src/share/vm/gc_implementation/g1/heapRegion.hpp

Wed, 30 Mar 2011 10:26:59 -0400

author
tonyp
date
Wed, 30 Mar 2011 10:26:59 -0400
changeset 2715
abdfc822206f
parent 2643
1216415d8e35
child 2717
371bbc844bf1
permissions
-rw-r--r--

7023069: G1: Introduce symmetric locking in the slow allocation path
7023151: G1: refactor the code that operates on _cur_alloc_region to be re-used for allocs by the GC threads
7018286: G1: humongous allocation attempts should take the GC locker into account
Summary: First, this change replaces the asymmetric locking scheme in the G1 slow alloc path by a summetric one. Second, it factors out the code that operates on _cur_alloc_region so that it can be re-used for allocations by the GC threads in the future.
Reviewed-by: stefank, brutisso, johnc

     1 /*
     2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
    28 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
    29 #include "gc_implementation/g1/g1_specialized_oop_closures.hpp"
    30 #include "gc_implementation/g1/survRateGroup.hpp"
    31 #include "gc_implementation/shared/ageTable.hpp"
    32 #include "gc_implementation/shared/spaceDecorator.hpp"
    33 #include "memory/space.inline.hpp"
    34 #include "memory/watermark.hpp"
    36 #ifndef SERIALGC
    38 // A HeapRegion is the smallest piece of a G1CollectedHeap that
    39 // can be collected independently.
    41 // NOTE: Although a HeapRegion is a Space, its
    42 // Space::initDirtyCardClosure method must not be called.
    43 // The problem is that the existence of this method breaks
    44 // the independence of barrier sets from remembered sets.
    45 // The solution is to remove this method from the definition
    46 // of a Space.
    48 class CompactibleSpace;
    49 class ContiguousSpace;
    50 class HeapRegionRemSet;
    51 class HeapRegionRemSetIterator;
    52 class HeapRegion;
    53 class HeapRegionSetBase;
    55 #define HR_FORMAT "%d:["PTR_FORMAT","PTR_FORMAT","PTR_FORMAT"]"
    56 #define HR_FORMAT_PARAMS(_hr_) (_hr_)->hrs_index(), (_hr_)->bottom(), \
    57                                (_hr_)->top(), (_hr_)->end()
    59 // A dirty card to oop closure for heap regions. It
    60 // knows how to get the G1 heap and how to use the bitmap
    61 // in the concurrent marker used by G1 to filter remembered
    62 // sets.
    64 class HeapRegionDCTOC : public ContiguousSpaceDCTOC {
    65 public:
    66   // Specification of possible DirtyCardToOopClosure filtering.
    67   enum FilterKind {
    68     NoFilterKind,
    69     IntoCSFilterKind,
    70     OutOfRegionFilterKind
    71   };
    73 protected:
    74   HeapRegion* _hr;
    75   FilterKind _fk;
    76   G1CollectedHeap* _g1;
    78   void walk_mem_region_with_cl(MemRegion mr,
    79                                HeapWord* bottom, HeapWord* top,
    80                                OopClosure* cl);
    82   // We don't specialize this for FilteringClosure; filtering is handled by
    83   // the "FilterKind" mechanism.  But we provide this to avoid a compiler
    84   // warning.
    85   void walk_mem_region_with_cl(MemRegion mr,
    86                                HeapWord* bottom, HeapWord* top,
    87                                FilteringClosure* cl) {
    88     HeapRegionDCTOC::walk_mem_region_with_cl(mr, bottom, top,
    89                                                        (OopClosure*)cl);
    90   }
    92   // Get the actual top of the area on which the closure will
    93   // operate, given where the top is assumed to be (the end of the
    94   // memory region passed to do_MemRegion) and where the object
    95   // at the top is assumed to start. For example, an object may
    96   // start at the top but actually extend past the assumed top,
    97   // in which case the top becomes the end of the object.
    98   HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj) {
    99     return ContiguousSpaceDCTOC::get_actual_top(top, top_obj);
   100   }
   102   // Walk the given memory region from bottom to (actual) top
   103   // looking for objects and applying the oop closure (_cl) to
   104   // them. The base implementation of this treats the area as
   105   // blocks, where a block may or may not be an object. Sub-
   106   // classes should override this to provide more accurate
   107   // or possibly more efficient walking.
