention save type,
    35 //                   ideal register type, encoding, vm name );
    36 // Register Save Types:
    37 //
    38 // NS  = No-Save:       The register allocator assumes that these registers
    39 //                      can be used without saving upon entry to the method, &
    40 //                      that they do not need to be saved at call sites.
    41 //
    42 // SOC = Save-On-Call:  The register allocator assumes that these registers
    43 //                      can be used without saving upon entry to the method,
    44 //                      but that they must be saved at call sites.
    45 //
    46 // SOE = Save-On-Entry: The register allocator assumes that these registers
    47 //                      must be saved before using them upon entry to the
    48 //                      method, but they do not need to be saved at call
    49 //                      sites.
    50 //
    51 // AS  = Always-Save:   The register allocator assumes that these registers
    52 //                      must be saved before using them upon entry to the
    53 //                      method, & that they must be saved at call sites.
    54 //
    55 // Ideal Register Type is used to determine how to save & restore a
    56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
    58 //
    59 // The encoding number is the actual bit-pattern placed into the opcodes.
    62 // ----------------------------
    63 // Integer/Long Registers
    64 // ----------------------------
    66 // Need to expose the hi/lo aspect of 64-bit registers
    67 // This register set is used for both the 64-bit build and
    68 // the 32-bit build with 1-register longs.
    70 // Global Registers 0-7
    71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
    72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
    73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
    74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
    75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
    76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
    77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
    78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
    79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
    80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
    81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
    82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
    83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
    84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
    85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
    86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
    88 // Output Registers 0-7
    89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
    90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
    91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
    92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
    93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
    94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
    95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
    96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
    97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
    98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
    99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
   100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
   101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
   102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
   103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
   104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
   106 // Local Registers 0-7
   107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
   108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
   109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
   110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
   111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
   112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
   113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
   114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
   115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
   116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
   117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
   118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
   119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
   120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
   121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
   122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
   124 // Input Registers 0-7
   125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
   126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
   127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
   128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
   129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
   130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
   131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
   132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
   133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
   134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
   135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
   136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
   137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
   138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
   139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
   140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
   142 // ----------------------------
   143 // Float/Double Registers
   144 // ----------------------------
   146 // Float Registers
   147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
   148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
   149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
   150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
   151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
   152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
   153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
   154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
   155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
   156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
   157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
   158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
   159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
   160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
   161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
   162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
   163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
   164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
   165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
   166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
   167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
   168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
   169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
   170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
   171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
   172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
   173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
   174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
   175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
   176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
   177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
   178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
   180 // Double Registers
   181 // The rules of ADL require that double registers be defined in pairs.
   182 // Each pair must be two 32-bit values, but not necessarily a pair of
   183 // single float registers.  In each pair, ADLC-assigned register numbers
   184 // must be adjacent, with the lower number even.  Finally, when the
   185 // CPU stores such a register pair to memory, the word associated with
   186 // the lower ADLC-assigned number must be stored to the lower address.
   188 // These definitions specify the actual bit encodings of the sparc
   189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
   190 // wants 0-63, so we have to convert every time we want to use fp regs
   191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
   192 // 255 is a flag meaning "don't go here".
   193 // I believe we can't handle callee-save doubles D32 and up until
   194 // the place in the sparc stack crawler that asserts on the 255 is
   195 // fixed up.
   196 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg());
   197 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg()->next());
   198 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg());
   199 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg()->next());
   200 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg());
   201 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg()->next());
   202 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg());
   203 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg()->next());
   204 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg());
   205 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg()->next());
   206 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg());
   207 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg()->next());
   208 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg());
   209 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg()->next());
   210 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg());
   211 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg()->next());
   212 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg());
   213 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg()->next());
   214 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg());
   215 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg()->next());
   216 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg());
   217 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg()->next());
   218 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg());
   219 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg()->next());
   220 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg());
   221 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg()->next());
   222 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg());
   223 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg()->next());
   224 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg());
   225 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg()->next());
   226 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg());
   227 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg()->next());
   230 // ----------------------------
   231 // Special Registers
   232 // Condition Codes Flag Registers
   233 // I tried to break out ICC and XCC but it's not very pretty.
   234 // Every Sparc instruction which defs/kills one also kills the other.
   235 // Hence every compare instruction which defs one kind of flags ends
   236 // up needing a kill of the other.
   237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
   241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
   242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
   244 // ----------------------------
   245 // Specify the enum values for the registers.  These enums are only used by the
   246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
   247 // for visibility to the rest of the vm. The order of this enum influences the
   248 // register allocator so having the freedom to set this order and not be stuck
   249 // with the order that is natural for the rest of the vm is worth it.
   250 alloc_class chunk0(
   251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
   252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
   253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
   254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
   256 // Note that a register is not allocatable unless it is also mentioned
   257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
   259 alloc_class chunk1(
   260   // The first registers listed here are those most likely to be used
   261   // as temporaries.  We move F0..F7 away from the front of the list,
   262   // to reduce the likelihood of interferences with parameters and
   263   // return values.  Likewise, we avoid using F0/F1 for parameters,
   264   // since they are used for return values.
   265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
   266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
   268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
   269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
   270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
   271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
   273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
   275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
   277 //----------Architecture Description Register Classes--------------------------
   278 // Several register classes are automatically defined based upon information in
   279 // this architecture description.
   280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
   281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
   282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   283 //
   285 // G0 is not included in integer class since it has special meaning.
   286 reg_class g0_reg(R_G0);
   288 // ----------------------------
   289 // Integer Register Classes
   290 // ----------------------------
   291 // Exclusions from i_reg:
   292 // R_G0: hardwired zero
   293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
   294 // R_G6: reserved by Solaris ABI to tools
   295 // R_G7: reserved by Solaris ABI to libthread
   296 // R_O7: Used as a temp in many encodings
   297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   299 // Class for all integer registers, except the G registers.  This is used for
   300 // encodings which use G registers as temps.  The regular inputs to such
   301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
   302 // will not put an input into a temp register.
   303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   305 reg_class g1_regI(R_G1);
   306 reg_class g3_regI(R_G3);
   307 reg_class g4_regI(R_G4);
   308 reg_class o0_regI(R_O0);
   309 reg_class o7_regI(R_O7);
   311 // ----------------------------
   312 // Pointer Register Classes
   313 // ----------------------------
   314 #ifdef _LP64
   315 // 64-bit build means 64-bit pointers means hi/lo pairs
   316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   320 // Lock encodings use G3 and G4 internally
   321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
   322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   325 // Special class for storeP instructions, which can store SP or RPC to TLS.
   326 // It is also used for memory addressing, allowing direct TLS addressing.
   327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
   329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
   331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   332 // We use it to save R_G2 across calls out of Java.
   333 reg_class l7_regP(R_L7H,R_L7);
   335 // Other special pointer regs
   336 reg_class g1_regP(R_G1H,R_G1);
   337 reg_class g2_regP(R_G2H,R_G2);
   338 reg_class g3_regP(R_G3H,R_G3);
   339 reg_class g4_regP(R_G4H,R_G4);
   340 reg_class g5_regP(R_G5H,R_G5);
   341 reg_class i0_regP(R_I0H,R_I0);
   342 reg_class o0_regP(R_O0H,R_O0);
   343 reg_class o1_regP(R_O1H,R_O1);
   344 reg_class o2_regP(R_O2H,R_O2);
   345 reg_class o7_regP(R_O7H,R_O7);
   347 #else // _LP64
   348 // 32-bit build means 32-bit pointers means 1 register.
   349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
   350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   353 // Lock encodings use G3 and G4 internally
   354 reg_class lock_ptr_reg(R_G1,               R_G5,
   355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   358 // Special class for storeP instructions, which can store SP or RPC to TLS.
   359 // It is also used for memory addressing, allowing direct TLS addressing.
   360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
   361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
   362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
   364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   365 // We use it to save R_G2 across calls out of Java.
   366 reg_class l7_regP(R_L7);
   368 // Other special pointer regs
   369 reg_class g1_regP(R_G1);
   370 reg_class g2_regP(R_G2);
   371 reg_class g3_regP(R_G3);
   372 reg_class g4_regP(R_G4);
   373 reg_class g5_regP(R_G5);
   374 reg_class i0_regP(R_I0);
   375 reg_class o0_regP(R_O0);
   376 reg_class o1_regP(R_O1);
   377 reg_class o2_regP(R_O2);
   378 reg_class o7_regP(R_O7);
   379 #endif // _LP64
   382 // ----------------------------
   383 // Long Register Classes
   384 // ----------------------------
   385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
   386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
   387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
   388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
   389 #ifdef _LP64
   390 // 64-bit, longs in 1 register: use all 64-bit integer registers
   391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
   392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
   393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
   394 #endif // _LP64
   395                   );
   397 reg_class g1_regL(R_G1H,R_G1);
   398 reg_class g3_regL(R_G3H,R_G3);
   399 reg_class o2_regL(R_O2H,R_O2);
   400 reg_class o7_regL(R_O7H,R_O7);
   402 // ----------------------------
   403 // Special Class for Condition Code Flags Register
   404 reg_class int_flags(CCR);
   405 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
   406 reg_class float_flag0(FCC0);
   409 // ----------------------------
   410 // Float Point Register Classes
   411 // ----------------------------
   412 // Skip F30/F31, they are reserved for mem-mem copies
   413 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
   415 // Paired floating point registers--they show up in the same order as the floats,
   416 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   417 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   418                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
   419                    /* Use extra V9 double registers; this AD file does not support V8 */
   420                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   421                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
   422                    );
   424 // Paired floating point registers--they show up in the same order as the floats,
   425 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   426 // This class is usable for mis-aligned loads as happen in I2C adapters.
   427 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   428                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31 );
   429 %}
   431 //----------DEFINITION BLOCK---------------------------------------------------
   432 // Define name --> value mappings to inform the ADLC of an integer valued name
   433 // Current support includes integer values in the range [0, 0x7FFFFFFF]
   434 // Format:
   435 //        int_def  <name>         ( <int_value>, <expression>);
   436 // Generated Code in ad_<arch>.hpp
   437 //        #define  <name>   (<expression>)
   438 //        // value == <int_value>
   439 // Generated code in ad_<arch>.cpp adlc_verification()
   440 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
   441 //
   442 definitions %{
   443 // The default cost (of an ALU instruction).
   444   int_def DEFAULT_COST      (    100,     100);
   445   int_def HUGE_COST         (1000000, 1000000);
   447 // Memory refs are twice as expensive as run-of-the-mill.
   448   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
   450 // Branches are even more expensive.
   451   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
   452   int_def CALL_COST         (    300, DEFAULT_COST * 3);
   453 %}
   456 //----------SOURCE BLOCK-------------------------------------------------------
   457 // This is a block of C++ code which provides values, functions, and
   458 // definitions necessary in the rest of the architecture description
   459 source_hpp %{
   460 // Must be visible to the DFA in dfa_sparc.cpp
   461 extern bool can_branch_register( Node *bol, Node *cmp );
   463 // Macros to extract hi & lo halves from a long pair.
   464 // G0 is not part of any long pair, so assert on that.
   465 // Prevents accidentally using G1 instead of G0.
   466 #define LONG_HI_REG(x) (x)
   467 #define LONG_LO_REG(x) (x)
   469 %}
   471 source %{
   472 #define __ _masm.
   474 // Block initializing store
   475 #define ASI_BLK_INIT_QUAD_LDD_P    0xE2
   477 // tertiary op of a LoadP or StoreP encoding
   478 #define REGP_OP true
   480 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
   481 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
   482 static Register reg_to_register_object(int register_encoding);
   484 // Used by the DFA in dfa_sparc.cpp.
   485 // Check for being able to use a V9 branch-on-register.  Requires a
   486 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
   487 // extended.  Doesn't work following an integer ADD, for example, because of
   488 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
   489 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
   490 // replace them with zero, which could become sign-extension in a different OS
   491 // release.  There's no obvious reason why an interrupt will ever fill these
   492 // bits with non-zero junk (the registers are reloaded with standard LD
   493 // instructions which either zero-fill or sign-fill).
   494 bool can_branch_register( Node *bol, Node *cmp ) {
   495   if( !BranchOnRegister ) return false;
   496 #ifdef _LP64
   497   if( cmp->Opcode() == Op_CmpP )
   498     return true;  // No problems with pointer compares
   499 #endif
   500   if( cmp->Opcode() == Op_CmpL )
   501     return true;  // No problems with long compares
   503   if( !SparcV9RegsHiBitsZero ) return false;
   504   if( bol->as_Bool()->_test._test != BoolTest::ne &&
   505       bol->as_Bool()->_test._test != BoolTest::eq )
   506      return false;
   508   // Check for comparing against a 'safe' value.  Any operation which
   509   // clears out the high word is safe.  Thus, loads and certain shifts
   510   // are safe, as are non-negative constants.  Any operation which
   511   // preserves zero bits in the high word is safe as long as each of its
   512   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
   513   // inputs are safe.  At present, the only important case to recognize
   514   // seems to be loads.  Constants should fold away, and shifts &
   515   // logicals can use the 'cc' forms.
   516   Node *x = cmp->in(1);
   517   if( x->is_Load() ) return true;
   518   if( x->is_Phi() ) {
   519     for( uint i = 1; i < x->req(); i++ )
   520       if( !x->in(i)->is_Load() )
   521         return false;
   522     return true;
   523   }
   524   return false;
   525 }
   527 // ****************************************************************************
   529 // REQUIRED FUNCTIONALITY
   531 // !!!!! Special hack to get all type of calls to specify the byte offset
   532 //       from the start of the call to the point where the return address
   533 //       will point.
   534 //       The "return address" is the address of the call instruction, plus 8.
   536 int MachCallStaticJavaNode::ret_addr_offset() {
   537   int offset = NativeCall::instruction_size;  // call; delay slot
   538   if (_method_handle_invoke)
   539     offset += 4;  // restore SP
   540   return offset;
   541 }
   543 int MachCallDynamicJavaNode::ret_addr_offset() {
   544   int vtable_index = this->_vtable_index;
   545   if (vtable_index < 0) {
   546     // must be invalid_vtable_index, not nonvirtual_vtable_index
   547     assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
   548     return (NativeMovConstReg::instruction_size +
   549            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
   550   } else {
   551     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
   552     int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
   553     int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
   554     int klass_load_size;
   555     if (UseCompressedOops) {
   556       assert(Universe::heap() != NULL, "java heap should be initialized");
   557       if (Universe::narrow_oop_base() == NULL)
   558         klass_load_size = 2*BytesPerInstWord; // see MacroAssembler::load_klass()
   559       else
   560         klass_load_size = 3*BytesPerInstWord;
   561     } else {
   562       klass_load_size = 1*BytesPerInstWord;
   563     }
   564     if( Assembler::is_simm13(v_off) ) {
   565       return klass_load_size +
   566              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
   567              NativeCall::instruction_size);  // call; delay slot
   568     } else {
   569       return klass_load_size +
   570              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
   571              NativeCall::instruction_size);  // call; delay slot
   572     }
   573   }
   574 }
   576 int MachCallRuntimeNode::ret_addr_offset() {
   577 #ifdef _LP64
   578   return NativeFarCall::instruction_size;  // farcall; delay slot
   579 #else
   580   return NativeCall::instruction_size;  // call; delay slot
   581 #endif
   582 }
   584 // Indicate if the safepoint node needs the polling page as an input.
   585 // Since Sparc does not have absolute addressing, it does.
   586 bool SafePointNode::needs_polling_address_input() {
   587   return true;
   588 }
   590 // emit an interrupt that is caught by the debugger (for debugging compiler)
   591 void emit_break(CodeBuffer &cbuf) {
   592   MacroAssembler _masm(&cbuf);
   593   __ breakpoint_trap();
   594 }
   596 #ifndef PRODUCT
   597 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
   598   st->print("TA");
   599 }
   600 #endif
   602 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   603   emit_break(cbuf);
   604 }
   606 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
   607   return MachNode::size(ra_);
   608 }
   610 // Traceable jump
   611 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
   612   MacroAssembler _masm(&cbuf);
   613   Register rdest = reg_to_register_object(jump_target);
   614   __ JMP(rdest, 0);
   615   __ delayed()->nop();
   616 }
   618 // Traceable jump and set exception pc
   619 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
   620   MacroAssembler _masm(&cbuf);
   621   Register rdest = reg_to_register_object(jump_target);
   622   __ JMP(rdest, 0);
   623   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
   624 }
   626 void emit_nop(CodeBuffer &cbuf) {
   627   MacroAssembler _masm(&cbuf);
   628   __ nop();
   629 }
   631 void emit_illtrap(CodeBuffer &cbuf) {
   632   MacroAssembler _masm(&cbuf);
   633   __ illtrap(0);
   634 }
   637 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
   638   assert(n->rule() != loadUB_rule, "");
   640   intptr_t offset = 0;
   641   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
   642   const Node* addr = n->get_base_and_disp(offset, adr_type);
   643   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
   644   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
   645   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   646   atype = atype->add_offset(offset);
   647   assert(disp32 == offset, "wrong disp32");
   648   return atype->_offset;
   649 }
   652 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
   653   assert(n->rule() != loadUB_rule, "");
   655   intptr_t offset = 0;
   656   Node* addr = n->in(2);
   657   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   658   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
   659     Node* a = addr->in(2/*AddPNode::Address*/);
   660     Node* o = addr->in(3/*AddPNode::Offset*/);
   661     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
   662     atype = a->bottom_type()->is_ptr()->add_offset(offset);
   663     assert(atype->isa_oop_ptr(), "still an oop");
   664   }
   665   offset = atype->is_ptr()->_offset;
   666   if (offset != Type::OffsetBot)  offset += disp32;
   667   return offset;
   668 }
   670 // Standard Sparc opcode form2 field breakdown
   671 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
   672   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
   673   int op = (f30 << 30) |
   674            (f29 << 29) |
   675            (f25 << 25) |
   676            (f22 << 22) |
   677            (f20 << 20) |
   678            (f19 << 19) |
   679            (f0  <<  0);
   680   cbuf.insts()->emit_int32(op);
   681 }
   683 // Standard Sparc opcode form2 field breakdown
   684 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
   685   f0 >>= 10;           // Drop 10 bits
   686   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
   687   int op = (f30 << 30) |
   688            (f25 << 25) |
   689            (f22 << 22) |
   690            (f0  <<  0);
   691   cbuf.insts()->emit_int32(op);
   692 }
   694 // Standard Sparc opcode form3 field breakdown
   695 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
   696   int op = (f30 << 30) |
   697            (f25 << 25) |
   698            (f19 << 19) |
   699            (f14 << 14) |
   700            (f5  <<  5) |
   701            (f0  <<  0);
   702   cbuf.insts()->emit_int32(op);
   703 }
   705 // Standard Sparc opcode form3 field breakdown
   706 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
   707   simm13 &= (1<<13)-1; // Mask to 13 bits
   708   int op = (f30 << 30) |
   709            (f25 << 25) |
   710            (f19 << 19) |
   711            (f14 << 14) |
   712            (1   << 13) | // bit to indicate immediate-mode
   713            (simm13<<0);
   714   cbuf.insts()->emit_int32(op);
   715 }
   717 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
   718   simm10 &= (1<<10)-1; // Mask to 10 bits
   719   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
   720 }
   722 #ifdef ASSERT
   723 // Helper function for VerifyOops in emit_form3_mem_reg
   724 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
   725   warning("VerifyOops encountered unexpected instruction:");
   726   n->dump(2);
   727   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
   728 }
   729 #endif
   732 void emit_form3_mem_reg(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
   733                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
   735 #ifdef ASSERT
   736   // The following code implements the +VerifyOops feature.
   737   // It verifies oop values which are loaded into or stored out of
   738   // the current method activation.  +VerifyOops complements techniques
   739   // like ScavengeALot, because it eagerly inspects oops in transit,
   740   // as they enter or leave the stack, as opposed to ScavengeALot,
   741   // which inspects oops "at rest", in the stack or heap, at safepoints.
   742   // For this reason, +VerifyOops can sometimes detect bugs very close
   743   // to their point of creation.  It can also serve as a cross-check
   744   // on the validity of oop maps, when used toegether with ScavengeALot.
   746   // It would be good to verify oops at other points, especially
   747   // when an oop is used as a base pointer for a load or store.
   748   // This is presently difficult, because it is hard to know when
   749   // a base address is biased or not.  (If we had such information,
   750   // it would be easy and useful to make a two-argument version of
   751   // verify_oop which unbiases the base, and performs verification.)
   753   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
   754   bool is_verified_oop_base  = false;
   755   bool is_verified_oop_load  = false;
   756   bool is_verified_oop_store = false;
   757   int tmp_enc = -1;
   758   if (VerifyOops && src1_enc != R_SP_enc) {
   759     // classify the op, mainly for an assert check
   760     int st_op = 0, ld_op = 0;
   761     switch (primary) {
   762     case Assembler::stb_op3:  st_op = Op_StoreB; break;
   763     case Assembler::sth_op3:  st_op = Op_StoreC; break;
   764     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
   765     case Assembler::stw_op3:  st_op = Op_StoreI; break;
   766     case Assembler::std_op3:  st_op = Op_StoreL; break;
   767     case Assembler::stf_op3:  st_op = Op_StoreF; break;
   768     case Assembler::stdf_op3: st_op = Op_StoreD; break;
   770     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
   771     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
   772     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
   773     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
   774     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
   775     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
   776     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
   777     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
   778     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
   779     case Assembler::ldub_op3: ld_op = Op_LoadB; break;
   780     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
   782     default: ShouldNotReachHere();
   783     }
   784     if (tertiary == REGP_OP) {
   785       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
   786       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
   787       else                          ShouldNotReachHere();
   788       if (st_op) {
   789         // a store
   790         // inputs are (0:control, 1:memory, 2:address, 3:value)
   791         Node* n2 = n->in(3);
   792         if (n2 != NULL) {
   793           const Type* t = n2->bottom_type();
   794           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   795         }
   796       } else {
   797         // a load
   798         const Type* t = n->bottom_type();
   799         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   800       }
   801     }
   803     if (ld_op) {
   804       // a Load
   805       // inputs are (0:control, 1:memory, 2:address)
   806       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
   807           !(n->ideal_Opcode()==Op_LoadLLocked && ld_op==Op_LoadI) &&
   808           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
   809           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
   810           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
   811           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
   812           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
   813           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
   814           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
   815           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
   816           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
   817           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
   818           !(n->ideal_Opcode()==Op_PrefetchRead  && ld_op==Op_LoadI) &&
   819           !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
   820           !(n->ideal_Opcode()==Op_Load2I    && ld_op==Op_LoadD) &&
   821           !(n->ideal_Opcode()==Op_Load4C    && ld_op==Op_LoadD) &&
   822           !(n->ideal_Opcode()==Op_Load4S    && ld_op==Op_LoadD) &&
   823           !(n->ideal_Opcode()==Op_Load8B    && ld_op==Op_LoadD) &&
   824           !(n->rule() == loadUB_rule)) {
   825         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
   826       }
   827     } else if (st_op) {
   828       // a Store
   829       // inputs are (0:control, 1:memory, 2:address, 3:value)
   830       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
   831           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
   832           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
   833           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
   834           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
   835           !(n->ideal_Opcode()==Op_Store2I && st_op==Op_StoreD) &&
   836           !(n->ideal_Opcode()==Op_Store4C && st_op==Op_StoreD) &&
   837           !(n->ideal_Opcode()==Op_Store8B && st_op==Op_StoreD) &&
   838           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
   839         verify_oops_warning(n, n->ideal_Opcode(), st_op);
   840       }
   841     }
   843     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
   844       Node* addr = n->in(2);
   845       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
   846         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
   847         if (atype != NULL) {
   848           intptr_t offset = get_offset_from_base(n, atype, disp32);
   849           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
   850           if (offset != offset_2) {
   851             get_offset_from_base(n, atype, disp32);
   852             get_offset_from_base_2(n, atype, disp32);
   853           }
   854           assert(offset == offset_2, "different offsets");
   855           if (offset == disp32) {
   856             // we now know that src1 is a true oop pointer
   857             is_verified_oop_base = true;
   858             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
   859               if( primary == Assembler::ldd_op3 ) {
   860                 is_verified_oop_base = false; // Cannot 'ldd' into O7
   861               } else {
   862                 tmp_enc = dst_enc;
   863                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
   864                 assert(src1_enc != dst_enc, "");
   865               }
   866             }
   867           }
   868           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
   869                        || offset == oopDesc::mark_offset_in_bytes())) {
   870                       // loading the mark should not be allowed either, but
   871                       // we don't check this since it conflicts with InlineObjectHash
   872                       // usage of LoadINode to get the mark. We could keep the
   873                       // check if we create a new LoadMarkNode
   874             // but do not verify the object before its header is initialized
   875             ShouldNotReachHere();
   876           }
   877         }
   878       }
   879     }
   880   }
   881 #endif
   883   uint instr;
   884   instr = (Assembler::ldst_op << 30)
   885         | (dst_enc        << 25)
   886         | (primary        << 19)
   887         | (src1_enc       << 14);
   889   uint index = src2_enc;
   890   int disp = disp32;
   892   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
   893     disp += STACK_BIAS;
   895   // We should have a compiler bailout here rather than a guarantee.
   896   // Better yet would be some mechanism to handle variable-size matches correctly.
   897   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
   899   if( disp == 0 ) {
   900     // use reg-reg form
   901     // bit 13 is already zero
   902     instr |= index;
   903   } else {
   904     // use reg-imm form
   905     instr |= 0x00002000;          // set bit 13 to one
   906     instr |= disp & 0x1FFF;
   907   }
   909   cbuf.insts()->emit_int32(instr);
   911 #ifdef ASSERT
   912   {
   913     MacroAssembler _masm(&cbuf);
   914     if (is_verified_oop_base) {
   915       __ verify_oop(reg_to_register_object(src1_enc));
   916     }
   917     if (is_verified_oop_store) {
   918       __ verify_oop(reg_to_register_object(dst_enc));
   919     }
   920     if (tmp_enc != -1) {
   921       __ mov(O7, reg_to_register_object(tmp_enc));
   922     }
   923     if (is_verified_oop_load) {
   924       __ verify_oop(reg_to_register_object(dst_enc));
   925     }
   926   }
   927 #endif
   928 }
   930 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false, bool force_far_call = false) {
   931   // The method which records debug information at every safepoint
   932   // expects the call to be the first instruction in the snippet as
   933   // it creates a PcDesc structure which tracks the offset of a call
   934   // from the start of the codeBlob. This offset is computed as
   935   // code_end() - code_begin() of the code which has been emitted
   936   // so far.
   937   // In this particular case we have skirted around the problem by
   938   // putting the "mov" instruction in the delay slot but the problem
   939   // may bite us again at some other point and a cleaner/generic
   940   // solution using relocations would be needed.
   941   MacroAssembler _masm(&cbuf);
   942   __ set_inst_mark();
   944   // We flush the current window just so that there is a valid stack copy
   945   // the fact that the current window becomes active again instantly is
   946   // not a problem there is nothing live in it.
   948 #ifdef ASSERT
   949   int startpos = __ offset();
   950 #endif /* ASSERT */
   952 #ifdef _LP64
   953   // Calls to the runtime or native may not be reachable from compiled code,
   954   // so we generate the far call sequence on 64 bit sparc.
   955   // This code sequence is relocatable to any address, even on LP64.
   956   if ( force_far_call ) {
   957     __ relocate(rtype);
   958     AddressLiteral dest(entry_point);
   959     __ jumpl_to(dest, O7, O7);
   960   }
   961   else
   962 #endif
   963   {
   964      __ call((address)entry_point, rtype);
   965   }
   967   if (preserve_g2)   __ delayed()->mov(G2, L7);
   968   else __ delayed()->nop();
   970   if (preserve_g2)   __ mov(L7, G2);
   972 #ifdef ASSERT
   973   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
   974 #ifdef _LP64
   975     // Trash argument dump slots.
   976     __ set(0xb0b8ac0db0b8ac0d, G1);
   977     __ mov(G1, G5);
   978     __ stx(G1, SP, STACK_BIAS + 0x80);
   979     __ stx(G1, SP, STACK_BIAS + 0x88);
   980     __ stx(G1, SP, STACK_BIAS + 0x90);
   981     __ stx(G1, SP, STACK_BIAS + 0x98);
   982     __ stx(G1, SP, STACK_BIAS + 0xA0);
   983     __ stx(G1, SP, STACK_BIAS + 0xA8);
   984 #else // _LP64
   985     // this is also a native call, so smash the first 7 stack locations,
   986     // and the various registers
   988     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
   989     // while [SP+0x44..0x58] are the argument dump slots.
   990     __ set((intptr_t)0xbaadf00d, G1);
   991     __ mov(G1, G5);
   992     __ sllx(G1, 32, G1);
   993     __ or3(G1, G5, G1);
   994     __ mov(G1, G5);
   995     __ stx(G1, SP, 0x40);
   996     __ stx(G1, SP, 0x48);
   997     __ stx(G1, SP, 0x50);
   998     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
   999 #endif // _LP64
  1001 #endif /*ASSERT*/
  1004 //=============================================================================
  1005 // REQUIRED FUNCTIONALITY for encoding
  1006 void emit_lo(CodeBuffer &cbuf, int val) {  }
  1007 void emit_hi(CodeBuffer &cbuf, int val) {  }
  1010 //=============================================================================
  1012 #ifndef PRODUCT
  1013 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1014   Compile* C = ra_->C;
  1016   for (int i = 0; i < OptoPrologueNops; i++) {
  1017     st->print_cr("NOP"); st->print("\t");
  1020   if( VerifyThread ) {
  1021     st->print_cr("Verify_Thread"); st->print("\t");
  1024   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1026   // Calls to C2R adapters often do not accept exceptional returns.
  1027   // We require that their callers must bang for them.  But be careful, because
  1028   // some VM calls (such as call site linkage) can use several kilobytes of
  1029   // stack.  But the stack safety zone should account for that.
  1030   // See bugs 4446381, 4468289, 4497237.
  1031   if (C->need_stack_bang(framesize)) {
  1032     st->print_cr("! stack bang"); st->print("\t");
  1035   if (Assembler::is_simm13(-framesize)) {
  1036     st->print   ("SAVE   R_SP,-%d,R_SP",framesize);
  1037   } else {
  1038     st->print_cr("SETHI  R_SP,hi%%(-%d),R_G3",framesize); st->print("\t");
  1039     st->print_cr("ADD    R_G3,lo%%(-%d),R_G3",framesize); st->print("\t");
  1040     st->print   ("SAVE   R_SP,R_G3,R_SP");
  1044 #endif
  1046 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1047   Compile* C = ra_->C;
  1048   MacroAssembler _masm(&cbuf);
  1050   for (int i = 0; i < OptoPrologueNops; i++) {
  1051     __ nop();
  1054   __ verify_thread();
  1056   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1057   assert(framesize >= 16*wordSize, "must have room for reg. save area");
  1058   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
  1060   // Calls to C2R adapters often do not accept exceptional returns.
  1061   // We require that their callers must bang for them.  But be careful, because
  1062   // some VM calls (such as call site linkage) can use several kilobytes of
  1063   // stack.  But the stack safety zone should account for that.
  1064   // See bugs 4446381, 4468289, 4497237.
  1065   if (C->need_stack_bang(framesize)) {
  1066     __ generate_stack_overflow_check(framesize);
  1069   if (Assembler::is_simm13(-framesize)) {
  1070     __ save(SP, -framesize, SP);
  1071   } else {
  1072     __ sethi(-framesize & ~0x3ff, G3);
  1073     __ add(G3, -framesize & 0x3ff, G3);
  1074     __ save(SP, G3, SP);
  1076   C->set_frame_complete( __ offset() );
  1079 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
  1080   return MachNode::size(ra_);
  1083 int MachPrologNode::reloc() const {
  1084   return 10; // a large enough number
  1087 //=============================================================================
  1088 #ifndef PRODUCT
  1089 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1090   Compile* C = ra_->C;
  1092   if( do_polling() && ra_->C->is_method_compilation() ) {
  1093     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
  1094 #ifdef _LP64
  1095     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
  1096 #else
  1097     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
  1098 #endif
  1101   if( do_polling() )
  1102     st->print("RET\n\t");
  1104   st->print("RESTORE");
  1106 #endif
  1108 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1109   MacroAssembler _masm(&cbuf);
  1110   Compile* C = ra_->C;
  1112   __ verify_thread();
  1114   // If this does safepoint polling, then do it here
  1115   if( do_polling() && ra_->C->is_method_compilation() ) {
  1116     AddressLiteral polling_page(os::get_polling_page());
  1117     __ sethi(polling_page, L0);
  1118     __ relocate(relocInfo::poll_return_type);
  1119     __ ld_ptr( L0, 0, G0 );
  1122   // If this is a return, then stuff the restore in the delay slot
  1123   if( do_polling() ) {
  1124     __ ret();
  1125     __ delayed()->restore();
  1126   } else {
  1127     __ restore();
  1131 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
  1132   return MachNode::size(ra_);
  1135 int MachEpilogNode::reloc() const {
  1136   return 16; // a large enough number
  1139 const Pipeline * MachEpilogNode::pipeline() const {
  1140   return MachNode::pipeline_class();
  1143 int MachEpilogNode::safepoint_offset() const {
  1144   assert( do_polling(), "no return for this epilog node");
  1145   return MacroAssembler::size_of_sethi(os::get_polling_page());
  1148 //=============================================================================
  1150 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
  1151 enum RC { rc_bad, rc_int, rc_float, rc_stack };
  1152 static enum RC rc_class( OptoReg::Name reg ) {
  1153   if( !OptoReg::is_valid(reg)  ) return rc_bad;
  1154   if (OptoReg::is_stack(reg)) return rc_stack;
  1155   VMReg r = OptoReg::as_VMReg(reg);
  1156   if (r->is_Register()) return rc_int;
  1157   assert(r->is_FloatRegister(), "must be");
  1158   return rc_float;
  1161 static int impl_helper( const MachNode *mach, CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
  1162   if( cbuf ) {
  1163     // Better yet would be some mechanism to handle variable-size matches correctly
  1164     if (!Assembler::is_simm13(offset + STACK_BIAS)) {
  1165       ra_->C->record_method_not_compilable("unable to handle large constant offsets");
  1166     } else {
  1167       emit_form3_mem_reg(*cbuf, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
  1170 #ifndef PRODUCT
  1171   else if( !do_size ) {
  1172     if( size != 0 ) st->print("\n\t");
  1173     if( is_load ) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
  1174     else          st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
  1176 #endif
  1177   return size+4;
  1180 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
  1181   if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
  1182 #ifndef PRODUCT
  1183   else if( !do_size ) {
  1184     if( size != 0 ) st->print("\n\t");
  1185     st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
  1187 #endif
  1188   return size+4;
  1191 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
  1192                                         PhaseRegAlloc *ra_,
  1193                                         bool do_size,
  1194                                         outputStream* st ) const {
  1195   // Get registers to move
  1196   OptoReg::Name src_second = ra_->get_reg_second(in(1));
  1197   OptoReg::Name src_first = ra_->get_reg_first(in(1));
  1198   OptoReg::Name dst_second = ra_->get_reg_second(this );
  1199   OptoReg::Name dst_first = ra_->get_reg_first(this );
  1201   enum RC src_second_rc = rc_class(src_second);
  1202   enum RC src_first_rc = rc_class(src_first);
  1203   enum RC dst_second_rc = rc_class(dst_second);
  1204   enum RC dst_first_rc = rc_class(dst_first);
  1206   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
  1208   // Generate spill code!
  1209   int size = 0;
  1211   if( src_first == dst_first && src_second == dst_second )
  1212     return size;            // Self copy, no move
  1214   // --------------------------------------
  1215   // Check for mem-mem move.  Load into unused float registers and fall into
  1216   // the float-store case.
  1217   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
  1218     int offset = ra_->reg2offset(src_first);
  1219     // Further check for aligned-adjacent pair, so we can use a double load
  1220     if( (src_first&1)==0 && src_first+1 == src_second ) {
  1221       src_second    = OptoReg::Name(R_F31_num);
  1222       src_second_rc = rc_float;
  1223       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
  1224     } else {
  1225       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
  1227     src_first    = OptoReg::Name(R_F30_num);
  1228     src_first_rc = rc_float;
  1231   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
  1232     int offset = ra_->reg2offset(src_second);
  1233     size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
  1234     src_second    = OptoReg::Name(R_F31_num);
  1235     src_second_rc = rc_float;
  1238   // --------------------------------------
  1239   // Check for float->int copy; requires a trip through memory
  1240   if( src_first_rc == rc_float && dst_first_rc == rc_int ) {
  1241     int offset = frame::register_save_words*wordSize;
  1242     if( cbuf ) {
  1243       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
  1244       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1245       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1246       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
  1248 #ifndef PRODUCT
  1249     else if( !do_size ) {
  1250       if( size != 0 ) st->print("\n\t");
  1251       st->print(  "SUB    R_SP,16,R_SP\n");
  1252       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1253       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1254       st->print("\tADD    R_SP,16,R_SP\n");
  1256 #endif
  1257     size += 16;
  1260   // --------------------------------------
  1261   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
  1262   // In such cases, I have to do the big-endian swap.  For aligned targets, the
  1263   // hardware does the flop for me.  Doubles are always aligned, so no problem
  1264   // there.  Misaligned sources only come from native-long-returns (handled
  1265   // special below).
  1266 #ifndef _LP64
  1267   if( src_first_rc == rc_int &&     // source is already big-endian
  1268       src_second_rc != rc_bad &&    // 64-bit move
  1269       ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
  1270     assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
  1271     // Do the big-endian flop.
  1272     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
  1273     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
  1275 #endif
  1277   // --------------------------------------
  1278   // Check for integer reg-reg copy
  1279   if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
  1280 #ifndef _LP64
  1281     if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
  1282       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1283       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1284       //       operand contains the least significant word of the 64-bit value and vice versa.
  1285       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
  1286       assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
  1287       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
  1288       if( cbuf ) {
  1289         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
  1290         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
  1291         emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
  1292 #ifndef PRODUCT
  1293       } else if( !do_size ) {
  1294         if( size != 0 ) st->print("\n\t");
  1295         st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
  1296         st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
  1297         st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
  1298 #endif
  1300       return size+12;
  1302     else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
  1303       // returning a long value in I0/I1
  1304       // a SpillCopy must be able to target a return instruction's reg_class
  1305       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1306       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1307       //       operand contains the least significant word of the 64-bit value and vice versa.
  1308       OptoReg::Name tdest = dst_first;
  1310       if (src_first == dst_first) {
  1311         tdest = OptoReg::Name(R_O7_num);
  1312         size += 4;
  1315       if( cbuf ) {
  1316         assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
  1317         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
  1318         // ShrL_reg_imm6
  1319         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
  1320         // ShrR_reg_imm6  src, 0, dst
  1321         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
  1322         if (tdest != dst_first) {
  1323           emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
  1326 #ifndef PRODUCT
  1327       else if( !do_size ) {
  1328         if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
  1329         st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
  1330         st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
  1331         if (tdest != dst_first) {
  1332           st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
  1335 #endif // PRODUCT
  1336       return size+8;
  1338 #endif // !_LP64
  1339     // Else normal reg-reg copy
  1340     assert( src_second != dst_first, "smashed second before evacuating it" );
  1341     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
  1342     assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
  1343     // This moves an aligned adjacent pair.
  1344     // See if we are done.
