src/share/vm/gc_implementation/g1/g1CollectedHeap.cpp

Wed, 30 Mar 2011 10:26:59 -0400

author
tonyp
date
Wed, 30 Mar 2011 10:26:59 -0400
changeset 2715
abdfc822206f
parent 2714
455328d90876
child 2817
49a67202bc67
permissions
-rw-r--r--

7023069: G1: Introduce symmetric locking in the slow allocation path
7023151: G1: refactor the code that operates on _cur_alloc_region to be re-used for allocs by the GC threads
7018286: G1: humongous allocation attempts should take the GC locker into account
Summary: First, this change replaces the asymmetric locking scheme in the G1 slow alloc path by a summetric one. Second, it factors out the code that operates on _cur_alloc_region so that it can be re-used for allocations by the GC threads in the future.
Reviewed-by: stefank, brutisso, johnc

     1 /*
     2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "code/icBuffer.hpp"
    27 #include "gc_implementation/g1/bufferingOopClosure.hpp"
    28 #include "gc_implementation/g1/concurrentG1Refine.hpp"
    29 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
    30 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    31 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
    32 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    33 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
    34 #include "gc_implementation/g1/g1MarkSweep.hpp"
    35 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
    36 #include "gc_implementation/g1/g1RemSet.inline.hpp"
    37 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    38 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
    39 #include "gc_implementation/g1/vm_operations_g1.hpp"
    40 #include "gc_implementation/shared/isGCActiveMark.hpp"
    41 #include "memory/gcLocker.inline.hpp"
    42 #include "memory/genOopClosures.inline.hpp"
    43 #include "memory/generationSpec.hpp"
    44 #include "oops/oop.inline.hpp"
    45 #include "oops/oop.pcgc.inline.hpp"
    46 #include "runtime/aprofiler.hpp"
    47 #include "runtime/vmThread.hpp"
    49 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
    51 // turn it on so that the contents of the young list (scan-only /
    52 // to-be-collected) are printed at "strategic" points before / during
    53 // / after the collection --- this is useful for debugging
    54 #define YOUNG_LIST_VERBOSE 0
    55 // CURRENT STATUS
    56 // This file is under construction.  Search for "FIXME".
    58 // INVARIANTS/NOTES
    59 //
    60 // All allocation activity covered by the G1CollectedHeap interface is
    61 // serialized by acquiring the HeapLock.  This happens in mem_allocate
    62 // and allocate_new_tlab, which are the "entry" points to the
    63 // allocation code from the rest of the JVM.  (Note that this does not
    64 // apply to TLAB allocation, which is not part of this interface: it
    65 // is done by clients of this interface.)
    67 // Local to this file.
    69 class RefineCardTableEntryClosure: public CardTableEntryClosure {
    70   SuspendibleThreadSet* _sts;
    71   G1RemSet* _g1rs;
    72   ConcurrentG1Refine* _cg1r;
    73   bool _concurrent;
    74 public:
    75   RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
    76                               G1RemSet* g1rs,
    77                               ConcurrentG1Refine* cg1r) :
    78     _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
    79   {}
    80   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    81     bool oops_into_cset = _g1rs->concurrentRefineOneCard(card_ptr, worker_i, false);
    82     // This path is executed by the concurrent refine or mutator threads,
    83     // concurrently, and so we do not care if card_ptr contains references
    84     // that point into the collection set.
    85     assert(!oops_into_cset, "should be");
    87     if (_concurrent && _sts->should_yield()) {
    88       // Caller will actually yield.
    89       return false;
    90     }
    91     // Otherwise, we finished successfully; return true.
    92     return true;
    93   }
    94   void set_concurrent(bool b) { _concurrent = b; }
    95 };
    98 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
    99   int _calls;
   100   G1CollectedHeap* _g1h;
   101   CardTableModRefBS* _ctbs;
   102   int _histo[256];
   103 public:
   104   ClearLoggedCardTableEntryClosure() :
   105     _calls(0)
   106   {
   107     _g1h = G1CollectedHeap::heap();
   108     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
   109     for (int i = 0; i < 256; i++) _histo[i] = 0;
   110   }
   111   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   112     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
   113       _calls++;
   114       unsigned char* ujb = (unsigned char*)card_ptr;
   115       int ind = (int)(*ujb);
   116       _histo[ind]++;
   117       *card_ptr = -1;
   118     }
   119     return true;
   120   }
   121   int calls() { return _calls; }
   122   void print_histo() {
   123     gclog_or_tty->print_cr("Card table value histogram:");
   124     for (int i = 0; i < 256; i++) {
   125       if (_histo[i] != 0) {
   126         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
   127       }
   128     }
   129   }
   130 };
   132 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
   133   int _calls;
   134   G1CollectedHeap* _g1h;
   135   CardTableModRefBS* _ctbs;
   136 public:
   137   RedirtyLoggedCardTableEntryClosure() :
   138     _calls(0)
   139   {
   140     _g1h = G1CollectedHeap::heap();
   141     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
   142   }
   143   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   144     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
   145       _calls++;
   146       *card_ptr = 0;
   147     }
   148     return true;
   149   }
   150   int calls() { return _calls; }
   151 };
   153 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
   154 public:
   155   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   156     *card_ptr = CardTableModRefBS::dirty_card_val();
   157     return true;
   158   }
   159 };
   161 YoungList::YoungList(G1CollectedHeap* g1h)
   162   : _g1h(g1h), _head(NULL),
   163     _length(0),
   164     _last_sampled_rs_lengths(0),
   165     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0)
   166 {
   167   guarantee( check_list_empty(false), "just making sure..." );
   168 }
   170 void YoungList::push_region(HeapRegion *hr) {
   171   assert(!hr->is_young(), "should not already be young");
   172   assert(hr->get_next_young_region() == NULL, "cause it should!");
   174   hr->set_next_young_region(_head);
   175   _head = hr;
   177   hr->set_young();
   178   double yg_surv_rate = _g1h->g1_policy()->predict_yg_surv_rate((int)_length);
   179   ++_length;
   180 }
   182 void YoungList::add_survivor_region(HeapRegion* hr) {
   183   assert(hr->is_survivor(), "should be flagged as survivor region");
   184   assert(hr->get_next_young_region() == NULL, "cause it should!");
   186   hr->set_next_young_region(_survivor_head);
   187   if (_survivor_head == NULL) {
   188     _survivor_tail = hr;
   189   }
   190   _survivor_head = hr;
   192   ++_survivor_length;
   193 }
   195 void YoungList::empty_list(HeapRegion* list) {
   196   while (list != NULL) {
   197     HeapRegion* next = list->get_next_young_region();
   198     list->set_next_young_region(NULL);
   199     list->uninstall_surv_rate_group();
   200     list->set_not_young();
   201     list = next;
   202   }
   203 }
   205 void YoungList::empty_list() {
   206   assert(check_list_well_formed(), "young list should be well formed");
   208   empty_list(_head);
   209   _head = NULL;
   210   _length = 0;
   212   empty_list(_survivor_head);
   213   _survivor_head = NULL;
   214   _survivor_tail = NULL;
   215   _survivor_length = 0;
   217   _last_sampled_rs_lengths = 0;
   219   assert(check_list_empty(false), "just making sure...");
   220 }
   222 bool YoungList::check_list_well_formed() {
   223   bool ret = true;
   225   size_t length = 0;
   226   HeapRegion* curr = _head;
   227   HeapRegion* last = NULL;
   228   while (curr != NULL) {
   229     if (!curr->is_young()) {
   230       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
   231                              "incorrectly tagged (y: %d, surv: %d)",
   232                              curr->bottom(), curr->end(),
   233                              curr->is_young(), curr->is_survivor());
   234       ret = false;
   235     }
   236     ++length;
   237     last = curr;
   238     curr = curr->get_next_young_region();
   239   }
   240   ret = ret && (length == _length);
   242   if (!ret) {
   243     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
   244     gclog_or_tty->print_cr("###   list has %d entries, _length is %d",
   245                            length, _length);
   246   }
   248   return ret;
   249 }
   251 bool YoungList::check_list_empty(bool check_sample) {
   252   bool ret = true;
   254   if (_length != 0) {
   255     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %d",
   256                   _length);
   257     ret = false;
   258   }
   259   if (check_sample && _last_sampled_rs_lengths != 0) {
   260     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
   261     ret = false;
   262   }
   263   if (_head != NULL) {
   264     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
   265     ret = false;
   266   }
   267   if (!ret) {
   268     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
   269   }
   271   return ret;
   272 }
   274 void
   275 YoungList::rs_length_sampling_init() {
   276   _sampled_rs_lengths = 0;
   277   _curr               = _head;
   278 }
   280 bool
   281 YoungList::rs_length_sampling_more() {
   282   return _curr != NULL;
   283 }
   285 void
   286 YoungList::rs_length_sampling_next() {
   287   assert( _curr != NULL, "invariant" );
   288   size_t rs_length = _curr->rem_set()->occupied();
   290   _sampled_rs_lengths += rs_length;
   292   // The current region may not yet have been added to the
   293   // incremental collection set (it gets added when it is
   294   // retired as the current allocation region).
   295   if (_curr->in_collection_set()) {
   296     // Update the collection set policy information for this region
   297     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
   298   }
   300   _curr = _curr->get_next_young_region();
   301   if (_curr == NULL) {
   302     _last_sampled_rs_lengths = _sampled_rs_lengths;
   303     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
   304   }
   305 }
   307 void
   308 YoungList::reset_auxilary_lists() {
   309   guarantee( is_empty(), "young list should be empty" );
   310   assert(check_list_well_formed(), "young list should be well formed");
   312   // Add survivor regions to SurvRateGroup.
   313   _g1h->g1_policy()->note_start_adding_survivor_regions();
   314   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
   316   for (HeapRegion* curr = _survivor_head;
   317        curr != NULL;
   318        curr = curr->get_next_young_region()) {
   319     _g1h->g1_policy()->set_region_survivors(curr);
   321     // The region is a non-empty survivor so let's add it to
   322     // the incremental collection set for the next evacuation
   323     // pause.
   324     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
   325   }
   326   _g1h->g1_policy()->note_stop_adding_survivor_regions();
   328   _head   = _survivor_head;
   329   _length = _survivor_length;
   330   if (_survivor_head != NULL) {
   331     assert(_survivor_tail != NULL, "cause it shouldn't be");
   332     assert(_survivor_length > 0, "invariant");
   333     _survivor_tail->set_next_young_region(NULL);
   334   }
   336   // Don't clear the survivor list handles until the start of
   337   // the next evacuation pause - we need it in order to re-tag
   338   // the survivor regions from this evacuation pause as 'young'
   339   // at the start of the next.
   341   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
   343   assert(check_list_well_formed(), "young list should be well formed");
   344 }
   346 void YoungList::print() {
   347   HeapRegion* lists[] = {_head,   _survivor_head};
   348   const char* names[] = {"YOUNG", "SURVIVOR"};
   350   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
   351     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
   352     HeapRegion *curr = lists[list];
   353     if (curr == NULL)
   354       gclog_or_tty->print_cr("  empty");
   355     while (curr != NULL) {
   356       gclog_or_tty->print_cr("  [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
   357                              "age: %4d, y: %d, surv: %d",
   358                              curr->bottom(), curr->end(),
   359                              curr->top(),
   360                              curr->prev_top_at_mark_start(),
   361                              curr->next_top_at_mark_start(),
   362                              curr->top_at_conc_mark_count(),
   363                              curr->age_in_surv_rate_group_cond(),
   364                              curr->is_young(),
   365                              curr->is_survivor());
   366       curr = curr->get_next_young_region();
   367     }
   368   }
   370   gclog_or_tty->print_cr("");
   371 }
   373 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
   374 {
   375   // Claim the right to put the region on the dirty cards region list
   376   // by installing a self pointer.
   377   HeapRegion* next = hr->get_next_dirty_cards_region();
   378   if (next == NULL) {
   379     HeapRegion* res = (HeapRegion*)
   380       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
   381                           NULL);
   382     if (res == NULL) {
   383       HeapRegion* head;
   384       do {
   385         // Put the region to the dirty cards region list.
   386         head = _dirty_cards_region_list;
   387         next = (HeapRegion*)
   388           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
   389         if (next == head) {
   390           assert(hr->get_next_dirty_cards_region() == hr,
   391                  "hr->get_next_dirty_cards_region() != hr");
   392           if (next == NULL) {
   393             // The last region in the list points to itself.
   394             hr->set_next_dirty_cards_region(hr);
   395           } else {
   396             hr->set_next_dirty_cards_region(next);
   397           }
   398         }
   399       } while (next != head);
   400     }
   401   }
   402 }
   404 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
   405 {
   406   HeapRegion* head;
   407   HeapRegion* hr;
   408   do {
   409     head = _dirty_cards_region_list;
   410     if (head == NULL) {
   411       return NULL;
   412     }
   413     HeapRegion* new_head = head->get_next_dirty_cards_region();
   414     if (head == new_head) {
   415       // The last region.
   416       new_head = NULL;
   417     }
   418     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
   419                                           head);
   420   } while (hr != head);
   421   assert(hr != NULL, "invariant");
   422   hr->set_next_dirty_cards_region(NULL);
   423   return hr;
   424 }
   426 void G1CollectedHeap::stop_conc_gc_threads() {
   427   _cg1r->stop();
   428   _cmThread->stop();
   429 }
   431 void G1CollectedHeap::check_ct_logs_at_safepoint() {
   432   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
   433   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
   435   // Count the dirty cards at the start.
   436   CountNonCleanMemRegionClosure count1(this);
   437   ct_bs->mod_card_iterate(&count1);
   438   int orig_count = count1.n();
   440   // First clear the logged cards.
   441   ClearLoggedCardTableEntryClosure clear;
   442   dcqs.set_closure(&clear);
   443   dcqs.apply_closure_to_all_completed_buffers();
   444   dcqs.iterate_closure_all_threads(false);
   445   clear.print_histo();
   447   // Now ensure that there's no dirty cards.
   448   CountNonCleanMemRegionClosure count2(this);
   449   ct_bs->mod_card_iterate(&count2);
   450   if (count2.n() != 0) {
   451     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
   452                            count2.n(), orig_count);
   453   }
   454   guarantee(count2.n() == 0, "Card table should be clean.");
   456   RedirtyLoggedCardTableEntryClosure redirty;
   457   JavaThread::dirty_card_queue_set().set_closure(&redirty);
   458   dcqs.apply_closure_to_all_completed_buffers();
   459   dcqs.iterate_closure_all_threads(false);
   460   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
   461                          clear.calls(), orig_count);
   462   guarantee(redirty.calls() == clear.calls(),
   463             "Or else mechanism is broken.");
   465   CountNonCleanMemRegionClosure count3(this);
   466   ct_bs->mod_card_iterate(&count3);
   467   if (count3.n() != orig_count) {
   468     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
   469                            orig_count, count3.n());
   470     guarantee(count3.n() >= orig_count, "Should have restored them all.");
   471   }
   473   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
   474 }
   476 // Private class members.
   478 G1CollectedHeap* G1CollectedHeap::_g1h;
   480 // Private methods.
   482 HeapRegion*
   483 G1CollectedHeap::new_region_try_secondary_free_list() {
   484   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
   485   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
   486     if (!_secondary_free_list.is_empty()) {
   487       if (G1ConcRegionFreeingVerbose) {
   488         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   489                                "secondary_free_list has "SIZE_FORMAT" entries",
   490                                _secondary_free_list.length());
   491       }
   492       // It looks as if there are free regions available on the
   493       // secondary_free_list. Let's move them to the free_list and try
   494       // again to allocate from it.
   495       append_secondary_free_list();
   497       assert(!_free_list.is_empty(), "if the secondary_free_list was not "
   498              "empty we should have moved at least one entry to the free_list");
   499       HeapRegion* res = _free_list.remove_head();
   500       if (G1ConcRegionFreeingVerbose) {
   501         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   502                                "allocated "HR_FORMAT" from secondary_free_list",
   503                                HR_FORMAT_PARAMS(res));
   504       }
   505       return res;
   506     }
   508     // Wait here until we get notifed either when (a) there are no
   509     // more free regions coming or (b) some regions have been moved on
   510     // the secondary_free_list.
   511     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
   512   }
   514   if (G1ConcRegionFreeingVerbose) {
   515     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   516                            "could not allocate from secondary_free_list");
   517   }
   518   return NULL;
   519 }
   521 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool do_expand) {
   522   assert(!isHumongous(word_size) ||
   523                                   word_size <= (size_t) HeapRegion::GrainWords,
   524          "the only time we use this to allocate a humongous region is "
   525          "when we are allocating a single humongous region");
   527   HeapRegion* res;
   528   if (G1StressConcRegionFreeing) {
   529     if (!_secondary_free_list.is_empty()) {
   530       if (G1ConcRegionFreeingVerbose) {
   531         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   532                                "forced to look at the secondary_free_list");
   533       }
   534       res = new_region_try_secondary_free_list();
   535       if (res != NULL) {
   536         return res;
   537       }
   538     }
   539   }
   540   res = _free_list.remove_head_or_null();
   541   if (res == NULL) {
   542     if (G1ConcRegionFreeingVerbose) {
   543       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   544                              "res == NULL, trying the secondary_free_list");
   545     }
   546     res = new_region_try_secondary_free_list();
   547   }
   548   if (res == NULL && do_expand) {
   549     if (expand(word_size * HeapWordSize)) {
   550       // The expansion succeeded and so we should have at least one
   551       // region on the free list.
   552       res = _free_list.remove_head();
   553     }
   554   }
   555   if (res != NULL) {
   556     if (G1PrintHeapRegions) {
   557       gclog_or_tty->print_cr("new alloc region %d:["PTR_FORMAT","PTR_FORMAT"], "
   558                              "top "PTR_FORMAT, res->hrs_index(),
   559                              res->bottom(), res->end(), res->top());
   560     }
   561   }
   562   return res;
   563 }
   565 HeapRegion* G1CollectedHeap::new_gc_alloc_region(int purpose,
   566                                                  size_t word_size) {
   567   HeapRegion* alloc_region = NULL;
   568   if (_gc_alloc_region_counts[purpose] < g1_policy()->max_regions(purpose)) {
   569     alloc_region = new_region(word_size, true /* do_expand */);
   570     if (purpose == GCAllocForSurvived && alloc_region != NULL) {
   571       alloc_region->set_survivor();
   572     }
   573     ++_gc_alloc_region_counts[purpose];
   574   } else {
   575     g1_policy()->note_alloc_region_limit_reached(purpose);
   576   }
   577   return alloc_region;
   578 }
   580 int G1CollectedHeap::humongous_obj_allocate_find_first(size_t num_regions,
   581                                                        size_t word_size) {
   582   assert(isHumongous(word_size), "word_size should be humongous");
   583   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
   585   int first = -1;
   586   if (num_regions == 1) {
   587     // Only one region to allocate, no need to go through the slower
   588     // path. The caller will attempt the expasion if this fails, so
   589     // let's not try to expand here too.
   590     HeapRegion* hr = new_region(word_size, false /* do_expand */);
   591     if (hr != NULL) {
   592       first = hr->hrs_index();
   593     } else {
   594       first = -1;
   595     }
   596   } else {
   597     // We can't allocate humongous regions while cleanupComplete() is
   598     // running, since some of the regions we find to be empty might not
   599     // yet be added to the free list and it is not straightforward to
   600     // know which list they are on so that we can remove them. Note
   601     // that we only need to do this if we need to allocate more than
   602     // one region to satisfy the current humongous allocation
   603     // request. If we are only allocating one region we use the common
   604     // region allocation code (see above).
   605     wait_while_free_regions_coming();
   606     append_secondary_free_list_if_not_empty_with_lock();
   608     if (free_regions() >= num_regions) {
   609       first = _hrs->find_contiguous(num_regions);
   610       if (first != -1) {
   611         for (int i = first; i < first + (int) num_regions; ++i) {
   612           HeapRegion* hr = _hrs->at(i);
   613           assert(hr->is_empty(), "sanity");
   614           assert(is_on_master_free_list(hr), "sanity");
   615           hr->set_pending_removal(true);
   616         }
   617         _free_list.remove_all_pending(num_regions);
   618       }
   619     }
   620   }
   621   return first;
   622 }
   624 HeapWord*
   625 G1CollectedHeap::humongous_obj_allocate_initialize_regions(int first,
   626                                                            size_t num_regions,
   627                                                            size_t word_size) {
   628   assert(first != -1, "pre-condition");
   629   assert(isHumongous(word_size), "word_size should be humongous");
   630   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
   632   // Index of last region in the series + 1.
   633   int last = first + (int) num_regions;
   635   // We need to initialize the region(s) we just discovered. This is
   636   // a bit tricky given that it can happen concurrently with
   637   // refinement threads refining cards on these regions and
   638   // potentially wanting to refine the BOT as they are scanning
   639   // those cards (this can happen shortly after a cleanup; see CR
   640   // 6991377). So we have to set up the region(s) carefully and in
   641   // a specific order.
   643   // The word size sum of all the regions we will allocate.
   644   size_t word_size_sum = num_regions * HeapRegion::GrainWords;
   645   assert(word_size <= word_size_sum, "sanity");
   647   // This will be the "starts humongous" region.
   648   HeapRegion* first_hr = _hrs->at(first);
   649   // The header of the new object will be placed at the bottom of
   650   // the first region.
   651   HeapWord* new_obj = first_hr->bottom();
   652   // This will be the new end of the first region in the series that
   653   // should also match the end of the last region in the seriers.
   654   HeapWord* new_end = new_obj + word_size_sum;
   655   // This will be the new top of the first region that will reflect
   656   // this allocation.
   657   HeapWord* new_top = new_obj + word_size;
   659   // First, we need to zero the header of the space that we will be
   660   // allocating. When we update top further down, some refinement
   661   // threads might try to scan the region. By zeroing the header we
   662   // ensure that any thread that will try to scan the region will
   663   // come across the zero klass word and bail out.
   664   //
   665   // NOTE: It would not have been correct to have used
   666   // CollectedHeap::fill_with_object() and make the space look like
   667   // an int array. The thread that is doing the allocation will
   668   // later update the object header to a potentially different array
   669   // type and, for a very short period of time, the klass and length
   670   // fields will be inconsistent. This could cause a refinement
   671   // thread to calculate the object size incorrectly.
   672   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
   674   // We will set up the first region as "starts humongous". This
   675   // will also update the BOT covering all the regions to reflect
   676   // that there is a single object that starts at the bottom of the
   677   // first region.