   108   void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top) {
   109     Filtering_DCTOC::walk_mem_region(mr, bottom, top);
   110   }
   112 public:
   113   HeapRegionDCTOC(G1CollectedHeap* g1,
   114                   HeapRegion* hr, OopClosure* cl,
   115                   CardTableModRefBS::PrecisionStyle precision,
   116                   FilterKind fk);
   117 };
   120 // The complicating factor is that BlockOffsetTable diverged
   121 // significantly, and we need functionality that is only in the G1 version.
   122 // So I copied that code, which led to an alternate G1 version of
   123 // OffsetTableContigSpace.  If the two versions of BlockOffsetTable could
   124 // be reconciled, then G1OffsetTableContigSpace could go away.
   126 // The idea behind time stamps is the following. Doing a save_marks on
   127 // all regions at every GC pause is time consuming (if I remember
   128 // well, 10ms or so). So, we would like to do that only for regions
   129 // that are GC alloc regions. To achieve this, we use time
   130 // stamps. For every evacuation pause, G1CollectedHeap generates a
   131 // unique time stamp (essentially a counter that gets
   132 // incremented). Every time we want to call save_marks on a region,
   133 // we set the saved_mark_word to top and also copy the current GC
   134 // time stamp to the time stamp field of the space. Reading the
   135 // saved_mark_word involves checking the time stamp of the
   136 // region. If it is the same as the current GC time stamp, then we
   137 // can safely read the saved_mark_word field, as it is valid. If the
   138 // time stamp of the region is not the same as the current GC time
   139 // stamp, then we instead read top, as the saved_mark_word field is
   140 // invalid. Time stamps (on the regions and also on the
   141 // G1CollectedHeap) are reset at every cleanup (we iterate over
   142 // the regions anyway) and at the end of a Full GC. The current scheme
   143 // that uses sequential unsigned ints will fail only if we have 4b
   144 // evacuation pauses between two cleanups, which is _highly_ unlikely.
   146 class G1OffsetTableContigSpace: public ContiguousSpace {
   147   friend class VMStructs;
   148  protected:
   149   G1BlockOffsetArrayContigSpace _offsets;
   150   Mutex _par_alloc_lock;
   151   volatile unsigned _gc_time_stamp;
   152   // When we need to retire an allocation region, while other threads
   153   // are also concurrently trying to allocate into it, we typically
   154   // allocate a dummy object at the end of the region to ensure that
   155   // no more allocations can take place in it. However, sometimes we
   156   // want to know where the end of the last "real" object we allocated
   157   // into the region was and this is what this keeps track.
   158   HeapWord* _pre_dummy_top;
   160  public:
   161   // Constructor.  If "is_zeroed" is true, the MemRegion "mr" may be
   162   // assumed to contain zeros.
   163   G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
   164                            MemRegion mr, bool is_zeroed = false);
   166   void set_bottom(HeapWord* value);
   167   void set_end(HeapWord* value);
   169   virtual HeapWord* saved_mark_word() const;
   170   virtual void set_saved_mark();
   171   void reset_gc_time_stamp() { _gc_time_stamp = 0; }
   173   // See the comment above in the declaration of _pre_dummy_top for an
   174   // explanation of what it is.
   175   void set_pre_dummy_top(HeapWord* pre_dummy_top) {
   176     assert(is_in(pre_dummy_top) && pre_dummy_top <= top(), "pre-condition");
   177     _pre_dummy_top = pre_dummy_top;
   178   }
   179   HeapWord* pre_dummy_top() {
   180     return (_pre_dummy_top == NULL) ? top() : _pre_dummy_top;
   181   }
   182   void reset_pre_dummy_top() { _pre_dummy_top = NULL; }
   184   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
   185   virtual void clear(bool mangle_space);
   187   HeapWord* block_start(const void* p);
   188   HeapWord* block_start_const(const void* p) const;
   190   // Add offset table update.
   191   virtual HeapWord* allocate(size_t word_size);
   192   HeapWord* par_allocate(size_t word_size);
   194   // MarkSweep support phase3
   195   virtual HeapWord* initialize_threshold();
   196   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
   198   virtual void print() const;
   200   void reset_bot() {
   201     _offsets.zero_bottom_entry();
   202     _offsets.initialize_threshold();
   203   }
   205   void update_bot_for_object(HeapWord* start, size_t word_size) {
   206     _offsets.alloc_block(start, word_size);
   207   }
   209   void print_bot_on(outputStream* out) {
   210     _offsets.print_on(out);
   211   }
   212 };
   214 class HeapRegion: public G1OffsetTableContigSpace {
   215   friend class VMStructs;
   216  private:
   218   enum HumongousType {
   219     NotHumongous = 0,
   220     StartsHumongous,
   221     ContinuesHumongous
   222   };
   224   // The next filter kind that should be used for a "new_dcto_cl" call with
   225   // the "traditional" signature.