  1345     if( src_first+1 == src_second && dst_first+1 == dst_second )
  1346       return size;
  1349   // Check for integer store
  1350   if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
  1351     int offset = ra_->reg2offset(dst_first);
  1352     // Further check for aligned-adjacent pair, so we can use a double store
  1353     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1354       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
  1355     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
  1358   // Check for integer load
  1359   if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
  1360     int offset = ra_->reg2offset(src_first);
  1361     // Further check for aligned-adjacent pair, so we can use a double load
  1362     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1363       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
  1364     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1367   // Check for float reg-reg copy
  1368   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
  1369     // Further check for aligned-adjacent pair, so we can use a double move
  1370     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1371       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
  1372     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
  1375   // Check for float store
  1376   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
  1377     int offset = ra_->reg2offset(dst_first);
  1378     // Further check for aligned-adjacent pair, so we can use a double store
  1379     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1380       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
  1381     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1384   // Check for float load
  1385   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
  1386     int offset = ra_->reg2offset(src_first);
  1387     // Further check for aligned-adjacent pair, so we can use a double load
  1388     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1389       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
  1390     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
  1393   // --------------------------------------------------------------------
  1394   // Check for hi bits still needing moving.  Only happens for misaligned
  1395   // arguments to native calls.
  1396   if( src_second == dst_second )
  1397     return size;               // Self copy; no move
  1398   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
  1400 #ifndef _LP64
  1401   // In the LP64 build, all registers can be moved as aligned/adjacent
  1402   // pairs, so there's never any need to move the high bits separately.
  1403   // The 32-bit builds have to deal with the 32-bit ABI which can force
  1404   // all sorts of silly alignment problems.
  1406   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
  1407   // 32-bits of a 64-bit register, but are needed in low bits of another
  1408   // register (else it's a hi-bits-to-hi-bits copy which should have
  1409   // happened already as part of a 64-bit move)
  1410   if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
  1411     assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
  1412     assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
  1413     // Shift src_second down to dst_second's low bits.
  1414     if( cbuf ) {
  1415       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1416 #ifndef PRODUCT
  1417     } else if( !do_size ) {
  1418       if( size != 0 ) st->print("\n\t");
  1419       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
  1420 #endif
  1422     return size+4;
  1425   // Check for high word integer store.  Must down-shift the hi bits
  1426   // into a temp register, then fall into the case of storing int bits.
  1427   if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
  1428     // Shift src_second down to dst_second's low bits.
  1429     if( cbuf ) {
  1430       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1431 #ifndef PRODUCT
  1432     } else if( !do_size ) {
  1433       if( size != 0 ) st->print("\n\t");
  1434       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
  1435 #endif
  1437     size+=4;
  1438     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
  1441   // Check for high word integer load
  1442   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
  1443     return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
  1445   // Check for high word integer store
  1446   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
  1447     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
  1449   // Check for high word float store
  1450   if( src_second_rc == rc_float && dst_second_rc == rc_stack )
  1451     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
  1453 #endif // !_LP64
  1455   Unimplemented();
  1458 #ifndef PRODUCT
  1459 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1460   implementation( NULL, ra_, false, st );
  1462 #endif
  1464 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1465   implementation( &cbuf, ra_, false, NULL );
  1468 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1469   return implementation( NULL, ra_, true, NULL );
  1472 //=============================================================================
  1473 #ifndef PRODUCT
  1474 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
  1475   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
  1477 #endif
  1479 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
  1480   MacroAssembler _masm(&cbuf);
  1481   for(int i = 0; i < _count; i += 1) {
  1482     __ nop();
  1486 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
  1487   return 4 * _count;
  1491 //=============================================================================
  1492 #ifndef PRODUCT
  1493 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1494   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1495   int reg = ra_->get_reg_first(this);
  1496   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
  1498 #endif
  1500 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1501   MacroAssembler _masm(&cbuf);
  1502   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
  1503   int reg = ra_->get_encode(this);
  1505   if (Assembler::is_simm13(offset)) {
  1506      __ add(SP, offset, reg_to_register_object(reg));
  1507   } else {
  1508      __ set(offset, O7);
  1509      __ add(SP, O7, reg_to_register_object(reg));
  1513 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1514   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
  1515   assert(ra_ == ra_->C->regalloc(), "sanity");
  1516   return ra_->C->scratch_emit_size(this);
  1519 //=============================================================================
  1521 // emit call stub, compiled java to interpretor
  1522 void emit_java_to_interp(CodeBuffer &cbuf ) {
  1524   // Stub is fixed up when the corresponding call is converted from calling
  1525   // compiled code to calling interpreted code.
  1526   // set (empty), G5
  1527   // jmp -1
  1529   address mark = cbuf.insts_mark();  // get mark within main instrs section
  1531   MacroAssembler _masm(&cbuf);
  1533   address base =
  1534   __ start_a_stub(Compile::MAX_stubs_size);
  1535   if (base == NULL)  return;  // CodeBuffer::expand failed
  1537   // static stub relocation stores the instruction address of the call
  1538   __ relocate(static_stub_Relocation::spec(mark));
  1540   __ set_oop(NULL, reg_to_register_object(Matcher::inline_cache_reg_encode()));
  1542   __ set_inst_mark();
  1543   AddressLiteral addrlit(-1);
  1544   __ JUMP(addrlit, G3, 0);
  1546   __ delayed()->nop();
  1548   // Update current stubs pointer and restore code_end.
  1549   __ end_a_stub();
  1552 // size of call stub, compiled java to interpretor
  1553 uint size_java_to_interp() {
  1554   // This doesn't need to be accurate but it must be larger or equal to
  1555   // the real size of the stub.
  1556   return (NativeMovConstReg::instruction_size +  // sethi/setlo;
  1557           NativeJump::instruction_size + // sethi; jmp; nop
  1558           (TraceJumps ? 20 * BytesPerInstWord : 0) );
  1560 // relocation entries for call stub, compiled java to interpretor
  1561 uint reloc_java_to_interp() {
  1562   return 10;  // 4 in emit_java_to_interp + 1 in Java_Static_Call
  1566 //=============================================================================
  1567 #ifndef PRODUCT
  1568 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1569   st->print_cr("\nUEP:");
  1570 #ifdef    _LP64
  1571   if (UseCompressedOops) {
  1572     assert(Universe::heap() != NULL, "java heap should be initialized");
  1573     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
  1574     st->print_cr("\tSLL    R_G5,3,R_G5");
  1575     if (Universe::narrow_oop_base() != NULL)
  1576       st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
  1577   } else {
  1578     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1580   st->print_cr("\tCMP    R_G5,R_G3" );
  1581   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1582 #else  // _LP64
  1583   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1584   st->print_cr("\tCMP    R_G5,R_G3" );
  1585   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1586 #endif // _LP64
  1588 #endif
  1590 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1591   MacroAssembler _masm(&cbuf);
  1592   Label L;
  1593   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
  1594   Register temp_reg   = G3;
  1595   assert( G5_ic_reg != temp_reg, "conflicting registers" );
  1597   // Load klass from receiver
  1598   __ load_klass(O0, temp_reg);
  1599   // Compare against expected klass
  1600   __ cmp(temp_reg, G5_ic_reg);
  1601   // Branch to miss code, checks xcc or icc depending
  1602   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
  1605 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  1606   return MachNode::size(ra_);
  1610 //=============================================================================
  1612 uint size_exception_handler() {
  1613   if (TraceJumps) {
  1614     return (400); // just a guess
  1616   return ( NativeJump::instruction_size ); // sethi;jmp;nop
  1619 uint size_deopt_handler() {
  1620   if (TraceJumps) {
  1621     return (400); // just a guess
  1623   return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
  1626 // Emit exception handler code.
  1627 int emit_exception_handler(CodeBuffer& cbuf) {
  1628   Register temp_reg = G3;
  1629   AddressLiteral exception_blob(OptoRuntime::exception_blob()->entry_point());
  1630   MacroAssembler _masm(&cbuf);
  1632   address base =
  1633   __ start_a_stub(size_exception_handler());
  1634   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1636   int offset = __ offset();
  1638   __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
  1639   __ delayed()->nop();
  1641   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
  1643   __ end_a_stub();
  1645   return offset;
  1648 int emit_deopt_handler(CodeBuffer& cbuf) {
  1649   // Can't use any of the current frame's registers as we may have deopted
  1650   // at a poll and everything (including G3) can be live.
  1651   Register temp_reg = L0;
  1652   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
  1653   MacroAssembler _masm(&cbuf);
  1655   address base =
  1656   __ start_a_stub(size_deopt_handler());
  1657   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1659   int offset = __ offset();
  1660   __ save_frame(0);
  1661   __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
  1662   __ delayed()->restore();
  1664   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
  1666   __ end_a_stub();
  1667   return offset;
  1671 // Given a register encoding, produce a Integer Register object
  1672 static Register reg_to_register_object(int register_encoding) {
  1673   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
  1674   return as_Register(register_encoding);
  1677 // Given a register encoding, produce a single-precision Float Register object
  1678 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
  1679   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
  1680   return as_SingleFloatRegister(register_encoding);
  1683 // Given a register encoding, produce a double-precision Float Register object
  1684 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
  1685   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
  1686   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
  1687   return as_DoubleFloatRegister(register_encoding);
  1690 const bool Matcher::match_rule_supported(int opcode) {
  1691   if (!has_match_rule(opcode))
  1692     return false;
  1694   switch (opcode) {
  1695   case Op_CountLeadingZerosI:
  1696   case Op_CountLeadingZerosL:
  1697   case Op_CountTrailingZerosI:
  1698   case Op_CountTrailingZerosL:
  1699     if (!UsePopCountInstruction)
  1700       return false;
  1701     break;
  1704   return true;  // Per default match rules are supported.
  1707 int Matcher::regnum_to_fpu_offset(int regnum) {
  1708   return regnum - 32; // The FP registers are in the second chunk
  1711 #ifdef ASSERT
  1712 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
  1713 #endif
  1715 // Vector width in bytes
  1716 const uint Matcher::vector_width_in_bytes(void) {
  1717   return 8;
  1720 // Vector ideal reg
  1721 const uint Matcher::vector_ideal_reg(void) {
  1722   return Op_RegD;
  1725 // USII supports fxtof through the whole range of number, USIII doesn't
  1726 const bool Matcher::convL2FSupported(void) {
  1727   return VM_Version::has_fast_fxtof();
  1730 // Is this branch offset short enough that a short branch can be used?
  1731 //
  1732 // NOTE: If the platform does not provide any short branch variants, then
  1733 //       this method should return false for offset 0.
  1734 bool Matcher::is_short_branch_offset(int rule, int offset) {
  1735   return false;
  1738 const bool Matcher::isSimpleConstant64(jlong value) {
  1739   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
  1740   // Depends on optimizations in MacroAssembler::setx.
  1741   int hi = (int)(value >> 32);
  1742   int lo = (int)(value & ~0);
  1743   return (hi == 0) || (hi == -1) || (lo == 0);
  1746 // No scaling for the parameter the ClearArray node.
  1747 const bool Matcher::init_array_count_is_in_bytes = true;
  1749 // Threshold size for cleararray.
  1750 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  1752 // Should the Matcher clone shifts on addressing modes, expecting them to
  1753 // be subsumed into complex addressing expressions or compute them into
  1754 // registers?  True for Intel but false for most RISCs
  1755 const bool Matcher::clone_shift_expressions = false;
  1757 bool Matcher::narrow_oop_use_complex_address() {
  1758   NOT_LP64(ShouldNotCallThis());
  1759   assert(UseCompressedOops, "only for compressed oops code");
  1760   return false;
  1763 // Is it better to copy float constants, or load them directly from memory?
  1764 // Intel can load a float constant from a direct address, requiring no
  1765 // extra registers.  Most RISCs will have to materialize an address into a
  1766 // register first, so they would do better to copy the constant from stack.
  1767 const bool Matcher::rematerialize_float_constants = false;
  1769 // If CPU can load and store mis-aligned doubles directly then no fixup is
  1770 // needed.  Else we split the double into 2 integer pieces and move it
  1771 // piece-by-piece.  Only happens when passing doubles into C code as the
  1772 // Java calling convention forces doubles to be aligned.
  1773 #ifdef _LP64
  1774 const bool Matcher::misaligned_doubles_ok = true;
  1775 #else
  1776 const bool Matcher::misaligned_doubles_ok = false;
  1777 #endif
  1779 // No-op on SPARC.
  1780 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  1783 // Advertise here if the CPU requires explicit rounding operations
  1784 // to implement the UseStrictFP mode.
  1785 const bool Matcher::strict_fp_requires_explicit_rounding = false;
  1787 // Are floats conerted to double when stored to stack during deoptimization?
  1788 // Sparc does not handle callee-save floats.
  1789 bool Matcher::float_in_double() { return false; }
  1791 // Do ints take an entire long register or just half?
  1792 // Note that we if-def off of _LP64.
  1793 // The relevant question is how the int is callee-saved.  In _LP64
  1794 // the whole long is written but de-opt'ing will have to extract
  1795 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
  1796 #ifdef _LP64
  1797 const bool Matcher::int_in_long = true;
  1798 #else
  1799 const bool Matcher::int_in_long = false;
  1800 #endif
  1802 // Return whether or not this register is ever used as an argument.  This
  1803 // function is used on startup to build the trampoline stubs in generateOptoStub.
  1804 // Registers not mentioned will be killed by the VM call in the trampoline, and
  1805 // arguments in those registers not be available to the callee.
  1806 bool Matcher::can_be_java_arg( int reg ) {
  1807   // Standard sparc 6 args in registers
  1808   if( reg == R_I0_num ||
  1809       reg == R_I1_num ||
  1810       reg == R_I2_num ||
  1811       reg == R_I3_num ||
  1812       reg == R_I4_num ||
  1813       reg == R_I5_num ) return true;
  1814 #ifdef _LP64
  1815   // 64-bit builds can pass 64-bit pointers and longs in
  1816   // the high I registers
  1817   if( reg == R_I0H_num ||
  1818       reg == R_I1H_num ||
  1819       reg == R_I2H_num ||
  1820       reg == R_I3H_num ||
  1821       reg == R_I4H_num ||
  1822       reg == R_I5H_num ) return true;
  1824   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
  1825     return true;
  1828 #else
  1829   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
  1830   // Longs cannot be passed in O regs, because O regs become I regs
  1831   // after a 'save' and I regs get their high bits chopped off on
  1832   // interrupt.
  1833   if( reg == R_G1H_num || reg == R_G1_num ) return true;
  1834   if( reg == R_G4H_num || reg == R_G4_num ) return true;
  1835 #endif
  1836   // A few float args in registers
  1837   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
  1839   return false;
  1842 bool Matcher::is_spillable_arg( int reg ) {
  1843   return can_be_java_arg(reg);
  1846 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
  1847   // Use hardware SDIVX instruction when it is
  1848   // faster than a code which use multiply.
  1849   return VM_Version::has_fast_idiv();
  1852 // Register for DIVI projection of divmodI
  1853 RegMask Matcher::divI_proj_mask() {
  1854   ShouldNotReachHere();
  1855   return RegMask();
  1858 // Register for MODI projection of divmodI
  1859 RegMask Matcher::modI_proj_mask() {
  1860   ShouldNotReachHere();
  1861   return RegMask();
  1864 // Register for DIVL projection of divmodL
  1865 RegMask Matcher::divL_proj_mask() {
  1866   ShouldNotReachHere();
  1867   return RegMask();
  1870 // Register for MODL projection of divmodL
  1871 RegMask Matcher::modL_proj_mask() {
  1872   ShouldNotReachHere();
  1873   return RegMask();
  1876 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
  1877   return L7_REGP_mask;
  1880 %}
  1883 // The intptr_t operand types, defined by textual substitution.
  1884 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
  1885 #ifdef _LP64
  1886 #define immX      immL
  1887 #define immX13    immL13
  1888 #define immX13m7  immL13m7
  1889 #define iRegX     iRegL
  1890 #define g1RegX    g1RegL
  1891 #else
  1892 #define immX      immI
  1893 #define immX13    immI13
  1894 #define immX13m7  immI13m7
  1895 #define iRegX     iRegI
  1896 #define g1RegX    g1RegI
  1897 #endif
  1899 //----------ENCODING BLOCK-----------------------------------------------------
  1900 // This block specifies the encoding classes used by the compiler to output
  1901 // byte streams.  Encoding classes are parameterized macros used by
  1902 // Machine Instruction Nodes in order to generate the bit encoding of the
  1903 // instruction.  Operands specify their base encoding interface with the
  1904 // interface keyword.  There are currently supported four interfaces,
  1905 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
  1906 // operand to generate a function which returns its register number when
  1907 // queried.   CONST_INTER causes an operand to generate a function which
  1908 // returns the value of the constant when queried.  MEMORY_INTER causes an
  1909 // operand to generate four functions which return the Base Register, the
  1910 // Index Register, the Scale Value, and the Offset Value of the operand when
  1911 // queried.  COND_INTER causes an operand to generate six functions which
  1912 // return the encoding code (ie - encoding bits for the instruction)
  1913 // associated with each basic boolean condition for a conditional instruction.
  1914 //
  1915 // Instructions specify two basic values for encoding.  Again, a function
  1916 // is available to check if the constant displacement is an oop. They use the
  1917 // ins_encode keyword to specify their encoding classes (which must be
  1918 // a sequence of enc_class names, and their parameters, specified in
  1919 // the encoding block), and they use the
  1920 // opcode keyword to specify, in order, their primary, secondary, and
  1921 // tertiary opcode.  Only the opcode sections which a particular instruction
  1922 // needs for encoding need to be specified.
  1923 encode %{
  1924   enc_class enc_untested %{
  1925 #ifdef ASSERT
  1926     MacroAssembler _masm(&cbuf);
  1927     __ untested("encoding");
  1928 #endif
  1929   %}
  1931   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
  1932     emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
  1933                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  1934   %}
  1936   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
  1937     emit_form3_mem_reg(cbuf, this, $primary, -1,
  1938                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  1939   %}
  1941   enc_class form3_mem_prefetch_read( memory mem ) %{
  1942     emit_form3_mem_reg(cbuf, this, $primary, -1,
  1943                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
  1944   %}
  1946   enc_class form3_mem_prefetch_write( memory mem ) %{
  1947     emit_form3_mem_reg(cbuf, this, $primary, -1,
  1948                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
  1949   %}
  1951   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
  1952     assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
  1953     assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
  1954     guarantee($mem$$index == R_G0_enc, "double index?");
  1955     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
  1956     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
  1957     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
  1958     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
  1959   %}
  1961   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
  1962     assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
  1963     assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
  1964     guarantee($mem$$index == R_G0_enc, "double index?");
  1965     // Load long with 2 instructions
  1966     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
  1967     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
  1968   %}
  1970   //%%% form3_mem_plus_4_reg is a hack--get rid of it
  1971   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
  1972     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
  1973     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
  1974   %}
  1976   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
  1977     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  1978     if( $rs2$$reg != $rd$$reg )
  1979       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
  1980   %}
  1982   // Target lo half of long
  1983   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
  1984     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  1985     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
  1986       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
  1987   %}
  1989   // Source lo half of long
  1990   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
  1991     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  1992     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
  1993       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
  1994   %}
  1996   // Target hi half of long
  1997   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
  1998     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
  1999   %}
  2001   // Source lo half of long, and leave it sign extended.
  2002   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
  2003     // Sign extend low half
  2004     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
  2005   %}
  2007   // Source hi half of long, and leave it sign extended.
  2008   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
  2009     // Shift high half to low half
  2010     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
  2011   %}
  2013   // Source hi half of long
  2014   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
  2015     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2016     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
  2017       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
  2018   %}
  2020   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
  2021     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
  2022   %}
  2024   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
  2025     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
  2026     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
  2027   %}
  2029   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
  2030     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
  2031     // clear if nothing else is happening
  2032     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
  2033     // blt,a,pn done
  2034     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
  2035     // mov dst,-1 in delay slot
  2036     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2037   %}
  2039   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
  2040     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
  2041   %}
  2043   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
  2044     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
  2045   %}
  2047   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
  2048     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
  2049   %}
  2051   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
  2052     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
  2053   %}
  2055   enc_class move_return_pc_to_o1() %{
  2056     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
  2057   %}
  2059 #ifdef _LP64
  2060   /* %%% merge with enc_to_bool */
  2061   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
  2062     MacroAssembler _masm(&cbuf);
  2064     Register   src_reg = reg_to_register_object($src$$reg);
  2065     Register   dst_reg = reg_to_register_object($dst$$reg);
  2066     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
  2067   %}
  2068 #endif
  2070   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
  2071     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
  2072     MacroAssembler _masm(&cbuf);
  2074     Register   p_reg = reg_to_register_object($p$$reg);
  2075     Register   q_reg = reg_to_register_object($q$$reg);
  2076     Register   y_reg = reg_to_register_object($y$$reg);
  2077     Register tmp_reg = reg_to_register_object($tmp$$reg);
  2079     __ subcc( p_reg, q_reg,   p_reg );
  2080     __ add  ( p_reg, y_reg, tmp_reg );
  2081     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
  2082   %}
  2084   enc_class form_d2i_helper(regD src, regF dst) %{
  2085     // fcmp %fcc0,$src,$src
  2086     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2087     // branch %fcc0 not-nan, predict taken
  2088     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2089     // fdtoi $src,$dst
  2090     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
  2091     // fitos $dst,$dst (if nan)
  2092     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2093     // clear $dst (if nan)
  2094     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2095     // carry on here...
  2096   %}
  2098   enc_class form_d2l_helper(regD src, regD dst) %{
  2099     // fcmp %fcc0,$src,$src  check for NAN
  2100     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2101     // branch %fcc0 not-nan, predict taken
  2102     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2103     // fdtox $src,$dst   convert in delay slot
  2104     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
  2105     // fxtod $dst,$dst  (if nan)
  2106     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2107     // clear $dst (if nan)
  2108     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2109     // carry on here...
  2110   %}
  2112   enc_class form_f2i_helper(regF src, regF dst) %{
  2113     // fcmps %fcc0,$src,$src
  2114     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2115     // branch %fcc0 not-nan, predict taken
  2116     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2117     // fstoi $src,$dst
  2118     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
  2119     // fitos $dst,$dst (if nan)
  2120     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2121     // clear $dst (if nan)
  2122     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2123     // carry on here...
  2124   %}
  2126   enc_class form_f2l_helper(regF src, regD dst) %{
  2127     // fcmps %fcc0,$src,$src
  2128     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2129     // branch %fcc0 not-nan, predict taken
  2130     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2131     // fstox $src,$dst
  2132     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
  2133     // fxtod $dst,$dst (if nan)
  2134     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2135     // clear $dst (if nan)
  2136     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2137     // carry on here...
  2138   %}
  2140   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2141   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2142   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2143   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2145   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
  2147   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2148   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
  2150   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
  2151     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2152   %}
  2154   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
  2155     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2156   %}
  2158   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
  2159     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2160   %}
  2162   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
  2163     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2164   %}
  2166   enc_class form3_convI2F(regF rs2, regF rd) %{
  2167     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
  2168   %}
  2170   // Encloding class for traceable jumps
  2171   enc_class form_jmpl(g3RegP dest) %{
  2172     emit_jmpl(cbuf, $dest$$reg);
  2173   %}
  2175   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
  2176     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
  2177   %}
  2179   enc_class form2_nop() %{
  2180     emit_nop(cbuf);
  2181   %}
  2183   enc_class form2_illtrap() %{
  2184     emit_illtrap(cbuf);
  2185   %}
  2188   // Compare longs and convert into -1, 0, 1.
  2189   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
  2190     // CMP $src1,$src2
  2191     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
  2192     // blt,a,pn done
  2193     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
  2194     // mov dst,-1 in delay slot
  2195     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2196     // bgt,a,pn done
  2197     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
  2198     // mov dst,1 in delay slot
  2199     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
  2200     // CLR    $dst
  2201     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
  2202   %}
  2204   enc_class enc_PartialSubtypeCheck() %{
  2205     MacroAssembler _masm(&cbuf);
  2206     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
  2207     __ delayed()->nop();
  2208   %}
  2210   enc_class enc_bp( Label labl, cmpOp cmp, flagsReg cc ) %{
  2211     MacroAssembler _masm(&cbuf);
  2212     Label &L = *($labl$$label);
  2213     Assembler::Predict predict_taken =
  2214       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  2216     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, L);
  2217     __ delayed()->nop();
  2218   %}
  2220   enc_class enc_bpl( Label labl, cmpOp cmp, flagsRegL cc ) %{
  2221     MacroAssembler _masm(&cbuf);
  2222     Label &L = *($labl$$label);
  2223     Assembler::Predict predict_taken =
  2224       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  2226     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, L);
  2227     __ delayed()->nop();
  2228   %}
  2230   enc_class enc_bpx( Label labl, cmpOp cmp, flagsRegP cc ) %{
  2231     MacroAssembler _masm(&cbuf);
  2232     Label &L = *($labl$$label);
  2233     Assembler::Predict predict_taken =
  2234       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  2236     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, L);
  2237     __ delayed()->nop();
  2238   %}
  2240   enc_class enc_fbp( Label labl, cmpOpF cmp, flagsRegF cc ) %{
  2241     MacroAssembler _masm(&cbuf);
  2242     Label &L = *($labl$$label);
  2243     Assembler::Predict predict_taken =
  2244       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  2246     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($cc$$reg), predict_taken, L);
  2247     __ delayed()->nop();
  2248   %}
  2250   enc_class jump_enc( iRegX switch_val, o7RegI table) %{
  2251     MacroAssembler _masm(&cbuf);
  2253     Register switch_reg       = as_Register($switch_val$$reg);
  2254     Register table_reg        = O7;
  2256     address table_base = __ address_table_constant(_index2label);
  2257     RelocationHolder rspec = internal_word_Relocation::spec(table_base);
  2259     // Move table address into a register.
  2260     __ set(table_base, table_reg, rspec);
  2262     // Jump to base address + switch value
  2263     __ ld_ptr(table_reg, switch_reg, table_reg);
  2264     __ jmp(table_reg, G0);
  2265     __ delayed()->nop();
  2267   %}
  2269   enc_class enc_ba( Label labl ) %{
  2270     MacroAssembler _masm(&cbuf);
  2271     Label &L = *($labl$$label);
  2272     __ ba(false, L);
  2273     __ delayed()->nop();
  2274   %}
  2276   enc_class enc_bpr( Label labl, cmpOp_reg cmp, iRegI op1 ) %{
  2277     MacroAssembler _masm(&cbuf);
  2278     Label &L = *$labl$$label;
  2279     Assembler::Predict predict_taken =
  2280       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  2282     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), L);
  2283     __ delayed()->nop();
  2284   %}
  2286   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
  2287     int op = (Assembler::arith_op << 30) |
  2288              ($dst$$reg << 25) |
  2289              (Assembler::movcc_op3 << 19) |
  2290              (1 << 18) |                    // cc2 bit for 'icc'
  2291              ($cmp$$cmpcode << 14) |
  2292              (0 << 13) |                    // select register move
  2293              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
  2294              ($src$$reg << 0);
  2295     cbuf.insts()->emit_int32(op);
  2296   %}
  2298   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
  2299     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2300     int op = (Assembler::arith_op << 30) |
  2301              ($dst$$reg << 25) |
  2302              (Assembler::movcc_op3 << 19) |
  2303              (1 << 18) |                    // cc2 bit for 'icc'
  2304              ($cmp$$cmpcode << 14) |
  2305              (1 << 13) |                    // select immediate move
  2306              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
  2307              (simm11 << 0);
  2308     cbuf.insts()->emit_int32(op);
  2309   %}
  2311   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
  2312     int op = (Assembler::arith_op << 30) |
  2313              ($dst$$reg << 25) |
  2314              (Assembler::movcc_op3 << 19) |
  2315              (0 << 18) |                    // cc2 bit for 'fccX'
  2316              ($cmp$$cmpcode << 14) |
  2317              (0 << 13) |                    // select register move
  2318              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2319              ($src$$reg << 0);
  2320     cbuf.insts()->emit_int32(op);
  2321   %}
  2323   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
  2324     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2325     int op = (Assembler::arith_op << 30) |
  2326              ($dst$$reg << 25) |
  2327              (Assembler::movcc_op3 << 19) |
  2328              (0 << 18) |                    // cc2 bit for 'fccX'
  2329              ($cmp$$cmpcode << 14) |
  2330              (1 << 13) |                    // select immediate move
  2331              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2332              (simm11 << 0);
  2333     cbuf.insts()->emit_int32(op);
  2334   %}
  2336   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
  2337     int op = (Assembler::arith_op << 30) |
  2338              ($dst$$reg << 25) |
  2339              (Assembler::fpop2_op3 << 19) |
  2340              (0 << 18) |
  2341              ($cmp$$cmpcode << 14) |
  2342              (1 << 13) |                    // select register move
  2343              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
  2344              ($primary << 5) |              // select single, double or quad
  2345              ($src$$reg << 0);
  2346     cbuf.insts()->emit_int32(op);
  2347   %}
  2349   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
  2350     int op = (Assembler::arith_op << 30) |
  2351              ($dst$$reg << 25) |
  2352              (Assembler::fpop2_op3 << 19) |
  2353              (0 << 18) |
  2354              ($cmp$$cmpcode << 14) |
  2355              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
  2356              ($primary << 5) |              // select single, double or quad
  2357              ($src$$reg << 0);
  2358     cbuf.insts()->emit_int32(op);
  2359   %}
  2361   // Used by the MIN/MAX encodings.  Same as a CMOV, but
  2362   // the condition comes from opcode-field instead of an argument.
  2363   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
  2364     int op = (Assembler::arith_op << 30) |
  2365              ($dst$$reg << 25) |
  2366              (Assembler::movcc_op3 << 19) |
  2367              (1 << 18) |                    // cc2 bit for 'icc'
  2368              ($primary << 14) |
  2369              (0 << 13) |                    // select register move
  2370              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2371              ($src$$reg << 0);
  2372     cbuf.insts()->emit_int32(op);
  2373   %}
  2375   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
  2376     int op = (Assembler::arith_op << 30) |
  2377              ($dst$$reg << 25) |
  2378              (Assembler::movcc_op3 << 19) |
  2379              (6 << 16) |                    // cc2 bit for 'xcc'
  2380              ($primary << 14) |
  2381              (0 << 13) |                    // select register move
  2382              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2383              ($src$$reg << 0);
  2384     cbuf.insts()->emit_int32(op);
  2385   %}
  2387   // Utility encoding for loading a 64 bit Pointer into a register
  2388   // The 64 bit pointer is stored in the generated code stream
  2389   enc_class SetPtr( immP src, iRegP rd ) %{
  2390     Register dest = reg_to_register_object($rd$$reg);
  2391     MacroAssembler _masm(&cbuf);
  2392     // [RGV] This next line should be generated from ADLC
  2393     if ( _opnds[1]->constant_is_oop() ) {
  2394       intptr_t val = $src$$constant;
  2395       __ set_oop_constant((jobject)val, dest);
  2396     } else {          // non-oop pointers, e.g. card mark base, heap top
  2397       __ set($src$$constant, dest);
  2399   %}
  2401   enc_class Set13( immI13 src, iRegI rd ) %{
  2402     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
  2403   %}
  2405   enc_class SetHi22( immI src, iRegI rd ) %{
  2406     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
  2407   %}
  2409   enc_class Set32( immI src, iRegI rd ) %{
  2410     MacroAssembler _masm(&cbuf);
  2411     __ set($src$$constant, reg_to_register_object($rd$$reg));
  2412   %}
  2414   enc_class SetNull( iRegI rd ) %{
  2415     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0 );
  2416   %}
  2418   enc_class call_epilog %{
  2419     if( VerifyStackAtCalls ) {
  2420       MacroAssembler _masm(&cbuf);
  2421       int framesize = ra_->C->frame_slots() << LogBytesPerInt;
  2422       Register temp_reg = G3;
  2423       __ add(SP, framesize, temp_reg);
  2424       __ cmp(temp_reg, FP);
  2425       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
  2427   %}
  2429   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
  2430   // to G1 so the register allocator will not have to deal with the misaligned register
  2431   // pair.
  2432   enc_class adjust_long_from_native_call %{
  2433 #ifndef _LP64
  2434     if (returns_long()) {
  2435       //    sllx  O0,32,O0
  2436       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
  2437       //    srl   O1,0,O1
  2438       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
  2439       //    or    O0,O1,G1
  2440       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
  2442 #endif
  2443   %}
  2445   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
  2446     // CALL directly to the runtime
  2447     // The user of this is responsible for ensuring that R_L7 is empty (killed).
  2448     emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
  2449                     /*preserve_g2=*/true, /*force far call*/true);
  2450   %}
  2452   enc_class preserve_SP %{
  2453     MacroAssembler _masm(&cbuf);
  2454     __ mov(SP, L7_mh_SP_save);
  2455   %}
  2457   enc_class restore_SP %{
  2458     MacroAssembler _masm(&cbuf);
  2459     __ mov(L7_mh_SP_save, SP);
  2460   %}
  2462   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
  2463     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  2464     // who we intended to call.
  2465     if ( !_method ) {
  2466       emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
  2467     } else if (_optimized_virtual) {
  2468       emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
  2469     } else {
  2470       emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
  2472     if( _method ) {  // Emit stub for static call
  2473       emit_java_to_interp(cbuf);
  2475   %}
  2477   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
  2478     MacroAssembler _masm(&cbuf);
  2479     __ set_inst_mark();
  2480     int vtable_index = this->_vtable_index;
  2481     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
  2482     if (vtable_index < 0) {
  2483       // must be invalid_vtable_index, not nonvirtual_vtable_index
  2484       assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
  2485       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2486       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
  2487       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
  2488       // !!!!!
  2489       // Generate  "set 0x01, R_G5", placeholder instruction to load oop-info
  2490       // emit_call_dynamic_prologue( cbuf );
  2491       __ set_oop((jobject)Universe::non_oop_word(), G5_ic_reg);
  2493       address  virtual_call_oop_addr = __ inst_mark();
  2494       // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  2495       // who we intended to call.
  2496       __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr));
  2497       emit_call_reloc(cbuf, $meth$$method, relocInfo::none);
  2498     } else {
  2499       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
  2500       // Just go thru the vtable
  2501       // get receiver klass (receiver already checked for non-null)
  2502       // If we end up going thru a c2i adapter interpreter expects method in G5
  2503       int off = __ offset();
  2504       __ load_klass(O0, G3_scratch);
  2505       int klass_load_size;
  2506       if (UseCompressedOops) {
  2507         assert(Universe::heap() != NULL, "java heap should be initialized");
  2508         if (Universe::narrow_oop_base() == NULL)
  2509           klass_load_size = 2*BytesPerInstWord;
  2510         else
  2511           klass_load_size = 3*BytesPerInstWord;
  2512       } else {
  2513         klass_load_size = 1*BytesPerInstWord;
  2515       int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
  2516       int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
  2517       if( __ is_simm13(v_off) ) {
  2518         __ ld_ptr(G3, v_off, G5_method);
  2519       } else {
  2520         // Generate 2 instructions
  2521         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
  2522         __ or3(G5_method, v_off & 0x3ff, G5_method);
  2523         // ld_ptr, set_hi, set
  2524         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
  2525                "Unexpected instruction size(s)");
  2526         __ ld_ptr(G3, G5_method, G5_method);
  2528       // NOTE: for vtable dispatches, the vtable entry will never be null.
  2529       // However it may very well end up in handle_wrong_method if the
  2530       // method is abstract for the particular class.
  2531       __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3_scratch);
  2532       // jump to target (either compiled code or c2iadapter)
  2533       __ jmpl(G3_scratch, G0, O7);
  2534       __ delayed()->nop();
  2536   %}
  2538   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
  2539     MacroAssembler _masm(&cbuf);
  2541     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2542     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
  2543                               // we might be calling a C2I adapter which needs it.
