src/cpu/sparc/vm/interp_masm_sparc.cpp

Tue, 30 Nov 2010 23:23:40 -0800

author
iveresov
date
Tue, 30 Nov 2010 23:23:40 -0800
changeset 2344
ac637b7220d1
parent 2314
f95d63e2154a
child 2438
dd031b2226de
permissions
-rw-r--r--

6985015: C1 needs to support compressed oops
Summary: This change implements compressed oops for C1 for x64 and sparc. The changes are mostly on the codegen level, with a few exceptions when we do access things outside of the heap that are uncompressed from the IR. Compressed oops are now also enabled with tiered.
Reviewed-by: twisti, kvn, never, phh

     1 /*
     2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "interp_masm_sparc.hpp"
    27 #include "interpreter/interpreter.hpp"
    28 #include "interpreter/interpreterRuntime.hpp"
    29 #include "oops/arrayOop.hpp"
    30 #include "oops/markOop.hpp"
    31 #include "oops/methodDataOop.hpp"
    32 #include "oops/methodOop.hpp"
    33 #include "prims/jvmtiExport.hpp"
    34 #include "prims/jvmtiRedefineClassesTrace.hpp"
    35 #include "prims/jvmtiThreadState.hpp"
    36 #include "runtime/basicLock.hpp"
    37 #include "runtime/biasedLocking.hpp"
    38 #include "runtime/sharedRuntime.hpp"
    39 #ifdef TARGET_OS_FAMILY_linux
    40 # include "thread_linux.inline.hpp"
    41 #endif
    42 #ifdef TARGET_OS_FAMILY_solaris
    43 # include "thread_solaris.inline.hpp"
    44 #endif
    46 #ifndef CC_INTERP
    47 #ifndef FAST_DISPATCH
    48 #define FAST_DISPATCH 1
    49 #endif
    50 #undef FAST_DISPATCH
    52 // Implementation of InterpreterMacroAssembler
    54 // This file specializes the assember with interpreter-specific macros
    56 const Address InterpreterMacroAssembler::l_tmp(FP, (frame::interpreter_frame_l_scratch_fp_offset * wordSize) + STACK_BIAS);
    57 const Address InterpreterMacroAssembler::d_tmp(FP, (frame::interpreter_frame_d_scratch_fp_offset * wordSize) + STACK_BIAS);
    59 #else // CC_INTERP
    60 #ifndef STATE
    61 #define STATE(field_name) Lstate, in_bytes(byte_offset_of(BytecodeInterpreter, field_name))
    62 #endif // STATE
    64 #endif // CC_INTERP
    66 void InterpreterMacroAssembler::compute_extra_locals_size_in_bytes(Register args_size, Register locals_size, Register delta) {
    67   // Note: this algorithm is also used by C1's OSR entry sequence.
    68   // Any changes should also be applied to CodeEmitter::emit_osr_entry().
    69   assert_different_registers(args_size, locals_size);
    70   // max_locals*2 for TAGS.  Assumes that args_size has already been adjusted.
    71   subcc(locals_size, args_size, delta);// extra space for non-arguments locals in words
    72   // Use br/mov combination because it works on both V8 and V9 and is
    73   // faster.
    74   Label skip_move;
    75   br(Assembler::negative, true, Assembler::pt, skip_move);
    76   delayed()->mov(G0, delta);
    77   bind(skip_move);
    78   round_to(delta, WordsPerLong);       // make multiple of 2 (SP must be 2-word aligned)
    79   sll(delta, LogBytesPerWord, delta);  // extra space for locals in bytes
    80 }
    82 #ifndef CC_INTERP
    84 // Dispatch code executed in the prolog of a bytecode which does not do it's
    85 // own dispatch. The dispatch address is computed and placed in IdispatchAddress
    86 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) {
    87   assert_not_delayed();
    88 #ifdef FAST_DISPATCH
    89   // FAST_DISPATCH and ProfileInterpreter are mutually exclusive since
    90   // they both use I2.
    91   assert(!ProfileInterpreter, "FAST_DISPATCH and +ProfileInterpreter are mutually exclusive");
    92   ldub(Lbcp, bcp_incr, Lbyte_code);                     // load next bytecode
    93   add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
    94                                                         // add offset to correct dispatch table
    95   sll(Lbyte_code, LogBytesPerWord, Lbyte_code);         // multiply by wordSize
    96   ld_ptr(IdispatchTables, Lbyte_code, IdispatchAddress);// get entry addr
    97 #else
    98   ldub( Lbcp, bcp_incr, Lbyte_code);                    // load next bytecode
    99   // dispatch table to use
   100   AddressLiteral tbl(Interpreter::dispatch_table(state));
   101   sll(Lbyte_code, LogBytesPerWord, Lbyte_code);         // multiply by wordSize
   102   set(tbl, G3_scratch);                                 // compute addr of table
   103   ld_ptr(G3_scratch, Lbyte_code, IdispatchAddress);     // get entry addr
   104 #endif
   105 }
   108 // Dispatch code executed in the epilog of a bytecode which does not do it's
   109 // own dispatch. The dispatch address in IdispatchAddress is used for the
   110 // dispatch.
   111 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int bcp_incr) {
   112   assert_not_delayed();
   113   verify_FPU(1, state);
   114   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
   115   jmp( IdispatchAddress, 0 );
   116   if (bcp_incr != 0)  delayed()->inc(Lbcp, bcp_incr);
   117   else                delayed()->nop();
   118 }
   121 void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr) {
   122   // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
   123   assert_not_delayed();
   124   ldub( Lbcp, bcp_incr, Lbyte_code);               // load next bytecode
   125   dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr);
   126 }
   129 void InterpreterMacroAssembler::dispatch_next_noverify_oop(TosState state, int bcp_incr) {
   130   // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
   131   assert_not_delayed();
   132   ldub( Lbcp, bcp_incr, Lbyte_code);               // load next bytecode
   133   dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr, false);
   134 }
   137 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
   138   // load current bytecode
   139   assert_not_delayed();
   140   ldub( Lbcp, 0, Lbyte_code);               // load next bytecode
   141   dispatch_base(state, table);
   142 }
   145 void InterpreterMacroAssembler::call_VM_leaf_base(
   146   Register java_thread,
   147   address  entry_point,
   148   int      number_of_arguments
   149 ) {
   150   if (!java_thread->is_valid())
   151     java_thread = L7_thread_cache;
   152   // super call
   153   MacroAssembler::call_VM_leaf_base(java_thread, entry_point, number_of_arguments);
   154 }
   157 void InterpreterMacroAssembler::call_VM_base(
   158   Register        oop_result,
   159   Register        java_thread,
   160   Register        last_java_sp,
   161   address         entry_point,
   162   int             number_of_arguments,
   163   bool            check_exception
   164 ) {
   165   if (!java_thread->is_valid())
   166     java_thread = L7_thread_cache;
   167   // See class ThreadInVMfromInterpreter, which assumes that the interpreter
   168   // takes responsibility for setting its own thread-state on call-out.
   169   // However, ThreadInVMfromInterpreter resets the state to "in_Java".
   171   //save_bcp();                                  // save bcp
   172   MacroAssembler::call_VM_base(oop_result, java_thread, last_java_sp, entry_point, number_of_arguments, check_exception);
   173   //restore_bcp();                               // restore bcp
   174   //restore_locals();                            // restore locals pointer
   175 }
   178 void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) {
   179   if (JvmtiExport::can_pop_frame()) {
   180     Label L;
   182     // Check the "pending popframe condition" flag in the current thread
   183     ld(G2_thread, JavaThread::popframe_condition_offset(), scratch_reg);
   185     // Initiate popframe handling only if it is not already being processed.  If the flag
   186     // has the popframe_processing bit set, it means that this code is called *during* popframe
   187     // handling - we don't want to reenter.
   188     btst(JavaThread::popframe_pending_bit, scratch_reg);
   189     br(zero, false, pt, L);
   190     delayed()->nop();
   191     btst(JavaThread::popframe_processing_bit, scratch_reg);
   192     br(notZero, false, pt, L);
   193     delayed()->nop();
   195     // Call Interpreter::remove_activation_preserving_args_entry() to get the
   196     // address of the same-named entrypoint in the generated interpreter code.
   197     call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
   199     // Jump to Interpreter::_remove_activation_preserving_args_entry
   200     jmpl(O0, G0, G0);
   201     delayed()->nop();
   202     bind(L);
   203   }
   204 }
   207 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
   208   Register thr_state = G4_scratch;
   209   ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
   210   const Address tos_addr(thr_state, JvmtiThreadState::earlyret_tos_offset());
   211   const Address oop_addr(thr_state, JvmtiThreadState::earlyret_oop_offset());
   212   const Address val_addr(thr_state, JvmtiThreadState::earlyret_value_offset());
   213   switch (state) {
   214   case ltos: ld_long(val_addr, Otos_l);                   break;
   215   case atos: ld_ptr(oop_addr, Otos_l);
   216              st_ptr(G0, oop_addr);                        break;
   217   case btos:                                           // fall through
   218   case ctos:                                           // fall through
   219   case stos:                                           // fall through
   220   case itos: ld(val_addr, Otos_l1);                       break;
   221   case ftos: ldf(FloatRegisterImpl::S, val_addr, Ftos_f); break;
   222   case dtos: ldf(FloatRegisterImpl::D, val_addr, Ftos_d); break;
   223   case vtos: /* nothing to do */                          break;
   224   default  : ShouldNotReachHere();
   225   }
   226   // Clean up tos value in the jvmti thread state
   227   or3(G0, ilgl, G3_scratch);
   228   stw(G3_scratch, tos_addr);
   229   st_long(G0, val_addr);
   230   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
   231 }
   234 void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
   235   if (JvmtiExport::can_force_early_return()) {
   236     Label L;
   237     Register thr_state = G3_scratch;
   238     ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
   239     tst(thr_state);
   240     br(zero, false, pt, L); // if (thread->jvmti_thread_state() == NULL) exit;
   241     delayed()->nop();
   243     // Initiate earlyret handling only if it is not already being processed.
   244     // If the flag has the earlyret_processing bit set, it means that this code
   245     // is called *during* earlyret handling - we don't want to reenter.
   246     ld(thr_state, JvmtiThreadState::earlyret_state_offset(), G4_scratch);
   247     cmp(G4_scratch, JvmtiThreadState::earlyret_pending);
   248     br(Assembler::notEqual, false, pt, L);
   249     delayed()->nop();
   251     // Call Interpreter::remove_activation_early_entry() to get the address of the
   252     // same-named entrypoint in the generated interpreter code
   253     ld(thr_state, JvmtiThreadState::earlyret_tos_offset(), Otos_l1);
   254     call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), Otos_l1);
   256     // Jump to Interpreter::_remove_activation_early_entry
   257     jmpl(O0, G0, G0);
   258     delayed()->nop();
   259     bind(L);
   260   }
   261 }
   264 void InterpreterMacroAssembler::super_call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
   265   mov(arg_1, O0);
   266   mov(arg_2, O1);
   267   MacroAssembler::call_VM_leaf_base(thread_cache, entry_point, 2);
   268 }
   269 #endif /* CC_INTERP */
   272 #ifndef CC_INTERP
   274 void InterpreterMacroAssembler::dispatch_base(TosState state, address* table) {
   275   assert_not_delayed();
   276   dispatch_Lbyte_code(state, table);
   277 }
   280 void InterpreterMacroAssembler::dispatch_normal(TosState state) {
   281   dispatch_base(state, Interpreter::normal_table(state));
   282 }
   285 void InterpreterMacroAssembler::dispatch_only(TosState state) {
   286   dispatch_base(state, Interpreter::dispatch_table(state));
   287 }
   290 // common code to dispatch and dispatch_only
   291 // dispatch value in Lbyte_code and increment Lbcp
   293 void InterpreterMacroAssembler::dispatch_Lbyte_code(TosState state, address* table, int bcp_incr, bool verify) {
   294   verify_FPU(1, state);
   295   // %%%%% maybe implement +VerifyActivationFrameSize here
   296   //verify_thread(); //too slow; we will just verify on method entry & exit
   297   if (verify) interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
   298 #ifdef FAST_DISPATCH
   299   if (table == Interpreter::dispatch_table(state)) {
   300     // use IdispatchTables
   301     add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
   302                                                         // add offset to correct dispatch table
   303     sll(Lbyte_code, LogBytesPerWord, Lbyte_code);       // multiply by wordSize
   304     ld_ptr(IdispatchTables, Lbyte_code, G3_scratch);    // get entry addr
   305   } else {
   306 #endif
   307     // dispatch table to use
   308     AddressLiteral tbl(table);
   309     sll(Lbyte_code, LogBytesPerWord, Lbyte_code);       // multiply by wordSize
   310     set(tbl, G3_scratch);                               // compute addr of table
   311     ld_ptr(G3_scratch, Lbyte_code, G3_scratch);         // get entry addr
   312 #ifdef FAST_DISPATCH
   313   }
   314 #endif
   315   jmp( G3_scratch, 0 );
   316   if (bcp_incr != 0)  delayed()->inc(Lbcp, bcp_incr);
   317   else                delayed()->nop();
   318 }
   321 // Helpers for expression stack
   323 // Longs and doubles are Category 2 computational types in the
   324 // JVM specification (section 3.11.1) and take 2 expression stack or
   325 // local slots.