   678   first_hr->set_startsHumongous(new_top, new_end);
   680   // Then, if there are any, we will set up the "continues
   681   // humongous" regions.
   682   HeapRegion* hr = NULL;
   683   for (int i = first + 1; i < last; ++i) {
   684     hr = _hrs->at(i);
   685     hr->set_continuesHumongous(first_hr);
   686   }
   687   // If we have "continues humongous" regions (hr != NULL), then the
   688   // end of the last one should match new_end.
   689   assert(hr == NULL || hr->end() == new_end, "sanity");
   691   // Up to this point no concurrent thread would have been able to
   692   // do any scanning on any region in this series. All the top
   693   // fields still point to bottom, so the intersection between
   694   // [bottom,top] and [card_start,card_end] will be empty. Before we
   695   // update the top fields, we'll do a storestore to make sure that
   696   // no thread sees the update to top before the zeroing of the
   697   // object header and the BOT initialization.
   698   OrderAccess::storestore();
   700   // Now that the BOT and the object header have been initialized,
   701   // we can update top of the "starts humongous" region.
   702   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
   703          "new_top should be in this region");
   704   first_hr->set_top(new_top);
   706   // Now, we will update the top fields of the "continues humongous"
   707   // regions. The reason we need to do this is that, otherwise,
   708   // these regions would look empty and this will confuse parts of
   709   // G1. For example, the code that looks for a consecutive number
   710   // of empty regions will consider them empty and try to
   711   // re-allocate them. We can extend is_empty() to also include
   712   // !continuesHumongous(), but it is easier to just update the top
   713   // fields here. The way we set top for all regions (i.e., top ==
   714   // end for all regions but the last one, top == new_top for the
   715   // last one) is actually used when we will free up the humongous
   716   // region in free_humongous_region().
   717   hr = NULL;
   718   for (int i = first + 1; i < last; ++i) {
   719     hr = _hrs->at(i);
   720     if ((i + 1) == last) {
   721       // last continues humongous region
   722       assert(hr->bottom() < new_top && new_top <= hr->end(),
   723              "new_top should fall on this region");
   724       hr->set_top(new_top);
   725     } else {
   726       // not last one
   727       assert(new_top > hr->end(), "new_top should be above this region");
   728       hr->set_top(hr->end());
   729     }
   730   }
   731   // If we have continues humongous regions (hr != NULL), then the
   732   // end of the last one should match new_end and its top should
   733   // match new_top.
   734   assert(hr == NULL ||
   735          (hr->end() == new_end && hr->top() == new_top), "sanity");
   737   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
   738   _summary_bytes_used += first_hr->used();
   739   _humongous_set.add(first_hr);
   741   return new_obj;
   742 }
   744 // If could fit into free regions w/o expansion, try.
   745 // Otherwise, if can expand, do so.
   746 // Otherwise, if using ex regions might help, try with ex given back.
   747 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
   748   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
   750   verify_region_sets_optional();
   752   size_t num_regions =
   753          round_to(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
   754   size_t x_size = expansion_regions();
   755   size_t fs = _hrs->free_suffix();
   756   int first = humongous_obj_allocate_find_first(num_regions, word_size);
   757   if (first == -1) {
   758     // The only thing we can do now is attempt expansion.
   759     if (fs + x_size >= num_regions) {
   760       // If the number of regions we're trying to allocate for this
   761       // object is at most the number of regions in the free suffix,
   762       // then the call to humongous_obj_allocate_find_first() above
   763       // should have succeeded and we wouldn't be here.
   764       //
   765       // We should only be trying to expand when the free suffix is
   766       // not sufficient for the object _and_ we have some expansion
   767       // room available.
   768       assert(num_regions > fs, "earlier allocation should have succeeded");
   770       if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
   771         first = humongous_obj_allocate_find_first(num_regions, word_size);
   772         // If the expansion was successful then the allocation
   773         // should have been successful.
   774         assert(first != -1, "this should have worked");
   775       }
   776     }
   777   }
   779   HeapWord* result = NULL;
   780   if (first != -1) {
   781     result =
   782       humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
   783     assert(result != NULL, "it should always return a valid result");
   784   }
   786   verify_region_sets_optional();
   788   return result;
   789 }
   791 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
   792   assert_heap_not_locked_and_not_at_safepoint();
   793   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
   795   unsigned int dummy_gc_count_before;
   796   return attempt_allocation(word_size, &dummy_gc_count_before);
   797 }
   799 HeapWord*
   800 G1CollectedHeap::mem_allocate(size_t word_size,
   801                               bool   is_noref,
   802                               bool   is_tlab,
   803                               bool*  gc_overhead_limit_was_exceeded) {
   804   assert_heap_not_locked_and_not_at_safepoint();
   805   assert(!is_tlab, "mem_allocate() this should not be called directly "
   806          "to allocate TLABs");
   808   // Loop until the allocation is satisified, or unsatisfied after GC.
   809   for (int try_count = 1; /* we'll return */; try_count += 1) {
   810     unsigned int gc_count_before;
   812     HeapWord* result = NULL;
   813     if (!isHumongous(word_size)) {
   814       result = attempt_allocation(word_size, &gc_count_before);
   815     } else {
   816       result = attempt_allocation_humongous(word_size, &gc_count_before);
   817     }
   818     if (result != NULL) {
   819       return result;
   820     }
   822     // Create the garbage collection operation...
   823     VM_G1CollectForAllocation op(gc_count_before, word_size);
   824     // ...and get the VM thread to execute it.
   825     VMThread::execute(&op);
   827     if (op.prologue_succeeded() && op.pause_succeeded()) {
   828       // If the operation was successful we'll return the result even
   829       // if it is NULL. If the allocation attempt failed immediately
   830       // after a Full GC, it's unlikely we'll be able to allocate now.
   831       HeapWord* result = op.result();
   832       if (result != NULL && !isHumongous(word_size)) {
   833         // Allocations that take place on VM operations do not do any
   834         // card dirtying and we have to do it here. We only have to do
   835         // this for non-humongous allocations, though.
   836         dirty_young_block(result, word_size);
   837       }
   838       return result;
   839     } else {
   840       assert(op.result() == NULL,
   841              "the result should be NULL if the VM op did not succeed");
   842     }
   844     // Give a warning if we seem to be looping forever.
   845     if ((QueuedAllocationWarningCount > 0) &&
   846         (try_count % QueuedAllocationWarningCount == 0)) {
   847       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
   848     }
   849   }
   851   ShouldNotReachHere();
   852   return NULL;
   853 }
   855 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
   856                                            unsigned int *gc_count_before_ret) {
   857   // Make sure you read the note in attempt_allocation_humongous().
   859   assert_heap_not_locked_and_not_at_safepoint();
   860   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
   861          "be called for humongous allocation requests");
   863   // We should only get here after the first-level allocation attempt
   864   // (attempt_allocation()) failed to allocate.
   866   // We will loop until a) we manage to successfully perform the
   867   // allocation or b) we successfully schedule a collection which
   868   // fails to perform the allocation. b) is the only case when we'll
   869   // return NULL.
   870   HeapWord* result = NULL;
   871   for (int try_count = 1; /* we'll return */; try_count += 1) {
   872     bool should_try_gc;
   873     unsigned int gc_count_before;
   875     {
   876       MutexLockerEx x(Heap_lock);
   878       result = _mutator_alloc_region.attempt_allocation_locked(word_size,
   879                                                       false /* bot_updates */);
   880       if (result != NULL) {
   881         return result;
   882       }
   884       // If we reach here, attempt_allocation_locked() above failed to
   885       // allocate a new region. So the mutator alloc region should be NULL.
   886       assert(_mutator_alloc_region.get() == NULL, "only way to get here");
   888       if (GC_locker::is_active_and_needs_gc()) {
   889         if (g1_policy()->can_expand_young_list()) {
   890           result = _mutator_alloc_region.attempt_allocation_force(word_size,
   891                                                       false /* bot_updates */);
   892           if (result != NULL) {
   893             return result;
   894           }
   895         }
   896         should_try_gc = false;
   897       } else {
   898         // Read the GC count while still holding the Heap_lock.
   899         gc_count_before = SharedHeap::heap()->total_collections();
   900         should_try_gc = true;
   901       }
   902     }
   904     if (should_try_gc) {
   905       bool succeeded;
   906       result = do_collection_pause(word_size, gc_count_before, &succeeded);
   907       if (result != NULL) {
   908         assert(succeeded, "only way to get back a non-NULL result");
   909         return result;
   910       }
   912       if (succeeded) {
   913         // If we get here we successfully scheduled a collection which
   914         // failed to allocate. No point in trying to allocate
   915         // further. We'll just return NULL.
   916         MutexLockerEx x(Heap_lock);
   917         *gc_count_before_ret = SharedHeap::heap()->total_collections();
   918         return NULL;
   919       }
   920     } else {
   921       GC_locker::stall_until_clear();
   922     }
   924     // We can reach here if we were unsuccessul in scheduling a
   925     // collection (because another thread beat us to it) or if we were
   926     // stalled due to the GC locker. In either can we should retry the
   927     // allocation attempt in case another thread successfully
   928     // performed a collection and reclaimed enough space. We do the
   929     // first attempt (without holding the Heap_lock) here and the
   930     // follow-on attempt will be at the start of the next loop
   931     // iteration (after taking the Heap_lock).
   932     result = _mutator_alloc_region.attempt_allocation(word_size,
   933                                                       false /* bot_updates */);
   934     if (result != NULL ){
   935       return result;
   936     }
   938     // Give a warning if we seem to be looping forever.
   939     if ((QueuedAllocationWarningCount > 0) &&
   940         (try_count % QueuedAllocationWarningCount == 0)) {
   941       warning("G1CollectedHeap::attempt_allocation_slow() "
   942               "retries %d times", try_count);
   943     }
   944   }
   946   ShouldNotReachHere();
   947   return NULL;
   948 }
   950 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
   951                                           unsigned int * gc_count_before_ret) {
   952   // The structure of this method has a lot of similarities to
   953   // attempt_allocation_slow(). The reason these two were not merged
   954   // into a single one is that such a method would require several "if
   955   // allocation is not humongous do this, otherwise do that"
   956   // conditional paths which would obscure its flow. In fact, an early
   957   // version of this code did use a unified method which was harder to
   958   // follow and, as a result, it had subtle bugs that were hard to
   959   // track down. So keeping these two methods separate allows each to
   960   // be more readable. It will be good to keep these two in sync as
   961   // much as possible.
   963   assert_heap_not_locked_and_not_at_safepoint();
   964   assert(isHumongous(word_size), "attempt_allocation_humongous() "
   965          "should only be called for humongous allocations");
   967   // We will loop until a) we manage to successfully perform the
   968   // allocation or b) we successfully schedule a collection which
   969   // fails to perform the allocation. b) is the only case when we'll
   970   // return NULL.
   971   HeapWord* result = NULL;
   972   for (int try_count = 1; /* we'll return */; try_count += 1) {
   973     bool should_try_gc;
   974     unsigned int gc_count_before;
   976     {
   977       MutexLockerEx x(Heap_lock);
   979       // Given that humongous objects are not allocated in young
   980       // regions, we'll first try to do the allocation without doing a
   981       // collection hoping that there's enough space in the heap.
   982       result = humongous_obj_allocate(word_size);
   983       if (result != NULL) {
   984         return result;
   985       }
   987       if (GC_locker::is_active_and_needs_gc()) {
   988         should_try_gc = false;
   989       } else {
   990         // Read the GC count while still holding the Heap_lock.
   991         gc_count_before = SharedHeap::heap()->total_collections();
   992         should_try_gc = true;
   993       }
   994     }
   996     if (should_try_gc) {
   997       // If we failed to allocate the humongous object, we should try to
   998       // do a collection pause (if we're allowed) in case it reclaims
   999       // enough space for the allocation to succeed after the pause.
  1001       bool succeeded;
  1002       result = do_collection_pause(word_size, gc_count_before, &succeeded);
  1003       if (result != NULL) {
  1004         assert(succeeded, "only way to get back a non-NULL result");
  1005         return result;
  1008       if (succeeded) {
  1009         // If we get here we successfully scheduled a collection which
  1010         // failed to allocate. No point in trying to allocate
  1011         // further. We'll just return NULL.
  1012         MutexLockerEx x(Heap_lock);
  1013         *gc_count_before_ret = SharedHeap::heap()->total_collections();
  1014         return NULL;
  1016     } else {
  1017       GC_locker::stall_until_clear();
  1020     // We can reach here if we were unsuccessul in scheduling a
  1021     // collection (because another thread beat us to it) or if we were
  1022     // stalled due to the GC locker. In either can we should retry the
  1023     // allocation attempt in case another thread successfully
  1024     // performed a collection and reclaimed enough space.  Give a
  1025     // warning if we seem to be looping forever.
  1027     if ((QueuedAllocationWarningCount > 0) &&
  1028         (try_count % QueuedAllocationWarningCount == 0)) {
  1029       warning("G1CollectedHeap::attempt_allocation_humongous() "
  1030               "retries %d times", try_count);
  1034   ShouldNotReachHere();
  1035   return NULL;
  1038 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
  1039                                        bool expect_null_mutator_alloc_region) {
  1040   assert_at_safepoint(true /* should_be_vm_thread */);
  1041   assert(_mutator_alloc_region.get() == NULL ||
  1042                                              !expect_null_mutator_alloc_region,
  1043          "the current alloc region was unexpectedly found to be non-NULL");
  1045   if (!isHumongous(word_size)) {
  1046     return _mutator_alloc_region.attempt_allocation_locked(word_size,
  1047                                                       false /* bot_updates */);
  1048   } else {
  1049     return humongous_obj_allocate(word_size);
  1052   ShouldNotReachHere();
  1055 void G1CollectedHeap::abandon_gc_alloc_regions() {
  1056   // first, make sure that the GC alloc region list is empty (it should!)
  1057   assert(_gc_alloc_region_list == NULL, "invariant");
  1058   release_gc_alloc_regions(true /* totally */);
  1061 class PostMCRemSetClearClosure: public HeapRegionClosure {
  1062   ModRefBarrierSet* _mr_bs;
  1063 public:
  1064   PostMCRemSetClearClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
  1065   bool doHeapRegion(HeapRegion* r) {
  1066     r->reset_gc_time_stamp();
  1067     if (r->continuesHumongous())
  1068       return false;
  1069     HeapRegionRemSet* hrrs = r->rem_set();
  1070     if (hrrs != NULL) hrrs->clear();
  1071     // You might think here that we could clear just the cards
  1072     // corresponding to the used region.  But no: if we leave a dirty card
  1073     // in a region we might allocate into, then it would prevent that card
  1074     // from being enqueued, and cause it to be missed.
  1075     // Re: the performance cost: we shouldn't be doing full GC anyway!
  1076     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
  1077     return false;
  1079 };
  1082 class PostMCRemSetInvalidateClosure: public HeapRegionClosure {
  1083   ModRefBarrierSet* _mr_bs;
  1084 public:
  1085   PostMCRemSetInvalidateClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
  1086   bool doHeapRegion(HeapRegion* r) {
  1087     if (r->continuesHumongous()) return false;
  1088     if (r->used_region().word_size() != 0) {
  1089       _mr_bs->invalidate(r->used_region(), true /*whole heap*/);
  1091     return false;
  1093 };
  1095 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
  1096   G1CollectedHeap*   _g1h;
  1097   UpdateRSOopClosure _cl;
  1098   int                _worker_i;
  1099 public:
  1100   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
  1101     _cl(g1->g1_rem_set(), worker_i),
  1102     _worker_i(worker_i),
  1103     _g1h(g1)
  1104   { }
  1106   bool doHeapRegion(HeapRegion* r) {
  1107     if (!r->continuesHumongous()) {
  1108       _cl.set_from(r);
  1109       r->oop_iterate(&_cl);
  1111     return false;
  1113 };
  1115 class ParRebuildRSTask: public AbstractGangTask {
  1116   G1CollectedHeap* _g1;
  1117 public:
  1118   ParRebuildRSTask(G1CollectedHeap* g1)
  1119     : AbstractGangTask("ParRebuildRSTask"),
  1120       _g1(g1)
  1121   { }
  1123   void work(int i) {
  1124     RebuildRSOutOfRegionClosure rebuild_rs(_g1, i);
  1125     _g1->heap_region_par_iterate_chunked(&rebuild_rs, i,
  1126                                          HeapRegion::RebuildRSClaimValue);
  1128 };
  1130 bool G1CollectedHeap::do_collection(bool explicit_gc,
  1131                                     bool clear_all_soft_refs,
  1132                                     size_t word_size) {
  1133   assert_at_safepoint(true /* should_be_vm_thread */);
  1135   if (GC_locker::check_active_before_gc()) {
  1136     return false;
  1139   SvcGCMarker sgcm(SvcGCMarker::FULL);
  1140   ResourceMark rm;
  1142   if (PrintHeapAtGC) {
  1143     Universe::print_heap_before_gc();
  1146   verify_region_sets_optional();
  1148   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
  1149                            collector_policy()->should_clear_all_soft_refs();
  1151   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
  1154     IsGCActiveMark x;
  1156     // Timing
  1157     bool system_gc = (gc_cause() == GCCause::_java_lang_system_gc);
  1158     assert(!system_gc || explicit_gc, "invariant");
  1159     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
  1160     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  1161     TraceTime t(system_gc ? "Full GC (System.gc())" : "Full GC",
  1162                 PrintGC, true, gclog_or_tty);
  1164     TraceMemoryManagerStats tms(true /* fullGC */);
  1166     double start = os::elapsedTime();
  1167     g1_policy()->record_full_collection_start();
  1169     wait_while_free_regions_coming();
  1170     append_secondary_free_list_if_not_empty_with_lock();
  1172     gc_prologue(true);
  1173     increment_total_collections(true /* full gc */);
  1175     size_t g1h_prev_used = used();
  1176     assert(used() == recalculate_used(), "Should be equal");
  1178     if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
  1179       HandleMark hm;  // Discard invalid handles created during verification
  1180       gclog_or_tty->print(" VerifyBeforeGC:");
  1181       prepare_for_verify();
  1182       Universe::verify(true);
  1185     COMPILER2_PRESENT(DerivedPointerTable::clear());
  1187     // We want to discover references, but not process them yet.
  1188     // This mode is disabled in
  1189     // instanceRefKlass::process_discovered_references if the
  1190     // generation does some collection work, or
  1191     // instanceRefKlass::enqueue_discovered_references if the
  1192     // generation returns without doing any work.
  1193     ref_processor()->disable_discovery();
  1194     ref_processor()->abandon_partial_discovery();
  1195     ref_processor()->verify_no_references_recorded();
  1197     // Abandon current iterations of concurrent marking and concurrent
  1198     // refinement, if any are in progress.
  1199     concurrent_mark()->abort();
  1201     // Make sure we'll choose a new allocation region afterwards.
  1202     release_mutator_alloc_region();
  1203     abandon_gc_alloc_regions();
  1204     g1_rem_set()->cleanupHRRS();
  1205     tear_down_region_lists();
  1207     // We may have added regions to the current incremental collection
  1208     // set between the last GC or pause and now. We need to clear the
  1209     // incremental collection set and then start rebuilding it afresh
  1210     // after this full GC.
  1211     abandon_collection_set(g1_policy()->inc_cset_head());
  1212     g1_policy()->clear_incremental_cset();
  1213     g1_policy()->stop_incremental_cset_building();
  1215     if (g1_policy()->in_young_gc_mode()) {
  1216       empty_young_list();
  1217       g1_policy()->set_full_young_gcs(true);
  1220     // See the comment in G1CollectedHeap::ref_processing_init() about
  1221     // how reference processing currently works in G1.
  1223     // Temporarily make reference _discovery_ single threaded (non-MT).
  1224     ReferenceProcessorMTDiscoveryMutator rp_disc_ser(ref_processor(), false);
  1226     // Temporarily make refs discovery atomic
  1227     ReferenceProcessorAtomicMutator rp_disc_atomic(ref_processor(), true);
  1229     // Temporarily clear _is_alive_non_header
  1230     ReferenceProcessorIsAliveMutator rp_is_alive_null(ref_processor(), NULL);
  1232     ref_processor()->enable_discovery();
  1233     ref_processor()->setup_policy(do_clear_all_soft_refs);
  1235     // Do collection work
  1237       HandleMark hm;  // Discard invalid handles created during gc
  1238       G1MarkSweep::invoke_at_safepoint(ref_processor(), do_clear_all_soft_refs);
  1240     assert(free_regions() == 0, "we should not have added any free regions");
  1241     rebuild_region_lists();
  1243     _summary_bytes_used = recalculate_used();
  1245     ref_processor()->enqueue_discovered_references();
  1247     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  1249     MemoryService::track_memory_usage();
  1251     if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
  1252       HandleMark hm;  // Discard invalid handles created during verification
  1253       gclog_or_tty->print(" VerifyAfterGC:");
  1254       prepare_for_verify();
  1255       Universe::verify(false);
  1257     NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
  1259     reset_gc_time_stamp();
  1260     // Since everything potentially moved, we will clear all remembered
  1261     // sets, and clear all cards.  Later we will rebuild remebered
  1262     // sets. We will also reset the GC time stamps of the regions.
  1263     PostMCRemSetClearClosure rs_clear(mr_bs());
  1264     heap_region_iterate(&rs_clear);
  1266     // Resize the heap if necessary.
  1267     resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
  1269     if (_cg1r->use_cache()) {
  1270       _cg1r->clear_and_record_card_counts();
  1271       _cg1r->clear_hot_cache();
  1274     // Rebuild remembered sets of all regions.
  1276     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1277       ParRebuildRSTask rebuild_rs_task(this);
  1278       assert(check_heap_region_claim_values(
  1279              HeapRegion::InitialClaimValue), "sanity check");
  1280       set_par_threads(workers()->total_workers());
  1281       workers()->run_task(&rebuild_rs_task);
  1282       set_par_threads(0);
  1283       assert(check_heap_region_claim_values(
  1284              HeapRegion::RebuildRSClaimValue), "sanity check");
  1285       reset_heap_region_claim_values();
  1286     } else {
  1287       RebuildRSOutOfRegionClosure rebuild_rs(this);
  1288       heap_region_iterate(&rebuild_rs);
  1291     if (PrintGC) {
  1292       print_size_transition(gclog_or_tty, g1h_prev_used, used(), capacity());
  1295     if (true) { // FIXME
  1296       // Ask the permanent generation to adjust size for full collections
  1297       perm()->compute_new_size();
  1300     // Start a new incremental collection set for the next pause
  1301     assert(g1_policy()->collection_set() == NULL, "must be");
  1302     g1_policy()->start_incremental_cset_building();
  1304     // Clear the _cset_fast_test bitmap in anticipation of adding
  1305     // regions to the incremental collection set for the next
  1306     // evacuation pause.