  2545     assert(temp_reg != G5_ic_reg, "conflicting registers");
  2546     // Load nmethod
  2547     __ ld_ptr(G5_ic_reg, in_bytes(methodOopDesc::from_compiled_offset()), temp_reg);
  2549     // CALL to compiled java, indirect the contents of G3
  2550     __ set_inst_mark();
  2551     __ callr(temp_reg, G0);
  2552     __ delayed()->nop();
  2553   %}
  2555 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
  2556     MacroAssembler _masm(&cbuf);
  2557     Register Rdividend = reg_to_register_object($src1$$reg);
  2558     Register Rdivisor = reg_to_register_object($src2$$reg);
  2559     Register Rresult = reg_to_register_object($dst$$reg);
  2561     __ sra(Rdivisor, 0, Rdivisor);
  2562     __ sra(Rdividend, 0, Rdividend);
  2563     __ sdivx(Rdividend, Rdivisor, Rresult);
  2564 %}
  2566 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
  2567     MacroAssembler _masm(&cbuf);
  2569     Register Rdividend = reg_to_register_object($src1$$reg);
  2570     int divisor = $imm$$constant;
  2571     Register Rresult = reg_to_register_object($dst$$reg);
  2573     __ sra(Rdividend, 0, Rdividend);
  2574     __ sdivx(Rdividend, divisor, Rresult);
  2575 %}
  2577 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
  2578     MacroAssembler _masm(&cbuf);
  2579     Register Rsrc1 = reg_to_register_object($src1$$reg);
  2580     Register Rsrc2 = reg_to_register_object($src2$$reg);
  2581     Register Rdst  = reg_to_register_object($dst$$reg);
  2583     __ sra( Rsrc1, 0, Rsrc1 );
  2584     __ sra( Rsrc2, 0, Rsrc2 );
  2585     __ mulx( Rsrc1, Rsrc2, Rdst );
  2586     __ srlx( Rdst, 32, Rdst );
  2587 %}
  2589 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
  2590     MacroAssembler _masm(&cbuf);
  2591     Register Rdividend = reg_to_register_object($src1$$reg);
  2592     Register Rdivisor = reg_to_register_object($src2$$reg);
  2593     Register Rresult = reg_to_register_object($dst$$reg);
  2594     Register Rscratch = reg_to_register_object($scratch$$reg);
  2596     assert(Rdividend != Rscratch, "");
  2597     assert(Rdivisor  != Rscratch, "");
  2599     __ sra(Rdividend, 0, Rdividend);
  2600     __ sra(Rdivisor, 0, Rdivisor);
  2601     __ sdivx(Rdividend, Rdivisor, Rscratch);
  2602     __ mulx(Rscratch, Rdivisor, Rscratch);
  2603     __ sub(Rdividend, Rscratch, Rresult);
  2604 %}
  2606 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
  2607     MacroAssembler _masm(&cbuf);
  2609     Register Rdividend = reg_to_register_object($src1$$reg);
  2610     int divisor = $imm$$constant;
  2611     Register Rresult = reg_to_register_object($dst$$reg);
  2612     Register Rscratch = reg_to_register_object($scratch$$reg);
  2614     assert(Rdividend != Rscratch, "");
  2616     __ sra(Rdividend, 0, Rdividend);
  2617     __ sdivx(Rdividend, divisor, Rscratch);
  2618     __ mulx(Rscratch, divisor, Rscratch);
  2619     __ sub(Rdividend, Rscratch, Rresult);
  2620 %}
  2622 enc_class fabss (sflt_reg dst, sflt_reg src) %{
  2623     MacroAssembler _masm(&cbuf);
  2625     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2626     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2628     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
  2629 %}
  2631 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
  2632     MacroAssembler _masm(&cbuf);
  2634     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2635     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2637     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
  2638 %}
  2640 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
  2641     MacroAssembler _masm(&cbuf);
  2643     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2644     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2646     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
  2647 %}
  2649 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
  2650     MacroAssembler _masm(&cbuf);
  2652     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2653     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2655     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
  2656 %}
  2658 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
  2659     MacroAssembler _masm(&cbuf);
  2661     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2662     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2664     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
  2665 %}
  2667 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
  2668     MacroAssembler _masm(&cbuf);
  2670     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2671     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2673     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
  2674 %}
  2676 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
  2677     MacroAssembler _masm(&cbuf);
  2679     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2680     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2682     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
  2683 %}
  2685 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2686     MacroAssembler _masm(&cbuf);
  2688     Register Roop  = reg_to_register_object($oop$$reg);
  2689     Register Rbox  = reg_to_register_object($box$$reg);
  2690     Register Rscratch = reg_to_register_object($scratch$$reg);
  2691     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2693     assert(Roop  != Rscratch, "");
  2694     assert(Roop  != Rmark, "");
  2695     assert(Rbox  != Rscratch, "");
  2696     assert(Rbox  != Rmark, "");
  2698     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
  2699 %}
  2701 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2702     MacroAssembler _masm(&cbuf);
  2704     Register Roop  = reg_to_register_object($oop$$reg);
  2705     Register Rbox  = reg_to_register_object($box$$reg);
  2706     Register Rscratch = reg_to_register_object($scratch$$reg);
  2707     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2709     assert(Roop  != Rscratch, "");
  2710     assert(Roop  != Rmark, "");
  2711     assert(Rbox  != Rscratch, "");
  2712     assert(Rbox  != Rmark, "");
  2714     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
  2715   %}
  2717   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
  2718     MacroAssembler _masm(&cbuf);
  2719     Register Rmem = reg_to_register_object($mem$$reg);
  2720     Register Rold = reg_to_register_object($old$$reg);
  2721     Register Rnew = reg_to_register_object($new$$reg);
  2723     // casx_under_lock picks 1 of 3 encodings:
  2724     // For 32-bit pointers you get a 32-bit CAS
  2725     // For 64-bit pointers you get a 64-bit CASX
  2726     __ casn(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
  2727     __ cmp( Rold, Rnew );
  2728   %}
  2730   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
  2731     Register Rmem = reg_to_register_object($mem$$reg);
  2732     Register Rold = reg_to_register_object($old$$reg);
  2733     Register Rnew = reg_to_register_object($new$$reg);
  2735     MacroAssembler _masm(&cbuf);
  2736     __ mov(Rnew, O7);
  2737     __ casx(Rmem, Rold, O7);
  2738     __ cmp( Rold, O7 );
  2739   %}
  2741   // raw int cas, used for compareAndSwap
  2742   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
  2743     Register Rmem = reg_to_register_object($mem$$reg);
  2744     Register Rold = reg_to_register_object($old$$reg);
  2745     Register Rnew = reg_to_register_object($new$$reg);
  2747     MacroAssembler _masm(&cbuf);
  2748     __ mov(Rnew, O7);
  2749     __ cas(Rmem, Rold, O7);
  2750     __ cmp( Rold, O7 );
  2751   %}
  2753   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
  2754     Register Rres = reg_to_register_object($res$$reg);
  2756     MacroAssembler _masm(&cbuf);
  2757     __ mov(1, Rres);
  2758     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
  2759   %}
  2761   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
  2762     Register Rres = reg_to_register_object($res$$reg);
  2764     MacroAssembler _masm(&cbuf);
  2765     __ mov(1, Rres);
  2766     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
  2767   %}
  2769   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
  2770     MacroAssembler _masm(&cbuf);
  2771     Register Rdst = reg_to_register_object($dst$$reg);
  2772     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
  2773                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
  2774     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
  2775                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
  2777     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
  2778     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
  2779   %}
  2781   enc_class LdImmL (immL src, iRegL dst, o7RegL tmp) %{   // Load Immediate
  2782     MacroAssembler _masm(&cbuf);
  2783     Register dest = reg_to_register_object($dst$$reg);
  2784     Register temp = reg_to_register_object($tmp$$reg);
  2785     __ set64( $src$$constant, dest, temp );
  2786   %}
  2788   enc_class LdReplImmI(immI src, regD dst, o7RegP tmp, int count, int width) %{
  2789     // Load a constant replicated "count" times with width "width"
  2790     int bit_width = $width$$constant * 8;
  2791     jlong elt_val = $src$$constant;
  2792     elt_val  &= (((jlong)1) << bit_width) - 1; // mask off sign bits
  2793     jlong val = elt_val;
  2794     for (int i = 0; i < $count$$constant - 1; i++) {
  2795         val <<= bit_width;
  2796         val |= elt_val;
  2798     jdouble dval = *(jdouble*)&val; // coerce to double type
  2799     MacroAssembler _masm(&cbuf);
  2800     address double_address = __ double_constant(dval);
  2801     RelocationHolder rspec = internal_word_Relocation::spec(double_address);
  2802     AddressLiteral addrlit(double_address, rspec);
  2804     __ sethi(addrlit, $tmp$$Register);
  2805     // XXX This is a quick fix for 6833573.
  2806     //__ ldf(FloatRegisterImpl::D, $tmp$$Register, addrlit.low10(), $dst$$FloatRegister, rspec);
  2807     __ ldf(FloatRegisterImpl::D, $tmp$$Register, addrlit.low10(), as_DoubleFloatRegister($dst$$reg), rspec);
  2808   %}
  2810   // Compiler ensures base is doubleword aligned and cnt is count of doublewords
  2811   enc_class enc_Clear_Array(iRegX cnt, iRegP base, iRegX temp) %{
  2812     MacroAssembler _masm(&cbuf);
  2813     Register    nof_bytes_arg   = reg_to_register_object($cnt$$reg);
  2814     Register    nof_bytes_tmp    = reg_to_register_object($temp$$reg);
  2815     Register    base_pointer_arg = reg_to_register_object($base$$reg);
  2817     Label loop;
  2818     __ mov(nof_bytes_arg, nof_bytes_tmp);
  2820     // Loop and clear, walking backwards through the array.
  2821     // nof_bytes_tmp (if >0) is always the number of bytes to zero
  2822     __ bind(loop);
  2823     __ deccc(nof_bytes_tmp, 8);
  2824     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
  2825     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
  2826     // %%%% this mini-loop must not cross a cache boundary!
  2827   %}
  2830   enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result) %{
  2831     Label Ldone, Lloop;
  2832     MacroAssembler _masm(&cbuf);
  2834     Register   str1_reg = reg_to_register_object($str1$$reg);
  2835     Register   str2_reg = reg_to_register_object($str2$$reg);
  2836     Register   cnt1_reg = reg_to_register_object($cnt1$$reg);
  2837     Register   cnt2_reg = reg_to_register_object($cnt2$$reg);
  2838     Register result_reg = reg_to_register_object($result$$reg);
  2840     assert(result_reg != str1_reg &&
  2841            result_reg != str2_reg &&
  2842            result_reg != cnt1_reg &&
  2843            result_reg != cnt2_reg ,
  2844            "need different registers");
  2846     // Compute the minimum of the string lengths(str1_reg) and the
  2847     // difference of the string lengths (stack)
  2849     // See if the lengths are different, and calculate min in str1_reg.
  2850     // Stash diff in O7 in case we need it for a tie-breaker.
  2851     Label Lskip;
  2852     __ subcc(cnt1_reg, cnt2_reg, O7);
  2853     __ sll(cnt1_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
  2854     __ br(Assembler::greater, true, Assembler::pt, Lskip);
  2855     // cnt2 is shorter, so use its count:
  2856     __ delayed()->sll(cnt2_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
  2857     __ bind(Lskip);
  2859     // reallocate cnt1_reg, cnt2_reg, result_reg
  2860     // Note:  limit_reg holds the string length pre-scaled by 2
  2861     Register limit_reg =   cnt1_reg;
  2862     Register  chr2_reg =   cnt2_reg;
  2863     Register  chr1_reg = result_reg;
  2864     // str{12} are the base pointers
  2866     // Is the minimum length zero?
  2867     __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
  2868     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2869     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2871     // Load first characters
  2872     __ lduh(str1_reg, 0, chr1_reg);
  2873     __ lduh(str2_reg, 0, chr2_reg);
  2875     // Compare first characters
  2876     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2877     __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
  2878     assert(chr1_reg == result_reg, "result must be pre-placed");
  2879     __ delayed()->nop();
  2882       // Check after comparing first character to see if strings are equivalent
  2883       Label LSkip2;
  2884       // Check if the strings start at same location
  2885       __ cmp(str1_reg, str2_reg);
  2886       __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
  2887       __ delayed()->nop();
  2889       // Check if the length difference is zero (in O7)
  2890       __ cmp(G0, O7);
  2891       __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2892       __ delayed()->mov(G0, result_reg);  // result is zero
  2894       // Strings might not be equal
  2895       __ bind(LSkip2);
  2898     __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
  2899     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2900     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2902     // Shift str1_reg and str2_reg to the end of the arrays, negate limit
  2903     __ add(str1_reg, limit_reg, str1_reg);
  2904     __ add(str2_reg, limit_reg, str2_reg);
  2905     __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
  2907     // Compare the rest of the characters
  2908     __ lduh(str1_reg, limit_reg, chr1_reg);
  2909     __ bind(Lloop);
  2910     // __ lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2911     __ lduh(str2_reg, limit_reg, chr2_reg);
  2912     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2913     __ br(Assembler::notZero, false, Assembler::pt, Ldone);
  2914     assert(chr1_reg == result_reg, "result must be pre-placed");
  2915     __ delayed()->inccc(limit_reg, sizeof(jchar));
  2916     // annul LDUH if branch is not taken to prevent access past end of string
  2917     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
  2918     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2920     // If strings are equal up to min length, return the length difference.
  2921     __ mov(O7, result_reg);
  2923     // Otherwise, return the difference between the first mismatched chars.
  2924     __ bind(Ldone);
  2925   %}
  2927 enc_class enc_String_Equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result) %{
  2928     Label Lword_loop, Lpost_word, Lchar, Lchar_loop, Ldone;
  2929     MacroAssembler _masm(&cbuf);
  2931     Register   str1_reg = reg_to_register_object($str1$$reg);
  2932     Register   str2_reg = reg_to_register_object($str2$$reg);
  2933     Register    cnt_reg = reg_to_register_object($cnt$$reg);
  2934     Register   tmp1_reg = O7;
  2935     Register result_reg = reg_to_register_object($result$$reg);
  2937     assert(result_reg != str1_reg &&
  2938            result_reg != str2_reg &&
  2939            result_reg !=  cnt_reg &&
  2940            result_reg != tmp1_reg ,
  2941            "need different registers");
  2943     __ cmp(str1_reg, str2_reg); //same char[] ?
  2944     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
  2945     __ delayed()->add(G0, 1, result_reg);
  2947     __ br_on_reg_cond(Assembler::rc_z, true, Assembler::pn, cnt_reg, Ldone);
  2948     __ delayed()->add(G0, 1, result_reg); // count == 0
  2950     //rename registers
  2951     Register limit_reg =    cnt_reg;
  2952     Register  chr1_reg = result_reg;
  2953     Register  chr2_reg =   tmp1_reg;
  2955     //check for alignment and position the pointers to the ends
  2956     __ or3(str1_reg, str2_reg, chr1_reg);
  2957     __ andcc(chr1_reg, 0x3, chr1_reg);
  2958     // notZero means at least one not 4-byte aligned.
  2959     // We could optimize the case when both arrays are not aligned
  2960     // but it is not frequent case and it requires additional checks.
  2961     __ br(Assembler::notZero, false, Assembler::pn, Lchar); // char by char compare
  2962     __ delayed()->sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg); // set byte count
  2964     // Compare char[] arrays aligned to 4 bytes.
  2965     __ char_arrays_equals(str1_reg, str2_reg, limit_reg, result_reg,
  2966                           chr1_reg, chr2_reg, Ldone);
  2967     __ ba(false,Ldone);
  2968     __ delayed()->add(G0, 1, result_reg);
  2970     // char by char compare
  2971     __ bind(Lchar);
  2972     __ add(str1_reg, limit_reg, str1_reg);
  2973     __ add(str2_reg, limit_reg, str2_reg);
  2974     __ neg(limit_reg); //negate count
  2976     __ lduh(str1_reg, limit_reg, chr1_reg);
  2977     // Lchar_loop
  2978     __ bind(Lchar_loop);
  2979     __ lduh(str2_reg, limit_reg, chr2_reg);
  2980     __ cmp(chr1_reg, chr2_reg);
  2981     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
  2982     __ delayed()->mov(G0, result_reg); //not equal
  2983     __ inccc(limit_reg, sizeof(jchar));
  2984     // annul LDUH if branch is not taken to prevent access past end of string
  2985     __ br(Assembler::notZero, true, Assembler::pt, Lchar_loop);
  2986     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2988     __ add(G0, 1, result_reg);  //equal
  2990     __ bind(Ldone);
  2991   %}
  2993 enc_class enc_Array_Equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, notemp_iRegI result) %{
  2994     Label Lvector, Ldone, Lloop;
  2995     MacroAssembler _masm(&cbuf);
  2997     Register   ary1_reg = reg_to_register_object($ary1$$reg);
  2998     Register   ary2_reg = reg_to_register_object($ary2$$reg);
  2999     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
  3000     Register   tmp2_reg = O7;
  3001     Register result_reg = reg_to_register_object($result$$reg);
  3003     int length_offset  = arrayOopDesc::length_offset_in_bytes();
  3004     int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
  3006     // return true if the same array
  3007     __ cmp(ary1_reg, ary2_reg);
  3008     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
  3009     __ delayed()->add(G0, 1, result_reg); // equal
  3011     __ br_null(ary1_reg, true, Assembler::pn, Ldone);
  3012     __ delayed()->mov(G0, result_reg);    // not equal
  3014     __ br_null(ary2_reg, true, Assembler::pn, Ldone);
  3015     __ delayed()->mov(G0, result_reg);    // not equal
  3017     //load the lengths of arrays
  3018     __ ld(Address(ary1_reg, length_offset), tmp1_reg);
  3019     __ ld(Address(ary2_reg, length_offset), tmp2_reg);
  3021     // return false if the two arrays are not equal length
  3022     __ cmp(tmp1_reg, tmp2_reg);
  3023     __ br(Assembler::notEqual, true, Assembler::pn, Ldone);
  3024     __ delayed()->mov(G0, result_reg);     // not equal
  3026     __ br_on_reg_cond(Assembler::rc_z, true, Assembler::pn, tmp1_reg, Ldone);
  3027     __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
  3029     // load array addresses
  3030     __ add(ary1_reg, base_offset, ary1_reg);
  3031     __ add(ary2_reg, base_offset, ary2_reg);
  3033     // renaming registers
  3034     Register chr1_reg  =  result_reg; // for characters in ary1
  3035     Register chr2_reg  =  tmp2_reg;   // for characters in ary2
  3036     Register limit_reg =  tmp1_reg;   // length
  3038     // set byte count
  3039     __ sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg);
  3041     // Compare char[] arrays aligned to 4 bytes.
  3042     __ char_arrays_equals(ary1_reg, ary2_reg, limit_reg, result_reg,
  3043                           chr1_reg, chr2_reg, Ldone);
  3044     __ add(G0, 1, result_reg); // equals
  3046     __ bind(Ldone);
  3047   %}
  3049   enc_class enc_rethrow() %{
  3050     cbuf.set_insts_mark();
  3051     Register temp_reg = G3;
  3052     AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
  3053     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
  3054     MacroAssembler _masm(&cbuf);
  3055 #ifdef ASSERT
  3056     __ save_frame(0);
  3057     AddressLiteral last_rethrow_addrlit(&last_rethrow);
  3058     __ sethi(last_rethrow_addrlit, L1);
  3059     Address addr(L1, last_rethrow_addrlit.low10());
  3060     __ get_pc(L2);
  3061     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
  3062     __ st_ptr(L2, addr);
  3063     __ restore();
  3064 #endif
  3065     __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
  3066     __ delayed()->nop();
  3067   %}
  3069   enc_class emit_mem_nop() %{
  3070     // Generates the instruction LDUXA [o6,g0],#0x82,g0
  3071     cbuf.insts()->emit_int32((unsigned int) 0xc0839040);
  3072   %}
  3074   enc_class emit_fadd_nop() %{
  3075     // Generates the instruction FMOVS f31,f31
  3076     cbuf.insts()->emit_int32((unsigned int) 0xbfa0003f);
  3077   %}
  3079   enc_class emit_br_nop() %{
  3080     // Generates the instruction BPN,PN .
  3081     cbuf.insts()->emit_int32((unsigned int) 0x00400000);
  3082   %}
  3084   enc_class enc_membar_acquire %{
  3085     MacroAssembler _masm(&cbuf);
  3086     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
  3087   %}
  3089   enc_class enc_membar_release %{
  3090     MacroAssembler _masm(&cbuf);
  3091     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
  3092   %}
  3094   enc_class enc_membar_volatile %{
  3095     MacroAssembler _masm(&cbuf);
  3096     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
  3097   %}
  3099   enc_class enc_repl8b( iRegI src, iRegL dst ) %{
  3100     MacroAssembler _masm(&cbuf);
  3101     Register src_reg = reg_to_register_object($src$$reg);
  3102     Register dst_reg = reg_to_register_object($dst$$reg);
  3103     __ sllx(src_reg, 56, dst_reg);
  3104     __ srlx(dst_reg,  8, O7);
  3105     __ or3 (dst_reg, O7, dst_reg);
  3106     __ srlx(dst_reg, 16, O7);
  3107     __ or3 (dst_reg, O7, dst_reg);
  3108     __ srlx(dst_reg, 32, O7);
  3109     __ or3 (dst_reg, O7, dst_reg);
  3110   %}
  3112   enc_class enc_repl4b( iRegI src, iRegL dst ) %{
  3113     MacroAssembler _masm(&cbuf);
  3114     Register src_reg = reg_to_register_object($src$$reg);
  3115     Register dst_reg = reg_to_register_object($dst$$reg);
  3116     __ sll(src_reg, 24, dst_reg);
  3117     __ srl(dst_reg,  8, O7);
  3118     __ or3(dst_reg, O7, dst_reg);
  3119     __ srl(dst_reg, 16, O7);
  3120     __ or3(dst_reg, O7, dst_reg);
  3121   %}
  3123   enc_class enc_repl4s( iRegI src, iRegL dst ) %{
  3124     MacroAssembler _masm(&cbuf);
  3125     Register src_reg = reg_to_register_object($src$$reg);
  3126     Register dst_reg = reg_to_register_object($dst$$reg);
  3127     __ sllx(src_reg, 48, dst_reg);
  3128     __ srlx(dst_reg, 16, O7);
  3129     __ or3 (dst_reg, O7, dst_reg);
  3130     __ srlx(dst_reg, 32, O7);
  3131     __ or3 (dst_reg, O7, dst_reg);
  3132   %}
  3134   enc_class enc_repl2i( iRegI src, iRegL dst ) %{
  3135     MacroAssembler _masm(&cbuf);
  3136     Register src_reg = reg_to_register_object($src$$reg);
  3137     Register dst_reg = reg_to_register_object($dst$$reg);
  3138     __ sllx(src_reg, 32, dst_reg);
  3139     __ srlx(dst_reg, 32, O7);
  3140     __ or3 (dst_reg, O7, dst_reg);
  3141   %}
  3143 %}
  3145 //----------FRAME--------------------------------------------------------------
  3146 // Definition of frame structure and management information.
  3147 //
  3148 //  S T A C K   L A Y O U T    Allocators stack-slot number
  3149 //                             |   (to get allocators register number
  3150 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
  3151 //  r   CALLER     |        |
  3152 //  o     |        +--------+      pad to even-align allocators stack-slot
  3153 //  w     V        |  pad0  |        numbers; owned by CALLER
  3154 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  3155 //  h     ^        |   in   |  5
  3156 //        |        |  args  |  4   Holes in incoming args owned by SELF
  3157 //  |     |        |        |  3
  3158 //  |     |        +--------+
  3159 //  V     |        | old out|      Empty on Intel, window on Sparc
  3160 //        |    old |preserve|      Must be even aligned.
  3161 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
  3162 //        |        |   in   |  3   area for Intel ret address
  3163 //     Owned by    |preserve|      Empty on Sparc.
  3164 //       SELF      +--------+
  3165 //        |        |  pad2  |  2   pad to align old SP
  3166 //        |        +--------+  1
  3167 //        |        | locks  |  0
  3168 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
  3169 //        |        |  pad1  | 11   pad to align new SP
  3170 //        |        +--------+
  3171 //        |        |        | 10
  3172 //        |        | spills |  9   spills
  3173 //        V        |        |  8   (pad0 slot for callee)
  3174 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  3175 //        ^        |  out   |  7
  3176 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  3177 //     Owned by    +--------+
  3178 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
  3179 //        |    new |preserve|      Must be even-aligned.
  3180 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
  3181 //        |        |        |
  3182 //
  3183 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
  3184 //         known from SELF's arguments and the Java calling convention.
  3185 //         Region 6-7 is determined per call site.
  3186 // Note 2: If the calling convention leaves holes in the incoming argument
  3187 //         area, those holes are owned by SELF.  Holes in the outgoing area
  3188 //         are owned by the CALLEE.  Holes should not be nessecary in the
  3189 //         incoming area, as the Java calling convention is completely under
  3190 //         the control of the AD file.  Doubles can be sorted and packed to
  3191 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  3192 //         varargs C calling conventions.
  3193 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
  3194 //         even aligned with pad0 as needed.
  3195 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  3196 //         region 6-11 is even aligned; it may be padded out more so that
  3197 //         the region from SP to FP meets the minimum stack alignment.
  3199 frame %{
  3200   // What direction does stack grow in (assumed to be same for native & Java)
  3201   stack_direction(TOWARDS_LOW);
  3203   // These two registers define part of the calling convention
  3204   // between compiled code and the interpreter.
  3205   inline_cache_reg(R_G5);                // Inline Cache Register or methodOop for I2C
  3206   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
  3208   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  3209   cisc_spilling_operand_name(indOffset);
  3211   // Number of stack slots consumed by a Monitor enter
  3212 #ifdef _LP64
  3213   sync_stack_slots(2);
  3214 #else
  3215   sync_stack_slots(1);
  3216 #endif
  3218   // Compiled code's Frame Pointer
  3219   frame_pointer(R_SP);
  3221   // Stack alignment requirement
  3222   stack_alignment(StackAlignmentInBytes);
  3223   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
  3224   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
  3226   // Number of stack slots between incoming argument block and the start of
  3227   // a new frame.  The PROLOG must add this many slots to the stack.  The
  3228   // EPILOG must remove this many slots.
  3229   in_preserve_stack_slots(0);
  3231   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  3232   // for calls to C.  Supports the var-args backing area for register parms.
  3233   // ADLC doesn't support parsing expressions, so I folded the math by hand.
  3234 #ifdef _LP64
  3235   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
  3236   varargs_C_out_slots_killed(12);
  3237 #else
  3238   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
  3239   varargs_C_out_slots_killed( 7);
  3240 #endif
  3242   // The after-PROLOG location of the return address.  Location of
  3243   // return address specifies a type (REG or STACK) and a number
  3244   // representing the register number (i.e. - use a register name) or
  3245   // stack slot.
  3246   return_addr(REG R_I7);          // Ret Addr is in register I7
  3248   // Body of function which returns an OptoRegs array locating
  3249   // arguments either in registers or in stack slots for calling
  3250   // java
  3251   calling_convention %{
  3252     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
  3254   %}
  3256   // Body of function which returns an OptoRegs array locating
  3257   // arguments either in registers or in stack slots for callin
  3258   // C.
  3259   c_calling_convention %{
  3260     // This is obviously always outgoing
  3261     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
  3262   %}
  3264   // Location of native (C/C++) and interpreter return values.  This is specified to
  3265   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
  3266   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
  3267   // to and from the register pairs is done by the appropriate call and epilog
  3268   // opcodes.  This simplifies the register allocator.
  3269   c_return_value %{
  3270     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3271 #ifdef     _LP64
  3272     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3273     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3274     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3275     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3276 #else  // !_LP64
  3277     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3278     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3279     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3280     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3281 #endif
  3282     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3283                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3284   %}
  3286   // Location of compiled Java return values.  Same as C
  3287   return_value %{
  3288     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3289 #ifdef     _LP64
  3290     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3291     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3292     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3293     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3294 #else  // !_LP64
  3295     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3296     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3297     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3298     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3299 #endif
  3300     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3301                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3302   %}
  3304 %}
  3307 //----------ATTRIBUTES---------------------------------------------------------
  3308 //----------Operand Attributes-------------------------------------------------
  3309 op_attrib op_cost(1);          // Required cost attribute
  3311 //----------Instruction Attributes---------------------------------------------
  3312 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
  3313 ins_attrib ins_size(32);       // Required size attribute (in bits)
  3314 ins_attrib ins_pc_relative(0); // Required PC Relative flag
  3315 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
  3316                                 // non-matching short branch variant of some
  3317                                                             // long branch?
  3319 //----------OPERANDS-----------------------------------------------------------
  3320 // Operand definitions must precede instruction definitions for correct parsing
  3321 // in the ADLC because operands constitute user defined types which are used in
  3322 // instruction definitions.
  3324 //----------Simple Operands----------------------------------------------------
  3325 // Immediate Operands
  3326 // Integer Immediate: 32-bit
  3327 operand immI() %{
  3328   match(ConI);
  3330   op_cost(0);
  3331   // formats are generated automatically for constants and base registers
  3332   format %{ %}
  3333   interface(CONST_INTER);
  3334 %}
  3336 // Integer Immediate: 8-bit
  3337 operand immI8() %{
  3338   predicate(Assembler::is_simm(n->get_int(), 8));
  3339   match(ConI);
  3340   op_cost(0);
  3341   format %{ %}
  3342   interface(CONST_INTER);
  3343 %}
  3345 // Integer Immediate: 13-bit
  3346 operand immI13() %{
  3347   predicate(Assembler::is_simm13(n->get_int()));
  3348   match(ConI);
  3349   op_cost(0);
  3351   format %{ %}
  3352   interface(CONST_INTER);
  3353 %}
  3355 // Integer Immediate: 13-bit minus 7
  3356 operand immI13m7() %{
  3357   predicate((-4096 < n->get_int()) && ((n->get_int() + 7) <= 4095));
  3358   match(ConI);
  3359   op_cost(0);
  3361   format %{ %}
  3362   interface(CONST_INTER);
  3363 %}
  3365 // Integer Immediate: 16-bit
  3366 operand immI16() %{
  3367   predicate(Assembler::is_simm(n->get_int(), 16));
  3368   match(ConI);
  3369   op_cost(0);
  3370   format %{ %}
  3371   interface(CONST_INTER);
  3372 %}
  3374 // Unsigned (positive) Integer Immediate: 13-bit
  3375 operand immU13() %{
  3376   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
  3377   match(ConI);
  3378   op_cost(0);
  3380   format %{ %}
  3381   interface(CONST_INTER);
  3382 %}
  3384 // Integer Immediate: 6-bit
  3385 operand immU6() %{
  3386   predicate(n->get_int() >= 0 && n->get_int() <= 63);
  3387   match(ConI);
  3388   op_cost(0);
  3389   format %{ %}
  3390   interface(CONST_INTER);
  3391 %}
  3393 // Integer Immediate: 11-bit
  3394 operand immI11() %{
  3395   predicate(Assembler::is_simm(n->get_int(),11));
  3396   match(ConI);
  3397   op_cost(0);
  3398   format %{ %}
  3399   interface(CONST_INTER);
  3400 %}
  3402 // Integer Immediate: 0-bit
  3403 operand immI0() %{
  3404   predicate(n->get_int() == 0);
  3405   match(ConI);
  3406   op_cost(0);
  3408   format %{ %}
  3409   interface(CONST_INTER);
  3410 %}
  3412 // Integer Immediate: the value 10
  3413 operand immI10() %{
  3414   predicate(n->get_int() == 10);
  3415   match(ConI);
  3416   op_cost(0);
  3418   format %{ %}
  3419   interface(CONST_INTER);
  3420 %}
  3422 // Integer Immediate: the values 0-31
  3423 operand immU5() %{
  3424   predicate(n->get_int() >= 0 && n->get_int() <= 31);
  3425   match(ConI);
  3426   op_cost(0);
  3428   format %{ %}
  3429   interface(CONST_INTER);
  3430 %}
  3432 // Integer Immediate: the values 1-31
  3433 operand immI_1_31() %{
  3434   predicate(n->get_int() >= 1 && n->get_int() <= 31);
  3435   match(ConI);
  3436   op_cost(0);
  3438   format %{ %}
  3439   interface(CONST_INTER);
  3440 %}
  3442 // Integer Immediate: the values 32-63
  3443 operand immI_32_63() %{
  3444   predicate(n->get_int() >= 32 && n->get_int() <= 63);
  3445   match(ConI);
  3446   op_cost(0);
  3448   format %{ %}
  3449   interface(CONST_INTER);
  3450 %}
  3452 // Immediates for special shifts (sign extend)
  3454 // Integer Immediate: the value 16
  3455 operand immI_16() %{
  3456   predicate(n->get_int() == 16);
  3457   match(ConI);
  3458   op_cost(0);
  3460   format %{ %}
  3461   interface(CONST_INTER);
  3462 %}
  3464 // Integer Immediate: the value 24
  3465 operand immI_24() %{
  3466   predicate(n->get_int() == 24);
  3467   match(ConI);
  3468   op_cost(0);
  3470   format %{ %}
  3471   interface(CONST_INTER);
  3472 %}
  3474 // Integer Immediate: the value 255
  3475 operand immI_255() %{
  3476   predicate( n->get_int() == 255 );
  3477   match(ConI);
  3478   op_cost(0);
  3480   format %{ %}
  3481   interface(CONST_INTER);
  3482 %}
  3484 // Integer Immediate: the value 65535
  3485 operand immI_65535() %{
  3486   predicate(n->get_int() == 65535);
  3487   match(ConI);
  3488   op_cost(0);
  3490   format %{ %}
  3491   interface(CONST_INTER);
  3492 %}
  3494 // Long Immediate: the value FF
  3495 operand immL_FF() %{
  3496   predicate( n->get_long() == 0xFFL );
  3497   match(ConL);
  3498   op_cost(0);
  3500   format %{ %}
  3501   interface(CONST_INTER);
  3502 %}
  3504 // Long Immediate: the value FFFF
  3505 operand immL_FFFF() %{
  3506   predicate( n->get_long() == 0xFFFFL );
  3507   match(ConL);
  3508   op_cost(0);
  3510   format %{ %}
  3511   interface(CONST_INTER);
  3512 %}
  3514 // Pointer Immediate: 32 or 64-bit
  3515 operand immP() %{
  3516   match(ConP);
  3518   op_cost(5);
  3519   // formats are generated automatically for constants and base registers
  3520   format %{ %}
  3521   interface(CONST_INTER);
  3522 %}
  3524 operand immP13() %{
  3525   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
  3526   match(ConP);
  3527   op_cost(0);
  3529   format %{ %}
  3530   interface(CONST_INTER);
  3531 %}
  3533 operand immP0() %{
  3534   predicate(n->get_ptr() == 0);
  3535   match(ConP);
  3536   op_cost(0);
  3538   format %{ %}
  3539   interface(CONST_INTER);
  3540 %}
  3542 operand immP_poll() %{
  3543   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
  3544   match(ConP);
  3546   // formats are generated automatically for constants and base registers
  3547   format %{ %}
  3548   interface(CONST_INTER);
  3549 %}
  3551 // Pointer Immediate
  3552 operand immN()
  3553 %{
  3554   match(ConN);
  3556   op_cost(10);
  3557   format %{ %}
  3558   interface(CONST_INTER);
  3559 %}
  3561 // NULL Pointer Immediate
  3562 operand immN0()
  3563 %{
  3564   predicate(n->get_narrowcon() == 0);
  3565   match(ConN);
  3567   op_cost(0);
  3568   format %{ %}
  3569   interface(CONST_INTER);
  3570 %}
  3572 operand immL() %{
  3573   match(ConL);
  3574   op_cost(40);
  3575   // formats are generated automatically for constants and base registers
  3576   format %{ %}
  3577   interface(CONST_INTER);
  3578 %}
  3580 operand immL0() %{
  3581   predicate(n->get_long() == 0L);
  3582   match(ConL);
  3583   op_cost(0);
  3584   // formats are generated automatically for constants and base registers
  3585   format %{ %}
  3586   interface(CONST_INTER);
  3587 %}
  3589 // Long Immediate: 13-bit
  3590 operand immL13() %{
  3591   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
  3592   match(ConL);
  3593   op_cost(0);
  3595   format %{ %}
  3596   interface(CONST_INTER);
  3597 %}
  3599 // Long Immediate: 13-bit minus 7
  3600 operand immL13m7() %{
  3601   predicate((-4096L < n->get_long()) && ((n->get_long() + 7L) <= 4095L));
  3602   match(ConL);
  3603   op_cost(0);
  3605   format %{ %}
  3606   interface(CONST_INTER);
  3607 %}
  3609 // Long Immediate: low 32-bit mask
  3610 operand immL_32bits() %{
  3611   predicate(n->get_long() == 0xFFFFFFFFL);
  3612   match(ConL);
  3613   op_cost(0);
  3615   format %{ %}
  3616   interface(CONST_INTER);
  3617 %}
  3619 // Double Immediate
  3620 operand immD() %{
  3621   match(ConD);
  3623   op_cost(40);
  3624   format %{ %}
  3625   interface(CONST_INTER);
  3626 %}
  3628 operand immD0() %{
  3629 #ifdef _LP64
  3630   // on 64-bit architectures this comparision is faster
  3631   predicate(jlong_cast(n->getd()) == 0);
  3632 #else
  3633   predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
  3634 #endif
  3635   match(ConD);
  3637   op_cost(0);
  3638   format %{ %}
  3639   interface(CONST_INTER);
  3640 %}
  3642 // Float Immediate
  3643 operand immF() %{
  3644   match(ConF);
  3646   op_cost(20);
  3647   format %{ %}
  3648   interface(CONST_INTER);
  3649 %}
  3651 // Float Immediate: 0
  3652 operand immF0() %{
  3653   predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
  3654   match(ConF);
  3656   op_cost(0);
  3657   format %{ %}
  3658   interface(CONST_INTER);
  3659 %}
  3661 // Integer Register Operands
  3662 // Integer Register
  3663 operand iRegI() %{
  3664   constraint(ALLOC_IN_RC(int_reg));
  3665   match(RegI);
  3667   match(notemp_iRegI);
  3668   match(g1RegI);
  3669   match(o0RegI);
  3670   match(iRegIsafe);
  3672   format %{ %}
  3673   interface(REG_INTER);
  3674 %}
  3676 operand notemp_iRegI() %{
  3677   constraint(ALLOC_IN_RC(notemp_int_reg));
  3678   match(RegI);
  3680   match(o0RegI);
  3682   format %{ %}
  3683   interface(REG_INTER);
  3684 %}
  3686 operand o0RegI() %{
  3687   constraint(ALLOC_IN_RC(o0_regI));
  3688   match(iRegI);
  3690   format %{ %}
  3691   interface(REG_INTER);
  3692 %}
  3694 // Pointer Register
  3695 operand iRegP() %{
  3696   constraint(ALLOC_IN_RC(ptr_reg));
  3697   match(RegP);
  3699   match(lock_ptr_RegP);
  3700   match(g1RegP);
  3701   match(g2RegP);
  3702   match(g3RegP);
  3703   match(g4RegP);
  3704   match(i0RegP);
  3705   match(o0RegP);
  3706   match(o1RegP);
  3707   match(l7RegP);
  3709   format %{ %}
  3710   interface(REG_INTER);
  3711 %}
  3713 operand sp_ptr_RegP() %{
  3714   constraint(ALLOC_IN_RC(sp_ptr_reg));
  3715   match(RegP);
  3716   match(iRegP);
  3718   format %{ %}
  3719   interface(REG_INTER);
  3720 %}
  3722 operand lock_ptr_RegP() %{
  3723   constraint(ALLOC_IN_RC(lock_ptr_reg));
  3724   match(RegP);
  3725   match(i0RegP);
  3726   match(o0RegP);
  3727   match(o1RegP);
  3728   match(l7RegP);
  3730   format %{ %}
  3731   interface(REG_INTER);
  3732 %}
  3734 operand g1RegP() %{
  3735   constraint(ALLOC_IN_RC(g1_regP));
  3736   match(iRegP);
  3738   format %{ %}
  3739   interface(REG_INTER);
  3740 %}
  3742 operand g2RegP() %{
  3743   constraint(ALLOC_IN_RC(g2_regP));
  3744   match(iRegP);
  3746   format %{ %}
  3747   interface(REG_INTER);
  3748 %}
  3750 operand g3RegP() %{
  3751   constraint(ALLOC_IN_RC(g3_regP));
  3752   match(iRegP);
  3754   format %{ %}
  3755   interface(REG_INTER);
  3756 %}
  3758 operand g1RegI() %{
  3759   constraint(ALLOC_IN_RC(g1_regI));
  3760   match(iRegI);
  3762   format %{ %}
  3763   interface(REG_INTER);
  3764 %}
  3766 operand g3RegI() %{
  3767   constraint(ALLOC_IN_RC(g3_regI));
  3768   match(iRegI);
  3770   format %{ %}
  3771   interface(REG_INTER);
  3772 %}
  3774 operand g4RegI() %{
  3775   constraint(ALLOC_IN_RC(g4_regI));
  3776   match(iRegI);
  3778   format %{ %}
  3779   interface(REG_INTER);
  3780 %}
  3782 operand g4RegP() %{
  3783   constraint(ALLOC_IN_RC(g4_regP));
  3784   match(iRegP);
  3786   format %{ %}
  3787   interface(REG_INTER);
  3788 %}
  3790 operand i0RegP() %{
  3791   constraint(ALLOC_IN_RC(i0_regP));
  3792   match(iRegP);
  3794   format %{ %}
  3795   interface(REG_INTER);
  3796 %}
  3798 operand o0RegP() %{
  3799   constraint(ALLOC_IN_RC(o0_regP));
  3800   match(iRegP);
  3802   format %{ %}
  3803   interface(REG_INTER);
  3804 %}
  3806 operand o1RegP() %{
  3807   constraint(ALLOC_IN_RC(o1_regP));
  3808   match(iRegP);
  3810   format %{ %}
  3811   interface(REG_INTER);
  3812 %}
  3814 operand o2RegP() %{
  3815   constraint(ALLOC_IN_RC(o2_regP));
  3816   match(iRegP);
  3818   format %{ %}
  3819   interface(REG_INTER);
  3820 %}
  3822 operand o7RegP() %{
  3823   constraint(ALLOC_IN_RC(o7_regP));
  3824   match(iRegP);
  3826   format %{ %}
  3827   interface(REG_INTER);
  3828 %}
  3830 operand l7RegP() %{
  3831   constraint(ALLOC_IN_RC(l7_regP));
  3832   match(iRegP);
  3834   format %{ %}
  3835   interface(REG_INTER);
  3836 %}
  3838 operand o7RegI() %{
  3839   constraint(ALLOC_IN_RC(o7_regI));
  3840   match(iRegI);
  3842   format %{ %}
  3843   interface(REG_INTER);
  3844 %}
  3846 operand iRegN() %{
  3847   constraint(ALLOC_IN_RC(int_reg));
  3848   match(RegN);
  3850   format %{ %}
  3851   interface(REG_INTER);
  3852 %}
  3854 // Long Register
  3855 operand iRegL() %{
  3856   constraint(ALLOC_IN_RC(long_reg));
  3857   match(RegL);
  3859   format %{ %}
  3860   interface(REG_INTER);
  3861 %}
  3863 operand o2RegL() %{
  3864   constraint(ALLOC_IN_RC(o2_regL));
  3865   match(iRegL);
  3867   format %{ %}
  3868   interface(REG_INTER);
  3869 %}
  3871 operand o7RegL() %{
  3872   constraint(ALLOC_IN_RC(o7_regL));
  3873   match(iRegL);
  3875   format %{ %}
  3876   interface(REG_INTER);
  3877 %}
  3879 operand g1RegL() %{
  3880   constraint(ALLOC_IN_RC(g1_regL));
  3881   match(iRegL);
  3883   format %{ %}
  3884   interface(REG_INTER);
  3885 %}
  3887 operand g3RegL() %{
  3888   constraint(ALLOC_IN_RC(g3_regL));
  3889   match(iRegL);
  3891   format %{ %}
  3892   interface(REG_INTER);
  3893 %}
  3895 // Int Register safe
  3896 // This is 64bit safe
  3897 operand iRegIsafe() %{
  3898   constraint(ALLOC_IN_RC(long_reg));
  3900   match(iRegI);
  3902   format %{ %}
  3903   interface(REG_INTER);
  3904 %}
  3906 // Condition Code Flag Register
  3907 operand flagsReg() %{
  3908   constraint(ALLOC_IN_RC(int_flags));
  3909   match(RegFlags);
  3911   format %{ "ccr" %} // both ICC and XCC
  3912   interface(REG_INTER);
  3913 %}
  3915 // Condition Code Register, unsigned comparisons.