   326 // Aligning them on 32 bit with tagged stacks is hard because the code generated
   327 // for the dup* bytecodes depends on what types are already on the stack.
   328 // If the types are split into the two stack/local slots, that is much easier
   329 // (and we can use 0 for non-reference tags).
   331 // Known good alignment in _LP64 but unknown otherwise
   332 void InterpreterMacroAssembler::load_unaligned_double(Register r1, int offset, FloatRegister d) {
   333   assert_not_delayed();
   335 #ifdef _LP64
   336   ldf(FloatRegisterImpl::D, r1, offset, d);
   337 #else
   338   ldf(FloatRegisterImpl::S, r1, offset, d);
   339   ldf(FloatRegisterImpl::S, r1, offset + Interpreter::stackElementSize, d->successor());
   340 #endif
   341 }
   343 // Known good alignment in _LP64 but unknown otherwise
   344 void InterpreterMacroAssembler::store_unaligned_double(FloatRegister d, Register r1, int offset) {
   345   assert_not_delayed();
   347 #ifdef _LP64
   348   stf(FloatRegisterImpl::D, d, r1, offset);
   349   // store something more useful here
   350   debug_only(stx(G0, r1, offset+Interpreter::stackElementSize);)
   351 #else
   352   stf(FloatRegisterImpl::S, d, r1, offset);
   353   stf(FloatRegisterImpl::S, d->successor(), r1, offset + Interpreter::stackElementSize);
   354 #endif
   355 }
   358 // Known good alignment in _LP64 but unknown otherwise
   359 void InterpreterMacroAssembler::load_unaligned_long(Register r1, int offset, Register rd) {
   360   assert_not_delayed();
   361 #ifdef _LP64
   362   ldx(r1, offset, rd);
   363 #else
   364   ld(r1, offset, rd);
   365   ld(r1, offset + Interpreter::stackElementSize, rd->successor());
   366 #endif
   367 }
   369 // Known good alignment in _LP64 but unknown otherwise
   370 void InterpreterMacroAssembler::store_unaligned_long(Register l, Register r1, int offset) {
   371   assert_not_delayed();
   373 #ifdef _LP64
   374   stx(l, r1, offset);
   375   // store something more useful here
   376   debug_only(stx(G0, r1, offset+Interpreter::stackElementSize);)
   377 #else
   378   st(l, r1, offset);
   379   st(l->successor(), r1, offset + Interpreter::stackElementSize);
   380 #endif
   381 }
   383 void InterpreterMacroAssembler::pop_i(Register r) {
   384   assert_not_delayed();
   385   ld(Lesp, Interpreter::expr_offset_in_bytes(0), r);
   386   inc(Lesp, Interpreter::stackElementSize);
   387   debug_only(verify_esp(Lesp));
   388 }
   390 void InterpreterMacroAssembler::pop_ptr(Register r, Register scratch) {
   391   assert_not_delayed();
   392   ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), r);
   393   inc(Lesp, Interpreter::stackElementSize);
   394   debug_only(verify_esp(Lesp));
   395 }
   397 void InterpreterMacroAssembler::pop_l(Register r) {
   398   assert_not_delayed();
   399   load_unaligned_long(Lesp, Interpreter::expr_offset_in_bytes(0), r);
   400   inc(Lesp, 2*Interpreter::stackElementSize);
   401   debug_only(verify_esp(Lesp));
   402 }
   405 void InterpreterMacroAssembler::pop_f(FloatRegister f, Register scratch) {
   406   assert_not_delayed();
   407   ldf(FloatRegisterImpl::S, Lesp, Interpreter::expr_offset_in_bytes(0), f);
   408   inc(Lesp, Interpreter::stackElementSize);
   409   debug_only(verify_esp(Lesp));
   410 }
   413 void InterpreterMacroAssembler::pop_d(FloatRegister f, Register scratch) {
   414   assert_not_delayed();
   415   load_unaligned_double(Lesp, Interpreter::expr_offset_in_bytes(0), f);
   416   inc(Lesp, 2*Interpreter::stackElementSize);
   417   debug_only(verify_esp(Lesp));
   418 }
   421 void InterpreterMacroAssembler::push_i(Register r) {
   422   assert_not_delayed();
   423   debug_only(verify_esp(Lesp));
   424   st(r, Lesp, 0);
   425   dec(Lesp, Interpreter::stackElementSize);
   426 }
   428 void InterpreterMacroAssembler::push_ptr(Register r) {
   429   assert_not_delayed();
   430   st_ptr(r, Lesp, 0);
   431   dec(Lesp, Interpreter::stackElementSize);
   432 }
   434 // remember: our convention for longs in SPARC is:
   435 // O0 (Otos_l1) has high-order part in first word,
   436 // O1 (Otos_l2) has low-order part in second word
   438 void InterpreterMacroAssembler::push_l(Register r) {
   439   assert_not_delayed();
   440   debug_only(verify_esp(Lesp));
   441   // Longs are stored in memory-correct order, even if unaligned.
   442   int offset = -Interpreter::stackElementSize;
   443   store_unaligned_long(r, Lesp, offset);
   444   dec(Lesp, 2 * Interpreter::stackElementSize);
   445 }
   448 void InterpreterMacroAssembler::push_f(FloatRegister f) {
   449   assert_not_delayed();
   450   debug_only(verify_esp(Lesp));
   451   stf(FloatRegisterImpl::S, f, Lesp, 0);
   452   dec(Lesp, Interpreter::stackElementSize);
   453 }
   456 void InterpreterMacroAssembler::push_d(FloatRegister d)   {
   457   assert_not_delayed();
   458   debug_only(verify_esp(Lesp));
   459   // Longs are stored in memory-correct order, even if unaligned.
   460   int offset = -Interpreter::stackElementSize;
   461   store_unaligned_double(d, Lesp, offset);
   462   dec(Lesp, 2 * Interpreter::stackElementSize);
   463 }
   466 void InterpreterMacroAssembler::push(TosState state) {
   467   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
   468   switch (state) {
   469     case atos: push_ptr();            break;
   470     case btos: push_i();              break;
   471     case ctos:
   472     case stos: push_i();              break;
   473     case itos: push_i();              break;
   474     case ltos: push_l();              break;
   475     case ftos: push_f();              break;
   476     case dtos: push_d();              break;
   477     case vtos: /* nothing to do */    break;
   478     default  : ShouldNotReachHere();
   479   }
   480 }
   483 void InterpreterMacroAssembler::pop(TosState state) {
   484   switch (state) {
   485     case atos: pop_ptr();            break;
   486     case btos: pop_i();              break;
   487     case ctos:
   488     case stos: pop_i();              break;
   489     case itos: pop_i();              break;
   490     case ltos: pop_l();              break;
   491     case ftos: pop_f();              break;
   492     case dtos: pop_d();              break;
   493     case vtos: /* nothing to do */   break;
   494     default  : ShouldNotReachHere();
   495   }
   496   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
   497 }
   500 // Helpers for swap and dup
   501 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
   502   ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(n), val);
   503 }
   504 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
   505   st_ptr(val, Lesp, Interpreter::expr_offset_in_bytes(n));
   506 }
   509 void InterpreterMacroAssembler::load_receiver(Register param_count,
   510                                               Register recv) {
   511   sll(param_count, Interpreter::logStackElementSize, param_count);
   512   ld_ptr(Lesp, param_count, recv);                      // gets receiver Oop
   513 }
   515 void InterpreterMacroAssembler::empty_expression_stack() {
   516   // Reset Lesp.
   517   sub( Lmonitors, wordSize, Lesp );
   519   // Reset SP by subtracting more space from Lesp.
   520   Label done;
   521   verify_oop(Lmethod);
   522   assert(G4_scratch != Gframe_size, "Only you can prevent register aliasing!");
   524   // A native does not need to do this, since its callee does not change SP.
   525   ld(Lmethod, methodOopDesc::access_flags_offset(), Gframe_size);  // Load access flags.
   526   btst(JVM_ACC_NATIVE, Gframe_size);
   527   br(Assembler::notZero, false, Assembler::pt, done);
   528   delayed()->nop();
   530   // Compute max expression stack+register save area
   531   lduh(Lmethod, in_bytes(methodOopDesc::max_stack_offset()), Gframe_size);  // Load max stack.
   532   add( Gframe_size, frame::memory_parameter_word_sp_offset, Gframe_size );
   534   //
   535   // now set up a stack frame with the size computed above
   536   //
   537   //round_to( Gframe_size, WordsPerLong ); // -- moved down to the "and" below
   538   sll( Gframe_size, LogBytesPerWord, Gframe_size );
   539   sub( Lesp, Gframe_size, Gframe_size );
   540   and3( Gframe_size, -(2 * wordSize), Gframe_size );          // align SP (downwards) to an 8/16-byte boundary
   541   debug_only(verify_sp(Gframe_size, G4_scratch));
   542 #ifdef _LP64
   543   sub(Gframe_size, STACK_BIAS, Gframe_size );
   544 #endif
   545   mov(Gframe_size, SP);
   547   bind(done);
   548 }
   551 #ifdef ASSERT
   552 void InterpreterMacroAssembler::verify_sp(Register Rsp, Register Rtemp) {
   553   Label Bad, OK;
   555   // Saved SP must be aligned.
   556 #ifdef _LP64
   557   btst(2*BytesPerWord-1, Rsp);
   558 #else
   559   btst(LongAlignmentMask, Rsp);
   560 #endif
   561   br(Assembler::notZero, false, Assembler::pn, Bad);
   562   delayed()->nop();
   564   // Saved SP, plus register window size, must not be above FP.
   565   add(Rsp, frame::register_save_words * wordSize, Rtemp);
   566 #ifdef _LP64
   567   sub(Rtemp, STACK_BIAS, Rtemp);  // Bias Rtemp before cmp to FP
   568 #endif
   569   cmp(Rtemp, FP);
   570   brx(Assembler::greaterUnsigned, false, Assembler::pn, Bad);
   571   delayed()->nop();
   573   // Saved SP must not be ridiculously below current SP.