  1307     clear_cset_fast_test();
  1309     init_mutator_alloc_region();
  1311     double end = os::elapsedTime();
  1312     g1_policy()->record_full_collection_end();
  1314 #ifdef TRACESPINNING
  1315     ParallelTaskTerminator::print_termination_counts();
  1316 #endif
  1318     gc_epilogue(true);
  1320     // Discard all rset updates
  1321     JavaThread::dirty_card_queue_set().abandon_logs();
  1322     assert(!G1DeferredRSUpdate
  1323            || (G1DeferredRSUpdate && (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
  1326   if (g1_policy()->in_young_gc_mode()) {
  1327     _young_list->reset_sampled_info();
  1328     // At this point there should be no regions in the
  1329     // entire heap tagged as young.
  1330     assert( check_young_list_empty(true /* check_heap */),
  1331             "young list should be empty at this point");
  1334   // Update the number of full collections that have been completed.
  1335   increment_full_collections_completed(false /* concurrent */);
  1337   verify_region_sets_optional();
  1339   if (PrintHeapAtGC) {
  1340     Universe::print_heap_after_gc();
  1343   return true;
  1346 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
  1347   // do_collection() will return whether it succeeded in performing
  1348   // the GC. Currently, there is no facility on the
  1349   // do_full_collection() API to notify the caller than the collection
  1350   // did not succeed (e.g., because it was locked out by the GC
  1351   // locker). So, right now, we'll ignore the return value.
  1352   bool dummy = do_collection(true,                /* explicit_gc */
  1353                              clear_all_soft_refs,
  1354                              0                    /* word_size */);
  1357 // This code is mostly copied from TenuredGeneration.
  1358 void
  1359 G1CollectedHeap::
  1360 resize_if_necessary_after_full_collection(size_t word_size) {
  1361   assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");
  1363   // Include the current allocation, if any, and bytes that will be
  1364   // pre-allocated to support collections, as "used".
  1365   const size_t used_after_gc = used();
  1366   const size_t capacity_after_gc = capacity();
  1367   const size_t free_after_gc = capacity_after_gc - used_after_gc;
  1369   // This is enforced in arguments.cpp.
  1370   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
  1371          "otherwise the code below doesn't make sense");
  1373   // We don't have floating point command-line arguments
  1374   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
  1375   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
  1376   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
  1377   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
  1379   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
  1380   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
  1382   // We have to be careful here as these two calculations can overflow
  1383   // 32-bit size_t's.
  1384   double used_after_gc_d = (double) used_after_gc;
  1385   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
  1386   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
  1388   // Let's make sure that they are both under the max heap size, which
  1389   // by default will make them fit into a size_t.
  1390   double desired_capacity_upper_bound = (double) max_heap_size;
  1391   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
  1392                                     desired_capacity_upper_bound);
  1393   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
  1394                                     desired_capacity_upper_bound);
  1396   // We can now safely turn them into size_t's.
  1397   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
  1398   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
  1400   // This assert only makes sense here, before we adjust them
  1401   // with respect to the min and max heap size.
  1402   assert(minimum_desired_capacity <= maximum_desired_capacity,
  1403          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
  1404                  "maximum_desired_capacity = "SIZE_FORMAT,
  1405                  minimum_desired_capacity, maximum_desired_capacity));
  1407   // Should not be greater than the heap max size. No need to adjust
  1408   // it with respect to the heap min size as it's a lower bound (i.e.,
  1409   // we'll try to make the capacity larger than it, not smaller).
  1410   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
  1411   // Should not be less than the heap min size. No need to adjust it
  1412   // with respect to the heap max size as it's an upper bound (i.e.,
  1413   // we'll try to make the capacity smaller than it, not greater).
  1414   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
  1416   if (PrintGC && Verbose) {
  1417     const double free_percentage =
  1418       (double) free_after_gc / (double) capacity_after_gc;
  1419     gclog_or_tty->print_cr("Computing new size after full GC ");
  1420     gclog_or_tty->print_cr("  "
  1421                            "  minimum_free_percentage: %6.2f",
  1422                            minimum_free_percentage);
  1423     gclog_or_tty->print_cr("  "
  1424                            "  maximum_free_percentage: %6.2f",
  1425                            maximum_free_percentage);
  1426     gclog_or_tty->print_cr("  "
  1427                            "  capacity: %6.1fK"
  1428                            "  minimum_desired_capacity: %6.1fK"
  1429                            "  maximum_desired_capacity: %6.1fK",
  1430                            (double) capacity_after_gc / (double) K,
  1431                            (double) minimum_desired_capacity / (double) K,
  1432                            (double) maximum_desired_capacity / (double) K);
  1433     gclog_or_tty->print_cr("  "
  1434                            "  free_after_gc: %6.1fK"
  1435                            "  used_after_gc: %6.1fK",
  1436                            (double) free_after_gc / (double) K,
  1437                            (double) used_after_gc / (double) K);
  1438     gclog_or_tty->print_cr("  "
  1439                            "   free_percentage: %6.2f",
  1440                            free_percentage);
  1442   if (capacity_after_gc < minimum_desired_capacity) {
  1443     // Don't expand unless it's significant
  1444     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
  1445     if (expand(expand_bytes)) {
  1446       if (PrintGC && Verbose) {
  1447         gclog_or_tty->print_cr("  "
  1448                                "  expanding:"
  1449                                "  max_heap_size: %6.1fK"
  1450                                "  minimum_desired_capacity: %6.1fK"
  1451                                "  expand_bytes: %6.1fK",
  1452                                (double) max_heap_size / (double) K,
  1453                                (double) minimum_desired_capacity / (double) K,
  1454                                (double) expand_bytes / (double) K);
  1458     // No expansion, now see if we want to shrink
  1459   } else if (capacity_after_gc > maximum_desired_capacity) {
  1460     // Capacity too large, compute shrinking size
  1461     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
  1462     shrink(shrink_bytes);
  1463     if (PrintGC && Verbose) {
  1464       gclog_or_tty->print_cr("  "
  1465                              "  shrinking:"
  1466                              "  min_heap_size: %6.1fK"
  1467                              "  maximum_desired_capacity: %6.1fK"
  1468                              "  shrink_bytes: %6.1fK",
  1469                              (double) min_heap_size / (double) K,
  1470                              (double) maximum_desired_capacity / (double) K,
  1471                              (double) shrink_bytes / (double) K);
  1477 HeapWord*
  1478 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
  1479                                            bool* succeeded) {
  1480   assert_at_safepoint(true /* should_be_vm_thread */);
  1482   *succeeded = true;
  1483   // Let's attempt the allocation first.
  1484   HeapWord* result =
  1485     attempt_allocation_at_safepoint(word_size,
  1486                                  false /* expect_null_mutator_alloc_region */);
  1487   if (result != NULL) {
  1488     assert(*succeeded, "sanity");
  1489     return result;
  1492   // In a G1 heap, we're supposed to keep allocation from failing by
  1493   // incremental pauses.  Therefore, at least for now, we'll favor
  1494   // expansion over collection.  (This might change in the future if we can
  1495   // do something smarter than full collection to satisfy a failed alloc.)
  1496   result = expand_and_allocate(word_size);
  1497   if (result != NULL) {
  1498     assert(*succeeded, "sanity");
  1499     return result;
  1502   // Expansion didn't work, we'll try to do a Full GC.
  1503   bool gc_succeeded = do_collection(false, /* explicit_gc */
  1504                                     false, /* clear_all_soft_refs */
  1505                                     word_size);
  1506   if (!gc_succeeded) {
  1507     *succeeded = false;
  1508     return NULL;
  1511   // Retry the allocation
  1512   result = attempt_allocation_at_safepoint(word_size,
  1513                                   true /* expect_null_mutator_alloc_region */);
  1514   if (result != NULL) {
  1515     assert(*succeeded, "sanity");
  1516     return result;
  1519   // Then, try a Full GC that will collect all soft references.
  1520   gc_succeeded = do_collection(false, /* explicit_gc */
  1521                                true,  /* clear_all_soft_refs */
  1522                                word_size);
  1523   if (!gc_succeeded) {
  1524     *succeeded = false;
  1525     return NULL;
  1528   // Retry the allocation once more
  1529   result = attempt_allocation_at_safepoint(word_size,
  1530                                   true /* expect_null_mutator_alloc_region */);
  1531   if (result != NULL) {
  1532     assert(*succeeded, "sanity");
  1533     return result;
  1536   assert(!collector_policy()->should_clear_all_soft_refs(),
  1537          "Flag should have been handled and cleared prior to this point");
  1539   // What else?  We might try synchronous finalization later.  If the total
  1540   // space available is large enough for the allocation, then a more
  1541   // complete compaction phase than we've tried so far might be
  1542   // appropriate.
  1543   assert(*succeeded, "sanity");
  1544   return NULL;
  1547 // Attempting to expand the heap sufficiently
  1548 // to support an allocation of the given "word_size".  If
  1549 // successful, perform the allocation and return the address of the
  1550 // allocated block, or else "NULL".
  1552 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
  1553   assert_at_safepoint(true /* should_be_vm_thread */);
  1555   verify_region_sets_optional();
  1557   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
  1558   if (expand(expand_bytes)) {
  1559     verify_region_sets_optional();
  1560     return attempt_allocation_at_safepoint(word_size,
  1561                                  false /* expect_null_mutator_alloc_region */);
  1563   return NULL;
  1566 bool G1CollectedHeap::expand(size_t expand_bytes) {
  1567   size_t old_mem_size = _g1_storage.committed_size();
  1568   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
  1569   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
  1570                                        HeapRegion::GrainBytes);
  1572   if (Verbose && PrintGC) {
  1573     gclog_or_tty->print("Expanding garbage-first heap from %ldK by %ldK",
  1574                            old_mem_size/K, aligned_expand_bytes/K);
  1577   HeapWord* old_end = (HeapWord*)_g1_storage.high();
  1578   bool successful = _g1_storage.expand_by(aligned_expand_bytes);
  1579   if (successful) {
  1580     HeapWord* new_end = (HeapWord*)_g1_storage.high();
  1582     // Expand the committed region.
  1583     _g1_committed.set_end(new_end);
  1585     // Tell the cardtable about the expansion.
  1586     Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
  1588     // And the offset table as well.
  1589     _bot_shared->resize(_g1_committed.word_size());
  1591     expand_bytes = aligned_expand_bytes;
  1592     HeapWord* base = old_end;
  1594     // Create the heap regions for [old_end, new_end)
  1595     while (expand_bytes > 0) {
  1596       HeapWord* high = base + HeapRegion::GrainWords;
  1598       // Create a new HeapRegion.
  1599       MemRegion mr(base, high);
  1600       bool is_zeroed = !_g1_max_committed.contains(base);
  1601       HeapRegion* hr = new HeapRegion(_bot_shared, mr, is_zeroed);
  1603       // Add it to the HeapRegionSeq.
  1604       _hrs->insert(hr);
  1605       _free_list.add_as_tail(hr);
  1607       // And we used up an expansion region to create it.
  1608       _expansion_regions--;
  1610       expand_bytes -= HeapRegion::GrainBytes;
  1611       base += HeapRegion::GrainWords;
  1613     assert(base == new_end, "sanity");
  1615     // Now update max_committed if necessary.
  1616     _g1_max_committed.set_end(MAX2(_g1_max_committed.end(), new_end));
  1618   } else {
  1619     // The expansion of the virtual storage space was unsuccessful.
  1620     // Let's see if it was because we ran out of swap.
  1621     if (G1ExitOnExpansionFailure &&
  1622         _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
  1623       // We had head room...
  1624       vm_exit_out_of_memory(aligned_expand_bytes, "G1 heap expansion");
  1628   if (Verbose && PrintGC) {
  1629     size_t new_mem_size = _g1_storage.committed_size();
  1630     gclog_or_tty->print_cr("...%s, expanded to %ldK",
  1631                            (successful ? "Successful" : "Failed"),
  1632                            new_mem_size/K);
  1634   return successful;
  1637 void G1CollectedHeap::shrink_helper(size_t shrink_bytes)
  1639   size_t old_mem_size = _g1_storage.committed_size();
  1640   size_t aligned_shrink_bytes =
  1641     ReservedSpace::page_align_size_down(shrink_bytes);
  1642   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
  1643                                          HeapRegion::GrainBytes);
  1644   size_t num_regions_deleted = 0;
  1645   MemRegion mr = _hrs->shrink_by(aligned_shrink_bytes, num_regions_deleted);
  1647   assert(mr.end() == (HeapWord*)_g1_storage.high(), "Bad shrink!");
  1648   if (mr.byte_size() > 0)
  1649     _g1_storage.shrink_by(mr.byte_size());
  1650   assert(mr.start() == (HeapWord*)_g1_storage.high(), "Bad shrink!");
  1652   _g1_committed.set_end(mr.start());
  1653   _expansion_regions += num_regions_deleted;
  1655   // Tell the cardtable about it.
  1656   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
  1658   // And the offset table as well.
  1659   _bot_shared->resize(_g1_committed.word_size());
  1661   HeapRegionRemSet::shrink_heap(n_regions());
  1663   if (Verbose && PrintGC) {
  1664     size_t new_mem_size = _g1_storage.committed_size();
  1665     gclog_or_tty->print_cr("Shrinking garbage-first heap from %ldK by %ldK to %ldK",
  1666                            old_mem_size/K, aligned_shrink_bytes/K,
  1667                            new_mem_size/K);
  1671 void G1CollectedHeap::shrink(size_t shrink_bytes) {
  1672   verify_region_sets_optional();
  1674   release_gc_alloc_regions(true /* totally */);
  1675   // Instead of tearing down / rebuilding the free lists here, we
  1676   // could instead use the remove_all_pending() method on free_list to
  1677   // remove only the ones that we need to remove.
  1678   tear_down_region_lists();  // We will rebuild them in a moment.
  1679   shrink_helper(shrink_bytes);
  1680   rebuild_region_lists();
  1682   verify_region_sets_optional();
  1685 // Public methods.
  1687 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
  1688 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
  1689 #endif // _MSC_VER
  1692 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
  1693   SharedHeap(policy_),
  1694   _g1_policy(policy_),
  1695   _dirty_card_queue_set(false),
  1696   _into_cset_dirty_card_queue_set(false),
  1697   _is_alive_closure(this),
  1698   _ref_processor(NULL),
  1699   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
  1700   _bot_shared(NULL),
  1701   _objs_with_preserved_marks(NULL), _preserved_marks_of_objs(NULL),
  1702   _evac_failure_scan_stack(NULL) ,
  1703   _mark_in_progress(false),
  1704   _cg1r(NULL), _summary_bytes_used(0),
  1705   _refine_cte_cl(NULL),
  1706   _full_collection(false),
  1707   _free_list("Master Free List"),
  1708   _secondary_free_list("Secondary Free List"),
  1709   _humongous_set("Master Humongous Set"),
  1710   _free_regions_coming(false),
  1711   _young_list(new YoungList(this)),
  1712   _gc_time_stamp(0),
  1713   _surviving_young_words(NULL),
  1714   _full_collections_completed(0),
  1715   _in_cset_fast_test(NULL),
  1716   _in_cset_fast_test_base(NULL),
  1717   _dirty_cards_region_list(NULL) {
  1718   _g1h = this; // To catch bugs.
  1719   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
  1720     vm_exit_during_initialization("Failed necessary allocation.");
  1723   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
  1725   int n_queues = MAX2((int)ParallelGCThreads, 1);
  1726   _task_queues = new RefToScanQueueSet(n_queues);
  1728   int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
  1729   assert(n_rem_sets > 0, "Invariant.");
  1731   HeapRegionRemSetIterator** iter_arr =
  1732     NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues);
  1733   for (int i = 0; i < n_queues; i++) {
  1734     iter_arr[i] = new HeapRegionRemSetIterator();
  1736   _rem_set_iterator = iter_arr;
  1738   for (int i = 0; i < n_queues; i++) {
  1739     RefToScanQueue* q = new RefToScanQueue();
  1740     q->initialize();
  1741     _task_queues->register_queue(i, q);
  1744   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  1745     _gc_alloc_regions[ap]          = NULL;
  1746     _gc_alloc_region_counts[ap]    = 0;
  1747     _retained_gc_alloc_regions[ap] = NULL;
  1748     // by default, we do not retain a GC alloc region for each ap;
  1749     // we'll override this, when appropriate, below
  1750     _retain_gc_alloc_region[ap]    = false;
  1753   // We will try to remember the last half-full tenured region we
  1754   // allocated to at the end of a collection so that we can re-use it
  1755   // during the next collection.
  1756   _retain_gc_alloc_region[GCAllocForTenured]  = true;
  1758   guarantee(_task_queues != NULL, "task_queues allocation failure.");
  1761 jint G1CollectedHeap::initialize() {
  1762   CollectedHeap::pre_initialize();
  1763   os::enable_vtime();
  1765   // Necessary to satisfy locking discipline assertions.
  1767   MutexLocker x(Heap_lock);
  1769   // While there are no constraints in the GC code that HeapWordSize
  1770   // be any particular value, there are multiple other areas in the
  1771   // system which believe this to be true (e.g. oop->object_size in some
  1772   // cases incorrectly returns the size in wordSize units rather than
  1773   // HeapWordSize).
  1774   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
  1776   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
  1777   size_t max_byte_size = collector_policy()->max_heap_byte_size();
  1779   // Ensure that the sizes are properly aligned.
  1780   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1781   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1783   _cg1r = new ConcurrentG1Refine();
  1785   // Reserve the maximum.
  1786   PermanentGenerationSpec* pgs = collector_policy()->permanent_generation();
  1787   // Includes the perm-gen.
  1789   const size_t total_reserved = max_byte_size + pgs->max_size();
  1790   char* addr = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);
  1792   ReservedSpace heap_rs(max_byte_size + pgs->max_size(),
  1793                         HeapRegion::GrainBytes,
  1794                         UseLargePages, addr);
  1796   if (UseCompressedOops) {
  1797     if (addr != NULL && !heap_rs.is_reserved()) {
  1798       // Failed to reserve at specified address - the requested memory
  1799       // region is taken already, for example, by 'java' launcher.
  1800       // Try again to reserver heap higher.
  1801       addr = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
  1802       ReservedSpace heap_rs0(total_reserved, HeapRegion::GrainBytes,
  1803                              UseLargePages, addr);
  1804       if (addr != NULL && !heap_rs0.is_reserved()) {
  1805         // Failed to reserve at specified address again - give up.
  1806         addr = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
  1807         assert(addr == NULL, "");
  1808         ReservedSpace heap_rs1(total_reserved, HeapRegion::GrainBytes,
  1809                                UseLargePages, addr);
  1810         heap_rs = heap_rs1;
  1811       } else {
  1812         heap_rs = heap_rs0;
  1817   if (!heap_rs.is_reserved()) {
  1818     vm_exit_during_initialization("Could not reserve enough space for object heap");
  1819     return JNI_ENOMEM;
  1822   // It is important to do this in a way such that concurrent readers can't
  1823   // temporarily think somethings in the heap.  (I've actually seen this
  1824   // happen in asserts: DLD.)
  1825   _reserved.set_word_size(0);
  1826   _reserved.set_start((HeapWord*)heap_rs.base());
  1827   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
  1829   _expansion_regions = max_byte_size/HeapRegion::GrainBytes;
  1831   // Create the gen rem set (and barrier set) for the entire reserved region.
  1832   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
  1833   set_barrier_set(rem_set()->bs());
  1834   if (barrier_set()->is_a(BarrierSet::ModRef)) {
  1835     _mr_bs = (ModRefBarrierSet*)_barrier_set;
  1836   } else {
  1837     vm_exit_during_initialization("G1 requires a mod ref bs.");
  1838     return JNI_ENOMEM;
  1841   // Also create a G1 rem set.
  1842   if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
  1843     _g1_rem_set = new G1RemSet(this, (CardTableModRefBS*)mr_bs());
  1844   } else {
  1845     vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
  1846     return JNI_ENOMEM;
  1849   // Carve out the G1 part of the heap.
  1851   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
  1852   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
  1853                            g1_rs.size()/HeapWordSize);
  1854   ReservedSpace perm_gen_rs = heap_rs.last_part(max_byte_size);
  1856   _perm_gen = pgs->init(perm_gen_rs, pgs->init_size(), rem_set());
  1858   _g1_storage.initialize(g1_rs, 0);
  1859   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
  1860   _g1_max_committed = _g1_committed;
  1861   _hrs = new HeapRegionSeq(_expansion_regions);
  1862   guarantee(_hrs != NULL, "Couldn't allocate HeapRegionSeq");
  1864   // 6843694 - ensure that the maximum region index can fit
  1865   // in the remembered set structures.
  1866   const size_t max_region_idx = ((size_t)1 << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
  1867   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
  1869   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
  1870   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
  1871   guarantee((size_t) HeapRegion::CardsPerRegion < max_cards_per_region,
  1872             "too many cards per region");
  1874   HeapRegionSet::set_unrealistically_long_length(max_regions() + 1);
  1876   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
  1877                                              heap_word_size(init_byte_size));
  1879   _g1h = this;
  1881    _in_cset_fast_test_length = max_regions();
  1882    _in_cset_fast_test_base = NEW_C_HEAP_ARRAY(bool, _in_cset_fast_test_length);
  1884    // We're biasing _in_cset_fast_test to avoid subtracting the
  1885    // beginning of the heap every time we want to index; basically
  1886    // it's the same with what we do with the card table.
  1887    _in_cset_fast_test = _in_cset_fast_test_base -
  1888                 ((size_t) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
  1890    // Clear the _cset_fast_test bitmap in anticipation of adding
  1891    // regions to the incremental collection set for the first
  1892    // evacuation pause.
  1893    clear_cset_fast_test();
  1895   // Create the ConcurrentMark data structure and thread.
  1896   // (Must do this late, so that "max_regions" is defined.)
  1897   _cm       = new ConcurrentMark(heap_rs, (int) max_regions());
  1898   _cmThread = _cm->cmThread();
  1900   // Initialize the from_card cache structure of HeapRegionRemSet.
  1901   HeapRegionRemSet::init_heap(max_regions());
  1903   // Now expand into the initial heap size.
