src/share/vm/c1/c1_IR.cpp

Thu, 24 May 2018 18:41:44 +0800

author
aoqi
date
Thu, 24 May 2018 18:41:44 +0800
changeset 8856
ac27a9c85bea
parent 6876
710a3c8b516e
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "c1/c1_Compilation.hpp"
    27 #include "c1/c1_FrameMap.hpp"
    28 #include "c1/c1_GraphBuilder.hpp"
    29 #include "c1/c1_IR.hpp"
    30 #include "c1/c1_InstructionPrinter.hpp"
    31 #include "c1/c1_Optimizer.hpp"
    32 #include "utilities/bitMap.inline.hpp"
    35 // Implementation of XHandlers
    36 //
    37 // Note: This code could eventually go away if we are
    38 //       just using the ciExceptionHandlerStream.
    40 XHandlers::XHandlers(ciMethod* method) : _list(method->exception_table_length()) {
    41   ciExceptionHandlerStream s(method);
    42   while (!s.is_done()) {
    43     _list.append(new XHandler(s.handler()));
    44     s.next();
    45   }
    46   assert(s.count() == method->exception_table_length(), "exception table lengths inconsistent");
    47 }
    49 // deep copy of all XHandler contained in list
    50 XHandlers::XHandlers(XHandlers* other) :
    51   _list(other->length())
    52 {
    53   for (int i = 0; i < other->length(); i++) {
    54     _list.append(new XHandler(other->handler_at(i)));
    55   }
    56 }
    58 // Returns whether a particular exception type can be caught.  Also
    59 // returns true if klass is unloaded or any exception handler
    60 // classes are unloaded.  type_is_exact indicates whether the throw
    61 // is known to be exactly that class or it might throw a subtype.
    62 bool XHandlers::could_catch(ciInstanceKlass* klass, bool type_is_exact) const {
    63   // the type is unknown so be conservative
    64   if (!klass->is_loaded()) {
    65     return true;
    66   }
    68   for (int i = 0; i < length(); i++) {
    69     XHandler* handler = handler_at(i);
    70     if (handler->is_catch_all()) {
    71       // catch of ANY
    72       return true;
    73     }
    74     ciInstanceKlass* handler_klass = handler->catch_klass();
    75     // if it's unknown it might be catchable
    76     if (!handler_klass->is_loaded()) {
    77       return true;
    78     }
    79     // if the throw type is definitely a subtype of the catch type
    80     // then it can be caught.
    81     if (klass->is_subtype_of(handler_klass)) {
    82       return true;
    83     }
    84     if (!type_is_exact) {
    85       // If the type isn't exactly known then it can also be caught by
    86       // catch statements where the inexact type is a subtype of the
    87       // catch type.
    88       // given: foo extends bar extends Exception
    89       // throw bar can be caught by catch foo, catch bar, and catch
    90       // Exception, however it can't be caught by any handlers without
    91       // bar in its type hierarchy.
    92       if (handler_klass->is_subtype_of(klass)) {
    93         return true;
    94       }
    95     }
    96   }
    98   return false;
    99 }
   102 bool XHandlers::equals(XHandlers* others) const {
   103   if (others == NULL) return false;
   104   if (length() != others->length()) return false;
   106   for (int i = 0; i < length(); i++) {
   107     if (!handler_at(i)->equals(others->handler_at(i))) return false;
   108   }
   109   return true;
   110 }
   112 bool XHandler::equals(XHandler* other) const {
   113   assert(entry_pco() != -1 && other->entry_pco() != -1, "must have entry_pco");
   115   if (entry_pco() != other->entry_pco()) return false;
   116   if (scope_count() != other->scope_count()) return false;
   117   if (_desc != other->_desc) return false;
   119   assert(entry_block() == other->entry_block(), "entry_block must be equal when entry_pco is equal");
   120   return true;
   121 }
   124 // Implementation of IRScope
   125 BlockBegin* IRScope::build_graph(Compilation* compilation, int osr_bci) {
   126   GraphBuilder gm(compilation, this);
   127   NOT_PRODUCT(if (PrintValueNumbering && Verbose) gm.print_stats());
   128   if (compilation->bailed_out()) return NULL;
   129   return gm.start();
   130 }
   133 IRScope::IRScope(Compilation* compilation, IRScope* caller, int caller_bci, ciMethod* method, int osr_bci, bool create_graph)
   134 : _callees(2)
   135 , _compilation(compilation)
   136 , _requires_phi_function(method->max_locals())
   137 {
   138   _caller             = caller;
   139   _level              = caller == NULL ?  0 : caller->level() + 1;
   140   _method             = method;
   141   _xhandlers          = new XHandlers(method);
   142   _number_of_locks    = 0;
   143   _monitor_pairing_ok = method->has_balanced_monitors();
   144   _wrote_final        = false;
   145   _start              = NULL;
   147   if (osr_bci == -1) {
   148     _requires_phi_function.clear();
   149   } else {
   150         // selective creation of phi functions is not possibel in osr-methods
   151     _requires_phi_function.set_range(0, method->max_locals());
   152   }
   154   assert(method->holder()->is_loaded() , "method holder must be loaded");
   156   // build graph if monitor pairing is ok
   157   if (create_graph && monitor_pairing_ok()) _start = build_graph(compilation, osr_bci);
   158 }
   161 int IRScope::max_stack() const {
   162   int my_max = method()->max_stack();
   163   int callee_max = 0;
   164   for (int i = 0; i < number_of_callees(); i++) {
   165     callee_max = MAX2(callee_max, callee_no(i)->max_stack());
   166   }
   167   return my_max + callee_max;
   168 }
   171 bool IRScopeDebugInfo::should_reexecute() {
   172   ciMethod* cur_method = scope()->method();
   173   int       cur_bci    = bci();
   174   if (cur_method != NULL && cur_bci != SynchronizationEntryBCI) {
   175     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
   176     return Interpreter::bytecode_should_reexecute(code);
   177   } else
   178     return false;
   179 }
   182 // Implementation of CodeEmitInfo
   184 // Stack must be NON-null
   185 CodeEmitInfo::CodeEmitInfo(ValueStack* stack, XHandlers* exception_handlers, bool deoptimize_on_exception)
   186   : _scope(stack->scope())
   187   , _scope_debug_info(NULL)
   188   , _oop_map(NULL)
   189   , _stack(stack)
   190   , _exception_handlers(exception_handlers)
   191   , _is_method_handle_invoke(false)
   192   , _deoptimize_on_exception(deoptimize_on_exception) {
   193   assert(_stack != NULL, "must be non null");
   194 }
   197 CodeEmitInfo::CodeEmitInfo(CodeEmitInfo* info, ValueStack* stack)
   198   : _scope(info->_scope)
   199   , _exception_handlers(NULL)
   200   , _scope_debug_info(NULL)
   201   , _oop_map(NULL)
   202   , _stack(stack == NULL ? info->_stack : stack)
   203   , _is_method_handle_invoke(info->_is_method_handle_invoke)
   204   , _deoptimize_on_exception(info->_deoptimize_on_exception) {
   206   // deep copy of exception handlers
   207   if (info->_exception_handlers != NULL) {
   208     _exception_handlers = new XHandlers(info->_exception_handlers);
   209   }
   210 }
   213 void CodeEmitInfo::record_debug_info(DebugInformationRecorder* recorder, int pc_offset) {
   214   // record the safepoint before recording the debug info for enclosing scopes
   215   recorder->add_safepoint(pc_offset, _oop_map->deep_copy());
   216   _scope_debug_info->record_debug_info(recorder, pc_offset, true/*topmost*/, _is_method_handle_invoke);
   217   recorder->end_safepoint(pc_offset);
   218 }
   221 void CodeEmitInfo::add_register_oop(LIR_Opr opr) {
   222   assert(_oop_map != NULL, "oop map must already exist");
   223   assert(opr->is_single_cpu(), "should not call otherwise");
   225   VMReg name = frame_map()->regname(opr);
   226   _oop_map->set_oop(name);
   227 }
   229 // Mirror the stack size calculation in the deopt code
   230 // How much stack space would we need at this point in the program in
   231 // case of deoptimization?