   574   size_t maxstack = MAX2(JavaThread::stack_size_at_create(), (size_t) 4*K*K);
   575   set(maxstack, Rtemp);
   576   sub(SP, Rtemp, Rtemp);
   577 #ifdef _LP64
   578   add(Rtemp, STACK_BIAS, Rtemp);  // Unbias Rtemp before cmp to Rsp
   579 #endif
   580   cmp(Rsp, Rtemp);
   581   brx(Assembler::lessUnsigned, false, Assembler::pn, Bad);
   582   delayed()->nop();
   584   br(Assembler::always, false, Assembler::pn, OK);
   585   delayed()->nop();
   587   bind(Bad);
   588   stop("on return to interpreted call, restored SP is corrupted");
   590   bind(OK);
   591 }
   594 void InterpreterMacroAssembler::verify_esp(Register Resp) {
   595   // about to read or write Resp[0]
   596   // make sure it is not in the monitors or the register save area
   597   Label OK1, OK2;
   599   cmp(Resp, Lmonitors);
   600   brx(Assembler::lessUnsigned, true, Assembler::pt, OK1);
   601   delayed()->sub(Resp, frame::memory_parameter_word_sp_offset * wordSize, Resp);
   602   stop("too many pops:  Lesp points into monitor area");
   603   bind(OK1);
   604 #ifdef _LP64
   605   sub(Resp, STACK_BIAS, Resp);
   606 #endif
   607   cmp(Resp, SP);
   608   brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, OK2);
   609   delayed()->add(Resp, STACK_BIAS + frame::memory_parameter_word_sp_offset * wordSize, Resp);
   610   stop("too many pushes:  Lesp points into register window");
   611   bind(OK2);
   612 }
   613 #endif // ASSERT
   615 // Load compiled (i2c) or interpreter entry when calling from interpreted and
   616 // do the call. Centralized so that all interpreter calls will do the same actions.
   617 // If jvmti single stepping is on for a thread we must not call compiled code.
   618 void InterpreterMacroAssembler::call_from_interpreter(Register target, Register scratch, Register Rret) {
   620   // Assume we want to go compiled if available
   622   ld_ptr(G5_method, in_bytes(methodOopDesc::from_interpreted_offset()), target);
   624   if (JvmtiExport::can_post_interpreter_events()) {
   625     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
   626     // compiled code in threads for which the event is enabled.  Check here for
   627     // interp_only_mode if these events CAN be enabled.
   628     verify_thread();
   629     Label skip_compiled_code;
   631     const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
   632     ld(interp_only, scratch);
   633     tst(scratch);
   634     br(Assembler::notZero, true, Assembler::pn, skip_compiled_code);
   635     delayed()->ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), target);
   636     bind(skip_compiled_code);
   637   }
   639   // the i2c_adapters need methodOop in G5_method (right? %%%)
   640   // do the call
   641 #ifdef ASSERT
   642   {
   643     Label ok;
   644     br_notnull(target, false, Assembler::pt, ok);
   645     delayed()->nop();
   646     stop("null entry point");
   647     bind(ok);
   648   }
   649 #endif // ASSERT
   651   // Adjust Rret first so Llast_SP can be same as Rret
   652   add(Rret, -frame::pc_return_offset, O7);
   653   add(Lesp, BytesPerWord, Gargs); // setup parameter pointer
   654   // Record SP so we can remove any stack space allocated by adapter transition
   655   jmp(target, 0);
   656   delayed()->mov(SP, Llast_SP);
   657 }
   659 void InterpreterMacroAssembler::if_cmp(Condition cc, bool ptr_compare) {
   660   assert_not_delayed();
   662   Label not_taken;
   663   if (ptr_compare) brx(cc, false, Assembler::pn, not_taken);
   664   else             br (cc, false, Assembler::pn, not_taken);
   665   delayed()->nop();
   667   TemplateTable::branch(false,false);
   669   bind(not_taken);
   671   profile_not_taken_branch(G3_scratch);
   672 }
   675 void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(
   676                                   int         bcp_offset,
   677                                   Register    Rtmp,
   678                                   Register    Rdst,
   679                                   signedOrNot is_signed,
   680                                   setCCOrNot  should_set_CC ) {
   681   assert(Rtmp != Rdst, "need separate temp register");
   682   assert_not_delayed();
   683   switch (is_signed) {
   684    default: ShouldNotReachHere();
   686    case   Signed:  ldsb( Lbcp, bcp_offset, Rdst  );  break; // high byte
   687    case Unsigned:  ldub( Lbcp, bcp_offset, Rdst  );  break; // high byte
   688   }
   689   ldub( Lbcp, bcp_offset + 1, Rtmp ); // low byte
   690   sll( Rdst, BitsPerByte, Rdst);
   691   switch (should_set_CC ) {
   692    default: ShouldNotReachHere();
   694    case      set_CC:  orcc( Rdst, Rtmp, Rdst ); break;
   695    case dont_set_CC:  or3(  Rdst, Rtmp, Rdst ); break;
   696   }
   697 }
   700 void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(
   701                                   int        bcp_offset,
   702                                   Register   Rtmp,
   703                                   Register   Rdst,
   704                                   setCCOrNot should_set_CC ) {
   705   assert(Rtmp != Rdst, "need separate temp register");
   706   assert_not_delayed();
   707   add( Lbcp, bcp_offset, Rtmp);
   708   andcc( Rtmp, 3, G0);
   709   Label aligned;
   710   switch (should_set_CC ) {
   711    default: ShouldNotReachHere();
   713    case      set_CC: break;
   714    case dont_set_CC: break;
   715   }
   717   br(Assembler::zero, true, Assembler::pn, aligned);
   718 #ifdef _LP64
   719   delayed()->ldsw(Rtmp, 0, Rdst);
   720 #else
   721   delayed()->ld(Rtmp, 0, Rdst);
   722 #endif
   724   ldub(Lbcp, bcp_offset + 3, Rdst);
   725   ldub(Lbcp, bcp_offset + 2, Rtmp);  sll(Rtmp,  8, Rtmp);  or3(Rtmp, Rdst, Rdst);
   726   ldub(Lbcp, bcp_offset + 1, Rtmp);  sll(Rtmp, 16, Rtmp);  or3(Rtmp, Rdst, Rdst);
   727 #ifdef _LP64
   728   ldsb(Lbcp, bcp_offset + 0, Rtmp);  sll(Rtmp, 24, Rtmp);
   729 #else
   730   // Unsigned load is faster than signed on some implementations
   731   ldub(Lbcp, bcp_offset + 0, Rtmp);  sll(Rtmp, 24, Rtmp);
   732 #endif
   733   or3(Rtmp, Rdst, Rdst );
   735   bind(aligned);
   736   if (should_set_CC == set_CC) tst(Rdst);
   737 }
   740 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register cache, Register tmp,
   741                                                        int bcp_offset, size_t index_size) {
   742   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
   743   if (index_size == sizeof(u2)) {
   744     get_2_byte_integer_at_bcp(bcp_offset, cache, tmp, Unsigned);
   745   } else if (index_size == sizeof(u4)) {
   746     assert(EnableInvokeDynamic, "giant index used only for EnableInvokeDynamic");
   747     get_4_byte_integer_at_bcp(bcp_offset, cache, tmp);
   748     assert(constantPoolCacheOopDesc::decode_secondary_index(~123) == 123, "else change next line");
   749     xor3(tmp, -1, tmp);  // convert to plain index
   750   } else if (index_size == sizeof(u1)) {
   751     assert(EnableMethodHandles, "tiny index used only for EnableMethodHandles");
   752     ldub(Lbcp, bcp_offset, tmp);
   753   } else {
   754     ShouldNotReachHere();
   755   }
   756 }
   759 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register tmp,
   760                                                            int bcp_offset, size_t index_size) {
   761   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
   762   assert_different_registers(cache, tmp);
   763   assert_not_delayed();
   764   get_cache_index_at_bcp(cache, tmp, bcp_offset, index_size);
   765   // convert from field index to ConstantPoolCacheEntry index and from
   766   // word index to byte offset
   767   sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
   768   add(LcpoolCache, tmp, cache);
   769 }
   772 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register tmp,
   773                                                                int bcp_offset, size_t index_size) {
   774   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
   775   assert_different_registers(cache, tmp);
   776   assert_not_delayed();
   777   if (index_size == sizeof(u2)) {
   778     get_2_byte_integer_at_bcp(bcp_offset, cache, tmp, Unsigned);
   779   } else {
   780     ShouldNotReachHere();  // other sizes not supported here
   781   }
   782               // convert from field index to ConstantPoolCacheEntry index
   783               // and from word index to byte offset
   784   sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
   785               // skip past the header
   786   add(tmp, in_bytes(constantPoolCacheOopDesc::base_offset()), tmp);
   787               // construct pointer to cache entry
   788   add(LcpoolCache, tmp, cache);
   789 }
   792 // Generate a subtype check: branch to ok_is_subtype if sub_klass is
   793 // a subtype of super_klass.  Blows registers Rsuper_klass, Rsub_klass, tmp1, tmp2.
   794 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
   795                                                   Register Rsuper_klass,
   796                                                   Register Rtmp1,
   797                                                   Register Rtmp2,
   798                                                   Register Rtmp3,
   799                                                   Label &ok_is_subtype ) {
   800   Label not_subtype;
   802   // Profile the not-null value's klass.
   803   profile_typecheck(Rsub_klass, Rtmp1);
   805   check_klass_subtype_fast_path(Rsub_klass, Rsuper_klass,
   806                                 Rtmp1, Rtmp2,
   807                                 &ok_is_subtype, &not_subtype, NULL);
   809   check_klass_subtype_slow_path(Rsub_klass, Rsuper_klass,
   810                                 Rtmp1, Rtmp2, Rtmp3, /*hack:*/ noreg,
   811                                 &ok_is_subtype, NULL);
   813   bind(not_subtype);
   814   profile_typecheck_failed(Rtmp1);
   815 }
   817 // Separate these two to allow for delay slot in middle
   818 // These are used to do a test and full jump to exception-throwing code.
   820 // %%%%% Could possibly reoptimize this by testing to see if could use
   821 // a single conditional branch (i.e. if span is small enough.
   822 // If you go that route, than get rid of the split and give up
   823 // on the delay-slot hack.
   825 void InterpreterMacroAssembler::throw_if_not_1_icc( Condition ok_condition,
   826                                                     Label&    ok ) {
   827   assert_not_delayed();
   828   br(ok_condition, true, pt, ok);
   829   // DELAY SLOT
   830 }
   832 void InterpreterMacroAssembler::throw_if_not_1_xcc( Condition ok_condition,
   833                                                     Label&    ok ) {
   834   assert_not_delayed();
   835   bp( ok_condition, true, Assembler::xcc, pt, ok);
   836   // DELAY SLOT
   837 }
   839 void InterpreterMacroAssembler::throw_if_not_1_x( Condition ok_condition,
   840                                                   Label&    ok ) {
   841   assert_not_delayed();
   842   brx(ok_condition, true, pt, ok);
   843   // DELAY SLOT
   844 }
   846 void InterpreterMacroAssembler::throw_if_not_2( address  throw_entry_point,
   847                                                 Register Rscratch,
   848                                                 Label&   ok ) {
   849   assert(throw_entry_point != NULL, "entry point must be generated by now");
   850   AddressLiteral dest(throw_entry_point);
   851   jump_to(dest, Rscratch);
   852   delayed()->nop();
   853   bind(ok);
   854 }
   857 // And if you cannot use the delay slot, here is a shorthand:
   859 void InterpreterMacroAssembler::throw_if_not_icc( Condition ok_condition,
   860                                                   address   throw_entry_point,
   861                                                   Register  Rscratch ) {
   862   Label ok;
   863   if (ok_condition != never) {
   864     throw_if_not_1_icc( ok_condition, ok);
   865     delayed()->nop();
   866   }
   867   throw_if_not_2( throw_entry_point, Rscratch, ok);
   868 }
   869 void InterpreterMacroAssembler::throw_if_not_xcc( Condition ok_condition,
   870                                                   address   throw_entry_point,
   871                                                   Register  Rscratch ) {
   872   Label ok;
   873   if (ok_condition != never) {
   874     throw_if_not_1_xcc( ok_condition, ok);
   875     delayed()->nop();
   876   }
   877   throw_if_not_2( throw_entry_point, Rscratch, ok);
   878 }
   879 void InterpreterMacroAssembler::throw_if_not_x( Condition ok_condition,
   880                                                 address   throw_entry_point,
   881                                                 Register  Rscratch ) {
   882   Label ok;
   883   if (ok_condition != never) {
   884     throw_if_not_1_x( ok_condition, ok);
   885     delayed()->nop();
   886   }
   887   throw_if_not_2( throw_entry_point, Rscratch, ok);
   888 }
   890 // Check that index is in range for array, then shift index by index_shift, and put arrayOop + shifted_index into res
   891 // Note: res is still shy of address by array offset into object.