  3916 operand flagsRegU() %{
  3917   constraint(ALLOC_IN_RC(int_flags));
  3918   match(RegFlags);
  3920   format %{ "icc_U" %}
  3921   interface(REG_INTER);
  3922 %}
  3924 // Condition Code Register, pointer comparisons.
  3925 operand flagsRegP() %{
  3926   constraint(ALLOC_IN_RC(int_flags));
  3927   match(RegFlags);
  3929 #ifdef _LP64
  3930   format %{ "xcc_P" %}
  3931 #else
  3932   format %{ "icc_P" %}
  3933 #endif
  3934   interface(REG_INTER);
  3935 %}
  3937 // Condition Code Register, long comparisons.
  3938 operand flagsRegL() %{
  3939   constraint(ALLOC_IN_RC(int_flags));
  3940   match(RegFlags);
  3942   format %{ "xcc_L" %}
  3943   interface(REG_INTER);
  3944 %}
  3946 // Condition Code Register, floating comparisons, unordered same as "less".
  3947 operand flagsRegF() %{
  3948   constraint(ALLOC_IN_RC(float_flags));
  3949   match(RegFlags);
  3950   match(flagsRegF0);
  3952   format %{ %}
  3953   interface(REG_INTER);
  3954 %}
  3956 operand flagsRegF0() %{
  3957   constraint(ALLOC_IN_RC(float_flag0));
  3958   match(RegFlags);
  3960   format %{ %}
  3961   interface(REG_INTER);
  3962 %}
  3965 // Condition Code Flag Register used by long compare
  3966 operand flagsReg_long_LTGE() %{
  3967   constraint(ALLOC_IN_RC(int_flags));
  3968   match(RegFlags);
  3969   format %{ "icc_LTGE" %}
  3970   interface(REG_INTER);
  3971 %}
  3972 operand flagsReg_long_EQNE() %{
  3973   constraint(ALLOC_IN_RC(int_flags));
  3974   match(RegFlags);
  3975   format %{ "icc_EQNE" %}
  3976   interface(REG_INTER);
  3977 %}
  3978 operand flagsReg_long_LEGT() %{
  3979   constraint(ALLOC_IN_RC(int_flags));
  3980   match(RegFlags);
  3981   format %{ "icc_LEGT" %}
  3982   interface(REG_INTER);
  3983 %}
  3986 operand regD() %{
  3987   constraint(ALLOC_IN_RC(dflt_reg));
  3988   match(RegD);
  3990   match(regD_low);
  3992   format %{ %}
  3993   interface(REG_INTER);
  3994 %}
  3996 operand regF() %{
  3997   constraint(ALLOC_IN_RC(sflt_reg));
  3998   match(RegF);
  4000   format %{ %}
  4001   interface(REG_INTER);
  4002 %}
  4004 operand regD_low() %{
  4005   constraint(ALLOC_IN_RC(dflt_low_reg));
  4006   match(regD);
  4008   format %{ %}
  4009   interface(REG_INTER);
  4010 %}
  4012 // Special Registers
  4014 // Method Register
  4015 operand inline_cache_regP(iRegP reg) %{
  4016   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
  4017   match(reg);
  4018   format %{ %}
  4019   interface(REG_INTER);
  4020 %}
  4022 operand interpreter_method_oop_regP(iRegP reg) %{
  4023   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
  4024   match(reg);
  4025   format %{ %}
  4026   interface(REG_INTER);
  4027 %}
  4030 //----------Complex Operands---------------------------------------------------
  4031 // Indirect Memory Reference
  4032 operand indirect(sp_ptr_RegP reg) %{
  4033   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4034   match(reg);
  4036   op_cost(100);
  4037   format %{ "[$reg]" %}
  4038   interface(MEMORY_INTER) %{
  4039     base($reg);
  4040     index(0x0);
  4041     scale(0x0);
  4042     disp(0x0);
  4043   %}
  4044 %}
  4046 // Indirect with simm13 Offset
  4047 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
  4048   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4049   match(AddP reg offset);
  4051   op_cost(100);
  4052   format %{ "[$reg + $offset]" %}
  4053   interface(MEMORY_INTER) %{
  4054     base($reg);
  4055     index(0x0);
  4056     scale(0x0);
  4057     disp($offset);
  4058   %}
  4059 %}
  4061 // Indirect with simm13 Offset minus 7
  4062 operand indOffset13m7(sp_ptr_RegP reg, immX13m7 offset) %{
  4063   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4064   match(AddP reg offset);
  4066   op_cost(100);
  4067   format %{ "[$reg + $offset]" %}
  4068   interface(MEMORY_INTER) %{
  4069     base($reg);
  4070     index(0x0);
  4071     scale(0x0);
  4072     disp($offset);
  4073   %}
  4074 %}
  4076 // Note:  Intel has a swapped version also, like this:
  4077 //operand indOffsetX(iRegI reg, immP offset) %{
  4078 //  constraint(ALLOC_IN_RC(int_reg));
  4079 //  match(AddP offset reg);
  4080 //
  4081 //  op_cost(100);
  4082 //  format %{ "[$reg + $offset]" %}
  4083 //  interface(MEMORY_INTER) %{
  4084 //    base($reg);
  4085 //    index(0x0);
  4086 //    scale(0x0);
  4087 //    disp($offset);
  4088 //  %}
  4089 //%}
  4090 //// However, it doesn't make sense for SPARC, since
  4091 // we have no particularly good way to embed oops in
  4092 // single instructions.
  4094 // Indirect with Register Index
  4095 operand indIndex(iRegP addr, iRegX index) %{
  4096   constraint(ALLOC_IN_RC(ptr_reg));
  4097   match(AddP addr index);
  4099   op_cost(100);
  4100   format %{ "[$addr + $index]" %}
  4101   interface(MEMORY_INTER) %{
  4102     base($addr);
  4103     index($index);
  4104     scale(0x0);
  4105     disp(0x0);
  4106   %}
  4107 %}
  4109 //----------Special Memory Operands--------------------------------------------
  4110 // Stack Slot Operand - This operand is used for loading and storing temporary
  4111 //                      values on the stack where a match requires a value to
  4112 //                      flow through memory.
  4113 operand stackSlotI(sRegI reg) %{
  4114   constraint(ALLOC_IN_RC(stack_slots));
  4115   op_cost(100);
  4116   //match(RegI);
  4117   format %{ "[$reg]" %}
  4118   interface(MEMORY_INTER) %{
  4119     base(0xE);   // R_SP
  4120     index(0x0);
  4121     scale(0x0);
  4122     disp($reg);  // Stack Offset
  4123   %}
  4124 %}
  4126 operand stackSlotP(sRegP reg) %{
  4127   constraint(ALLOC_IN_RC(stack_slots));
  4128   op_cost(100);
  4129   //match(RegP);
  4130   format %{ "[$reg]" %}
  4131   interface(MEMORY_INTER) %{
  4132     base(0xE);   // R_SP
  4133     index(0x0);
  4134     scale(0x0);
  4135     disp($reg);  // Stack Offset
  4136   %}
  4137 %}
  4139 operand stackSlotF(sRegF reg) %{
  4140   constraint(ALLOC_IN_RC(stack_slots));
  4141   op_cost(100);
  4142   //match(RegF);
  4143   format %{ "[$reg]" %}
  4144   interface(MEMORY_INTER) %{
  4145     base(0xE);   // R_SP
  4146     index(0x0);
  4147     scale(0x0);
  4148     disp($reg);  // Stack Offset
  4149   %}
  4150 %}
  4151 operand stackSlotD(sRegD reg) %{
  4152   constraint(ALLOC_IN_RC(stack_slots));
  4153   op_cost(100);
  4154   //match(RegD);
  4155   format %{ "[$reg]" %}
  4156   interface(MEMORY_INTER) %{
  4157     base(0xE);   // R_SP
  4158     index(0x0);
  4159     scale(0x0);
  4160     disp($reg);  // Stack Offset
  4161   %}
  4162 %}
  4163 operand stackSlotL(sRegL reg) %{
  4164   constraint(ALLOC_IN_RC(stack_slots));
  4165   op_cost(100);
  4166   //match(RegL);
  4167   format %{ "[$reg]" %}
  4168   interface(MEMORY_INTER) %{
  4169     base(0xE);   // R_SP
  4170     index(0x0);
  4171     scale(0x0);
  4172     disp($reg);  // Stack Offset
  4173   %}
  4174 %}
  4176 // Operands for expressing Control Flow
  4177 // NOTE:  Label is a predefined operand which should not be redefined in
  4178 //        the AD file.  It is generically handled within the ADLC.
  4180 //----------Conditional Branch Operands----------------------------------------
  4181 // Comparison Op  - This is the operation of the comparison, and is limited to
  4182 //                  the following set of codes:
  4183 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  4184 //
  4185 // Other attributes of the comparison, such as unsignedness, are specified
  4186 // by the comparison instruction that sets a condition code flags register.
  4187 // That result is represented by a flags operand whose subtype is appropriate
  4188 // to the unsignedness (etc.) of the comparison.
  4189 //
  4190 // Later, the instruction which matches both the Comparison Op (a Bool) and
  4191 // the flags (produced by the Cmp) specifies the coding of the comparison op
  4192 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  4194 operand cmpOp() %{
  4195   match(Bool);
  4197   format %{ "" %}
  4198   interface(COND_INTER) %{
  4199     equal(0x1);
  4200     not_equal(0x9);
  4201     less(0x3);
  4202     greater_equal(0xB);
  4203     less_equal(0x2);
  4204     greater(0xA);
  4205   %}
  4206 %}
  4208 // Comparison Op, unsigned
  4209 operand cmpOpU() %{
  4210   match(Bool);
  4212   format %{ "u" %}
  4213   interface(COND_INTER) %{
  4214     equal(0x1);
  4215     not_equal(0x9);
  4216     less(0x5);
  4217     greater_equal(0xD);
  4218     less_equal(0x4);
  4219     greater(0xC);
  4220   %}
  4221 %}
  4223 // Comparison Op, pointer (same as unsigned)
  4224 operand cmpOpP() %{
  4225   match(Bool);
  4227   format %{ "p" %}
  4228   interface(COND_INTER) %{
  4229     equal(0x1);
  4230     not_equal(0x9);
  4231     less(0x5);
  4232     greater_equal(0xD);
  4233     less_equal(0x4);
  4234     greater(0xC);
  4235   %}
  4236 %}
  4238 // Comparison Op, branch-register encoding
  4239 operand cmpOp_reg() %{
  4240   match(Bool);
  4242   format %{ "" %}
  4243   interface(COND_INTER) %{
  4244     equal        (0x1);
  4245     not_equal    (0x5);
  4246     less         (0x3);
  4247     greater_equal(0x7);
  4248     less_equal   (0x2);
  4249     greater      (0x6);
  4250   %}
  4251 %}
  4253 // Comparison Code, floating, unordered same as less
  4254 operand cmpOpF() %{
  4255   match(Bool);
  4257   format %{ "fl" %}
  4258   interface(COND_INTER) %{
  4259     equal(0x9);
  4260     not_equal(0x1);
  4261     less(0x3);
  4262     greater_equal(0xB);
  4263     less_equal(0xE);
  4264     greater(0x6);
  4265   %}
  4266 %}
  4268 // Used by long compare
  4269 operand cmpOp_commute() %{
  4270   match(Bool);
  4272   format %{ "" %}
  4273   interface(COND_INTER) %{
  4274     equal(0x1);
  4275     not_equal(0x9);
  4276     less(0xA);
  4277     greater_equal(0x2);
  4278     less_equal(0xB);
  4279     greater(0x3);
  4280   %}
  4281 %}
  4283 //----------OPERAND CLASSES----------------------------------------------------
  4284 // Operand Classes are groups of operands that are used to simplify
  4285 // instruction definitions by not requiring the AD writer to specify separate
  4286 // instructions for every form of operand when the instruction accepts
  4287 // multiple operand types with the same basic encoding and format.  The classic
  4288 // case of this is memory operands.
  4289 opclass memory( indirect, indOffset13, indIndex );
  4290 opclass indIndexMemory( indIndex );
  4292 //----------PIPELINE-----------------------------------------------------------
  4293 pipeline %{
  4295 //----------ATTRIBUTES---------------------------------------------------------
  4296 attributes %{
  4297   fixed_size_instructions;           // Fixed size instructions
  4298   branch_has_delay_slot;             // Branch has delay slot following
  4299   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
  4300   instruction_unit_size = 4;         // An instruction is 4 bytes long
  4301   instruction_fetch_unit_size = 16;  // The processor fetches one line
  4302   instruction_fetch_units = 1;       // of 16 bytes
  4304   // List of nop instructions
  4305   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
  4306 %}
  4308 //----------RESOURCES----------------------------------------------------------
  4309 // Resources are the functional units available to the machine
  4310 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
  4312 //----------PIPELINE DESCRIPTION-----------------------------------------------
  4313 // Pipeline Description specifies the stages in the machine's pipeline
  4315 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
  4317 //----------PIPELINE CLASSES---------------------------------------------------
  4318 // Pipeline Classes describe the stages in which input and output are
  4319 // referenced by the hardware pipeline.
  4321 // Integer ALU reg-reg operation
  4322 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4323     single_instruction;
  4324     dst   : E(write);
  4325     src1  : R(read);
  4326     src2  : R(read);
  4327     IALU  : R;
  4328 %}
  4330 // Integer ALU reg-reg long operation
  4331 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  4332     instruction_count(2);
  4333     dst   : E(write);
  4334     src1  : R(read);
  4335     src2  : R(read);
  4336     IALU  : R;
  4337     IALU  : R;
  4338 %}
  4340 // Integer ALU reg-reg long dependent operation
  4341 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
  4342     instruction_count(1); multiple_bundles;
  4343     dst   : E(write);
  4344     src1  : R(read);
  4345     src2  : R(read);
  4346     cr    : E(write);
  4347     IALU  : R(2);
  4348 %}
  4350 // Integer ALU reg-imm operaion
  4351 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4352     single_instruction;
  4353     dst   : E(write);
  4354     src1  : R(read);
  4355     IALU  : R;
  4356 %}
  4358 // Integer ALU reg-reg operation with condition code
  4359 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
  4360     single_instruction;
  4361     dst   : E(write);
  4362     cr    : E(write);
  4363     src1  : R(read);
  4364     src2  : R(read);
  4365     IALU  : R;
  4366 %}
  4368 // Integer ALU reg-imm operation with condition code
  4369 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
  4370     single_instruction;
  4371     dst   : E(write);
  4372     cr    : E(write);
  4373     src1  : R(read);
  4374     IALU  : R;
  4375 %}
  4377 // Integer ALU zero-reg operation
  4378 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  4379     single_instruction;
  4380     dst   : E(write);
  4381     src2  : R(read);
  4382     IALU  : R;
  4383 %}
  4385 // Integer ALU zero-reg operation with condition code only
  4386 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
  4387     single_instruction;
  4388     cr    : E(write);
  4389     src   : R(read);
  4390     IALU  : R;
  4391 %}
  4393 // Integer ALU reg-reg operation with condition code only
  4394 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4395     single_instruction;
  4396     cr    : E(write);
  4397     src1  : R(read);
  4398     src2  : R(read);
  4399     IALU  : R;
  4400 %}
  4402 // Integer ALU reg-imm operation with condition code only
  4403 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4404     single_instruction;
  4405     cr    : E(write);
  4406     src1  : R(read);
  4407     IALU  : R;
  4408 %}
  4410 // Integer ALU reg-reg-zero operation with condition code only
  4411 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
  4412     single_instruction;
  4413     cr    : E(write);
  4414     src1  : R(read);
  4415     src2  : R(read);
  4416     IALU  : R;
  4417 %}
  4419 // Integer ALU reg-imm-zero operation with condition code only
  4420 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
  4421     single_instruction;
  4422     cr    : E(write);
  4423     src1  : R(read);
  4424     IALU  : R;
  4425 %}
  4427 // Integer ALU reg-reg operation with condition code, src1 modified
  4428 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4429     single_instruction;
  4430     cr    : E(write);
  4431     src1  : E(write);
  4432     src1  : R(read);
  4433     src2  : R(read);
  4434     IALU  : R;
  4435 %}
  4437 // Integer ALU reg-imm operation with condition code, src1 modified
  4438 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4439     single_instruction;
  4440     cr    : E(write);
  4441     src1  : E(write);
  4442     src1  : R(read);
  4443     IALU  : R;
  4444 %}
  4446 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
  4447     multiple_bundles;
  4448     dst   : E(write)+4;
  4449     cr    : E(write);
  4450     src1  : R(read);
  4451     src2  : R(read);
  4452     IALU  : R(3);
  4453     BR    : R(2);
  4454 %}
  4456 // Integer ALU operation
  4457 pipe_class ialu_none(iRegI dst) %{
  4458     single_instruction;
  4459     dst   : E(write);
  4460     IALU  : R;
  4461 %}
  4463 // Integer ALU reg operation
  4464 pipe_class ialu_reg(iRegI dst, iRegI src) %{
  4465     single_instruction; may_have_no_code;
  4466     dst   : E(write);
  4467     src   : R(read);
  4468     IALU  : R;
  4469 %}
  4471 // Integer ALU reg conditional operation
  4472 // This instruction has a 1 cycle stall, and cannot execute
  4473 // in the same cycle as the instruction setting the condition
  4474 // code. We kludge this by pretending to read the condition code
  4475 // 1 cycle earlier, and by marking the functional units as busy
  4476 // for 2 cycles with the result available 1 cycle later than
  4477 // is really the case.
  4478 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
  4479     single_instruction;
  4480     op2_out : C(write);
  4481     op1     : R(read);
  4482     cr      : R(read);       // This is really E, with a 1 cycle stall
  4483     BR      : R(2);
  4484     MS      : R(2);
  4485 %}
  4487 #ifdef _LP64
  4488 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
  4489     instruction_count(1); multiple_bundles;
  4490     dst     : C(write)+1;
  4491     src     : R(read)+1;
  4492     IALU    : R(1);
  4493     BR      : E(2);
  4494     MS      : E(2);
  4495 %}
  4496 #endif
  4498 // Integer ALU reg operation
  4499 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
  4500     single_instruction; may_have_no_code;
  4501     dst   : E(write);
  4502     src   : R(read);
  4503     IALU  : R;
  4504 %}
  4505 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
  4506     single_instruction; may_have_no_code;
  4507     dst   : E(write);
  4508     src   : R(read);
  4509     IALU  : R;
  4510 %}
  4512 // Two integer ALU reg operations
  4513 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
  4514     instruction_count(2);
  4515     dst   : E(write);
  4516     src   : R(read);
  4517     A0    : R;
  4518     A1    : R;
  4519 %}
  4521 // Two integer ALU reg operations
  4522 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
  4523     instruction_count(2); may_have_no_code;
  4524     dst   : E(write);
  4525     src   : R(read);
  4526     A0    : R;
  4527     A1    : R;
  4528 %}
  4530 // Integer ALU imm operation
  4531 pipe_class ialu_imm(iRegI dst, immI13 src) %{
  4532     single_instruction;
  4533     dst   : E(write);
  4534     IALU  : R;
  4535 %}
  4537 // Integer ALU reg-reg with carry operation
  4538 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
  4539     single_instruction;
  4540     dst   : E(write);
  4541     src1  : R(read);
  4542     src2  : R(read);
  4543     IALU  : R;
  4544 %}
  4546 // Integer ALU cc operation
  4547 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
  4548     single_instruction;
  4549     dst   : E(write);
  4550     cc    : R(read);
  4551     IALU  : R;
  4552 %}
  4554 // Integer ALU cc / second IALU operation
  4555 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
  4556     instruction_count(1); multiple_bundles;
  4557     dst   : E(write)+1;
  4558     src   : R(read);
  4559     IALU  : R;
  4560 %}
  4562 // Integer ALU cc / second IALU operation
  4563 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
  4564     instruction_count(1); multiple_bundles;
  4565     dst   : E(write)+1;
  4566     p     : R(read);
  4567     q     : R(read);
  4568     IALU  : R;
  4569 %}
  4571 // Integer ALU hi-lo-reg operation
  4572 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
  4573     instruction_count(1); multiple_bundles;
  4574     dst   : E(write)+1;
  4575     IALU  : R(2);
  4576 %}
  4578 // Float ALU hi-lo-reg operation (with temp)
  4579 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
  4580     instruction_count(1); multiple_bundles;
  4581     dst   : E(write)+1;
  4582     IALU  : R(2);
  4583 %}
  4585 // Long Constant
  4586 pipe_class loadConL( iRegL dst, immL src ) %{
  4587     instruction_count(2); multiple_bundles;
  4588     dst   : E(write)+1;
  4589     IALU  : R(2);
  4590     IALU  : R(2);
  4591 %}
  4593 // Pointer Constant
  4594 pipe_class loadConP( iRegP dst, immP src ) %{
  4595     instruction_count(0); multiple_bundles;
  4596     fixed_latency(6);
  4597 %}
  4599 // Polling Address
  4600 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
  4601 #ifdef _LP64
  4602     instruction_count(0); multiple_bundles;
  4603     fixed_latency(6);
  4604 #else
  4605     dst   : E(write);
  4606     IALU  : R;
  4607 #endif
  4608 %}
  4610 // Long Constant small
  4611 pipe_class loadConLlo( iRegL dst, immL src ) %{
  4612     instruction_count(2);
  4613     dst   : E(write);
  4614     IALU  : R;
  4615     IALU  : R;
  4616 %}
  4618 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
  4619 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
  4620     instruction_count(1); multiple_bundles;
  4621     src   : R(read);
  4622     dst   : M(write)+1;
  4623     IALU  : R;
  4624     MS    : E;
  4625 %}
  4627 // Integer ALU nop operation
  4628 pipe_class ialu_nop() %{
  4629     single_instruction;
  4630     IALU  : R;
  4631 %}
  4633 // Integer ALU nop operation
  4634 pipe_class ialu_nop_A0() %{
  4635     single_instruction;
  4636     A0    : R;
  4637 %}
  4639 // Integer ALU nop operation
  4640 pipe_class ialu_nop_A1() %{
  4641     single_instruction;
  4642     A1    : R;
  4643 %}
  4645 // Integer Multiply reg-reg operation
  4646 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4647     single_instruction;
  4648     dst   : E(write);
  4649     src1  : R(read);
  4650     src2  : R(read);
  4651     MS    : R(5);
  4652 %}
  4654 // Integer Multiply reg-imm operation
  4655 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4656     single_instruction;
  4657     dst   : E(write);
  4658     src1  : R(read);
  4659     MS    : R(5);
  4660 %}
  4662 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4663     single_instruction;
  4664     dst   : E(write)+4;
  4665     src1  : R(read);
  4666     src2  : R(read);
  4667     MS    : R(6);
  4668 %}
  4670 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4671     single_instruction;
  4672     dst   : E(write)+4;
  4673     src1  : R(read);
  4674     MS    : R(6);
  4675 %}
  4677 // Integer Divide reg-reg
  4678 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
  4679     instruction_count(1); multiple_bundles;
  4680     dst   : E(write);
  4681     temp  : E(write);
  4682     src1  : R(read);
  4683     src2  : R(read);
  4684     temp  : R(read);
  4685     MS    : R(38);
  4686 %}
  4688 // Integer Divide reg-imm
  4689 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
  4690     instruction_count(1); multiple_bundles;
  4691     dst   : E(write);
  4692     temp  : E(write);
  4693     src1  : R(read);
  4694     temp  : R(read);
  4695     MS    : R(38);
  4696 %}
  4698 // Long Divide
  4699 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4700     dst  : E(write)+71;
  4701     src1 : R(read);
  4702     src2 : R(read)+1;
  4703     MS   : R(70);
  4704 %}
  4706 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4707     dst  : E(write)+71;
  4708     src1 : R(read);
  4709     MS   : R(70);
  4710 %}
  4712 // Floating Point Add Float
  4713 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
  4714     single_instruction;
  4715     dst   : X(write);
  4716     src1  : E(read);
  4717     src2  : E(read);
  4718     FA    : R;
  4719 %}
  4721 // Floating Point Add Double
  4722 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
  4723     single_instruction;
  4724     dst   : X(write);
  4725     src1  : E(read);
  4726     src2  : E(read);
  4727     FA    : R;
  4728 %}
  4730 // Floating Point Conditional Move based on integer flags
  4731 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
  4732     single_instruction;
  4733     dst   : X(write);
  4734     src   : E(read);
  4735     cr    : R(read);
  4736     FA    : R(2);
  4737     BR    : R(2);
  4738 %}
  4740 // Floating Point Conditional Move based on integer flags
  4741 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
  4742     single_instruction;
  4743     dst   : X(write);
  4744     src   : E(read);
  4745     cr    : R(read);
  4746     FA    : R(2);
  4747     BR    : R(2);
  4748 %}
  4750 // Floating Point Multiply Float
  4751 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
  4752     single_instruction;
  4753     dst   : X(write);
  4754     src1  : E(read);
  4755     src2  : E(read);
  4756     FM    : R;
  4757 %}
  4759 // Floating Point Multiply Double
  4760 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
  4761     single_instruction;
  4762     dst   : X(write);
  4763     src1  : E(read);
  4764     src2  : E(read);
  4765     FM    : R;
  4766 %}
  4768 // Floating Point Divide Float
  4769 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
  4770     single_instruction;
  4771     dst   : X(write);
  4772     src1  : E(read);
  4773     src2  : E(read);
  4774     FM    : R;
  4775     FDIV  : C(14);
  4776 %}
  4778 // Floating Point Divide Double
  4779 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
  4780     single_instruction;
  4781     dst   : X(write);
  4782     src1  : E(read);
  4783     src2  : E(read);
  4784     FM    : R;
  4785     FDIV  : C(17);
  4786 %}
  4788 // Floating Point Move/Negate/Abs Float
  4789 pipe_class faddF_reg(regF dst, regF src) %{
  4790     single_instruction;
  4791     dst   : W(write);
  4792     src   : E(read);
  4793     FA    : R(1);
  4794 %}
  4796 // Floating Point Move/Negate/Abs Double
  4797 pipe_class faddD_reg(regD dst, regD src) %{
  4798     single_instruction;
  4799     dst   : W(write);
  4800     src   : E(read);
  4801     FA    : R;
  4802 %}
  4804 // Floating Point Convert F->D
  4805 pipe_class fcvtF2D(regD dst, regF src) %{
  4806     single_instruction;
  4807     dst   : X(write);
  4808     src   : E(read);
  4809     FA    : R;
  4810 %}
  4812 // Floating Point Convert I->D
  4813 pipe_class fcvtI2D(regD dst, regF src) %{
  4814     single_instruction;
  4815     dst   : X(write);
  4816     src   : E(read);
  4817     FA    : R;
  4818 %}
  4820 // Floating Point Convert LHi->D
  4821 pipe_class fcvtLHi2D(regD dst, regD src) %{
  4822     single_instruction;
  4823     dst   : X(write);
  4824     src   : E(read);
  4825     FA    : R;
  4826 %}
  4828 // Floating Point Convert L->D
  4829 pipe_class fcvtL2D(regD dst, regF src) %{
  4830     single_instruction;
  4831     dst   : X(write);
  4832     src   : E(read);
  4833     FA    : R;
  4834 %}
  4836 // Floating Point Convert L->F
  4837 pipe_class fcvtL2F(regD dst, regF src) %{
  4838     single_instruction;
  4839     dst   : X(write);
  4840     src   : E(read);
  4841     FA    : R;
  4842 %}
  4844 // Floating Point Convert D->F
  4845 pipe_class fcvtD2F(regD dst, regF src) %{
  4846     single_instruction;
  4847     dst   : X(write);
  4848     src   : E(read);
  4849     FA    : R;
  4850 %}
  4852 // Floating Point Convert I->L
  4853 pipe_class fcvtI2L(regD dst, regF src) %{
  4854     single_instruction;
  4855     dst   : X(write);
  4856     src   : E(read);
  4857     FA    : R;
  4858 %}
  4860 // Floating Point Convert D->F
  4861 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
  4862     instruction_count(1); multiple_bundles;
  4863     dst   : X(write)+6;
  4864     src   : E(read);
  4865     FA    : R;
  4866 %}
  4868 // Floating Point Convert D->L
  4869 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
  4870     instruction_count(1); multiple_bundles;
  4871     dst   : X(write)+6;
  4872     src   : E(read);
  4873     FA    : R;
  4874 %}
  4876 // Floating Point Convert F->I
  4877 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
  4878     instruction_count(1); multiple_bundles;
  4879     dst   : X(write)+6;
  4880     src   : E(read);
  4881     FA    : R;
  4882 %}
  4884 // Floating Point Convert F->L
  4885 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
  4886     instruction_count(1); multiple_bundles;
  4887     dst   : X(write)+6;
  4888     src   : E(read);
  4889     FA    : R;
  4890 %}
  4892 // Floating Point Convert I->F
  4893 pipe_class fcvtI2F(regF dst, regF src) %{
  4894     single_instruction;
  4895     dst   : X(write);
  4896     src   : E(read);
  4897     FA    : R;
  4898 %}
  4900 // Floating Point Compare
  4901 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
  4902     single_instruction;
  4903     cr    : X(write);
  4904     src1  : E(read);
  4905     src2  : E(read);
  4906     FA    : R;
  4907 %}
  4909 // Floating Point Compare
  4910 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
  4911     single_instruction;
  4912     cr    : X(write);
  4913     src1  : E(read);
  4914     src2  : E(read);
  4915     FA    : R;
  4916 %}
  4918 // Floating Add Nop
  4919 pipe_class fadd_nop() %{
  4920     single_instruction;
  4921     FA  : R;
  4922 %}
  4924 // Integer Store to Memory
  4925 pipe_class istore_mem_reg(memory mem, iRegI src) %{
  4926     single_instruction;
  4927     mem   : R(read);
  4928     src   : C(read);
  4929     MS    : R;
  4930 %}
  4932 // Integer Store to Memory
  4933 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
  4934     single_instruction;
  4935     mem   : R(read);
  4936     src   : C(read);
  4937     MS    : R;
  4938 %}
  4940 // Integer Store Zero to Memory
  4941 pipe_class istore_mem_zero(memory mem, immI0 src) %{
  4942     single_instruction;
  4943     mem   : R(read);
  4944     MS    : R;
  4945 %}
  4947 // Special Stack Slot Store
  4948 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
  4949     single_instruction;
  4950     stkSlot : R(read);
  4951     src     : C(read);
  4952     MS      : R;
  4953 %}
  4955 // Special Stack Slot Store
  4956 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
  4957     instruction_count(2); multiple_bundles;
  4958     stkSlot : R(read);
  4959     src     : C(read);
  4960     MS      : R(2);
  4961 %}
  4963 // Float Store
  4964 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
  4965     single_instruction;
  4966     mem : R(read);
  4967     src : C(read);
  4968     MS  : R;
  4969 %}
  4971 // Float Store
  4972 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
  4973     single_instruction;
  4974     mem : R(read);
  4975     MS  : R;
  4976 %}
  4978 // Double Store
  4979 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
  4980     instruction_count(1);
  4981     mem : R(read);
  4982     src : C(read);
  4983     MS  : R;
  4984 %}
  4986 // Double Store
  4987 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
  4988     single_instruction;
  4989     mem : R(read);
  4990     MS  : R;
  4991 %}
  4993 // Special Stack Slot Float Store
  4994 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
  4995     single_instruction;
  4996     stkSlot : R(read);
  4997     src     : C(read);
  4998     MS      : R;
  4999 %}
  5001 // Special Stack Slot Double Store
  5002 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
  5003     single_instruction;
  5004     stkSlot : R(read);
  5005     src     : C(read);
  5006     MS      : R;
  5007 %}
  5009 // Integer Load (when sign bit propagation not needed)
  5010 pipe_class iload_mem(iRegI dst, memory mem) %{
  5011     single_instruction;
  5012     mem : R(read);
  5013     dst : C(write);
  5014     MS  : R;
  5015 %}
  5017 // Integer Load from stack operand
  5018 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
  5019     single_instruction;
  5020     mem : R(read);
  5021     dst : C(write);
  5022     MS  : R;
  5023 %}
  5025 // Integer Load (when sign bit propagation or masking is needed)
  5026 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
  5027     single_instruction;
  5028     mem : R(read);
  5029     dst : M(write);
  5030     MS  : R;
  5031 %}
  5033 // Float Load
  5034 pipe_class floadF_mem(regF dst, memory mem) %{
  5035     single_instruction;
  5036     mem : R(read);
  5037     dst : M(write);
  5038     MS  : R;
  5039 %}
  5041 // Float Load
  5042 pipe_class floadD_mem(regD dst, memory mem) %{
  5043     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
  5044     mem : R(read);
  5045     dst : M(write);
  5046     MS  : R;
  5047 %}
  5049 // Float Load
  5050 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
  5051     single_instruction;
  5052     stkSlot : R(read);
  5053     dst : M(write);
  5054     MS  : R;
  5055 %}
  5057 // Float Load
  5058 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
  5059     single_instruction;
  5060     stkSlot : R(read);
  5061     dst : M(write);
  5062     MS  : R;
  5063 %}
  5065 // Memory Nop
  5066 pipe_class mem_nop() %{
  5067     single_instruction;
  5068     MS  : R;
  5069 %}
  5071 pipe_class sethi(iRegP dst, immI src) %{
  5072     single_instruction;
  5073     dst  : E(write);
  5074     IALU : R;
  5075 %}
  5077 pipe_class loadPollP(iRegP poll) %{
  5078     single_instruction;
  5079     poll : R(read);
  5080     MS   : R;
  5081 %}
  5083 pipe_class br(Universe br, label labl) %{
  5084     single_instruction_with_delay_slot;
  5085     BR  : R;
  5086 %}
  5088 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
  5089     single_instruction_with_delay_slot;
  5090     cr    : E(read);
  5091     BR    : R;
  5092 %}
  5094 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
  5095     single_instruction_with_delay_slot;
  5096     op1 : E(read);
  5097     BR  : R;
  5098     MS  : R;
  5099 %}
  5101 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
  5102     single_instruction_with_delay_slot;
  5103     cr    : E(read);
  5104     BR    : R;
  5105 %}
  5107 pipe_class br_nop() %{
  5108     single_instruction;
  5109     BR  : R;
  5110 %}
  5112 pipe_class simple_call(method meth) %{
  5113     instruction_count(2); multiple_bundles; force_serialization;
  5114     fixed_latency(100);
  5115     BR  : R(1);
  5116     MS  : R(1);
  5117     A0  : R(1);
  5118 %}
  5120 pipe_class compiled_call(method meth) %{
  5121     instruction_count(1); multiple_bundles; force_serialization;
  5122     fixed_latency(100);
  5123     MS  : R(1);
  5124 %}
  5126 pipe_class call(method meth) %{
  5127     instruction_count(0); multiple_bundles; force_serialization;
  5128     fixed_latency(100);
  5129 %}
  5131 pipe_class tail_call(Universe ignore, label labl) %{
  5132     single_instruction; has_delay_slot;
  5133     fixed_latency(100);
  5134     BR  : R(1);
  5135     MS  : R(1);
  5136 %}
  5138 pipe_class ret(Universe ignore) %{
  5139     single_instruction; has_delay_slot;
  5140     BR  : R(1);
  5141     MS  : R(1);
  5142 %}
  5144 pipe_class ret_poll(g3RegP poll) %{
  5145     instruction_count(3); has_delay_slot;
  5146     poll : E(read);
  5147     MS   : R;
  5148 %}
  5150 // The real do-nothing guy
  5151 pipe_class empty( ) %{
  5152     instruction_count(0);
  5153 %}
  5155 pipe_class long_memory_op() %{
  5156     instruction_count(0); multiple_bundles; force_serialization;
  5157     fixed_latency(25);
  5158     MS  : R(1);
  5159 %}
  5161 // Check-cast
  5162 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
  5163     array : R(read);
  5164     match  : R(read);
  5165     IALU   : R(2);
  5166     BR     : R(2);
  5167     MS     : R;
  5168 %}
  5170 // Convert FPU flags into +1,0,-1
  5171 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
  5172     src1  : E(read);
  5173     src2  : E(read);
  5174     dst   : E(write);
  5175     FA    : R;
  5176     MS    : R(2);
  5177     BR    : R(2);
  5178 %}
  5180 // Compare for p < q, and conditionally add y
  5181 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
  5182     p     : E(read);
  5183     q     : E(read);
  5184     y     : E(read);
  5185     IALU  : R(3)
  5186 %}
  5188 // Perform a compare, then move conditionally in a branch delay slot.
  5189 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
  5190     src2   : E(read);
  5191     srcdst : E(read);
  5192     IALU   : R;
  5193     BR     : R;
  5194 %}
  5196 // Define the class for the Nop node
  5197 define %{
  5198    MachNop = ialu_nop;
  5199 %}
  5201 %}
  5203 //----------INSTRUCTIONS-------------------------------------------------------
  5205 //------------Special Stack Slot instructions - no match rules-----------------
  5206 instruct stkI_to_regF(regF dst, stackSlotI src) %{
  5207   // No match rule to avoid chain rule match.
  5208   effect(DEF dst, USE src);
  5209   ins_cost(MEMORY_REF_COST);
  5210   size(4);
  5211   format %{ "LDF    $src,$dst\t! stkI to regF" %}
  5212   opcode(Assembler::ldf_op3);
  5213   ins_encode(simple_form3_mem_reg(src, dst));
  5214   ins_pipe(floadF_stk);
  5215 %}
  5217 instruct stkL_to_regD(regD dst, stackSlotL src) %{
  5218   // No match rule to avoid chain rule match.
  5219   effect(DEF dst, USE src);
  5220   ins_cost(MEMORY_REF_COST);
  5221   size(4);
  5222   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
  5223   opcode(Assembler::lddf_op3);
  5224   ins_encode(simple_form3_mem_reg(src, dst));
  5225   ins_pipe(floadD_stk);
  5226 %}
  5228 instruct regF_to_stkI(stackSlotI dst, regF src) %{
  5229   // No match rule to avoid chain rule match.