   226   HeapRegionDCTOC::FilterKind _next_fk;
   228   // Requires that the region "mr" be dense with objects, and begin and end
   229   // with an object.
   230   void oops_in_mr_iterate(MemRegion mr, OopClosure* cl);
   232   // The remembered set for this region.
   233   // (Might want to make this "inline" later, to avoid some alloc failure
   234   // issues.)
   235   HeapRegionRemSet* _rem_set;
   237   G1BlockOffsetArrayContigSpace* offsets() { return &_offsets; }
   239  protected:
   240   // If this region is a member of a HeapRegionSeq, the index in that
   241   // sequence, otherwise -1.
   242   int  _hrs_index;
   244   HumongousType _humongous_type;
   245   // For a humongous region, region in which it starts.
   246   HeapRegion* _humongous_start_region;
   247   // For the start region of a humongous sequence, it's original end().
   248   HeapWord* _orig_end;
   250   // True iff the region is in current collection_set.
   251   bool _in_collection_set;
   253   // Is this or has it been an allocation region in the current collection
   254   // pause.
   255   bool _is_gc_alloc_region;
   257   // True iff an attempt to evacuate an object in the region failed.
   258   bool _evacuation_failed;
   260   // A heap region may be a member one of a number of special subsets, each
   261   // represented as linked lists through the field below.  Currently, these
   262   // sets include:
   263   //   The collection set.
   264   //   The set of allocation regions used in a collection pause.
   265   //   Spaces that may contain gray objects.
   266   HeapRegion* _next_in_special_set;
   268   // next region in the young "generation" region set
   269   HeapRegion* _next_young_region;
   271   // Next region whose cards need cleaning
   272   HeapRegion* _next_dirty_cards_region;
   274   // Fields used by the HeapRegionSetBase class and subclasses.
   275   HeapRegion* _next;
   276 #ifdef ASSERT
   277   HeapRegionSetBase* _containing_set;
   278 #endif // ASSERT
   279   bool _pending_removal;
   281   // For parallel heapRegion traversal.
   282   jint _claimed;
   284   // We use concurrent marking to determine the amount of live data
   285   // in each heap region.
   286   size_t _prev_marked_bytes;    // Bytes known to be live via last completed marking.
   287   size_t _next_marked_bytes;    // Bytes known to be live via in-progress marking.
   289   // See "sort_index" method.  -1 means is not in the array.
   290   int _sort_index;
   292   // <PREDICTION>
   293   double _gc_efficiency;
   294   // </PREDICTION>
   296   enum YoungType {
   297     NotYoung,                   // a region is not young
   298     Young,                      // a region is young
   299     Survivor                    // a region is young and it contains
   300                                 // survivor
   301   };
   303   volatile YoungType _young_type;
   304   int  _young_index_in_cset;
   305   SurvRateGroup* _surv_rate_group;
   306   int  _age_index;
   308   // The start of the unmarked area. The unmarked area extends from this
   309   // word until the top and/or end of the region, and is the part
   310   // of the region for which no marking was done, i.e. objects may
   311   // have been allocated in this part since the last mark phase.
   312   // "prev" is the top at the start of the last completed marking.
   313   // "next" is the top at the start of the in-progress marking (if any.)
   314   HeapWord* _prev_top_at_mark_start;
   315   HeapWord* _next_top_at_mark_start;
   316   // If a collection pause is in progress, this is the top at the start
   317   // of that pause.
   319   // We've counted the marked bytes of objects below here.
   320   HeapWord* _top_at_conc_mark_count;
   322   void init_top_at_mark_start() {
   323     assert(_prev_marked_bytes == 0 &&
   324            _next_marked_bytes == 0,
   325            "Must be called after zero_marked_bytes.");
   326     HeapWord* bot = bottom();
   327     _prev_top_at_mark_start = bot;
   328     _next_top_at_mark_start = bot;
   329     _top_at_conc_mark_count = bot;
   330   }
   332   void set_young_type(YoungType new_type) {
   333     //assert(_young_type != new_type, "setting the same type" );
   334     // TODO: add more assertions here
   335     _young_type = new_type;
   336   }
   338   // Cached attributes used in the collection set policy information
   340   // The RSet length that was added to the total value
   341   // for the collection set.