   232 int CodeEmitInfo::interpreter_frame_size() const {
   233   ValueStack* state = _stack;
   234   int size = 0;
   235   int callee_parameters = 0;
   236   int callee_locals = 0;
   237   int extra_args = state->scope()->method()->max_stack() - state->stack_size();
   239   while (state != NULL) {
   240     int locks = state->locks_size();
   241     int temps = state->stack_size();
   242     bool is_top_frame = (state == _stack);
   243     ciMethod* method = state->scope()->method();
   245     int frame_size = BytesPerWord * Interpreter::size_activation(method->max_stack(),
   246                                                                  temps + callee_parameters,
   247                                                                  extra_args,
   248                                                                  locks,
   249                                                                  callee_parameters,
   250                                                                  callee_locals,
   251                                                                  is_top_frame);
   252     size += frame_size;
   254     callee_parameters = method->size_of_parameters();
   255     callee_locals = method->max_locals();
   256     extra_args = 0;
   257     state = state->caller_state();
   258   }
   259   return size + Deoptimization::last_frame_adjust(0, callee_locals) * BytesPerWord;
   260 }
   262 // Implementation of IR
   264 IR::IR(Compilation* compilation, ciMethod* method, int osr_bci) :
   265     _locals_size(in_WordSize(-1))
   266   , _num_loops(0) {
   267   // setup IR fields
   268   _compilation = compilation;
   269   _top_scope   = new IRScope(compilation, NULL, -1, method, osr_bci, true);
   270   _code        = NULL;
   271 }
   274 void IR::optimize_blocks() {
   275   Optimizer opt(this);
   276   if (!compilation()->profile_branches()) {
   277     if (DoCEE) {
   278       opt.eliminate_conditional_expressions();
   279 #ifndef PRODUCT
   280       if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after CEE"); print(true); }
   281       if (PrintIR  || PrintIR1 ) { tty->print_cr("IR after CEE"); print(false); }
   282 #endif
   283     }
   284     if (EliminateBlocks) {
   285       opt.eliminate_blocks();
   286 #ifndef PRODUCT
   287       if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after block elimination"); print(true); }
   288       if (PrintIR  || PrintIR1 ) { tty->print_cr("IR after block elimination"); print(false); }
   289 #endif
   290     }
   291   }
   292 }
   294 void IR::eliminate_null_checks() {
   295   Optimizer opt(this);
   296   if (EliminateNullChecks) {
   297     opt.eliminate_null_checks();
   298 #ifndef PRODUCT
   299     if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after null check elimination"); print(true); }
   300     if (PrintIR  || PrintIR1 ) { tty->print_cr("IR after null check elimination"); print(false); }
   301 #endif
   302   }
   303 }
   306 static int sort_pairs(BlockPair** a, BlockPair** b) {
   307   if ((*a)->from() == (*b)->from()) {
   308     return (*a)->to()->block_id() - (*b)->to()->block_id();
   309   } else {
   310     return (*a)->from()->block_id() - (*b)->from()->block_id();
   311   }
   312 }
   315 class CriticalEdgeFinder: public BlockClosure {
   316   BlockPairList blocks;
   317   IR*       _ir;
   319  public:
   320   CriticalEdgeFinder(IR* ir): _ir(ir) {}
   321   void block_do(BlockBegin* bb) {
   322     BlockEnd* be = bb->end();
   323     int nos = be->number_of_sux();
   324     if (nos >= 2) {
   325       for (int i = 0; i < nos; i++) {
   326         BlockBegin* sux = be->sux_at(i);
   327         if (sux->number_of_preds() >= 2) {
   328           blocks.append(new BlockPair(bb, sux));
   329         }
   330       }
   331     }
   332   }
   334   void split_edges() {
   335     BlockPair* last_pair = NULL;
   336     blocks.sort(sort_pairs);
   337     for (int i = 0; i < blocks.length(); i++) {
   338       BlockPair* pair = blocks.at(i);
   339       if (last_pair != NULL && pair->is_same(last_pair)) continue;
   340       BlockBegin* from = pair->from();
   341       BlockBegin* to = pair->to();
   342       BlockBegin* split = from->insert_block_between(to);
   343 #ifndef PRODUCT
   344       if ((PrintIR || PrintIR1) && Verbose) {
   345         tty->print_cr("Split critical edge B%d -> B%d (new block B%d)",
   346                       from->block_id(), to->block_id(), split->block_id());
   347       }
   348 #endif
   349       last_pair = pair;
   350     }
   351   }
   352 };
   354 void IR::split_critical_edges() {
   355   CriticalEdgeFinder cef(this);
   357   iterate_preorder(&cef);
   358   cef.split_edges();
   359 }
   362 class UseCountComputer: public ValueVisitor, BlockClosure {
   363  private:
   364   void visit(Value* n) {
   365     // Local instructions and Phis for expression stack values at the
   366     // start of basic blocks are not added to the instruction list
   367     if (!(*n)->is_linked() && (*n)->can_be_linked()) {
   368       assert(false, "a node was not appended to the graph");
   369       Compilation::current()->bailout("a node was not appended to the graph");
   370     }
   371     // use n's input if not visited before
   372     if (!(*n)->is_pinned() && !(*n)->has_uses()) {
   373       // note: a) if the instruction is pinned, it will be handled by compute_use_count
   374       //       b) if the instruction has uses, it was touched before
   375       //       => in both cases we don't need to update n's values
   376       uses_do(n);
   377     }
   378     // use n
   379     (*n)->_use_count++;
   380   }
   382   Values* worklist;
   383   int depth;
   384   enum {
   385     max_recurse_depth = 20
   386   };
   388   void uses_do(Value* n) {
   389     depth++;
   390     if (depth > max_recurse_depth) {
   391       // don't allow the traversal to recurse too deeply
   392       worklist->push(*n);
   393     } else {
   394       (*n)->input_values_do(this);
   395       // special handling for some instructions
   396       if ((*n)->as_BlockEnd() != NULL) {
   397         // note on BlockEnd:
   398         //   must 'use' the stack only if the method doesn't
   399         //   terminate, however, in those cases stack is empty
   400         (*n)->state_values_do(this);
   401       }
   402     }
   403     depth--;
   404   }
   406   void block_do(BlockBegin* b) {
   407     depth = 0;
   408     // process all pinned nodes as the roots of expression trees
   409     for (Instruction* n = b; n != NULL; n = n->next()) {
   410       if (n->is_pinned()) uses_do(&n);
   411     }
   412     assert(depth == 0, "should have counted back down");
   414     // now process any unpinned nodes which recursed too deeply
   415     while (worklist->length() > 0) {
   416       Value t = worklist->pop();
   417       if (!t->is_pinned()) {
   418         // compute the use count
   419         uses_do(&t);
   421         // pin the instruction so that LIRGenerator doesn't recurse
   422         // too deeply during it's evaluation.