  5230   effect(DEF dst, USE src);
  5231   ins_cost(MEMORY_REF_COST);
  5232   size(4);
  5233   format %{ "STF    $src,$dst\t! regF to stkI" %}
  5234   opcode(Assembler::stf_op3);
  5235   ins_encode(simple_form3_mem_reg(dst, src));
  5236   ins_pipe(fstoreF_stk_reg);
  5237 %}
  5239 instruct regD_to_stkL(stackSlotL dst, regD src) %{
  5240   // No match rule to avoid chain rule match.
  5241   effect(DEF dst, USE src);
  5242   ins_cost(MEMORY_REF_COST);
  5243   size(4);
  5244   format %{ "STDF   $src,$dst\t! regD to stkL" %}
  5245   opcode(Assembler::stdf_op3);
  5246   ins_encode(simple_form3_mem_reg(dst, src));
  5247   ins_pipe(fstoreD_stk_reg);
  5248 %}
  5250 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
  5251   effect(DEF dst, USE src);
  5252   ins_cost(MEMORY_REF_COST*2);
  5253   size(8);
  5254   format %{ "STW    $src,$dst.hi\t! long\n\t"
  5255             "STW    R_G0,$dst.lo" %}
  5256   opcode(Assembler::stw_op3);
  5257   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
  5258   ins_pipe(lstoreI_stk_reg);
  5259 %}
  5261 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
  5262   // No match rule to avoid chain rule match.
  5263   effect(DEF dst, USE src);
  5264   ins_cost(MEMORY_REF_COST);
  5265   size(4);
  5266   format %{ "STX    $src,$dst\t! regL to stkD" %}
  5267   opcode(Assembler::stx_op3);
  5268   ins_encode(simple_form3_mem_reg( dst, src ) );
  5269   ins_pipe(istore_stk_reg);
  5270 %}
  5272 //---------- Chain stack slots between similar types --------
  5274 // Load integer from stack slot
  5275 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
  5276   match(Set dst src);
  5277   ins_cost(MEMORY_REF_COST);
  5279   size(4);
  5280   format %{ "LDUW   $src,$dst\t!stk" %}
  5281   opcode(Assembler::lduw_op3);
  5282   ins_encode(simple_form3_mem_reg( src, dst ) );
  5283   ins_pipe(iload_mem);
  5284 %}
  5286 // Store integer to stack slot
  5287 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
  5288   match(Set dst src);
  5289   ins_cost(MEMORY_REF_COST);
  5291   size(4);
  5292   format %{ "STW    $src,$dst\t!stk" %}
  5293   opcode(Assembler::stw_op3);
  5294   ins_encode(simple_form3_mem_reg( dst, src ) );
  5295   ins_pipe(istore_mem_reg);
  5296 %}
  5298 // Load long from stack slot
  5299 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
  5300   match(Set dst src);
  5302   ins_cost(MEMORY_REF_COST);
  5303   size(4);
  5304   format %{ "LDX    $src,$dst\t! long" %}
  5305   opcode(Assembler::ldx_op3);
  5306   ins_encode(simple_form3_mem_reg( src, dst ) );
  5307   ins_pipe(iload_mem);
  5308 %}
  5310 // Store long to stack slot
  5311 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
  5312   match(Set dst src);
  5314   ins_cost(MEMORY_REF_COST);
  5315   size(4);
  5316   format %{ "STX    $src,$dst\t! long" %}
  5317   opcode(Assembler::stx_op3);
  5318   ins_encode(simple_form3_mem_reg( dst, src ) );
  5319   ins_pipe(istore_mem_reg);
  5320 %}
  5322 #ifdef _LP64
  5323 // Load pointer from stack slot, 64-bit encoding
  5324 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5325   match(Set dst src);
  5326   ins_cost(MEMORY_REF_COST);
  5327   size(4);
  5328   format %{ "LDX    $src,$dst\t!ptr" %}
  5329   opcode(Assembler::ldx_op3);
  5330   ins_encode(simple_form3_mem_reg( src, dst ) );
  5331   ins_pipe(iload_mem);
  5332 %}
  5334 // Store pointer to stack slot
  5335 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5336   match(Set dst src);
  5337   ins_cost(MEMORY_REF_COST);
  5338   size(4);
  5339   format %{ "STX    $src,$dst\t!ptr" %}
  5340   opcode(Assembler::stx_op3);
  5341   ins_encode(simple_form3_mem_reg( dst, src ) );
  5342   ins_pipe(istore_mem_reg);
  5343 %}
  5344 #else // _LP64
  5345 // Load pointer from stack slot, 32-bit encoding
  5346 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5347   match(Set dst src);
  5348   ins_cost(MEMORY_REF_COST);
  5349   format %{ "LDUW   $src,$dst\t!ptr" %}
  5350   opcode(Assembler::lduw_op3, Assembler::ldst_op);
  5351   ins_encode(simple_form3_mem_reg( src, dst ) );
  5352   ins_pipe(iload_mem);
  5353 %}
  5355 // Store pointer to stack slot
  5356 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5357   match(Set dst src);
  5358   ins_cost(MEMORY_REF_COST);
  5359   format %{ "STW    $src,$dst\t!ptr" %}
  5360   opcode(Assembler::stw_op3, Assembler::ldst_op);
  5361   ins_encode(simple_form3_mem_reg( dst, src ) );
  5362   ins_pipe(istore_mem_reg);
  5363 %}
  5364 #endif // _LP64
  5366 //------------Special Nop instructions for bundling - no match rules-----------
  5367 // Nop using the A0 functional unit
  5368 instruct Nop_A0() %{
  5369   ins_cost(0);
  5371   format %{ "NOP    ! Alu Pipeline" %}
  5372   opcode(Assembler::or_op3, Assembler::arith_op);
  5373   ins_encode( form2_nop() );
  5374   ins_pipe(ialu_nop_A0);
  5375 %}
  5377 // Nop using the A1 functional unit
  5378 instruct Nop_A1( ) %{
  5379   ins_cost(0);
  5381   format %{ "NOP    ! Alu Pipeline" %}
  5382   opcode(Assembler::or_op3, Assembler::arith_op);
  5383   ins_encode( form2_nop() );
  5384   ins_pipe(ialu_nop_A1);
  5385 %}
  5387 // Nop using the memory functional unit
  5388 instruct Nop_MS( ) %{
  5389   ins_cost(0);
  5391   format %{ "NOP    ! Memory Pipeline" %}
  5392   ins_encode( emit_mem_nop );
  5393   ins_pipe(mem_nop);
  5394 %}
  5396 // Nop using the floating add functional unit
  5397 instruct Nop_FA( ) %{
  5398   ins_cost(0);
  5400   format %{ "NOP    ! Floating Add Pipeline" %}
  5401   ins_encode( emit_fadd_nop );
  5402   ins_pipe(fadd_nop);
  5403 %}
  5405 // Nop using the branch functional unit
  5406 instruct Nop_BR( ) %{
  5407   ins_cost(0);
  5409   format %{ "NOP    ! Branch Pipeline" %}
  5410   ins_encode( emit_br_nop );
  5411   ins_pipe(br_nop);
  5412 %}
  5414 //----------Load/Store/Move Instructions---------------------------------------
  5415 //----------Load Instructions--------------------------------------------------
  5416 // Load Byte (8bit signed)
  5417 instruct loadB(iRegI dst, memory mem) %{
  5418   match(Set dst (LoadB mem));
  5419   ins_cost(MEMORY_REF_COST);
  5421   size(4);
  5422   format %{ "LDSB   $mem,$dst\t! byte" %}
  5423   ins_encode %{
  5424     __ ldsb($mem$$Address, $dst$$Register);
  5425   %}
  5426   ins_pipe(iload_mask_mem);
  5427 %}
  5429 // Load Byte (8bit signed) into a Long Register
  5430 instruct loadB2L(iRegL dst, memory mem) %{
  5431   match(Set dst (ConvI2L (LoadB mem)));
  5432   ins_cost(MEMORY_REF_COST);
  5434   size(4);
  5435   format %{ "LDSB   $mem,$dst\t! byte -> long" %}
  5436   ins_encode %{
  5437     __ ldsb($mem$$Address, $dst$$Register);
  5438   %}
  5439   ins_pipe(iload_mask_mem);
  5440 %}
  5442 // Load Unsigned Byte (8bit UNsigned) into an int reg
  5443 instruct loadUB(iRegI dst, memory mem) %{
  5444   match(Set dst (LoadUB mem));
  5445   ins_cost(MEMORY_REF_COST);
  5447   size(4);
  5448   format %{ "LDUB   $mem,$dst\t! ubyte" %}
  5449   ins_encode %{
  5450     __ ldub($mem$$Address, $dst$$Register);
  5451   %}
  5452   ins_pipe(iload_mem);
  5453 %}
  5455 // Load Unsigned Byte (8bit UNsigned) into a Long Register
  5456 instruct loadUB2L(iRegL dst, memory mem) %{
  5457   match(Set dst (ConvI2L (LoadUB mem)));
  5458   ins_cost(MEMORY_REF_COST);
  5460   size(4);
  5461   format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
  5462   ins_encode %{
  5463     __ ldub($mem$$Address, $dst$$Register);
  5464   %}
  5465   ins_pipe(iload_mem);
  5466 %}
  5468 // Load Unsigned Byte (8 bit UNsigned) with 8-bit mask into Long Register
  5469 instruct loadUB2L_immI8(iRegL dst, memory mem, immI8 mask) %{
  5470   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
  5471   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5473   size(2*4);
  5474   format %{ "LDUB   $mem,$dst\t# ubyte & 8-bit mask -> long\n\t"
  5475             "AND    $dst,$mask,$dst" %}
  5476   ins_encode %{
  5477     __ ldub($mem$$Address, $dst$$Register);
  5478     __ and3($dst$$Register, $mask$$constant, $dst$$Register);
  5479   %}
  5480   ins_pipe(iload_mem);
  5481 %}
  5483 // Load Short (16bit signed)
  5484 instruct loadS(iRegI dst, memory mem) %{
  5485   match(Set dst (LoadS mem));
  5486   ins_cost(MEMORY_REF_COST);
  5488   size(4);
  5489   format %{ "LDSH   $mem,$dst\t! short" %}
  5490   ins_encode %{
  5491     __ ldsh($mem$$Address, $dst$$Register);
  5492   %}
  5493   ins_pipe(iload_mask_mem);
  5494 %}
  5496 // Load Short (16 bit signed) to Byte (8 bit signed)
  5497 instruct loadS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5498   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
  5499   ins_cost(MEMORY_REF_COST);
  5501   size(4);
  5503   format %{ "LDSB   $mem+1,$dst\t! short -> byte" %}
  5504   ins_encode %{
  5505     __ ldsb($mem$$Address, $dst$$Register, 1);
  5506   %}
  5507   ins_pipe(iload_mask_mem);
  5508 %}
  5510 // Load Short (16bit signed) into a Long Register
  5511 instruct loadS2L(iRegL dst, memory mem) %{
  5512   match(Set dst (ConvI2L (LoadS mem)));
  5513   ins_cost(MEMORY_REF_COST);
  5515   size(4);
  5516   format %{ "LDSH   $mem,$dst\t! short -> long" %}
  5517   ins_encode %{
  5518     __ ldsh($mem$$Address, $dst$$Register);
  5519   %}
  5520   ins_pipe(iload_mask_mem);
  5521 %}
  5523 // Load Unsigned Short/Char (16bit UNsigned)
  5524 instruct loadUS(iRegI dst, memory mem) %{
  5525   match(Set dst (LoadUS mem));
  5526   ins_cost(MEMORY_REF_COST);
  5528   size(4);
  5529   format %{ "LDUH   $mem,$dst\t! ushort/char" %}
  5530   ins_encode %{
  5531     __ lduh($mem$$Address, $dst$$Register);
  5532   %}
  5533   ins_pipe(iload_mem);
  5534 %}
  5536 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
  5537 instruct loadUS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5538   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
  5539   ins_cost(MEMORY_REF_COST);
  5541   size(4);
  5542   format %{ "LDSB   $mem+1,$dst\t! ushort -> byte" %}
  5543   ins_encode %{
  5544     __ ldsb($mem$$Address, $dst$$Register, 1);
  5545   %}
  5546   ins_pipe(iload_mask_mem);
  5547 %}
  5549 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
  5550 instruct loadUS2L(iRegL dst, memory mem) %{
  5551   match(Set dst (ConvI2L (LoadUS mem)));
  5552   ins_cost(MEMORY_REF_COST);
  5554   size(4);
  5555   format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
  5556   ins_encode %{
  5557     __ lduh($mem$$Address, $dst$$Register);
  5558   %}
  5559   ins_pipe(iload_mem);
  5560 %}
  5562 // Load Unsigned Short/Char (16bit UNsigned) with mask 0xFF into a Long Register
  5563 instruct loadUS2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
  5564   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5565   ins_cost(MEMORY_REF_COST);
  5567   size(4);
  5568   format %{ "LDUB   $mem+1,$dst\t! ushort/char & 0xFF -> long" %}
  5569   ins_encode %{
  5570     __ ldub($mem$$Address, $dst$$Register, 1);  // LSB is index+1 on BE
  5571   %}
  5572   ins_pipe(iload_mem);
  5573 %}
  5575 // Load Unsigned Short/Char (16bit UNsigned) with a 13-bit mask into a Long Register
  5576 instruct loadUS2L_immI13(iRegL dst, memory mem, immI13 mask) %{
  5577   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5578   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5580   size(2*4);
  5581   format %{ "LDUH   $mem,$dst\t! ushort/char & 13-bit mask -> long\n\t"
  5582             "AND    $dst,$mask,$dst" %}
  5583   ins_encode %{
  5584     Register Rdst = $dst$$Register;
  5585     __ lduh($mem$$Address, Rdst);
  5586     __ and3(Rdst, $mask$$constant, Rdst);
  5587   %}
  5588   ins_pipe(iload_mem);
  5589 %}
  5591 // Load Unsigned Short/Char (16bit UNsigned) with a 16-bit mask into a Long Register
  5592 instruct loadUS2L_immI16(iRegL dst, memory mem, immI16 mask, iRegL tmp) %{
  5593   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5594   effect(TEMP dst, TEMP tmp);
  5595   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
  5597   size((3+1)*4);  // set may use two instructions.
  5598   format %{ "LDUH   $mem,$dst\t! ushort/char & 16-bit mask -> long\n\t"
  5599             "SET    $mask,$tmp\n\t"
  5600             "AND    $dst,$tmp,$dst" %}
  5601   ins_encode %{
  5602     Register Rdst = $dst$$Register;
  5603     Register Rtmp = $tmp$$Register;
  5604     __ lduh($mem$$Address, Rdst);
  5605     __ set($mask$$constant, Rtmp);
  5606     __ and3(Rdst, Rtmp, Rdst);
  5607   %}
  5608   ins_pipe(iload_mem);
  5609 %}
  5611 // Load Integer
  5612 instruct loadI(iRegI dst, memory mem) %{
  5613   match(Set dst (LoadI mem));
  5614   ins_cost(MEMORY_REF_COST);
  5616   size(4);
  5617   format %{ "LDUW   $mem,$dst\t! int" %}
  5618   ins_encode %{
  5619     __ lduw($mem$$Address, $dst$$Register);
  5620   %}
  5621   ins_pipe(iload_mem);
  5622 %}
  5624 // Load Integer to Byte (8 bit signed)
  5625 instruct loadI2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5626   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
  5627   ins_cost(MEMORY_REF_COST);
  5629   size(4);
  5631   format %{ "LDSB   $mem+3,$dst\t! int -> byte" %}
  5632   ins_encode %{
  5633     __ ldsb($mem$$Address, $dst$$Register, 3);
  5634   %}
  5635   ins_pipe(iload_mask_mem);
  5636 %}
  5638 // Load Integer to Unsigned Byte (8 bit UNsigned)
  5639 instruct loadI2UB(iRegI dst, indOffset13m7 mem, immI_255 mask) %{
  5640   match(Set dst (AndI (LoadI mem) mask));
  5641   ins_cost(MEMORY_REF_COST);
  5643   size(4);
  5645   format %{ "LDUB   $mem+3,$dst\t! int -> ubyte" %}
  5646   ins_encode %{
  5647     __ ldub($mem$$Address, $dst$$Register, 3);
  5648   %}
  5649   ins_pipe(iload_mask_mem);
  5650 %}
  5652 // Load Integer to Short (16 bit signed)
  5653 instruct loadI2S(iRegI dst, indOffset13m7 mem, immI_16 sixteen) %{
  5654   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
  5655   ins_cost(MEMORY_REF_COST);
  5657   size(4);
  5659   format %{ "LDSH   $mem+2,$dst\t! int -> short" %}
  5660   ins_encode %{
  5661     __ ldsh($mem$$Address, $dst$$Register, 2);
  5662   %}
  5663   ins_pipe(iload_mask_mem);
  5664 %}
  5666 // Load Integer to Unsigned Short (16 bit UNsigned)
  5667 instruct loadI2US(iRegI dst, indOffset13m7 mem, immI_65535 mask) %{
  5668   match(Set dst (AndI (LoadI mem) mask));
  5669   ins_cost(MEMORY_REF_COST);
  5671   size(4);
  5673   format %{ "LDUH   $mem+2,$dst\t! int -> ushort/char" %}
  5674   ins_encode %{
  5675     __ lduh($mem$$Address, $dst$$Register, 2);
  5676   %}
  5677   ins_pipe(iload_mask_mem);
  5678 %}
  5680 // Load Integer into a Long Register
  5681 instruct loadI2L(iRegL dst, memory mem) %{
  5682   match(Set dst (ConvI2L (LoadI mem)));
  5683   ins_cost(MEMORY_REF_COST);
  5685   size(4);
  5686   format %{ "LDSW   $mem,$dst\t! int -> long" %}
  5687   ins_encode %{
  5688     __ ldsw($mem$$Address, $dst$$Register);
  5689   %}
  5690   ins_pipe(iload_mask_mem);
  5691 %}
  5693 // Load Integer with mask 0xFF into a Long Register
  5694 instruct loadI2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
  5695   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5696   ins_cost(MEMORY_REF_COST);
  5698   size(4);
  5699   format %{ "LDUB   $mem+3,$dst\t! int & 0xFF -> long" %}
  5700   ins_encode %{
  5701     __ ldub($mem$$Address, $dst$$Register, 3);  // LSB is index+3 on BE
  5702   %}
  5703   ins_pipe(iload_mem);
  5704 %}
  5706 // Load Integer with mask 0xFFFF into a Long Register
  5707 instruct loadI2L_immI_65535(iRegL dst, indOffset13m7 mem, immI_65535 mask) %{
  5708   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5709   ins_cost(MEMORY_REF_COST);
  5711   size(4);
  5712   format %{ "LDUH   $mem+2,$dst\t! int & 0xFFFF -> long" %}
  5713   ins_encode %{
  5714     __ lduh($mem$$Address, $dst$$Register, 2);  // LSW is index+2 on BE
  5715   %}
  5716   ins_pipe(iload_mem);
  5717 %}
  5719 // Load Integer with a 13-bit mask into a Long Register
  5720 instruct loadI2L_immI13(iRegL dst, memory mem, immI13 mask) %{
  5721   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5722   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5724   size(2*4);
  5725   format %{ "LDUW   $mem,$dst\t! int & 13-bit mask -> long\n\t"
  5726             "AND    $dst,$mask,$dst" %}
  5727   ins_encode %{
  5728     Register Rdst = $dst$$Register;
  5729     __ lduw($mem$$Address, Rdst);
  5730     __ and3(Rdst, $mask$$constant, Rdst);
  5731   %}
  5732   ins_pipe(iload_mem);
  5733 %}
  5735 // Load Integer with a 32-bit mask into a Long Register
  5736 instruct loadI2L_immI(iRegL dst, memory mem, immI mask, iRegL tmp) %{
  5737   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5738   effect(TEMP dst, TEMP tmp);
  5739   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
  5741   size((3+1)*4);  // set may use two instructions.
  5742   format %{ "LDUW   $mem,$dst\t! int & 32-bit mask -> long\n\t"
  5743             "SET    $mask,$tmp\n\t"
  5744             "AND    $dst,$tmp,$dst" %}
  5745   ins_encode %{
  5746     Register Rdst = $dst$$Register;
  5747     Register Rtmp = $tmp$$Register;
  5748     __ lduw($mem$$Address, Rdst);
  5749     __ set($mask$$constant, Rtmp);
  5750     __ and3(Rdst, Rtmp, Rdst);
  5751   %}
  5752   ins_pipe(iload_mem);
  5753 %}
  5755 // Load Unsigned Integer into a Long Register
  5756 instruct loadUI2L(iRegL dst, memory mem) %{
  5757   match(Set dst (LoadUI2L mem));
  5758   ins_cost(MEMORY_REF_COST);
  5760   size(4);
  5761   format %{ "LDUW   $mem,$dst\t! uint -> long" %}
  5762   ins_encode %{
  5763     __ lduw($mem$$Address, $dst$$Register);
  5764   %}
  5765   ins_pipe(iload_mem);
  5766 %}
  5768 // Load Long - aligned
  5769 instruct loadL(iRegL dst, memory mem ) %{
  5770   match(Set dst (LoadL mem));
  5771   ins_cost(MEMORY_REF_COST);
  5773   size(4);
  5774   format %{ "LDX    $mem,$dst\t! long" %}
  5775   ins_encode %{
  5776     __ ldx($mem$$Address, $dst$$Register);
  5777   %}
  5778   ins_pipe(iload_mem);
  5779 %}
  5781 // Load Long - UNaligned
  5782 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
  5783   match(Set dst (LoadL_unaligned mem));
  5784   effect(KILL tmp);
  5785   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  5786   size(16);
  5787   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
  5788           "\tLDUW   $mem  ,$dst\n"
  5789           "\tSLLX   #32, $dst, $dst\n"
  5790           "\tOR     $dst, R_O7, $dst" %}
  5791   opcode(Assembler::lduw_op3);
  5792   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
  5793   ins_pipe(iload_mem);
  5794 %}
  5796 // Load Aligned Packed Byte into a Double Register
  5797 instruct loadA8B(regD dst, memory mem) %{
  5798   match(Set dst (Load8B mem));
  5799   ins_cost(MEMORY_REF_COST);
  5800   size(4);
  5801   format %{ "LDDF   $mem,$dst\t! packed8B" %}
  5802   opcode(Assembler::lddf_op3);
  5803   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5804   ins_pipe(floadD_mem);
  5805 %}
  5807 // Load Aligned Packed Char into a Double Register
  5808 instruct loadA4C(regD dst, memory mem) %{
  5809   match(Set dst (Load4C mem));
  5810   ins_cost(MEMORY_REF_COST);
  5811   size(4);
  5812   format %{ "LDDF   $mem,$dst\t! packed4C" %}
  5813   opcode(Assembler::lddf_op3);
  5814   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5815   ins_pipe(floadD_mem);
  5816 %}
  5818 // Load Aligned Packed Short into a Double Register
  5819 instruct loadA4S(regD dst, memory mem) %{
  5820   match(Set dst (Load4S mem));
  5821   ins_cost(MEMORY_REF_COST);
  5822   size(4);
  5823   format %{ "LDDF   $mem,$dst\t! packed4S" %}
  5824   opcode(Assembler::lddf_op3);
  5825   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5826   ins_pipe(floadD_mem);
  5827 %}
  5829 // Load Aligned Packed Int into a Double Register
  5830 instruct loadA2I(regD dst, memory mem) %{
  5831   match(Set dst (Load2I mem));
  5832   ins_cost(MEMORY_REF_COST);
  5833   size(4);
  5834   format %{ "LDDF   $mem,$dst\t! packed2I" %}
  5835   opcode(Assembler::lddf_op3);
  5836   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5837   ins_pipe(floadD_mem);
  5838 %}
  5840 // Load Range
  5841 instruct loadRange(iRegI dst, memory mem) %{
  5842   match(Set dst (LoadRange mem));
  5843   ins_cost(MEMORY_REF_COST);
  5845   size(4);
  5846   format %{ "LDUW   $mem,$dst\t! range" %}
  5847   opcode(Assembler::lduw_op3);
  5848   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5849   ins_pipe(iload_mem);
  5850 %}
  5852 // Load Integer into %f register (for fitos/fitod)
  5853 instruct loadI_freg(regF dst, memory mem) %{
  5854   match(Set dst (LoadI mem));
  5855   ins_cost(MEMORY_REF_COST);
  5856   size(4);
  5858   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
  5859   opcode(Assembler::ldf_op3);
  5860   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5861   ins_pipe(floadF_mem);
  5862 %}
  5864 // Load Pointer
  5865 instruct loadP(iRegP dst, memory mem) %{
  5866   match(Set dst (LoadP mem));
  5867   ins_cost(MEMORY_REF_COST);
  5868   size(4);
  5870 #ifndef _LP64
  5871   format %{ "LDUW   $mem,$dst\t! ptr" %}
  5872   ins_encode %{
  5873     __ lduw($mem$$Address, $dst$$Register);
  5874   %}
  5875 #else
  5876   format %{ "LDX    $mem,$dst\t! ptr" %}
  5877   ins_encode %{
  5878     __ ldx($mem$$Address, $dst$$Register);
  5879   %}
  5880 #endif
  5881   ins_pipe(iload_mem);
  5882 %}
  5884 // Load Compressed Pointer
  5885 instruct loadN(iRegN dst, memory mem) %{
  5886   match(Set dst (LoadN mem));
  5887   ins_cost(MEMORY_REF_COST);
  5888   size(4);
  5890   format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
  5891   ins_encode %{
  5892     __ lduw($mem$$Address, $dst$$Register);
  5893   %}
  5894   ins_pipe(iload_mem);
  5895 %}
  5897 // Load Klass Pointer
  5898 instruct loadKlass(iRegP dst, memory mem) %{
  5899   match(Set dst (LoadKlass mem));
  5900   ins_cost(MEMORY_REF_COST);
  5901   size(4);
  5903 #ifndef _LP64
  5904   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
  5905   ins_encode %{
  5906     __ lduw($mem$$Address, $dst$$Register);
  5907   %}
  5908 #else
  5909   format %{ "LDX    $mem,$dst\t! klass ptr" %}
  5910   ins_encode %{
  5911     __ ldx($mem$$Address, $dst$$Register);
  5912   %}
  5913 #endif
  5914   ins_pipe(iload_mem);
  5915 %}
  5917 // Load narrow Klass Pointer
  5918 instruct loadNKlass(iRegN dst, memory mem) %{
  5919   match(Set dst (LoadNKlass mem));
  5920   ins_cost(MEMORY_REF_COST);
  5921   size(4);
  5923   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
  5924   ins_encode %{
  5925     __ lduw($mem$$Address, $dst$$Register);
  5926   %}
  5927   ins_pipe(iload_mem);
  5928 %}
  5930 // Load Double
  5931 instruct loadD(regD dst, memory mem) %{
  5932   match(Set dst (LoadD mem));
  5933   ins_cost(MEMORY_REF_COST);
  5935   size(4);
  5936   format %{ "LDDF   $mem,$dst" %}
  5937   opcode(Assembler::lddf_op3);
  5938   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5939   ins_pipe(floadD_mem);
  5940 %}
  5942 // Load Double - UNaligned
  5943 instruct loadD_unaligned(regD_low dst, memory mem ) %{
  5944   match(Set dst (LoadD_unaligned mem));
  5945   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  5946   size(8);
  5947   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
  5948           "\tLDF    $mem+4,$dst.lo\t!" %}
  5949   opcode(Assembler::ldf_op3);
  5950   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
  5951   ins_pipe(iload_mem);
  5952 %}
  5954 // Load Float
  5955 instruct loadF(regF dst, memory mem) %{
  5956   match(Set dst (LoadF mem));
  5957   ins_cost(MEMORY_REF_COST);
  5959   size(4);
  5960   format %{ "LDF    $mem,$dst" %}
  5961   opcode(Assembler::ldf_op3);
  5962   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5963   ins_pipe(floadF_mem);
  5964 %}
  5966 // Load Constant
  5967 instruct loadConI( iRegI dst, immI src ) %{
  5968   match(Set dst src);
  5969   ins_cost(DEFAULT_COST * 3/2);
  5970   format %{ "SET    $src,$dst" %}
  5971   ins_encode( Set32(src, dst) );
  5972   ins_pipe(ialu_hi_lo_reg);
  5973 %}
  5975 instruct loadConI13( iRegI dst, immI13 src ) %{
  5976   match(Set dst src);
  5978   size(4);
  5979   format %{ "MOV    $src,$dst" %}
  5980   ins_encode( Set13( src, dst ) );
  5981   ins_pipe(ialu_imm);
  5982 %}
  5984 instruct loadConP(iRegP dst, immP src) %{
  5985   match(Set dst src);
  5986   ins_cost(DEFAULT_COST * 3/2);
  5987   format %{ "SET    $src,$dst\t!ptr" %}
  5988   // This rule does not use "expand" unlike loadConI because then
  5989   // the result type is not known to be an Oop.  An ADLC
  5990   // enhancement will be needed to make that work - not worth it!
  5992   ins_encode( SetPtr( src, dst ) );
  5993   ins_pipe(loadConP);
  5995 %}
  5997 instruct loadConP0(iRegP dst, immP0 src) %{
  5998   match(Set dst src);
  6000   size(4);
  6001   format %{ "CLR    $dst\t!ptr" %}
  6002   ins_encode( SetNull( dst ) );
  6003   ins_pipe(ialu_imm);
  6004 %}
  6006 instruct loadConP_poll(iRegP dst, immP_poll src) %{
  6007   match(Set dst src);
  6008   ins_cost(DEFAULT_COST);
  6009   format %{ "SET    $src,$dst\t!ptr" %}
  6010   ins_encode %{
  6011     AddressLiteral polling_page(os::get_polling_page());
  6012     __ sethi(polling_page, reg_to_register_object($dst$$reg));
  6013   %}
  6014   ins_pipe(loadConP_poll);
  6015 %}
  6017 instruct loadConN0(iRegN dst, immN0 src) %{
  6018   match(Set dst src);
  6020   size(4);
  6021   format %{ "CLR    $dst\t! compressed NULL ptr" %}
  6022   ins_encode( SetNull( dst ) );
  6023   ins_pipe(ialu_imm);
  6024 %}
  6026 instruct loadConN(iRegN dst, immN src) %{
  6027   match(Set dst src);
  6028   ins_cost(DEFAULT_COST * 3/2);
  6029   format %{ "SET    $src,$dst\t! compressed ptr" %}
  6030   ins_encode %{
  6031     Register dst = $dst$$Register;
  6032     __ set_narrow_oop((jobject)$src$$constant, dst);
  6033   %}
  6034   ins_pipe(ialu_hi_lo_reg);
  6035 %}
  6037 instruct loadConL(iRegL dst, immL src, o7RegL tmp) %{
  6038   // %%% maybe this should work like loadConD
  6039   match(Set dst src);
  6040   effect(KILL tmp);
  6041   ins_cost(DEFAULT_COST * 4);
  6042   format %{ "SET64   $src,$dst KILL $tmp\t! long" %}
  6043   ins_encode( LdImmL(src, dst, tmp) );
  6044   ins_pipe(loadConL);
  6045 %}
  6047 instruct loadConL0( iRegL dst, immL0 src ) %{
  6048   match(Set dst src);
  6049   ins_cost(DEFAULT_COST);
  6050   size(4);
  6051   format %{ "CLR    $dst\t! long" %}
  6052   ins_encode( Set13( src, dst ) );
  6053   ins_pipe(ialu_imm);
  6054 %}
  6056 instruct loadConL13( iRegL dst, immL13 src ) %{
  6057   match(Set dst src);
  6058   ins_cost(DEFAULT_COST * 2);
  6060   size(4);
  6061   format %{ "MOV    $src,$dst\t! long" %}
  6062   ins_encode( Set13( src, dst ) );
  6063   ins_pipe(ialu_imm);
  6064 %}
  6066 instruct loadConF(regF dst, immF src, o7RegP tmp) %{
  6067   match(Set dst src);
  6068   effect(KILL tmp);
  6070 #ifdef _LP64
  6071   size(8*4);
  6072 #else
  6073   size(2*4);
  6074 #endif
  6076   format %{ "SETHI  hi(&$src),$tmp\t!get float $src from table\n\t"
  6077             "LDF    [$tmp+lo(&$src)],$dst" %}
  6078   ins_encode %{
  6079     address float_address = __ float_constant($src$$constant);
  6080     RelocationHolder rspec = internal_word_Relocation::spec(float_address);
  6081     AddressLiteral addrlit(float_address, rspec);
  6083     __ sethi(addrlit, $tmp$$Register);
  6084     __ ldf(FloatRegisterImpl::S, $tmp$$Register, addrlit.low10(), $dst$$FloatRegister, rspec);
  6085   %}
  6086   ins_pipe(loadConFD);
  6087 %}
  6089 instruct loadConD(regD dst, immD src, o7RegP tmp) %{
  6090   match(Set dst src);
  6091   effect(KILL tmp);
  6093 #ifdef _LP64
  6094   size(8*4);
  6095 #else
  6096   size(2*4);
  6097 #endif
  6099   format %{ "SETHI  hi(&$src),$tmp\t!get double $src from table\n\t"
  6100             "LDDF   [$tmp+lo(&$src)],$dst" %}
  6101   ins_encode %{
  6102     address double_address = __ double_constant($src$$constant);
  6103     RelocationHolder rspec = internal_word_Relocation::spec(double_address);
  6104     AddressLiteral addrlit(double_address, rspec);
  6106     __ sethi(addrlit, $tmp$$Register);
  6107     // XXX This is a quick fix for 6833573.
  6108     //__ ldf(FloatRegisterImpl::D, $tmp$$Register, addrlit.low10(), $dst$$FloatRegister, rspec);
  6109     __ ldf(FloatRegisterImpl::D, $tmp$$Register, addrlit.low10(), as_DoubleFloatRegister($dst$$reg), rspec);
  6110   %}
  6111   ins_pipe(loadConFD);
  6112 %}
  6114 // Prefetch instructions.
  6115 // Must be safe to execute with invalid address (cannot fault).
  6117 instruct prefetchr( memory mem ) %{
  6118   match( PrefetchRead mem );
  6119   ins_cost(MEMORY_REF_COST);
  6121   format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
  6122   opcode(Assembler::prefetch_op3);
  6123   ins_encode( form3_mem_prefetch_read( mem ) );
  6124   ins_pipe(iload_mem);
  6125 %}
  6127 instruct prefetchw( memory mem ) %{
  6128   predicate(AllocatePrefetchStyle != 3 );
  6129   match( PrefetchWrite mem );
  6130   ins_cost(MEMORY_REF_COST);
  6132   format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
  6133   opcode(Assembler::prefetch_op3);
  6134   ins_encode( form3_mem_prefetch_write( mem ) );
  6135   ins_pipe(iload_mem);
  6136 %}
  6138 // Use BIS instruction to prefetch.