  1904   if (!expand(init_byte_size)) {
  1905     vm_exit_during_initialization("Failed to allocate initial heap.");
  1906     return JNI_ENOMEM;
  1909   // Perform any initialization actions delegated to the policy.
  1910   g1_policy()->init();
  1912   g1_policy()->note_start_of_mark_thread();
  1914   _refine_cte_cl =
  1915     new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
  1916                                     g1_rem_set(),
  1917                                     concurrent_g1_refine());
  1918   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
  1920   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
  1921                                                SATB_Q_FL_lock,
  1922                                                G1SATBProcessCompletedThreshold,
  1923                                                Shared_SATB_Q_lock);
  1925   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
  1926                                                 DirtyCardQ_FL_lock,
  1927                                                 concurrent_g1_refine()->yellow_zone(),
  1928                                                 concurrent_g1_refine()->red_zone(),
  1929                                                 Shared_DirtyCardQ_lock);
  1931   if (G1DeferredRSUpdate) {
  1932     dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
  1933                                       DirtyCardQ_FL_lock,
  1934                                       -1, // never trigger processing
  1935                                       -1, // no limit on length
  1936                                       Shared_DirtyCardQ_lock,
  1937                                       &JavaThread::dirty_card_queue_set());
  1940   // Initialize the card queue set used to hold cards containing
  1941   // references into the collection set.
  1942   _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
  1943                                              DirtyCardQ_FL_lock,
  1944                                              -1, // never trigger processing
  1945                                              -1, // no limit on length
  1946                                              Shared_DirtyCardQ_lock,
  1947                                              &JavaThread::dirty_card_queue_set());
  1949   // In case we're keeping closure specialization stats, initialize those
  1950   // counts and that mechanism.
  1951   SpecializationStats::clear();
  1953   _gc_alloc_region_list = NULL;
  1955   // Do later initialization work for concurrent refinement.
  1956   _cg1r->init();
  1958   // Here we allocate the dummy full region that is required by the
  1959   // G1AllocRegion class. If we don't pass an address in the reserved
  1960   // space here, lots of asserts fire.
  1961   MemRegion mr(_g1_reserved.start(), HeapRegion::GrainWords);
  1962   HeapRegion* dummy_region = new HeapRegion(_bot_shared, mr, true);
  1963   // We'll re-use the same region whether the alloc region will
  1964   // require BOT updates or not and, if it doesn't, then a non-young
  1965   // region will complain that it cannot support allocations without
  1966   // BOT updates. So we'll tag the dummy region as young to avoid that.
  1967   dummy_region->set_young();
  1968   // Make sure it's full.
  1969   dummy_region->set_top(dummy_region->end());
  1970   G1AllocRegion::setup(this, dummy_region);
  1972   init_mutator_alloc_region();
  1974   return JNI_OK;
  1977 void G1CollectedHeap::ref_processing_init() {
  1978   // Reference processing in G1 currently works as follows:
  1979   //
  1980   // * There is only one reference processor instance that
  1981   //   'spans' the entire heap. It is created by the code
  1982   //   below.
  1983   // * Reference discovery is not enabled during an incremental
  1984   //   pause (see 6484982).
  1985   // * Discoverered refs are not enqueued nor are they processed
  1986   //   during an incremental pause (see 6484982).
  1987   // * Reference discovery is enabled at initial marking.
  1988   // * Reference discovery is disabled and the discovered
  1989   //   references processed etc during remarking.
  1990   // * Reference discovery is MT (see below).
  1991   // * Reference discovery requires a barrier (see below).
  1992   // * Reference processing is currently not MT (see 6608385).
  1993   // * A full GC enables (non-MT) reference discovery and
  1994   //   processes any discovered references.
  1996   SharedHeap::ref_processing_init();
  1997   MemRegion mr = reserved_region();
  1998   _ref_processor =
  1999     new ReferenceProcessor(mr,    // span
  2000                            ParallelRefProcEnabled && (ParallelGCThreads > 1),    // mt processing
  2001                            (int) ParallelGCThreads,   // degree of mt processing
  2002                            ParallelGCThreads > 1 || ConcGCThreads > 1,  // mt discovery
  2003                            (int) MAX2(ParallelGCThreads, ConcGCThreads), // degree of mt discovery
  2004                            false,                     // Reference discovery is not atomic
  2005                            &_is_alive_closure,        // is alive closure for efficiency
  2006                            true);                     // Setting next fields of discovered
  2007                                                       // lists requires a barrier.
  2010 size_t G1CollectedHeap::capacity() const {
  2011   return _g1_committed.byte_size();
  2014 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
  2015                                                  DirtyCardQueue* into_cset_dcq,
  2016                                                  bool concurrent,
  2017                                                  int worker_i) {
  2018   // Clean cards in the hot card cache
  2019   concurrent_g1_refine()->clean_up_cache(worker_i, g1_rem_set(), into_cset_dcq);
  2021   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  2022   int n_completed_buffers = 0;
  2023   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
  2024     n_completed_buffers++;
  2026   g1_policy()->record_update_rs_processed_buffers(worker_i,
  2027                                                   (double) n_completed_buffers);
  2028   dcqs.clear_n_completed_buffers();
  2029   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
  2033 // Computes the sum of the storage used by the various regions.
  2035 size_t G1CollectedHeap::used() const {
  2036   assert(Heap_lock->owner() != NULL,
  2037          "Should be owned on this thread's behalf.");
  2038   size_t result = _summary_bytes_used;
  2039   // Read only once in case it is set to NULL concurrently
  2040   HeapRegion* hr = _mutator_alloc_region.get();
  2041   if (hr != NULL)
  2042     result += hr->used();
  2043   return result;
  2046 size_t G1CollectedHeap::used_unlocked() const {
  2047   size_t result = _summary_bytes_used;
  2048   return result;
  2051 class SumUsedClosure: public HeapRegionClosure {
  2052   size_t _used;
  2053 public:
  2054   SumUsedClosure() : _used(0) {}
  2055   bool doHeapRegion(HeapRegion* r) {
  2056     if (!r->continuesHumongous()) {
  2057       _used += r->used();
  2059     return false;
  2061   size_t result() { return _used; }
  2062 };
  2064 size_t G1CollectedHeap::recalculate_used() const {
  2065   SumUsedClosure blk;
  2066   _hrs->iterate(&blk);
  2067   return blk.result();
  2070 #ifndef PRODUCT
  2071 class SumUsedRegionsClosure: public HeapRegionClosure {
  2072   size_t _num;
  2073 public:
  2074   SumUsedRegionsClosure() : _num(0) {}
  2075   bool doHeapRegion(HeapRegion* r) {
  2076     if (r->continuesHumongous() || r->used() > 0 || r->is_gc_alloc_region()) {
  2077       _num += 1;
  2079     return false;
  2081   size_t result() { return _num; }
  2082 };
  2084 size_t G1CollectedHeap::recalculate_used_regions() const {
  2085   SumUsedRegionsClosure blk;
  2086   _hrs->iterate(&blk);
  2087   return blk.result();
  2089 #endif // PRODUCT
  2091 size_t G1CollectedHeap::unsafe_max_alloc() {
  2092   if (free_regions() > 0) return HeapRegion::GrainBytes;
  2093   // otherwise, is there space in the current allocation region?
  2095   // We need to store the current allocation region in a local variable
  2096   // here. The problem is that this method doesn't take any locks and
  2097   // there may be other threads which overwrite the current allocation
  2098   // region field. attempt_allocation(), for example, sets it to NULL
  2099   // and this can happen *after* the NULL check here but before the call
  2100   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
  2101   // to be a problem in the optimized build, since the two loads of the
  2102   // current allocation region field are optimized away.
  2103   HeapRegion* hr = _mutator_alloc_region.get();
  2104   if (hr == NULL) {
  2105     return 0;
  2107   return hr->free();
  2110 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
  2111   return
  2112     ((cause == GCCause::_gc_locker           && GCLockerInvokesConcurrent) ||
  2113      (cause == GCCause::_java_lang_system_gc && ExplicitGCInvokesConcurrent));
  2116 void G1CollectedHeap::increment_full_collections_completed(bool concurrent) {
  2117   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
  2119   // We assume that if concurrent == true, then the caller is a
  2120   // concurrent thread that was joined the Suspendible Thread
  2121   // Set. If there's ever a cheap way to check this, we should add an
  2122   // assert here.
  2124   // We have already incremented _total_full_collections at the start
  2125   // of the GC, so total_full_collections() represents how many full
  2126   // collections have been started.
  2127   unsigned int full_collections_started = total_full_collections();
  2129   // Given that this method is called at the end of a Full GC or of a
  2130   // concurrent cycle, and those can be nested (i.e., a Full GC can
  2131   // interrupt a concurrent cycle), the number of full collections
  2132   // completed should be either one (in the case where there was no
  2133   // nesting) or two (when a Full GC interrupted a concurrent cycle)
  2134   // behind the number of full collections started.
  2136   // This is the case for the inner caller, i.e. a Full GC.
  2137   assert(concurrent ||
  2138          (full_collections_started == _full_collections_completed + 1) ||
  2139          (full_collections_started == _full_collections_completed + 2),
  2140          err_msg("for inner caller (Full GC): full_collections_started = %u "
  2141                  "is inconsistent with _full_collections_completed = %u",
  2142                  full_collections_started, _full_collections_completed));
  2144   // This is the case for the outer caller, i.e. the concurrent cycle.
  2145   assert(!concurrent ||
  2146          (full_collections_started == _full_collections_completed + 1),
  2147          err_msg("for outer caller (concurrent cycle): "
  2148                  "full_collections_started = %u "
  2149                  "is inconsistent with _full_collections_completed = %u",
  2150                  full_collections_started, _full_collections_completed));
  2152   _full_collections_completed += 1;
  2154   // We need to clear the "in_progress" flag in the CM thread before
  2155   // we wake up any waiters (especially when ExplicitInvokesConcurrent
  2156   // is set) so that if a waiter requests another System.gc() it doesn't
  2157   // incorrectly see that a marking cyle is still in progress.
  2158   if (concurrent) {
  2159     _cmThread->clear_in_progress();
  2162   // This notify_all() will ensure that a thread that called
  2163   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
  2164   // and it's waiting for a full GC to finish will be woken up. It is
  2165   // waiting in VM_G1IncCollectionPause::doit_epilogue().
  2166   FullGCCount_lock->notify_all();
  2169 void G1CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
  2170   assert_at_safepoint(true /* should_be_vm_thread */);
  2171   GCCauseSetter gcs(this, cause);
  2172   switch (cause) {
  2173     case GCCause::_heap_inspection:
  2174     case GCCause::_heap_dump: {
  2175       HandleMark hm;
  2176       do_full_collection(false);         // don't clear all soft refs
  2177       break;
  2179     default: // XXX FIX ME
  2180       ShouldNotReachHere(); // Unexpected use of this function
  2184 void G1CollectedHeap::collect(GCCause::Cause cause) {
  2185   // The caller doesn't have the Heap_lock
  2186   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
  2188   unsigned int gc_count_before;
  2189   unsigned int full_gc_count_before;
  2191     MutexLocker ml(Heap_lock);
  2193     // Read the GC count while holding the Heap_lock
  2194     gc_count_before = SharedHeap::heap()->total_collections();
  2195     full_gc_count_before = SharedHeap::heap()->total_full_collections();
  2198   if (should_do_concurrent_full_gc(cause)) {
  2199     // Schedule an initial-mark evacuation pause that will start a
  2200     // concurrent cycle. We're setting word_size to 0 which means that
  2201     // we are not requesting a post-GC allocation.
  2202     VM_G1IncCollectionPause op(gc_count_before,
  2203                                0,     /* word_size */
  2204                                true,  /* should_initiate_conc_mark */
  2205                                g1_policy()->max_pause_time_ms(),
  2206                                cause);
  2207     VMThread::execute(&op);
  2208   } else {
  2209     if (cause == GCCause::_gc_locker
  2210         DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
  2212       // Schedule a standard evacuation pause. We're setting word_size
  2213       // to 0 which means that we are not requesting a post-GC allocation.
  2214       VM_G1IncCollectionPause op(gc_count_before,
  2215                                  0,     /* word_size */
  2216                                  false, /* should_initiate_conc_mark */
  2217                                  g1_policy()->max_pause_time_ms(),
  2218                                  cause);
  2219       VMThread::execute(&op);
  2220     } else {
  2221       // Schedule a Full GC.
  2222       VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
  2223       VMThread::execute(&op);
  2228 bool G1CollectedHeap::is_in(const void* p) const {
  2229   if (_g1_committed.contains(p)) {
  2230     HeapRegion* hr = _hrs->addr_to_region(p);
  2231     return hr->is_in(p);
  2232   } else {
  2233     return _perm_gen->as_gen()->is_in(p);
  2237 // Iteration functions.
  2239 // Iterates an OopClosure over all ref-containing fields of objects
  2240 // within a HeapRegion.
  2242 class IterateOopClosureRegionClosure: public HeapRegionClosure {
  2243   MemRegion _mr;
  2244   OopClosure* _cl;
  2245 public:
  2246   IterateOopClosureRegionClosure(MemRegion mr, OopClosure* cl)
  2247     : _mr(mr), _cl(cl) {}
  2248   bool doHeapRegion(HeapRegion* r) {
  2249     if (! r->continuesHumongous()) {
  2250       r->oop_iterate(_cl);
  2252     return false;
  2254 };
  2256 void G1CollectedHeap::oop_iterate(OopClosure* cl, bool do_perm) {
  2257   IterateOopClosureRegionClosure blk(_g1_committed, cl);
  2258   _hrs->iterate(&blk);
  2259   if (do_perm) {
  2260     perm_gen()->oop_iterate(cl);
  2264 void G1CollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm) {
  2265   IterateOopClosureRegionClosure blk(mr, cl);
  2266   _hrs->iterate(&blk);
  2267   if (do_perm) {
  2268     perm_gen()->oop_iterate(cl);
  2272 // Iterates an ObjectClosure over all objects within a HeapRegion.
  2274 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
  2275   ObjectClosure* _cl;
  2276 public:
  2277   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
  2278   bool doHeapRegion(HeapRegion* r) {
  2279     if (! r->continuesHumongous()) {
  2280       r->object_iterate(_cl);
  2282     return false;
  2284 };
  2286 void G1CollectedHeap::object_iterate(ObjectClosure* cl, bool do_perm) {
  2287   IterateObjectClosureRegionClosure blk(cl);
  2288   _hrs->iterate(&blk);
  2289   if (do_perm) {
  2290     perm_gen()->object_iterate(cl);
  2294 void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
  2295   // FIXME: is this right?
  2296   guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
  2299 // Calls a SpaceClosure on a HeapRegion.
  2301 class SpaceClosureRegionClosure: public HeapRegionClosure {
  2302   SpaceClosure* _cl;
  2303 public:
  2304   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
  2305   bool doHeapRegion(HeapRegion* r) {
  2306     _cl->do_space(r);
  2307     return false;
  2309 };
  2311 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
  2312   SpaceClosureRegionClosure blk(cl);
  2313   _hrs->iterate(&blk);
  2316 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) {
  2317   _hrs->iterate(cl);
  2320 void G1CollectedHeap::heap_region_iterate_from(HeapRegion* r,
  2321                                                HeapRegionClosure* cl) {
  2322   _hrs->iterate_from(r, cl);
  2325 void
  2326 G1CollectedHeap::heap_region_iterate_from(int idx, HeapRegionClosure* cl) {
  2327   _hrs->iterate_from(idx, cl);
  2330 HeapRegion* G1CollectedHeap::region_at(size_t idx) { return _hrs->at(idx); }
  2332 void
  2333 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
  2334                                                  int worker,
  2335                                                  jint claim_value) {
  2336   const size_t regions = n_regions();
  2337   const size_t worker_num = (G1CollectedHeap::use_parallel_gc_threads() ? ParallelGCThreads : 1);
  2338   // try to spread out the starting points of the workers
  2339   const size_t start_index = regions / worker_num * (size_t) worker;
  2341   // each worker will actually look at all regions
  2342   for (size_t count = 0; count < regions; ++count) {
  2343     const size_t index = (start_index + count) % regions;
  2344     assert(0 <= index && index < regions, "sanity");
  2345     HeapRegion* r = region_at(index);
  2346     // we'll ignore "continues humongous" regions (we'll process them
  2347     // when we come across their corresponding "start humongous"
  2348     // region) and regions already claimed
  2349     if (r->claim_value() == claim_value || r->continuesHumongous()) {
  2350       continue;
  2352     // OK, try to claim it
  2353     if (r->claimHeapRegion(claim_value)) {
  2354       // success!
  2355       assert(!r->continuesHumongous(), "sanity");
  2356       if (r->startsHumongous()) {
  2357         // If the region is "starts humongous" we'll iterate over its
  2358         // "continues humongous" first; in fact we'll do them
  2359         // first. The order is important. In on case, calling the
  2360         // closure on the "starts humongous" region might de-allocate
  2361         // and clear all its "continues humongous" regions and, as a
  2362         // result, we might end up processing them twice. So, we'll do
  2363         // them first (notice: most closures will ignore them anyway) and
  2364         // then we'll do the "starts humongous" region.
  2365         for (size_t ch_index = index + 1; ch_index < regions; ++ch_index) {
  2366           HeapRegion* chr = region_at(ch_index);
  2368           // if the region has already been claimed or it's not
  2369           // "continues humongous" we're done
  2370           if (chr->claim_value() == claim_value ||
  2371               !chr->continuesHumongous()) {
  2372             break;
  2375           // Noone should have claimed it directly. We can given
  2376           // that we claimed its "starts humongous" region.
  2377           assert(chr->claim_value() != claim_value, "sanity");
  2378           assert(chr->humongous_start_region() == r, "sanity");
  2380           if (chr->claimHeapRegion(claim_value)) {
  2381             // we should always be able to claim it; noone else should
  2382             // be trying to claim this region
  2384             bool res2 = cl->doHeapRegion(chr);
  2385             assert(!res2, "Should not abort");
  2387             // Right now, this holds (i.e., no closure that actually
  2388             // does something with "continues humongous" regions
  2389             // clears them). We might have to weaken it in the future,
  2390             // but let's leave these two asserts here for extra safety.
  2391             assert(chr->continuesHumongous(), "should still be the case");
  2392             assert(chr->humongous_start_region() == r, "sanity");
  2393           } else {
  2394             guarantee(false, "we should not reach here");
  2399       assert(!r->continuesHumongous(), "sanity");
  2400       bool res = cl->doHeapRegion(r);
  2401       assert(!res, "Should not abort");
  2406 class ResetClaimValuesClosure: public HeapRegionClosure {
  2407 public:
  2408   bool doHeapRegion(HeapRegion* r) {
  2409     r->set_claim_value(HeapRegion::InitialClaimValue);
  2410     return false;
  2412 };
  2414 void
  2415 G1CollectedHeap::reset_heap_region_claim_values() {
  2416   ResetClaimValuesClosure blk;
  2417   heap_region_iterate(&blk);
  2420 #ifdef ASSERT
  2421 // This checks whether all regions in the heap have the correct claim
  2422 // value. I also piggy-backed on this a check to ensure that the
  2423 // humongous_start_region() information on "continues humongous"
  2424 // regions is correct.
  2426 class CheckClaimValuesClosure : public HeapRegionClosure {
  2427 private:
  2428   jint _claim_value;
  2429   size_t _failures;
  2430   HeapRegion* _sh_region;
  2431 public:
  2432   CheckClaimValuesClosure(jint claim_value) :
  2433     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
  2434   bool doHeapRegion(HeapRegion* r) {
  2435     if (r->claim_value() != _claim_value) {
  2436       gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
  2437                              "claim value = %d, should be %d",
  2438                              r->bottom(), r->end(), r->claim_value(),
  2439                              _claim_value);
  2440       ++_failures;
  2442     if (!r->isHumongous()) {
  2443       _sh_region = NULL;
  2444     } else if (r->startsHumongous()) {
  2445       _sh_region = r;
  2446     } else if (r->continuesHumongous()) {
  2447       if (r->humongous_start_region() != _sh_region) {
  2448         gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
  2449                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
  2450                                r->bottom(), r->end(),
  2451                                r->humongous_start_region(),
  2452                                _sh_region);
  2453         ++_failures;
  2456     return false;
  2458   size_t failures() {
  2459     return _failures;
  2461 };
  2463 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
  2464   CheckClaimValuesClosure cl(claim_value);
  2465   heap_region_iterate(&cl);
  2466   return cl.failures() == 0;
  2468 #endif // ASSERT
  2470 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
  2471   HeapRegion* r = g1_policy()->collection_set();
  2472   while (r != NULL) {
  2473     HeapRegion* next = r->next_in_collection_set();
  2474     if (cl->doHeapRegion(r)) {
  2475       cl->incomplete();
  2476       return;
  2478     r = next;
  2482 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
  2483                                                   HeapRegionClosure *cl) {
  2484   if (r == NULL) {
  2485     // The CSet is empty so there's nothing to do.
  2486     return;
  2489   assert(r->in_collection_set(),
  2490          "Start region must be a member of the collection set.");
  2491   HeapRegion* cur = r;
  2492   while (cur != NULL) {
  2493     HeapRegion* next = cur->next_in_collection_set();
  2494     if (cl->doHeapRegion(cur) && false) {
  2495       cl->incomplete();
  2496       return;
  2498     cur = next;
  2500   cur = g1_policy()->collection_set();
  2501   while (cur != r) {
  2502     HeapRegion* next = cur->next_in_collection_set();
  2503     if (cl->doHeapRegion(cur) && false) {
  2504       cl->incomplete();
  2505       return;
  2507     cur = next;
  2511 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
  2512   return _hrs->length() > 0 ? _hrs->at(0) : NULL;
  2516 Space* G1CollectedHeap::space_containing(const void* addr) const {
  2517   Space* res = heap_region_containing(addr);
  2518   if (res == NULL)
  2519     res = perm_gen()->space_containing(addr);
  2520   return res;
  2523 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
  2524   Space* sp = space_containing(addr);
  2525   if (sp != NULL) {
  2526     return sp->block_start(addr);
  2528   return NULL;
  2531 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
  2532   Space* sp = space_containing(addr);
  2533   assert(sp != NULL, "block_size of address outside of heap");
  2534   return sp->block_size(addr);
  2537 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
  2538   Space* sp = space_containing(addr);
  2539   return sp->block_is_obj(addr);
  2542 bool G1CollectedHeap::supports_tlab_allocation() const {
  2543   return true;
  2546 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
  2547   return HeapRegion::GrainBytes;
  2550 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
  2551   // Return the remaining space in the cur alloc region, but not less than
  2552   // the min TLAB size.