   342   size_t _recorded_rs_length;
   344   // The predicted elapsed time that was added to total value
   345   // for the collection set.
   346   double _predicted_elapsed_time_ms;
   348   // The predicted number of bytes to copy that was added to
   349   // the total value for the collection set.
   350   size_t _predicted_bytes_to_copy;
   352  public:
   353   // If "is_zeroed" is "true", the region "mr" can be assumed to contain zeros.
   354   HeapRegion(G1BlockOffsetSharedArray* sharedOffsetArray,
   355              MemRegion mr, bool is_zeroed);
   357   static int LogOfHRGrainBytes;
   358   static int LogOfHRGrainWords;
   359   // The normal type of these should be size_t. However, they used to
   360   // be members of an enum before and they are assumed by the
   361   // compilers to be ints. To avoid going and fixing all their uses,
   362   // I'm declaring them as ints. I'm not anticipating heap region
   363   // sizes to reach anywhere near 2g, so using an int here is safe.
   364   static int GrainBytes;
   365   static int GrainWords;
   366   static int CardsPerRegion;
   368   // It sets up the heap region size (GrainBytes / GrainWords), as
   369   // well as other related fields that are based on the heap region
   370   // size (LogOfHRGrainBytes / LogOfHRGrainWords /
   371   // CardsPerRegion). All those fields are considered constant
   372   // throughout the JVM's execution, therefore they should only be set
   373   // up once during initialization time.
   374   static void setup_heap_region_size(uintx min_heap_size);
   376   enum ClaimValues {
   377     InitialClaimValue     = 0,
   378     FinalCountClaimValue  = 1,
   379     NoteEndClaimValue     = 2,
   380     ScrubRemSetClaimValue = 3,
   381     ParVerifyClaimValue   = 4,
   382     RebuildRSClaimValue   = 5
   383   };
   385   inline HeapWord* par_allocate_no_bot_updates(size_t word_size) {
   386     assert(is_young(), "we can only skip BOT updates on young regions");
   387     return ContiguousSpace::par_allocate(word_size);
   388   }
   389   inline HeapWord* allocate_no_bot_updates(size_t word_size) {
   390     assert(is_young(), "we can only skip BOT updates on young regions");
   391     return ContiguousSpace::allocate(word_size);
   392   }
   394   // If this region is a member of a HeapRegionSeq, the index in that
   395   // sequence, otherwise -1.
   396   int hrs_index() const { return _hrs_index; }
   397   void set_hrs_index(int index) { _hrs_index = index; }
   399   // The number of bytes marked live in the region in the last marking phase.
   400   size_t marked_bytes()    { return _prev_marked_bytes; }
   401   // The number of bytes counted in the next marking.
   402   size_t next_marked_bytes() { return _next_marked_bytes; }
   403   // The number of bytes live wrt the next marking.
   404   size_t next_live_bytes() {
   405     return (top() - next_top_at_mark_start())
   406       * HeapWordSize
   407       + next_marked_bytes();
   408   }
   410   // A lower bound on the amount of garbage bytes in the region.
   411   size_t garbage_bytes() {
   412     size_t used_at_mark_start_bytes =
   413       (prev_top_at_mark_start() - bottom()) * HeapWordSize;
   414     assert(used_at_mark_start_bytes >= marked_bytes(),
   415            "Can't mark more than we have.");
   416     return used_at_mark_start_bytes - marked_bytes();
   417   }
   419   // An upper bound on the number of live bytes in the region.
   420   size_t max_live_bytes() { return used() - garbage_bytes(); }
   422   void add_to_marked_bytes(size_t incr_bytes) {
   423     _next_marked_bytes = _next_marked_bytes + incr_bytes;
   424     guarantee( _next_marked_bytes <= used(), "invariant" );
   425   }
   427   void zero_marked_bytes()      {
   428     _prev_marked_bytes = _next_marked_bytes = 0;
   429   }
   431   bool isHumongous() const { return _humongous_type != NotHumongous; }
   432   bool startsHumongous() const { return _humongous_type == StartsHumongous; }
   433   bool continuesHumongous() const { return _humongous_type == ContinuesHumongous; }
   434   // For a humongous region, region in which it starts.
