src/cpu/sparc/vm/assembler_sparc.inline.hpp

Tue, 30 Nov 2010 23:23:40 -0800

author
iveresov
date
Tue, 30 Nov 2010 23:23:40 -0800
changeset 2344
ac637b7220d1
parent 2314
f95d63e2154a
child 2350
2f644f85485d
permissions
-rw-r--r--

6985015: C1 needs to support compressed oops
Summary: This change implements compressed oops for C1 for x64 and sparc. The changes are mostly on the codegen level, with a few exceptions when we do access things outside of the heap that are uncompressed from the IR. Compressed oops are now also enabled with tiered.
Reviewed-by: twisti, kvn, never, phh

     1 /*
     2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef CPU_SPARC_VM_ASSEMBLER_SPARC_INLINE_HPP
    26 #define CPU_SPARC_VM_ASSEMBLER_SPARC_INLINE_HPP
    28 #include "asm/assembler.inline.hpp"
    29 #include "asm/codeBuffer.hpp"
    30 #include "code/codeCache.hpp"
    31 #include "runtime/handles.inline.hpp"
    33 inline void MacroAssembler::pd_patch_instruction(address branch, address target) {
    34   jint& stub_inst = *(jint*) branch;
    35   stub_inst = patched_branch(target - branch, stub_inst, 0);
    36 }
    38 #ifndef PRODUCT
    39 inline void MacroAssembler::pd_print_patched_instruction(address branch) {
    40   jint stub_inst = *(jint*) branch;
    41   print_instruction(stub_inst);
    42   ::tty->print("%s", " (unresolved)");
    43 }
    44 #endif // PRODUCT
    46 inline bool Address::is_simm13(int offset) { return Assembler::is_simm13(disp() + offset); }
    49 inline int AddressLiteral::low10() const {
    50   return Assembler::low10(value());
    51 }
    54 // inlines for SPARC assembler -- dmu 5/97
    56 inline void Assembler::check_delay() {
    57 # ifdef CHECK_DELAY
    58   guarantee( delay_state != at_delay_slot, "must say delayed() when filling delay slot");
    59   delay_state = no_delay;
    60 # endif
    61 }
    63 inline void Assembler::emit_long(int x) {
    64   check_delay();
    65   AbstractAssembler::emit_long(x);
    66 }
    68 inline void Assembler::emit_data(int x, relocInfo::relocType rtype) {
    69   relocate(rtype);
    70   emit_long(x);
    71 }
    73 inline void Assembler::emit_data(int x, RelocationHolder const& rspec) {
    74   relocate(rspec);
    75   emit_long(x);
    76 }
    79 inline void Assembler::add(Register s1, Register s2, Register d )                             { emit_long( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | rs2(s2) ); }
    80 inline void Assembler::add(Register s1, int simm13a, Register d, relocInfo::relocType rtype ) { emit_data( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rtype ); }
    81 inline void Assembler::add(Register s1, int simm13a, Register d, RelocationHolder const& rspec ) { emit_data( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rspec ); }
    83 inline void Assembler::bpr( RCondition c, bool a, Predict p, Register s1, address d, relocInfo::relocType rt ) { v9_only();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(bpr_op2) | wdisp16(intptr_t(d), intptr_t(pc())) | predict(p) | rs1(s1), rt);  has_delay_slot(); }
    84 inline void Assembler::bpr( RCondition c, bool a, Predict p, Register s1, Label& L) { bpr( c, a, p, s1, target(L)); }
    86 inline void Assembler::fb( Condition c, bool a, address d, relocInfo::relocType rt ) { v9_dep();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(fb_op2) | wdisp(intptr_t(d), intptr_t(pc()), 22), rt);  has_delay_slot(); }
    87 inline void Assembler::fb( Condition c, bool a, Label& L ) { fb(c, a, target(L)); }
    89 inline void Assembler::fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) { v9_only();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(fbp_op2) | branchcc(cc) | predict(p) | wdisp(intptr_t(d), intptr_t(pc()), 19), rt);  has_delay_slot(); }
    90 inline void Assembler::fbp( Condition c, bool a, CC cc, Predict p, Label& L ) { fbp(c, a, cc, p, target(L)); }
    92 inline void Assembler::cb( Condition c, bool a, address d, relocInfo::relocType rt ) { v8_only();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(cb_op2) | wdisp(intptr_t(d), intptr_t(pc()), 22), rt);  has_delay_slot(); }
    93 inline void Assembler::cb( Condition c, bool a, Label& L ) { cb(c, a, target(L)); }
    95 inline void Assembler::br( Condition c, bool a, address d, relocInfo::relocType rt ) { v9_dep();   emit_data( op(branch_op) | annul(a) | cond(c) | op2(br_op2) | wdisp(intptr_t(d), intptr_t(pc()), 22), rt);  has_delay_slot(); }
    96 inline void Assembler::br( Condition c, bool a, Label& L ) { br(c, a, target(L)); }
    98 inline void Assembler::bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) { v9_only();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(bp_op2) | branchcc(cc) | predict(p) | wdisp(intptr_t(d), intptr_t(pc()), 19), rt);  has_delay_slot(); }
    99 inline void Assembler::bp( Condition c, bool a, CC cc, Predict p, Label& L ) { bp(c, a, cc, p, target(L)); }
   101 inline void Assembler::call( address d,  relocInfo::relocType rt ) { emit_data( op(call_op) | wdisp(intptr_t(d), intptr_t(pc()), 30), rt);  has_delay_slot(); assert(rt != relocInfo::virtual_call_type, "must use virtual_call_Relocation::spec"); }
   102 inline void Assembler::call( Label& L,   relocInfo::relocType rt ) { call( target(L), rt); }
   104 inline void Assembler::flush( Register s1, Register s2) { emit_long( op(arith_op) | op3(flush_op3) | rs1(s1) | rs2(s2)); }