  6139 instruct prefetchw_bis( memory mem ) %{
  6140   predicate(AllocatePrefetchStyle == 3);
  6141   match( PrefetchWrite mem );
  6142   ins_cost(MEMORY_REF_COST);
  6144   format %{ "STXA   G0,$mem\t! // Block initializing store" %}
  6145   ins_encode %{
  6146      Register base = as_Register($mem$$base);
  6147      int disp = $mem$$disp;
  6148      if (disp != 0) {
  6149        __ add(base, AllocatePrefetchStepSize, base);
  6151      __ stxa(G0, base, G0, ASI_BLK_INIT_QUAD_LDD_P);
  6152   %}
  6153   ins_pipe(istore_mem_reg);
  6154 %}
  6156 //----------Store Instructions-------------------------------------------------
  6157 // Store Byte
  6158 instruct storeB(memory mem, iRegI src) %{
  6159   match(Set mem (StoreB mem src));
  6160   ins_cost(MEMORY_REF_COST);
  6162   size(4);
  6163   format %{ "STB    $src,$mem\t! byte" %}
  6164   opcode(Assembler::stb_op3);
  6165   ins_encode(simple_form3_mem_reg( mem, src ) );
  6166   ins_pipe(istore_mem_reg);
  6167 %}
  6169 instruct storeB0(memory mem, immI0 src) %{
  6170   match(Set mem (StoreB mem src));
  6171   ins_cost(MEMORY_REF_COST);
  6173   size(4);
  6174   format %{ "STB    $src,$mem\t! byte" %}
  6175   opcode(Assembler::stb_op3);
  6176   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6177   ins_pipe(istore_mem_zero);
  6178 %}
  6180 instruct storeCM0(memory mem, immI0 src) %{
  6181   match(Set mem (StoreCM mem src));
  6182   ins_cost(MEMORY_REF_COST);
  6184   size(4);
  6185   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
  6186   opcode(Assembler::stb_op3);
  6187   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6188   ins_pipe(istore_mem_zero);
  6189 %}
  6191 // Store Char/Short
  6192 instruct storeC(memory mem, iRegI src) %{
  6193   match(Set mem (StoreC mem src));
  6194   ins_cost(MEMORY_REF_COST);
  6196   size(4);
  6197   format %{ "STH    $src,$mem\t! short" %}
  6198   opcode(Assembler::sth_op3);
  6199   ins_encode(simple_form3_mem_reg( mem, src ) );
  6200   ins_pipe(istore_mem_reg);
  6201 %}
  6203 instruct storeC0(memory mem, immI0 src) %{
  6204   match(Set mem (StoreC mem src));
  6205   ins_cost(MEMORY_REF_COST);
  6207   size(4);
  6208   format %{ "STH    $src,$mem\t! short" %}
  6209   opcode(Assembler::sth_op3);
  6210   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6211   ins_pipe(istore_mem_zero);
  6212 %}
  6214 // Store Integer
  6215 instruct storeI(memory mem, iRegI src) %{
  6216   match(Set mem (StoreI mem src));
  6217   ins_cost(MEMORY_REF_COST);
  6219   size(4);
  6220   format %{ "STW    $src,$mem" %}
  6221   opcode(Assembler::stw_op3);
  6222   ins_encode(simple_form3_mem_reg( mem, src ) );
  6223   ins_pipe(istore_mem_reg);
  6224 %}
  6226 // Store Long
  6227 instruct storeL(memory mem, iRegL src) %{
  6228   match(Set mem (StoreL mem src));
  6229   ins_cost(MEMORY_REF_COST);
  6230   size(4);
  6231   format %{ "STX    $src,$mem\t! long" %}
  6232   opcode(Assembler::stx_op3);
  6233   ins_encode(simple_form3_mem_reg( mem, src ) );
  6234   ins_pipe(istore_mem_reg);
  6235 %}
  6237 instruct storeI0(memory mem, immI0 src) %{
  6238   match(Set mem (StoreI mem src));
  6239   ins_cost(MEMORY_REF_COST);
  6241   size(4);
  6242   format %{ "STW    $src,$mem" %}
  6243   opcode(Assembler::stw_op3);
  6244   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6245   ins_pipe(istore_mem_zero);
  6246 %}
  6248 instruct storeL0(memory mem, immL0 src) %{
  6249   match(Set mem (StoreL mem src));
  6250   ins_cost(MEMORY_REF_COST);
  6252   size(4);
  6253   format %{ "STX    $src,$mem" %}
  6254   opcode(Assembler::stx_op3);
  6255   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6256   ins_pipe(istore_mem_zero);
  6257 %}
  6259 // Store Integer from float register (used after fstoi)
  6260 instruct storeI_Freg(memory mem, regF src) %{
  6261   match(Set mem (StoreI mem src));
  6262   ins_cost(MEMORY_REF_COST);
  6264   size(4);
  6265   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
  6266   opcode(Assembler::stf_op3);
  6267   ins_encode(simple_form3_mem_reg( mem, src ) );
  6268   ins_pipe(fstoreF_mem_reg);
  6269 %}
  6271 // Store Pointer
  6272 instruct storeP(memory dst, sp_ptr_RegP src) %{
  6273   match(Set dst (StoreP dst src));
  6274   ins_cost(MEMORY_REF_COST);
  6275   size(4);
  6277 #ifndef _LP64
  6278   format %{ "STW    $src,$dst\t! ptr" %}
  6279   opcode(Assembler::stw_op3, 0, REGP_OP);
  6280 #else
  6281   format %{ "STX    $src,$dst\t! ptr" %}
  6282   opcode(Assembler::stx_op3, 0, REGP_OP);
  6283 #endif
  6284   ins_encode( form3_mem_reg( dst, src ) );
  6285   ins_pipe(istore_mem_spORreg);
  6286 %}
  6288 instruct storeP0(memory dst, immP0 src) %{
  6289   match(Set dst (StoreP dst src));
  6290   ins_cost(MEMORY_REF_COST);
  6291   size(4);
  6293 #ifndef _LP64
  6294   format %{ "STW    $src,$dst\t! ptr" %}
  6295   opcode(Assembler::stw_op3, 0, REGP_OP);
  6296 #else
  6297   format %{ "STX    $src,$dst\t! ptr" %}
  6298   opcode(Assembler::stx_op3, 0, REGP_OP);
  6299 #endif
  6300   ins_encode( form3_mem_reg( dst, R_G0 ) );
  6301   ins_pipe(istore_mem_zero);
  6302 %}
  6304 // Store Compressed Pointer
  6305 instruct storeN(memory dst, iRegN src) %{
  6306    match(Set dst (StoreN dst src));
  6307    ins_cost(MEMORY_REF_COST);
  6308    size(4);
  6310    format %{ "STW    $src,$dst\t! compressed ptr" %}
  6311    ins_encode %{
  6312      Register base = as_Register($dst$$base);
  6313      Register index = as_Register($dst$$index);
  6314      Register src = $src$$Register;
  6315      if (index != G0) {
  6316        __ stw(src, base, index);
  6317      } else {
  6318        __ stw(src, base, $dst$$disp);
  6320    %}
  6321    ins_pipe(istore_mem_spORreg);
  6322 %}
  6324 instruct storeN0(memory dst, immN0 src) %{
  6325    match(Set dst (StoreN dst src));
  6326    ins_cost(MEMORY_REF_COST);
  6327    size(4);
  6329    format %{ "STW    $src,$dst\t! compressed ptr" %}
  6330    ins_encode %{
  6331      Register base = as_Register($dst$$base);
  6332      Register index = as_Register($dst$$index);
  6333      if (index != G0) {
  6334        __ stw(0, base, index);
  6335      } else {
  6336        __ stw(0, base, $dst$$disp);
  6338    %}
  6339    ins_pipe(istore_mem_zero);
  6340 %}
  6342 // Store Double
  6343 instruct storeD( memory mem, regD src) %{
  6344   match(Set mem (StoreD mem src));
  6345   ins_cost(MEMORY_REF_COST);
  6347   size(4);
  6348   format %{ "STDF   $src,$mem" %}
  6349   opcode(Assembler::stdf_op3);
  6350   ins_encode(simple_form3_mem_reg( mem, src ) );
  6351   ins_pipe(fstoreD_mem_reg);
  6352 %}
  6354 instruct storeD0( memory mem, immD0 src) %{
  6355   match(Set mem (StoreD mem src));
  6356   ins_cost(MEMORY_REF_COST);
  6358   size(4);
  6359   format %{ "STX    $src,$mem" %}
  6360   opcode(Assembler::stx_op3);
  6361   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6362   ins_pipe(fstoreD_mem_zero);
  6363 %}
  6365 // Store Float
  6366 instruct storeF( memory mem, regF src) %{
  6367   match(Set mem (StoreF mem src));
  6368   ins_cost(MEMORY_REF_COST);
  6370   size(4);
  6371   format %{ "STF    $src,$mem" %}
  6372   opcode(Assembler::stf_op3);
  6373   ins_encode(simple_form3_mem_reg( mem, src ) );
  6374   ins_pipe(fstoreF_mem_reg);
  6375 %}
  6377 instruct storeF0( memory mem, immF0 src) %{
  6378   match(Set mem (StoreF mem src));
  6379   ins_cost(MEMORY_REF_COST);
  6381   size(4);
  6382   format %{ "STW    $src,$mem\t! storeF0" %}
  6383   opcode(Assembler::stw_op3);
  6384   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6385   ins_pipe(fstoreF_mem_zero);
  6386 %}
  6388 // Store Aligned Packed Bytes in Double register to memory
  6389 instruct storeA8B(memory mem, regD src) %{
  6390   match(Set mem (Store8B mem src));
  6391   ins_cost(MEMORY_REF_COST);
  6392   size(4);
  6393   format %{ "STDF   $src,$mem\t! packed8B" %}
  6394   opcode(Assembler::stdf_op3);
  6395   ins_encode(simple_form3_mem_reg( mem, src ) );
  6396   ins_pipe(fstoreD_mem_reg);
  6397 %}
  6399 // Convert oop pointer into compressed form
  6400 instruct encodeHeapOop(iRegN dst, iRegP src) %{
  6401   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
  6402   match(Set dst (EncodeP src));
  6403   format %{ "encode_heap_oop $src, $dst" %}
  6404   ins_encode %{
  6405     __ encode_heap_oop($src$$Register, $dst$$Register);
  6406   %}
  6407   ins_pipe(ialu_reg);
  6408 %}
  6410 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
  6411   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
  6412   match(Set dst (EncodeP src));
  6413   format %{ "encode_heap_oop_not_null $src, $dst" %}
  6414   ins_encode %{
  6415     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
  6416   %}
  6417   ins_pipe(ialu_reg);
  6418 %}
  6420 instruct decodeHeapOop(iRegP dst, iRegN src) %{
  6421   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
  6422             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
  6423   match(Set dst (DecodeN src));
  6424   format %{ "decode_heap_oop $src, $dst" %}
  6425   ins_encode %{
  6426     __ decode_heap_oop($src$$Register, $dst$$Register);
  6427   %}
  6428   ins_pipe(ialu_reg);
  6429 %}
  6431 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
  6432   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
  6433             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
  6434   match(Set dst (DecodeN src));
  6435   format %{ "decode_heap_oop_not_null $src, $dst" %}
  6436   ins_encode %{
  6437     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
  6438   %}
  6439   ins_pipe(ialu_reg);
  6440 %}
  6443 // Store Zero into Aligned Packed Bytes
  6444 instruct storeA8B0(memory mem, immI0 zero) %{
  6445   match(Set mem (Store8B mem zero));
  6446   ins_cost(MEMORY_REF_COST);
  6447   size(4);
  6448   format %{ "STX    $zero,$mem\t! packed8B" %}
  6449   opcode(Assembler::stx_op3);
  6450   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6451   ins_pipe(fstoreD_mem_zero);
  6452 %}
  6454 // Store Aligned Packed Chars/Shorts in Double register to memory
  6455 instruct storeA4C(memory mem, regD src) %{
  6456   match(Set mem (Store4C mem src));
  6457   ins_cost(MEMORY_REF_COST);
  6458   size(4);
  6459   format %{ "STDF   $src,$mem\t! packed4C" %}
  6460   opcode(Assembler::stdf_op3);
  6461   ins_encode(simple_form3_mem_reg( mem, src ) );
  6462   ins_pipe(fstoreD_mem_reg);
  6463 %}
  6465 // Store Zero into Aligned Packed Chars/Shorts
  6466 instruct storeA4C0(memory mem, immI0 zero) %{
  6467   match(Set mem (Store4C mem (Replicate4C zero)));
  6468   ins_cost(MEMORY_REF_COST);
  6469   size(4);
  6470   format %{ "STX    $zero,$mem\t! packed4C" %}
  6471   opcode(Assembler::stx_op3);
  6472   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6473   ins_pipe(fstoreD_mem_zero);
  6474 %}
  6476 // Store Aligned Packed Ints in Double register to memory
  6477 instruct storeA2I(memory mem, regD src) %{
  6478   match(Set mem (Store2I mem src));
  6479   ins_cost(MEMORY_REF_COST);
  6480   size(4);
  6481   format %{ "STDF   $src,$mem\t! packed2I" %}
  6482   opcode(Assembler::stdf_op3);
  6483   ins_encode(simple_form3_mem_reg( mem, src ) );
  6484   ins_pipe(fstoreD_mem_reg);
  6485 %}
  6487 // Store Zero into Aligned Packed Ints
  6488 instruct storeA2I0(memory mem, immI0 zero) %{
  6489   match(Set mem (Store2I mem zero));
  6490   ins_cost(MEMORY_REF_COST);
  6491   size(4);
  6492   format %{ "STX    $zero,$mem\t! packed2I" %}
  6493   opcode(Assembler::stx_op3);
  6494   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6495   ins_pipe(fstoreD_mem_zero);
  6496 %}
  6499 //----------MemBar Instructions-----------------------------------------------
  6500 // Memory barrier flavors
  6502 instruct membar_acquire() %{
  6503   match(MemBarAcquire);
  6504   ins_cost(4*MEMORY_REF_COST);
  6506   size(0);
  6507   format %{ "MEMBAR-acquire" %}
  6508   ins_encode( enc_membar_acquire );
  6509   ins_pipe(long_memory_op);
  6510 %}
  6512 instruct membar_acquire_lock() %{
  6513   match(MemBarAcquire);
  6514   predicate(Matcher::prior_fast_lock(n));
  6515   ins_cost(0);
  6517   size(0);
  6518   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
  6519   ins_encode( );
  6520   ins_pipe(empty);
  6521 %}
  6523 instruct membar_release() %{
  6524   match(MemBarRelease);
  6525   ins_cost(4*MEMORY_REF_COST);
  6527   size(0);
  6528   format %{ "MEMBAR-release" %}
  6529   ins_encode( enc_membar_release );
  6530   ins_pipe(long_memory_op);
  6531 %}
  6533 instruct membar_release_lock() %{
  6534   match(MemBarRelease);
  6535   predicate(Matcher::post_fast_unlock(n));
  6536   ins_cost(0);
  6538   size(0);
  6539   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
  6540   ins_encode( );
  6541   ins_pipe(empty);
  6542 %}
  6544 instruct membar_volatile() %{
  6545   match(MemBarVolatile);
  6546   ins_cost(4*MEMORY_REF_COST);
  6548   size(4);
  6549   format %{ "MEMBAR-volatile" %}
  6550   ins_encode( enc_membar_volatile );
  6551   ins_pipe(long_memory_op);
  6552 %}
  6554 instruct unnecessary_membar_volatile() %{
  6555   match(MemBarVolatile);
  6556   predicate(Matcher::post_store_load_barrier(n));
  6557   ins_cost(0);
  6559   size(0);
  6560   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
  6561   ins_encode( );
  6562   ins_pipe(empty);
  6563 %}
  6565 //----------Register Move Instructions-----------------------------------------
  6566 instruct roundDouble_nop(regD dst) %{
  6567   match(Set dst (RoundDouble dst));
  6568   ins_cost(0);
  6569   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6570   ins_encode( );
  6571   ins_pipe(empty);
  6572 %}
  6575 instruct roundFloat_nop(regF dst) %{
  6576   match(Set dst (RoundFloat dst));
  6577   ins_cost(0);
  6578   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6579   ins_encode( );
  6580   ins_pipe(empty);
  6581 %}
  6584 // Cast Index to Pointer for unsafe natives
  6585 instruct castX2P(iRegX src, iRegP dst) %{
  6586   match(Set dst (CastX2P src));
  6588   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
  6589   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6590   ins_pipe(ialu_reg);
  6591 %}
  6593 // Cast Pointer to Index for unsafe natives
  6594 instruct castP2X(iRegP src, iRegX dst) %{
  6595   match(Set dst (CastP2X src));
  6597   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
  6598   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6599   ins_pipe(ialu_reg);
  6600 %}
  6602 instruct stfSSD(stackSlotD stkSlot, regD src) %{
  6603   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6604   match(Set stkSlot src);   // chain rule
  6605   ins_cost(MEMORY_REF_COST);
  6606   format %{ "STDF   $src,$stkSlot\t!stk" %}
  6607   opcode(Assembler::stdf_op3);
  6608   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6609   ins_pipe(fstoreD_stk_reg);
  6610 %}
  6612 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
  6613   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6614   match(Set dst stkSlot);   // chain rule
  6615   ins_cost(MEMORY_REF_COST);
  6616   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
  6617   opcode(Assembler::lddf_op3);
  6618   ins_encode(simple_form3_mem_reg(stkSlot, dst));
  6619   ins_pipe(floadD_stk);
  6620 %}
  6622 instruct stfSSF(stackSlotF stkSlot, regF src) %{
  6623   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6624   match(Set stkSlot src);   // chain rule
  6625   ins_cost(MEMORY_REF_COST);
  6626   format %{ "STF   $src,$stkSlot\t!stk" %}
  6627   opcode(Assembler::stf_op3);
  6628   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6629   ins_pipe(fstoreF_stk_reg);
  6630 %}
  6632 //----------Conditional Move---------------------------------------------------
  6633 // Conditional move
  6634 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
  6635   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6636   ins_cost(150);
  6637   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6638   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6639   ins_pipe(ialu_reg);
  6640 %}
  6642 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
  6643   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6644   ins_cost(140);
  6645   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6646   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6647   ins_pipe(ialu_imm);
  6648 %}
  6650 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
  6651   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6652   ins_cost(150);
  6653   size(4);
  6654   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6655   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6656   ins_pipe(ialu_reg);
  6657 %}
  6659 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
  6660   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6661   ins_cost(140);
  6662   size(4);
  6663   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6664   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6665   ins_pipe(ialu_imm);
  6666 %}
  6668 instruct cmovIIu_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
  6669   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6670   ins_cost(150);
  6671   size(4);
  6672   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6673   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6674   ins_pipe(ialu_reg);
  6675 %}
  6677 instruct cmovIIu_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
  6678   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6679   ins_cost(140);
  6680   size(4);
  6681   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6682   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6683   ins_pipe(ialu_imm);
  6684 %}
  6686 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
  6687   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6688   ins_cost(150);
  6689   size(4);
  6690   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6691   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6692   ins_pipe(ialu_reg);
  6693 %}
  6695 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
  6696   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6697   ins_cost(140);
  6698   size(4);
  6699   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6700   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  6701   ins_pipe(ialu_imm);
  6702 %}
  6704 // Conditional move for RegN. Only cmov(reg,reg).
  6705 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
  6706   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
  6707   ins_cost(150);
  6708   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6709   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6710   ins_pipe(ialu_reg);
  6711 %}
  6713 // This instruction also works with CmpN so we don't need cmovNN_reg.
  6714 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
  6715   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
  6716   ins_cost(150);
  6717   size(4);
  6718   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6719   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6720   ins_pipe(ialu_reg);
  6721 %}
  6723 // This instruction also works with CmpN so we don't need cmovNN_reg.
  6724 instruct cmovNIu_reg(cmpOpU cmp, flagsRegU icc, iRegN dst, iRegN src) %{
  6725   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
  6726   ins_cost(150);
  6727   size(4);
  6728   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6729   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6730   ins_pipe(ialu_reg);
  6731 %}
  6733 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
  6734   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
  6735   ins_cost(150);
  6736   size(4);
  6737   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6738   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6739   ins_pipe(ialu_reg);
  6740 %}
  6742 // Conditional move
  6743 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
  6744   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6745   ins_cost(150);
  6746   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6747   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6748   ins_pipe(ialu_reg);
  6749 %}
  6751 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
  6752   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6753   ins_cost(140);
  6754   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6755   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6756   ins_pipe(ialu_imm);
  6757 %}
  6759 // This instruction also works with CmpN so we don't need cmovPN_reg.
  6760 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
  6761   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6762   ins_cost(150);
  6764   size(4);
  6765   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6766   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6767   ins_pipe(ialu_reg);
  6768 %}
  6770 instruct cmovPIu_reg(cmpOpU cmp, flagsRegU icc, iRegP dst, iRegP src) %{
  6771   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6772   ins_cost(150);
  6774   size(4);
  6775   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6776   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6777   ins_pipe(ialu_reg);
  6778 %}
  6780 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
  6781   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6782   ins_cost(140);
  6784   size(4);
  6785   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6786   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6787   ins_pipe(ialu_imm);
  6788 %}
  6790 instruct cmovPIu_imm(cmpOpU cmp, flagsRegU icc, iRegP dst, immP0 src) %{
  6791   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6792   ins_cost(140);
  6794   size(4);
  6795   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6796   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6797   ins_pipe(ialu_imm);
  6798 %}
  6800 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
  6801   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  6802   ins_cost(150);
  6803   size(4);
  6804   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6805   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6806   ins_pipe(ialu_imm);
  6807 %}
  6809 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
  6810   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  6811   ins_cost(140);
  6812   size(4);
  6813   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6814   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  6815   ins_pipe(ialu_imm);
  6816 %}
  6818 // Conditional move
  6819 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
  6820   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
  6821   ins_cost(150);
  6822   opcode(0x101);
  6823   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  6824   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6825   ins_pipe(int_conditional_float_move);
  6826 %}
  6828 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
  6829   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  6830   ins_cost(150);
  6832   size(4);
  6833   format %{ "FMOVS$cmp $icc,$src,$dst" %}
  6834   opcode(0x101);
  6835   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6836   ins_pipe(int_conditional_float_move);
  6837 %}
  6839 instruct cmovFIu_reg(cmpOpU cmp, flagsRegU icc, regF dst, regF src) %{
  6840   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  6841   ins_cost(150);
  6843   size(4);
  6844   format %{ "FMOVS$cmp $icc,$src,$dst" %}
  6845   opcode(0x101);
  6846   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6847   ins_pipe(int_conditional_float_move);
  6848 %}
  6850 // Conditional move,
  6851 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
  6852   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
  6853   ins_cost(150);
  6854   size(4);
  6855   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
  6856   opcode(0x1);
  6857   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  6858   ins_pipe(int_conditional_double_move);
  6859 %}
  6861 // Conditional move
  6862 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
  6863   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
  6864   ins_cost(150);
  6865   size(4);
  6866   opcode(0x102);
  6867   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  6868   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6869   ins_pipe(int_conditional_double_move);
  6870 %}
  6872 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
  6873   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  6874   ins_cost(150);
  6876   size(4);
  6877   format %{ "FMOVD$cmp $icc,$src,$dst" %}
  6878   opcode(0x102);
  6879   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6880   ins_pipe(int_conditional_double_move);
  6881 %}
  6883 instruct cmovDIu_reg(cmpOpU cmp, flagsRegU icc, regD dst, regD src) %{
  6884   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  6885   ins_cost(150);
  6887   size(4);
  6888   format %{ "FMOVD$cmp $icc,$src,$dst" %}
  6889   opcode(0x102);
  6890   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6891   ins_pipe(int_conditional_double_move);
  6892 %}
  6894 // Conditional move,
  6895 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
  6896   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
  6897   ins_cost(150);
  6898   size(4);
  6899   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
  6900   opcode(0x2);
  6901   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  6902   ins_pipe(int_conditional_double_move);
  6903 %}
  6905 // Conditional move
  6906 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
  6907   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  6908   ins_cost(150);
  6909   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  6910   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6911   ins_pipe(ialu_reg);
  6912 %}
  6914 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
  6915   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  6916   ins_cost(140);
  6917   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  6918   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6919   ins_pipe(ialu_imm);
  6920 %}
  6922 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
  6923   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  6924   ins_cost(150);
  6926   size(4);
  6927   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  6928   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6929   ins_pipe(ialu_reg);
  6930 %}
  6933 instruct cmovLIu_reg(cmpOpU cmp, flagsRegU icc, iRegL dst, iRegL src) %{
  6934   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  6935   ins_cost(150);
  6937   size(4);
  6938   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  6939   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6940   ins_pipe(ialu_reg);
  6941 %}
  6944 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
  6945   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
  6946   ins_cost(150);
  6948   size(4);
  6949   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
  6950   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6951   ins_pipe(ialu_reg);
  6952 %}
  6956 //----------OS and Locking Instructions----------------------------------------
  6958 // This name is KNOWN by the ADLC and cannot be changed.
  6959 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
  6960 // for this guy.
  6961 instruct tlsLoadP(g2RegP dst) %{
  6962   match(Set dst (ThreadLocal));
  6964   size(0);
  6965   ins_cost(0);
  6966   format %{ "# TLS is in G2" %}
  6967   ins_encode( /*empty encoding*/ );
  6968   ins_pipe(ialu_none);
  6969 %}
  6971 instruct checkCastPP( iRegP dst ) %{
  6972   match(Set dst (CheckCastPP dst));
  6974   size(0);
  6975   format %{ "# checkcastPP of $dst" %}
  6976   ins_encode( /*empty encoding*/ );
  6977   ins_pipe(empty);
  6978 %}
  6981 instruct castPP( iRegP dst ) %{
  6982   match(Set dst (CastPP dst));
  6983   format %{ "# castPP of $dst" %}
  6984   ins_encode( /*empty encoding*/ );
  6985   ins_pipe(empty);
  6986 %}
  6988 instruct castII( iRegI dst ) %{
  6989   match(Set dst (CastII dst));
  6990   format %{ "# castII of $dst" %}
  6991   ins_encode( /*empty encoding*/ );
  6992   ins_cost(0);
  6993   ins_pipe(empty);
  6994 %}
  6996 //----------Arithmetic Instructions--------------------------------------------
  6997 // Addition Instructions
  6998 // Register Addition
  6999 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7000   match(Set dst (AddI src1 src2));
  7002   size(4);
  7003   format %{ "ADD    $src1,$src2,$dst" %}
  7004   ins_encode %{
  7005     __ add($src1$$Register, $src2$$Register, $dst$$Register);
  7006   %}
  7007   ins_pipe(ialu_reg_reg);
  7008 %}
  7010 // Immediate Addition
  7011 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7012   match(Set dst (AddI src1 src2));
  7014   size(4);
  7015   format %{ "ADD    $src1,$src2,$dst" %}
  7016   opcode(Assembler::add_op3, Assembler::arith_op);
  7017   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7018   ins_pipe(ialu_reg_imm);
  7019 %}
  7021 // Pointer Register Addition
  7022 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
  7023   match(Set dst (AddP src1 src2));
  7025   size(4);
  7026   format %{ "ADD    $src1,$src2,$dst" %}
  7027   opcode(Assembler::add_op3, Assembler::arith_op);
  7028   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7029   ins_pipe(ialu_reg_reg);
  7030 %}
  7032 // Pointer Immediate Addition
  7033 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
  7034   match(Set dst (AddP src1 src2));
  7036   size(4);
  7037   format %{ "ADD    $src1,$src2,$dst" %}
  7038   opcode(Assembler::add_op3, Assembler::arith_op);
  7039   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7040   ins_pipe(ialu_reg_imm);
  7041 %}
  7043 // Long Addition
  7044 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7045   match(Set dst (AddL src1 src2));
  7047   size(4);
  7048   format %{ "ADD    $src1,$src2,$dst\t! long" %}
  7049   opcode(Assembler::add_op3, Assembler::arith_op);
  7050   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7051   ins_pipe(ialu_reg_reg);
  7052 %}
  7054 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7055   match(Set dst (AddL src1 con));
  7057   size(4);
  7058   format %{ "ADD    $src1,$con,$dst" %}
  7059   opcode(Assembler::add_op3, Assembler::arith_op);
  7060   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7061   ins_pipe(ialu_reg_imm);
  7062 %}
  7064 //----------Conditional_store--------------------------------------------------
  7065 // Conditional-store of the updated heap-top.
  7066 // Used during allocation of the shared heap.
  7067 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
  7069 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
  7070 instruct loadPLocked(iRegP dst, memory mem) %{
  7071   match(Set dst (LoadPLocked mem));
  7072   ins_cost(MEMORY_REF_COST);
  7074 #ifndef _LP64
  7075   size(4);
  7076   format %{ "LDUW   $mem,$dst\t! ptr" %}
  7077   opcode(Assembler::lduw_op3, 0, REGP_OP);
  7078 #else
  7079   format %{ "LDX    $mem,$dst\t! ptr" %}
  7080   opcode(Assembler::ldx_op3, 0, REGP_OP);
  7081 #endif
  7082   ins_encode( form3_mem_reg( mem, dst ) );
  7083   ins_pipe(iload_mem);
  7084 %}
  7086 // LoadL-locked.  Same as a regular long load when used with a compare-swap
  7087 instruct loadLLocked(iRegL dst, memory mem) %{
  7088   match(Set dst (LoadLLocked mem));
  7089   ins_cost(MEMORY_REF_COST);
  7090   size(4);
  7091   format %{ "LDX    $mem,$dst\t! long" %}
  7092   opcode(Assembler::ldx_op3);
  7093   ins_encode(simple_form3_mem_reg( mem, dst ) );
  7094   ins_pipe(iload_mem);
  7095 %}
  7097 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
  7098   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
  7099   effect( KILL newval );
  7100   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
  7101             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
  7102   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
  7103   ins_pipe( long_memory_op );
  7104 %}
  7106 // Conditional-store of an int value.
  7107 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
  7108   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
  7109   effect( KILL newval );
  7110   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
  7111             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  7112   ins_encode( enc_cas(mem_ptr,oldval,newval) );
  7113   ins_pipe( long_memory_op );
  7114 %}
  7116 // Conditional-store of a long value.
  7117 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
  7118   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
  7119   effect( KILL newval );
  7120   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
  7121             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  7122   ins_encode( enc_cas(mem_ptr,oldval,newval) );
  7123   ins_pipe( long_memory_op );
  7124 %}
  7126 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
  7128 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7129   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
  7130   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7131   format %{
  7132             "MOV    $newval,O7\n\t"
  7133             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7134             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7135             "MOV    1,$res\n\t"
  7136             "MOVne  xcc,R_G0,$res"
  7137   %}
  7138   ins_encode( enc_casx(mem_ptr, oldval, newval),
  7139               enc_lflags_ne_to_boolean(res) );
  7140   ins_pipe( long_memory_op );
  7141 %}
  7144 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7145   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
  7146   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7147   format %{
  7148             "MOV    $newval,O7\n\t"
  7149             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7150             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7151             "MOV    1,$res\n\t"
  7152             "MOVne  icc,R_G0,$res"
  7153   %}
  7154   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7155               enc_iflags_ne_to_boolean(res) );
  7156   ins_pipe( long_memory_op );
  7157 %}
  7159 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7160   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
  7161   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7162   format %{
  7163             "MOV    $newval,O7\n\t"
  7164             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7165             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7166             "MOV    1,$res\n\t"
  7167             "MOVne  xcc,R_G0,$res"
  7168   %}
  7169 #ifdef _LP64
  7170   ins_encode( enc_casx(mem_ptr, oldval, newval),
  7171               enc_lflags_ne_to_boolean(res) );
  7172 #else
  7173   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7174               enc_iflags_ne_to_boolean(res) );
  7175 #endif
  7176   ins_pipe( long_memory_op );
  7177 %}
  7179 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7180   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
  7181   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7182   format %{
  7183             "MOV    $newval,O7\n\t"
  7184             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7185             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7186             "MOV    1,$res\n\t"
  7187             "MOVne  icc,R_G0,$res"
  7188   %}
  7189   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7190               enc_iflags_ne_to_boolean(res) );
  7191   ins_pipe( long_memory_op );
  7192 %}
  7194 //---------------------
  7195 // Subtraction Instructions
  7196 // Register Subtraction
  7197 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7198   match(Set dst (SubI src1 src2));
  7200   size(4);
  7201   format %{ "SUB    $src1,$src2,$dst" %}
  7202   opcode(Assembler::sub_op3, Assembler::arith_op);
  7203   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7204   ins_pipe(ialu_reg_reg);
  7205 %}
  7207 // Immediate Subtraction
  7208 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7209   match(Set dst (SubI src1 src2));
  7211   size(4);
  7212   format %{ "SUB    $src1,$src2,$dst" %}
  7213   opcode(Assembler::sub_op3, Assembler::arith_op);
  7214   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7215   ins_pipe(ialu_reg_imm);
  7216 %}
  7218 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  7219   match(Set dst (SubI zero src2));
  7221   size(4);
  7222   format %{ "NEG    $src2,$dst" %}
  7223   opcode(Assembler::sub_op3, Assembler::arith_op);
  7224   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  7225   ins_pipe(ialu_zero_reg);
  7226 %}
  7228 // Long subtraction
  7229 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7230   match(Set dst (SubL src1 src2));
  7232   size(4);
  7233   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7234   opcode(Assembler::sub_op3, Assembler::arith_op);
  7235   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7236   ins_pipe(ialu_reg_reg);
  7237 %}
  7239 // Immediate Subtraction
  7240 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7241   match(Set dst (SubL src1 con));
  7243   size(4);
  7244   format %{ "SUB    $src1,$con,$dst\t! long" %}
  7245   opcode(Assembler::sub_op3, Assembler::arith_op);
  7246   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7247   ins_pipe(ialu_reg_imm);
  7248 %}
  7250 // Long negation
  7251 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
  7252   match(Set dst (SubL zero src2));
  7254   size(4);
  7255   format %{ "NEG    $src2,$dst\t! long" %}
  7256   opcode(Assembler::sub_op3, Assembler::arith_op);
  7257   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  7258   ins_pipe(ialu_zero_reg);
  7259 %}
  7261 // Multiplication Instructions
  7262 // Integer Multiplication
  7263 // Register Multiplication
  7264 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7265   match(Set dst (MulI src1 src2));
  7267   size(4);
  7268   format %{ "MULX   $src1,$src2,$dst" %}
  7269   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7270   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7271   ins_pipe(imul_reg_reg);
  7272 %}
  7274 // Immediate Multiplication
  7275 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7276   match(Set dst (MulI src1 src2));
  7278   size(4);
  7279   format %{ "MULX   $src1,$src2,$dst" %}
  7280   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7281   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7282   ins_pipe(imul_reg_imm);
  7283 %}
  7285 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7286   match(Set dst (MulL src1 src2));
  7287   ins_cost(DEFAULT_COST * 5);
  7288   size(4);
  7289   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  7290   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7291   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7292   ins_pipe(mulL_reg_reg);
  7293 %}
  7295 // Immediate Multiplication
  7296 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7297   match(Set dst (MulL src1 src2));
  7298   ins_cost(DEFAULT_COST * 5);
  7299   size(4);
  7300   format %{ "MULX   $src1,$src2,$dst" %}
  7301   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7302   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7303   ins_pipe(mulL_reg_imm);
  7304 %}
  7306 // Integer Division
  7307 // Register Division
  7308 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
  7309   match(Set dst (DivI src1 src2));
  7310   ins_cost((2+71)*DEFAULT_COST);
  7312   format %{ "SRA     $src2,0,$src2\n\t"
  7313             "SRA     $src1,0,$src1\n\t"
  7314             "SDIVX   $src1,$src2,$dst" %}
  7315   ins_encode( idiv_reg( src1, src2, dst ) );
  7316   ins_pipe(sdiv_reg_reg);
  7317 %}
  7319 // Immediate Division
  7320 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
  7321   match(Set dst (DivI src1 src2));
  7322   ins_cost((2+71)*DEFAULT_COST);
  7324   format %{ "SRA     $src1,0,$src1\n\t"
  7325             "SDIVX   $src1,$src2,$dst" %}
  7326   ins_encode( idiv_imm( src1, src2, dst ) );
  7327   ins_pipe(sdiv_reg_imm);
  7328 %}
  7330 //----------Div-By-10-Expansion------------------------------------------------
  7331 // Extract hi bits of a 32x32->64 bit multiply.