   435   HeapRegion* humongous_start_region() const {
   436     return _humongous_start_region;
   437   }
   439   // Makes the current region be a "starts humongous" region, i.e.,
   440   // the first region in a series of one or more contiguous regions
   441   // that will contain a single "humongous" object. The two parameters
   442   // are as follows:
   443   //
   444   // new_top : The new value of the top field of this region which
   445   // points to the end of the humongous object that's being
   446   // allocated. If there is more than one region in the series, top
   447   // will lie beyond this region's original end field and on the last
   448   // region in the series.
   449   //
   450   // new_end : The new value of the end field of this region which
   451   // points to the end of the last region in the series. If there is
   452   // one region in the series (namely: this one) end will be the same
   453   // as the original end of this region.
   454   //
   455   // Updating top and end as described above makes this region look as
   456   // if it spans the entire space taken up by all the regions in the
   457   // series and an single allocation moved its top to new_top. This
   458   // ensures that the space (capacity / allocated) taken up by all
   459   // humongous regions can be calculated by just looking at the
   460   // "starts humongous" regions and by ignoring the "continues
   461   // humongous" regions.
   462   void set_startsHumongous(HeapWord* new_top, HeapWord* new_end);
   464   // Makes the current region be a "continues humongous'
   465   // region. first_hr is the "start humongous" region of the series
   466   // which this region will be part of.
   467   void set_continuesHumongous(HeapRegion* first_hr);
   469   // Unsets the humongous-related fields on the region.
   470   void set_notHumongous();
   472   // If the region has a remembered set, return a pointer to it.
   473   HeapRegionRemSet* rem_set() const {
   474     return _rem_set;
   475   }
   477   // True iff the region is in current collection_set.
   478   bool in_collection_set() const {
   479     return _in_collection_set;
   480   }
   481   void set_in_collection_set(bool b) {
   482     _in_collection_set = b;
   483   }
   484   HeapRegion* next_in_collection_set() {
   485     assert(in_collection_set(), "should only invoke on member of CS.");
   486     assert(_next_in_special_set == NULL ||
   487            _next_in_special_set->in_collection_set(),
   488            "Malformed CS.");
   489     return _next_in_special_set;
   490   }
   491   void set_next_in_collection_set(HeapRegion* r) {
   492     assert(in_collection_set(), "should only invoke on member of CS.");
   493     assert(r == NULL || r->in_collection_set(), "Malformed CS.");
   494     _next_in_special_set = r;
   495   }
   497   // True iff it is or has been an allocation region in the current
   498   // collection pause.
   499   bool is_gc_alloc_region() const {
   500     return _is_gc_alloc_region;
   501   }
   502   void set_is_gc_alloc_region(bool b) {
   503     _is_gc_alloc_region = b;
   504   }
   505   HeapRegion* next_gc_alloc_region() {
   506     assert(is_gc_alloc_region(), "should only invoke on member of CS.");
   507     assert(_next_in_special_set == NULL ||
   508            _next_in_special_set->is_gc_alloc_region(),
   509            "Malformed CS.");
   510     return _next_in_special_set;
   511   }
   512   void set_next_gc_alloc_region(HeapRegion* r) {
   513     assert(is_gc_alloc_region(), "should only invoke on member of CS.");
   514     assert(r == NULL || r->is_gc_alloc_region(), "Malformed CS.");
   515     _next_in_special_set = r;
   516   }
   518   // Methods used by the HeapRegionSetBase class and subclasses.
   520   // Getter and setter for the next field used to link regions into
   521   // linked lists.
   522   HeapRegion* next()              { return _next; }
   524   void set_next(HeapRegion* next) { _next = next; }
   526   // Every region added to a set is tagged with a reference to that
   527   // set. This is used for doing consistency checking to make sure that
   528   // the contents of a set are as they should be and it's only
   529   // available in non-product builds.
   530 #ifdef ASSERT
   531   void set_containing_set(HeapRegionSetBase* containing_set) {
   532     assert((containing_set == NULL && _containing_set != NULL) ||
   533            (containing_set != NULL && _containing_set == NULL),
   534            err_msg("containing_set: "PTR_FORMAT" "
   535                    "_containing_set: "PTR_FORMAT,
   536                    containing_set, _containing_set));
   538     _containing_set = containing_set;
   539   }
   541   HeapRegionSetBase* containing_set() { return _containing_set; }
   542 #else // ASSERT
   543   void set_containing_set(HeapRegionSetBase* containing_set) { }
   545   // containing_set() is only used in asserts so there's no reason
   546   // to provide a dummy version of it.