   893 void InterpreterMacroAssembler::index_check_without_pop(Register array, Register index, int index_shift, Register tmp, Register res) {
   894   assert_not_delayed();
   896   verify_oop(array);
   897 #ifdef _LP64
   898   // sign extend since tos (index) can be a 32bit value
   899   sra(index, G0, index);
   900 #endif // _LP64
   902   // check array
   903   Label ptr_ok;
   904   tst(array);
   905   throw_if_not_1_x( notZero, ptr_ok );
   906   delayed()->ld( array, arrayOopDesc::length_offset_in_bytes(), tmp ); // check index
   907   throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ptr_ok);
   909   Label index_ok;
   910   cmp(index, tmp);
   911   throw_if_not_1_icc( lessUnsigned, index_ok );
   912   if (index_shift > 0)  delayed()->sll(index, index_shift, index);
   913   else                  delayed()->add(array, index, res); // addr - const offset in index
   914   // convention: move aberrant index into G3_scratch for exception message
   915   mov(index, G3_scratch);
   916   throw_if_not_2( Interpreter::_throw_ArrayIndexOutOfBoundsException_entry, G4_scratch, index_ok);
   918   // add offset if didn't do it in delay slot
   919   if (index_shift > 0)   add(array, index, res); // addr - const offset in index
   920 }
   923 void InterpreterMacroAssembler::index_check(Register array, Register index, int index_shift, Register tmp, Register res) {
   924   assert_not_delayed();
   926   // pop array
   927   pop_ptr(array);
   929   // check array
   930   index_check_without_pop(array, index, index_shift, tmp, res);
   931 }
   934 void InterpreterMacroAssembler::get_constant_pool(Register Rdst) {
   935   ld_ptr(Lmethod, in_bytes(methodOopDesc::constants_offset()), Rdst);
   936 }
   939 void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) {
   940   get_constant_pool(Rdst);
   941   ld_ptr(Rdst, constantPoolOopDesc::cache_offset_in_bytes(), Rdst);
   942 }
   945 void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) {
   946   get_constant_pool(Rcpool);
   947   ld_ptr(Rcpool, constantPoolOopDesc::tags_offset_in_bytes(), Rtags);
   948 }
   951 // unlock if synchronized method
   952 //
   953 // Unlock the receiver if this is a synchronized method.
   954 // Unlock any Java monitors from syncronized blocks.
   955 //
   956 // If there are locked Java monitors
   957 //    If throw_monitor_exception
   958 //       throws IllegalMonitorStateException
   959 //    Else if install_monitor_exception
   960 //       installs IllegalMonitorStateException
   961 //    Else
   962 //       no error processing
   963 void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state,
   964                                                               bool throw_monitor_exception,
   965                                                               bool install_monitor_exception) {
   966   Label unlocked, unlock, no_unlock;
   968   // get the value of _do_not_unlock_if_synchronized into G1_scratch
   969   const Address do_not_unlock_if_synchronized(G2_thread,
   970     JavaThread::do_not_unlock_if_synchronized_offset());
   971   ldbool(do_not_unlock_if_synchronized, G1_scratch);
   972   stbool(G0, do_not_unlock_if_synchronized); // reset the flag
   974   // check if synchronized method
   975   const Address access_flags(Lmethod, methodOopDesc::access_flags_offset());
   976   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
   977   push(state); // save tos
   978   ld(access_flags, G3_scratch); // Load access flags.
   979   btst(JVM_ACC_SYNCHRONIZED, G3_scratch);
   980   br(zero, false, pt, unlocked);
   981   delayed()->nop();
   983   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
   984   // is set.
   985   tstbool(G1_scratch);
   986   br(Assembler::notZero, false, pn, no_unlock);
   987   delayed()->nop();
   989   // BasicObjectLock will be first in list, since this is a synchronized method. However, need
   990   // to check that the object has not been unlocked by an explicit monitorexit bytecode.
   992   //Intel: if (throw_monitor_exception) ... else ...
   993   // Entry already unlocked, need to throw exception
   994   //...
   996   // pass top-most monitor elem
   997   add( top_most_monitor(), O1 );
   999   ld_ptr(O1, BasicObjectLock::obj_offset_in_bytes(), G3_scratch);
  1000   br_notnull(G3_scratch, false, pt, unlock);
  1001   delayed()->nop();
  1003   if (throw_monitor_exception) {
  1004     // Entry already unlocked need to throw an exception
  1005     MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
  1006     should_not_reach_here();
  1007   } else {
  1008     // Monitor already unlocked during a stack unroll.
  1009     // If requested, install an illegal_monitor_state_exception.
  1010     // Continue with stack unrolling.
  1011     if (install_monitor_exception) {
  1012       MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
  1014     ba(false, unlocked);
  1015     delayed()->nop();
  1018   bind(unlock);
  1020   unlock_object(O1);
  1022   bind(unlocked);
  1024   // I0, I1: Might contain return value
  1026   // Check that all monitors are unlocked
  1027   { Label loop, exception, entry, restart;
  1029     Register Rmptr   = O0;
  1030     Register Rtemp   = O1;
  1031     Register Rlimit  = Lmonitors;
  1032     const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
  1033     assert( (delta & LongAlignmentMask) == 0,
  1034             "sizeof BasicObjectLock must be even number of doublewords");
  1036     #ifdef ASSERT
  1037     add(top_most_monitor(), Rmptr, delta);
  1038     { Label L;
  1039       // ensure that Rmptr starts out above (or at) Rlimit
  1040       cmp(Rmptr, Rlimit);
  1041       brx(Assembler::greaterEqualUnsigned, false, pn, L);
  1042       delayed()->nop();
  1043       stop("monitor stack has negative size");
  1044       bind(L);
  1046     #endif
  1047     bind(restart);
  1048     ba(false, entry);
  1049     delayed()->
  1050     add(top_most_monitor(), Rmptr, delta);      // points to current entry, starting with bottom-most entry
  1052     // Entry is still locked, need to throw exception
  1053     bind(exception);
  1054     if (throw_monitor_exception) {
  1055       MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
  1056       should_not_reach_here();
  1057     } else {
  1058       // Stack unrolling. Unlock object and if requested, install illegal_monitor_exception.
  1059       // Unlock does not block, so don't have to worry about the frame
  1060       unlock_object(Rmptr);
  1061       if (install_monitor_exception) {
  1062         MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
  1064       ba(false, restart);
  1065       delayed()->nop();
  1068     bind(loop);
  1069     cmp(Rtemp, G0);                             // check if current entry is used
  1070     brx(Assembler::notEqual, false, pn, exception);
  1071     delayed()->
  1072     dec(Rmptr, delta);                          // otherwise advance to next entry
  1073     #ifdef ASSERT
  1074     { Label L;
  1075       // ensure that Rmptr has not somehow stepped below Rlimit
  1076       cmp(Rmptr, Rlimit);
  1077       brx(Assembler::greaterEqualUnsigned, false, pn, L);
  1078       delayed()->nop();
  1079       stop("ran off the end of the monitor stack");
  1080       bind(L);
  1082     #endif
  1083     bind(entry);
  1084     cmp(Rmptr, Rlimit);                         // check if bottom reached
  1085     brx(Assembler::notEqual, true, pn, loop);   // if not at bottom then check this entry
  1086     delayed()->
  1087     ld_ptr(Rmptr, BasicObjectLock::obj_offset_in_bytes() - delta, Rtemp);
  1090   bind(no_unlock);
  1091   pop(state);
  1092   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
  1096 // remove activation
  1097 //
  1098 // Unlock the receiver if this is a synchronized method.
  1099 // Unlock any Java monitors from syncronized blocks.
  1100 // Remove the activation from the stack.
  1101 //
  1102 // If there are locked Java monitors
  1103 //    If throw_monitor_exception
  1104 //       throws IllegalMonitorStateException
  1105 //    Else if install_monitor_exception
  1106 //       installs IllegalMonitorStateException
  1107 //    Else
  1108 //       no error processing
  1109 void InterpreterMacroAssembler::remove_activation(TosState state,
  1110                                                   bool throw_monitor_exception,
  1111                                                   bool install_monitor_exception) {
  1113   unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception);
  1115   // save result (push state before jvmti call and pop it afterwards) and notify jvmti
  1116   notify_method_exit(false, state, NotifyJVMTI);
  1118   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
  1119   verify_oop(Lmethod);
  1120   verify_thread();
  1122   // return tos
  1123   assert(Otos_l1 == Otos_i, "adjust code below");
  1124   switch (state) {
  1125 #ifdef _LP64
  1126   case ltos: mov(Otos_l, Otos_l->after_save()); break; // O0 -> I0
  1127 #else
  1128   case ltos: mov(Otos_l2, Otos_l2->after_save()); // fall through  // O1 -> I1
  1129 #endif
  1130   case btos:                                      // fall through
  1131   case ctos:
  1132   case stos:                                      // fall through
  1133   case atos:                                      // fall through
  1134   case itos: mov(Otos_l1, Otos_l1->after_save());    break;        // O0 -> I0
  1135   case ftos:                                      // fall through
  1136   case dtos:                                      // fall through
  1137   case vtos: /* nothing to do */                     break;
  1138   default  : ShouldNotReachHere();
  1141 #if defined(COMPILER2) && !defined(_LP64)
  1142   if (state == ltos) {
  1143     // C2 expects long results in G1 we can't tell if we're returning to interpreted
  1144     // or compiled so just be safe use G1 and O0/O1
  1146     // Shift bits into high (msb) of G1
  1147     sllx(Otos_l1->after_save(), 32, G1);
  1148     // Zero extend low bits
  1149     srl (Otos_l2->after_save(), 0, Otos_l2->after_save());
  1150     or3 (Otos_l2->after_save(), G1, G1);
  1152 #endif /* COMPILER2 */
  1155 #endif /* CC_INTERP */
  1158 // Lock object
  1159 //
  1160 // Argument - lock_reg points to the BasicObjectLock to be used for locking,
  1161 //            it must be initialized with the object to lock
  1162 void InterpreterMacroAssembler::lock_object(Register lock_reg, Register Object) {
  1163   if (UseHeavyMonitors) {
  1164     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
  1166   else {
  1167     Register obj_reg = Object;
  1168     Register mark_reg = G4_scratch;
  1169     Register temp_reg = G1_scratch;
  1170     Address  lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes());
  1171     Address  mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
  1172     Label    done;
  1174     Label slow_case;
  1176     assert_different_registers(lock_reg, obj_reg, mark_reg, temp_reg);
  1178     // load markOop from object into mark_reg
  1179     ld_ptr(mark_addr, mark_reg);
  1181     if (UseBiasedLocking) {
  1182       biased_locking_enter(obj_reg, mark_reg, temp_reg, done, &slow_case);
  1185     // get the address of basicLock on stack that will be stored in the object
  1186     // we need a temporary register here as we do not want to clobber lock_reg
  1187     // (cas clobbers the destination register)
  1188     mov(lock_reg, temp_reg);
  1189     // set mark reg to be (markOop of object | UNLOCK_VALUE)
  1190     or3(mark_reg, markOopDesc::unlocked_value, mark_reg);
  1191     // initialize the box  (Must happen before we update the object mark!)
  1192     st_ptr(mark_reg, lock_addr, BasicLock::displaced_header_offset_in_bytes());
  1193     // compare and exchange object_addr, markOop | 1, stack address of basicLock
  1194     assert(mark_addr.disp() == 0, "cas must take a zero displacement");
  1195     casx_under_lock(mark_addr.base(), mark_reg, temp_reg,
  1196       (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  1198     // if the compare and exchange succeeded we are done (we saw an unlocked object)
  1199     cmp(mark_reg, temp_reg);
  1200     brx(Assembler::equal, true, Assembler::pt, done);
  1201     delayed()->nop();
  1203     // We did not see an unlocked object so try the fast recursive case
  1205     // Check if owner is self by comparing the value in the markOop of object
  1206     // with the stack pointer
  1207     sub(temp_reg, SP, temp_reg);
  1208 #ifdef _LP64
  1209     sub(temp_reg, STACK_BIAS, temp_reg);
  1210 #endif
  1211     assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
  1213     // Composite "andcc" test:
  1214     // (a) %sp -vs- markword proximity check, and,
  1215     // (b) verify mark word LSBs == 0 (Stack-locked).
