src/share/vm/c1/c1_Instruction.cpp

Thu, 24 May 2018 18:41:44 +0800

author
aoqi
date
Thu, 24 May 2018 18:41:44 +0800
changeset 8856
ac27a9c85bea
parent 8652
057571442f86
parent 6876
710a3c8b516e
child 10015
eb7ce841ccec
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "c1/c1_IR.hpp"
    27 #include "c1/c1_Instruction.hpp"
    28 #include "c1/c1_InstructionPrinter.hpp"
    29 #include "c1/c1_ValueStack.hpp"
    30 #include "ci/ciObjArrayKlass.hpp"
    31 #include "ci/ciTypeArrayKlass.hpp"
    34 // Implementation of Instruction
    37 int Instruction::dominator_depth() {
    38   int result = -1;
    39   if (block()) {
    40     result = block()->dominator_depth();
    41   }
    42   assert(result != -1 || this->as_Local(), "Only locals have dominator depth -1");
    43   return result;
    44 }
    46 Instruction::Condition Instruction::mirror(Condition cond) {
    47   switch (cond) {
    48     case eql: return eql;
    49     case neq: return neq;
    50     case lss: return gtr;
    51     case leq: return geq;
    52     case gtr: return lss;
    53     case geq: return leq;
    54     case aeq: return beq;
    55     case beq: return aeq;
    56   }
    57   ShouldNotReachHere();
    58   return eql;
    59 }
    62 Instruction::Condition Instruction::negate(Condition cond) {
    63   switch (cond) {
    64     case eql: return neq;
    65     case neq: return eql;
    66     case lss: return geq;
    67     case leq: return gtr;
    68     case gtr: return leq;
    69     case geq: return lss;
    70     case aeq: assert(false, "Above equal cannot be negated");
    71     case beq: assert(false, "Below equal cannot be negated");
    72   }
    73   ShouldNotReachHere();
    74   return eql;
    75 }
    77 void Instruction::update_exception_state(ValueStack* state) {
    78   if (state != NULL && (state->kind() == ValueStack::EmptyExceptionState || state->kind() == ValueStack::ExceptionState)) {
    79     assert(state->kind() == ValueStack::EmptyExceptionState || Compilation::current()->env()->jvmti_can_access_local_variables(), "unexpected state kind");
    80     _exception_state = state;
    81   } else {
    82     _exception_state = NULL;
    83   }
    84 }
    86 // Prev without need to have BlockBegin
    87 Instruction* Instruction::prev() {
    88   Instruction* p = NULL;
    89   Instruction* q = block();
    90   while (q != this) {
    91     assert(q != NULL, "this is not in the block's instruction list");
    92     p = q; q = q->next();
    93   }
    94   return p;
    95 }
    98 void Instruction::state_values_do(ValueVisitor* f) {
    99   if (state_before() != NULL) {
   100     state_before()->values_do(f);
   101   }
   102   if (exception_state() != NULL){
   103     exception_state()->values_do(f);
   104   }
   105 }
   107 ciType* Instruction::exact_type() const {
   108   ciType* t =  declared_type();
   109   if (t != NULL && t->is_klass()) {
   110     return t->as_klass()->exact_klass();
   111   }
   112   return NULL;
   113 }
   116 #ifndef PRODUCT
   117 void Instruction::check_state(ValueStack* state) {
   118   if (state != NULL) {
   119     state->verify();
   120   }
   121 }
   124 void Instruction::print() {
   125   InstructionPrinter ip;
   126   print(ip);
   127 }
   130 void Instruction::print_line() {
   131   InstructionPrinter ip;
   132   ip.print_line(this);
   133 }
   136 void Instruction::print(InstructionPrinter& ip) {
   137   ip.print_head();
   138   ip.print_line(this);
   139   tty->cr();
   140 }
   141 #endif // PRODUCT
   144 // perform constant and interval tests on index value
   145 bool AccessIndexed::compute_needs_range_check() {
   146   if (length()) {
   147     Constant* clength = length()->as_Constant();
   148     Constant* cindex = index()->as_Constant();
   149     if (clength && cindex) {
   150       IntConstant* l = clength->type()->as_IntConstant();
   151       IntConstant* i = cindex->type()->as_IntConstant();
   152       if (l && i && i->value() < l->value() && i->value() >= 0) {
   153         return false;
   154       }
   155     }
   156   }
   158   if (!this->check_flag(NeedsRangeCheckFlag)) {
   159     return false;
   160   }
   162   return true;
   163 }
   166 ciType* Constant::exact_type() const {
   167   if (type()->is_object() && type()->as_ObjectType()->is_loaded()) {
   168     return type()->as_ObjectType()->exact_type();
   169   }
   170   return NULL;
   171 }
   173 ciType* LoadIndexed::exact_type() const {
   174   ciType* array_type = array()->exact_type();
   175   if (array_type != NULL) {
   176     assert(array_type->is_array_klass(), "what else?");
   177     ciArrayKlass* ak = (ciArrayKlass*)array_type;
   179     if (ak->element_type()->is_instance_klass()) {