   547 #endif // ASSERT
   549   // If we want to remove regions from a list in bulk we can simply tag
   550   // them with the pending_removal tag and call the
   551   // remove_all_pending() method on the list.
   553   bool pending_removal() { return _pending_removal; }
   555   void set_pending_removal(bool pending_removal) {
   556     if (pending_removal) {
   557       assert(!_pending_removal && containing_set() != NULL,
   558              "can only set pending removal to true if it's false and "
   559              "the region belongs to a region set");
   560     } else {
   561       assert( _pending_removal && containing_set() == NULL,
   562               "can only set pending removal to false if it's true and "
   563               "the region does not belong to a region set");
   564     }
   566     _pending_removal = pending_removal;
   567   }
   569   HeapRegion* get_next_young_region() { return _next_young_region; }
   570   void set_next_young_region(HeapRegion* hr) {
   571     _next_young_region = hr;
   572   }
   574   HeapRegion* get_next_dirty_cards_region() const { return _next_dirty_cards_region; }
   575   HeapRegion** next_dirty_cards_region_addr() { return &_next_dirty_cards_region; }
   576   void set_next_dirty_cards_region(HeapRegion* hr) { _next_dirty_cards_region = hr; }
   577   bool is_on_dirty_cards_region_list() const { return get_next_dirty_cards_region() != NULL; }
   579   // Allows logical separation between objects allocated before and after.
   580   void save_marks();
   582   // Reset HR stuff to default values.
   583   void hr_clear(bool par, bool clear_space);
   585   void initialize(MemRegion mr, bool clear_space, bool mangle_space);
   587   // Get the start of the unmarked area in this region.
   588   HeapWord* prev_top_at_mark_start() const { return _prev_top_at_mark_start; }
   589   HeapWord* next_top_at_mark_start() const { return _next_top_at_mark_start; }
   591   // Apply "cl->do_oop" to (the addresses of) all reference fields in objects
   592   // allocated in the current region before the last call to "save_mark".
   593   void oop_before_save_marks_iterate(OopClosure* cl);
   595   // This call determines the "filter kind" argument that will be used for
   596   // the next call to "new_dcto_cl" on this region with the "traditional"
   597   // signature (i.e., the call below.)  The default, in the absence of a
   598   // preceding call to this method, is "NoFilterKind", and a call to this
   599   // method is necessary for each such call, or else it reverts to the
   600   // default.
   601   // (This is really ugly, but all other methods I could think of changed a
   602   // lot of main-line code for G1.)
   603   void set_next_filter_kind(HeapRegionDCTOC::FilterKind nfk) {
   604     _next_fk = nfk;
   605   }
   607   DirtyCardToOopClosure*
   608   new_dcto_closure(OopClosure* cl,
   609                    CardTableModRefBS::PrecisionStyle precision,
   610                    HeapRegionDCTOC::FilterKind fk);
   612 #if WHASSUP
   613   DirtyCardToOopClosure*
   614   new_dcto_closure(OopClosure* cl,
   615                    CardTableModRefBS::PrecisionStyle precision,
   616                    HeapWord* boundary) {
   617     assert(boundary == NULL, "This arg doesn't make sense here.");
   618     DirtyCardToOopClosure* res = new_dcto_closure(cl, precision, _next_fk);
   619     _next_fk = HeapRegionDCTOC::NoFilterKind;
   620     return res;
   621   }
   622 #endif
   624   //
   625   // Note the start or end of marking. This tells the heap region
   626   // that the collector is about to start or has finished (concurrently)
   627   // marking the heap.
   628   //
   630   // Note the start of a marking phase. Record the
   631   // start of the unmarked area of the region here.
   632   void note_start_of_marking(bool during_initial_mark) {
   633     init_top_at_conc_mark_count();
   634     _next_marked_bytes = 0;
   635     if (during_initial_mark && is_young() && !is_survivor())
   636       _next_top_at_mark_start = bottom();
   637     else
   638       _next_top_at_mark_start = top();
   639   }
   641   // Note the end of a marking phase. Install the start of
   642   // the unmarked area that was captured at start of marking.
   643   void note_end_of_marking() {
   644     _prev_top_at_mark_start = _next_top_at_mark_start;
   645     _prev_marked_bytes = _next_marked_bytes;
   646     _next_marked_bytes = 0;
   648     guarantee(_prev_marked_bytes <=
   649               (size_t) (prev_top_at_mark_start() - bottom()) * HeapWordSize,
   650               "invariant");
   651   }
   653   // After an evacuation, we need to update _next_top_at_mark_start
   654   // to be the current top.  Note this is only valid if we have only
   655   // ever evacuated into this region.  If we evacuate, allocate, and
   656   // then evacuate we are in deep doodoo.