  7332 // Expand rule only, not matched
  7333 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
  7334   effect( DEF dst, USE src1, USE src2 );
  7335   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
  7336             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
  7337   ins_encode( enc_mul_hi(dst,src1,src2));
  7338   ins_pipe(sdiv_reg_reg);
  7339 %}
  7341 // Magic constant, reciprocal of 10
  7342 instruct loadConI_x66666667(iRegIsafe dst) %{
  7343   effect( DEF dst );
  7345   size(8);
  7346   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
  7347   ins_encode( Set32(0x66666667, dst) );
  7348   ins_pipe(ialu_hi_lo_reg);
  7349 %}
  7351 // Register Shift Right Arithmetic Long by 32-63
  7352 instruct sra_31( iRegI dst, iRegI src ) %{
  7353   effect( DEF dst, USE src );
  7354   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
  7355   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
  7356   ins_pipe(ialu_reg_reg);
  7357 %}
  7359 // Arithmetic Shift Right by 8-bit immediate
  7360 instruct sra_reg_2( iRegI dst, iRegI src ) %{
  7361   effect( DEF dst, USE src );
  7362   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
  7363   opcode(Assembler::sra_op3, Assembler::arith_op);
  7364   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
  7365   ins_pipe(ialu_reg_imm);
  7366 %}
  7368 // Integer DIV with 10
  7369 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
  7370   match(Set dst (DivI src div));
  7371   ins_cost((6+6)*DEFAULT_COST);
  7372   expand %{
  7373     iRegIsafe tmp1;               // Killed temps;
  7374     iRegIsafe tmp2;               // Killed temps;
  7375     iRegI tmp3;                   // Killed temps;
  7376     iRegI tmp4;                   // Killed temps;
  7377     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
  7378     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
  7379     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
  7380     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
  7381     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
  7382   %}
  7383 %}
  7385 // Register Long Division
  7386 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7387   match(Set dst (DivL src1 src2));
  7388   ins_cost(DEFAULT_COST*71);
  7389   size(4);
  7390   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7391   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7392   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7393   ins_pipe(divL_reg_reg);
  7394 %}
  7396 // Register Long Division
  7397 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7398   match(Set dst (DivL src1 src2));
  7399   ins_cost(DEFAULT_COST*71);
  7400   size(4);
  7401   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7402   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7403   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7404   ins_pipe(divL_reg_imm);
  7405 %}
  7407 // Integer Remainder
  7408 // Register Remainder
  7409 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
  7410   match(Set dst (ModI src1 src2));
  7411   effect( KILL ccr, KILL temp);
  7413   format %{ "SREM   $src1,$src2,$dst" %}
  7414   ins_encode( irem_reg(src1, src2, dst, temp) );
  7415   ins_pipe(sdiv_reg_reg);
  7416 %}
  7418 // Immediate Remainder
  7419 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
  7420   match(Set dst (ModI src1 src2));
  7421   effect( KILL ccr, KILL temp);
  7423   format %{ "SREM   $src1,$src2,$dst" %}
  7424   ins_encode( irem_imm(src1, src2, dst, temp) );
  7425   ins_pipe(sdiv_reg_imm);
  7426 %}
  7428 // Register Long Remainder
  7429 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7430   effect(DEF dst, USE src1, USE src2);
  7431   size(4);
  7432   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7433   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7434   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7435   ins_pipe(divL_reg_reg);
  7436 %}
  7438 // Register Long Division
  7439 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  7440   effect(DEF dst, USE src1, USE src2);
  7441   size(4);
  7442   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7443   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7444   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7445   ins_pipe(divL_reg_imm);
  7446 %}
  7448 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7449   effect(DEF dst, USE src1, USE src2);
  7450   size(4);
  7451   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  7452   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7453   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7454   ins_pipe(mulL_reg_reg);
  7455 %}
  7457 // Immediate Multiplication
  7458 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  7459   effect(DEF dst, USE src1, USE src2);
  7460   size(4);
  7461   format %{ "MULX   $src1,$src2,$dst" %}
  7462   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7463   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7464   ins_pipe(mulL_reg_imm);
  7465 %}
  7467 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7468   effect(DEF dst, USE src1, USE src2);
  7469   size(4);
  7470   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7471   opcode(Assembler::sub_op3, Assembler::arith_op);
  7472   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7473   ins_pipe(ialu_reg_reg);
  7474 %}
  7476 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  7477   effect(DEF dst, USE src1, USE src2);
  7478   size(4);
  7479   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7480   opcode(Assembler::sub_op3, Assembler::arith_op);
  7481   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7482   ins_pipe(ialu_reg_reg);
  7483 %}
  7485 // Register Long Remainder
  7486 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7487   match(Set dst (ModL src1 src2));
  7488   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  7489   expand %{
  7490     iRegL tmp1;
  7491     iRegL tmp2;
  7492     divL_reg_reg_1(tmp1, src1, src2);
  7493     mulL_reg_reg_1(tmp2, tmp1, src2);
  7494     subL_reg_reg_1(dst,  src1, tmp2);
  7495   %}
  7496 %}
  7498 // Register Long Remainder
  7499 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7500   match(Set dst (ModL src1 src2));
  7501   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  7502   expand %{
  7503     iRegL tmp1;
  7504     iRegL tmp2;
  7505     divL_reg_imm13_1(tmp1, src1, src2);
  7506     mulL_reg_imm13_1(tmp2, tmp1, src2);
  7507     subL_reg_reg_2  (dst,  src1, tmp2);
  7508   %}
  7509 %}
  7511 // Integer Shift Instructions
  7512 // Register Shift Left
  7513 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7514   match(Set dst (LShiftI src1 src2));
  7516   size(4);
  7517   format %{ "SLL    $src1,$src2,$dst" %}
  7518   opcode(Assembler::sll_op3, Assembler::arith_op);
  7519   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7520   ins_pipe(ialu_reg_reg);
  7521 %}
  7523 // Register Shift Left Immediate
  7524 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7525   match(Set dst (LShiftI src1 src2));
  7527   size(4);
  7528   format %{ "SLL    $src1,$src2,$dst" %}
  7529   opcode(Assembler::sll_op3, Assembler::arith_op);
  7530   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7531   ins_pipe(ialu_reg_imm);
  7532 %}
  7534 // Register Shift Left
  7535 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7536   match(Set dst (LShiftL src1 src2));
  7538   size(4);
  7539   format %{ "SLLX   $src1,$src2,$dst" %}
  7540   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7541   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7542   ins_pipe(ialu_reg_reg);
  7543 %}
  7545 // Register Shift Left Immediate
  7546 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7547   match(Set dst (LShiftL src1 src2));
  7549   size(4);
  7550   format %{ "SLLX   $src1,$src2,$dst" %}
  7551   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7552   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7553   ins_pipe(ialu_reg_imm);
  7554 %}
  7556 // Register Arithmetic Shift Right
  7557 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7558   match(Set dst (RShiftI src1 src2));
  7559   size(4);
  7560   format %{ "SRA    $src1,$src2,$dst" %}
  7561   opcode(Assembler::sra_op3, Assembler::arith_op);
  7562   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7563   ins_pipe(ialu_reg_reg);
  7564 %}
  7566 // Register Arithmetic Shift Right Immediate
  7567 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7568   match(Set dst (RShiftI src1 src2));
  7570   size(4);
  7571   format %{ "SRA    $src1,$src2,$dst" %}
  7572   opcode(Assembler::sra_op3, Assembler::arith_op);
  7573   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7574   ins_pipe(ialu_reg_imm);
  7575 %}
  7577 // Register Shift Right Arithmatic Long
  7578 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7579   match(Set dst (RShiftL src1 src2));
  7581   size(4);
  7582   format %{ "SRAX   $src1,$src2,$dst" %}
  7583   opcode(Assembler::srax_op3, Assembler::arith_op);
  7584   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7585   ins_pipe(ialu_reg_reg);
  7586 %}
  7588 // Register Shift Left Immediate
  7589 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7590   match(Set dst (RShiftL src1 src2));
  7592   size(4);
  7593   format %{ "SRAX   $src1,$src2,$dst" %}
  7594   opcode(Assembler::srax_op3, Assembler::arith_op);
  7595   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7596   ins_pipe(ialu_reg_imm);
  7597 %}
  7599 // Register Shift Right
  7600 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7601   match(Set dst (URShiftI src1 src2));
  7603   size(4);
  7604   format %{ "SRL    $src1,$src2,$dst" %}
  7605   opcode(Assembler::srl_op3, Assembler::arith_op);
  7606   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7607   ins_pipe(ialu_reg_reg);
  7608 %}
  7610 // Register Shift Right Immediate
  7611 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7612   match(Set dst (URShiftI src1 src2));
  7614   size(4);
  7615   format %{ "SRL    $src1,$src2,$dst" %}
  7616   opcode(Assembler::srl_op3, Assembler::arith_op);
  7617   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7618   ins_pipe(ialu_reg_imm);
  7619 %}
  7621 // Register Shift Right
  7622 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7623   match(Set dst (URShiftL src1 src2));
  7625   size(4);
  7626   format %{ "SRLX   $src1,$src2,$dst" %}
  7627   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7628   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7629   ins_pipe(ialu_reg_reg);
  7630 %}
  7632 // Register Shift Right Immediate
  7633 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7634   match(Set dst (URShiftL src1 src2));
  7636   size(4);
  7637   format %{ "SRLX   $src1,$src2,$dst" %}
  7638   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7639   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7640   ins_pipe(ialu_reg_imm);
  7641 %}
  7643 // Register Shift Right Immediate with a CastP2X
  7644 #ifdef _LP64
  7645 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
  7646   match(Set dst (URShiftL (CastP2X src1) src2));
  7647   size(4);
  7648   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
  7649   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7650   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7651   ins_pipe(ialu_reg_imm);
  7652 %}
  7653 #else
  7654 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
  7655   match(Set dst (URShiftI (CastP2X src1) src2));
  7656   size(4);
  7657   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
  7658   opcode(Assembler::srl_op3, Assembler::arith_op);
  7659   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7660   ins_pipe(ialu_reg_imm);
  7661 %}
  7662 #endif
  7665 //----------Floating Point Arithmetic Instructions-----------------------------
  7667 //  Add float single precision
  7668 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
  7669   match(Set dst (AddF src1 src2));
  7671   size(4);
  7672   format %{ "FADDS  $src1,$src2,$dst" %}
  7673   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
  7674   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7675   ins_pipe(faddF_reg_reg);
  7676 %}
  7678 //  Add float double precision
  7679 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
  7680   match(Set dst (AddD src1 src2));
  7682   size(4);
  7683   format %{ "FADDD  $src1,$src2,$dst" %}
  7684   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  7685   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7686   ins_pipe(faddD_reg_reg);
  7687 %}
  7689 //  Sub float single precision
  7690 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
  7691   match(Set dst (SubF src1 src2));
  7693   size(4);
  7694   format %{ "FSUBS  $src1,$src2,$dst" %}
  7695   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
  7696   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7697   ins_pipe(faddF_reg_reg);
  7698 %}
  7700 //  Sub float double precision
  7701 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
  7702   match(Set dst (SubD src1 src2));
  7704   size(4);
  7705   format %{ "FSUBD  $src1,$src2,$dst" %}
  7706   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  7707   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7708   ins_pipe(faddD_reg_reg);
  7709 %}
  7711 //  Mul float single precision
  7712 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
  7713   match(Set dst (MulF src1 src2));
  7715   size(4);
  7716   format %{ "FMULS  $src1,$src2,$dst" %}
  7717   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
  7718   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7719   ins_pipe(fmulF_reg_reg);
  7720 %}
  7722 //  Mul float double precision
  7723 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
  7724   match(Set dst (MulD src1 src2));
  7726   size(4);
  7727   format %{ "FMULD  $src1,$src2,$dst" %}
  7728   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  7729   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7730   ins_pipe(fmulD_reg_reg);
  7731 %}
  7733 //  Div float single precision
  7734 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
  7735   match(Set dst (DivF src1 src2));
  7737   size(4);
  7738   format %{ "FDIVS  $src1,$src2,$dst" %}
  7739   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
  7740   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7741   ins_pipe(fdivF_reg_reg);
  7742 %}
  7744 //  Div float double precision
  7745 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
  7746   match(Set dst (DivD src1 src2));
  7748   size(4);
  7749   format %{ "FDIVD  $src1,$src2,$dst" %}
  7750   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
  7751   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7752   ins_pipe(fdivD_reg_reg);
  7753 %}
  7755 //  Absolute float double precision
  7756 instruct absD_reg(regD dst, regD src) %{
  7757   match(Set dst (AbsD src));
  7759   format %{ "FABSd  $src,$dst" %}
  7760   ins_encode(fabsd(dst, src));
  7761   ins_pipe(faddD_reg);
  7762 %}
  7764 //  Absolute float single precision
  7765 instruct absF_reg(regF dst, regF src) %{
  7766   match(Set dst (AbsF src));
  7768   format %{ "FABSs  $src,$dst" %}
  7769   ins_encode(fabss(dst, src));
  7770   ins_pipe(faddF_reg);
  7771 %}
  7773 instruct negF_reg(regF dst, regF src) %{
  7774   match(Set dst (NegF src));
  7776   size(4);
  7777   format %{ "FNEGs  $src,$dst" %}
  7778   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
  7779   ins_encode(form3_opf_rs2F_rdF(src, dst));
  7780   ins_pipe(faddF_reg);
  7781 %}
  7783 instruct negD_reg(regD dst, regD src) %{
  7784   match(Set dst (NegD src));
  7786   format %{ "FNEGd  $src,$dst" %}
  7787   ins_encode(fnegd(dst, src));
  7788   ins_pipe(faddD_reg);
  7789 %}
  7791 //  Sqrt float double precision
  7792 instruct sqrtF_reg_reg(regF dst, regF src) %{
  7793   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
  7795   size(4);
  7796   format %{ "FSQRTS $src,$dst" %}
  7797   ins_encode(fsqrts(dst, src));
  7798   ins_pipe(fdivF_reg_reg);
  7799 %}
  7801 //  Sqrt float double precision
  7802 instruct sqrtD_reg_reg(regD dst, regD src) %{
  7803   match(Set dst (SqrtD src));
  7805   size(4);
  7806   format %{ "FSQRTD $src,$dst" %}
  7807   ins_encode(fsqrtd(dst, src));
  7808   ins_pipe(fdivD_reg_reg);
  7809 %}
  7811 //----------Logical Instructions-----------------------------------------------
  7812 // And Instructions
  7813 // Register And
  7814 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7815   match(Set dst (AndI src1 src2));
  7817   size(4);
  7818   format %{ "AND    $src1,$src2,$dst" %}
  7819   opcode(Assembler::and_op3, Assembler::arith_op);
  7820   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7821   ins_pipe(ialu_reg_reg);
  7822 %}
  7824 // Immediate And
  7825 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7826   match(Set dst (AndI src1 src2));
  7828   size(4);
  7829   format %{ "AND    $src1,$src2,$dst" %}
  7830   opcode(Assembler::and_op3, Assembler::arith_op);
  7831   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7832   ins_pipe(ialu_reg_imm);
  7833 %}
  7835 // Register And Long
  7836 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7837   match(Set dst (AndL src1 src2));
  7839   ins_cost(DEFAULT_COST);
  7840   size(4);
  7841   format %{ "AND    $src1,$src2,$dst\t! long" %}
  7842   opcode(Assembler::and_op3, Assembler::arith_op);
  7843   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7844   ins_pipe(ialu_reg_reg);
  7845 %}
  7847 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7848   match(Set dst (AndL src1 con));
  7850   ins_cost(DEFAULT_COST);
  7851   size(4);
  7852   format %{ "AND    $src1,$con,$dst\t! long" %}
  7853   opcode(Assembler::and_op3, Assembler::arith_op);
  7854   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7855   ins_pipe(ialu_reg_imm);
  7856 %}
  7858 // Or Instructions
  7859 // Register Or
  7860 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7861   match(Set dst (OrI src1 src2));
  7863   size(4);
  7864   format %{ "OR     $src1,$src2,$dst" %}
  7865   opcode(Assembler::or_op3, Assembler::arith_op);
  7866   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7867   ins_pipe(ialu_reg_reg);
  7868 %}
  7870 // Immediate Or
  7871 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7872   match(Set dst (OrI src1 src2));
  7874   size(4);
  7875   format %{ "OR     $src1,$src2,$dst" %}
  7876   opcode(Assembler::or_op3, Assembler::arith_op);
  7877   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7878   ins_pipe(ialu_reg_imm);
  7879 %}
  7881 // Register Or Long
  7882 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7883   match(Set dst (OrL src1 src2));
  7885   ins_cost(DEFAULT_COST);
  7886   size(4);
  7887   format %{ "OR     $src1,$src2,$dst\t! long" %}
  7888   opcode(Assembler::or_op3, Assembler::arith_op);
  7889   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7890   ins_pipe(ialu_reg_reg);
  7891 %}
  7893 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7894   match(Set dst (OrL src1 con));
  7895   ins_cost(DEFAULT_COST*2);
  7897   ins_cost(DEFAULT_COST);
  7898   size(4);
  7899   format %{ "OR     $src1,$con,$dst\t! long" %}
  7900   opcode(Assembler::or_op3, Assembler::arith_op);
  7901   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7902   ins_pipe(ialu_reg_imm);
  7903 %}
  7905 #ifndef _LP64
  7907 // Use sp_ptr_RegP to match G2 (TLS register) without spilling.
  7908 instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
  7909   match(Set dst (OrI src1 (CastP2X src2)));
  7911   size(4);
  7912   format %{ "OR     $src1,$src2,$dst" %}
  7913   opcode(Assembler::or_op3, Assembler::arith_op);
  7914   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7915   ins_pipe(ialu_reg_reg);
  7916 %}
  7918 #else
  7920 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
  7921   match(Set dst (OrL src1 (CastP2X src2)));
  7923   ins_cost(DEFAULT_COST);
  7924   size(4);
  7925   format %{ "OR     $src1,$src2,$dst\t! long" %}
  7926   opcode(Assembler::or_op3, Assembler::arith_op);
  7927   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7928   ins_pipe(ialu_reg_reg);
  7929 %}
  7931 #endif
  7933 // Xor Instructions
  7934 // Register Xor
  7935 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7936   match(Set dst (XorI src1 src2));
  7938   size(4);
  7939   format %{ "XOR    $src1,$src2,$dst" %}
  7940   opcode(Assembler::xor_op3, Assembler::arith_op);
  7941   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7942   ins_pipe(ialu_reg_reg);
  7943 %}
  7945 // Immediate Xor
  7946 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7947   match(Set dst (XorI src1 src2));
  7949   size(4);
  7950   format %{ "XOR    $src1,$src2,$dst" %}
  7951   opcode(Assembler::xor_op3, Assembler::arith_op);
  7952   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7953   ins_pipe(ialu_reg_imm);
  7954 %}
  7956 // Register Xor Long
  7957 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7958   match(Set dst (XorL src1 src2));
  7960   ins_cost(DEFAULT_COST);
  7961   size(4);
  7962   format %{ "XOR    $src1,$src2,$dst\t! long" %}
  7963   opcode(Assembler::xor_op3, Assembler::arith_op);
  7964   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7965   ins_pipe(ialu_reg_reg);
  7966 %}
  7968 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7969   match(Set dst (XorL src1 con));
  7971   ins_cost(DEFAULT_COST);
  7972   size(4);
  7973   format %{ "XOR    $src1,$con,$dst\t! long" %}
  7974   opcode(Assembler::xor_op3, Assembler::arith_op);
  7975   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7976   ins_pipe(ialu_reg_imm);
  7977 %}
  7979 //----------Convert to Boolean-------------------------------------------------
  7980 // Nice hack for 32-bit tests but doesn't work for
  7981 // 64-bit pointers.
  7982 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
  7983   match(Set dst (Conv2B src));
  7984   effect( KILL ccr );
  7985   ins_cost(DEFAULT_COST*2);
  7986   format %{ "CMP    R_G0,$src\n\t"
  7987             "ADDX   R_G0,0,$dst" %}
  7988   ins_encode( enc_to_bool( src, dst ) );
  7989   ins_pipe(ialu_reg_ialu);
  7990 %}
  7992 #ifndef _LP64
  7993 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
  7994   match(Set dst (Conv2B src));
  7995   effect( KILL ccr );
  7996   ins_cost(DEFAULT_COST*2);
  7997   format %{ "CMP    R_G0,$src\n\t"
  7998             "ADDX   R_G0,0,$dst" %}
  7999   ins_encode( enc_to_bool( src, dst ) );
  8000   ins_pipe(ialu_reg_ialu);
  8001 %}
  8002 #else
  8003 instruct convP2B( iRegI dst, iRegP src ) %{
  8004   match(Set dst (Conv2B src));
  8005   ins_cost(DEFAULT_COST*2);
  8006   format %{ "MOV    $src,$dst\n\t"
  8007             "MOVRNZ $src,1,$dst" %}
  8008   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
  8009   ins_pipe(ialu_clr_and_mover);
  8010 %}
  8011 #endif
  8013 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
  8014   match(Set dst (CmpLTMask p q));
  8015   effect( KILL ccr );
  8016   ins_cost(DEFAULT_COST*4);
  8017   format %{ "CMP    $p,$q\n\t"
  8018             "MOV    #0,$dst\n\t"
  8019             "BLT,a  .+8\n\t"
  8020             "MOV    #-1,$dst" %}
  8021   ins_encode( enc_ltmask(p,q,dst) );
  8022   ins_pipe(ialu_reg_reg_ialu);
  8023 %}
  8025 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
  8026   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
  8027   effect(KILL ccr, TEMP tmp);
  8028   ins_cost(DEFAULT_COST*3);
  8030   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
  8031             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
  8032             "MOVl   $tmp,$p\t! p' < 0 ? p'+y : p'" %}
  8033   ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
  8034   ins_pipe( cadd_cmpltmask );
  8035 %}
  8037 instruct cadd_cmpLTMask2( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
  8038   match(Set p (AddI (SubI p q) (AndI (CmpLTMask p q) y)));
  8039   effect( KILL ccr, TEMP tmp);
  8040   ins_cost(DEFAULT_COST*3);
  8042   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
  8043             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
  8044             "MOVl   $tmp,$p\t! p' < 0 ? p'+y : p'" %}
  8045   ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
  8046   ins_pipe( cadd_cmpltmask );
  8047 %}
  8049 //----------Arithmetic Conversion Instructions---------------------------------
  8050 // The conversions operations are all Alpha sorted.  Please keep it that way!
  8052 instruct convD2F_reg(regF dst, regD src) %{
  8053   match(Set dst (ConvD2F src));
  8054   size(4);
  8055   format %{ "FDTOS  $src,$dst" %}
  8056   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
  8057   ins_encode(form3_opf_rs2D_rdF(src, dst));
  8058   ins_pipe(fcvtD2F);
  8059 %}
  8062 // Convert a double to an int in a float register.
  8063 // If the double is a NAN, stuff a zero in instead.
  8064 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
  8065   effect(DEF dst, USE src, KILL fcc0);
  8066   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  8067             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8068             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
  8069             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  8070             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  8071       "skip:" %}
  8072   ins_encode(form_d2i_helper(src,dst));
  8073   ins_pipe(fcvtD2I);
  8074 %}
  8076 instruct convD2I_reg(stackSlotI dst, regD src) %{
  8077   match(Set dst (ConvD2I src));
  8078   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8079   expand %{
  8080     regF tmp;
  8081     convD2I_helper(tmp, src);
  8082     regF_to_stkI(dst, tmp);
  8083   %}
  8084 %}
  8086 // Convert a double to a long in a double register.
  8087 // If the double is a NAN, stuff a zero in instead.
  8088 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
  8089   effect(DEF dst, USE src, KILL fcc0);
  8090   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  8091             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8092             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
  8093             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  8094             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  8095       "skip:" %}
  8096   ins_encode(form_d2l_helper(src,dst));
  8097   ins_pipe(fcvtD2L);
  8098 %}
  8101 // Double to Long conversion
  8102 instruct convD2L_reg(stackSlotL dst, regD src) %{
  8103   match(Set dst (ConvD2L src));
  8104   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8105   expand %{
  8106     regD tmp;
  8107     convD2L_helper(tmp, src);
  8108     regD_to_stkL(dst, tmp);
  8109   %}
  8110 %}
  8113 instruct convF2D_reg(regD dst, regF src) %{
  8114   match(Set dst (ConvF2D src));
  8115   format %{ "FSTOD  $src,$dst" %}
  8116   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
  8117   ins_encode(form3_opf_rs2F_rdD(src, dst));
  8118   ins_pipe(fcvtF2D);
  8119 %}
  8122 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
  8123   effect(DEF dst, USE src, KILL fcc0);
  8124   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  8125             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8126             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
  8127             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  8128             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  8129       "skip:" %}
  8130   ins_encode(form_f2i_helper(src,dst));
  8131   ins_pipe(fcvtF2I);
  8132 %}
  8134 instruct convF2I_reg(stackSlotI dst, regF src) %{
  8135   match(Set dst (ConvF2I src));
  8136   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8137   expand %{
  8138     regF tmp;
  8139     convF2I_helper(tmp, src);
  8140     regF_to_stkI(dst, tmp);
  8141   %}
  8142 %}
  8145 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
  8146   effect(DEF dst, USE src, KILL fcc0);
  8147   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  8148             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8149             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
  8150             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  8151             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  8152       "skip:" %}
  8153   ins_encode(form_f2l_helper(src,dst));
  8154   ins_pipe(fcvtF2L);
  8155 %}
  8157 // Float to Long conversion
  8158 instruct convF2L_reg(stackSlotL dst, regF src) %{
  8159   match(Set dst (ConvF2L src));
  8160   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8161   expand %{
  8162     regD tmp;
  8163     convF2L_helper(tmp, src);
  8164     regD_to_stkL(dst, tmp);
  8165   %}
  8166 %}
  8169 instruct convI2D_helper(regD dst, regF tmp) %{
  8170   effect(USE tmp, DEF dst);
  8171   format %{ "FITOD  $tmp,$dst" %}
  8172   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  8173   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
  8174   ins_pipe(fcvtI2D);
  8175 %}
  8177 instruct convI2D_reg(stackSlotI src, regD dst) %{
  8178   match(Set dst (ConvI2D src));
  8179   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8180   expand %{
  8181     regF tmp;
  8182     stkI_to_regF( tmp, src);
  8183     convI2D_helper( dst, tmp);
  8184   %}
  8185 %}
  8187 instruct convI2D_mem( regD_low dst, memory mem ) %{
  8188   match(Set dst (ConvI2D (LoadI mem)));
  8189   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8190   size(8);
  8191   format %{ "LDF    $mem,$dst\n\t"
  8192             "FITOD  $dst,$dst" %}
  8193   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
  8194   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  8195   ins_pipe(floadF_mem);
  8196 %}
  8199 instruct convI2F_helper(regF dst, regF tmp) %{
  8200   effect(DEF dst, USE tmp);
  8201   format %{ "FITOS  $tmp,$dst" %}
  8202   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
  8203   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
  8204   ins_pipe(fcvtI2F);
  8205 %}
  8207 instruct convI2F_reg( regF dst, stackSlotI src ) %{
  8208   match(Set dst (ConvI2F src));
  8209   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8210   expand %{
  8211     regF tmp;
  8212     stkI_to_regF(tmp,src);
  8213     convI2F_helper(dst, tmp);
  8214   %}
  8215 %}
  8217 instruct convI2F_mem( regF dst, memory mem ) %{
  8218   match(Set dst (ConvI2F (LoadI mem)));
  8219   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8220   size(8);
  8221   format %{ "LDF    $mem,$dst\n\t"
  8222             "FITOS  $dst,$dst" %}
  8223   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
  8224   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  8225   ins_pipe(floadF_mem);
  8226 %}
  8229 instruct convI2L_reg(iRegL dst, iRegI src) %{
  8230   match(Set dst (ConvI2L src));
  8231   size(4);
  8232   format %{ "SRA    $src,0,$dst\t! int->long" %}
  8233   opcode(Assembler::sra_op3, Assembler::arith_op);
  8234   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8235   ins_pipe(ialu_reg_reg);
  8236 %}
  8238 // Zero-extend convert int to long
  8239 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
  8240   match(Set dst (AndL (ConvI2L src) mask) );
  8241   size(4);
  8242   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
  8243   opcode(Assembler::srl_op3, Assembler::arith_op);
  8244   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8245   ins_pipe(ialu_reg_reg);
  8246 %}
  8248 // Zero-extend long
  8249 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
  8250   match(Set dst (AndL src mask) );
  8251   size(4);
  8252   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
  8253   opcode(Assembler::srl_op3, Assembler::arith_op);
  8254   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8255   ins_pipe(ialu_reg_reg);
  8256 %}
  8258 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
  8259   match(Set dst (MoveF2I src));
  8260   effect(DEF dst, USE src);
  8261   ins_cost(MEMORY_REF_COST);
  8263   size(4);
  8264   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
  8265   opcode(Assembler::lduw_op3);
  8266   ins_encode(simple_form3_mem_reg( src, dst ) );
  8267   ins_pipe(iload_mem);
  8268 %}
  8270 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
  8271   match(Set dst (MoveI2F src));
  8272   effect(DEF dst, USE src);
  8273   ins_cost(MEMORY_REF_COST);
  8275   size(4);
  8276   format %{ "LDF    $src,$dst\t! MoveI2F" %}
  8277   opcode(Assembler::ldf_op3);
  8278   ins_encode(simple_form3_mem_reg(src, dst));
  8279   ins_pipe(floadF_stk);
  8280 %}
  8282 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
  8283   match(Set dst (MoveD2L src));
  8284   effect(DEF dst, USE src);
  8285   ins_cost(MEMORY_REF_COST);
  8287   size(4);
  8288   format %{ "LDX    $src,$dst\t! MoveD2L" %}
  8289   opcode(Assembler::ldx_op3);
  8290   ins_encode(simple_form3_mem_reg( src, dst ) );
  8291   ins_pipe(iload_mem);
  8292 %}
  8294 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
  8295   match(Set dst (MoveL2D src));
  8296   effect(DEF dst, USE src);
  8297   ins_cost(MEMORY_REF_COST);
  8299   size(4);
  8300   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
  8301   opcode(Assembler::lddf_op3);
  8302   ins_encode(simple_form3_mem_reg(src, dst));
  8303   ins_pipe(floadD_stk);
  8304 %}
  8306 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
  8307   match(Set dst (MoveF2I src));
  8308   effect(DEF dst, USE src);
  8309   ins_cost(MEMORY_REF_COST);
  8311   size(4);
  8312   format %{ "STF   $src,$dst\t!MoveF2I" %}
  8313   opcode(Assembler::stf_op3);
  8314   ins_encode(simple_form3_mem_reg(dst, src));
  8315   ins_pipe(fstoreF_stk_reg);
  8316 %}
  8318 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
  8319   match(Set dst (MoveI2F src));
  8320   effect(DEF dst, USE src);
  8321   ins_cost(MEMORY_REF_COST);
  8323   size(4);
  8324   format %{ "STW    $src,$dst\t!MoveI2F" %}
  8325   opcode(Assembler::stw_op3);
  8326   ins_encode(simple_form3_mem_reg( dst, src ) );
  8327   ins_pipe(istore_mem_reg);
  8328 %}
  8330 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
  8331   match(Set dst (MoveD2L src));
  8332   effect(DEF dst, USE src);
  8333   ins_cost(MEMORY_REF_COST);
  8335   size(4);
  8336   format %{ "STDF   $src,$dst\t!MoveD2L" %}
  8337   opcode(Assembler::stdf_op3);
  8338   ins_encode(simple_form3_mem_reg(dst, src));
  8339   ins_pipe(fstoreD_stk_reg);
  8340 %}
  8342 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
  8343   match(Set dst (MoveL2D src));
  8344   effect(DEF dst, USE src);
  8345   ins_cost(MEMORY_REF_COST);
  8347   size(4);
  8348   format %{ "STX    $src,$dst\t!MoveL2D" %}
  8349   opcode(Assembler::stx_op3);
  8350   ins_encode(simple_form3_mem_reg( dst, src ) );
  8351   ins_pipe(istore_mem_reg);
  8352 %}
  8355 //-----------
  8356 // Long to Double conversion using V8 opcodes.
  8357 // Still useful because cheetah traps and becomes
  8358 // amazingly slow for some common numbers.
  8360 // Magic constant, 0x43300000
  8361 instruct loadConI_x43300000(iRegI dst) %{
  8362   effect(DEF dst);
  8363   size(4);
  8364   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
  8365   ins_encode(SetHi22(0x43300000, dst));
  8366   ins_pipe(ialu_none);
  8367 %}
  8369 // Magic constant, 0x41f00000
  8370 instruct loadConI_x41f00000(iRegI dst) %{
  8371   effect(DEF dst);
  8372   size(4);
  8373   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
  8374   ins_encode(SetHi22(0x41f00000, dst));
  8375   ins_pipe(ialu_none);
  8376 %}
  8378 // Construct a double from two float halves
  8379 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
  8380   effect(DEF dst, USE src1, USE src2);
  8381   size(8);
  8382   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
  8383             "FMOVS  $src2.lo,$dst.lo" %}
  8384   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
  8385   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
  8386   ins_pipe(faddD_reg_reg);
  8387 %}
  8389 // Convert integer in high half of a double register (in the lower half of
  8390 // the double register file) to double
  8391 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
  8392   effect(DEF dst, USE src);
  8393   size(4);
  8394   format %{ "FITOD  $src,$dst" %}
  8395   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  8396   ins_encode(form3_opf_rs2D_rdD(src, dst));
  8397   ins_pipe(fcvtLHi2D);
  8398 %}
  8400 // Add float double precision
  8401 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
  8402   effect(DEF dst, USE src1, USE src2);
  8403   size(4);
  8404   format %{ "FADDD  $src1,$src2,$dst" %}
  8405   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  8406   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8407   ins_pipe(faddD_reg_reg);
  8408 %}
  8410 // Sub float double precision
  8411 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
  8412   effect(DEF dst, USE src1, USE src2);
  8413   size(4);
  8414   format %{ "FSUBD  $src1,$src2,$dst" %}
  8415   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  8416   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8417   ins_pipe(faddD_reg_reg);
  8418 %}
  8420 // Mul float double precision
  8421 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
  8422   effect(DEF dst, USE src1, USE src2);
  8423   size(4);
  8424   format %{ "FMULD  $src1,$src2,$dst" %}
  8425   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  8426   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8427   ins_pipe(fmulD_reg_reg);
  8428 %}
  8430 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
  8431   match(Set dst (ConvL2D src));
  8432   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
  8434   expand %{
  8435     regD_low   tmpsrc;
  8436     iRegI      ix43300000;
  8437     iRegI      ix41f00000;
  8438     stackSlotL lx43300000;
  8439     stackSlotL lx41f00000;
  8440     regD_low   dx43300000;
  8441     regD       dx41f00000;
  8442     regD       tmp1;
  8443     regD_low   tmp2;
  8444     regD       tmp3;
  8445     regD       tmp4;
  8447     stkL_to_regD(tmpsrc, src);
  8449     loadConI_x43300000(ix43300000);
  8450     loadConI_x41f00000(ix41f00000);
  8451     regI_to_stkLHi(lx43300000, ix43300000);
  8452     regI_to_stkLHi(lx41f00000, ix41f00000);
  8453     stkL_to_regD(dx43300000, lx43300000);
  8454     stkL_to_regD(dx41f00000, lx41f00000);
  8456     convI2D_regDHi_regD(tmp1, tmpsrc);
  8457     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
  8458     subD_regD_regD(tmp3, tmp2, dx43300000);
  8459     mulD_regD_regD(tmp4, tmp1, dx41f00000);
  8460     addD_regD_regD(dst, tmp3, tmp4);
  8461   %}
  8462 %}
  8464 // Long to Double conversion using fast fxtof
  8465 instruct convL2D_helper(regD dst, regD tmp) %{
  8466   effect(DEF dst, USE tmp);
  8467   size(4);
  8468   format %{ "FXTOD  $tmp,$dst" %}
  8469   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
  8470   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
  8471   ins_pipe(fcvtL2D);
  8472 %}
  8474 instruct convL2D_reg_fast_fxtof(regD dst, stackSlotL src) %{
  8475   predicate(VM_Version::has_fast_fxtof());
  8476   match(Set dst (ConvL2D src));
  8477   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
  8478   expand %{
  8479     regD tmp;
  8480     stkL_to_regD(tmp, src);
  8481     convL2D_helper(dst, tmp);
  8482   %}
  8483 %}
  8485 //-----------
  8486 // Long to Float conversion using V8 opcodes.
  8487 // Still useful because cheetah traps and becomes
  8488 // amazingly slow for some common numbers.
  8490 // Long to Float conversion using fast fxtof
  8491 instruct convL2F_helper(regF dst, regD tmp) %{
  8492   effect(DEF dst, USE tmp);
  8493   size(4);
  8494   format %{ "FXTOS  $tmp,$dst" %}
  8495   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
  8496   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
  8497   ins_pipe(fcvtL2F);
  8498 %}
  8500 instruct convL2F_reg_fast_fxtof(regF dst, stackSlotL src) %{
  8501   match(Set dst (ConvL2F src));
  8502   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8503   expand %{
  8504     regD tmp;
  8505     stkL_to_regD(tmp, src);
  8506     convL2F_helper(dst, tmp);
  8507   %}
  8508 %}
  8509 //-----------
  8511 instruct convL2I_reg(iRegI dst, iRegL src) %{
  8512   match(Set dst (ConvL2I src));
  8513 #ifndef _LP64
  8514   format %{ "MOV    $src.lo,$dst\t! long->int" %}
  8515   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
  8516   ins_pipe(ialu_move_reg_I_to_L);
  8517 #else
  8518   size(4);
  8519   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
  8520   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
  8521   ins_pipe(ialu_reg);
  8522 #endif
  8523 %}
  8525 // Register Shift Right Immediate
  8526 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
  8527   match(Set dst (ConvL2I (RShiftL src cnt)));
  8529   size(4);
  8530   format %{ "SRAX   $src,$cnt,$dst" %}
  8531   opcode(Assembler::srax_op3, Assembler::arith_op);
  8532   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
  8533   ins_pipe(ialu_reg_imm);
  8534 %}
  8536 // Replicate scalar to packed byte values in Double register
  8537 instruct Repl8B_reg_helper(iRegL dst, iRegI src) %{
  8538   effect(DEF dst, USE src);
  8539   format %{ "SLLX  $src,56,$dst\n\t"
  8540             "SRLX  $dst, 8,O7\n\t"
  8541             "OR    $dst,O7,$dst\n\t"
  8542             "SRLX  $dst,16,O7\n\t"
  8543             "OR    $dst,O7,$dst\n\t"
  8544             "SRLX  $dst,32,O7\n\t"
  8545             "OR    $dst,O7,$dst\t! replicate8B" %}
  8546   ins_encode( enc_repl8b(src, dst));
  8547   ins_pipe(ialu_reg);
  8548 %}
  8550 // Replicate scalar to packed byte values in Double register
  8551 instruct Repl8B_reg(stackSlotD dst, iRegI src) %{
  8552   match(Set dst (Replicate8B src));
  8553   expand %{
  8554     iRegL tmp;
  8555     Repl8B_reg_helper(tmp, src);
  8556     regL_to_stkD(dst, tmp);
  8557   %}
  8558 %}
  8560 // Replicate scalar constant to packed byte values in Double register
  8561 instruct Repl8B_immI(regD dst, immI13 src, o7RegP tmp) %{
  8562   match(Set dst (Replicate8B src));
  8563 #ifdef _LP64
  8564   size(36);
  8565 #else
  8566   size(8);
  8567 #endif
  8568   format %{ "SETHI  hi(&Repl8($src)),$tmp\t!get Repl8B($src) from table\n\t"
  8569             "LDDF   [$tmp+lo(&Repl8($src))],$dst" %}
  8570   ins_encode( LdReplImmI(src, dst, tmp, (8), (1)) );
  8571   ins_pipe(loadConFD);
  8572 %}
  8574 // Replicate scalar to packed char values into stack slot
  8575 instruct Repl4C_reg_helper(iRegL dst, iRegI src) %{
  8576   effect(DEF dst, USE src);
  8577   format %{ "SLLX  $src,48,$dst\n\t"
  8578             "SRLX  $dst,16,O7\n\t"
  8579             "OR    $dst,O7,$dst\n\t"
  8580             "SRLX  $dst,32,O7\n\t"
  8581             "OR    $dst,O7,$dst\t! replicate4C" %}
  8582   ins_encode( enc_repl4s(src, dst) );
  8583   ins_pipe(ialu_reg);
  8584 %}
  8586 // Replicate scalar to packed char values into stack slot
  8587 instruct Repl4C_reg(stackSlotD dst, iRegI src) %{
  8588   match(Set dst (Replicate4C src));
  8589   expand %{
  8590     iRegL tmp;
  8591     Repl4C_reg_helper(tmp, src);
  8592     regL_to_stkD(dst, tmp);
  8593   %}
  8594 %}
  8596 // Replicate scalar constant to packed char values in Double register
  8597 instruct Repl4C_immI(regD dst, immI src, o7RegP tmp) %{
  8598   match(Set dst (Replicate4C src));
  8599 #ifdef _LP64
  8600   size(36);
  8601 #else
  8602   size(8);
  8603 #endif
  8604   format %{ "SETHI  hi(&Repl4($src)),$tmp\t!get Repl4C($src) from table\n\t"
  8605             "LDDF   [$tmp+lo(&Repl4($src))],$dst" %}
  8606   ins_encode( LdReplImmI(src, dst, tmp, (4), (2)) );
  8607   ins_pipe(loadConFD);
  8608 %}
  8610 // Replicate scalar to packed short values into stack slot
  8611 instruct Repl4S_reg_helper(iRegL dst, iRegI src) %{
  8612   effect(DEF dst, USE src);
  8613   format %{ "SLLX  $src,48,$dst\n\t"
  8614             "SRLX  $dst,16,O7\n\t"
  8615             "OR    $dst,O7,$dst\n\t"
  8616             "SRLX  $dst,32,O7\n\t"
  8617             "OR    $dst,O7,$dst\t! replicate4S" %}
  8618   ins_encode( enc_repl4s(src, dst) );
  8619   ins_pipe(ialu_reg);
  8620 %}
  8622 // Replicate scalar to packed short values into stack slot
  8623 instruct Repl4S_reg(stackSlotD dst, iRegI src) %{
  8624   match(Set dst (Replicate4S src));
  8625   expand %{
  8626     iRegL tmp;
  8627     Repl4S_reg_helper(tmp, src);
  8628     regL_to_stkD(dst, tmp);
  8629   %}
  8630 %}
  8632 // Replicate scalar constant to packed short values in Double register
  8633 instruct Repl4S_immI(regD dst, immI src, o7RegP tmp) %{
  8634   match(Set dst (Replicate4S src));
  8635 #ifdef _LP64
  8636   size(36);
  8637 #else
  8638   size(8);
  8639 #endif
  8640   format %{ "SETHI  hi(&Repl4($src)),$tmp\t!get Repl4S($src) from table\n\t"
  8641             "LDDF   [$tmp+lo(&Repl4($src))],$dst" %}
  8642   ins_encode( LdReplImmI(src, dst, tmp, (4), (2)) );
  8643   ins_pipe(loadConFD);
  8644 %}
  8646 // Replicate scalar to packed int values in Double register
  8647 instruct Repl2I_reg_helper(iRegL dst, iRegI src) %{
  8648   effect(DEF dst, USE src);
  8649   format %{ "SLLX  $src,32,$dst\n\t"
  8650             "SRLX  $dst,32,O7\n\t"
  8651             "OR    $dst,O7,$dst\t! replicate2I" %}
  8652   ins_encode( enc_repl2i(src, dst));
  8653   ins_pipe(ialu_reg);
  8654 %}
  8656 // Replicate scalar to packed int values in Double register
  8657 instruct Repl2I_reg(stackSlotD dst, iRegI src) %{
  8658   match(Set dst (Replicate2I src));
  8659   expand %{
  8660     iRegL tmp;
  8661     Repl2I_reg_helper(tmp, src);
  8662     regL_to_stkD(dst, tmp);
  8663   %}
  8664 %}
  8666 // Replicate scalar zero constant to packed int values in Double register
  8667 instruct Repl2I_immI(regD dst, immI src, o7RegP tmp) %{
  8668   match(Set dst (Replicate2I src));
  8669 #ifdef _LP64
  8670   size(36);
  8671 #else
  8672   size(8);
  8673 #endif
  8674   format %{ "SETHI  hi(&Repl2($src)),$tmp\t!get Repl2I($src) from table\n\t"
  8675             "LDDF   [$tmp+lo(&Repl2($src))],$dst" %}
  8676   ins_encode( LdReplImmI(src, dst, tmp, (2), (4)) );
  8677   ins_pipe(loadConFD);
  8678 %}
  8680 //----------Control Flow Instructions------------------------------------------
  8681 // Compare Instructions
  8682 // Compare Integers
  8683 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
  8684   match(Set icc (CmpI op1 op2));
  8685   effect( DEF icc, USE op1, USE op2 );
  8687   size(4);
  8688   format %{ "CMP    $op1,$op2" %}
  8689   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8690   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8691   ins_pipe(ialu_cconly_reg_reg);
  8692 %}
  8694 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
  8695   match(Set icc (CmpU op1 op2));
  8697   size(4);
  8698   format %{ "CMP    $op1,$op2\t! unsigned" %}
  8699   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8700   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8701   ins_pipe(ialu_cconly_reg_reg);
  8702 %}
  8704 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
  8705   match(Set icc (CmpI op1 op2));
  8706   effect( DEF icc, USE op1 );
  8708   size(4);
  8709   format %{ "CMP    $op1,$op2" %}
  8710   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8711   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8712   ins_pipe(ialu_cconly_reg_imm);
  8713 %}
  8715 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
  8716   match(Set icc (CmpI (AndI op1 op2) zero));
  8718   size(4);
  8719   format %{ "BTST   $op2,$op1" %}
  8720   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8721   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8722   ins_pipe(ialu_cconly_reg_reg_zero);
  8723 %}
  8725 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
  8726   match(Set icc (CmpI (AndI op1 op2) zero));
  8728   size(4);
  8729   format %{ "BTST   $op2,$op1" %}
  8730   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8731   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8732   ins_pipe(ialu_cconly_reg_imm_zero);
  8733 %}
  8735 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
  8736   match(Set xcc (CmpL op1 op2));
  8737   effect( DEF xcc, USE op1, USE op2 );
  8739   size(4);
  8740   format %{ "CMP    $op1,$op2\t\t! long" %}
  8741   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8742   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8743   ins_pipe(ialu_cconly_reg_reg);
  8744 %}
  8746 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
  8747   match(Set xcc (CmpL op1 con));
  8748   effect( DEF xcc, USE op1, USE con );
  8750   size(4);
  8751   format %{ "CMP    $op1,$con\t\t! long" %}
  8752   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8753   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  8754   ins_pipe(ialu_cconly_reg_reg);
  8755 %}
  8757 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
  8758   match(Set xcc (CmpL (AndL op1 op2) zero));
  8759   effect( DEF xcc, USE op1, USE op2 );
  8761   size(4);
  8762   format %{ "BTST   $op1,$op2\t\t! long" %}
  8763   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8764   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8765   ins_pipe(ialu_cconly_reg_reg);
  8766 %}
  8768 // useful for checking the alignment of a pointer:
  8769 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
  8770   match(Set xcc (CmpL (AndL op1 con) zero));
  8771   effect( DEF xcc, USE op1, USE con );
  8773   size(4);
  8774   format %{ "BTST   $op1,$con\t\t! long" %}
  8775   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8776   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  8777   ins_pipe(ialu_cconly_reg_reg);
  8778 %}
  8780 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU13 op2 ) %{
  8781   match(Set icc (CmpU op1 op2));
  8783   size(4);
  8784   format %{ "CMP    $op1,$op2\t! unsigned" %}
  8785   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8786   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8787   ins_pipe(ialu_cconly_reg_imm);
  8788 %}
  8790 // Compare Pointers
  8791 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
  8792   match(Set pcc (CmpP op1 op2));
  8794   size(4);
  8795   format %{ "CMP    $op1,$op2\t! ptr" %}
  8796   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8797   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8798   ins_pipe(ialu_cconly_reg_reg);
  8799 %}
  8801 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
  8802   match(Set pcc (CmpP op1 op2));
  8804   size(4);
  8805   format %{ "CMP    $op1,$op2\t! ptr" %}
  8806   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8807   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8808   ins_pipe(ialu_cconly_reg_imm);
  8809 %}
  8811 // Compare Narrow oops
  8812 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
  8813   match(Set icc (CmpN op1 op2));
  8815   size(4);
  8816   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  8817   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8818   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8819   ins_pipe(ialu_cconly_reg_reg);
  8820 %}
  8822 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
  8823   match(Set icc (CmpN op1 op2));
  8825   size(4);
  8826   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  8827   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8828   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8829   ins_pipe(ialu_cconly_reg_imm);
  8830 %}
  8832 //----------Max and Min--------------------------------------------------------
  8833 // Min Instructions
  8834 // Conditional move for min
  8835 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
  8836   effect( USE_DEF op2, USE op1, USE icc );
  8838   size(4);
  8839   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
  8840   opcode(Assembler::less);
  8841   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  8842   ins_pipe(ialu_reg_flags);
  8843 %}
  8845 // Min Register with Register.