   423         t->pin();
   424       }
   425     }
   426     assert(depth == 0, "should have counted back down");
   427   }
   429   UseCountComputer() {
   430     worklist = new Values();
   431     depth = 0;
   432   }
   434  public:
   435   static void compute(BlockList* blocks) {
   436     UseCountComputer ucc;
   437     blocks->iterate_backward(&ucc);
   438   }
   439 };
   442 // helper macro for short definition of trace-output inside code
   443 #ifndef PRODUCT
   444   #define TRACE_LINEAR_SCAN(level, code)       \
   445     if (TraceLinearScanLevel >= level) {       \
   446       code;                                    \
   447     }
   448 #else
   449   #define TRACE_LINEAR_SCAN(level, code)
   450 #endif
   452 class ComputeLinearScanOrder : public StackObj {
   453  private:
   454   int        _max_block_id;        // the highest block_id of a block
   455   int        _num_blocks;          // total number of blocks (smaller than _max_block_id)
   456   int        _num_loops;           // total number of loops
   457   bool       _iterative_dominators;// method requires iterative computation of dominatiors
   459   BlockList* _linear_scan_order;   // the resulting list of blocks in correct order
   461   BitMap     _visited_blocks;      // used for recursive processing of blocks
   462   BitMap     _active_blocks;       // used for recursive processing of blocks
   463   BitMap     _dominator_blocks;    // temproary BitMap used for computation of dominator
   464   intArray   _forward_branches;    // number of incoming forward branches for each block
   465   BlockList  _loop_end_blocks;     // list of all loop end blocks collected during count_edges
   466   BitMap2D   _loop_map;            // two-dimensional bit set: a bit is set if a block is contained in a loop
   467   BlockList  _work_list;           // temporary list (used in mark_loops and compute_order)
   468   BlockList  _loop_headers;
   470   Compilation* _compilation;
   472   // accessors for _visited_blocks and _active_blocks
   473   void init_visited()                     { _active_blocks.clear(); _visited_blocks.clear(); }
   474   bool is_visited(BlockBegin* b) const    { return _visited_blocks.at(b->block_id()); }
   475   bool is_active(BlockBegin* b) const     { return _active_blocks.at(b->block_id()); }
   476   void set_visited(BlockBegin* b)         { assert(!is_visited(b), "already set"); _visited_blocks.set_bit(b->block_id()); }
   477   void set_active(BlockBegin* b)          { assert(!is_active(b), "already set");  _active_blocks.set_bit(b->block_id()); }
   478   void clear_active(BlockBegin* b)        { assert(is_active(b), "not already");   _active_blocks.clear_bit(b->block_id()); }
   480   // accessors for _forward_branches
   481   void inc_forward_branches(BlockBegin* b) { _forward_branches.at_put(b->block_id(), _forward_branches.at(b->block_id()) + 1); }
   482   int  dec_forward_branches(BlockBegin* b) { _forward_branches.at_put(b->block_id(), _forward_branches.at(b->block_id()) - 1); return _forward_branches.at(b->block_id()); }
   484   // accessors for _loop_map
   485   bool is_block_in_loop   (int loop_idx, BlockBegin* b) const { return _loop_map.at(loop_idx, b->block_id()); }
   486   void set_block_in_loop  (int loop_idx, BlockBegin* b)       { _loop_map.set_bit(loop_idx, b->block_id()); }
   487   void clear_block_in_loop(int loop_idx, int block_id)        { _loop_map.clear_bit(loop_idx, block_id); }
   489   // count edges between blocks
   490   void count_edges(BlockBegin* cur, BlockBegin* parent);
   492   // loop detection
   493   void mark_loops();
   494   void clear_non_natural_loops(BlockBegin* start_block);
   495   void assign_loop_depth(BlockBegin* start_block);
   497   // computation of final block order
   498   BlockBegin* common_dominator(BlockBegin* a, BlockBegin* b);
   499   void compute_dominator(BlockBegin* cur, BlockBegin* parent);
   500   int  compute_weight(BlockBegin* cur);
   501   bool ready_for_processing(BlockBegin* cur);
   502   void sort_into_work_list(BlockBegin* b);
   503   void append_block(BlockBegin* cur);
   504   void compute_order(BlockBegin* start_block);
   506   // fixup of dominators for non-natural loops
   507   bool compute_dominators_iter();
   508   void compute_dominators();
   510   // debug functions
   511   NOT_PRODUCT(void print_blocks();)
   512   DEBUG_ONLY(void verify();)
   514   Compilation* compilation() const { return _compilation; }
   515  public:
   516   ComputeLinearScanOrder(Compilation* c, BlockBegin* start_block);
   518   // accessors for final result
   519   BlockList* linear_scan_order() const    { return _linear_scan_order; }
   520   int        num_loops() const            { return _num_loops; }
   521 };
   524 ComputeLinearScanOrder::ComputeLinearScanOrder(Compilation* c, BlockBegin* start_block) :
   525   _max_block_id(BlockBegin::number_of_blocks()),
   526   _num_blocks(0),
   527   _num_loops(0),
   528   _iterative_dominators(false),
   529   _visited_blocks(_max_block_id),
   530   _active_blocks(_max_block_id),
   531   _dominator_blocks(_max_block_id),
   532   _forward_branches(_max_block_id, 0),
   533   _loop_end_blocks(8),
   534   _work_list(8),
   535   _linear_scan_order(NULL), // initialized later with correct size
   536   _loop_map(0, 0),          // initialized later with correct size
   537   _compilation(c)
   538 {
   539   TRACE_LINEAR_SCAN(2, tty->print_cr("***** computing linear-scan block order"));
   541   init_visited();
   542   count_edges(start_block, NULL);
   544   if (compilation()->is_profiling()) {
   545     ciMethod *method = compilation()->method();
   546     if (!method->is_accessor()) {
   547       ciMethodData* md = method->method_data_or_null();
   548       assert(md != NULL, "Sanity");
   549       md->set_compilation_stats(_num_loops, _num_blocks);
   550     }
   551   }
   553   if (_num_loops > 0) {
   554     mark_loops();
   555     clear_non_natural_loops(start_block);
   556     assign_loop_depth(start_block);
   557   }
   559   compute_order(start_block);
   560   compute_dominators();
   562   NOT_PRODUCT(print_blocks());
   563   DEBUG_ONLY(verify());
   564 }
   567 // Traverse the CFG:
   568 // * count total number of blocks
   569 // * count all incoming edges and backward incoming edges
   570 // * number loop header blocks
   571 // * create a list with all loop end blocks
   572 void ComputeLinearScanOrder::count_edges(BlockBegin* cur, BlockBegin* parent) {
   573   TRACE_LINEAR_SCAN(3, tty->print_cr("Enter count_edges for block B%d coming from B%d", cur->block_id(), parent != NULL ? parent->block_id() : -1));
   574   assert(cur->dominator() == NULL, "dominator already initialized");
   576   if (is_active(cur)) {
   577     TRACE_LINEAR_SCAN(3, tty->print_cr("backward branch"));
   578     assert(is_visited(cur), "block must be visisted when block is active");
   579     assert(parent != NULL, "must have parent");
   581     cur->set(BlockBegin::linear_scan_loop_header_flag);
   582     cur->set(BlockBegin::backward_branch_target_flag);
   584     parent->set(BlockBegin::linear_scan_loop_end_flag);
   586     // When a loop header is also the start of an exception handler, then the backward branch is
   587     // an exception edge. Because such edges are usually critical edges which cannot be split, the
   588     // loop must be excluded here from processing.