   180       ciInstanceKlass* ik = (ciInstanceKlass*)ak->element_type();
   181       if (ik->is_loaded() && ik->is_final()) {
   182         return ik;
   183       }
   184     }
   185   }
   186   return Instruction::exact_type();
   187 }
   190 ciType* LoadIndexed::declared_type() const {
   191   ciType* array_type = array()->declared_type();
   192   if (array_type == NULL || !array_type->is_loaded()) {
   193     return NULL;
   194   }
   195   assert(array_type->is_array_klass(), "what else?");
   196   ciArrayKlass* ak = (ciArrayKlass*)array_type;
   197   return ak->element_type();
   198 }
   201 ciType* LoadField::declared_type() const {
   202   return field()->type();
   203 }
   206 ciType* NewTypeArray::exact_type() const {
   207   return ciTypeArrayKlass::make(elt_type());
   208 }
   210 ciType* NewObjectArray::exact_type() const {
   211   return ciObjArrayKlass::make(klass());
   212 }
   214 ciType* NewArray::declared_type() const {
   215   return exact_type();
   216 }
   218 ciType* NewInstance::exact_type() const {
   219   return klass();
   220 }
   222 ciType* NewInstance::declared_type() const {
   223   return exact_type();
   224 }
   226 ciType* CheckCast::declared_type() const {
   227   return klass();
   228 }
   230 // Implementation of ArithmeticOp
   232 bool ArithmeticOp::is_commutative() const {
   233   switch (op()) {
   234     case Bytecodes::_iadd: // fall through
   235     case Bytecodes::_ladd: // fall through
   236     case Bytecodes::_fadd: // fall through
   237     case Bytecodes::_dadd: // fall through
   238     case Bytecodes::_imul: // fall through
   239     case Bytecodes::_lmul: // fall through
   240     case Bytecodes::_fmul: // fall through
   241     case Bytecodes::_dmul: return true;
   242   }
   243   return false;
   244 }
   247 bool ArithmeticOp::can_trap() const {
   248   switch (op()) {
   249     case Bytecodes::_idiv: // fall through
   250     case Bytecodes::_ldiv: // fall through
   251     case Bytecodes::_irem: // fall through
   252     case Bytecodes::_lrem: return true;
   253   }
   254   return false;
   255 }
   258 // Implementation of LogicOp
   260 bool LogicOp::is_commutative() const {
   261 #ifdef ASSERT
   262   switch (op()) {
   263     case Bytecodes::_iand: // fall through
   264     case Bytecodes::_land: // fall through
   265     case Bytecodes::_ior : // fall through
   266     case Bytecodes::_lor : // fall through
   267     case Bytecodes::_ixor: // fall through
   268     case Bytecodes::_lxor: break;
   269     default              : ShouldNotReachHere();
   270   }
   271 #endif
   272   // all LogicOps are commutative
   273   return true;
   274 }
   277 // Implementation of IfOp
   279 bool IfOp::is_commutative() const {
   280   return cond() == eql || cond() == neq;
   281 }
   284 // Implementation of StateSplit
   286 void StateSplit::substitute(BlockList& list, BlockBegin* old_block, BlockBegin* new_block) {
   287   NOT_PRODUCT(bool assigned = false;)
   288   for (int i = 0; i < list.length(); i++) {
   289     BlockBegin** b = list.adr_at(i);
   290     if (*b == old_block) {
   291       *b = new_block;
   292       NOT_PRODUCT(assigned = true;)
   293     }
   294   }
   295   assert(assigned == true, "should have assigned at least once");
   296 }
   299 IRScope* StateSplit::scope() const {
   300   return _state->scope();
   301 }
   304 void StateSplit::state_values_do(ValueVisitor* f) {
   305   Instruction::state_values_do(f);
   306   if (state() != NULL) state()->values_do(f);
   307 }
   310 void BlockBegin::state_values_do(ValueVisitor* f) {
   311   StateSplit::state_values_do(f);
   313   if (is_set(BlockBegin::exception_entry_flag)) {
   314     for (int i = 0; i < number_of_exception_states(); i++) {
   315       exception_state_at(i)->values_do(f);
   316     }
   317   }
   318 }
   321 // Implementation of Invoke
   324 Invoke::Invoke(Bytecodes::Code code, ValueType* result_type, Value recv, Values* args,
   325                int vtable_index, ciMethod* target, ValueStack* state_before)
   326   : StateSplit(result_type, state_before)
   327   , _code(code)
   328   , _recv(recv)
   329   , _args(args)
   330   , _vtable_index(vtable_index)
   331   , _target(target)
   332 {
   333   set_flag(TargetIsLoadedFlag,   target->is_loaded());
   334   set_flag(TargetIsFinalFlag,    target_is_loaded() && target->is_final_method());
   335   set_flag(TargetIsStrictfpFlag, target_is_loaded() && target->is_strict());
   337   assert(args != NULL, "args must exist");
   338 #ifdef ASSERT
   339   AssertValues assert_value;
   340   values_do(&assert_value);
   341 #endif
   343   // provide an initial guess of signature size.