  1216     //
  1217     // FFFFF003/FFFFFFFFFFFF003 is (markOopDesc::lock_mask_in_place | -os::vm_page_size())
  1218     // Note that the page size used for %sp proximity testing is arbitrary and is
  1219     // unrelated to the actual MMU page size.  We use a 'logical' page size of
  1220     // 4096 bytes.   F..FFF003 is designed to fit conveniently in the SIMM13 immediate
  1221     // field of the andcc instruction.
  1222     andcc (temp_reg, 0xFFFFF003, G0) ;
  1224     // if condition is true we are done and hence we can store 0 in the displaced
  1225     // header indicating it is a recursive lock and be done
  1226     brx(Assembler::zero, true, Assembler::pt, done);
  1227     delayed()->st_ptr(G0, lock_addr, BasicLock::displaced_header_offset_in_bytes());
  1229     // none of the above fast optimizations worked so we have to get into the
  1230     // slow case of monitor enter
  1231     bind(slow_case);
  1232     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
  1234     bind(done);
  1238 // Unlocks an object. Used in monitorexit bytecode and remove_activation.
  1239 //
  1240 // Argument - lock_reg points to the BasicObjectLock for lock
  1241 // Throw IllegalMonitorException if object is not locked by current thread
  1242 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
  1243   if (UseHeavyMonitors) {
  1244     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
  1245   } else {
  1246     Register obj_reg = G3_scratch;
  1247     Register mark_reg = G4_scratch;
  1248     Register displaced_header_reg = G1_scratch;
  1249     Address  lockobj_addr(lock_reg, BasicObjectLock::obj_offset_in_bytes());
  1250     Address  mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
  1251     Label    done;
  1253     if (UseBiasedLocking) {
  1254       // load the object out of the BasicObjectLock
  1255       ld_ptr(lockobj_addr, obj_reg);
  1256       biased_locking_exit(mark_addr, mark_reg, done, true);
  1257       st_ptr(G0, lockobj_addr);  // free entry
  1260     // Test first if we are in the fast recursive case
  1261     Address lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes() + BasicLock::displaced_header_offset_in_bytes());
  1262     ld_ptr(lock_addr, displaced_header_reg);
  1263     br_null(displaced_header_reg, true, Assembler::pn, done);
  1264     delayed()->st_ptr(G0, lockobj_addr);  // free entry
  1266     // See if it is still a light weight lock, if so we just unlock
  1267     // the object and we are done
  1269     if (!UseBiasedLocking) {
  1270       // load the object out of the BasicObjectLock
  1271       ld_ptr(lockobj_addr, obj_reg);
  1274     // we have the displaced header in displaced_header_reg
  1275     // we expect to see the stack address of the basicLock in case the
  1276     // lock is still a light weight lock (lock_reg)
  1277     assert(mark_addr.disp() == 0, "cas must take a zero displacement");
  1278     casx_under_lock(mark_addr.base(), lock_reg, displaced_header_reg,
  1279       (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  1280     cmp(lock_reg, displaced_header_reg);
  1281     brx(Assembler::equal, true, Assembler::pn, done);
  1282     delayed()->st_ptr(G0, lockobj_addr);  // free entry
  1284     // The lock has been converted into a heavy lock and hence
  1285     // we need to get into the slow case
  1287     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
  1289     bind(done);
  1293 #ifndef CC_INTERP
  1295 // Get the method data pointer from the methodOop and set the
  1296 // specified register to its value.
  1298 void InterpreterMacroAssembler::set_method_data_pointer_offset(Register Roff) {
  1299   assert(ProfileInterpreter, "must be profiling interpreter");
  1300   Label get_continue;
  1302   ld_ptr(Lmethod, in_bytes(methodOopDesc::method_data_offset()), ImethodDataPtr);
  1303   test_method_data_pointer(get_continue);
  1304   add(ImethodDataPtr, in_bytes(methodDataOopDesc::data_offset()), ImethodDataPtr);
  1305   if (Roff != noreg)
  1306     // Roff contains a method data index ("mdi").  It defaults to zero.
  1307     add(ImethodDataPtr, Roff, ImethodDataPtr);
  1308   bind(get_continue);
  1311 // Set the method data pointer for the current bcp.
  1313 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
  1314   assert(ProfileInterpreter, "must be profiling interpreter");
  1315   Label zero_continue;
  1317   // Test MDO to avoid the call if it is NULL.
  1318   ld_ptr(Lmethod, methodOopDesc::method_data_offset(), ImethodDataPtr);
  1319   test_method_data_pointer(zero_continue);
  1320   call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), Lmethod, Lbcp);
  1321   set_method_data_pointer_offset(O0);
  1322   bind(zero_continue);
  1325 // Test ImethodDataPtr.  If it is null, continue at the specified label
  1327 void InterpreterMacroAssembler::test_method_data_pointer(Label& zero_continue) {
  1328   assert(ProfileInterpreter, "must be profiling interpreter");
  1329 #ifdef _LP64
  1330   bpr(Assembler::rc_z, false, Assembler::pn, ImethodDataPtr, zero_continue);
  1331 #else
  1332   tst(ImethodDataPtr);
  1333   br(Assembler::zero, false, Assembler::pn, zero_continue);
  1334 #endif
  1335   delayed()->nop();
  1338 void InterpreterMacroAssembler::verify_method_data_pointer() {
  1339   assert(ProfileInterpreter, "must be profiling interpreter");
  1340 #ifdef ASSERT
  1341   Label verify_continue;
  1342   test_method_data_pointer(verify_continue);
  1344   // If the mdp is valid, it will point to a DataLayout header which is
  1345   // consistent with the bcp.  The converse is highly probable also.
  1346   lduh(ImethodDataPtr, in_bytes(DataLayout::bci_offset()), G3_scratch);
  1347   ld_ptr(Lmethod, methodOopDesc::const_offset(), O5);
  1348   add(G3_scratch, in_bytes(constMethodOopDesc::codes_offset()), G3_scratch);
  1349   add(G3_scratch, O5, G3_scratch);
  1350   cmp(Lbcp, G3_scratch);
  1351   brx(Assembler::equal, false, Assembler::pt, verify_continue);
  1353   Register temp_reg = O5;
  1354   delayed()->mov(ImethodDataPtr, temp_reg);
  1355   // %%% should use call_VM_leaf here?
  1356   //call_VM_leaf(noreg, ..., Lmethod, Lbcp, ImethodDataPtr);
  1357   save_frame_and_mov(sizeof(jdouble) / wordSize, Lmethod, O0, Lbcp, O1);
  1358   Address d_save(FP, -sizeof(jdouble) + STACK_BIAS);
  1359   stf(FloatRegisterImpl::D, Ftos_d, d_save);
  1360   mov(temp_reg->after_save(), O2);
  1361   save_thread(L7_thread_cache);
  1362   call(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), relocInfo::none);
  1363   delayed()->nop();
  1364   restore_thread(L7_thread_cache);
  1365   ldf(FloatRegisterImpl::D, d_save, Ftos_d);
  1366   restore();
  1367   bind(verify_continue);
  1368 #endif // ASSERT
  1371 void InterpreterMacroAssembler::test_invocation_counter_for_mdp(Register invocation_count,
  1372                                                                 Register cur_bcp,
  1373                                                                 Register Rtmp,
  1374                                                                 Label &profile_continue) {
  1375   assert(ProfileInterpreter, "must be profiling interpreter");
  1376   // Control will flow to "profile_continue" if the counter is less than the
  1377   // limit or if we call profile_method()
  1379   Label done;
  1381   // if no method data exists, and the counter is high enough, make one
  1382 #ifdef _LP64
  1383   bpr(Assembler::rc_nz, false, Assembler::pn, ImethodDataPtr, done);
  1384 #else
  1385   tst(ImethodDataPtr);
  1386   br(Assembler::notZero, false, Assembler::pn, done);
  1387 #endif
  1389   // Test to see if we should create a method data oop
  1390   AddressLiteral profile_limit((address) &InvocationCounter::InterpreterProfileLimit);
  1391 #ifdef _LP64
  1392   delayed()->nop();
  1393   sethi(profile_limit, Rtmp);
  1394 #else
  1395   delayed()->sethi(profile_limit, Rtmp);
  1396 #endif
  1397   ld(Rtmp, profile_limit.low10(), Rtmp);
  1398   cmp(invocation_count, Rtmp);
  1399   br(Assembler::lessUnsigned, false, Assembler::pn, profile_continue);
  1400   delayed()->nop();
  1402   // Build it now.
  1403   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method), cur_bcp);
  1404   set_method_data_pointer_offset(O0);
  1405   ba(false, profile_continue);
  1406   delayed()->nop();
  1407   bind(done);
  1410 // Store a value at some constant offset from the method data pointer.
  1412 void InterpreterMacroAssembler::set_mdp_data_at(int constant, Register value) {
  1413   assert(ProfileInterpreter, "must be profiling interpreter");
  1414   st_ptr(value, ImethodDataPtr, constant);
  1417 void InterpreterMacroAssembler::increment_mdp_data_at(Address counter,
  1418                                                       Register bumped_count,
  1419                                                       bool decrement) {
  1420   assert(ProfileInterpreter, "must be profiling interpreter");
  1422   // Load the counter.
  1423   ld_ptr(counter, bumped_count);
  1425   if (decrement) {
  1426     // Decrement the register.  Set condition codes.
  1427     subcc(bumped_count, DataLayout::counter_increment, bumped_count);
  1429     // If the decrement causes the counter to overflow, stay negative
  1430     Label L;
  1431     brx(Assembler::negative, true, Assembler::pn, L);
  1433     // Store the decremented counter, if it is still negative.
  1434     delayed()->st_ptr(bumped_count, counter);
  1435     bind(L);
  1436   } else {
  1437     // Increment the register.  Set carry flag.
  1438     addcc(bumped_count, DataLayout::counter_increment, bumped_count);
  1440     // If the increment causes the counter to overflow, pull back by 1.
  1441     assert(DataLayout::counter_increment == 1, "subc works");
  1442     subc(bumped_count, G0, bumped_count);
  1444     // Store the incremented counter.
  1445     st_ptr(bumped_count, counter);
  1449 // Increment the value at some constant offset from the method data pointer.
  1451 void InterpreterMacroAssembler::increment_mdp_data_at(int constant,
  1452                                                       Register bumped_count,
  1453                                                       bool decrement) {
  1454   // Locate the counter at a fixed offset from the mdp:
  1455   Address counter(ImethodDataPtr, constant);
  1456   increment_mdp_data_at(counter, bumped_count, decrement);
  1459 // Increment the value at some non-fixed (reg + constant) offset from
  1460 // the method data pointer.
  1462 void InterpreterMacroAssembler::increment_mdp_data_at(Register reg,
  1463                                                       int constant,
  1464                                                       Register bumped_count,
  1465                                                       Register scratch2,
  1466                                                       bool decrement) {
  1467   // Add the constant to reg to get the offset.
  1468   add(ImethodDataPtr, reg, scratch2);
  1469   Address counter(scratch2, constant);
  1470   increment_mdp_data_at(counter, bumped_count, decrement);
  1473 // Set a flag value at the current method data pointer position.
  1474 // Updates a single byte of the header, to avoid races with other header bits.
  1476 void InterpreterMacroAssembler::set_mdp_flag_at(int flag_constant,
  1477                                                 Register scratch) {
  1478   assert(ProfileInterpreter, "must be profiling interpreter");
  1479   // Load the data header
  1480   ldub(ImethodDataPtr, in_bytes(DataLayout::flags_offset()), scratch);
  1482   // Set the flag
  1483   or3(scratch, flag_constant, scratch);
  1485   // Store the modified header.