   105 inline void Assembler::flush( Register s1, int simm13a) { emit_data( op(arith_op) | op3(flush_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   107 inline void Assembler::jmpl( Register s1, Register s2, Register d                          ) { emit_long( op(arith_op) | rd(d) | op3(jmpl_op3) | rs1(s1) | rs2(s2));  has_delay_slot(); }
   108 inline void Assembler::jmpl( Register s1, int simm13a, Register d, RelocationHolder const& rspec ) { emit_data( op(arith_op) | rd(d) | op3(jmpl_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rspec);  has_delay_slot(); }
   110 inline void Assembler::ldf(FloatRegisterImpl::Width w, Register s1, RegisterOrConstant s2, FloatRegister d) {
   111   if (s2.is_register()) ldf(w, s1, s2.as_register(), d);
   112   else                  ldf(w, s1, s2.as_constant(), d);
   113 }
   115 inline void Assembler::ldf(FloatRegisterImpl::Width w, Register s1, Register s2, FloatRegister d) { emit_long( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3, w) | rs1(s1) | rs2(s2) ); }
   116 inline void Assembler::ldf(FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d, RelocationHolder const& rspec) { emit_data( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13), rspec); }
   118 inline void Assembler::ldf(FloatRegisterImpl::Width w, const Address& a, FloatRegister d, int offset) { relocate(a.rspec(offset)); ldf( w, a.base(), a.disp() + offset, d); }
   120 inline void Assembler::ldfsr(  Register s1, Register s2) { v9_dep();   emit_long( op(ldst_op) |             op3(ldfsr_op3) | rs1(s1) | rs2(s2) ); }
   121 inline void Assembler::ldfsr(  Register s1, int simm13a) { v9_dep();   emit_data( op(ldst_op) |             op3(ldfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   122 inline void Assembler::ldxfsr( Register s1, Register s2) { v9_only();  emit_long( op(ldst_op) | rd(G1)    | op3(ldfsr_op3) | rs1(s1) | rs2(s2) ); }
   123 inline void Assembler::ldxfsr( Register s1, int simm13a) { v9_only();  emit_data( op(ldst_op) | rd(G1)    | op3(ldfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   125 inline void Assembler::ldc(   Register s1, Register s2, int crd) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(ldc_op3  ) | rs1(s1) | rs2(s2) ); }
   126 inline void Assembler::ldc(   Register s1, int simm13a, int crd) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(ldc_op3  ) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   127 inline void Assembler::lddc(  Register s1, Register s2, int crd) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(lddc_op3 ) | rs1(s1) | rs2(s2) ); }
   128 inline void Assembler::lddc(  Register s1, int simm13a, int crd) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(lddc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   129 inline void Assembler::ldcsr( Register s1, Register s2, int crd) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(ldcsr_op3) | rs1(s1) | rs2(s2) ); }
   130 inline void Assembler::ldcsr( Register s1, int simm13a, int crd) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(ldcsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   132 inline void Assembler::ldsb(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldsb_op3) | rs1(s1) | rs2(s2) ); }
   133 inline void Assembler::ldsb(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldsb_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   135 inline void Assembler::ldsh(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldsh_op3) | rs1(s1) | rs2(s2) ); }
   136 inline void Assembler::ldsh(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldsh_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   137 inline void Assembler::ldsw(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldsw_op3) | rs1(s1) | rs2(s2) ); }
   138 inline void Assembler::ldsw(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldsw_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   139 inline void Assembler::ldub(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldub_op3) | rs1(s1) | rs2(s2) ); }
   140 inline void Assembler::ldub(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldub_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   141 inline void Assembler::lduh(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(lduh_op3) | rs1(s1) | rs2(s2) ); }
   142 inline void Assembler::lduh(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(lduh_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   143 inline void Assembler::lduw(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(lduw_op3) | rs1(s1) | rs2(s2) ); }
   144 inline void Assembler::lduw(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(lduw_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   146 inline void Assembler::ldx(   Register s1, Register s2, Register d) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(ldx_op3) | rs1(s1) | rs2(s2) ); }
   147 inline void Assembler::ldx(   Register s1, int simm13a, Register d) { v9_only();  emit_data( op(ldst_op) | rd(d) | op3(ldx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   148 inline void Assembler::ldd(   Register s1, Register s2, Register d) { v9_dep(); assert(d->is_even(), "not even"); emit_long( op(ldst_op) | rd(d) | op3(ldd_op3) | rs1(s1) | rs2(s2) ); }
   149 inline void Assembler::ldd(   Register s1, int simm13a, Register d) { v9_dep(); assert(d->is_even(), "not even"); emit_data( op(ldst_op) | rd(d) | op3(ldd_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   151 #ifdef _LP64
   152 // Make all 32 bit loads signed so 64 bit registers maintain proper sign