   344   _signature = new BasicTypeList(number_of_arguments() + (has_receiver() ? 1 : 0));
   345   if (has_receiver()) {
   346     _signature->append(as_BasicType(receiver()->type()));
   347   }
   348   for (int i = 0; i < number_of_arguments(); i++) {
   349     ValueType* t = argument_at(i)->type();
   350     BasicType bt = as_BasicType(t);
   351     _signature->append(bt);
   352   }
   353 }
   356 void Invoke::state_values_do(ValueVisitor* f) {
   357   StateSplit::state_values_do(f);
   358   if (state_before() != NULL) state_before()->values_do(f);
   359   if (state()        != NULL) state()->values_do(f);
   360 }
   362 ciType* Invoke::declared_type() const {
   363   ciSignature* declared_signature = state()->scope()->method()->get_declared_signature_at_bci(state()->bci());
   364   ciType *t = declared_signature->return_type();
   365   assert(t->basic_type() != T_VOID, "need return value of void method?");
   366   return t;
   367 }
   369 // Implementation of Contant
   370 intx Constant::hash() const {
   371   if (state_before() == NULL) {
   372     switch (type()->tag()) {
   373     case intTag:
   374       return HASH2(name(), type()->as_IntConstant()->value());
   375     case addressTag:
   376       return HASH2(name(), type()->as_AddressConstant()->value());
   377     case longTag:
   378       {
   379         jlong temp = type()->as_LongConstant()->value();
   380         return HASH3(name(), high(temp), low(temp));
   381       }
   382     case floatTag:
   383       return HASH2(name(), jint_cast(type()->as_FloatConstant()->value()));
   384     case doubleTag:
   385       {
   386         jlong temp = jlong_cast(type()->as_DoubleConstant()->value());
   387         return HASH3(name(), high(temp), low(temp));
   388       }
   389     case objectTag:
   390       assert(type()->as_ObjectType()->is_loaded(), "can't handle unloaded values");
   391       return HASH2(name(), type()->as_ObjectType()->constant_value());
   392     case metaDataTag:
   393       assert(type()->as_MetadataType()->is_loaded(), "can't handle unloaded values");
   394       return HASH2(name(), type()->as_MetadataType()->constant_value());
   395     default:
   396       ShouldNotReachHere();
   397     }
   398   }
   399   return 0;
   400 }
   402 bool Constant::is_equal(Value v) const {
   403   if (v->as_Constant() == NULL) return false;
   405   switch (type()->tag()) {
   406     case intTag:
   407       {
   408         IntConstant* t1 =    type()->as_IntConstant();
   409         IntConstant* t2 = v->type()->as_IntConstant();
   410         return (t1 != NULL && t2 != NULL &&
   411                 t1->value() == t2->value());
   412       }
   413     case longTag:
   414       {
   415         LongConstant* t1 =    type()->as_LongConstant();
   416         LongConstant* t2 = v->type()->as_LongConstant();
   417         return (t1 != NULL && t2 != NULL &&
   418                 t1->value() == t2->value());
   419       }
   420     case floatTag:
   421       {
   422         FloatConstant* t1 =    type()->as_FloatConstant();
   423         FloatConstant* t2 = v->type()->as_FloatConstant();
   424         return (t1 != NULL && t2 != NULL &&
   425                 jint_cast(t1->value()) == jint_cast(t2->value()));
   426       }
   427     case doubleTag:
   428       {
   429         DoubleConstant* t1 =    type()->as_DoubleConstant();
   430         DoubleConstant* t2 = v->type()->as_DoubleConstant();
   431         return (t1 != NULL && t2 != NULL &&
   432                 jlong_cast(t1->value()) == jlong_cast(t2->value()));
   433       }
   434     case objectTag:
   435       {
   436         ObjectType* t1 =    type()->as_ObjectType();
   437         ObjectType* t2 = v->type()->as_ObjectType();
   438         return (t1 != NULL && t2 != NULL &&
   439                 t1->is_loaded() && t2->is_loaded() &&