  1486   stb(scratch, ImethodDataPtr, in_bytes(DataLayout::flags_offset()));
  1489 // Test the location at some offset from the method data pointer.
  1490 // If it is not equal to value, branch to the not_equal_continue Label.
  1491 // Set condition codes to match the nullness of the loaded value.
  1493 void InterpreterMacroAssembler::test_mdp_data_at(int offset,
  1494                                                  Register value,
  1495                                                  Label& not_equal_continue,
  1496                                                  Register scratch) {
  1497   assert(ProfileInterpreter, "must be profiling interpreter");
  1498   ld_ptr(ImethodDataPtr, offset, scratch);
  1499   cmp(value, scratch);
  1500   brx(Assembler::notEqual, false, Assembler::pn, not_equal_continue);
  1501   delayed()->tst(scratch);
  1504 // Update the method data pointer by the displacement located at some fixed
  1505 // offset from the method data pointer.
  1507 void InterpreterMacroAssembler::update_mdp_by_offset(int offset_of_disp,
  1508                                                      Register scratch) {
  1509   assert(ProfileInterpreter, "must be profiling interpreter");
  1510   ld_ptr(ImethodDataPtr, offset_of_disp, scratch);
  1511   add(ImethodDataPtr, scratch, ImethodDataPtr);
  1514 // Update the method data pointer by the displacement located at the
  1515 // offset (reg + offset_of_disp).
  1517 void InterpreterMacroAssembler::update_mdp_by_offset(Register reg,
  1518                                                      int offset_of_disp,
  1519                                                      Register scratch) {
  1520   assert(ProfileInterpreter, "must be profiling interpreter");
  1521   add(reg, offset_of_disp, scratch);
  1522   ld_ptr(ImethodDataPtr, scratch, scratch);
  1523   add(ImethodDataPtr, scratch, ImethodDataPtr);
  1526 // Update the method data pointer by a simple constant displacement.
  1528 void InterpreterMacroAssembler::update_mdp_by_constant(int constant) {
  1529   assert(ProfileInterpreter, "must be profiling interpreter");
  1530   add(ImethodDataPtr, constant, ImethodDataPtr);
  1533 // Update the method data pointer for a _ret bytecode whose target
  1534 // was not among our cached targets.
  1536 void InterpreterMacroAssembler::update_mdp_for_ret(TosState state,
  1537                                                    Register return_bci) {
  1538   assert(ProfileInterpreter, "must be profiling interpreter");
  1539   push(state);
  1540   st_ptr(return_bci, l_tmp);  // protect return_bci, in case it is volatile
  1541   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
  1542   ld_ptr(l_tmp, return_bci);
  1543   pop(state);
  1546 // Count a taken branch in the bytecodes.
  1548 void InterpreterMacroAssembler::profile_taken_branch(Register scratch, Register bumped_count) {
  1549   if (ProfileInterpreter) {
  1550     Label profile_continue;
  1552     // If no method data exists, go to profile_continue.
  1553     test_method_data_pointer(profile_continue);
  1555     // We are taking a branch.  Increment the taken count.
  1556     increment_mdp_data_at(in_bytes(JumpData::taken_offset()), bumped_count);
  1558     // The method data pointer needs to be updated to reflect the new target.
  1559     update_mdp_by_offset(in_bytes(JumpData::displacement_offset()), scratch);
  1560     bind (profile_continue);
  1565 // Count a not-taken branch in the bytecodes.
  1567 void InterpreterMacroAssembler::profile_not_taken_branch(Register scratch) {
  1568   if (ProfileInterpreter) {
  1569     Label profile_continue;
  1571     // If no method data exists, go to profile_continue.
  1572     test_method_data_pointer(profile_continue);
  1574     // We are taking a branch.  Increment the not taken count.
  1575     increment_mdp_data_at(in_bytes(BranchData::not_taken_offset()), scratch);
  1577     // The method data pointer needs to be updated to correspond to the
  1578     // next bytecode.
  1579     update_mdp_by_constant(in_bytes(BranchData::branch_data_size()));
  1580     bind (profile_continue);
  1585 // Count a non-virtual call in the bytecodes.
  1587 void InterpreterMacroAssembler::profile_call(Register scratch) {
  1588   if (ProfileInterpreter) {
  1589     Label profile_continue;
  1591     // If no method data exists, go to profile_continue.
  1592     test_method_data_pointer(profile_continue);
  1594     // We are making a call.  Increment the count.
  1595     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
  1597     // The method data pointer needs to be updated to reflect the new target.
  1598     update_mdp_by_constant(in_bytes(CounterData::counter_data_size()));
  1599     bind (profile_continue);
  1604 // Count a final call in the bytecodes.
  1606 void InterpreterMacroAssembler::profile_final_call(Register scratch) {
  1607   if (ProfileInterpreter) {
  1608     Label profile_continue;
  1610     // If no method data exists, go to profile_continue.
  1611     test_method_data_pointer(profile_continue);
  1613     // We are making a call.  Increment the count.
  1614     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
  1616     // The method data pointer needs to be updated to reflect the new target.
  1617     update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
  1618     bind (profile_continue);
  1623 // Count a virtual call in the bytecodes.
  1625 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
  1626                                                      Register scratch,
  1627                                                      bool receiver_can_be_null) {
  1628   if (ProfileInterpreter) {
  1629     Label profile_continue;
  1631     // If no method data exists, go to profile_continue.
  1632     test_method_data_pointer(profile_continue);
  1635     Label skip_receiver_profile;
  1636     if (receiver_can_be_null) {
  1637       Label not_null;
  1638       tst(receiver);
  1639       brx(Assembler::notZero, false, Assembler::pt, not_null);
  1640       delayed()->nop();
  1641       // We are making a call.  Increment the count for null receiver.
  1642       increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
  1643       ba(false, skip_receiver_profile);
  1644       delayed()->nop();
  1645       bind(not_null);
  1648     // Record the receiver type.
  1649     record_klass_in_profile(receiver, scratch, true);
  1650     bind(skip_receiver_profile);
  1652     // The method data pointer needs to be updated to reflect the new target.
  1653     update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
  1654     bind (profile_continue);
  1658 void InterpreterMacroAssembler::record_klass_in_profile_helper(
  1659                                         Register receiver, Register scratch,
  1660                                         int start_row, Label& done, bool is_virtual_call) {
  1661   if (TypeProfileWidth == 0) {
  1662     if (is_virtual_call) {
  1663       increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
  1665     return;
  1668   int last_row = VirtualCallData::row_limit() - 1;
  1669   assert(start_row <= last_row, "must be work left to do");
  1670   // Test this row for both the receiver and for null.
  1671   // Take any of three different outcomes:
  1672   //   1. found receiver => increment count and goto done
  1673   //   2. found null => keep looking for case 1, maybe allocate this cell
  1674   //   3. found something else => keep looking for cases 1 and 2
  1675   // Case 3 is handled by a recursive call.
  1676   for (int row = start_row; row <= last_row; row++) {
  1677     Label next_test;
  1678     bool test_for_null_also = (row == start_row);
  1680     // See if the receiver is receiver[n].
  1681     int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
  1682     test_mdp_data_at(recvr_offset, receiver, next_test, scratch);
  1683     // delayed()->tst(scratch);
  1685     // The receiver is receiver[n].  Increment count[n].
  1686     int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
  1687     increment_mdp_data_at(count_offset, scratch);
  1688     ba(false, done);
  1689     delayed()->nop();
  1690     bind(next_test);
  1692     if (test_for_null_also) {
  1693       Label found_null;
  1694       // Failed the equality check on receiver[n]...  Test for null.
  1695       if (start_row == last_row) {
  1696         // The only thing left to do is handle the null case.
  1697         if (is_virtual_call) {
  1698           brx(Assembler::zero, false, Assembler::pn, found_null);
  1699           delayed()->nop();
  1700           // Receiver did not match any saved receiver and there is no empty row for it.
  1701           // Increment total counter to indicate polymorphic case.
  1702           increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
  1703           ba(false, done);
  1704           delayed()->nop();
  1705           bind(found_null);
  1706         } else {
  1707           brx(Assembler::notZero, false, Assembler::pt, done);
  1708           delayed()->nop();
  1710         break;
  1712       // Since null is rare, make it be the branch-taken case.
  1713       brx(Assembler::zero, false, Assembler::pn, found_null);
  1714       delayed()->nop();
  1716       // Put all the "Case 3" tests here.
  1717       record_klass_in_profile_helper(receiver, scratch, start_row + 1, done, is_virtual_call);
  1719       // Found a null.  Keep searching for a matching receiver,
  1720       // but remember that this is an empty (unused) slot.
  1721       bind(found_null);
  1725   // In the fall-through case, we found no matching receiver, but we
  1726   // observed the receiver[start_row] is NULL.
  1728   // Fill in the receiver field and increment the count.
  1729   int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
  1730   set_mdp_data_at(recvr_offset, receiver);
  1731   int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
  1732   mov(DataLayout::counter_increment, scratch);
  1733   set_mdp_data_at(count_offset, scratch);
  1734   if (start_row > 0) {
  1735     ba(false, done);
  1736     delayed()->nop();
  1740 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
  1741                                                         Register scratch, bool is_virtual_call) {
  1742   assert(ProfileInterpreter, "must be profiling");
  1743   Label done;
  1745   record_klass_in_profile_helper(receiver, scratch, 0, done, is_virtual_call);
  1747   bind (done);
  1751 // Count a ret in the bytecodes.
  1753 void InterpreterMacroAssembler::profile_ret(TosState state,
  1754                                             Register return_bci,
  1755                                             Register scratch) {
  1756   if (ProfileInterpreter) {
  1757     Label profile_continue;
  1758     uint row;
  1760     // If no method data exists, go to profile_continue.
  1761     test_method_data_pointer(profile_continue);
  1763     // Update the total ret count.
  1764     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
  1766     for (row = 0; row < RetData::row_limit(); row++) {
  1767       Label next_test;
  1769       // See if return_bci is equal to bci[n]:
  1770       test_mdp_data_at(in_bytes(RetData::bci_offset(row)),
  1771                        return_bci, next_test, scratch);
  1773       // return_bci is equal to bci[n].  Increment the count.
  1774       increment_mdp_data_at(in_bytes(RetData::bci_count_offset(row)), scratch);
  1776       // The method data pointer needs to be updated to reflect the new target.
  1777       update_mdp_by_offset(in_bytes(RetData::bci_displacement_offset(row)), scratch);
  1778       ba(false, profile_continue);
  1779       delayed()->nop();
  1780       bind(next_test);
  1783     update_mdp_for_ret(state, return_bci);
  1785     bind (profile_continue);
  1789 // Profile an unexpected null in the bytecodes.
  1790 void InterpreterMacroAssembler::profile_null_seen(Register scratch) {
  1791   if (ProfileInterpreter) {
  1792     Label profile_continue;
  1794     // If no method data exists, go to profile_continue.
  1795     test_method_data_pointer(profile_continue);
  1797     set_mdp_flag_at(BitData::null_seen_byte_constant(), scratch);
  1799     // The method data pointer needs to be updated.
  1800     int mdp_delta = in_bytes(BitData::bit_data_size());
  1801     if (TypeProfileCasts) {
  1802       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
  1804     update_mdp_by_constant(mdp_delta);
  1806     bind (profile_continue);
  1810 void InterpreterMacroAssembler::profile_typecheck(Register klass,
  1811                                                   Register scratch) {
  1812   if (ProfileInterpreter) {
  1813     Label profile_continue;
  1815     // If no method data exists, go to profile_continue.
  1816     test_method_data_pointer(profile_continue);
  1818     int mdp_delta = in_bytes(BitData::bit_data_size());
  1819     if (TypeProfileCasts) {
  1820       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
  1822       // Record the object type.