   153 inline void Assembler::ld(  Register s1, Register s2, Register d)      { ldsw( s1, s2, d); }
   154 inline void Assembler::ld(  Register s1, int simm13a, Register d)      { ldsw( s1, simm13a, d); }
   155 #else
   156 inline void Assembler::ld(  Register s1, Register s2, Register d)      { lduw( s1, s2, d); }
   157 inline void Assembler::ld(  Register s1, int simm13a, Register d)      { lduw( s1, simm13a, d); }
   158 #endif
   160 #ifdef ASSERT
   161   // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
   162 # ifdef _LP64
   163 inline void Assembler::ld(  Register s1, ByteSize simm13a, Register d) { ldsw( s1, in_bytes(simm13a), d); }
   164 # else
   165 inline void Assembler::ld(  Register s1, ByteSize simm13a, Register d) { lduw( s1, in_bytes(simm13a), d); }
   166 # endif
   167 #endif
   169 inline void Assembler::ld(  const Address& a, Register d, int offset) {
   170   if (a.has_index()) { assert(offset == 0, ""); ld(  a.base(), a.index(),         d); }
   171   else               {                          ld(  a.base(), a.disp() + offset, d); }
   172 }
   173 inline void Assembler::ldsb(const Address& a, Register d, int offset) {
   174   if (a.has_index()) { assert(offset == 0, ""); ldsb(a.base(), a.index(),         d); }
   175   else               {                          ldsb(a.base(), a.disp() + offset, d); }
   176 }
   177 inline void Assembler::ldsh(const Address& a, Register d, int offset) {
   178   if (a.has_index()) { assert(offset == 0, ""); ldsh(a.base(), a.index(),         d); }
   179   else               {                          ldsh(a.base(), a.disp() + offset, d); }
   180 }
   181 inline void Assembler::ldsw(const Address& a, Register d, int offset) {
   182   if (a.has_index()) { assert(offset == 0, ""); ldsw(a.base(), a.index(),         d); }
   183   else               {                          ldsw(a.base(), a.disp() + offset, d); }
   184 }
   185 inline void Assembler::ldub(const Address& a, Register d, int offset) {
   186   if (a.has_index()) { assert(offset == 0, ""); ldub(a.base(), a.index(),         d); }
   187   else               {                          ldub(a.base(), a.disp() + offset, d); }
   188 }
   189 inline void Assembler::lduh(const Address& a, Register d, int offset) {
   190   if (a.has_index()) { assert(offset == 0, ""); lduh(a.base(), a.index(),         d); }
   191   else               {                          lduh(a.base(), a.disp() + offset, d); }
   192 }
   193 inline void Assembler::lduw(const Address& a, Register d, int offset) {
   194   if (a.has_index()) { assert(offset == 0, ""); lduw(a.base(), a.index(),         d); }
   195   else               {                          lduw(a.base(), a.disp() + offset, d); }
   196 }
   197 inline void Assembler::ldd( const Address& a, Register d, int offset) {
   198   if (a.has_index()) { assert(offset == 0, ""); ldd( a.base(), a.index(),         d); }
   199   else               {                          ldd( a.base(), a.disp() + offset, d); }
   200 }
   201 inline void Assembler::ldx( const Address& a, Register d, int offset) {
   202   if (a.has_index()) { assert(offset == 0, ""); ldx( a.base(), a.index(),         d); }
   203   else               {                          ldx( a.base(), a.disp() + offset, d); }
   204 }
   206 inline void Assembler::ldub(Register s1, RegisterOrConstant s2, Register d) { ldub(Address(s1, s2), d); }
   207 inline void Assembler::ldsb(Register s1, RegisterOrConstant s2, Register d) { ldsb(Address(s1, s2), d); }
   208 inline void Assembler::lduh(Register s1, RegisterOrConstant s2, Register d) { lduh(Address(s1, s2), d); }
   209 inline void Assembler::ldsh(Register s1, RegisterOrConstant s2, Register d) { ldsh(Address(s1, s2), d); }
   210 inline void Assembler::lduw(Register s1, RegisterOrConstant s2, Register d) { lduw(Address(s1, s2), d); }
   211 inline void Assembler::ldsw(Register s1, RegisterOrConstant s2, Register d) { ldsw(Address(s1, s2), d); }
   212 inline void Assembler::ldx( Register s1, RegisterOrConstant s2, Register d) { ldx( Address(s1, s2), d); }
   213 inline void Assembler::ld(  Register s1, RegisterOrConstant s2, Register d) { ld(  Address(s1, s2), d); }
   214 inline void Assembler::ldd( Register s1, RegisterOrConstant s2, Register d) { ldd( Address(s1, s2), d); }
   216 // form effective addresses this way:
   217 inline void Assembler::add(const Address& a, Register d, int offset) {
   218   if (a.has_index())   add(a.base(), a.index(),         d);
   219   else               { add(a.base(), a.disp() + offset, d, a.rspec(offset)); offset = 0; }
   220   if (offset != 0)     add(d,        offset,            d);
   221 }
   222 inline void Assembler::add(Register s1, RegisterOrConstant s2, Register d, int offset) {
   223   if (s2.is_register())  add(s1, s2.as_register(),          d);
   224   else                 { add(s1, s2.as_constant() + offset, d); offset = 0; }
   225   if (offset != 0)       add(d,  offset,                    d);
   226 }
   228 inline void Assembler::andn(Register s1, RegisterOrConstant s2, Register d) {
   229   if (s2.is_register())  andn(s1, s2.as_register(), d);
   230   else                   andn(s1, s2.as_constant(), d);
   231 }
   233 inline void Assembler::ldstub(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldstub_op3) | rs1(s1) | rs2(s2) ); }