   440                 t1->constant_value() == t2->constant_value());
   441       }
   442     case metaDataTag:
   443       {
   444         MetadataType* t1 =    type()->as_MetadataType();
   445         MetadataType* t2 = v->type()->as_MetadataType();
   446         return (t1 != NULL && t2 != NULL &&
   447                 t1->is_loaded() && t2->is_loaded() &&
   448                 t1->constant_value() == t2->constant_value());
   449       }
   450   }
   451   return false;
   452 }
   454 Constant::CompareResult Constant::compare(Instruction::Condition cond, Value right) const {
   455   Constant* rc = right->as_Constant();
   456   // other is not a constant
   457   if (rc == NULL) return not_comparable;
   459   ValueType* lt = type();
   460   ValueType* rt = rc->type();
   461   // different types
   462   if (lt->base() != rt->base()) return not_comparable;
   463   switch (lt->tag()) {
   464   case intTag: {
   465     int x = lt->as_IntConstant()->value();
   466     int y = rt->as_IntConstant()->value();
   467     switch (cond) {
   468     case If::eql: return x == y ? cond_true : cond_false;
   469     case If::neq: return x != y ? cond_true : cond_false;
   470     case If::lss: return x <  y ? cond_true : cond_false;
   471     case If::leq: return x <= y ? cond_true : cond_false;
   472     case If::gtr: return x >  y ? cond_true : cond_false;
   473     case If::geq: return x >= y ? cond_true : cond_false;
   474     }
   475     break;
   476   }
   477   case longTag: {
   478     jlong x = lt->as_LongConstant()->value();
   479     jlong y = rt->as_LongConstant()->value();
   480     switch (cond) {
   481     case If::eql: return x == y ? cond_true : cond_false;
   482     case If::neq: return x != y ? cond_true : cond_false;
   483     case If::lss: return x <  y ? cond_true : cond_false;
   484     case If::leq: return x <= y ? cond_true : cond_false;
   485     case If::gtr: return x >  y ? cond_true : cond_false;
   486     case If::geq: return x >= y ? cond_true : cond_false;
   487     }
   488     break;
   489   }
   490   case objectTag: {
   491     ciObject* xvalue = lt->as_ObjectType()->constant_value();
   492     ciObject* yvalue = rt->as_ObjectType()->constant_value();
   493     assert(xvalue != NULL && yvalue != NULL, "not constants");
   494     if (xvalue->is_loaded() && yvalue->is_loaded()) {
   495       switch (cond) {
   496       case If::eql: return xvalue == yvalue ? cond_true : cond_false;
   497       case If::neq: return xvalue != yvalue ? cond_true : cond_false;
   498       }
   499     }
   500     break;
   501   }
   502   case metaDataTag: {
   503     ciMetadata* xvalue = lt->as_MetadataType()->constant_value();
   504     ciMetadata* yvalue = rt->as_MetadataType()->constant_value();
   505     assert(xvalue != NULL && yvalue != NULL, "not constants");
   506     if (xvalue->is_loaded() && yvalue->is_loaded()) {
   507       switch (cond) {
   508       case If::eql: return xvalue == yvalue ? cond_true : cond_false;
   509       case If::neq: return xvalue != yvalue ? cond_true : cond_false;
   510       }
   511     }
   512     break;
   513   }
   514   }
   515   return not_comparable;
   516 }
   519 // Implementation of BlockBegin
   521 void BlockBegin::set_end(BlockEnd* end) {
   522   assert(end != NULL, "should not reset block end to NULL");
   523   if (end == _end) {
   524     return;
   525   }
   526   clear_end();
   528   // Set the new end
   529   _end = end;
   531   _successors.clear();
   532   // Now reset successors list based on BlockEnd
   533   for (int i = 0; i < end->number_of_sux(); i++) {
   534     BlockBegin* sux = end->sux_at(i);
   535     _successors.append(sux);
   536     sux->_predecessors.append(this);
   537   }
   538   _end->set_begin(this);
   539 }
   542 void BlockBegin::clear_end() {
   543   // Must make the predecessors/successors match up with the
   544   // BlockEnd's notion.