   589     if (cur->is_set(BlockBegin::exception_entry_flag)) {
   590       // Make sure that dominators are correct in this weird situation
   591       _iterative_dominators = true;
   592       return;
   593     }
   594     assert(parent->number_of_sux() == 1 && parent->sux_at(0) == cur,
   595            "loop end blocks must have one successor (critical edges are split)");
   597     _loop_end_blocks.append(parent);
   598     return;
   599   }
   601   // increment number of incoming forward branches
   602   inc_forward_branches(cur);
   604   if (is_visited(cur)) {
   605     TRACE_LINEAR_SCAN(3, tty->print_cr("block already visited"));
   606     return;
   607   }
   609   _num_blocks++;
   610   set_visited(cur);
   611   set_active(cur);
   613   // recursive call for all successors
   614   int i;
   615   for (i = cur->number_of_sux() - 1; i >= 0; i--) {
   616     count_edges(cur->sux_at(i), cur);
   617   }
   618   for (i = cur->number_of_exception_handlers() - 1; i >= 0; i--) {
   619     count_edges(cur->exception_handler_at(i), cur);
   620   }
   622   clear_active(cur);
   624   // Each loop has a unique number.
   625   // When multiple loops are nested, assign_loop_depth assumes that the
   626   // innermost loop has the lowest number. This is guaranteed by setting
   627   // the loop number after the recursive calls for the successors above
   628   // have returned.
   629   if (cur->is_set(BlockBegin::linear_scan_loop_header_flag)) {
   630     assert(cur->loop_index() == -1, "cannot set loop-index twice");
   631     TRACE_LINEAR_SCAN(3, tty->print_cr("Block B%d is loop header of loop %d", cur->block_id(), _num_loops));
   633     cur->set_loop_index(_num_loops);
   634     _loop_headers.append(cur);
   635     _num_loops++;
   636   }
   638   TRACE_LINEAR_SCAN(3, tty->print_cr("Finished count_edges for block B%d", cur->block_id()));
   639 }
   642 void ComputeLinearScanOrder::mark_loops() {
   643   TRACE_LINEAR_SCAN(3, tty->print_cr("----- marking loops"));
   645   _loop_map = BitMap2D(_num_loops, _max_block_id);
   646   _loop_map.clear();
   648   for (int i = _loop_end_blocks.length() - 1; i >= 0; i--) {
   649     BlockBegin* loop_end   = _loop_end_blocks.at(i);
   650     BlockBegin* loop_start = loop_end->sux_at(0);
   651     int         loop_idx   = loop_start->loop_index();
   653     TRACE_LINEAR_SCAN(3, tty->print_cr("Processing loop from B%d to B%d (loop %d):", loop_start->block_id(), loop_end->block_id(), loop_idx));
   654     assert(loop_end->is_set(BlockBegin::linear_scan_loop_end_flag), "loop end flag must be set");
   655     assert(loop_end->number_of_sux() == 1, "incorrect number of successors");
   656     assert(loop_start->is_set(BlockBegin::linear_scan_loop_header_flag), "loop header flag must be set");
   657     assert(loop_idx >= 0 && loop_idx < _num_loops, "loop index not set");
   658     assert(_work_list.is_empty(), "work list must be empty before processing");
   660     // add the end-block of the loop to the working list
   661     _work_list.push(loop_end);
   662     set_block_in_loop(loop_idx, loop_end);
   663     do {
   664       BlockBegin* cur = _work_list.pop();
   666       TRACE_LINEAR_SCAN(3, tty->print_cr("    processing B%d", cur->block_id()));
   667       assert(is_block_in_loop(loop_idx, cur), "bit in loop map must be set when block is in work list");
   669       // recursive processing of all predecessors ends when start block of loop is reached
   670       if (cur != loop_start && !cur->is_set(BlockBegin::osr_entry_flag)) {
   671         for (int j = cur->number_of_preds() - 1; j >= 0; j--) {
   672           BlockBegin* pred = cur->pred_at(j);
   674           if (!is_block_in_loop(loop_idx, pred) /*&& !pred->is_set(BlockBeginosr_entry_flag)*/) {
   675             // this predecessor has not been processed yet, so add it to work list
   676             TRACE_LINEAR_SCAN(3, tty->print_cr("    pushing B%d", pred->block_id()));
   677             _work_list.push(pred);
   678             set_block_in_loop(loop_idx, pred);
   679           }
   680         }
   681       }
   682     } while (!_work_list.is_empty());
   683   }
   684 }
   687 // check for non-natural loops (loops where the loop header does not dominate
   688 // all other loop blocks = loops with mulitple entries).