   234 inline void Assembler::ldstub(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldstub_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   237 inline void Assembler::prefetch(Register s1, Register s2, PrefetchFcn f) { v9_only();  emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | rs2(s2) ); }
   238 inline void Assembler::prefetch(Register s1, int simm13a, PrefetchFcn f) { v9_only();  emit_data( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   240 inline void Assembler::prefetch(const Address& a, PrefetchFcn f, int offset) { v9_only(); relocate(a.rspec(offset)); prefetch(a.base(), a.disp() + offset, f); }
   243 inline void Assembler::rett( Register s1, Register s2                         ) { emit_long( op(arith_op) | op3(rett_op3) | rs1(s1) | rs2(s2));  has_delay_slot(); }
   244 inline void Assembler::rett( Register s1, int simm13a, relocInfo::relocType rt) { emit_data( op(arith_op) | op3(rett_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rt);  has_delay_slot(); }
   246 inline void Assembler::sethi( int imm22a, Register d, RelocationHolder const& rspec ) { emit_data( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(imm22a), rspec); }
   248   // pp 222
   250 inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, RegisterOrConstant s2) {
   251   if (s2.is_register()) stf(w, d, s1, s2.as_register());
   252   else                  stf(w, d, s1, s2.as_constant());
   253 }
   255 inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2) { emit_long( op(ldst_op) | fd(d, w) | alt_op3(stf_op3, w) | rs1(s1) | rs2(s2) ); }
   256 inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a) { emit_data( op(ldst_op) | fd(d, w) | alt_op3(stf_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   258 inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, const Address& a, int offset) { relocate(a.rspec(offset)); stf(w, d, a.base(), a.disp() + offset); }
   260 inline void Assembler::stfsr(  Register s1, Register s2) { v9_dep();   emit_long( op(ldst_op) |             op3(stfsr_op3) | rs1(s1) | rs2(s2) ); }
   261 inline void Assembler::stfsr(  Register s1, int simm13a) { v9_dep();   emit_data( op(ldst_op) |             op3(stfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   262 inline void Assembler::stxfsr( Register s1, Register s2) { v9_only();  emit_long( op(ldst_op) | rd(G1)    | op3(stfsr_op3) | rs1(s1) | rs2(s2) ); }
   263 inline void Assembler::stxfsr( Register s1, int simm13a) { v9_only();  emit_data( op(ldst_op) | rd(G1)    | op3(stfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   265   // p 226
   267 inline void Assembler::stb(  Register d, Register s1, Register s2) { emit_long( op(ldst_op) | rd(d) | op3(stb_op3) | rs1(s1) | rs2(s2) ); }
   268 inline void Assembler::stb(  Register d, Register s1, int simm13a) { emit_data( op(ldst_op) | rd(d) | op3(stb_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   269 inline void Assembler::sth(  Register d, Register s1, Register s2) { emit_long( op(ldst_op) | rd(d) | op3(sth_op3) | rs1(s1) | rs2(s2) ); }
   270 inline void Assembler::sth(  Register d, Register s1, int simm13a) { emit_data( op(ldst_op) | rd(d) | op3(sth_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   271 inline void Assembler::stw(  Register d, Register s1, Register s2) { emit_long( op(ldst_op) | rd(d) | op3(stw_op3) | rs1(s1) | rs2(s2) ); }
   272 inline void Assembler::stw(  Register d, Register s1, int simm13a) { emit_data( op(ldst_op) | rd(d) | op3(stw_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   275 inline void Assembler::stx(  Register d, Register s1, Register s2) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(stx_op3) | rs1(s1) | rs2(s2) ); }
   276 inline void Assembler::stx(  Register d, Register s1, int simm13a) { v9_only();  emit_data( op(ldst_op) | rd(d) | op3(stx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   277 inline void Assembler::std(  Register d, Register s1, Register s2) { v9_dep(); assert(d->is_even(), "not even"); emit_long( op(ldst_op) | rd(d) | op3(std_op3) | rs1(s1) | rs2(s2) ); }
   278 inline void Assembler::std(  Register d, Register s1, int simm13a) { v9_dep(); assert(d->is_even(), "not even"); emit_data( op(ldst_op) | rd(d) | op3(std_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   280 inline void Assembler::st( Register d, Register s1, Register s2)      { stw(d, s1, s2); }
   281 inline void Assembler::st( Register d, Register s1, int simm13a)      { stw(d, s1, simm13a); }
   283 #ifdef ASSERT
   284 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
   285 inline void Assembler::st( Register d, Register s1, ByteSize simm13a) { stw(d, s1, in_bytes(simm13a)); }
   286 #endif
   288 inline void Assembler::stb(Register d, const Address& a, int offset) {
   289   if (a.has_index()) { assert(offset == 0, ""); stb(d, a.base(), a.index()        ); }
   290   else               {                          stb(d, a.base(), a.disp() + offset); }
   291 }
   292 inline void Assembler::sth(Register d, const Address& a, int offset) {
   293   if (a.has_index()) { assert(offset == 0, ""); sth(d, a.base(), a.index()        ); }
   294   else               {                          sth(d, a.base(), a.disp() + offset); }
   295 }
   296 inline void Assembler::stw(Register d, const Address& a, int offset) {
   297   if (a.has_index()) { assert(offset == 0, ""); stw(d, a.base(), a.index()        ); }
   298   else               {                          stw(d, a.base(), a.disp() + offset); }
   299 }