   545   if (_end != NULL) {
   546     // disconnect from the old end
   547     _end->set_begin(NULL);
   549     // disconnect this block from it's current successors
   550     for (int i = 0; i < _successors.length(); i++) {
   551       _successors.at(i)->remove_predecessor(this);
   552     }
   553     _end = NULL;
   554   }
   555 }
   558 void BlockBegin::disconnect_edge(BlockBegin* from, BlockBegin* to) {
   559   // disconnect any edges between from and to
   560 #ifndef PRODUCT
   561   if (PrintIR && Verbose) {
   562     tty->print_cr("Disconnected edge B%d -> B%d", from->block_id(), to->block_id());
   563   }
   564 #endif
   565   for (int s = 0; s < from->number_of_sux();) {
   566     BlockBegin* sux = from->sux_at(s);
   567     if (sux == to) {
   568       int index = sux->_predecessors.index_of(from);
   569       if (index >= 0) {
   570         sux->_predecessors.remove_at(index);
   571       }
   572       from->_successors.remove_at(s);
   573     } else {
   574       s++;
   575     }
   576   }
   577 }
   580 void BlockBegin::disconnect_from_graph() {
   581   // disconnect this block from all other blocks
   582   for (int p = 0; p < number_of_preds(); p++) {
   583     pred_at(p)->remove_successor(this);
   584   }
   585   for (int s = 0; s < number_of_sux(); s++) {
   586     sux_at(s)->remove_predecessor(this);
   587   }
   588 }
   590 void BlockBegin::substitute_sux(BlockBegin* old_sux, BlockBegin* new_sux) {
   591   // modify predecessors before substituting successors
   592   for (int i = 0; i < number_of_sux(); i++) {
   593     if (sux_at(i) == old_sux) {
   594       // remove old predecessor before adding new predecessor
   595       // otherwise there is a dead predecessor in the list
   596       new_sux->remove_predecessor(old_sux);
   597       new_sux->add_predecessor(this);
   598     }
   599   }
   600   old_sux->remove_predecessor(this);
   601   end()->substitute_sux(old_sux, new_sux);
   602 }
   606 // In general it is not possible to calculate a value for the field "depth_first_number"
   607 // of the inserted block, without recomputing the values of the other blocks
   608 // in the CFG. Therefore the value of "depth_first_number" in BlockBegin becomes meaningless.
   609 BlockBegin* BlockBegin::insert_block_between(BlockBegin* sux) {
   610   int bci = sux->bci();
   611   // critical edge splitting may introduce a goto after a if and array
   612   // bound check elimination may insert a predicate between the if and
   613   // goto. The bci of the goto can't be the one of the if otherwise
   614   // the state and bci are inconsistent and a deoptimization triggered
   615   // by the predicate would lead to incorrect execution/a crash.
   616   BlockBegin* new_sux = new BlockBegin(bci);
   618   // mark this block (special treatment when block order is computed)
   619   new_sux->set(critical_edge_split_flag);
   621   // This goto is not a safepoint.
   622   Goto* e = new Goto(sux, false);
   623   new_sux->set_next(e, bci);
   624   new_sux->set_end(e);
   625   // setup states
   626   ValueStack* s = end()->state();
   627   new_sux->set_state(s->copy(s->kind(), bci));
   628   e->set_state(s->copy(s->kind(), bci));
   629   assert(new_sux->state()->locals_size() == s->locals_size(), "local size mismatch!");
   630   assert(new_sux->state()->stack_size() == s->stack_size(), "stack size mismatch!");
   631   assert(new_sux->state()->locks_size() == s->locks_size(), "locks size mismatch!");
   633   // link predecessor to new block
   634   end()->substitute_sux(sux, new_sux);
   636   // The ordering needs to be the same, so remove the link that the
   637   // set_end call above added and substitute the new_sux for this
   638   // block.
   639   sux->remove_predecessor(new_sux);
   641   // the successor could be the target of a switch so it might have
   642   // multiple copies of this predecessor, so substitute the new_sux
   643   // for the first and delete the rest.
   644   bool assigned = false;
   645   BlockList& list = sux->_predecessors;
   646   for (int i = 0; i < list.length(); i++) {
   647     BlockBegin** b = list.adr_at(i);
   648     if (*b == this) {
   649       if (assigned) {
   650         list.remove_at(i);
   651         // reprocess this index
   652         i--;
   653       } else {
   654         assigned = true;
   655         *b = new_sux;
   656       }
   657       // link the new block back to it's predecessors.