   689 // such loops are ignored
   690 void ComputeLinearScanOrder::clear_non_natural_loops(BlockBegin* start_block) {
   691   for (int i = _num_loops - 1; i >= 0; i--) {
   692     if (is_block_in_loop(i, start_block)) {
   693       // loop i contains the entry block of the method
   694       // -> this is not a natural loop, so ignore it
   695       TRACE_LINEAR_SCAN(2, tty->print_cr("Loop %d is non-natural, so it is ignored", i));
   697       BlockBegin *loop_header = _loop_headers.at(i);
   698       assert(loop_header->is_set(BlockBegin::linear_scan_loop_header_flag), "Must be loop header");
   700       for (int j = 0; j < loop_header->number_of_preds(); j++) {
   701         BlockBegin *pred = loop_header->pred_at(j);
   702         pred->clear(BlockBegin::linear_scan_loop_end_flag);
   703       }
   705       loop_header->clear(BlockBegin::linear_scan_loop_header_flag);
   707       for (int block_id = _max_block_id - 1; block_id >= 0; block_id--) {
   708         clear_block_in_loop(i, block_id);
   709       }
   710       _iterative_dominators = true;
   711     }
   712   }
   713 }
   715 void ComputeLinearScanOrder::assign_loop_depth(BlockBegin* start_block) {
   716   TRACE_LINEAR_SCAN(3, tty->print_cr("----- computing loop-depth and weight"));
   717   init_visited();
   719   assert(_work_list.is_empty(), "work list must be empty before processing");
   720   _work_list.append(start_block);
   722   do {
   723     BlockBegin* cur = _work_list.pop();
   725     if (!is_visited(cur)) {
   726       set_visited(cur);
   727       TRACE_LINEAR_SCAN(4, tty->print_cr("Computing loop depth for block B%d", cur->block_id()));
   729       // compute loop-depth and loop-index for the block
   730       assert(cur->loop_depth() == 0, "cannot set loop-depth twice");
   731       int i;
   732       int loop_depth = 0;
   733       int min_loop_idx = -1;
   734       for (i = _num_loops - 1; i >= 0; i--) {
   735         if (is_block_in_loop(i, cur)) {
   736           loop_depth++;
   737           min_loop_idx = i;
   738         }
   739       }
   740       cur->set_loop_depth(loop_depth);
   741       cur->set_loop_index(min_loop_idx);
   743       // append all unvisited successors to work list
   744       for (i = cur->number_of_sux() - 1; i >= 0; i--) {
   745         _work_list.append(cur->sux_at(i));
   746       }
   747       for (i = cur->number_of_exception_handlers() - 1; i >= 0; i--) {
   748         _work_list.append(cur->exception_handler_at(i));
   749       }
   750     }
   751   } while (!_work_list.is_empty());
   752 }
   755 BlockBegin* ComputeLinearScanOrder::common_dominator(BlockBegin* a, BlockBegin* b) {
   756   assert(a != NULL && b != NULL, "must have input blocks");
   758   _dominator_blocks.clear();
   759   while (a != NULL) {
   760     _dominator_blocks.set_bit(a->block_id());
   761     assert(a->dominator() != NULL || a == _linear_scan_order->at(0), "dominator must be initialized");
   762     a = a->dominator();
   763   }
   764   while (b != NULL && !_dominator_blocks.at(b->block_id())) {
   765     assert(b->dominator() != NULL || b == _linear_scan_order->at(0), "dominator must be initialized");
   766     b = b->dominator();
   767   }
   769   assert(b != NULL, "could not find dominator");
   770   return b;
   771 }
   773 void ComputeLinearScanOrder::compute_dominator(BlockBegin* cur, BlockBegin* parent) {
   774   if (cur->dominator() == NULL) {
   775     TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: initializing dominator of B%d to B%d", cur->block_id(), parent->block_id()));
   776     cur->set_dominator(parent);
   778   } else if (!(cur->is_set(BlockBegin::linear_scan_loop_header_flag) && parent->is_set(BlockBegin::linear_scan_loop_end_flag))) {
   779     TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: computing dominator of B%d: common dominator of B%d and B%d is B%d", cur->block_id(), parent->block_id(), cur->dominator()->block_id(), common_dominator(cur->dominator(), parent)->block_id()));
   780     // Does not hold for exception blocks
   781     assert(cur->number_of_preds() > 1 || cur->is_set(BlockBegin::exception_entry_flag), "");
   782     cur->set_dominator(common_dominator(cur->dominator(), parent));
   783   }
   785   // Additional edge to xhandler of all our successors
   786   // range check elimination needs that the state at the end of a
   787   // block be valid in every block it dominates so cur must dominate
   788   // the exception handlers of its successors.
   789   int num_cur_xhandler = cur->number_of_exception_handlers();
   790   for (int j = 0; j < num_cur_xhandler; j++) {
   791     BlockBegin* xhandler = cur->exception_handler_at(j);
   792     compute_dominator(xhandler, parent);
   793   }
   794 }
   797 int ComputeLinearScanOrder::compute_weight(BlockBegin* cur) {
   798   BlockBegin* single_sux = NULL;
   799   if (cur->number_of_sux() == 1) {
   800     single_sux = cur->sux_at(0);
   801   }
   803   // limit loop-depth to 15 bit (only for security reason, it will never be so big)
   804   int weight = (cur->loop_depth() & 0x7FFF) << 16;
   806   // general macro for short definition of weight flags
   807   // the first instance of INC_WEIGHT_IF has the highest priority
   808   int cur_bit = 15;
   809   #define INC_WEIGHT_IF(condition) if ((condition)) { weight |= (1 << cur_bit); } cur_bit--;
   811   // this is necessery for the (very rare) case that two successing blocks have
   812   // the same loop depth, but a different loop index (can happen for endless loops
   813   // with exception handlers)
   814   INC_WEIGHT_IF(!cur->is_set(BlockBegin::linear_scan_loop_header_flag));
   816   // loop end blocks (blocks that end with a backward branch) are added
   817   // after all other blocks of the loop.
   818   INC_WEIGHT_IF(!cur->is_set(BlockBegin::linear_scan_loop_end_flag));
   820   // critical edge split blocks are prefered because than they have a bigger
   821   // proability to be completely empty
   822   INC_WEIGHT_IF(cur->is_set(BlockBegin::critical_edge_split_flag));
   824   // exceptions should not be thrown in normal control flow, so these blocks
   825   // are added as late as possible
   826   INC_WEIGHT_IF(cur->end()->as_Throw() == NULL  && (single_sux == NULL || single_sux->end()->as_Throw()  == NULL));
   827   INC_WEIGHT_IF(cur->end()->as_Return() == NULL && (single_sux == NULL || single_sux->end()->as_Return() == NULL));
   829   // exceptions handlers are added as late as possible
   830   INC_WEIGHT_IF(!cur->is_set(BlockBegin::exception_entry_flag));
   832   // guarantee that weight is > 0
   833   weight |= 1;
   835   #undef INC_WEIGHT_IF
   836   assert(cur_bit >= 0, "too many flags");
   837   assert(weight > 0, "weight cannot become negative");
   839   return weight;
   840 }
   842 bool ComputeLinearScanOrder::ready_for_processing(BlockBegin* cur) {
   843   // Discount the edge just traveled.