  2554   // Also, this value can be at most the humongous object threshold,
  2555   // since we can't allow tlabs to grow big enough to accomodate
  2556   // humongous objects.
  2558   HeapRegion* hr = _mutator_alloc_region.get();
  2559   size_t max_tlab_size = _humongous_object_threshold_in_words * wordSize;
  2560   if (hr == NULL) {
  2561     return max_tlab_size;
  2562   } else {
  2563     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab_size);
  2567 size_t G1CollectedHeap::large_typearray_limit() {
  2568   // FIXME
  2569   return HeapRegion::GrainBytes/HeapWordSize;
  2572 size_t G1CollectedHeap::max_capacity() const {
  2573   return _g1_reserved.byte_size();
  2576 jlong G1CollectedHeap::millis_since_last_gc() {
  2577   // assert(false, "NYI");
  2578   return 0;
  2581 void G1CollectedHeap::prepare_for_verify() {
  2582   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
  2583     ensure_parsability(false);
  2585   g1_rem_set()->prepare_for_verify();
  2588 class VerifyLivenessOopClosure: public OopClosure {
  2589   G1CollectedHeap* g1h;
  2590 public:
  2591   VerifyLivenessOopClosure(G1CollectedHeap* _g1h) {
  2592     g1h = _g1h;
  2594   void do_oop(narrowOop *p) { do_oop_work(p); }
  2595   void do_oop(      oop *p) { do_oop_work(p); }
  2597   template <class T> void do_oop_work(T *p) {
  2598     oop obj = oopDesc::load_decode_heap_oop(p);
  2599     guarantee(obj == NULL || !g1h->is_obj_dead(obj),
  2600               "Dead object referenced by a not dead object");
  2602 };
  2604 class VerifyObjsInRegionClosure: public ObjectClosure {
  2605 private:
  2606   G1CollectedHeap* _g1h;
  2607   size_t _live_bytes;
  2608   HeapRegion *_hr;
  2609   bool _use_prev_marking;
  2610 public:
  2611   // use_prev_marking == true  -> use "prev" marking information,
  2612   // use_prev_marking == false -> use "next" marking information
  2613   VerifyObjsInRegionClosure(HeapRegion *hr, bool use_prev_marking)
  2614     : _live_bytes(0), _hr(hr), _use_prev_marking(use_prev_marking) {
  2615     _g1h = G1CollectedHeap::heap();
  2617   void do_object(oop o) {
  2618     VerifyLivenessOopClosure isLive(_g1h);
  2619     assert(o != NULL, "Huh?");
  2620     if (!_g1h->is_obj_dead_cond(o, _use_prev_marking)) {
  2621       o->oop_iterate(&isLive);
  2622       if (!_hr->obj_allocated_since_prev_marking(o)) {
  2623         size_t obj_size = o->size();    // Make sure we don't overflow
  2624         _live_bytes += (obj_size * HeapWordSize);
  2628   size_t live_bytes() { return _live_bytes; }
  2629 };
  2631 class PrintObjsInRegionClosure : public ObjectClosure {
  2632   HeapRegion *_hr;
  2633   G1CollectedHeap *_g1;
  2634 public:
  2635   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
  2636     _g1 = G1CollectedHeap::heap();
  2637   };
  2639   void do_object(oop o) {
  2640     if (o != NULL) {
  2641       HeapWord *start = (HeapWord *) o;
  2642       size_t word_sz = o->size();
  2643       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
  2644                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
  2645                           (void*) o, word_sz,
  2646                           _g1->isMarkedPrev(o),
  2647                           _g1->isMarkedNext(o),
  2648                           _hr->obj_allocated_since_prev_marking(o));
  2649       HeapWord *end = start + word_sz;
  2650       HeapWord *cur;
  2651       int *val;
  2652       for (cur = start; cur < end; cur++) {
  2653         val = (int *) cur;
  2654         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
  2658 };
  2660 class VerifyRegionClosure: public HeapRegionClosure {
  2661 private:
  2662   bool _allow_dirty;
  2663   bool _par;
  2664   bool _use_prev_marking;
  2665   bool _failures;
  2666 public:
  2667   // use_prev_marking == true  -> use "prev" marking information,
  2668   // use_prev_marking == false -> use "next" marking information
  2669   VerifyRegionClosure(bool allow_dirty, bool par, bool use_prev_marking)
  2670     : _allow_dirty(allow_dirty),
  2671       _par(par),
  2672       _use_prev_marking(use_prev_marking),
  2673       _failures(false) {}
  2675   bool failures() {
  2676     return _failures;
  2679   bool doHeapRegion(HeapRegion* r) {
  2680     guarantee(_par || r->claim_value() == HeapRegion::InitialClaimValue,
  2681               "Should be unclaimed at verify points.");
  2682     if (!r->continuesHumongous()) {
  2683       bool failures = false;
  2684       r->verify(_allow_dirty, _use_prev_marking, &failures);
  2685       if (failures) {
  2686         _failures = true;
  2687       } else {
  2688         VerifyObjsInRegionClosure not_dead_yet_cl(r, _use_prev_marking);
  2689         r->object_iterate(&not_dead_yet_cl);
  2690         if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
  2691           gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
  2692                                  "max_live_bytes "SIZE_FORMAT" "
  2693                                  "< calculated "SIZE_FORMAT,
  2694                                  r->bottom(), r->end(),
  2695                                  r->max_live_bytes(),
  2696                                  not_dead_yet_cl.live_bytes());
  2697           _failures = true;
  2701     return false; // stop the region iteration if we hit a failure
  2703 };
  2705 class VerifyRootsClosure: public OopsInGenClosure {
  2706 private:
  2707   G1CollectedHeap* _g1h;
  2708   bool             _use_prev_marking;
  2709   bool             _failures;
  2710 public:
  2711   // use_prev_marking == true  -> use "prev" marking information,
  2712   // use_prev_marking == false -> use "next" marking information
  2713   VerifyRootsClosure(bool use_prev_marking) :
  2714     _g1h(G1CollectedHeap::heap()),
  2715     _use_prev_marking(use_prev_marking),
  2716     _failures(false) { }
  2718   bool failures() { return _failures; }
  2720   template <class T> void do_oop_nv(T* p) {
  2721     T heap_oop = oopDesc::load_heap_oop(p);
  2722     if (!oopDesc::is_null(heap_oop)) {
  2723       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  2724       if (_g1h->is_obj_dead_cond(obj, _use_prev_marking)) {
  2725         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
  2726                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
  2727         obj->print_on(gclog_or_tty);
  2728         _failures = true;
  2733   void do_oop(oop* p)       { do_oop_nv(p); }
  2734   void do_oop(narrowOop* p) { do_oop_nv(p); }
  2735 };
  2737 // This is the task used for parallel heap verification.
  2739 class G1ParVerifyTask: public AbstractGangTask {
  2740 private:
  2741   G1CollectedHeap* _g1h;
  2742   bool _allow_dirty;
  2743   bool _use_prev_marking;
  2744   bool _failures;
  2746 public:
  2747   // use_prev_marking == true  -> use "prev" marking information,
  2748   // use_prev_marking == false -> use "next" marking information
  2749   G1ParVerifyTask(G1CollectedHeap* g1h, bool allow_dirty,
  2750                   bool use_prev_marking) :
  2751     AbstractGangTask("Parallel verify task"),
  2752     _g1h(g1h),
  2753     _allow_dirty(allow_dirty),
  2754     _use_prev_marking(use_prev_marking),
  2755     _failures(false) { }
  2757   bool failures() {
  2758     return _failures;
  2761   void work(int worker_i) {
  2762     HandleMark hm;
  2763     VerifyRegionClosure blk(_allow_dirty, true, _use_prev_marking);
  2764     _g1h->heap_region_par_iterate_chunked(&blk, worker_i,
  2765                                           HeapRegion::ParVerifyClaimValue);
  2766     if (blk.failures()) {
  2767       _failures = true;
  2770 };
  2772 void G1CollectedHeap::verify(bool allow_dirty, bool silent) {
  2773   verify(allow_dirty, silent, /* use_prev_marking */ true);
  2776 void G1CollectedHeap::verify(bool allow_dirty,
  2777                              bool silent,
  2778                              bool use_prev_marking) {
  2779   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
  2780     if (!silent) { gclog_or_tty->print("roots "); }
  2781     VerifyRootsClosure rootsCl(use_prev_marking);
  2782     CodeBlobToOopClosure blobsCl(&rootsCl, /*do_marking=*/ false);
  2783     process_strong_roots(true,  // activate StrongRootsScope
  2784                          false,
  2785                          SharedHeap::SO_AllClasses,
  2786                          &rootsCl,
  2787                          &blobsCl,
  2788                          &rootsCl);
  2789     bool failures = rootsCl.failures();
  2790     rem_set()->invalidate(perm_gen()->used_region(), false);
  2791     if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
  2792     verify_region_sets();
  2793     if (!silent) { gclog_or_tty->print("HeapRegions "); }
  2794     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
  2795       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  2796              "sanity check");
  2798       G1ParVerifyTask task(this, allow_dirty, use_prev_marking);
  2799       int n_workers = workers()->total_workers();
  2800       set_par_threads(n_workers);
  2801       workers()->run_task(&task);
  2802       set_par_threads(0);
  2803       if (task.failures()) {
  2804         failures = true;
  2807       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
  2808              "sanity check");
  2810       reset_heap_region_claim_values();
  2812       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  2813              "sanity check");
  2814     } else {
  2815       VerifyRegionClosure blk(allow_dirty, false, use_prev_marking);
  2816       _hrs->iterate(&blk);
  2817       if (blk.failures()) {
  2818         failures = true;
  2821     if (!silent) gclog_or_tty->print("RemSet ");
  2822     rem_set()->verify();
  2824     if (failures) {
  2825       gclog_or_tty->print_cr("Heap:");
  2826       print_on(gclog_or_tty, true /* extended */);
  2827       gclog_or_tty->print_cr("");
  2828 #ifndef PRODUCT
  2829       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
  2830         concurrent_mark()->print_reachable("at-verification-failure",
  2831                                            use_prev_marking, false /* all */);
  2833 #endif
  2834       gclog_or_tty->flush();
  2836     guarantee(!failures, "there should not have been any failures");
  2837   } else {
  2838     if (!silent) gclog_or_tty->print("(SKIPPING roots, heapRegions, remset) ");
  2842 class PrintRegionClosure: public HeapRegionClosure {
  2843   outputStream* _st;
  2844 public:
  2845   PrintRegionClosure(outputStream* st) : _st(st) {}
  2846   bool doHeapRegion(HeapRegion* r) {
  2847     r->print_on(_st);
  2848     return false;
  2850 };
  2852 void G1CollectedHeap::print() const { print_on(tty); }
  2854 void G1CollectedHeap::print_on(outputStream* st) const {
  2855   print_on(st, PrintHeapAtGCExtended);
  2858 void G1CollectedHeap::print_on(outputStream* st, bool extended) const {
  2859   st->print(" %-20s", "garbage-first heap");
  2860   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
  2861             capacity()/K, used_unlocked()/K);
  2862   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
  2863             _g1_storage.low_boundary(),
  2864             _g1_storage.high(),
  2865             _g1_storage.high_boundary());
  2866   st->cr();
  2867   st->print("  region size " SIZE_FORMAT "K, ",
  2868             HeapRegion::GrainBytes/K);
  2869   size_t young_regions = _young_list->length();
  2870   st->print(SIZE_FORMAT " young (" SIZE_FORMAT "K), ",
  2871             young_regions, young_regions * HeapRegion::GrainBytes / K);
  2872   size_t survivor_regions = g1_policy()->recorded_survivor_regions();
  2873   st->print(SIZE_FORMAT " survivors (" SIZE_FORMAT "K)",
  2874             survivor_regions, survivor_regions * HeapRegion::GrainBytes / K);
  2875   st->cr();
  2876   perm()->as_gen()->print_on(st);
  2877   if (extended) {
  2878     st->cr();
  2879     print_on_extended(st);
  2883 void G1CollectedHeap::print_on_extended(outputStream* st) const {
  2884   PrintRegionClosure blk(st);
  2885   _hrs->iterate(&blk);
  2888 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
  2889   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2890     workers()->print_worker_threads_on(st);
  2892   _cmThread->print_on(st);
  2893   st->cr();
  2894   _cm->print_worker_threads_on(st);
  2895   _cg1r->print_worker_threads_on(st);
  2896   st->cr();
  2899 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
  2900   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2901     workers()->threads_do(tc);
  2903   tc->do_thread(_cmThread);
  2904   _cg1r->threads_do(tc);
  2907 void G1CollectedHeap::print_tracing_info() const {
  2908   // We'll overload this to mean "trace GC pause statistics."
  2909   if (TraceGen0Time || TraceGen1Time) {
  2910     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
  2911     // to that.
  2912     g1_policy()->print_tracing_info();
  2914   if (G1SummarizeRSetStats) {
  2915     g1_rem_set()->print_summary_info();
  2917   if (G1SummarizeConcMark) {
  2918     concurrent_mark()->print_summary_info();
  2920   g1_policy()->print_yg_surv_rate_info();
  2921   SpecializationStats::print();
  2924 int G1CollectedHeap::addr_to_arena_id(void* addr) const {
  2925   HeapRegion* hr = heap_region_containing(addr);
  2926   if (hr == NULL) {
  2927     return 0;
  2928   } else {
  2929     return 1;
  2933 G1CollectedHeap* G1CollectedHeap::heap() {
  2934   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
  2935          "not a garbage-first heap");
  2936   return _g1h;
  2939 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
  2940   // always_do_update_barrier = false;
  2941   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  2942   // Call allocation profiler
  2943   AllocationProfiler::iterate_since_last_gc();
  2944   // Fill TLAB's and such
  2945   ensure_parsability(true);
  2948 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
  2949   // FIXME: what is this about?
  2950   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
  2951   // is set.
  2952   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
  2953                         "derived pointer present"));
  2954   // always_do_update_barrier = true;
  2957 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
  2958                                                unsigned int gc_count_before,
  2959                                                bool* succeeded) {
  2960   assert_heap_not_locked_and_not_at_safepoint();
  2961   g1_policy()->record_stop_world_start();
  2962   VM_G1IncCollectionPause op(gc_count_before,
  2963                              word_size,
  2964                              false, /* should_initiate_conc_mark */
  2965                              g1_policy()->max_pause_time_ms(),
  2966                              GCCause::_g1_inc_collection_pause);
  2967   VMThread::execute(&op);
  2969   HeapWord* result = op.result();
  2970   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
  2971   assert(result == NULL || ret_succeeded,
  2972          "the result should be NULL if the VM did not succeed");
  2973   *succeeded = ret_succeeded;
  2975   assert_heap_not_locked();
  2976   return result;
  2979 void
  2980 G1CollectedHeap::doConcurrentMark() {
  2981   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  2982   if (!_cmThread->in_progress()) {
  2983     _cmThread->set_started();
  2984     CGC_lock->notify();
  2988 class VerifyMarkedObjsClosure: public ObjectClosure {
  2989     G1CollectedHeap* _g1h;
  2990     public:
  2991     VerifyMarkedObjsClosure(G1CollectedHeap* g1h) : _g1h(g1h) {}
  2992     void do_object(oop obj) {
  2993       assert(obj->mark()->is_marked() ? !_g1h->is_obj_dead(obj) : true,
  2994              "markandsweep mark should agree with concurrent deadness");
  2996 };
  2998 void
  2999 G1CollectedHeap::checkConcurrentMark() {
  3000     VerifyMarkedObjsClosure verifycl(this);
  3001     //    MutexLockerEx x(getMarkBitMapLock(),
  3002     //              Mutex::_no_safepoint_check_flag);
  3003     object_iterate(&verifycl, false);
  3006 void G1CollectedHeap::do_sync_mark() {
  3007   _cm->checkpointRootsInitial();
  3008   _cm->markFromRoots();
  3009   _cm->checkpointRootsFinal(false);
  3012 // <NEW PREDICTION>
  3014 double G1CollectedHeap::predict_region_elapsed_time_ms(HeapRegion *hr,
  3015                                                        bool young) {
  3016   return _g1_policy->predict_region_elapsed_time_ms(hr, young);
  3019 void G1CollectedHeap::check_if_region_is_too_expensive(double
  3020                                                            predicted_time_ms) {
  3021   _g1_policy->check_if_region_is_too_expensive(predicted_time_ms);
  3024 size_t G1CollectedHeap::pending_card_num() {
  3025   size_t extra_cards = 0;
  3026   JavaThread *curr = Threads::first();
  3027   while (curr != NULL) {
  3028     DirtyCardQueue& dcq = curr->dirty_card_queue();
  3029     extra_cards += dcq.size();
  3030     curr = curr->next();
  3032   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  3033   size_t buffer_size = dcqs.buffer_size();
  3034   size_t buffer_num = dcqs.completed_buffers_num();
  3035   return buffer_size * buffer_num + extra_cards;
  3038 size_t G1CollectedHeap::max_pending_card_num() {
  3039   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  3040   size_t buffer_size = dcqs.buffer_size();
  3041   size_t buffer_num  = dcqs.completed_buffers_num();
  3042   int thread_num  = Threads::number_of_threads();
  3043   return (buffer_num + thread_num) * buffer_size;
  3046 size_t G1CollectedHeap::cards_scanned() {
  3047   return g1_rem_set()->cardsScanned();
  3050 void
  3051 G1CollectedHeap::setup_surviving_young_words() {
  3052   guarantee( _surviving_young_words == NULL, "pre-condition" );
  3053   size_t array_length = g1_policy()->young_cset_length();
  3054   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, array_length);
  3055   if (_surviving_young_words == NULL) {
  3056     vm_exit_out_of_memory(sizeof(size_t) * array_length,
  3057                           "Not enough space for young surv words summary.");
  3059   memset(_surviving_young_words, 0, array_length * sizeof(size_t));
  3060 #ifdef ASSERT
  3061   for (size_t i = 0;  i < array_length; ++i) {
  3062     assert( _surviving_young_words[i] == 0, "memset above" );
  3064 #endif // !ASSERT
  3067 void
  3068 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
  3069   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  3070   size_t array_length = g1_policy()->young_cset_length();
  3071   for (size_t i = 0; i < array_length; ++i)
  3072     _surviving_young_words[i] += surv_young_words[i];
  3075 void
  3076 G1CollectedHeap::cleanup_surviving_young_words() {
  3077   guarantee( _surviving_young_words != NULL, "pre-condition" );
  3078   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
  3079   _surviving_young_words = NULL;
  3082 // </NEW PREDICTION>
  3084 struct PrepareForRSScanningClosure : public HeapRegionClosure {
  3085   bool doHeapRegion(HeapRegion *r) {
  3086     r->rem_set()->set_iter_claimed(0);
  3087     return false;
  3089 };
  3091 #if TASKQUEUE_STATS
  3092 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
  3093   st->print_raw_cr("GC Task Stats");
  3094   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
  3095   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
  3098 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
  3099   print_taskqueue_stats_hdr(st);
  3101   TaskQueueStats totals;
  3102   const int n = workers() != NULL ? workers()->total_workers() : 1;
  3103   for (int i = 0; i < n; ++i) {
  3104     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
  3105     totals += task_queue(i)->stats;
  3107   st->print_raw("tot "); totals.print(st); st->cr();
  3109   DEBUG_ONLY(totals.verify());
  3112 void G1CollectedHeap::reset_taskqueue_stats() {
  3113   const int n = workers() != NULL ? workers()->total_workers() : 1;
  3114   for (int i = 0; i < n; ++i) {
  3115     task_queue(i)->stats.reset();
  3118 #endif // TASKQUEUE_STATS
  3120 bool
  3121 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
  3122   assert_at_safepoint(true /* should_be_vm_thread */);
  3123   guarantee(!is_gc_active(), "collection is not reentrant");
  3125   if (GC_locker::check_active_before_gc()) {
  3126     return false;
  3129   SvcGCMarker sgcm(SvcGCMarker::MINOR);
  3130   ResourceMark rm;
  3132   if (PrintHeapAtGC) {
  3133     Universe::print_heap_before_gc();
  3136   verify_region_sets_optional();
  3137   verify_dirty_young_regions();
  3140     // This call will decide whether this pause is an initial-mark
  3141     // pause. If it is, during_initial_mark_pause() will return true
  3142     // for the duration of this pause.
  3143     g1_policy()->decide_on_conc_mark_initiation();
  3145     char verbose_str[128];
  3146     sprintf(verbose_str, "GC pause ");
  3147     if (g1_policy()->in_young_gc_mode()) {
  3148       if (g1_policy()->full_young_gcs())
  3149         strcat(verbose_str, "(young)");
  3150       else
  3151         strcat(verbose_str, "(partial)");
  3153     if (g1_policy()->during_initial_mark_pause()) {
  3154       strcat(verbose_str, " (initial-mark)");
  3155       // We are about to start a marking cycle, so we increment the
  3156       // full collection counter.
  3157       increment_total_full_collections();
  3160     // if PrintGCDetails is on, we'll print long statistics information
  3161     // in the collector policy code, so let's not print this as the output
  3162     // is messy if we do.
  3163     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
  3164     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  3165     TraceTime t(verbose_str, PrintGC && !PrintGCDetails, true, gclog_or_tty);
  3167     TraceMemoryManagerStats tms(false /* fullGC */);
  3169     // If the secondary_free_list is not empty, append it to the
  3170     // free_list. No need to wait for the cleanup operation to finish;
  3171     // the region allocation code will check the secondary_free_list
  3172     // and wait if necessary. If the G1StressConcRegionFreeing flag is
  3173     // set, skip this step so that the region allocation code has to
  3174     // get entries from the secondary_free_list.
  3175     if (!G1StressConcRegionFreeing) {
  3176       append_secondary_free_list_if_not_empty_with_lock();
  3179     increment_gc_time_stamp();
  3181     if (g1_policy()->in_young_gc_mode()) {
  3182       assert(check_young_list_well_formed(),
  3183              "young list should be well formed");
  3186     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
  3187       IsGCActiveMark x;
  3189       gc_prologue(false);
  3190       increment_total_collections(false /* full gc */);
  3192 #if G1_REM_SET_LOGGING
  3193       gclog_or_tty->print_cr("\nJust chose CS, heap:");
  3194       print();
  3195 #endif
  3197       if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
  3198         HandleMark hm;  // Discard invalid handles created during verification
  3199         gclog_or_tty->print(" VerifyBeforeGC:");
  3200         prepare_for_verify();
  3201         Universe::verify(false);
  3204       COMPILER2_PRESENT(DerivedPointerTable::clear());
  3206       // Please see comment in G1CollectedHeap::ref_processing_init()
  3207       // to see how reference processing currently works in G1.