   658       new_sux->add_predecessor(this);
   659     }
   660   }
   661   assert(assigned == true, "should have assigned at least once");
   662   return new_sux;
   663 }
   666 void BlockBegin::remove_successor(BlockBegin* pred) {
   667   int idx;
   668   while ((idx = _successors.index_of(pred)) >= 0) {
   669     _successors.remove_at(idx);
   670   }
   671 }
   674 void BlockBegin::add_predecessor(BlockBegin* pred) {
   675   _predecessors.append(pred);
   676 }
   679 void BlockBegin::remove_predecessor(BlockBegin* pred) {
   680   int idx;
   681   while ((idx = _predecessors.index_of(pred)) >= 0) {
   682     _predecessors.remove_at(idx);
   683   }
   684 }
   687 void BlockBegin::add_exception_handler(BlockBegin* b) {
   688   assert(b != NULL && (b->is_set(exception_entry_flag)), "exception handler must exist");
   689   // add only if not in the list already
   690   if (!_exception_handlers.contains(b)) _exception_handlers.append(b);
   691 }
   693 int BlockBegin::add_exception_state(ValueStack* state) {
   694   assert(is_set(exception_entry_flag), "only for xhandlers");
   695   if (_exception_states == NULL) {
   696     _exception_states = new ValueStackStack(4);
   697   }
   698   _exception_states->append(state);
   699   return _exception_states->length() - 1;
   700 }
   703 void BlockBegin::iterate_preorder(boolArray& mark, BlockClosure* closure) {
   704   if (!mark.at(block_id())) {
   705     mark.at_put(block_id(), true);
   706     closure->block_do(this);
   707     BlockEnd* e = end(); // must do this after block_do because block_do may change it!
   708     { for (int i = number_of_exception_handlers() - 1; i >= 0; i--) exception_handler_at(i)->iterate_preorder(mark, closure); }
   709     { for (int i = e->number_of_sux            () - 1; i >= 0; i--) e->sux_at           (i)->iterate_preorder(mark, closure); }
   710   }
   711 }
   714 void BlockBegin::iterate_postorder(boolArray& mark, BlockClosure* closure) {
   715   if (!mark.at(block_id())) {
   716     mark.at_put(block_id(), true);
   717     BlockEnd* e = end();
   718     { for (int i = number_of_exception_handlers() - 1; i >= 0; i--) exception_handler_at(i)->iterate_postorder(mark, closure); }
   719     { for (int i = e->number_of_sux            () - 1; i >= 0; i--) e->sux_at           (i)->iterate_postorder(mark, closure); }
   720     closure->block_do(this);
   721   }
   722 }
   725 void BlockBegin::iterate_preorder(BlockClosure* closure) {
   726   boolArray mark(number_of_blocks(), false);
   727   iterate_preorder(mark, closure);
   728 }
   731 void BlockBegin::iterate_postorder(BlockClosure* closure) {
   732   boolArray mark(number_of_blocks(), false);
   733   iterate_postorder(mark, closure);
   734 }
   737 void BlockBegin::block_values_do(ValueVisitor* f) {
   738   for (Instruction* n = this; n != NULL; n = n->next()) n->values_do(f);
   739 }
   742 #ifndef PRODUCT
   743    #define TRACE_PHI(code) if (PrintPhiFunctions) { code; }
   744 #else
   745    #define TRACE_PHI(coce)
   746 #endif
   749 bool BlockBegin::try_merge(ValueStack* new_state) {
   750   TRACE_PHI(tty->print_cr("********** try_merge for block B%d", block_id()));
   752   // local variables used for state iteration
   753   int index;
   754   Value new_value, existing_value;
   756   ValueStack* existing_state = state();
   757   if (existing_state == NULL) {
   758     TRACE_PHI(tty->print_cr("first call of try_merge for this block"));
   760     if (is_set(BlockBegin::was_visited_flag)) {
   761       // this actually happens for complicated jsr/ret structures
   762       return false; // BAILOUT in caller
   763     }
   765     // copy state because it is altered
   766     new_state = new_state->copy(ValueStack::BlockBeginState, bci());
   768     // Use method liveness to invalidate dead locals
   769     MethodLivenessResult liveness = new_state->scope()->method()->liveness_at_bci(bci());
   770     if (liveness.is_valid()) {
   771       assert((int)liveness.size() == new_state->locals_size(), "error in use of liveness");
   773       for_each_local_value(new_state, index, new_value) {
   774         if (!liveness.at(index) || new_value->type()->is_illegal()) {
   775           new_state->invalidate_local(index);
   776           TRACE_PHI(tty->print_cr("invalidating dead local %d", index));
   777         }
   778       }
   779     }
   781     if (is_set(BlockBegin::parser_loop_header_flag)) {
   782       TRACE_PHI(tty->print_cr("loop header block, initializing phi functions"));
   784       for_each_stack_value(new_state, index, new_value) {