   844   // When the number drops to zero, all forward branches were processed
   845   if (dec_forward_branches(cur) != 0) {
   846     return false;
   847   }
   849   assert(_linear_scan_order->index_of(cur) == -1, "block already processed (block can be ready only once)");
   850   assert(_work_list.index_of(cur) == -1, "block already in work-list (block can be ready only once)");
   851   return true;
   852 }
   854 void ComputeLinearScanOrder::sort_into_work_list(BlockBegin* cur) {
   855   assert(_work_list.index_of(cur) == -1, "block already in work list");
   857   int cur_weight = compute_weight(cur);
   859   // the linear_scan_number is used to cache the weight of a block
   860   cur->set_linear_scan_number(cur_weight);
   862 #ifndef PRODUCT
   863   if (StressLinearScan) {
   864     _work_list.insert_before(0, cur);
   865     return;
   866   }
   867 #endif
   869   _work_list.append(NULL); // provide space for new element
   871   int insert_idx = _work_list.length() - 1;
   872   while (insert_idx > 0 && _work_list.at(insert_idx - 1)->linear_scan_number() > cur_weight) {
   873     _work_list.at_put(insert_idx, _work_list.at(insert_idx - 1));
   874     insert_idx--;
   875   }
   876   _work_list.at_put(insert_idx, cur);
   878   TRACE_LINEAR_SCAN(3, tty->print_cr("Sorted B%d into worklist. new worklist:", cur->block_id()));
   879   TRACE_LINEAR_SCAN(3, for (int i = 0; i < _work_list.length(); i++) tty->print_cr("%8d B%2d  weight:%6x", i, _work_list.at(i)->block_id(), _work_list.at(i)->linear_scan_number()));
   881 #ifdef ASSERT
   882   for (int i = 0; i < _work_list.length(); i++) {
   883     assert(_work_list.at(i)->linear_scan_number() > 0, "weight not set");
   884     assert(i == 0 || _work_list.at(i - 1)->linear_scan_number() <= _work_list.at(i)->linear_scan_number(), "incorrect order in worklist");
   885   }
   886 #endif
   887 }
   889 void ComputeLinearScanOrder::append_block(BlockBegin* cur) {
   890   TRACE_LINEAR_SCAN(3, tty->print_cr("appending block B%d (weight 0x%6x) to linear-scan order", cur->block_id(), cur->linear_scan_number()));
   891   assert(_linear_scan_order->index_of(cur) == -1, "cannot add the same block twice");
   893   // currently, the linear scan order and code emit order are equal.
   894   // therefore the linear_scan_number and the weight of a block must also
   895   // be equal.
   896   cur->set_linear_scan_number(_linear_scan_order->length());
   897   _linear_scan_order->append(cur);
   898 }
   900 void ComputeLinearScanOrder::compute_order(BlockBegin* start_block) {
   901   TRACE_LINEAR_SCAN(3, tty->print_cr("----- computing final block order"));
   903   // the start block is always the first block in the linear scan order
   904   _linear_scan_order = new BlockList(_num_blocks);
   905   append_block(start_block);
   907   assert(start_block->end()->as_Base() != NULL, "start block must end with Base-instruction");
   908   BlockBegin* std_entry = ((Base*)start_block->end())->std_entry();
   909   BlockBegin* osr_entry = ((Base*)start_block->end())->osr_entry();
   911   BlockBegin* sux_of_osr_entry = NULL;
   912   if (osr_entry != NULL) {
   913     // special handling for osr entry:
   914     // ignore the edge between the osr entry and its successor for processing
   915     // the osr entry block is added manually below
   916     assert(osr_entry->number_of_sux() == 1, "osr entry must have exactly one successor");
   917     assert(osr_entry->sux_at(0)->number_of_preds() >= 2, "sucessor of osr entry must have two predecessors (otherwise it is not present in normal control flow");
   919     sux_of_osr_entry = osr_entry->sux_at(0);
   920     dec_forward_branches(sux_of_osr_entry);
   922     compute_dominator(osr_entry, start_block);
   923     _iterative_dominators = true;
   924   }
   925   compute_dominator(std_entry, start_block);
   927   // start processing with standard entry block
   928   assert(_work_list.is_empty(), "list must be empty before processing");
   930   if (ready_for_processing(std_entry)) {
   931     sort_into_work_list(std_entry);
   932   } else {
   933     assert(false, "the std_entry must be ready for processing (otherwise, the method has no start block)");
   934   }
   936   do {
   937     BlockBegin* cur = _work_list.pop();
   939     if (cur == sux_of_osr_entry) {
   940       // the osr entry block is ignored in normal processing, it is never added to the
   941       // work list. Instead, it is added as late as possible manually here.
   942       append_block(osr_entry);
   943       compute_dominator(cur, osr_entry);
   944     }
   945     append_block(cur);
   947     int i;
   948     int num_sux = cur->number_of_sux();
   949     // changed loop order to get "intuitive" order of if- and else-blocks
   950     for (i = 0; i < num_sux; i++) {
   951       BlockBegin* sux = cur->sux_at(i);
   952       compute_dominator(sux, cur);
   953       if (ready_for_processing(sux)) {
   954         sort_into_work_list(sux);
   955       }
   956     }
   957     num_sux = cur->number_of_exception_handlers();
   958     for (i = 0; i < num_sux; i++) {
   959       BlockBegin* sux = cur->exception_handler_at(i);
   960       if (ready_for_processing(sux)) {
   961         sort_into_work_list(sux);
   962       }
   963     }
   964   } while (_work_list.length() > 0);
   965 }
   968 bool ComputeLinearScanOrder::compute_dominators_iter() {
   969   bool changed = false;
   970   int num_blocks = _linear_scan_order->length();
   972   assert(_linear_scan_order->at(0)->dominator() == NULL, "must not have dominator");
   973   assert(_linear_scan_order->at(0)->number_of_preds() == 0, "must not have predecessors");
   974   for (int i = 1; i < num_blocks; i++) {
   975     BlockBegin* block = _linear_scan_order->at(i);
   977     BlockBegin* dominator = block->pred_at(0);
   978     int num_preds = block->number_of_preds();
   980     TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: Processing B%d", block->block_id()));
   982     for (int j = 0; j < num_preds; j++) {
   984       BlockBegin *pred = block->pred_at(j);
   985       TRACE_LINEAR_SCAN(4, tty->print_cr("   DOM: Subrocessing B%d", pred->block_id()));
   987       if (block->is_set(BlockBegin::exception_entry_flag)) {
   988         dominator = common_dominator(dominator, pred);
   989         int num_pred_preds = pred->number_of_preds();
   990         for (int k = 0; k < num_pred_preds; k++) {
   991           dominator = common_dominator(dominator, pred->pred_at(k));
   992         }
   993       } else {
   994         dominator = common_dominator(dominator, pred);
   995       }
   996     }
   998     if (dominator != block->dominator()) {
   999       TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: updating dominator of B%d from B%d to B%d", block->block_id(), block->dominator()->block_id(), dominator->block_id()));
  1001       block->set_dominator(dominator);
  1002       changed = true;
  1005   return changed;
  1008 void ComputeLinearScanOrder::compute_dominators() {
  1009   TRACE_LINEAR_SCAN(3, tty->print_cr("----- computing dominators (iterative computation reqired: %d)", _iterative_dominators));
  1011   // iterative computation of dominators is only required for methods with non-natural loops
  1012   // and OSR-methods. For all other methods, the dominators computed when generating the
  1013   // linear scan block order are correct.