   300 inline void Assembler::st( Register d, const Address& a, int offset) {
   301   if (a.has_index()) { assert(offset == 0, ""); st( d, a.base(), a.index()        ); }
   302   else               {                          st( d, a.base(), a.disp() + offset); }
   303 }
   304 inline void Assembler::std(Register d, const Address& a, int offset) {
   305   if (a.has_index()) { assert(offset == 0, ""); std(d, a.base(), a.index()        ); }
   306   else               {                          std(d, a.base(), a.disp() + offset); }
   307 }
   308 inline void Assembler::stx(Register d, const Address& a, int offset) {
   309   if (a.has_index()) { assert(offset == 0, ""); stx(d, a.base(), a.index()        ); }
   310   else               {                          stx(d, a.base(), a.disp() + offset); }
   311 }
   313 inline void Assembler::stb(Register d, Register s1, RegisterOrConstant s2) { stb(d, Address(s1, s2)); }
   314 inline void Assembler::sth(Register d, Register s1, RegisterOrConstant s2) { sth(d, Address(s1, s2)); }
   315 inline void Assembler::stw(Register d, Register s1, RegisterOrConstant s2) { stw(d, Address(s1, s2)); }
   316 inline void Assembler::stx(Register d, Register s1, RegisterOrConstant s2) { stx(d, Address(s1, s2)); }
   317 inline void Assembler::std(Register d, Register s1, RegisterOrConstant s2) { std(d, Address(s1, s2)); }
   318 inline void Assembler::st( Register d, Register s1, RegisterOrConstant s2) { st( d, Address(s1, s2)); }
   320 // v8 p 99
   322 inline void Assembler::stc(    int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stc_op3 ) | rs1(s1) | rs2(s2) ); }
   323 inline void Assembler::stc(    int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   324 inline void Assembler::stdc(   int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stdc_op3) | rs1(s1) | rs2(s2) ); }
   325 inline void Assembler::stdc(   int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stdc_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   326 inline void Assembler::stcsr(  int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stcsr_op3) | rs1(s1) | rs2(s2) ); }
   327 inline void Assembler::stcsr(  int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stcsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   328 inline void Assembler::stdcq(  int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stdcq_op3) | rs1(s1) | rs2(s2) ); }
   329 inline void Assembler::stdcq(  int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stdcq_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   332 // pp 231
   334 inline void Assembler::swap(    Register s1, Register s2, Register d) { v9_dep();  emit_long( op(ldst_op) | rd(d) | op3(swap_op3) | rs1(s1) | rs2(s2) ); }
   335 inline void Assembler::swap(    Register s1, int simm13a, Register d) { v9_dep();  emit_data( op(ldst_op) | rd(d) | op3(swap_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   337 inline void Assembler::swap(    Address& a, Register d, int offset ) { relocate(a.rspec(offset)); swap(  a.base(), a.disp() + offset, d ); }
   340 // Use the right loads/stores for the platform
   341 inline void MacroAssembler::ld_ptr( Register s1, Register s2, Register d ) {
   342 #ifdef _LP64
   343   Assembler::ldx(s1, s2, d);
   344 #else
   345   Assembler::ld( s1, s2, d);
   346 #endif
   347 }
   349 inline void MacroAssembler::ld_ptr( Register s1, int simm13a, Register d ) {
   350 #ifdef _LP64
   351   Assembler::ldx(s1, simm13a, d);
   352 #else
   353   Assembler::ld( s1, simm13a, d);
   354 #endif
   355 }
   357 #ifdef ASSERT
   358 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
   359 inline void MacroAssembler::ld_ptr( Register s1, ByteSize simm13a, Register d ) {
   360   ld_ptr(s1, in_bytes(simm13a), d);
   361 }
   362 #endif
   364 inline void MacroAssembler::ld_ptr( Register s1, RegisterOrConstant s2, Register d ) {
   365 #ifdef _LP64
   366   Assembler::ldx(s1, s2, d);
   367 #else
   368   Assembler::ld( s1, s2, d);
   369 #endif
   370 }
   372 inline void MacroAssembler::ld_ptr(const Address& a, Register d, int offset) {
   373 #ifdef _LP64
   374   Assembler::ldx(a, d, offset);
   375 #else
   376   Assembler::ld( a, d, offset);
   377 #endif
   378 }
   380 inline void MacroAssembler::st_ptr( Register d, Register s1, Register s2 ) {
   381 #ifdef _LP64
   382   Assembler::stx(d, s1, s2);
   383 #else
   384   Assembler::st( d, s1, s2);
   385 #endif
   386 }
   388 inline void MacroAssembler::st_ptr( Register d, Register s1, int simm13a ) {
   389 #ifdef _LP64
   390   Assembler::stx(d, s1, simm13a);
   391 #else
   392   Assembler::st( d, s1, simm13a);
   393 #endif
   394 }
   396 #ifdef ASSERT
   397 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
   398 inline void MacroAssembler::st_ptr( Register d, Register s1, ByteSize simm13a ) {
   399   st_ptr(d, s1, in_bytes(simm13a));
   400 }
   401 #endif
   403 inline void MacroAssembler::st_ptr( Register d, Register s1, RegisterOrConstant s2 ) {
   404 #ifdef _LP64
   405   Assembler::stx(d, s1, s2);
   406 #else
   407   Assembler::st( d, s1, s2);
   408 #endif
   409 }
   411 inline void MacroAssembler::st_ptr(Register d, const Address& a, int offset) {
   412 #ifdef _LP64
   413   Assembler::stx(d, a, offset);
   414 #else
   415   Assembler::st( d, a, offset);
   416 #endif
   417 }
   419 // Use the right loads/stores for the platform
   420 inline void MacroAssembler::ld_long( Register s1, Register s2, Register d ) {