   785         new_state->setup_phi_for_stack(this, index);
   786         TRACE_PHI(tty->print_cr("creating phi-function %c%d for stack %d", new_state->stack_at(index)->type()->tchar(), new_state->stack_at(index)->id(), index));
   787       }
   789       BitMap requires_phi_function = new_state->scope()->requires_phi_function();
   791       for_each_local_value(new_state, index, new_value) {
   792         bool requires_phi = requires_phi_function.at(index) || (new_value->type()->is_double_word() && requires_phi_function.at(index + 1));
   793         if (requires_phi || !SelectivePhiFunctions) {
   794           new_state->setup_phi_for_local(this, index);
   795           TRACE_PHI(tty->print_cr("creating phi-function %c%d for local %d", new_state->local_at(index)->type()->tchar(), new_state->local_at(index)->id(), index));
   796         }
   797       }
   798     }
   800     // initialize state of block
   801     set_state(new_state);
   803   } else if (existing_state->is_same(new_state)) {
   804     TRACE_PHI(tty->print_cr("exisiting state found"));
   806     assert(existing_state->scope() == new_state->scope(), "not matching");
   807     assert(existing_state->locals_size() == new_state->locals_size(), "not matching");
   808     assert(existing_state->stack_size() == new_state->stack_size(), "not matching");
   810     if (is_set(BlockBegin::was_visited_flag)) {
   811       TRACE_PHI(tty->print_cr("loop header block, phis must be present"));
   813       if (!is_set(BlockBegin::parser_loop_header_flag)) {
   814         // this actually happens for complicated jsr/ret structures
   815         return false; // BAILOUT in caller
   816       }
   818       for_each_local_value(existing_state, index, existing_value) {
   819         Value new_value = new_state->local_at(index);
   820         if (new_value == NULL || new_value->type()->tag() != existing_value->type()->tag()) {
   821           // The old code invalidated the phi function here
   822           // Because dead locals are replaced with NULL, this is a very rare case now, so simply bail out
   823           return false; // BAILOUT in caller
   824         }
   825       }
   827 #ifdef ASSERT
   828       // check that all necessary phi functions are present
   829       for_each_stack_value(existing_state, index, existing_value) {
   830         assert(existing_value->as_Phi() != NULL && existing_value->as_Phi()->block() == this, "phi function required");
   831       }
   832       for_each_local_value(existing_state, index, existing_value) {
   833         assert(existing_value == new_state->local_at(index) || (existing_value->as_Phi() != NULL && existing_value->as_Phi()->as_Phi()->block() == this), "phi function required");
   834       }
   835 #endif
   837     } else {
   838       TRACE_PHI(tty->print_cr("creating phi functions on demand"));
   840       // create necessary phi functions for stack
   841       for_each_stack_value(existing_state, index, existing_value) {
   842         Value new_value = new_state->stack_at(index);
   843         Phi* existing_phi = existing_value->as_Phi();
   845         if (new_value != existing_value && (existing_phi == NULL || existing_phi->block() != this)) {
   846           existing_state->setup_phi_for_stack(this, index);
   847           TRACE_PHI(tty->print_cr("creating phi-function %c%d for stack %d", existing_state->stack_at(index)->type()->tchar(), existing_state->stack_at(index)->id(), index));
   848         }
   849       }
   851       // create necessary phi functions for locals
   852       for_each_local_value(existing_state, index, existing_value) {
   853         Value new_value = new_state->local_at(index);
   854         Phi* existing_phi = existing_value->as_Phi();
   856         if (new_value == NULL || new_value->type()->tag() != existing_value->type()->tag()) {
   857           existing_state->invalidate_local(index);
   858           TRACE_PHI(tty->print_cr("invalidating local %d because of type mismatch", index));
   859         } else if (new_value != existing_value && (existing_phi == NULL || existing_phi->block() != this)) {
   860           existing_state->setup_phi_for_local(this, index);
   861           TRACE_PHI(tty->print_cr("creating phi-function %c%d for local %d", existing_state->local_at(index)->type()->tchar(), existing_state->local_at(index)->id(), index));
   862         }
   863       }
   864     }
   866     assert(existing_state->caller_state() == new_state->caller_state(), "caller states must be equal");
   868   } else {
   869     assert(false, "stack or locks not matching (invalid bytecodes)");
   870     return false;