  1823       record_klass_in_profile(klass, scratch, false);
  1826     // The method data pointer needs to be updated.
  1827     update_mdp_by_constant(mdp_delta);
  1829     bind (profile_continue);
  1833 void InterpreterMacroAssembler::profile_typecheck_failed(Register scratch) {
  1834   if (ProfileInterpreter && TypeProfileCasts) {
  1835     Label profile_continue;
  1837     // If no method data exists, go to profile_continue.
  1838     test_method_data_pointer(profile_continue);
  1840     int count_offset = in_bytes(CounterData::count_offset());
  1841     // Back up the address, since we have already bumped the mdp.
  1842     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
  1844     // *Decrement* the counter.  We expect to see zero or small negatives.
  1845     increment_mdp_data_at(count_offset, scratch, true);
  1847     bind (profile_continue);
  1851 // Count the default case of a switch construct.
  1853 void InterpreterMacroAssembler::profile_switch_default(Register scratch) {
  1854   if (ProfileInterpreter) {
  1855     Label profile_continue;
  1857     // If no method data exists, go to profile_continue.
  1858     test_method_data_pointer(profile_continue);
  1860     // Update the default case count
  1861     increment_mdp_data_at(in_bytes(MultiBranchData::default_count_offset()),
  1862                           scratch);
  1864     // The method data pointer needs to be updated.
  1865     update_mdp_by_offset(
  1866                     in_bytes(MultiBranchData::default_displacement_offset()),
  1867                     scratch);
  1869     bind (profile_continue);
  1873 // Count the index'th case of a switch construct.
  1875 void InterpreterMacroAssembler::profile_switch_case(Register index,
  1876                                                     Register scratch,
  1877                                                     Register scratch2,
  1878                                                     Register scratch3) {
  1879   if (ProfileInterpreter) {
  1880     Label profile_continue;
  1882     // If no method data exists, go to profile_continue.
  1883     test_method_data_pointer(profile_continue);
  1885     // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes()
  1886     set(in_bytes(MultiBranchData::per_case_size()), scratch);
  1887     smul(index, scratch, scratch);
  1888     add(scratch, in_bytes(MultiBranchData::case_array_offset()), scratch);
  1890     // Update the case count
  1891     increment_mdp_data_at(scratch,
  1892                           in_bytes(MultiBranchData::relative_count_offset()),
  1893                           scratch2,
  1894                           scratch3);
  1896     // The method data pointer needs to be updated.
  1897     update_mdp_by_offset(scratch,
  1898                      in_bytes(MultiBranchData::relative_displacement_offset()),
  1899                      scratch2);
  1901     bind (profile_continue);
  1905 // add a InterpMonitorElem to stack (see frame_sparc.hpp)
  1907 void InterpreterMacroAssembler::add_monitor_to_stack( bool stack_is_empty,
  1908                                                       Register Rtemp,
  1909                                                       Register Rtemp2 ) {
  1911   Register Rlimit = Lmonitors;
  1912   const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
  1913   assert( (delta & LongAlignmentMask) == 0,
  1914           "sizeof BasicObjectLock must be even number of doublewords");
  1916   sub( SP,        delta, SP);
  1917   sub( Lesp,      delta, Lesp);
  1918   sub( Lmonitors, delta, Lmonitors);
  1920   if (!stack_is_empty) {
  1922     // must copy stack contents down
  1924     Label start_copying, next;
  1926     // untested("monitor stack expansion");
  1927     compute_stack_base(Rtemp);
  1928     ba( false, start_copying );
  1929     delayed()->cmp( Rtemp, Rlimit); // done? duplicated below
  1931     // note: must copy from low memory upwards
  1932     // On entry to loop,
  1933     // Rtemp points to new base of stack, Lesp points to new end of stack (1 past TOS)
  1934     // Loop mutates Rtemp
  1936     bind( next);
  1938     st_ptr(Rtemp2, Rtemp, 0);
  1939     inc(Rtemp, wordSize);
  1940     cmp(Rtemp, Rlimit); // are we done? (duplicated above)
  1942     bind( start_copying );
  1944     brx( notEqual, true, pn, next );
  1945     delayed()->ld_ptr( Rtemp, delta, Rtemp2 );
  1947     // done copying stack
  1951 // Locals
  1952 void InterpreterMacroAssembler::access_local_ptr( Register index, Register dst ) {
  1953   assert_not_delayed();
  1954   sll(index, Interpreter::logStackElementSize, index);
  1955   sub(Llocals, index, index);
  1956   ld_ptr(index, 0, dst);
  1957   // Note:  index must hold the effective address--the iinc template uses it
  1960 // Just like access_local_ptr but the tag is a returnAddress
  1961 void InterpreterMacroAssembler::access_local_returnAddress(Register index,
  1962                                                            Register dst ) {
  1963   assert_not_delayed();
  1964   sll(index, Interpreter::logStackElementSize, index);
  1965   sub(Llocals, index, index);
  1966   ld_ptr(index, 0, dst);
  1969 void InterpreterMacroAssembler::access_local_int( Register index, Register dst ) {
  1970   assert_not_delayed();
  1971   sll(index, Interpreter::logStackElementSize, index);
  1972   sub(Llocals, index, index);
  1973   ld(index, 0, dst);
  1974   // Note:  index must hold the effective address--the iinc template uses it
  1978 void InterpreterMacroAssembler::access_local_long( Register index, Register dst ) {
  1979   assert_not_delayed();
  1980   sll(index, Interpreter::logStackElementSize, index);
  1981   sub(Llocals, index, index);
  1982   // First half stored at index n+1 (which grows down from Llocals[n])
  1983   load_unaligned_long(index, Interpreter::local_offset_in_bytes(1), dst);
  1987 void InterpreterMacroAssembler::access_local_float( Register index, FloatRegister dst ) {
  1988   assert_not_delayed();
  1989   sll(index, Interpreter::logStackElementSize, index);
  1990   sub(Llocals, index, index);
  1991   ldf(FloatRegisterImpl::S, index, 0, dst);
  1995 void InterpreterMacroAssembler::access_local_double( Register index, FloatRegister dst ) {
  1996   assert_not_delayed();
  1997   sll(index, Interpreter::logStackElementSize, index);
  1998   sub(Llocals, index, index);
  1999   load_unaligned_double(index, Interpreter::local_offset_in_bytes(1), dst);
  2003 #ifdef ASSERT
  2004 void InterpreterMacroAssembler::check_for_regarea_stomp(Register Rindex, int offset, Register Rlimit, Register Rscratch, Register Rscratch1) {
  2005   Label L;
  2007   assert(Rindex != Rscratch, "Registers cannot be same");
  2008   assert(Rindex != Rscratch1, "Registers cannot be same");
  2009   assert(Rlimit != Rscratch, "Registers cannot be same");
  2010   assert(Rlimit != Rscratch1, "Registers cannot be same");
  2011   assert(Rscratch1 != Rscratch, "Registers cannot be same");
  2013   // untested("reg area corruption");
  2014   add(Rindex, offset, Rscratch);
  2015   add(Rlimit, 64 + STACK_BIAS, Rscratch1);
  2016   cmp(Rscratch, Rscratch1);
  2017   brx(Assembler::greaterEqualUnsigned, false, pn, L);
  2018   delayed()->nop();
  2019   stop("regsave area is being clobbered");
  2020   bind(L);
  2022 #endif // ASSERT
  2025 void InterpreterMacroAssembler::store_local_int( Register index, Register src ) {
  2026   assert_not_delayed();
  2027   sll(index, Interpreter::logStackElementSize, index);
  2028   sub(Llocals, index, index);
  2029   debug_only(check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);)
  2030   st(src, index, 0);
  2033 void InterpreterMacroAssembler::store_local_ptr( Register index, Register src ) {
  2034   assert_not_delayed();
  2035   sll(index, Interpreter::logStackElementSize, index);
  2036   sub(Llocals, index, index);
  2037 #ifdef ASSERT
  2038   check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);
  2039 #endif
  2040   st_ptr(src, index, 0);
  2045 void InterpreterMacroAssembler::store_local_ptr( int n, Register src ) {
  2046   st_ptr(src, Llocals, Interpreter::local_offset_in_bytes(n));
  2049 void InterpreterMacroAssembler::store_local_long( Register index, Register src ) {
  2050   assert_not_delayed();
  2051   sll(index, Interpreter::logStackElementSize, index);
  2052   sub(Llocals, index, index);
  2053 #ifdef ASSERT
  2054   check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
  2055 #endif
  2056   store_unaligned_long(src, index, Interpreter::local_offset_in_bytes(1)); // which is n+1
  2060 void InterpreterMacroAssembler::store_local_float( Register index, FloatRegister src ) {
  2061   assert_not_delayed();
  2062   sll(index, Interpreter::logStackElementSize, index);
  2063   sub(Llocals, index, index);
  2064 #ifdef ASSERT
  2065   check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);
  2066 #endif
  2067   stf(FloatRegisterImpl::S, src, index, 0);
  2071 void InterpreterMacroAssembler::store_local_double( Register index, FloatRegister src ) {
  2072   assert_not_delayed();
  2073   sll(index, Interpreter::logStackElementSize, index);
  2074   sub(Llocals, index, index);
  2075 #ifdef ASSERT
  2076   check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
  2077 #endif
  2078   store_unaligned_double(src, index, Interpreter::local_offset_in_bytes(1));
  2082 int InterpreterMacroAssembler::top_most_monitor_byte_offset() {
  2083   const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
  2084   int rounded_vm_local_words = ::round_to(frame::interpreter_frame_vm_local_words, WordsPerLong);
  2085   return ((-rounded_vm_local_words * wordSize) - delta ) + STACK_BIAS;
  2089 Address InterpreterMacroAssembler::top_most_monitor() {
  2090   return Address(FP, top_most_monitor_byte_offset());
  2094 void InterpreterMacroAssembler::compute_stack_base( Register Rdest ) {
  2095   add( Lesp,      wordSize,                                    Rdest );
  2098 #endif /* CC_INTERP */
  2100 void InterpreterMacroAssembler::increment_invocation_counter( Register Rtmp, Register Rtmp2 ) {
  2101   assert(UseCompiler, "incrementing must be useful");
  2102 #ifdef CC_INTERP
  2103   Address inv_counter(G5_method, methodOopDesc::invocation_counter_offset() +
  2104                                  InvocationCounter::counter_offset());
  2105   Address be_counter (G5_method, methodOopDesc::backedge_counter_offset() +
  2106                                  InvocationCounter::counter_offset());
  2107 #else
  2108   Address inv_counter(Lmethod, methodOopDesc::invocation_counter_offset() +
  2109                                InvocationCounter::counter_offset());
  2110   Address be_counter (Lmethod, methodOopDesc::backedge_counter_offset() +
  2111                                InvocationCounter::counter_offset());
  2112 #endif /* CC_INTERP */
  2113   int delta = InvocationCounter::count_increment;
  2115   // Load each counter in a register
  2116   ld( inv_counter, Rtmp );
  2117   ld( be_counter, Rtmp2 );
  2119   assert( is_simm13( delta ), " delta too large.");
  2121   // Add the delta to the invocation counter and store the result
  2122   add( Rtmp, delta, Rtmp );
  2124   // Mask the backedge counter
  2125   and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
  2127   // Store value
  2128   st( Rtmp, inv_counter);
  2130   // Add invocation counter + backedge counter
  2131   add( Rtmp, Rtmp2, Rtmp);
  2133   // Note that this macro must leave the backedge_count + invocation_count in Rtmp!