   421 #ifdef _LP64
   422   Assembler::ldx(s1, s2, d);
   423 #else
   424   Assembler::ldd(s1, s2, d);
   425 #endif
   426 }
   428 inline void MacroAssembler::ld_long( Register s1, int simm13a, Register d ) {
   429 #ifdef _LP64
   430   Assembler::ldx(s1, simm13a, d);
   431 #else
   432   Assembler::ldd(s1, simm13a, d);
   433 #endif
   434 }
   436 inline void MacroAssembler::ld_long( Register s1, RegisterOrConstant s2, Register d ) {
   437 #ifdef _LP64
   438   Assembler::ldx(s1, s2, d);
   439 #else
   440   Assembler::ldd(s1, s2, d);
   441 #endif
   442 }
   444 inline void MacroAssembler::ld_long(const Address& a, Register d, int offset) {
   445 #ifdef _LP64
   446   Assembler::ldx(a, d, offset);
   447 #else
   448   Assembler::ldd(a, d, offset);
   449 #endif
   450 }
   452 inline void MacroAssembler::st_long( Register d, Register s1, Register s2 ) {
   453 #ifdef _LP64
   454   Assembler::stx(d, s1, s2);
   455 #else
   456   Assembler::std(d, s1, s2);
   457 #endif
   458 }
   460 inline void MacroAssembler::st_long( Register d, Register s1, int simm13a ) {
   461 #ifdef _LP64
   462   Assembler::stx(d, s1, simm13a);
   463 #else
   464   Assembler::std(d, s1, simm13a);
   465 #endif
   466 }
   468 inline void MacroAssembler::st_long( Register d, Register s1, RegisterOrConstant s2 ) {
   469 #ifdef _LP64
   470   Assembler::stx(d, s1, s2);
   471 #else
   472   Assembler::std(d, s1, s2);
   473 #endif
   474 }
   476 inline void MacroAssembler::st_long( Register d, const Address& a, int offset ) {
   477 #ifdef _LP64
   478   Assembler::stx(d, a, offset);
   479 #else
   480   Assembler::std(d, a, offset);
   481 #endif
   482 }
   484 // Functions for isolating 64 bit shifts for LP64
   486 inline void MacroAssembler::sll_ptr( Register s1, Register s2, Register d ) {
   487 #ifdef _LP64
   488   Assembler::sllx(s1, s2, d);
   489 #else
   490   Assembler::sll( s1, s2, d);
   491 #endif
   492 }
   494 inline void MacroAssembler::sll_ptr( Register s1, int imm6a,   Register d ) {
   495 #ifdef _LP64
   496   Assembler::sllx(s1, imm6a, d);
   497 #else
   498   Assembler::sll( s1, imm6a, d);
   499 #endif
   500 }
   502 inline void MacroAssembler::srl_ptr( Register s1, Register s2, Register d ) {
   503 #ifdef _LP64
   504   Assembler::srlx(s1, s2, d);
   505 #else
   506   Assembler::srl( s1, s2, d);
   507 #endif
   508 }
   510 inline void MacroAssembler::srl_ptr( Register s1, int imm6a,   Register d ) {
   511 #ifdef _LP64
   512   Assembler::srlx(s1, imm6a, d);
   513 #else
   514   Assembler::srl( s1, imm6a, d);
   515 #endif
   516 }
   518 inline void MacroAssembler::sll_ptr( Register s1, RegisterOrConstant s2, Register d ) {
   519   if (s2.is_register())  sll_ptr(s1, s2.as_register(), d);
   520   else                   sll_ptr(s1, s2.as_constant(), d);
   521 }
   523 // Use the right branch for the platform
   525 inline void MacroAssembler::br( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
   526   if (VM_Version::v9_instructions_work())
   527     Assembler::bp(c, a, icc, p, d, rt);
   528   else
   529     Assembler::br(c, a, d, rt);
   530 }
   532 inline void MacroAssembler::br( Condition c, bool a, Predict p, Label& L ) {
   533   br(c, a, p, target(L));
   534 }
   537 // Branch that tests either xcc or icc depending on the
   538 // architecture compiled (LP64 or not)
   539 inline void MacroAssembler::brx( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
   540 #ifdef _LP64
   541     Assembler::bp(c, a, xcc, p, d, rt);
   542 #else
   543     MacroAssembler::br(c, a, p, d, rt);
   544 #endif
   545 }
   547 inline void MacroAssembler::brx( Condition c, bool a, Predict p, Label& L ) {
   548   brx(c, a, p, target(L));
   549 }
   551 inline void MacroAssembler::ba( bool a, Label& L ) {
   552   br(always, a, pt, L);
   553 }
   555 // Warning: V9 only functions
   556 inline void MacroAssembler::bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) {
   557   Assembler::bp(c, a, cc, p, d, rt);
   558 }
   560 inline void MacroAssembler::bp( Condition c, bool a, CC cc, Predict p, Label& L ) {
   561   Assembler::bp(c, a, cc, p, L);
   562 }
   564 inline void MacroAssembler::fb( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
   565   if (VM_Version::v9_instructions_work())
   566     fbp(c, a, fcc0, p, d, rt);
   567   else
   568     Assembler::fb(c, a, d, rt);
   569 }
   571 inline void MacroAssembler::fb( Condition c, bool a, Predict p, Label& L ) {
   572   fb(c, a, p, target(L));
   573 }
   575 inline void MacroAssembler::fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) {
   576   Assembler::fbp(c, a, cc, p, d, rt);
   577 }
   579 inline void MacroAssembler::fbp( Condition c, bool a, CC cc, Predict p, Label& L ) {
   580   Assembler::fbp(c, a, cc, p, L);
   581 }
   583 inline void MacroAssembler::jmp( Register s1, Register s2 ) { jmpl( s1, s2, G0 ); }
   584 inline void MacroAssembler::jmp( Register s1, int simm13a, RelocationHolder const& rspec ) { jmpl( s1, simm13a, G0, rspec); }
   586 // Call with a check to see if we need to deal with the added
   587 // expense of relocation and if we overflow the displacement
   588 // of the quick call instruction./
   589 // Check to see if we have to deal with relocations
   590 inline void MacroAssembler::call( address d, relocInfo::relocType rt ) {
   591 #ifdef _LP64
   592   intptr_t disp;
   593   // NULL is ok because it will be relocated later.