   871   }
   873   TRACE_PHI(tty->print_cr("********** try_merge for block B%d successful", block_id()));
   875   return true;
   876 }
   879 #ifndef PRODUCT
   880 void BlockBegin::print_block() {
   881   InstructionPrinter ip;
   882   print_block(ip, false);
   883 }
   886 void BlockBegin::print_block(InstructionPrinter& ip, bool live_only) {
   887   ip.print_instr(this); tty->cr();
   888   ip.print_stack(this->state()); tty->cr();
   889   ip.print_inline_level(this);
   890   ip.print_head();
   891   for (Instruction* n = next(); n != NULL; n = n->next()) {
   892     if (!live_only || n->is_pinned() || n->use_count() > 0) {
   893       ip.print_line(n);
   894     }
   895   }
   896   tty->cr();
   897 }
   898 #endif // PRODUCT
   901 // Implementation of BlockList
   903 void BlockList::iterate_forward (BlockClosure* closure) {
   904   const int l = length();
   905   for (int i = 0; i < l; i++) closure->block_do(at(i));
   906 }
   909 void BlockList::iterate_backward(BlockClosure* closure) {
   910   for (int i = length() - 1; i >= 0; i--) closure->block_do(at(i));
   911 }
   914 void BlockList::blocks_do(void f(BlockBegin*)) {
   915   for (int i = length() - 1; i >= 0; i--) f(at(i));
   916 }
   919 void BlockList::values_do(ValueVisitor* f) {
   920   for (int i = length() - 1; i >= 0; i--) at(i)->block_values_do(f);
   921 }
   924 #ifndef PRODUCT
   925 void BlockList::print(bool cfg_only, bool live_only) {
   926   InstructionPrinter ip;
   927   for (int i = 0; i < length(); i++) {
   928     BlockBegin* block = at(i);
   929     if (cfg_only) {
   930       ip.print_instr(block); tty->cr();
   931     } else {
   932       block->print_block(ip, live_only);
   933     }
   934   }
   935 }
   936 #endif // PRODUCT
   939 // Implementation of BlockEnd
   941 void BlockEnd::set_begin(BlockBegin* begin) {
   942   BlockList* sux = NULL;
   943   if (begin != NULL) {
   944     sux = begin->successors();
   945   } else if (this->begin() != NULL) {
   946     // copy our sux list
   947     BlockList* sux = new BlockList(this->begin()->number_of_sux());
   948     for (int i = 0; i < this->begin()->number_of_sux(); i++) {
   949       sux->append(this->begin()->sux_at(i));
   950     }
   951   }
   952   _sux = sux;
   953 }
   956 void BlockEnd::substitute_sux(BlockBegin* old_sux, BlockBegin* new_sux) {
   957   substitute(*_sux, old_sux, new_sux);
   958 }
   961 // Implementation of Phi
   963 // Normal phi functions take their operands from the last instruction of the
   964 // predecessor. Special handling is needed for xhanlder entries because there
   965 // the state of arbitrary instructions are needed.
   967 Value Phi::operand_at(int i) const {
   968   ValueStack* state;
   969   if (_block->is_set(BlockBegin::exception_entry_flag)) {
   970     state = _block->exception_state_at(i);
   971   } else {
   972     state = _block->pred_at(i)->end()->state();
   973   }
   974   assert(state != NULL, "");
   976   if (is_local()) {
   977     return state->local_at(local_index());
   978   } else {
   979     return state->stack_at(stack_index());
   980   }
   981 }
   984 int Phi::operand_count() const {
   985   if (_block->is_set(BlockBegin::exception_entry_flag)) {
   986     return _block->number_of_exception_states();
   987   } else {
   988     return _block->number_of_preds();
   989   }
   990 }
   992 #ifdef ASSERT
   993 // Constructor of Assert
   994 Assert::Assert(Value x, Condition cond, bool unordered_is_true, Value y) : Instruction(illegalType)
   995   , _x(x)
   996   , _cond(cond)
   997   , _y(y)
   998 {
   999   set_flag(UnorderedIsTrueFlag, unordered_is_true);
  1000   assert(x->type()->tag() == y->type()->tag(), "types must match");
  1001   pin();
  1003   stringStream strStream;
  1004   Compilation::current()->method()->print_name(&strStream);
  1006   stringStream strStream1;
  1007   InstructionPrinter ip1(1, &strStream1);
  1008   ip1.print_instr(x);
  1010   stringStream strStream2;
  1011   InstructionPrinter ip2(1, &strStream2);
  1012   ip2.print_instr(y);
  1014   stringStream ss;
  1015   ss.print("Assertion %s %s %s in method %s", strStream1.as_string(), ip2.cond_name(cond), strStream2.as_string(), strStream.as_string());
  1017   _message = ss.as_string();
  1019 #endif
  1021 void RangeCheckPredicate::check_state() {
  1022   assert(state()->kind() != ValueStack::EmptyExceptionState && state()->kind() != ValueStack::ExceptionState, "will deopt with empty state");
  1025 void ProfileInvoke::state_values_do(ValueVisitor* f) {
  1026   if (state() != NULL) state()->values_do(f);

mercurial