  2136 void InterpreterMacroAssembler::increment_backedge_counter( Register Rtmp, Register Rtmp2 ) {
  2137   assert(UseCompiler, "incrementing must be useful");
  2138 #ifdef CC_INTERP
  2139   Address be_counter (G5_method, methodOopDesc::backedge_counter_offset() +
  2140                                  InvocationCounter::counter_offset());
  2141   Address inv_counter(G5_method, methodOopDesc::invocation_counter_offset() +
  2142                                  InvocationCounter::counter_offset());
  2143 #else
  2144   Address be_counter (Lmethod, methodOopDesc::backedge_counter_offset() +
  2145                                InvocationCounter::counter_offset());
  2146   Address inv_counter(Lmethod, methodOopDesc::invocation_counter_offset() +
  2147                                InvocationCounter::counter_offset());
  2148 #endif /* CC_INTERP */
  2149   int delta = InvocationCounter::count_increment;
  2150   // Load each counter in a register
  2151   ld( be_counter, Rtmp );
  2152   ld( inv_counter, Rtmp2 );
  2154   // Add the delta to the backedge counter
  2155   add( Rtmp, delta, Rtmp );
  2157   // Mask the invocation counter, add to backedge counter
  2158   and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
  2160   // and store the result to memory
  2161   st( Rtmp, be_counter );
  2163   // Add backedge + invocation counter
  2164   add( Rtmp, Rtmp2, Rtmp );
  2166   // Note that this macro must leave backedge_count + invocation_count in Rtmp!
  2169 #ifndef CC_INTERP
  2170 void InterpreterMacroAssembler::test_backedge_count_for_osr( Register backedge_count,
  2171                                                              Register branch_bcp,
  2172                                                              Register Rtmp ) {
  2173   Label did_not_overflow;
  2174   Label overflow_with_error;
  2175   assert_different_registers(backedge_count, Rtmp, branch_bcp);
  2176   assert(UseOnStackReplacement,"Must UseOnStackReplacement to test_backedge_count_for_osr");
  2178   AddressLiteral limit(&InvocationCounter::InterpreterBackwardBranchLimit);
  2179   load_contents(limit, Rtmp);
  2180   cmp(backedge_count, Rtmp);
  2181   br(Assembler::lessUnsigned, false, Assembler::pt, did_not_overflow);
  2182   delayed()->nop();
  2184   // When ProfileInterpreter is on, the backedge_count comes from the
  2185   // methodDataOop, which value does not get reset on the call to
  2186   // frequency_counter_overflow().  To avoid excessive calls to the overflow
  2187   // routine while the method is being compiled, add a second test to make sure
  2188   // the overflow function is called only once every overflow_frequency.
  2189   if (ProfileInterpreter) {
  2190     const int overflow_frequency = 1024;
  2191     andcc(backedge_count, overflow_frequency-1, Rtmp);
  2192     brx(Assembler::notZero, false, Assembler::pt, did_not_overflow);
  2193     delayed()->nop();
  2196   // overflow in loop, pass branch bytecode
  2197   set(6,Rtmp);
  2198   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), branch_bcp, Rtmp);
  2200   // Was an OSR adapter generated?
  2201   // O0 = osr nmethod
  2202   tst(O0);
  2203   brx(Assembler::zero, false, Assembler::pn, overflow_with_error);
  2204   delayed()->nop();
  2206   // Has the nmethod been invalidated already?
  2207   ld(O0, nmethod::entry_bci_offset(), O2);
  2208   cmp(O2, InvalidOSREntryBci);
  2209   br(Assembler::equal, false, Assembler::pn, overflow_with_error);
  2210   delayed()->nop();
  2212   // migrate the interpreter frame off of the stack
  2214   mov(G2_thread, L7);
  2215   // save nmethod
  2216   mov(O0, L6);
  2217   set_last_Java_frame(SP, noreg);
  2218   call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), L7);
  2219   reset_last_Java_frame();
  2220   mov(L7, G2_thread);
  2222   // move OSR nmethod to I1
  2223   mov(L6, I1);
  2225   // OSR buffer to I0
  2226   mov(O0, I0);
  2228   // remove the interpreter frame
  2229   restore(I5_savedSP, 0, SP);
  2231   // Jump to the osr code.
  2232   ld_ptr(O1, nmethod::osr_entry_point_offset(), O2);
  2233   jmp(O2, G0);
  2234   delayed()->nop();
  2236   bind(overflow_with_error);
  2238   bind(did_not_overflow);
  2243 void InterpreterMacroAssembler::interp_verify_oop(Register reg, TosState state, const char * file, int line) {
  2244   if (state == atos) { MacroAssembler::_verify_oop(reg, "broken oop ", file, line); }
  2248 // local helper function for the verify_oop_or_return_address macro
  2249 static bool verify_return_address(methodOopDesc* m, int bci) {
  2250 #ifndef PRODUCT
  2251   address pc = (address)(m->constMethod())
  2252              + in_bytes(constMethodOopDesc::codes_offset()) + bci;
  2253   // assume it is a valid return address if it is inside m and is preceded by a jsr
  2254   if (!m->contains(pc))                                          return false;
  2255   address jsr_pc;
  2256   jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr);
  2257   if (*jsr_pc == Bytecodes::_jsr   && jsr_pc >= m->code_base())    return true;
  2258   jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr_w);
  2259   if (*jsr_pc == Bytecodes::_jsr_w && jsr_pc >= m->code_base())    return true;
  2260 #endif // PRODUCT
  2261   return false;
  2265 void InterpreterMacroAssembler::verify_oop_or_return_address(Register reg, Register Rtmp) {
  2266   if (!VerifyOops)  return;
  2267   // the VM documentation for the astore[_wide] bytecode allows
  2268   // the TOS to be not only an oop but also a return address
  2269   Label test;
  2270   Label skip;
  2271   // See if it is an address (in the current method):
  2273   mov(reg, Rtmp);
  2274   const int log2_bytecode_size_limit = 16;
  2275   srl(Rtmp, log2_bytecode_size_limit, Rtmp);
  2276   br_notnull( Rtmp, false, pt, test );
  2277   delayed()->nop();
  2279   // %%% should use call_VM_leaf here?
  2280   save_frame_and_mov(0, Lmethod, O0, reg, O1);
  2281   save_thread(L7_thread_cache);
  2282   call(CAST_FROM_FN_PTR(address,verify_return_address), relocInfo::none);
  2283   delayed()->nop();
  2284   restore_thread(L7_thread_cache);
  2285   br_notnull( O0, false, pt, skip );
  2286   delayed()->restore();
  2288   // Perform a more elaborate out-of-line call
  2289   // Not an address; verify it:
  2290   bind(test);
  2291   verify_oop(reg);
  2292   bind(skip);
  2296 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
  2297   if (state == ftos || state == dtos) MacroAssembler::verify_FPU(stack_depth);
  2299 #endif /* CC_INTERP */
  2301 // Inline assembly for:
  2302 //
  2303 // if (thread is in interp_only_mode) {
  2304 //   InterpreterRuntime::post_method_entry();
  2305 // }
  2306 // if (DTraceMethodProbes) {
  2307 //   SharedRuntime::dtrace_method_entry(method, receiver);
  2308 // }
  2309 // if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
  2310 //   SharedRuntime::rc_trace_method_entry(method, receiver);
  2311 // }
  2313 void InterpreterMacroAssembler::notify_method_entry() {
  2315   // C++ interpreter only uses this for native methods.
  2317   // Whenever JVMTI puts a thread in interp_only_mode, method
  2318   // entry/exit events are sent for that thread to track stack
  2319   // depth.  If it is possible to enter interp_only_mode we add
  2320   // the code to check if the event should be sent.
  2321   if (JvmtiExport::can_post_interpreter_events()) {
  2322     Label L;
  2323     Register temp_reg = O5;
  2324     const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
  2325     ld(interp_only, temp_reg);
  2326     tst(temp_reg);
  2327     br(zero, false, pt, L);
  2328     delayed()->nop();
  2329     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
  2330     bind(L);
  2334     Register temp_reg = O5;
  2335     SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
  2336     call_VM_leaf(noreg,
  2337       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
  2338       G2_thread, Lmethod);
  2341   // RedefineClasses() tracing support for obsolete method entry
  2342   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
  2343     call_VM_leaf(noreg,
  2344       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
  2345       G2_thread, Lmethod);
  2350 // Inline assembly for:
  2351 //
  2352 // if (thread is in interp_only_mode) {
  2353 //   // save result
  2354 //   InterpreterRuntime::post_method_exit();
  2355 //   // restore result
  2356 // }
  2357 // if (DTraceMethodProbes) {
  2358 //   SharedRuntime::dtrace_method_exit(thread, method);
  2359 // }
  2360 //
  2361 // Native methods have their result stored in d_tmp and l_tmp
  2362 // Java methods have their result stored in the expression stack
  2364 void InterpreterMacroAssembler::notify_method_exit(bool is_native_method,
  2365                                                    TosState state,
  2366                                                    NotifyMethodExitMode mode) {
  2367   // C++ interpreter only uses this for native methods.
  2369   // Whenever JVMTI puts a thread in interp_only_mode, method
  2370   // entry/exit events are sent for that thread to track stack
  2371   // depth.  If it is possible to enter interp_only_mode we add
  2372   // the code to check if the event should be sent.
  2373   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
  2374     Label L;
  2375     Register temp_reg = O5;
  2376     const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
  2377     ld(interp_only, temp_reg);
  2378     tst(temp_reg);
  2379     br(zero, false, pt, L);
  2380     delayed()->nop();
  2382     // Note: frame::interpreter_frame_result has a dependency on how the
  2383     // method result is saved across the call to post_method_exit. For
  2384     // native methods it assumes the result registers are saved to
  2385     // l_scratch and d_scratch. If this changes then the interpreter_frame_result
  2386     // implementation will need to be updated too.
  2388     save_return_value(state, is_native_method);
  2389     call_VM(noreg,
  2390             CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
  2391     restore_return_value(state, is_native_method);
  2392     bind(L);
  2396     Register temp_reg = O5;
  2397     // Dtrace notification
  2398     SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
  2399     save_return_value(state, is_native_method);
  2400     call_VM_leaf(
  2401       noreg,
  2402       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
  2403       G2_thread, Lmethod);
  2404     restore_return_value(state, is_native_method);
  2408 void InterpreterMacroAssembler::save_return_value(TosState state, bool is_native_call) {
  2409 #ifdef CC_INTERP
  2410   // result potentially in O0/O1: save it across calls
  2411   stf(FloatRegisterImpl::D, F0, STATE(_native_fresult));
  2412 #ifdef _LP64
  2413   stx(O0, STATE(_native_lresult));
  2414 #else
  2415   std(O0, STATE(_native_lresult));
  2416 #endif
  2417 #else // CC_INTERP
  2418   if (is_native_call) {
  2419     stf(FloatRegisterImpl::D, F0, d_tmp);
  2420 #ifdef _LP64
  2421     stx(O0, l_tmp);
  2422 #else
  2423     std(O0, l_tmp);
  2424 #endif
  2425   } else {
  2426     push(state);
  2428 #endif // CC_INTERP
  2431 void InterpreterMacroAssembler::restore_return_value( TosState state, bool is_native_call) {
  2432 #ifdef CC_INTERP
  2433   ldf(FloatRegisterImpl::D, STATE(_native_fresult), F0);
  2434 #ifdef _LP64
  2435   ldx(STATE(_native_lresult), O0);
  2436 #else
  2437   ldd(STATE(_native_lresult), O0);
  2438 #endif
  2439 #else // CC_INTERP
  2440   if (is_native_call) {
  2441     ldf(FloatRegisterImpl::D, d_tmp, F0);
  2442 #ifdef _LP64
  2443     ldx(l_tmp, O0);
  2444 #else
  2445     ldd(l_tmp, O0);
  2446 #endif
  2447   } else {
  2448     pop(state);
  2450 #endif // CC_INTERP
  2453 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
  2454 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
  2455                                                         int increment, int mask,
  2456                                                         Register scratch1, Register scratch2,
  2457                                                         Condition cond, Label *where) {
  2458   ld(counter_addr, scratch1);
  2459   add(scratch1, increment, scratch1);
  2460   if (is_simm13(mask)) {
  2461     andcc(scratch1, mask, G0);
  2462   } else {
  2463     set(mask, scratch2);
  2464     andcc(scratch1, scratch2,  G0);
  2466   br(cond, false, Assembler::pn, *where);
  2467   delayed()->st(scratch1, counter_addr);

mercurial