   594   // Must change NULL to a reachable address in order to
   595   // pass asserts here and in wdisp.
   596   if ( d == NULL )
   597     d = pc();
   599   // Is this address within range of the call instruction?
   600   // If not, use the expensive instruction sequence
   601   disp = (intptr_t)d - (intptr_t)pc();
   602   if ( disp != (intptr_t)(int32_t)disp ) {
   603     relocate(rt);
   604     AddressLiteral dest(d);
   605     jumpl_to(dest, O7, O7);
   606   }
   607   else {
   608     Assembler::call( d, rt );
   609   }
   610 #else
   611   Assembler::call( d, rt );
   612 #endif
   613 }
   615 inline void MacroAssembler::call( Label& L,   relocInfo::relocType rt ) {
   616   MacroAssembler::call( target(L), rt);
   617 }
   621 inline void MacroAssembler::callr( Register s1, Register s2 ) { jmpl( s1, s2, O7 ); }
   622 inline void MacroAssembler::callr( Register s1, int simm13a, RelocationHolder const& rspec ) { jmpl( s1, simm13a, O7, rspec); }
   624 // prefetch instruction
   625 inline void MacroAssembler::iprefetch( address d, relocInfo::relocType rt ) {
   626   if (VM_Version::v9_instructions_work())
   627     Assembler::bp( never, true, xcc, pt, d, rt );
   628 }
   629 inline void MacroAssembler::iprefetch( Label& L) { iprefetch( target(L) ); }
   632 // clobbers o7 on V8!!
   633 // returns delta from gotten pc to addr after
   634 inline int MacroAssembler::get_pc( Register d ) {
   635   int x = offset();
   636   if (VM_Version::v9_instructions_work())
   637     rdpc(d);
   638   else {
   639     Label lbl;
   640     Assembler::call(lbl, relocInfo::none);  // No relocation as this is call to pc+0x8
   641     if (d == O7)  delayed()->nop();
   642     else          delayed()->mov(O7, d);
   643     bind(lbl);
   644   }
   645   return offset() - x;
   646 }
   649 // Note:  All MacroAssembler::set_foo functions are defined out-of-line.
   652 // Loads the current PC of the following instruction as an immediate value in
   653 // 2 instructions.  All PCs in the CodeCache are within 2 Gig of each other.
   654 inline intptr_t MacroAssembler::load_pc_address( Register reg, int bytes_to_skip ) {
   655   intptr_t thepc = (intptr_t)pc() + 2*BytesPerInstWord + bytes_to_skip;
   656 #ifdef _LP64
   657   Unimplemented();
   658 #else
   659   Assembler::sethi(  thepc & ~0x3ff, reg, internal_word_Relocation::spec((address)thepc));
   660   Assembler::add(reg,thepc &  0x3ff, reg, internal_word_Relocation::spec((address)thepc));
   661 #endif
   662   return thepc;
   663 }
   666 inline void MacroAssembler::load_contents(const AddressLiteral& addrlit, Register d, int offset) {
   667   assert_not_delayed();
   668   sethi(addrlit, d);
   669   ld(d, addrlit.low10() + offset, d);
   670 }
   673 inline void MacroAssembler::load_ptr_contents(const AddressLiteral& addrlit, Register d, int offset) {
   674   assert_not_delayed();
   675   sethi(addrlit, d);
   676   ld_ptr(d, addrlit.low10() + offset, d);
   677 }
   680 inline void MacroAssembler::store_contents(Register s, const AddressLiteral& addrlit, Register temp, int offset) {
   681   assert_not_delayed();
   682   sethi(addrlit, temp);
   683   st(s, temp, addrlit.low10() + offset);
   684 }
   687 inline void MacroAssembler::store_ptr_contents(Register s, const AddressLiteral& addrlit, Register temp, int offset) {
   688   assert_not_delayed();
   689   sethi(addrlit, temp);
   690   st_ptr(s, temp, addrlit.low10() + offset);
   691 }
   694 // This code sequence is relocatable to any address, even on LP64.
   695 inline void MacroAssembler::jumpl_to(const AddressLiteral& addrlit, Register temp, Register d, int offset) {
   696   assert_not_delayed();
   697   // Force fixed length sethi because NativeJump and NativeFarCall don't handle
   698   // variable length instruction streams.