  3208       //
  3209       // We want to turn off ref discovery, if necessary, and turn it back on
  3210       // on again later if we do. XXX Dubious: why is discovery disabled?
  3211       bool was_enabled = ref_processor()->discovery_enabled();
  3212       if (was_enabled) ref_processor()->disable_discovery();
  3214       // Forget the current alloc region (we might even choose it to be part
  3215       // of the collection set!).
  3216       release_mutator_alloc_region();
  3218       // The elapsed time induced by the start time below deliberately elides
  3219       // the possible verification above.
  3220       double start_time_sec = os::elapsedTime();
  3221       size_t start_used_bytes = used();
  3223 #if YOUNG_LIST_VERBOSE
  3224       gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
  3225       _young_list->print();
  3226       g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  3227 #endif // YOUNG_LIST_VERBOSE
  3229       g1_policy()->record_collection_pause_start(start_time_sec,
  3230                                                  start_used_bytes);
  3232 #if YOUNG_LIST_VERBOSE
  3233       gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
  3234       _young_list->print();
  3235 #endif // YOUNG_LIST_VERBOSE
  3237       if (g1_policy()->during_initial_mark_pause()) {
  3238         concurrent_mark()->checkpointRootsInitialPre();
  3240       save_marks();
  3242       // We must do this before any possible evacuation that should propagate
  3243       // marks.
  3244       if (mark_in_progress()) {
  3245         double start_time_sec = os::elapsedTime();
  3247         _cm->drainAllSATBBuffers();
  3248         double finish_mark_ms = (os::elapsedTime() - start_time_sec) * 1000.0;
  3249         g1_policy()->record_satb_drain_time(finish_mark_ms);
  3251       // Record the number of elements currently on the mark stack, so we
  3252       // only iterate over these.  (Since evacuation may add to the mark
  3253       // stack, doing more exposes race conditions.)  If no mark is in
  3254       // progress, this will be zero.
  3255       _cm->set_oops_do_bound();
  3257       if (mark_in_progress())
  3258         concurrent_mark()->newCSet();
  3260 #if YOUNG_LIST_VERBOSE
  3261       gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
  3262       _young_list->print();
  3263       g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  3264 #endif // YOUNG_LIST_VERBOSE
  3266       g1_policy()->choose_collection_set(target_pause_time_ms);
  3268       // Nothing to do if we were unable to choose a collection set.
  3269 #if G1_REM_SET_LOGGING
  3270       gclog_or_tty->print_cr("\nAfter pause, heap:");
  3271       print();
  3272 #endif
  3273       PrepareForRSScanningClosure prepare_for_rs_scan;
  3274       collection_set_iterate(&prepare_for_rs_scan);
  3276       setup_surviving_young_words();
  3278       // Set up the gc allocation regions.
  3279       get_gc_alloc_regions();
  3281       // Actually do the work...
  3282       evacuate_collection_set();
  3284       free_collection_set(g1_policy()->collection_set());
  3285       g1_policy()->clear_collection_set();
  3287       cleanup_surviving_young_words();
  3289       // Start a new incremental collection set for the next pause.
  3290       g1_policy()->start_incremental_cset_building();
  3292       // Clear the _cset_fast_test bitmap in anticipation of adding
  3293       // regions to the incremental collection set for the next
  3294       // evacuation pause.
  3295       clear_cset_fast_test();
  3297       if (g1_policy()->in_young_gc_mode()) {
  3298         _young_list->reset_sampled_info();
  3300         // Don't check the whole heap at this point as the
  3301         // GC alloc regions from this pause have been tagged
  3302         // as survivors and moved on to the survivor list.
  3303         // Survivor regions will fail the !is_young() check.
  3304         assert(check_young_list_empty(false /* check_heap */),
  3305                "young list should be empty");
  3307 #if YOUNG_LIST_VERBOSE
  3308         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
  3309         _young_list->print();
  3310 #endif // YOUNG_LIST_VERBOSE
  3312         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
  3313                                           _young_list->first_survivor_region(),
  3314                                           _young_list->last_survivor_region());
  3316         _young_list->reset_auxilary_lists();
  3319       if (evacuation_failed()) {
  3320         _summary_bytes_used = recalculate_used();
  3321       } else {
  3322         // The "used" of the the collection set have already been subtracted
  3323         // when they were freed.  Add in the bytes evacuated.
  3324         _summary_bytes_used += g1_policy()->bytes_in_to_space();
  3327       if (g1_policy()->in_young_gc_mode() &&
  3328           g1_policy()->during_initial_mark_pause()) {
  3329         concurrent_mark()->checkpointRootsInitialPost();
  3330         set_marking_started();
  3331         // CAUTION: after the doConcurrentMark() call below,
  3332         // the concurrent marking thread(s) could be running
  3333         // concurrently with us. Make sure that anything after
  3334         // this point does not assume that we are the only GC thread
  3335         // running. Note: of course, the actual marking work will
  3336         // not start until the safepoint itself is released in
  3337         // ConcurrentGCThread::safepoint_desynchronize().
  3338         doConcurrentMark();
  3341 #if YOUNG_LIST_VERBOSE
  3342       gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
  3343       _young_list->print();
  3344       g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  3345 #endif // YOUNG_LIST_VERBOSE
  3347       init_mutator_alloc_region();
  3349       double end_time_sec = os::elapsedTime();
  3350       double pause_time_ms = (end_time_sec - start_time_sec) * MILLIUNITS;
  3351       g1_policy()->record_pause_time_ms(pause_time_ms);
  3352       g1_policy()->record_collection_pause_end();
  3354       MemoryService::track_memory_usage();
  3356       if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
  3357         HandleMark hm;  // Discard invalid handles created during verification
  3358         gclog_or_tty->print(" VerifyAfterGC:");
  3359         prepare_for_verify();
  3360         Universe::verify(false);
  3363       if (was_enabled) ref_processor()->enable_discovery();
  3366         size_t expand_bytes = g1_policy()->expansion_amount();
  3367         if (expand_bytes > 0) {
  3368           size_t bytes_before = capacity();
  3369           if (!expand(expand_bytes)) {
  3370             // We failed to expand the heap so let's verify that
  3371             // committed/uncommitted amount match the backing store
  3372             assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
  3373             assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
  3378       if (mark_in_progress()) {
  3379         concurrent_mark()->update_g1_committed();
  3382 #ifdef TRACESPINNING
  3383       ParallelTaskTerminator::print_termination_counts();
  3384 #endif
  3386       gc_epilogue(false);
  3389     if (ExitAfterGCNum > 0 && total_collections() == ExitAfterGCNum) {
  3390       gclog_or_tty->print_cr("Stopping after GC #%d", ExitAfterGCNum);
  3391       print_tracing_info();
  3392       vm_exit(-1);
  3396   verify_region_sets_optional();
  3398   TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
  3399   TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
  3401   if (PrintHeapAtGC) {
  3402     Universe::print_heap_after_gc();
  3404   if (G1SummarizeRSetStats &&
  3405       (G1SummarizeRSetStatsPeriod > 0) &&
  3406       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
  3407     g1_rem_set()->print_summary_info();
  3410   return true;
  3413 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
  3415   size_t gclab_word_size;
  3416   switch (purpose) {
  3417     case GCAllocForSurvived:
  3418       gclab_word_size = YoungPLABSize;
  3419       break;
  3420     case GCAllocForTenured:
  3421       gclab_word_size = OldPLABSize;
  3422       break;
  3423     default:
  3424       assert(false, "unknown GCAllocPurpose");
  3425       gclab_word_size = OldPLABSize;
  3426       break;
  3428   return gclab_word_size;
  3431 void G1CollectedHeap::init_mutator_alloc_region() {
  3432   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
  3433   _mutator_alloc_region.init();
  3436 void G1CollectedHeap::release_mutator_alloc_region() {
  3437   _mutator_alloc_region.release();
  3438   assert(_mutator_alloc_region.get() == NULL, "post-condition");
  3441 void G1CollectedHeap::set_gc_alloc_region(int purpose, HeapRegion* r) {
  3442   assert(purpose >= 0 && purpose < GCAllocPurposeCount, "invalid purpose");
  3443   // make sure we don't call set_gc_alloc_region() multiple times on
  3444   // the same region
  3445   assert(r == NULL || !r->is_gc_alloc_region(),
  3446          "shouldn't already be a GC alloc region");
  3447   assert(r == NULL || !r->isHumongous(),
  3448          "humongous regions shouldn't be used as GC alloc regions");
  3450   HeapWord* original_top = NULL;
  3451   if (r != NULL)
  3452     original_top = r->top();
  3454   // We will want to record the used space in r as being there before gc.
  3455   // One we install it as a GC alloc region it's eligible for allocation.
  3456   // So record it now and use it later.
  3457   size_t r_used = 0;
  3458   if (r != NULL) {
  3459     r_used = r->used();
  3461     if (G1CollectedHeap::use_parallel_gc_threads()) {
  3462       // need to take the lock to guard against two threads calling
  3463       // get_gc_alloc_region concurrently (very unlikely but...)
  3464       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  3465       r->save_marks();
  3468   HeapRegion* old_alloc_region = _gc_alloc_regions[purpose];
  3469   _gc_alloc_regions[purpose] = r;
  3470   if (old_alloc_region != NULL) {
  3471     // Replace aliases too.
  3472     for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  3473       if (_gc_alloc_regions[ap] == old_alloc_region) {
  3474         _gc_alloc_regions[ap] = r;
  3478   if (r != NULL) {
  3479     push_gc_alloc_region(r);
  3480     if (mark_in_progress() && original_top != r->next_top_at_mark_start()) {
  3481       // We are using a region as a GC alloc region after it has been used
  3482       // as a mutator allocation region during the current marking cycle.
  3483       // The mutator-allocated objects are currently implicitly marked, but
  3484       // when we move hr->next_top_at_mark_start() forward at the the end
  3485       // of the GC pause, they won't be.  We therefore mark all objects in
  3486       // the "gap".  We do this object-by-object, since marking densely
  3487       // does not currently work right with marking bitmap iteration.  This
  3488       // means we rely on TLAB filling at the start of pauses, and no
  3489       // "resuscitation" of filled TLAB's.  If we want to do this, we need
  3490       // to fix the marking bitmap iteration.
  3491       HeapWord* curhw = r->next_top_at_mark_start();
  3492       HeapWord* t = original_top;
  3494       while (curhw < t) {
  3495         oop cur = (oop)curhw;
  3496         // We'll assume parallel for generality.  This is rare code.
  3497         concurrent_mark()->markAndGrayObjectIfNecessary(cur); // can't we just mark them?
  3498         curhw = curhw + cur->size();
  3500       assert(curhw == t, "Should have parsed correctly.");
  3502     if (G1PolicyVerbose > 1) {
  3503       gclog_or_tty->print("New alloc region ["PTR_FORMAT", "PTR_FORMAT", " PTR_FORMAT") "
  3504                           "for survivors:", r->bottom(), original_top, r->end());
  3505       r->print();
  3507     g1_policy()->record_before_bytes(r_used);
  3511 void G1CollectedHeap::push_gc_alloc_region(HeapRegion* hr) {
  3512   assert(Thread::current()->is_VM_thread() ||
  3513          FreeList_lock->owned_by_self(), "Precondition");
  3514   assert(!hr->is_gc_alloc_region() && !hr->in_collection_set(),
  3515          "Precondition.");
  3516   hr->set_is_gc_alloc_region(true);
  3517   hr->set_next_gc_alloc_region(_gc_alloc_region_list);
  3518   _gc_alloc_region_list = hr;
  3521 #ifdef G1_DEBUG
  3522 class FindGCAllocRegion: public HeapRegionClosure {
  3523 public:
  3524   bool doHeapRegion(HeapRegion* r) {
  3525     if (r->is_gc_alloc_region()) {
  3526       gclog_or_tty->print_cr("Region %d ["PTR_FORMAT"...] is still a gc_alloc_region.",
  3527                              r->hrs_index(), r->bottom());
  3529     return false;
  3531 };
  3532 #endif // G1_DEBUG
  3534 void G1CollectedHeap::forget_alloc_region_list() {
  3535   assert_at_safepoint(true /* should_be_vm_thread */);
  3536   while (_gc_alloc_region_list != NULL) {
  3537     HeapRegion* r = _gc_alloc_region_list;
  3538     assert(r->is_gc_alloc_region(), "Invariant.");
  3539     // We need HeapRegion::oops_on_card_seq_iterate_careful() to work on
  3540     // newly allocated data in order to be able to apply deferred updates
  3541     // before the GC is done for verification purposes (i.e to allow
  3542     // G1HRRSFlushLogBuffersOnVerify). It's safe thing to do after the
  3543     // collection.
  3544     r->ContiguousSpace::set_saved_mark();
  3545     _gc_alloc_region_list = r->next_gc_alloc_region();
  3546     r->set_next_gc_alloc_region(NULL);
  3547     r->set_is_gc_alloc_region(false);
  3548     if (r->is_survivor()) {
  3549       if (r->is_empty()) {
  3550         r->set_not_young();
  3551       } else {
  3552         _young_list->add_survivor_region(r);
  3556 #ifdef G1_DEBUG
  3557   FindGCAllocRegion fa;
  3558   heap_region_iterate(&fa);
  3559 #endif // G1_DEBUG
  3563 bool G1CollectedHeap::check_gc_alloc_regions() {
  3564   // TODO: allocation regions check
  3565   return true;
  3568 void G1CollectedHeap::get_gc_alloc_regions() {
  3569   // First, let's check that the GC alloc region list is empty (it should)
  3570   assert(_gc_alloc_region_list == NULL, "invariant");
  3572   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  3573     assert(_gc_alloc_regions[ap] == NULL, "invariant");
  3574     assert(_gc_alloc_region_counts[ap] == 0, "invariant");
  3576     // Create new GC alloc regions.
  3577     HeapRegion* alloc_region = _retained_gc_alloc_regions[ap];
  3578     _retained_gc_alloc_regions[ap] = NULL;
  3580     if (alloc_region != NULL) {
  3581       assert(_retain_gc_alloc_region[ap], "only way to retain a GC region");
  3583       // let's make sure that the GC alloc region is not tagged as such
  3584       // outside a GC operation
  3585       assert(!alloc_region->is_gc_alloc_region(), "sanity");
  3587       if (alloc_region->in_collection_set() ||
  3588           alloc_region->top() == alloc_region->end() ||
  3589           alloc_region->top() == alloc_region->bottom() ||
  3590           alloc_region->isHumongous()) {
  3591         // we will discard the current GC alloc region if
  3592         // * it's in the collection set (it can happen!),
  3593         // * it's already full (no point in using it),
  3594         // * it's empty (this means that it was emptied during
  3595         // a cleanup and it should be on the free list now), or
  3596         // * it's humongous (this means that it was emptied
  3597         // during a cleanup and was added to the free list, but
  3598         // has been subseqently used to allocate a humongous
  3599         // object that may be less than the region size).
  3601         alloc_region = NULL;
  3605     if (alloc_region == NULL) {
  3606       // we will get a new GC alloc region
  3607       alloc_region = new_gc_alloc_region(ap, HeapRegion::GrainWords);
  3608     } else {
  3609       // the region was retained from the last collection
  3610       ++_gc_alloc_region_counts[ap];
  3611       if (G1PrintHeapRegions) {
  3612         gclog_or_tty->print_cr("new alloc region %d:["PTR_FORMAT", "PTR_FORMAT"], "
  3613                                "top "PTR_FORMAT,
  3614                                alloc_region->hrs_index(), alloc_region->bottom(), alloc_region->end(), alloc_region->top());
  3618     if (alloc_region != NULL) {
  3619       assert(_gc_alloc_regions[ap] == NULL, "pre-condition");
  3620       set_gc_alloc_region(ap, alloc_region);
  3623     assert(_gc_alloc_regions[ap] == NULL ||
  3624            _gc_alloc_regions[ap]->is_gc_alloc_region(),
  3625            "the GC alloc region should be tagged as such");
  3626     assert(_gc_alloc_regions[ap] == NULL ||
  3627            _gc_alloc_regions[ap] == _gc_alloc_region_list,
  3628            "the GC alloc region should be the same as the GC alloc list head");
  3630   // Set alternative regions for allocation purposes that have reached
  3631   // their limit.
  3632   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  3633     GCAllocPurpose alt_purpose = g1_policy()->alternative_purpose(ap);
  3634     if (_gc_alloc_regions[ap] == NULL && alt_purpose != ap) {
  3635       _gc_alloc_regions[ap] = _gc_alloc_regions[alt_purpose];
  3638   assert(check_gc_alloc_regions(), "alloc regions messed up");
  3641 void G1CollectedHeap::release_gc_alloc_regions(bool totally) {
  3642   // We keep a separate list of all regions that have been alloc regions in
  3643   // the current collection pause. Forget that now. This method will
  3644   // untag the GC alloc regions and tear down the GC alloc region
  3645   // list. It's desirable that no regions are tagged as GC alloc
  3646   // outside GCs.
  3648   forget_alloc_region_list();
  3650   // The current alloc regions contain objs that have survived
  3651   // collection. Make them no longer GC alloc regions.
  3652   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  3653     HeapRegion* r = _gc_alloc_regions[ap];
  3654     _retained_gc_alloc_regions[ap] = NULL;
  3655     _gc_alloc_region_counts[ap] = 0;
  3657     if (r != NULL) {
  3658       // we retain nothing on _gc_alloc_regions between GCs
  3659       set_gc_alloc_region(ap, NULL);
  3661       if (r->is_empty()) {
  3662         // We didn't actually allocate anything in it; let's just put
  3663         // it back on the free list.
  3664         _free_list.add_as_head(r);
  3665       } else if (_retain_gc_alloc_region[ap] && !totally) {
  3666         // retain it so that we can use it at the beginning of the next GC
  3667         _retained_gc_alloc_regions[ap] = r;
  3673 #ifndef PRODUCT
  3674 // Useful for debugging
  3676 void G1CollectedHeap::print_gc_alloc_regions() {
  3677   gclog_or_tty->print_cr("GC alloc regions");
  3678   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  3679     HeapRegion* r = _gc_alloc_regions[ap];
  3680     if (r == NULL) {
  3681       gclog_or_tty->print_cr("  %2d : "PTR_FORMAT, ap, NULL);
  3682     } else {
  3683       gclog_or_tty->print_cr("  %2d : "PTR_FORMAT" "SIZE_FORMAT,
  3684                              ap, r->bottom(), r->used());
  3688 #endif // PRODUCT
  3690 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
  3691   _drain_in_progress = false;
  3692   set_evac_failure_closure(cl);
  3693   _evac_failure_scan_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
  3696 void G1CollectedHeap::finalize_for_evac_failure() {
  3697   assert(_evac_failure_scan_stack != NULL &&
  3698          _evac_failure_scan_stack->length() == 0,
  3699          "Postcondition");
  3700   assert(!_drain_in_progress, "Postcondition");
  3701   delete _evac_failure_scan_stack;
  3702   _evac_failure_scan_stack = NULL;
  3707 // *** Sequential G1 Evacuation
  3709 class G1IsAliveClosure: public BoolObjectClosure {
  3710   G1CollectedHeap* _g1;
  3711 public:
  3712   G1IsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  3713   void do_object(oop p) { assert(false, "Do not call."); }
  3714   bool do_object_b(oop p) {
  3715     // It is reachable if it is outside the collection set, or is inside
  3716     // and forwarded.
  3718 #ifdef G1_DEBUG
  3719     gclog_or_tty->print_cr("is alive "PTR_FORMAT" in CS %d forwarded %d overall %d",
  3720                            (void*) p, _g1->obj_in_cs(p), p->is_forwarded(),
  3721                            !_g1->obj_in_cs(p) || p->is_forwarded());
  3722 #endif // G1_DEBUG
  3724     return !_g1->obj_in_cs(p) || p->is_forwarded();
  3726 };
  3728 class G1KeepAliveClosure: public OopClosure {
  3729   G1CollectedHeap* _g1;
  3730 public:
  3731   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  3732   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
  3733   void do_oop(      oop* p) {
  3734     oop obj = *p;
  3735 #ifdef G1_DEBUG
  3736     if (PrintGC && Verbose) {
  3737       gclog_or_tty->print_cr("keep alive *"PTR_FORMAT" = "PTR_FORMAT" "PTR_FORMAT,
  3738                              p, (void*) obj, (void*) *p);
  3740 #endif // G1_DEBUG
  3742     if (_g1->obj_in_cs(obj)) {
  3743       assert( obj->is_forwarded(), "invariant" );
  3744       *p = obj->forwardee();
  3745 #ifdef G1_DEBUG
  3746       gclog_or_tty->print_cr("     in CSet: moved "PTR_FORMAT" -> "PTR_FORMAT,
  3747                              (void*) obj, (void*) *p);
  3748 #endif // G1_DEBUG
  3751 };
  3753 class UpdateRSetDeferred : public OopsInHeapRegionClosure {
  3754 private:
  3755   G1CollectedHeap* _g1;
  3756   DirtyCardQueue *_dcq;
  3757   CardTableModRefBS* _ct_bs;
  3759 public:
  3760   UpdateRSetDeferred(G1CollectedHeap* g1, DirtyCardQueue* dcq) :
  3761     _g1(g1), _ct_bs((CardTableModRefBS*)_g1->barrier_set()), _dcq(dcq) {}
  3763   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  3764   virtual void do_oop(      oop* p) { do_oop_work(p); }
  3765   template <class T> void do_oop_work(T* p) {
  3766     assert(_from->is_in_reserved(p), "paranoia");
  3767     if (!_from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) &&
  3768         !_from->is_survivor()) {
  3769       size_t card_index = _ct_bs->index_for(p);
  3770       if (_ct_bs->mark_card_deferred(card_index)) {
  3771         _dcq->enqueue((jbyte*)_ct_bs->byte_for_index(card_index));
  3775 };
  3777 class RemoveSelfPointerClosure: public ObjectClosure {
  3778 private:
  3779   G1CollectedHeap* _g1;
  3780   ConcurrentMark* _cm;
  3781   HeapRegion* _hr;
  3782   size_t _prev_marked_bytes;
  3783   size_t _next_marked_bytes;
  3784   OopsInHeapRegionClosure *_cl;
  3785 public:
  3786   RemoveSelfPointerClosure(G1CollectedHeap* g1, HeapRegion* hr,
  3787                            OopsInHeapRegionClosure* cl) :
  3788     _g1(g1), _hr(hr), _cm(_g1->concurrent_mark()),  _prev_marked_bytes(0),
  3789     _next_marked_bytes(0), _cl(cl) {}
  3791   size_t prev_marked_bytes() { return _prev_marked_bytes; }
  3792   size_t next_marked_bytes() { return _next_marked_bytes; }
  3794   // <original comment>
  3795   // The original idea here was to coalesce evacuated and dead objects.