  1014   if (_iterative_dominators) {
  1015     do {
  1016       TRACE_LINEAR_SCAN(1, tty->print_cr("DOM: next iteration of fix-point calculation"));
  1017     } while (compute_dominators_iter());
  1020   // check that dominators are correct
  1021   assert(!compute_dominators_iter(), "fix point not reached");
  1023   // Add Blocks to dominates-Array
  1024   int num_blocks = _linear_scan_order->length();
  1025   for (int i = 0; i < num_blocks; i++) {
  1026     BlockBegin* block = _linear_scan_order->at(i);
  1028     BlockBegin *dom = block->dominator();
  1029     if (dom) {
  1030       assert(dom->dominator_depth() != -1, "Dominator must have been visited before");
  1031       dom->dominates()->append(block);
  1032       block->set_dominator_depth(dom->dominator_depth() + 1);
  1033     } else {
  1034       block->set_dominator_depth(0);
  1040 #ifndef PRODUCT
  1041 void ComputeLinearScanOrder::print_blocks() {
  1042   if (TraceLinearScanLevel >= 2) {
  1043     tty->print_cr("----- loop information:");
  1044     for (int block_idx = 0; block_idx < _linear_scan_order->length(); block_idx++) {
  1045       BlockBegin* cur = _linear_scan_order->at(block_idx);
  1047       tty->print("%4d: B%2d: ", cur->linear_scan_number(), cur->block_id());
  1048       for (int loop_idx = 0; loop_idx < _num_loops; loop_idx++) {
  1049         tty->print ("%d ", is_block_in_loop(loop_idx, cur));
  1051       tty->print_cr(" -> loop_index: %2d, loop_depth: %2d", cur->loop_index(), cur->loop_depth());
  1055   if (TraceLinearScanLevel >= 1) {
  1056     tty->print_cr("----- linear-scan block order:");
  1057     for (int block_idx = 0; block_idx < _linear_scan_order->length(); block_idx++) {
  1058       BlockBegin* cur = _linear_scan_order->at(block_idx);
  1059       tty->print("%4d: B%2d    loop: %2d  depth: %2d", cur->linear_scan_number(), cur->block_id(), cur->loop_index(), cur->loop_depth());
  1061       tty->print(cur->is_set(BlockBegin::exception_entry_flag)         ? " ex" : "   ");
  1062       tty->print(cur->is_set(BlockBegin::critical_edge_split_flag)     ? " ce" : "   ");
  1063       tty->print(cur->is_set(BlockBegin::linear_scan_loop_header_flag) ? " lh" : "   ");
  1064       tty->print(cur->is_set(BlockBegin::linear_scan_loop_end_flag)    ? " le" : "   ");
  1066       if (cur->dominator() != NULL) {
  1067         tty->print("    dom: B%d ", cur->dominator()->block_id());
  1068       } else {
  1069         tty->print("    dom: NULL ");
  1072       if (cur->number_of_preds() > 0) {
  1073         tty->print("    preds: ");
  1074         for (int j = 0; j < cur->number_of_preds(); j++) {
  1075           BlockBegin* pred = cur->pred_at(j);
  1076           tty->print("B%d ", pred->block_id());
  1079       if (cur->number_of_sux() > 0) {
  1080         tty->print("    sux: ");
  1081         for (int j = 0; j < cur->number_of_sux(); j++) {
  1082           BlockBegin* sux = cur->sux_at(j);
  1083           tty->print("B%d ", sux->block_id());
  1086       if (cur->number_of_exception_handlers() > 0) {
  1087         tty->print("    ex: ");
  1088         for (int j = 0; j < cur->number_of_exception_handlers(); j++) {
  1089           BlockBegin* ex = cur->exception_handler_at(j);
  1090           tty->print("B%d ", ex->block_id());
  1093       tty->cr();
  1097 #endif
  1099 #ifdef ASSERT
  1100 void ComputeLinearScanOrder::verify() {
  1101   assert(_linear_scan_order->length() == _num_blocks, "wrong number of blocks in list");
  1103   if (StressLinearScan) {
  1104     // blocks are scrambled when StressLinearScan is used
  1105     return;
  1108   // check that all successors of a block have a higher linear-scan-number
  1109   // and that all predecessors of a block have a lower linear-scan-number
  1110   // (only backward branches of loops are ignored)
  1111   int i;
  1112   for (i = 0; i < _linear_scan_order->length(); i++) {
  1113     BlockBegin* cur = _linear_scan_order->at(i);
  1115     assert(cur->linear_scan_number() == i, "incorrect linear_scan_number");
  1116     assert(cur->linear_scan_number() >= 0 && cur->linear_scan_number() == _linear_scan_order->index_of(cur), "incorrect linear_scan_number");
  1118     int j;
  1119     for (j = cur->number_of_sux() - 1; j >= 0; j--) {
  1120       BlockBegin* sux = cur->sux_at(j);
  1122       assert(sux->linear_scan_number() >= 0 && sux->linear_scan_number() == _linear_scan_order->index_of(sux), "incorrect linear_scan_number");
  1123       if (!sux->is_set(BlockBegin::backward_branch_target_flag)) {
  1124         assert(cur->linear_scan_number() < sux->linear_scan_number(), "invalid order");
  1126       if (cur->loop_depth() == sux->loop_depth()) {
  1127         assert(cur->loop_index() == sux->loop_index() || sux->is_set(BlockBegin::linear_scan_loop_header_flag), "successing blocks with same loop depth must have same loop index");
  1131     for (j = cur->number_of_preds() - 1; j >= 0; j--) {
  1132       BlockBegin* pred = cur->pred_at(j);
  1134       assert(pred->linear_scan_number() >= 0 && pred->linear_scan_number() == _linear_scan_order->index_of(pred), "incorrect linear_scan_number");
  1135       if (!cur->is_set(BlockBegin::backward_branch_target_flag)) {
  1136         assert(cur->linear_scan_number() > pred->linear_scan_number(), "invalid order");
  1138       if (cur->loop_depth() == pred->loop_depth()) {
  1139         assert(cur->loop_index() == pred->loop_index() || cur->is_set(BlockBegin::linear_scan_loop_header_flag), "successing blocks with same loop depth must have same loop index");
  1142       assert(cur->dominator()->linear_scan_number() <= cur->pred_at(j)->linear_scan_number(), "dominator must be before predecessors");
  1145     // check dominator
  1146     if (i == 0) {
  1147       assert(cur->dominator() == NULL, "first block has no dominator");
  1148     } else {
  1149       assert(cur->dominator() != NULL, "all but first block must have dominator");
  1151     // Assertion does not hold for exception handlers
  1152     assert(cur->number_of_preds() != 1 || cur->dominator() == cur->pred_at(0) || cur->is_set(BlockBegin::exception_entry_flag), "Single predecessor must also be dominator");
  1155   // check that all loops are continuous
  1156   for (int loop_idx = 0; loop_idx < _num_loops; loop_idx++) {
  1157     int block_idx = 0;
  1158     assert(!is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx)), "the first block must not be present in any loop");
  1160     // skip blocks before the loop
  1161     while (block_idx < _num_blocks && !is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx))) {
  1162       block_idx++;
  1164     // skip blocks of loop
  1165     while (block_idx < _num_blocks && is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx))) {
  1166       block_idx++;
  1168     // after the first non-loop block, there must not be another loop-block
  1169     while (block_idx < _num_blocks) {
  1170       assert(!is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx)), "loop not continuous in linear-scan order");
  1171       block_idx++;
  1175 #endif
  1178 void IR::compute_code() {
  1179   assert(is_valid(), "IR must be valid");
  1181   ComputeLinearScanOrder compute_order(compilation(), start());
  1182   _num_loops = compute_order.num_loops();
  1183   _code = compute_order.linear_scan_order();
  1187 void IR::compute_use_counts() {
  1188   // make sure all values coming out of this block get evaluated.