   699   patchable_sethi(addrlit, temp);
   700   jmpl(temp, addrlit.low10() + offset, d);
   701 }
   704 inline void MacroAssembler::jump_to(const AddressLiteral& addrlit, Register temp, int offset) {
   705   jumpl_to(addrlit, temp, G0, offset);
   706 }
   709 inline void MacroAssembler::jump_indirect_to(Address& a, Register temp,
   710                                              int ld_offset, int jmp_offset) {
   711   assert_not_delayed();
   712   //sethi(al);                   // sethi is caller responsibility for this one
   713   ld_ptr(a, temp, ld_offset);
   714   jmp(temp, jmp_offset);
   715 }
   718 inline void MacroAssembler::set_oop(jobject obj, Register d) {
   719   set_oop(allocate_oop_address(obj), d);
   720 }
   723 inline void MacroAssembler::set_oop_constant(jobject obj, Register d) {
   724   set_oop(constant_oop_address(obj), d);
   725 }
   728 inline void MacroAssembler::set_oop(const AddressLiteral& obj_addr, Register d) {
   729   assert(obj_addr.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
   730   set(obj_addr, d);
   731 }
   734 inline void MacroAssembler::load_argument( Argument& a, Register  d ) {
   735   if (a.is_register())
   736     mov(a.as_register(), d);
   737   else
   738     ld (a.as_address(),  d);
   739 }
   741 inline void MacroAssembler::store_argument( Register s, Argument& a ) {
   742   if (a.is_register())
   743     mov(s, a.as_register());
   744   else
   745     st_ptr (s, a.as_address());         // ABI says everything is right justified.
   746 }
   748 inline void MacroAssembler::store_ptr_argument( Register s, Argument& a ) {
   749   if (a.is_register())
   750     mov(s, a.as_register());
   751   else
   752     st_ptr (s, a.as_address());
   753 }
   756 #ifdef _LP64
   757 inline void MacroAssembler::store_float_argument( FloatRegister s, Argument& a ) {
   758   if (a.is_float_register())
   759 // V9 ABI has F1, F3, F5 are used to pass instead of O0, O1, O2
   760     fmov(FloatRegisterImpl::S, s, a.as_float_register() );
   761   else
   762     // Floats are stored in the high half of the stack entry
   763     // The low half is undefined per the ABI.
   764     stf(FloatRegisterImpl::S, s, a.as_address(), sizeof(jfloat));
   765 }
   767 inline void MacroAssembler::store_double_argument( FloatRegister s, Argument& a ) {
   768   if (a.is_float_register())
   769 // V9 ABI has D0, D2, D4 are used to pass instead of O0, O1, O2
   770     fmov(FloatRegisterImpl::D, s, a.as_double_register() );
   771   else
   772     stf(FloatRegisterImpl::D, s, a.as_address());
   773 }
   775 inline void MacroAssembler::store_long_argument( Register s, Argument& a ) {
   776   if (a.is_register())
   777     mov(s, a.as_register());
   778   else
   779     stx(s, a.as_address());
   780 }
   781 #endif
   783 inline void MacroAssembler::clrb( Register s1, Register s2) {  stb( G0, s1, s2 ); }
   784 inline void MacroAssembler::clrh( Register s1, Register s2) {  sth( G0, s1, s2 ); }
   785 inline void MacroAssembler::clr(  Register s1, Register s2) {  stw( G0, s1, s2 ); }
   786 inline void MacroAssembler::clrx( Register s1, Register s2) {  stx( G0, s1, s2 ); }
   788 inline void MacroAssembler::clrb( Register s1, int simm13a) { stb( G0, s1, simm13a); }
   789 inline void MacroAssembler::clrh( Register s1, int simm13a) { sth( G0, s1, simm13a); }
   790 inline void MacroAssembler::clr(  Register s1, int simm13a) { stw( G0, s1, simm13a); }
   791 inline void MacroAssembler::clrx( Register s1, int simm13a) { stx( G0, s1, simm13a); }
   793 // returns if membar generates anything, obviously this code should mirror
   794 // membar below.
   795 inline bool MacroAssembler::membar_has_effect( Membar_mask_bits const7a ) {
   796   if( !os::is_MP() ) return false;  // Not needed on single CPU
   797   if( VM_Version::v9_instructions_work() ) {
   798     const Membar_mask_bits effective_mask =
   799         Membar_mask_bits(const7a & ~(LoadLoad | LoadStore | StoreStore));
   800     return (effective_mask != 0);
   801   } else {
   802     return true;
   803   }
   804 }
   806 inline void MacroAssembler::membar( Membar_mask_bits const7a ) {
   807   // Uniprocessors do not need memory barriers
   808   if (!os::is_MP()) return;
   809   // Weakened for current Sparcs and TSO.  See the v9 manual, sections 8.4.3,
   810   // 8.4.4.3, a.31 and a.50.
   811   if( VM_Version::v9_instructions_work() ) {
   812     // Under TSO, setting bit 3, 2, or 0 is redundant, so the only value
   813     // of the mmask subfield of const7a that does anything that isn't done
   814     // implicitly is StoreLoad.
   815     const Membar_mask_bits effective_mask =
   816         Membar_mask_bits(const7a & ~(LoadLoad | LoadStore | StoreStore));
   817     if ( effective_mask != 0 ) {
   818       Assembler::membar( effective_mask );
   819     }
   820   } else {
   821     // stbar is the closest there is on v8.  Equivalent to membar(StoreStore).  We
   822     // do not issue the stbar because to my knowledge all v8 machines implement TSO,
   823     // which guarantees that all stores behave as if an stbar were issued just after
   824     // each one of them.  On these machines, stbar ought to be a nop.  There doesn't
   825     // appear to be an equivalent of membar(StoreLoad) on v8: TSO doesn't require it,
   826     // it can't be specified by stbar, nor have I come up with a way to simulate it.
   827     //
   828     // Addendum.  Dave says that ldstub guarantees a write buffer flush to coherent
   829     // space.  Put one here to be on the safe side.
   830     Assembler::ldstub(SP, 0, G0);
   831   }
   832 }
   834 #endif // CPU_SPARC_VM_ASSEMBLER_SPARC_INLINE_HPP

mercurial