  3796   // However that caused complications with the block offset table (BOT).
  3797   // In particular if there were two TLABs, one of them partially refined.
  3798   // |----- TLAB_1--------|----TLAB_2-~~~(partially refined part)~~~|
  3799   // The BOT entries of the unrefined part of TLAB_2 point to the start
  3800   // of TLAB_2. If the last object of the TLAB_1 and the first object
  3801   // of TLAB_2 are coalesced, then the cards of the unrefined part
  3802   // would point into middle of the filler object.
  3803   // The current approach is to not coalesce and leave the BOT contents intact.
  3804   // </original comment>
  3805   //
  3806   // We now reset the BOT when we start the object iteration over the
  3807   // region and refine its entries for every object we come across. So
  3808   // the above comment is not really relevant and we should be able
  3809   // to coalesce dead objects if we want to.
  3810   void do_object(oop obj) {
  3811     HeapWord* obj_addr = (HeapWord*) obj;
  3812     assert(_hr->is_in(obj_addr), "sanity");
  3813     size_t obj_size = obj->size();
  3814     _hr->update_bot_for_object(obj_addr, obj_size);
  3815     if (obj->is_forwarded() && obj->forwardee() == obj) {
  3816       // The object failed to move.
  3817       assert(!_g1->is_obj_dead(obj), "We should not be preserving dead objs.");
  3818       _cm->markPrev(obj);
  3819       assert(_cm->isPrevMarked(obj), "Should be marked!");
  3820       _prev_marked_bytes += (obj_size * HeapWordSize);
  3821       if (_g1->mark_in_progress() && !_g1->is_obj_ill(obj)) {
  3822         _cm->markAndGrayObjectIfNecessary(obj);
  3824       obj->set_mark(markOopDesc::prototype());
  3825       // While we were processing RSet buffers during the
  3826       // collection, we actually didn't scan any cards on the
  3827       // collection set, since we didn't want to update remebered
  3828       // sets with entries that point into the collection set, given
  3829       // that live objects fromthe collection set are about to move
  3830       // and such entries will be stale very soon. This change also
  3831       // dealt with a reliability issue which involved scanning a
  3832       // card in the collection set and coming across an array that
  3833       // was being chunked and looking malformed. The problem is
  3834       // that, if evacuation fails, we might have remembered set
  3835       // entries missing given that we skipped cards on the
  3836       // collection set. So, we'll recreate such entries now.
  3837       obj->oop_iterate(_cl);
  3838       assert(_cm->isPrevMarked(obj), "Should be marked!");
  3839     } else {
  3840       // The object has been either evacuated or is dead. Fill it with a
  3841       // dummy object.
  3842       MemRegion mr((HeapWord*)obj, obj_size);
  3843       CollectedHeap::fill_with_object(mr);
  3844       _cm->clearRangeBothMaps(mr);
  3847 };
  3849 void G1CollectedHeap::remove_self_forwarding_pointers() {
  3850   UpdateRSetImmediate immediate_update(_g1h->g1_rem_set());
  3851   DirtyCardQueue dcq(&_g1h->dirty_card_queue_set());
  3852   UpdateRSetDeferred deferred_update(_g1h, &dcq);
  3853   OopsInHeapRegionClosure *cl;
  3854   if (G1DeferredRSUpdate) {
  3855     cl = &deferred_update;
  3856   } else {
  3857     cl = &immediate_update;
  3859   HeapRegion* cur = g1_policy()->collection_set();
  3860   while (cur != NULL) {
  3861     assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
  3862     assert(!cur->isHumongous(), "sanity");
  3864     if (cur->evacuation_failed()) {
  3865       assert(cur->in_collection_set(), "bad CS");
  3866       RemoveSelfPointerClosure rspc(_g1h, cur, cl);
  3868       cur->reset_bot();
  3869       cl->set_region(cur);
  3870       cur->object_iterate(&rspc);
  3872       // A number of manipulations to make the TAMS be the current top,
  3873       // and the marked bytes be the ones observed in the iteration.
  3874       if (_g1h->concurrent_mark()->at_least_one_mark_complete()) {
  3875         // The comments below are the postconditions achieved by the
  3876         // calls.  Note especially the last such condition, which says that
  3877         // the count of marked bytes has been properly restored.
  3878         cur->note_start_of_marking(false);
  3879         // _next_top_at_mark_start == top, _next_marked_bytes == 0
  3880         cur->add_to_marked_bytes(rspc.prev_marked_bytes());
  3881         // _next_marked_bytes == prev_marked_bytes.
  3882         cur->note_end_of_marking();
  3883         // _prev_top_at_mark_start == top(),
  3884         // _prev_marked_bytes == prev_marked_bytes
  3886       // If there is no mark in progress, we modified the _next variables
  3887       // above needlessly, but harmlessly.
  3888       if (_g1h->mark_in_progress()) {
  3889         cur->note_start_of_marking(false);
  3890         // _next_top_at_mark_start == top, _next_marked_bytes == 0
  3891         // _next_marked_bytes == next_marked_bytes.
  3894       // Now make sure the region has the right index in the sorted array.
  3895       g1_policy()->note_change_in_marked_bytes(cur);
  3897     cur = cur->next_in_collection_set();
  3899   assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
  3901   // Now restore saved marks, if any.
  3902   if (_objs_with_preserved_marks != NULL) {
  3903     assert(_preserved_marks_of_objs != NULL, "Both or none.");
  3904     guarantee(_objs_with_preserved_marks->length() ==
  3905               _preserved_marks_of_objs->length(), "Both or none.");
  3906     for (int i = 0; i < _objs_with_preserved_marks->length(); i++) {
  3907       oop obj   = _objs_with_preserved_marks->at(i);
  3908       markOop m = _preserved_marks_of_objs->at(i);
  3909       obj->set_mark(m);
  3911     // Delete the preserved marks growable arrays (allocated on the C heap).
  3912     delete _objs_with_preserved_marks;
  3913     delete _preserved_marks_of_objs;
  3914     _objs_with_preserved_marks = NULL;
  3915     _preserved_marks_of_objs = NULL;
  3919 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
  3920   _evac_failure_scan_stack->push(obj);
  3923 void G1CollectedHeap::drain_evac_failure_scan_stack() {
  3924   assert(_evac_failure_scan_stack != NULL, "precondition");
  3926   while (_evac_failure_scan_stack->length() > 0) {
  3927      oop obj = _evac_failure_scan_stack->pop();
  3928      _evac_failure_closure->set_region(heap_region_containing(obj));
  3929      obj->oop_iterate_backwards(_evac_failure_closure);
  3933 oop
  3934 G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl,
  3935                                                oop old) {
  3936   markOop m = old->mark();
  3937   oop forward_ptr = old->forward_to_atomic(old);
  3938   if (forward_ptr == NULL) {
  3939     // Forward-to-self succeeded.
  3940     if (_evac_failure_closure != cl) {
  3941       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
  3942       assert(!_drain_in_progress,
  3943              "Should only be true while someone holds the lock.");
  3944       // Set the global evac-failure closure to the current thread's.
  3945       assert(_evac_failure_closure == NULL, "Or locking has failed.");
  3946       set_evac_failure_closure(cl);
  3947       // Now do the common part.
  3948       handle_evacuation_failure_common(old, m);
  3949       // Reset to NULL.
  3950       set_evac_failure_closure(NULL);
  3951     } else {
  3952       // The lock is already held, and this is recursive.
  3953       assert(_drain_in_progress, "This should only be the recursive case.");
  3954       handle_evacuation_failure_common(old, m);
  3956     return old;
  3957   } else {
  3958     // Someone else had a place to copy it.
  3959     return forward_ptr;
  3963 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
  3964   set_evacuation_failed(true);
  3966   preserve_mark_if_necessary(old, m);
  3968   HeapRegion* r = heap_region_containing(old);
  3969   if (!r->evacuation_failed()) {
  3970     r->set_evacuation_failed(true);
  3971     if (G1PrintHeapRegions) {
  3972       gclog_or_tty->print("overflow in heap region "PTR_FORMAT" "
  3973                           "["PTR_FORMAT","PTR_FORMAT")\n",
  3974                           r, r->bottom(), r->end());
  3978   push_on_evac_failure_scan_stack(old);
  3980   if (!_drain_in_progress) {
  3981     // prevent recursion in copy_to_survivor_space()
  3982     _drain_in_progress = true;
  3983     drain_evac_failure_scan_stack();
  3984     _drain_in_progress = false;
  3988 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
  3989   assert(evacuation_failed(), "Oversaving!");
  3990   // We want to call the "for_promotion_failure" version only in the
  3991   // case of a promotion failure.
  3992   if (m->must_be_preserved_for_promotion_failure(obj)) {
  3993     if (_objs_with_preserved_marks == NULL) {
  3994       assert(_preserved_marks_of_objs == NULL, "Both or none.");
  3995       _objs_with_preserved_marks =
  3996         new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
  3997       _preserved_marks_of_objs =
  3998         new (ResourceObj::C_HEAP) GrowableArray<markOop>(40, true);
  4000     _objs_with_preserved_marks->push(obj);
  4001     _preserved_marks_of_objs->push(m);
  4005 // *** Parallel G1 Evacuation
  4007 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
  4008                                                   size_t word_size) {
  4009   assert(!isHumongous(word_size),
  4010          err_msg("we should not be seeing humongous allocation requests "
  4011                  "during GC, word_size = "SIZE_FORMAT, word_size));
  4013   HeapRegion* alloc_region = _gc_alloc_regions[purpose];
  4014   // let the caller handle alloc failure
  4015   if (alloc_region == NULL) return NULL;
  4017   HeapWord* block = alloc_region->par_allocate(word_size);
  4018   if (block == NULL) {
  4019     block = allocate_during_gc_slow(purpose, alloc_region, true, word_size);
  4021   return block;
  4024 void G1CollectedHeap::retire_alloc_region(HeapRegion* alloc_region,
  4025                                             bool par) {
  4026   // Another thread might have obtained alloc_region for the given
  4027   // purpose, and might be attempting to allocate in it, and might
  4028   // succeed.  Therefore, we can't do the "finalization" stuff on the
  4029   // region below until we're sure the last allocation has happened.
  4030   // We ensure this by allocating the remaining space with a garbage
  4031   // object.
  4032   if (par) par_allocate_remaining_space(alloc_region);
  4033   // Now we can do the post-GC stuff on the region.
  4034   alloc_region->note_end_of_copying();
  4035   g1_policy()->record_after_bytes(alloc_region->used());
  4038 HeapWord*
  4039 G1CollectedHeap::allocate_during_gc_slow(GCAllocPurpose purpose,
  4040                                          HeapRegion*    alloc_region,
  4041                                          bool           par,
  4042                                          size_t         word_size) {
  4043   assert(!isHumongous(word_size),
  4044          err_msg("we should not be seeing humongous allocation requests "
  4045                  "during GC, word_size = "SIZE_FORMAT, word_size));
  4047   // We need to make sure we serialize calls to this method. Given
  4048   // that the FreeList_lock guards accesses to the free_list anyway,
  4049   // and we need to potentially remove a region from it, we'll use it
  4050   // to protect the whole call.
  4051   MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
  4053   HeapWord* block = NULL;
  4054   // In the parallel case, a previous thread to obtain the lock may have
  4055   // already assigned a new gc_alloc_region.
  4056   if (alloc_region != _gc_alloc_regions[purpose]) {
  4057     assert(par, "But should only happen in parallel case.");
  4058     alloc_region = _gc_alloc_regions[purpose];
  4059     if (alloc_region == NULL) return NULL;
  4060     block = alloc_region->par_allocate(word_size);
  4061     if (block != NULL) return block;
  4062     // Otherwise, continue; this new region is empty, too.
  4064   assert(alloc_region != NULL, "We better have an allocation region");
  4065   retire_alloc_region(alloc_region, par);
  4067   if (_gc_alloc_region_counts[purpose] >= g1_policy()->max_regions(purpose)) {
  4068     // Cannot allocate more regions for the given purpose.
  4069     GCAllocPurpose alt_purpose = g1_policy()->alternative_purpose(purpose);
  4070     // Is there an alternative?
  4071     if (purpose != alt_purpose) {
  4072       HeapRegion* alt_region = _gc_alloc_regions[alt_purpose];
  4073       // Has not the alternative region been aliased?
  4074       if (alloc_region != alt_region && alt_region != NULL) {
  4075         // Try to allocate in the alternative region.
  4076         if (par) {
  4077           block = alt_region->par_allocate(word_size);
  4078         } else {
  4079           block = alt_region->allocate(word_size);
  4081         // Make an alias.
  4082         _gc_alloc_regions[purpose] = _gc_alloc_regions[alt_purpose];
  4083         if (block != NULL) {
  4084           return block;
  4086         retire_alloc_region(alt_region, par);
  4088       // Both the allocation region and the alternative one are full
  4089       // and aliased, replace them with a new allocation region.
  4090       purpose = alt_purpose;
  4091     } else {
  4092       set_gc_alloc_region(purpose, NULL);
  4093       return NULL;
  4097   // Now allocate a new region for allocation.
  4098   alloc_region = new_gc_alloc_region(purpose, word_size);
  4100   // let the caller handle alloc failure
  4101   if (alloc_region != NULL) {
  4103     assert(check_gc_alloc_regions(), "alloc regions messed up");
  4104     assert(alloc_region->saved_mark_at_top(),
  4105            "Mark should have been saved already.");
  4106     // This must be done last: once it's installed, other regions may
  4107     // allocate in it (without holding the lock.)
  4108     set_gc_alloc_region(purpose, alloc_region);
  4110     if (par) {
  4111       block = alloc_region->par_allocate(word_size);
  4112     } else {
  4113       block = alloc_region->allocate(word_size);
  4115     // Caller handles alloc failure.
  4116   } else {
  4117     // This sets other apis using the same old alloc region to NULL, also.
  4118     set_gc_alloc_region(purpose, NULL);
  4120   return block;  // May be NULL.
  4123 void G1CollectedHeap::par_allocate_remaining_space(HeapRegion* r) {
  4124   HeapWord* block = NULL;
  4125   size_t free_words;
  4126   do {
  4127     free_words = r->free()/HeapWordSize;
  4128     // If there's too little space, no one can allocate, so we're done.
  4129     if (free_words < CollectedHeap::min_fill_size()) return;
  4130     // Otherwise, try to claim it.
  4131     block = r->par_allocate(free_words);
  4132   } while (block == NULL);
  4133   fill_with_object(block, free_words);
  4136 #ifndef PRODUCT
  4137 bool GCLabBitMapClosure::do_bit(size_t offset) {
  4138   HeapWord* addr = _bitmap->offsetToHeapWord(offset);
  4139   guarantee(_cm->isMarked(oop(addr)), "it should be!");
  4140   return true;
  4142 #endif // PRODUCT
  4144 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num)
  4145   : _g1h(g1h),
  4146     _refs(g1h->task_queue(queue_num)),
  4147     _dcq(&g1h->dirty_card_queue_set()),
  4148     _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
  4149     _g1_rem(g1h->g1_rem_set()),
  4150     _hash_seed(17), _queue_num(queue_num),
  4151     _term_attempts(0),
  4152     _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
  4153     _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
  4154     _age_table(false),
  4155     _strong_roots_time(0), _term_time(0),
  4156     _alloc_buffer_waste(0), _undo_waste(0)
  4158   // we allocate G1YoungSurvRateNumRegions plus one entries, since
  4159   // we "sacrifice" entry 0 to keep track of surviving bytes for
  4160   // non-young regions (where the age is -1)
  4161   // We also add a few elements at the beginning and at the end in
  4162   // an attempt to eliminate cache contention
  4163   size_t real_length = 1 + _g1h->g1_policy()->young_cset_length();
  4164   size_t array_length = PADDING_ELEM_NUM +
  4165                         real_length +
  4166                         PADDING_ELEM_NUM;
  4167   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length);
  4168   if (_surviving_young_words_base == NULL)
  4169     vm_exit_out_of_memory(array_length * sizeof(size_t),
  4170                           "Not enough space for young surv histo.");
  4171   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
  4172   memset(_surviving_young_words, 0, real_length * sizeof(size_t));
  4174   _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
  4175   _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;
  4177   _start = os::elapsedTime();
  4180 void
  4181 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
  4183   st->print_raw_cr("GC Termination Stats");
  4184   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
  4185                    " ------waste (KiB)------");
  4186   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
  4187                    "  total   alloc    undo");
  4188   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
  4189                    " ------- ------- -------");
  4192 void
  4193 G1ParScanThreadState::print_termination_stats(int i,
  4194                                               outputStream* const st) const
  4196   const double elapsed_ms = elapsed_time() * 1000.0;
  4197   const double s_roots_ms = strong_roots_time() * 1000.0;
  4198   const double term_ms    = term_time() * 1000.0;
  4199   st->print_cr("%3d %9.2f %9.2f %6.2f "
  4200                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
  4201                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
  4202                i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
  4203                term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
  4204                (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
  4205                alloc_buffer_waste() * HeapWordSize / K,
  4206                undo_waste() * HeapWordSize / K);
  4209 #ifdef ASSERT
  4210 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
  4211   assert(ref != NULL, "invariant");
  4212   assert(UseCompressedOops, "sanity");
  4213   assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
  4214   oop p = oopDesc::load_decode_heap_oop(ref);
  4215   assert(_g1h->is_in_g1_reserved(p),
  4216          err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  4217   return true;
  4220 bool G1ParScanThreadState::verify_ref(oop* ref) const {
  4221   assert(ref != NULL, "invariant");
  4222   if (has_partial_array_mask(ref)) {
  4223     // Must be in the collection set--it's already been copied.
  4224     oop p = clear_partial_array_mask(ref);
  4225     assert(_g1h->obj_in_cs(p),
  4226            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  4227   } else {
  4228     oop p = oopDesc::load_decode_heap_oop(ref);
  4229     assert(_g1h->is_in_g1_reserved(p),
  4230            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  4232   return true;
  4235 bool G1ParScanThreadState::verify_task(StarTask ref) const {
  4236   if (ref.is_narrow()) {
  4237     return verify_ref((narrowOop*) ref);
  4238   } else {
  4239     return verify_ref((oop*) ref);
  4242 #endif // ASSERT
  4244 void G1ParScanThreadState::trim_queue() {
  4245   StarTask ref;
  4246   do {
  4247     // Drain the overflow stack first, so other threads can steal.
  4248     while (refs()->pop_overflow(ref)) {
  4249       deal_with_reference(ref);
  4251     while (refs()->pop_local(ref)) {
  4252       deal_with_reference(ref);
  4254   } while (!refs()->is_empty());
  4257 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1, G1ParScanThreadState* par_scan_state) :
  4258   _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
  4259   _par_scan_state(par_scan_state) { }
  4261 template <class T> void G1ParCopyHelper::mark_forwardee(T* p) {
  4262   // This is called _after_ do_oop_work has been called, hence after
  4263   // the object has been relocated to its new location and *p points
  4264   // to its new location.
  4266   T heap_oop = oopDesc::load_heap_oop(p);
  4267   if (!oopDesc::is_null(heap_oop)) {
  4268     oop obj = oopDesc::decode_heap_oop(heap_oop);
  4269     assert((_g1->evacuation_failed()) || (!_g1->obj_in_cs(obj)),
  4270            "shouldn't still be in the CSet if evacuation didn't fail.");
  4271     HeapWord* addr = (HeapWord*)obj;
  4272     if (_g1->is_in_g1_reserved(addr))
  4273       _cm->grayRoot(oop(addr));
  4277 oop G1ParCopyHelper::copy_to_survivor_space(oop old) {
  4278   size_t    word_sz = old->size();
  4279   HeapRegion* from_region = _g1->heap_region_containing_raw(old);
  4280   // +1 to make the -1 indexes valid...
  4281   int       young_index = from_region->young_index_in_cset()+1;
  4282   assert( (from_region->is_young() && young_index > 0) ||
  4283           (!from_region->is_young() && young_index == 0), "invariant" );
  4284   G1CollectorPolicy* g1p = _g1->g1_policy();
  4285   markOop m = old->mark();
  4286   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
  4287                                            : m->age();
  4288   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
  4289                                                              word_sz);
  4290   HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
  4291   oop       obj     = oop(obj_ptr);
  4293   if (obj_ptr == NULL) {
  4294     // This will either forward-to-self, or detect that someone else has
  4295     // installed a forwarding pointer.
  4296     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
  4297     return _g1->handle_evacuation_failure_par(cl, old);
  4300   // We're going to allocate linearly, so might as well prefetch ahead.
  4301   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
  4303   oop forward_ptr = old->forward_to_atomic(obj);
  4304   if (forward_ptr == NULL) {
  4305     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
  4306     if (g1p->track_object_age(alloc_purpose)) {
  4307       // We could simply do obj->incr_age(). However, this causes a
  4308       // performance issue. obj->incr_age() will first check whether
  4309       // the object has a displaced mark by checking its mark word;
  4310       // getting the mark word from the new location of the object
  4311       // stalls. So, given that we already have the mark word and we
  4312       // are about to install it anyway, it's better to increase the
  4313       // age on the mark word, when the object does not have a
  4314       // displaced mark word. We're not expecting many objects to have
  4315       // a displaced marked word, so that case is not optimized
  4316       // further (it could be...) and we simply call obj->incr_age().