   657   void note_end_of_copying() {
   658     assert(top() >= _next_top_at_mark_start, "Increase only");
   659     _next_top_at_mark_start = top();
   660   }
   662   // Returns "false" iff no object in the region was allocated when the
   663   // last mark phase ended.
   664   bool is_marked() { return _prev_top_at_mark_start != bottom(); }
   666   // If "is_marked()" is true, then this is the index of the region in
   667   // an array constructed at the end of marking of the regions in a
   668   // "desirability" order.
   669   int sort_index() {
   670     return _sort_index;
   671   }
   672   void set_sort_index(int i) {
   673     _sort_index = i;
   674   }
   676   void init_top_at_conc_mark_count() {
   677     _top_at_conc_mark_count = bottom();
   678   }
   680   void set_top_at_conc_mark_count(HeapWord *cur) {
   681     assert(bottom() <= cur && cur <= end(), "Sanity.");
   682     _top_at_conc_mark_count = cur;
   683   }
   685   HeapWord* top_at_conc_mark_count() {
   686     return _top_at_conc_mark_count;
   687   }
   689   void reset_during_compaction() {
   690     guarantee( isHumongous() && startsHumongous(),
   691                "should only be called for humongous regions");
   693     zero_marked_bytes();
   694     init_top_at_mark_start();
   695   }
   697   // <PREDICTION>
   698   void calc_gc_efficiency(void);
   699   double gc_efficiency() { return _gc_efficiency;}
   700   // </PREDICTION>
   702   bool is_young() const     { return _young_type != NotYoung; }
   703   bool is_survivor() const  { return _young_type == Survivor; }
   705   int  young_index_in_cset() const { return _young_index_in_cset; }
   706   void set_young_index_in_cset(int index) {
   707     assert( (index == -1) || is_young(), "pre-condition" );
   708     _young_index_in_cset = index;
   709   }
   711   int age_in_surv_rate_group() {
   712     assert( _surv_rate_group != NULL, "pre-condition" );
   713     assert( _age_index > -1, "pre-condition" );
   714     return _surv_rate_group->age_in_group(_age_index);
   715   }
   717   void record_surv_words_in_group(size_t words_survived) {
   718     assert( _surv_rate_group != NULL, "pre-condition" );
   719     assert( _age_index > -1, "pre-condition" );
   720     int age_in_group = age_in_surv_rate_group();
   721     _surv_rate_group->record_surviving_words(age_in_group, words_survived);
   722   }
   724   int age_in_surv_rate_group_cond() {
   725     if (_surv_rate_group != NULL)
   726       return age_in_surv_rate_group();
   727     else
   728       return -1;
   729   }
   731   SurvRateGroup* surv_rate_group() {
   732     return _surv_rate_group;
   733   }
   735   void install_surv_rate_group(SurvRateGroup* surv_rate_group) {
   736     assert( surv_rate_group != NULL, "pre-condition" );
   737     assert( _surv_rate_group == NULL, "pre-condition" );
   738     assert( is_young(), "pre-condition" );
   740     _surv_rate_group = surv_rate_group;
   741     _age_index = surv_rate_group->next_age_index();
   742   }
   744   void uninstall_surv_rate_group() {
   745     if (_surv_rate_group != NULL) {
   746       assert( _age_index > -1, "pre-condition" );
   747       assert( is_young(), "pre-condition" );
   749       _surv_rate_group = NULL;
   750       _age_index = -1;
   751     } else {
   752       assert( _age_index == -1, "pre-condition" );
   753     }
   754   }
   756   void set_young() { set_young_type(Young); }
   758   void set_survivor() { set_young_type(Survivor); }
   760   void set_not_young() { set_young_type(NotYoung); }
   762   // Determine if an object has been allocated since the last
   763   // mark performed by the collector. This returns true iff the object
   764   // is within the unmarked area of the region.
   765   bool obj_allocated_since_prev_marking(oop obj) const {
   766     return (HeapWord *) obj >= prev_top_at_mark_start();
   767   }
   768   bool obj_allocated_since_next_marking(oop obj) const {
   769     return (HeapWord *) obj >= next_top_at_mark_start();
   770   }
   772   // For parallel heapRegion traversal.