  1189   int num_blocks = _code->length();
  1190   for (int i = 0; i < num_blocks; i++) {
  1191     _code->at(i)->end()->state()->pin_stack_for_linear_scan();
  1194   // compute use counts
  1195   UseCountComputer::compute(_code);
  1199 void IR::iterate_preorder(BlockClosure* closure) {
  1200   assert(is_valid(), "IR must be valid");
  1201   start()->iterate_preorder(closure);
  1205 void IR::iterate_postorder(BlockClosure* closure) {
  1206   assert(is_valid(), "IR must be valid");
  1207   start()->iterate_postorder(closure);
  1210 void IR::iterate_linear_scan_order(BlockClosure* closure) {
  1211   linear_scan_order()->iterate_forward(closure);
  1215 #ifndef PRODUCT
  1216 class BlockPrinter: public BlockClosure {
  1217  private:
  1218   InstructionPrinter* _ip;
  1219   bool                _cfg_only;
  1220   bool                _live_only;
  1222  public:
  1223   BlockPrinter(InstructionPrinter* ip, bool cfg_only, bool live_only = false) {
  1224     _ip       = ip;
  1225     _cfg_only = cfg_only;
  1226     _live_only = live_only;
  1229   virtual void block_do(BlockBegin* block) {
  1230     if (_cfg_only) {
  1231       _ip->print_instr(block); tty->cr();
  1232     } else {
  1233       block->print_block(*_ip, _live_only);
  1236 };
  1239 void IR::print(BlockBegin* start, bool cfg_only, bool live_only) {
  1240   ttyLocker ttyl;
  1241   InstructionPrinter ip(!cfg_only);
  1242   BlockPrinter bp(&ip, cfg_only, live_only);
  1243   start->iterate_preorder(&bp);
  1244   tty->cr();
  1247 void IR::print(bool cfg_only, bool live_only) {
  1248   if (is_valid()) {
  1249     print(start(), cfg_only, live_only);
  1250   } else {
  1251     tty->print_cr("invalid IR");
  1256 define_array(BlockListArray, BlockList*)
  1257 define_stack(BlockListList, BlockListArray)
  1259 class PredecessorValidator : public BlockClosure {
  1260  private:
  1261   BlockListList* _predecessors;
  1262   BlockList*     _blocks;
  1264   static int cmp(BlockBegin** a, BlockBegin** b) {
  1265     return (*a)->block_id() - (*b)->block_id();
  1268  public:
  1269   PredecessorValidator(IR* hir) {
  1270     ResourceMark rm;
  1271     _predecessors = new BlockListList(BlockBegin::number_of_blocks(), NULL);
  1272     _blocks = new BlockList();
  1274     int i;
  1275     hir->start()->iterate_preorder(this);
  1276     if (hir->code() != NULL) {
  1277       assert(hir->code()->length() == _blocks->length(), "must match");
  1278       for (i = 0; i < _blocks->length(); i++) {
  1279         assert(hir->code()->contains(_blocks->at(i)), "should be in both lists");
  1283     for (i = 0; i < _blocks->length(); i++) {
  1284       BlockBegin* block = _blocks->at(i);
  1285       BlockList* preds = _predecessors->at(block->block_id());
  1286       if (preds == NULL) {
  1287         assert(block->number_of_preds() == 0, "should be the same");
  1288         continue;
  1291       // clone the pred list so we can mutate it
  1292       BlockList* pred_copy = new BlockList();
  1293       int j;
  1294       for (j = 0; j < block->number_of_preds(); j++) {
  1295         pred_copy->append(block->pred_at(j));
  1297       // sort them in the same order
  1298       preds->sort(cmp);
  1299       pred_copy->sort(cmp);
  1300       int length = MIN2(preds->length(), block->number_of_preds());
  1301       for (j = 0; j < block->number_of_preds(); j++) {
  1302         assert(preds->at(j) == pred_copy->at(j), "must match");
  1305       assert(preds->length() == block->number_of_preds(), "should be the same");
  1309   virtual void block_do(BlockBegin* block) {
  1310     _blocks->append(block);
  1311     BlockEnd* be = block->end();
  1312     int n = be->number_of_sux();
  1313     int i;
  1314     for (i = 0; i < n; i++) {
  1315       BlockBegin* sux = be->sux_at(i);
  1316       assert(!sux->is_set(BlockBegin::exception_entry_flag), "must not be xhandler");
  1318       BlockList* preds = _predecessors->at_grow(sux->block_id(), NULL);
  1319       if (preds == NULL) {
  1320         preds = new BlockList();
  1321         _predecessors->at_put(sux->block_id(), preds);
  1323       preds->append(block);
  1326     n = block->number_of_exception_handlers();
  1327     for (i = 0; i < n; i++) {
  1328       BlockBegin* sux = block->exception_handler_at(i);
  1329       assert(sux->is_set(BlockBegin::exception_entry_flag), "must be xhandler");
  1331       BlockList* preds = _predecessors->at_grow(sux->block_id(), NULL);
  1332       if (preds == NULL) {
  1333         preds = new BlockList();
  1334         _predecessors->at_put(sux->block_id(), preds);
  1336       preds->append(block);
  1339 };
  1341 class VerifyBlockBeginField : public BlockClosure {
  1343 public:
  1345   virtual void block_do(BlockBegin *block) {
  1346     for ( Instruction *cur = block; cur != NULL; cur = cur->next()) {
  1347       assert(cur->block() == block, "Block begin is not correct");
  1350 };
  1352 void IR::verify() {
  1353 #ifdef ASSERT
  1354   PredecessorValidator pv(this);
  1355   VerifyBlockBeginField verifier;
  1356   this->iterate_postorder(&verifier);
  1357 #endif
  1360 #endif // PRODUCT
  1362 void SubstitutionResolver::visit(Value* v) {
  1363   Value v0 = *v;
  1364   if (v0) {
  1365     Value vs = v0->subst();
  1366     if (vs != v0) {
  1367       *v = v0->subst();
  1372 #ifdef ASSERT
  1373 class SubstitutionChecker: public ValueVisitor {
  1374   void visit(Value* v) {
  1375     Value v0 = *v;
  1376     if (v0) {
  1377       Value vs = v0->subst();
  1378       assert(vs == v0, "missed substitution");
  1381 };
  1382 #endif
  1385 void SubstitutionResolver::block_do(BlockBegin* block) {
  1386   Instruction* last = NULL;
  1387   for (Instruction* n = block; n != NULL;) {
  1388     n->values_do(this);
  1389     // need to remove this instruction from the instruction stream
  1390     if (n->subst() != n) {
  1391       assert(last != NULL, "must have last");
  1392       last->set_next(n->next());
  1393     } else {
  1394       last = n;
  1396     n = last->next();
  1399 #ifdef ASSERT
  1400   SubstitutionChecker check_substitute;
  1401   if (block->state()) block->state()->values_do(&check_substitute);
  1402   block->block_values_do(&check_substitute);
  1403   if (block->end() && block->end()->state()) block->end()->state()->values_do(&check_substitute);
  1404 #endif

mercurial