  8846 instruct minI_eReg(iRegI op1, iRegI op2) %{
  8847   match(Set op2 (MinI op1 op2));
  8848   ins_cost(DEFAULT_COST*2);
  8849   expand %{
  8850     flagsReg icc;
  8851     compI_iReg(icc,op1,op2);
  8852     cmovI_reg_lt(op2,op1,icc);
  8853   %}
  8854 %}
  8856 // Max Instructions
  8857 // Conditional move for max
  8858 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
  8859   effect( USE_DEF op2, USE op1, USE icc );
  8860   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
  8861   opcode(Assembler::greater);
  8862   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  8863   ins_pipe(ialu_reg_flags);
  8864 %}
  8866 // Max Register with Register
  8867 instruct maxI_eReg(iRegI op1, iRegI op2) %{
  8868   match(Set op2 (MaxI op1 op2));
  8869   ins_cost(DEFAULT_COST*2);
  8870   expand %{
  8871     flagsReg icc;
  8872     compI_iReg(icc,op1,op2);
  8873     cmovI_reg_gt(op2,op1,icc);
  8874   %}
  8875 %}
  8878 //----------Float Compares----------------------------------------------------
  8879 // Compare floating, generate condition code
  8880 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
  8881   match(Set fcc (CmpF src1 src2));
  8883   size(4);
  8884   format %{ "FCMPs  $fcc,$src1,$src2" %}
  8885   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
  8886   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
  8887   ins_pipe(faddF_fcc_reg_reg_zero);
  8888 %}
  8890 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
  8891   match(Set fcc (CmpD src1 src2));
  8893   size(4);
  8894   format %{ "FCMPd  $fcc,$src1,$src2" %}
  8895   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
  8896   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
  8897   ins_pipe(faddD_fcc_reg_reg_zero);
  8898 %}
  8901 // Compare floating, generate -1,0,1
  8902 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
  8903   match(Set dst (CmpF3 src1 src2));
  8904   effect(KILL fcc0);
  8905   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  8906   format %{ "fcmpl  $dst,$src1,$src2" %}
  8907   // Primary = float
  8908   opcode( true );
  8909   ins_encode( floating_cmp( dst, src1, src2 ) );
  8910   ins_pipe( floating_cmp );
  8911 %}
  8913 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
  8914   match(Set dst (CmpD3 src1 src2));
  8915   effect(KILL fcc0);
  8916   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  8917   format %{ "dcmpl  $dst,$src1,$src2" %}
  8918   // Primary = double (not float)
  8919   opcode( false );
  8920   ins_encode( floating_cmp( dst, src1, src2 ) );
  8921   ins_pipe( floating_cmp );
  8922 %}
  8924 //----------Branches---------------------------------------------------------
  8925 // Jump
  8926 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
  8927 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
  8928   match(Jump switch_val);
  8930   ins_cost(350);
  8932   format %{  "SETHI  [hi(table_base)],O7\n\t"
  8933              "ADD    O7, lo(table_base), O7\n\t"
  8934              "LD     [O7+$switch_val], O7\n\t"
  8935              "JUMP   O7"
  8936          %}
  8937   ins_encode( jump_enc( switch_val, table) );
  8938   ins_pc_relative(1);
  8939   ins_pipe(ialu_reg_reg);
  8940 %}
  8942 // Direct Branch.  Use V8 version with longer range.
  8943 instruct branch(label labl) %{
  8944   match(Goto);
  8945   effect(USE labl);
  8947   size(8);
  8948   ins_cost(BRANCH_COST);
  8949   format %{ "BA     $labl" %}
  8950   // Prim = bits 24-22, Secnd = bits 31-30, Tert = cond
  8951   opcode(Assembler::br_op2, Assembler::branch_op, Assembler::always);
  8952   ins_encode( enc_ba( labl ) );
  8953   ins_pc_relative(1);
  8954   ins_pipe(br);
  8955 %}
  8957 // Conditional Direct Branch
  8958 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
  8959   match(If cmp icc);
  8960   effect(USE labl);
  8962   size(8);
  8963   ins_cost(BRANCH_COST);
  8964   format %{ "BP$cmp   $icc,$labl" %}
  8965   // Prim = bits 24-22, Secnd = bits 31-30
  8966   ins_encode( enc_bp( labl, cmp, icc ) );
  8967   ins_pc_relative(1);
  8968   ins_pipe(br_cc);
  8969 %}
  8971 // Branch-on-register tests all 64 bits.  We assume that values
  8972 // in 64-bit registers always remains zero or sign extended
  8973 // unless our code munges the high bits.  Interrupts can chop
  8974 // the high order bits to zero or sign at any time.
  8975 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
  8976   match(If cmp (CmpI op1 zero));
  8977   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  8978   effect(USE labl);
  8980   size(8);
  8981   ins_cost(BRANCH_COST);
  8982   format %{ "BR$cmp   $op1,$labl" %}
  8983   ins_encode( enc_bpr( labl, cmp, op1 ) );
  8984   ins_pc_relative(1);
  8985   ins_pipe(br_reg);
  8986 %}
  8988 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
  8989   match(If cmp (CmpP op1 null));
  8990   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  8991   effect(USE labl);
  8993   size(8);
  8994   ins_cost(BRANCH_COST);
  8995   format %{ "BR$cmp   $op1,$labl" %}
  8996   ins_encode( enc_bpr( labl, cmp, op1 ) );
  8997   ins_pc_relative(1);
  8998   ins_pipe(br_reg);
  8999 %}
  9001 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
  9002   match(If cmp (CmpL op1 zero));
  9003   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9004   effect(USE labl);
  9006   size(8);
  9007   ins_cost(BRANCH_COST);
  9008   format %{ "BR$cmp   $op1,$labl" %}
  9009   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9010   ins_pc_relative(1);
  9011   ins_pipe(br_reg);
  9012 %}
  9014 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
  9015   match(If cmp icc);
  9016   effect(USE labl);
  9018   format %{ "BP$cmp  $icc,$labl" %}
  9019   // Prim = bits 24-22, Secnd = bits 31-30
  9020   ins_encode( enc_bp( labl, cmp, icc ) );
  9021   ins_pc_relative(1);
  9022   ins_pipe(br_cc);
  9023 %}
  9025 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
  9026   match(If cmp pcc);
  9027   effect(USE labl);
  9029   size(8);
  9030   ins_cost(BRANCH_COST);
  9031   format %{ "BP$cmp  $pcc,$labl" %}
  9032   // Prim = bits 24-22, Secnd = bits 31-30
  9033   ins_encode( enc_bpx( labl, cmp, pcc ) );
  9034   ins_pc_relative(1);
  9035   ins_pipe(br_cc);
  9036 %}
  9038 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
  9039   match(If cmp fcc);
  9040   effect(USE labl);
  9042   size(8);
  9043   ins_cost(BRANCH_COST);
  9044   format %{ "FBP$cmp $fcc,$labl" %}
  9045   // Prim = bits 24-22, Secnd = bits 31-30
  9046   ins_encode( enc_fbp( labl, cmp, fcc ) );
  9047   ins_pc_relative(1);
  9048   ins_pipe(br_fcc);
  9049 %}
  9051 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
  9052   match(CountedLoopEnd cmp icc);
  9053   effect(USE labl);
  9055   size(8);
  9056   ins_cost(BRANCH_COST);
  9057   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
  9058   // Prim = bits 24-22, Secnd = bits 31-30
  9059   ins_encode( enc_bp( labl, cmp, icc ) );
  9060   ins_pc_relative(1);
  9061   ins_pipe(br_cc);
  9062 %}
  9064 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
  9065   match(CountedLoopEnd cmp icc);
  9066   effect(USE labl);
  9068   size(8);
  9069   ins_cost(BRANCH_COST);
  9070   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
  9071   // Prim = bits 24-22, Secnd = bits 31-30
  9072   ins_encode( enc_bp( labl, cmp, icc ) );
  9073   ins_pc_relative(1);
  9074   ins_pipe(br_cc);
  9075 %}
  9077 // ============================================================================
  9078 // Long Compare
  9079 //
  9080 // Currently we hold longs in 2 registers.  Comparing such values efficiently
  9081 // is tricky.  The flavor of compare used depends on whether we are testing
  9082 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
  9083 // The GE test is the negated LT test.  The LE test can be had by commuting
  9084 // the operands (yielding a GE test) and then negating; negate again for the
  9085 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
  9086 // NE test is negated from that.
  9088 // Due to a shortcoming in the ADLC, it mixes up expressions like:
  9089 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
  9090 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
  9091 // are collapsed internally in the ADLC's dfa-gen code.  The match for
  9092 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
  9093 // foo match ends up with the wrong leaf.  One fix is to not match both
  9094 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
  9095 // both forms beat the trinary form of long-compare and both are very useful
  9096 // on Intel which has so few registers.
  9098 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
  9099   match(If cmp xcc);
  9100   effect(USE labl);
  9102   size(8);
  9103   ins_cost(BRANCH_COST);
  9104   format %{ "BP$cmp   $xcc,$labl" %}
  9105   // Prim = bits 24-22, Secnd = bits 31-30
  9106   ins_encode( enc_bpl( labl, cmp, xcc ) );
  9107   ins_pc_relative(1);
  9108   ins_pipe(br_cc);
  9109 %}
  9111 // Manifest a CmpL3 result in an integer register.  Very painful.
  9112 // This is the test to avoid.
  9113 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
  9114   match(Set dst (CmpL3 src1 src2) );
  9115   effect( KILL ccr );
  9116   ins_cost(6*DEFAULT_COST);
  9117   size(24);
  9118   format %{ "CMP    $src1,$src2\t\t! long\n"
  9119           "\tBLT,a,pn done\n"
  9120           "\tMOV    -1,$dst\t! delay slot\n"
  9121           "\tBGT,a,pn done\n"
  9122           "\tMOV    1,$dst\t! delay slot\n"
  9123           "\tCLR    $dst\n"
  9124     "done:"     %}
  9125   ins_encode( cmpl_flag(src1,src2,dst) );
  9126   ins_pipe(cmpL_reg);
  9127 %}
  9129 // Conditional move
  9130 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
  9131   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  9132   ins_cost(150);
  9133   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  9134   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9135   ins_pipe(ialu_reg);
  9136 %}
  9138 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
  9139   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  9140   ins_cost(140);
  9141   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  9142   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9143   ins_pipe(ialu_imm);
  9144 %}
  9146 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
  9147   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  9148   ins_cost(150);
  9149   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9150   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9151   ins_pipe(ialu_reg);
  9152 %}
  9154 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
  9155   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  9156   ins_cost(140);
  9157   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9158   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9159   ins_pipe(ialu_imm);
  9160 %}
  9162 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
  9163   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
  9164   ins_cost(150);
  9165   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9166   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9167   ins_pipe(ialu_reg);
  9168 %}
  9170 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
  9171   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  9172   ins_cost(150);
  9173   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9174   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9175   ins_pipe(ialu_reg);
  9176 %}
  9178 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
  9179   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  9180   ins_cost(140);
  9181   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9182   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9183   ins_pipe(ialu_imm);
  9184 %}
  9186 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
  9187   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
  9188   ins_cost(150);
  9189   opcode(0x101);
  9190   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
  9191   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
  9192   ins_pipe(int_conditional_float_move);
  9193 %}
  9195 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
  9196   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
  9197   ins_cost(150);
  9198   opcode(0x102);
  9199   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
  9200   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
  9201   ins_pipe(int_conditional_float_move);
  9202 %}
  9204 // ============================================================================
  9205 // Safepoint Instruction
  9206 instruct safePoint_poll(iRegP poll) %{
  9207   match(SafePoint poll);
  9208   effect(USE poll);
  9210   size(4);
  9211 #ifdef _LP64
  9212   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
  9213 #else
  9214   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
  9215 #endif
  9216   ins_encode %{
  9217     __ relocate(relocInfo::poll_type);
  9218     __ ld_ptr($poll$$Register, 0, G0);
  9219   %}
  9220   ins_pipe(loadPollP);
  9221 %}
  9223 // ============================================================================
  9224 // Call Instructions
  9225 // Call Java Static Instruction
  9226 instruct CallStaticJavaDirect( method meth ) %{
  9227   match(CallStaticJava);
  9228   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
  9229   effect(USE meth);
  9231   size(8);
  9232   ins_cost(CALL_COST);
  9233   format %{ "CALL,static  ; NOP ==> " %}
  9234   ins_encode( Java_Static_Call( meth ), call_epilog );
  9235   ins_pc_relative(1);
  9236   ins_pipe(simple_call);
  9237 %}
  9239 // Call Java Static Instruction (method handle version)
  9240 instruct CallStaticJavaHandle(method meth, l7RegP l7_mh_SP_save) %{
  9241   match(CallStaticJava);
  9242   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
  9243   effect(USE meth, KILL l7_mh_SP_save);
  9245   size(8);
  9246   ins_cost(CALL_COST);
  9247   format %{ "CALL,static/MethodHandle" %}
  9248   ins_encode(preserve_SP, Java_Static_Call(meth), restore_SP, call_epilog);
  9249   ins_pc_relative(1);
  9250   ins_pipe(simple_call);
  9251 %}
  9253 // Call Java Dynamic Instruction
  9254 instruct CallDynamicJavaDirect( method meth ) %{
  9255   match(CallDynamicJava);
  9256   effect(USE meth);
  9258   ins_cost(CALL_COST);
  9259   format %{ "SET    (empty),R_G5\n\t"
  9260             "CALL,dynamic  ; NOP ==> " %}
  9261   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
  9262   ins_pc_relative(1);
  9263   ins_pipe(call);
  9264 %}
  9266 // Call Runtime Instruction
  9267 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
  9268   match(CallRuntime);
  9269   effect(USE meth, KILL l7);
  9270   ins_cost(CALL_COST);
  9271   format %{ "CALL,runtime" %}
  9272   ins_encode( Java_To_Runtime( meth ),
  9273               call_epilog, adjust_long_from_native_call );
  9274   ins_pc_relative(1);
  9275   ins_pipe(simple_call);
  9276 %}
  9278 // Call runtime without safepoint - same as CallRuntime
  9279 instruct CallLeafDirect(method meth, l7RegP l7) %{
  9280   match(CallLeaf);
  9281   effect(USE meth, KILL l7);
  9282   ins_cost(CALL_COST);
  9283   format %{ "CALL,runtime leaf" %}
  9284   ins_encode( Java_To_Runtime( meth ),
  9285               call_epilog,
  9286               adjust_long_from_native_call );
  9287   ins_pc_relative(1);
  9288   ins_pipe(simple_call);
  9289 %}
  9291 // Call runtime without safepoint - same as CallLeaf
  9292 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
  9293   match(CallLeafNoFP);
  9294   effect(USE meth, KILL l7);
  9295   ins_cost(CALL_COST);
  9296   format %{ "CALL,runtime leaf nofp" %}
  9297   ins_encode( Java_To_Runtime( meth ),
  9298               call_epilog,
  9299               adjust_long_from_native_call );
  9300   ins_pc_relative(1);
  9301   ins_pipe(simple_call);
  9302 %}
  9304 // Tail Call; Jump from runtime stub to Java code.
  9305 // Also known as an 'interprocedural jump'.
  9306 // Target of jump will eventually return to caller.
  9307 // TailJump below removes the return address.
  9308 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
  9309   match(TailCall jump_target method_oop );
  9311   ins_cost(CALL_COST);
  9312   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
  9313   ins_encode(form_jmpl(jump_target));
  9314   ins_pipe(tail_call);
  9315 %}
  9318 // Return Instruction
  9319 instruct Ret() %{
  9320   match(Return);
  9322   // The epilogue node did the ret already.
  9323   size(0);
  9324   format %{ "! return" %}
  9325   ins_encode();
  9326   ins_pipe(empty);
  9327 %}
  9330 // Tail Jump; remove the return address; jump to target.
  9331 // TailCall above leaves the return address around.
  9332 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
  9333 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
  9334 // "restore" before this instruction (in Epilogue), we need to materialize it
  9335 // in %i0.
  9336 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
  9337   match( TailJump jump_target ex_oop );
  9338   ins_cost(CALL_COST);
  9339   format %{ "! discard R_O7\n\t"
  9340             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
  9341   ins_encode(form_jmpl_set_exception_pc(jump_target));
  9342   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
  9343   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
  9344   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
  9345   ins_pipe(tail_call);
  9346 %}
  9348 // Create exception oop: created by stack-crawling runtime code.
  9349 // Created exception is now available to this handler, and is setup
  9350 // just prior to jumping to this handler.  No code emitted.
  9351 instruct CreateException( o0RegP ex_oop )
  9352 %{
  9353   match(Set ex_oop (CreateEx));
  9354   ins_cost(0);
  9356   size(0);
  9357   // use the following format syntax
  9358   format %{ "! exception oop is in R_O0; no code emitted" %}
  9359   ins_encode();
  9360   ins_pipe(empty);
  9361 %}
  9364 // Rethrow exception:
  9365 // The exception oop will come in the first argument position.
  9366 // Then JUMP (not call) to the rethrow stub code.
  9367 instruct RethrowException()
  9368 %{
  9369   match(Rethrow);
  9370   ins_cost(CALL_COST);
  9372   // use the following format syntax
  9373   format %{ "Jmp    rethrow_stub" %}
  9374   ins_encode(enc_rethrow);
  9375   ins_pipe(tail_call);
  9376 %}
  9379 // Die now
  9380 instruct ShouldNotReachHere( )
  9381 %{
  9382   match(Halt);
  9383   ins_cost(CALL_COST);
  9385   size(4);
  9386   // Use the following format syntax
  9387   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
  9388   ins_encode( form2_illtrap() );
  9389   ins_pipe(tail_call);
  9390 %}
  9392 // ============================================================================
  9393 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
  9394 // array for an instance of the superklass.  Set a hidden internal cache on a
  9395 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
  9396 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
  9397 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
  9398   match(Set index (PartialSubtypeCheck sub super));
  9399   effect( KILL pcc, KILL o7 );
  9400   ins_cost(DEFAULT_COST*10);
  9401   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
  9402   ins_encode( enc_PartialSubtypeCheck() );
  9403   ins_pipe(partial_subtype_check_pipe);
  9404 %}
  9406 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
  9407   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
  9408   effect( KILL idx, KILL o7 );
  9409   ins_cost(DEFAULT_COST*10);
  9410   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
  9411   ins_encode( enc_PartialSubtypeCheck() );
  9412   ins_pipe(partial_subtype_check_pipe);
  9413 %}
  9416 // ============================================================================
  9417 // inlined locking and unlocking
  9419 instruct cmpFastLock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
  9420   match(Set pcc (FastLock object box));
  9422   effect(KILL scratch, TEMP scratch2);
  9423   ins_cost(100);
  9425   size(4*112);       // conservative overestimation ...
  9426   format %{ "FASTLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
  9427   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
  9428   ins_pipe(long_memory_op);
  9429 %}
  9432 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
  9433   match(Set pcc (FastUnlock object box));
  9434   effect(KILL scratch, TEMP scratch2);
  9435   ins_cost(100);
  9437   size(4*120);       // conservative overestimation ...
  9438   format %{ "FASTUNLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
  9439   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
  9440   ins_pipe(long_memory_op);
  9441 %}
  9443 // Count and Base registers are fixed because the allocator cannot
  9444 // kill unknown registers.  The encodings are generic.
  9445 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
  9446   match(Set dummy (ClearArray cnt base));
  9447   effect(TEMP temp, KILL ccr);
  9448   ins_cost(300);
  9449   format %{ "MOV    $cnt,$temp\n"
  9450     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
  9451     "        BRge   loop\t\t! Clearing loop\n"
  9452     "        STX    G0,[$base+$temp]\t! delay slot" %}
  9453   ins_encode( enc_Clear_Array(cnt, base, temp) );
  9454   ins_pipe(long_memory_op);
  9455 %}
  9457 instruct string_compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
  9458                         o7RegI tmp, flagsReg ccr) %{
  9459   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
  9460   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
  9461   ins_cost(300);
  9462   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
  9463   ins_encode( enc_String_Compare(str1, str2, cnt1, cnt2, result) );
  9464   ins_pipe(long_memory_op);
  9465 %}
  9467 instruct string_equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
  9468                        o7RegI tmp, flagsReg ccr) %{
  9469   match(Set result (StrEquals (Binary str1 str2) cnt));
  9470   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
  9471   ins_cost(300);
  9472   format %{ "String Equals $str1,$str2,$cnt -> $result   // KILL $tmp" %}
  9473   ins_encode( enc_String_Equals(str1, str2, cnt, result) );
  9474   ins_pipe(long_memory_op);
  9475 %}
  9477 instruct array_equals(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
  9478                       o7RegI tmp2, flagsReg ccr) %{
  9479   match(Set result (AryEq ary1 ary2));
  9480   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
  9481   ins_cost(300);
  9482   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
  9483   ins_encode( enc_Array_Equals(ary1, ary2, tmp1, result));
  9484   ins_pipe(long_memory_op);
  9485 %}
  9488 //---------- Zeros Count Instructions ------------------------------------------
  9490 instruct countLeadingZerosI(iRegI dst, iRegI src, iRegI tmp, flagsReg cr) %{
  9491   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
  9492   match(Set dst (CountLeadingZerosI src));
  9493   effect(TEMP dst, TEMP tmp, KILL cr);
  9495   // x |= (x >> 1);
  9496   // x |= (x >> 2);
  9497   // x |= (x >> 4);
  9498   // x |= (x >> 8);
  9499   // x |= (x >> 16);
  9500   // return (WORDBITS - popc(x));
  9501   format %{ "SRL     $src,1,$tmp\t! count leading zeros (int)\n\t"
  9502             "SRL     $src,0,$dst\t! 32-bit zero extend\n\t"
  9503             "OR      $dst,$tmp,$dst\n\t"
  9504             "SRL     $dst,2,$tmp\n\t"
  9505             "OR      $dst,$tmp,$dst\n\t"
  9506             "SRL     $dst,4,$tmp\n\t"
  9507             "OR      $dst,$tmp,$dst\n\t"
  9508             "SRL     $dst,8,$tmp\n\t"
  9509             "OR      $dst,$tmp,$dst\n\t"
  9510             "SRL     $dst,16,$tmp\n\t"
  9511             "OR      $dst,$tmp,$dst\n\t"
  9512             "POPC    $dst,$dst\n\t"
  9513             "MOV     32,$tmp\n\t"
  9514             "SUB     $tmp,$dst,$dst" %}
  9515   ins_encode %{
  9516     Register Rdst = $dst$$Register;
  9517     Register Rsrc = $src$$Register;
  9518     Register Rtmp = $tmp$$Register;
  9519     __ srl(Rsrc, 1,    Rtmp);
  9520     __ srl(Rsrc, 0,    Rdst);
  9521     __ or3(Rdst, Rtmp, Rdst);
  9522     __ srl(Rdst, 2,    Rtmp);
  9523     __ or3(Rdst, Rtmp, Rdst);
  9524     __ srl(Rdst, 4,    Rtmp);
  9525     __ or3(Rdst, Rtmp, Rdst);
  9526     __ srl(Rdst, 8,    Rtmp);
  9527     __ or3(Rdst, Rtmp, Rdst);
  9528     __ srl(Rdst, 16,   Rtmp);
  9529     __ or3(Rdst, Rtmp, Rdst);
  9530     __ popc(Rdst, Rdst);
  9531     __ mov(BitsPerInt, Rtmp);
  9532     __ sub(Rtmp, Rdst, Rdst);
  9533   %}
  9534   ins_pipe(ialu_reg);
  9535 %}
  9537 instruct countLeadingZerosL(iRegIsafe dst, iRegL src, iRegL tmp, flagsReg cr) %{
  9538   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
  9539   match(Set dst (CountLeadingZerosL src));
  9540   effect(TEMP dst, TEMP tmp, KILL cr);
  9542   // x |= (x >> 1);
  9543   // x |= (x >> 2);
  9544   // x |= (x >> 4);
  9545   // x |= (x >> 8);
  9546   // x |= (x >> 16);
  9547   // x |= (x >> 32);
  9548   // return (WORDBITS - popc(x));
  9549   format %{ "SRLX    $src,1,$tmp\t! count leading zeros (long)\n\t"
  9550             "OR      $src,$tmp,$dst\n\t"
  9551             "SRLX    $dst,2,$tmp\n\t"
  9552             "OR      $dst,$tmp,$dst\n\t"
  9553             "SRLX    $dst,4,$tmp\n\t"
  9554             "OR      $dst,$tmp,$dst\n\t"
  9555             "SRLX    $dst,8,$tmp\n\t"
  9556             "OR      $dst,$tmp,$dst\n\t"
  9557             "SRLX    $dst,16,$tmp\n\t"
  9558             "OR      $dst,$tmp,$dst\n\t"
  9559             "SRLX    $dst,32,$tmp\n\t"
  9560             "OR      $dst,$tmp,$dst\n\t"
  9561             "POPC    $dst,$dst\n\t"
  9562             "MOV     64,$tmp\n\t"
  9563             "SUB     $tmp,$dst,$dst" %}
  9564   ins_encode %{
  9565     Register Rdst = $dst$$Register;
  9566     Register Rsrc = $src$$Register;
  9567     Register Rtmp = $tmp$$Register;
  9568     __ srlx(Rsrc, 1,    Rtmp);
  9569     __ or3( Rsrc, Rtmp, Rdst);
  9570     __ srlx(Rdst, 2,    Rtmp);
  9571     __ or3( Rdst, Rtmp, Rdst);
  9572     __ srlx(Rdst, 4,    Rtmp);
  9573     __ or3( Rdst, Rtmp, Rdst);
  9574     __ srlx(Rdst, 8,    Rtmp);
  9575     __ or3( Rdst, Rtmp, Rdst);
  9576     __ srlx(Rdst, 16,   Rtmp);
  9577     __ or3( Rdst, Rtmp, Rdst);
  9578     __ srlx(Rdst, 32,   Rtmp);
  9579     __ or3( Rdst, Rtmp, Rdst);
  9580     __ popc(Rdst, Rdst);
  9581     __ mov(BitsPerLong, Rtmp);
  9582     __ sub(Rtmp, Rdst, Rdst);
  9583   %}
  9584   ins_pipe(ialu_reg);
  9585 %}
  9587 instruct countTrailingZerosI(iRegI dst, iRegI src, flagsReg cr) %{
  9588   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
  9589   match(Set dst (CountTrailingZerosI src));
  9590   effect(TEMP dst, KILL cr);
  9592   // return popc(~x & (x - 1));
  9593   format %{ "SUB     $src,1,$dst\t! count trailing zeros (int)\n\t"
  9594             "ANDN    $dst,$src,$dst\n\t"
  9595             "SRL     $dst,R_G0,$dst\n\t"
  9596             "POPC    $dst,$dst" %}
  9597   ins_encode %{
  9598     Register Rdst = $dst$$Register;
  9599     Register Rsrc = $src$$Register;
  9600     __ sub(Rsrc, 1, Rdst);
  9601     __ andn(Rdst, Rsrc, Rdst);
  9602     __ srl(Rdst, G0, Rdst);
  9603     __ popc(Rdst, Rdst);
  9604   %}
  9605   ins_pipe(ialu_reg);
  9606 %}
  9608 instruct countTrailingZerosL(iRegI dst, iRegL src, flagsReg cr) %{
  9609   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
  9610   match(Set dst (CountTrailingZerosL src));
  9611   effect(TEMP dst, KILL cr);
  9613   // return popc(~x & (x - 1));
  9614   format %{ "SUB     $src,1,$dst\t! count trailing zeros (long)\n\t"
  9615             "ANDN    $dst,$src,$dst\n\t"
  9616             "POPC    $dst,$dst" %}
  9617   ins_encode %{
  9618     Register Rdst = $dst$$Register;
  9619     Register Rsrc = $src$$Register;
  9620     __ sub(Rsrc, 1, Rdst);
  9621     __ andn(Rdst, Rsrc, Rdst);
  9622     __ popc(Rdst, Rdst);
  9623   %}
  9624   ins_pipe(ialu_reg);
  9625 %}
  9628 //---------- Population Count Instructions -------------------------------------
  9630 instruct popCountI(iRegI dst, iRegI src) %{
  9631   predicate(UsePopCountInstruction);
  9632   match(Set dst (PopCountI src));
  9634   format %{ "POPC   $src, $dst" %}
  9635   ins_encode %{
  9636     __ popc($src$$Register, $dst$$Register);
  9637   %}
  9638   ins_pipe(ialu_reg);
  9639 %}
  9641 // Note: Long.bitCount(long) returns an int.
  9642 instruct popCountL(iRegI dst, iRegL src) %{
  9643   predicate(UsePopCountInstruction);
  9644   match(Set dst (PopCountL src));
  9646   format %{ "POPC   $src, $dst" %}
  9647   ins_encode %{
  9648     __ popc($src$$Register, $dst$$Register);
  9649   %}
  9650   ins_pipe(ialu_reg);
  9651 %}
  9654 // ============================================================================
  9655 //------------Bytes reverse--------------------------------------------------
  9657 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
  9658   match(Set dst (ReverseBytesI src));
  9660   // Op cost is artificially doubled to make sure that load or store
  9661   // instructions are preferred over this one which requires a spill
  9662   // onto a stack slot.
  9663   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
  9664   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
  9666   ins_encode %{
  9667     __ set($src$$disp + STACK_BIAS, O7);
  9668     __ lduwa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  9669   %}
  9670   ins_pipe( iload_mem );
  9671 %}
  9673 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
  9674   match(Set dst (ReverseBytesL src));
  9676   // Op cost is artificially doubled to make sure that load or store
  9677   // instructions are preferred over this one which requires a spill
  9678   // onto a stack slot.
  9679   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
  9680   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
  9682   ins_encode %{
  9683     __ set($src$$disp + STACK_BIAS, O7);
  9684     __ ldxa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  9685   %}
  9686   ins_pipe( iload_mem );
  9687 %}
  9689 instruct bytes_reverse_unsigned_short(iRegI dst, stackSlotI src) %{
  9690   match(Set dst (ReverseBytesUS src));
  9692   // Op cost is artificially doubled to make sure that load or store
  9693   // instructions are preferred over this one which requires a spill
  9694   // onto a stack slot.
  9695   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
  9696   format %{ "LDUHA  $src, $dst\t!asi=primary_little\n\t" %}
  9698   ins_encode %{
  9699     // the value was spilled as an int so bias the load
  9700     __ set($src$$disp + STACK_BIAS + 2, O7);
  9701     __ lduha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  9702   %}
  9703   ins_pipe( iload_mem );
  9704 %}
  9706 instruct bytes_reverse_short(iRegI dst, stackSlotI src) %{
  9707   match(Set dst (ReverseBytesS src));
  9709   // Op cost is artificially doubled to make sure that load or store
  9710   // instructions are preferred over this one which requires a spill
  9711   // onto a stack slot.
  9712   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
  9713   format %{ "LDSHA  $src, $dst\t!asi=primary_little\n\t" %}
  9715   ins_encode %{
  9716     // the value was spilled as an int so bias the load
  9717     __ set($src$$disp + STACK_BIAS + 2, O7);
  9718     __ ldsha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  9719   %}
  9720   ins_pipe( iload_mem );
  9721 %}
  9723 // Load Integer reversed byte order
  9724 instruct loadI_reversed(iRegI dst, indIndexMemory src) %{
  9725   match(Set dst (ReverseBytesI (LoadI src)));
  9727   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  9728   size(4);
  9729   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
  9731   ins_encode %{
  9732     __ lduwa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  9733   %}
  9734   ins_pipe(iload_mem);
  9735 %}
  9737 // Load Long - aligned and reversed
  9738 instruct loadL_reversed(iRegL dst, indIndexMemory src) %{
  9739   match(Set dst (ReverseBytesL (LoadL src)));
  9741   ins_cost(MEMORY_REF_COST);
  9742   size(4);
  9743   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
  9745   ins_encode %{
  9746     __ ldxa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  9747   %}
  9748   ins_pipe(iload_mem);
  9749 %}
  9751 // Load unsigned short / char reversed byte order
  9752 instruct loadUS_reversed(iRegI dst, indIndexMemory src) %{
  9753   match(Set dst (ReverseBytesUS (LoadUS src)));
  9755   ins_cost(MEMORY_REF_COST);
  9756   size(4);
  9757   format %{ "LDUHA  $src, $dst\t!asi=primary_little" %}
  9759   ins_encode %{
  9760     __ lduha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  9761   %}
  9762   ins_pipe(iload_mem);
  9763 %}
  9765 // Load short reversed byte order
  9766 instruct loadS_reversed(iRegI dst, indIndexMemory src) %{
  9767   match(Set dst (ReverseBytesS (LoadS src)));
  9769   ins_cost(MEMORY_REF_COST);
  9770   size(4);
  9771   format %{ "LDSHA  $src, $dst\t!asi=primary_little" %}
  9773   ins_encode %{
  9774     __ ldsha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  9775   %}
  9776   ins_pipe(iload_mem);
  9777 %}
  9779 // Store Integer reversed byte order
  9780 instruct storeI_reversed(indIndexMemory dst, iRegI src) %{
  9781   match(Set dst (StoreI dst (ReverseBytesI src)));
  9783   ins_cost(MEMORY_REF_COST);
  9784   size(4);
  9785   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
  9787   ins_encode %{
  9788     __ stwa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
  9789   %}
  9790   ins_pipe(istore_mem_reg);
  9791 %}
  9793 // Store Long reversed byte order
  9794 instruct storeL_reversed(indIndexMemory dst, iRegL src) %{
  9795   match(Set dst (StoreL dst (ReverseBytesL src)));
  9797   ins_cost(MEMORY_REF_COST);
  9798   size(4);
  9799   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
  9801   ins_encode %{
  9802     __ stxa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
  9803   %}
  9804   ins_pipe(istore_mem_reg);
  9805 %}
  9807 // Store unsighed short/char reversed byte order
  9808 instruct storeUS_reversed(indIndexMemory dst, iRegI src) %{
  9809   match(Set dst (StoreC dst (ReverseBytesUS src)));
  9811   ins_cost(MEMORY_REF_COST);
  9812   size(4);
  9813   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
  9815   ins_encode %{
  9816     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
  9817   %}
  9818   ins_pipe(istore_mem_reg);
  9819 %}
  9821 // Store short reversed byte order
  9822 instruct storeS_reversed(indIndexMemory dst, iRegI src) %{
  9823   match(Set dst (StoreC dst (ReverseBytesS src)));
  9825   ins_cost(MEMORY_REF_COST);
  9826   size(4);
  9827   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
  9829   ins_encode %{
  9830     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
  9831   %}
  9832   ins_pipe(istore_mem_reg);
  9833 %}
  9835 //----------PEEPHOLE RULES-----------------------------------------------------
  9836 // These must follow all instruction definitions as they use the names
  9837 // defined in the instructions definitions.
  9838 //
  9839 // peepmatch ( root_instr_name [preceding_instruction]* );
  9840 //
  9841 // peepconstraint %{
  9842 // (instruction_number.operand_name relational_op instruction_number.operand_name
  9843 //  [, ...] );
  9844 // // instruction numbers are zero-based using left to right order in peepmatch
  9845 //
  9846 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
  9847 // // provide an instruction_number.operand_name for each operand that appears
  9848 // // in the replacement instruction's match rule
  9849 //
  9850 // ---------VM FLAGS---------------------------------------------------------
  9851 //
  9852 // All peephole optimizations can be turned off using -XX:-OptoPeephole
  9853 //
  9854 // Each peephole rule is given an identifying number starting with zero and
  9855 // increasing by one in the order seen by the parser.  An individual peephole
  9856 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
  9857 // on the command-line.
  9858 //
  9859 // ---------CURRENT LIMITATIONS----------------------------------------------
  9860 //
  9861 // Only match adjacent instructions in same basic block
  9862 // Only equality constraints
  9863 // Only constraints between operands, not (0.dest_reg == EAX_enc)
  9864 // Only one replacement instruction
  9865 //
  9866 // ---------EXAMPLE----------------------------------------------------------
  9867 //
  9868 // // pertinent parts of existing instructions in architecture description
  9869 // instruct movI(eRegI dst, eRegI src) %{
  9870 //   match(Set dst (CopyI src));
  9871 // %}
  9872 //
  9873 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
  9874 //   match(Set dst (AddI dst src));
  9875 //   effect(KILL cr);
  9876 // %}
  9877 //
  9878 // // Change (inc mov) to lea
  9879 // peephole %{
  9880 //   // increment preceeded by register-register move
  9881 //   peepmatch ( incI_eReg movI );
  9882 //   // require that the destination register of the increment
  9883 //   // match the destination register of the move
  9884 //   peepconstraint ( 0.dst == 1.dst );
  9885 //   // construct a replacement instruction that sets
  9886 //   // the destination to ( move's source register + one )
  9887 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
  9888 // %}
  9889 //
  9891 // // Change load of spilled value to only a spill
  9892 // instruct storeI(memory mem, eRegI src) %{
  9893 //   match(Set mem (StoreI mem src));
  9894 // %}
  9895 //
  9896 // instruct loadI(eRegI dst, memory mem) %{
  9897 //   match(Set dst (LoadI mem));
  9898 // %}
  9899 //
  9900 // peephole %{
  9901 //   peepmatch ( loadI storeI );
  9902 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
  9903 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
  9904 // %}
  9906 //----------SMARTSPILL RULES---------------------------------------------------
  9907 // These must follow all instruction definitions as they use the names
  9908 // defined in the instructions definitions.
  9909 //
  9910 // SPARC will probably not have any of these rules due to RISC instruction set.
  9912 //----------PIPELINE-----------------------------------------------------------
  9913 // Rules which define the behavior of the target architectures pipeline.

mercurial