   773   bool claimHeapRegion(int claimValue);
   774   jint claim_value() { return _claimed; }
   775   // Use this carefully: only when you're sure no one is claiming...
   776   void set_claim_value(int claimValue) { _claimed = claimValue; }
   778   // Returns the "evacuation_failed" property of the region.
   779   bool evacuation_failed() { return _evacuation_failed; }
   781   // Sets the "evacuation_failed" property of the region.
   782   void set_evacuation_failed(bool b) {
   783     _evacuation_failed = b;
   785     if (b) {
   786       init_top_at_conc_mark_count();
   787       _next_marked_bytes = 0;
   788     }
   789   }
   791   // Requires that "mr" be entirely within the region.
   792   // Apply "cl->do_object" to all objects that intersect with "mr".
   793   // If the iteration encounters an unparseable portion of the region,
   794   // or if "cl->abort()" is true after a closure application,
   795   // terminate the iteration and return the address of the start of the
   796   // subregion that isn't done.  (The two can be distinguished by querying
   797   // "cl->abort()".)  Return of "NULL" indicates that the iteration
   798   // completed.
   799   HeapWord*
   800   object_iterate_mem_careful(MemRegion mr, ObjectClosure* cl);
   802   // In this version - if filter_young is true and the region
   803   // is a young region then we skip the iteration.
   804   HeapWord*
   805   oops_on_card_seq_iterate_careful(MemRegion mr,
   806                                    FilterOutOfRegionClosure* cl,
   807                                    bool filter_young);
   809   // A version of block start that is guaranteed to find *some* block
   810   // boundary at or before "p", but does not object iteration, and may
   811   // therefore be used safely when the heap is unparseable.
   812   HeapWord* block_start_careful(const void* p) const {
   813     return _offsets.block_start_careful(p);
   814   }
   816   // Requires that "addr" is within the region.  Returns the start of the
   817   // first ("careful") block that starts at or after "addr", or else the
   818   // "end" of the region if there is no such block.
   819   HeapWord* next_block_start_careful(HeapWord* addr);
   821   size_t recorded_rs_length() const        { return _recorded_rs_length; }
   822   double predicted_elapsed_time_ms() const { return _predicted_elapsed_time_ms; }
   823   size_t predicted_bytes_to_copy() const   { return _predicted_bytes_to_copy; }
   825   void set_recorded_rs_length(size_t rs_length) {
   826     _recorded_rs_length = rs_length;
   827   }
   829   void set_predicted_elapsed_time_ms(double ms) {
   830     _predicted_elapsed_time_ms = ms;
   831   }
   833   void set_predicted_bytes_to_copy(size_t bytes) {
   834     _predicted_bytes_to_copy = bytes;
   835   }
   837 #define HeapRegion_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)  \
   838   virtual void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
   839   SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(HeapRegion_OOP_SINCE_SAVE_MARKS_DECL)
   841   CompactibleSpace* next_compaction_space() const;
   843   virtual void reset_after_compaction();
   845   void print() const;
   846   void print_on(outputStream* st) const;
   848   // use_prev_marking == true  -> use "prev" marking information,
   849   // use_prev_marking == false -> use "next" marking information
   850   // NOTE: Only the "prev" marking information is guaranteed to be
   851   // consistent most of the time, so most calls to this should use
   852   // use_prev_marking == true. Currently, there is only one case where
   853   // this is called with use_prev_marking == false, which is to verify
   854   // the "next" marking information at the end of remark.
   855   void verify(bool allow_dirty, bool use_prev_marking, bool *failures) const;
   857   // Override; it uses the "prev" marking information
   858   virtual void verify(bool allow_dirty) const;
   859 };
   861 // HeapRegionClosure is used for iterating over regions.
   862 // Terminates the iteration when the "doHeapRegion" method returns "true".
   863 class HeapRegionClosure : public StackObj {
   864   friend class HeapRegionSeq;
   865   friend class G1CollectedHeap;
   867   bool _complete;
   868   void incomplete() { _complete = false; }
   870  public:
   871   HeapRegionClosure(): _complete(true) {}
   873   // Typically called on each region until it returns true.
   874   virtual bool doHeapRegion(HeapRegion* r) = 0;
   876   // True after iteration if the closure was applied to all heap regions
   877   // and returned "false" in all cases.
   878   bool complete() { return _complete; }
   879 };
   881 #endif // SERIALGC
   883 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP

mercurial