  4318       if (m->has_displaced_mark_helper()) {
  4319         // in this case, we have to install the mark word first,
  4320         // otherwise obj looks to be forwarded (the old mark word,
  4321         // which contains the forward pointer, was copied)
  4322         obj->set_mark(m);
  4323         obj->incr_age();
  4324       } else {
  4325         m = m->incr_age();
  4326         obj->set_mark(m);
  4328       _par_scan_state->age_table()->add(obj, word_sz);
  4329     } else {
  4330       obj->set_mark(m);
  4333     // preserve "next" mark bit
  4334     if (_g1->mark_in_progress() && !_g1->is_obj_ill(old)) {
  4335       if (!use_local_bitmaps ||
  4336           !_par_scan_state->alloc_buffer(alloc_purpose)->mark(obj_ptr)) {
  4337         // if we couldn't mark it on the local bitmap (this happens when
  4338         // the object was not allocated in the GCLab), we have to bite
  4339         // the bullet and do the standard parallel mark
  4340         _cm->markAndGrayObjectIfNecessary(obj);
  4342 #if 1
  4343       if (_g1->isMarkedNext(old)) {
  4344         _cm->nextMarkBitMap()->parClear((HeapWord*)old);
  4346 #endif
  4349     size_t* surv_young_words = _par_scan_state->surviving_young_words();
  4350     surv_young_words[young_index] += word_sz;
  4352     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
  4353       arrayOop(old)->set_length(0);
  4354       oop* old_p = set_partial_array_mask(old);
  4355       _par_scan_state->push_on_queue(old_p);
  4356     } else {
  4357       // No point in using the slower heap_region_containing() method,
  4358       // given that we know obj is in the heap.
  4359       _scanner->set_region(_g1->heap_region_containing_raw(obj));
  4360       obj->oop_iterate_backwards(_scanner);
  4362   } else {
  4363     _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
  4364     obj = forward_ptr;
  4366   return obj;
  4369 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_forwardee>
  4370 template <class T>
  4371 void G1ParCopyClosure <do_gen_barrier, barrier, do_mark_forwardee>
  4372 ::do_oop_work(T* p) {
  4373   oop obj = oopDesc::load_decode_heap_oop(p);
  4374   assert(barrier != G1BarrierRS || obj != NULL,
  4375          "Precondition: G1BarrierRS implies obj is nonNull");
  4377   // here the null check is implicit in the cset_fast_test() test
  4378   if (_g1->in_cset_fast_test(obj)) {
  4379 #if G1_REM_SET_LOGGING
  4380     gclog_or_tty->print_cr("Loc "PTR_FORMAT" contains pointer "PTR_FORMAT" "
  4381                            "into CS.", p, (void*) obj);
  4382 #endif
  4383     if (obj->is_forwarded()) {
  4384       oopDesc::encode_store_heap_oop(p, obj->forwardee());
  4385     } else {
  4386       oop copy_oop = copy_to_survivor_space(obj);
  4387       oopDesc::encode_store_heap_oop(p, copy_oop);
  4389     // When scanning the RS, we only care about objs in CS.
  4390     if (barrier == G1BarrierRS) {
  4391       _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
  4395   if (barrier == G1BarrierEvac && obj != NULL) {
  4396     _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
  4399   if (do_gen_barrier && obj != NULL) {
  4400     par_do_barrier(p);
  4404 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(oop* p);
  4405 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(narrowOop* p);
  4407 template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
  4408   assert(has_partial_array_mask(p), "invariant");
  4409   oop old = clear_partial_array_mask(p);
  4410   assert(old->is_objArray(), "must be obj array");
  4411   assert(old->is_forwarded(), "must be forwarded");
  4412   assert(Universe::heap()->is_in_reserved(old), "must be in heap.");
  4414   objArrayOop obj = objArrayOop(old->forwardee());
  4415   assert((void*)old != (void*)old->forwardee(), "self forwarding here?");
  4416   // Process ParGCArrayScanChunk elements now
  4417   // and push the remainder back onto queue
  4418   int start     = arrayOop(old)->length();
  4419   int end       = obj->length();
  4420   int remainder = end - start;
  4421   assert(start <= end, "just checking");
  4422   if (remainder > 2 * ParGCArrayScanChunk) {
  4423     // Test above combines last partial chunk with a full chunk
  4424     end = start + ParGCArrayScanChunk;
  4425     arrayOop(old)->set_length(end);
  4426     // Push remainder.
  4427     oop* old_p = set_partial_array_mask(old);
  4428     assert(arrayOop(old)->length() < obj->length(), "Empty push?");
  4429     _par_scan_state->push_on_queue(old_p);
  4430   } else {
  4431     // Restore length so that the heap remains parsable in
  4432     // case of evacuation failure.
  4433     arrayOop(old)->set_length(end);
  4435   _scanner.set_region(_g1->heap_region_containing_raw(obj));
  4436   // process our set of indices (include header in first chunk)
  4437   obj->oop_iterate_range(&_scanner, start, end);
  4440 class G1ParEvacuateFollowersClosure : public VoidClosure {
  4441 protected:
  4442   G1CollectedHeap*              _g1h;
  4443   G1ParScanThreadState*         _par_scan_state;
  4444   RefToScanQueueSet*            _queues;
  4445   ParallelTaskTerminator*       _terminator;
  4447   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  4448   RefToScanQueueSet*      queues()         { return _queues; }
  4449   ParallelTaskTerminator* terminator()     { return _terminator; }
  4451 public:
  4452   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
  4453                                 G1ParScanThreadState* par_scan_state,
  4454                                 RefToScanQueueSet* queues,
  4455                                 ParallelTaskTerminator* terminator)
  4456     : _g1h(g1h), _par_scan_state(par_scan_state),
  4457       _queues(queues), _terminator(terminator) {}
  4459   void do_void();
  4461 private:
  4462   inline bool offer_termination();
  4463 };
  4465 bool G1ParEvacuateFollowersClosure::offer_termination() {
  4466   G1ParScanThreadState* const pss = par_scan_state();
  4467   pss->start_term_time();
  4468   const bool res = terminator()->offer_termination();
  4469   pss->end_term_time();
  4470   return res;
  4473 void G1ParEvacuateFollowersClosure::do_void() {
  4474   StarTask stolen_task;
  4475   G1ParScanThreadState* const pss = par_scan_state();
  4476   pss->trim_queue();
  4478   do {
  4479     while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
  4480       assert(pss->verify_task(stolen_task), "sanity");
  4481       if (stolen_task.is_narrow()) {
  4482         pss->deal_with_reference((narrowOop*) stolen_task);
  4483       } else {
  4484         pss->deal_with_reference((oop*) stolen_task);
  4487       // We've just processed a reference and we might have made
  4488       // available new entries on the queues. So we have to make sure
  4489       // we drain the queues as necessary.
  4490       pss->trim_queue();
  4492   } while (!offer_termination());
  4494   pss->retire_alloc_buffers();
  4497 class G1ParTask : public AbstractGangTask {
  4498 protected:
  4499   G1CollectedHeap*       _g1h;
  4500   RefToScanQueueSet      *_queues;
  4501   ParallelTaskTerminator _terminator;
  4502   int _n_workers;
  4504   Mutex _stats_lock;
  4505   Mutex* stats_lock() { return &_stats_lock; }
  4507   size_t getNCards() {
  4508     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
  4509       / G1BlockOffsetSharedArray::N_bytes;
  4512 public:
  4513   G1ParTask(G1CollectedHeap* g1h, int workers, RefToScanQueueSet *task_queues)
  4514     : AbstractGangTask("G1 collection"),
  4515       _g1h(g1h),
  4516       _queues(task_queues),
  4517       _terminator(workers, _queues),
  4518       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true),
  4519       _n_workers(workers)
  4520   {}
  4522   RefToScanQueueSet* queues() { return _queues; }
  4524   RefToScanQueue *work_queue(int i) {
  4525     return queues()->queue(i);
  4528   void work(int i) {
  4529     if (i >= _n_workers) return;  // no work needed this round
  4531     double start_time_ms = os::elapsedTime() * 1000.0;
  4532     _g1h->g1_policy()->record_gc_worker_start_time(i, start_time_ms);
  4534     ResourceMark rm;
  4535     HandleMark   hm;
  4537     G1ParScanThreadState            pss(_g1h, i);
  4538     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss);
  4539     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss);
  4540     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss);
  4542     pss.set_evac_closure(&scan_evac_cl);
  4543     pss.set_evac_failure_closure(&evac_failure_cl);
  4544     pss.set_partial_scan_closure(&partial_scan_cl);
  4546     G1ParScanExtRootClosure         only_scan_root_cl(_g1h, &pss);
  4547     G1ParScanPermClosure            only_scan_perm_cl(_g1h, &pss);
  4548     G1ParScanHeapRSClosure          only_scan_heap_rs_cl(_g1h, &pss);
  4549     G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
  4551     G1ParScanAndMarkExtRootClosure  scan_mark_root_cl(_g1h, &pss);
  4552     G1ParScanAndMarkPermClosure     scan_mark_perm_cl(_g1h, &pss);
  4553     G1ParScanAndMarkHeapRSClosure   scan_mark_heap_rs_cl(_g1h, &pss);
  4555     OopsInHeapRegionClosure        *scan_root_cl;
  4556     OopsInHeapRegionClosure        *scan_perm_cl;
  4558     if (_g1h->g1_policy()->during_initial_mark_pause()) {
  4559       scan_root_cl = &scan_mark_root_cl;
  4560       scan_perm_cl = &scan_mark_perm_cl;
  4561     } else {
  4562       scan_root_cl = &only_scan_root_cl;
  4563       scan_perm_cl = &only_scan_perm_cl;
  4566     pss.start_strong_roots();
  4567     _g1h->g1_process_strong_roots(/* not collecting perm */ false,
  4568                                   SharedHeap::SO_AllClasses,
  4569                                   scan_root_cl,
  4570                                   &push_heap_rs_cl,
  4571                                   scan_perm_cl,
  4572                                   i);
  4573     pss.end_strong_roots();
  4575       double start = os::elapsedTime();
  4576       G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
  4577       evac.do_void();
  4578       double elapsed_ms = (os::elapsedTime()-start)*1000.0;
  4579       double term_ms = pss.term_time()*1000.0;
  4580       _g1h->g1_policy()->record_obj_copy_time(i, elapsed_ms-term_ms);
  4581       _g1h->g1_policy()->record_termination(i, term_ms, pss.term_attempts());
  4583     _g1h->g1_policy()->record_thread_age_table(pss.age_table());
  4584     _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
  4586     // Clean up any par-expanded rem sets.
  4587     HeapRegionRemSet::par_cleanup();
  4589     if (ParallelGCVerbose) {
  4590       MutexLocker x(stats_lock());
  4591       pss.print_termination_stats(i);
  4594     assert(pss.refs()->is_empty(), "should be empty");
  4595     double end_time_ms = os::elapsedTime() * 1000.0;
  4596     _g1h->g1_policy()->record_gc_worker_end_time(i, end_time_ms);
  4598 };
  4600 // *** Common G1 Evacuation Stuff
  4602 // This method is run in a GC worker.
  4604 void
  4605 G1CollectedHeap::
  4606 g1_process_strong_roots(bool collecting_perm_gen,
  4607                         SharedHeap::ScanningOption so,
  4608                         OopClosure* scan_non_heap_roots,
  4609                         OopsInHeapRegionClosure* scan_rs,
  4610                         OopsInGenClosure* scan_perm,
  4611                         int worker_i) {
  4612   // First scan the strong roots, including the perm gen.
  4613   double ext_roots_start = os::elapsedTime();
  4614   double closure_app_time_sec = 0.0;
  4616   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
  4617   BufferingOopsInGenClosure buf_scan_perm(scan_perm);
  4618   buf_scan_perm.set_generation(perm_gen());
  4620   // Walk the code cache w/o buffering, because StarTask cannot handle
  4621   // unaligned oop locations.
  4622   CodeBlobToOopClosure eager_scan_code_roots(scan_non_heap_roots, /*do_marking=*/ true);
  4624   process_strong_roots(false, // no scoping; this is parallel code
  4625                        collecting_perm_gen, so,
  4626                        &buf_scan_non_heap_roots,
  4627                        &eager_scan_code_roots,
  4628                        &buf_scan_perm);
  4630   // Finish up any enqueued closure apps.
  4631   buf_scan_non_heap_roots.done();
  4632   buf_scan_perm.done();
  4633   double ext_roots_end = os::elapsedTime();
  4634   g1_policy()->reset_obj_copy_time(worker_i);
  4635   double obj_copy_time_sec =
  4636     buf_scan_non_heap_roots.closure_app_seconds() +
  4637     buf_scan_perm.closure_app_seconds();
  4638   g1_policy()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
  4639   double ext_root_time_ms =
  4640     ((ext_roots_end - ext_roots_start) - obj_copy_time_sec) * 1000.0;
  4641   g1_policy()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
  4643   // Scan strong roots in mark stack.
  4644   if (!_process_strong_tasks->is_task_claimed(G1H_PS_mark_stack_oops_do)) {
  4645     concurrent_mark()->oops_do(scan_non_heap_roots);
  4647   double mark_stack_scan_ms = (os::elapsedTime() - ext_roots_end) * 1000.0;
  4648   g1_policy()->record_mark_stack_scan_time(worker_i, mark_stack_scan_ms);
  4650   // XXX What should this be doing in the parallel case?
  4651   g1_policy()->record_collection_pause_end_CH_strong_roots();
  4652   // Now scan the complement of the collection set.
  4653   if (scan_rs != NULL) {
  4654     g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
  4656   // Finish with the ref_processor roots.
  4657   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
  4658     // We need to treat the discovered reference lists as roots and
  4659     // keep entries (which are added by the marking threads) on them
  4660     // live until they can be processed at the end of marking.
  4661     ref_processor()->weak_oops_do(scan_non_heap_roots);
  4662     ref_processor()->oops_do(scan_non_heap_roots);
  4664   g1_policy()->record_collection_pause_end_G1_strong_roots();
  4665   _process_strong_tasks->all_tasks_completed();
  4668 void
  4669 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure,
  4670                                        OopClosure* non_root_closure) {
  4671   CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
  4672   SharedHeap::process_weak_roots(root_closure, &roots_in_blobs, non_root_closure);
  4676 class SaveMarksClosure: public HeapRegionClosure {
  4677 public:
  4678   bool doHeapRegion(HeapRegion* r) {
  4679     r->save_marks();
  4680     return false;
  4682 };
  4684 void G1CollectedHeap::save_marks() {
  4685   if (!CollectedHeap::use_parallel_gc_threads()) {
  4686     SaveMarksClosure sm;
  4687     heap_region_iterate(&sm);
  4689   // We do this even in the parallel case
  4690   perm_gen()->save_marks();
  4693 void G1CollectedHeap::evacuate_collection_set() {
  4694   set_evacuation_failed(false);
  4696   g1_rem_set()->prepare_for_oops_into_collection_set_do();
  4697   concurrent_g1_refine()->set_use_cache(false);
  4698   concurrent_g1_refine()->clear_hot_cache_claimed_index();
  4700   int n_workers = (ParallelGCThreads > 0 ? workers()->total_workers() : 1);
  4701   set_par_threads(n_workers);
  4702   G1ParTask g1_par_task(this, n_workers, _task_queues);
  4704   init_for_evac_failure(NULL);
  4706   rem_set()->prepare_for_younger_refs_iterate(true);
  4708   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
  4709   double start_par = os::elapsedTime();
  4710   if (G1CollectedHeap::use_parallel_gc_threads()) {
  4711     // The individual threads will set their evac-failure closures.
  4712     StrongRootsScope srs(this);
  4713     if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
  4714     workers()->run_task(&g1_par_task);
  4715   } else {
  4716     StrongRootsScope srs(this);
  4717     g1_par_task.work(0);
  4720   double par_time = (os::elapsedTime() - start_par) * 1000.0;
  4721   g1_policy()->record_par_time(par_time);
  4722   set_par_threads(0);
  4723   // Is this the right thing to do here?  We don't save marks
  4724   // on individual heap regions when we allocate from
  4725   // them in parallel, so this seems like the correct place for this.
  4726   retire_all_alloc_regions();
  4728   // Weak root processing.
  4729   // Note: when JSR 292 is enabled and code blobs can contain
  4730   // non-perm oops then we will need to process the code blobs
  4731   // here too.
  4733     G1IsAliveClosure is_alive(this);
  4734     G1KeepAliveClosure keep_alive(this);
  4735     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
  4737   release_gc_alloc_regions(false /* totally */);
  4738   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
  4740   concurrent_g1_refine()->clear_hot_cache();
  4741   concurrent_g1_refine()->set_use_cache(true);
  4743   finalize_for_evac_failure();
  4745   // Must do this before removing self-forwarding pointers, which clears
  4746   // the per-region evac-failure flags.
  4747   concurrent_mark()->complete_marking_in_collection_set();
  4749   if (evacuation_failed()) {
  4750     remove_self_forwarding_pointers();
  4751     if (PrintGCDetails) {
  4752       gclog_or_tty->print(" (to-space overflow)");
  4753     } else if (PrintGC) {
  4754       gclog_or_tty->print("--");
  4758   if (G1DeferredRSUpdate) {
  4759     RedirtyLoggedCardTableEntryFastClosure redirty;
  4760     dirty_card_queue_set().set_closure(&redirty);
  4761     dirty_card_queue_set().apply_closure_to_all_completed_buffers();
  4763     DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
  4764     dcq.merge_bufferlists(&dirty_card_queue_set());
  4765     assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
  4767   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  4770 void G1CollectedHeap::free_region_if_empty(HeapRegion* hr,
  4771                                      size_t* pre_used,
  4772                                      FreeRegionList* free_list,
  4773                                      HumongousRegionSet* humongous_proxy_set,
  4774                                      HRRSCleanupTask* hrrs_cleanup_task,
  4775                                      bool par) {
  4776   if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
  4777     if (hr->isHumongous()) {
  4778       assert(hr->startsHumongous(), "we should only see starts humongous");
  4779       free_humongous_region(hr, pre_used, free_list, humongous_proxy_set, par);
  4780     } else {
  4781       free_region(hr, pre_used, free_list, par);
  4783   } else {
  4784     hr->rem_set()->do_cleanup_work(hrrs_cleanup_task);
  4788 void G1CollectedHeap::free_region(HeapRegion* hr,
  4789                                   size_t* pre_used,
  4790                                   FreeRegionList* free_list,
  4791                                   bool par) {
  4792   assert(!hr->isHumongous(), "this is only for non-humongous regions");
  4793   assert(!hr->is_empty(), "the region should not be empty");
  4794   assert(free_list != NULL, "pre-condition");
  4796   *pre_used += hr->used();
  4797   hr->hr_clear(par, true /* clear_space */);
  4798   free_list->add_as_head(hr);
  4801 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
  4802                                      size_t* pre_used,
  4803                                      FreeRegionList* free_list,
  4804                                      HumongousRegionSet* humongous_proxy_set,
  4805                                      bool par) {
  4806   assert(hr->startsHumongous(), "this is only for starts humongous regions");
  4807   assert(free_list != NULL, "pre-condition");
  4808   assert(humongous_proxy_set != NULL, "pre-condition");
  4810   size_t hr_used = hr->used();
  4811   size_t hr_capacity = hr->capacity();
  4812   size_t hr_pre_used = 0;
  4813   _humongous_set.remove_with_proxy(hr, humongous_proxy_set);
  4814   hr->set_notHumongous();
  4815   free_region(hr, &hr_pre_used, free_list, par);
  4817   int i = hr->hrs_index() + 1;
  4818   size_t num = 1;
  4819   while ((size_t) i < n_regions()) {
  4820     HeapRegion* curr_hr = _hrs->at(i);
  4821     if (!curr_hr->continuesHumongous()) {
  4822       break;
  4824     curr_hr->set_notHumongous();
  4825     free_region(curr_hr, &hr_pre_used, free_list, par);
  4826     num += 1;
  4827     i += 1;
  4829   assert(hr_pre_used == hr_used,
  4830          err_msg("hr_pre_used: "SIZE_FORMAT" and hr_used: "SIZE_FORMAT" "
  4831                  "should be the same", hr_pre_used, hr_used));
  4832   *pre_used += hr_pre_used;
  4835 void G1CollectedHeap::update_sets_after_freeing_regions(size_t pre_used,
  4836                                        FreeRegionList* free_list,
  4837                                        HumongousRegionSet* humongous_proxy_set,
  4838                                        bool par) {
  4839   if (pre_used > 0) {
  4840     Mutex* lock = (par) ? ParGCRareEvent_lock : NULL;
  4841     MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
  4842     assert(_summary_bytes_used >= pre_used,
  4843            err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" "
  4844                    "should be >= pre_used: "SIZE_FORMAT,
  4845                    _summary_bytes_used, pre_used));
  4846     _summary_bytes_used -= pre_used;
  4848   if (free_list != NULL && !free_list->is_empty()) {
  4849     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
  4850     _free_list.add_as_head(free_list);
  4852   if (humongous_proxy_set != NULL && !humongous_proxy_set->is_empty()) {
  4853     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
  4854     _humongous_set.update_from_proxy(humongous_proxy_set);
  4858 void G1CollectedHeap::dirtyCardsForYoungRegions(CardTableModRefBS* ct_bs, HeapRegion* list) {
  4859   while (list != NULL) {
  4860     guarantee( list->is_young(), "invariant" );
  4862     HeapWord* bottom = list->bottom();
  4863     HeapWord* end = list->end();
  4864     MemRegion mr(bottom, end);
  4865     ct_bs->dirty(mr);
  4867     list = list->get_next_young_region();
  4872 class G1ParCleanupCTTask : public AbstractGangTask {
  4873   CardTableModRefBS* _ct_bs;
  4874   G1CollectedHeap* _g1h;
  4875   HeapRegion* volatile _su_head;
  4876 public:
  4877   G1ParCleanupCTTask(CardTableModRefBS* ct_bs,
  4878                      G1CollectedHeap* g1h,
  4879                      HeapRegion* survivor_list) :
  4880     AbstractGangTask("G1 Par Cleanup CT Task"),
  4881     _ct_bs(ct_bs),
  4882     _g1h(g1h),
  4883     _su_head(survivor_list)
  4884   { }
  4886   void work(int i) {
  4887     HeapRegion* r;
  4888     while (r = _g1h->pop_dirty_cards_region()) {
  4889       clear_cards(r);
  4891     // Redirty the cards of the survivor regions.
  4892     dirty_list(&this->_su_head);
  4895   void clear_cards(HeapRegion* r) {
  4896     // Cards for Survivor regions will be dirtied later.
  4897     if (!r->is_survivor()) {
  4898       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
  4902   void dirty_list(HeapRegion* volatile * head_ptr) {
  4903     HeapRegion* head;
  4904     do {
  4905       // Pop region off the list.
  4906       head = *head_ptr;
  4907       if (head != NULL) {
  4908         HeapRegion* r = (HeapRegion*)
  4909           Atomic::cmpxchg_ptr(head->get_next_young_region(), head_ptr, head);
  4910         if (r == head) {
  4911           assert(!r->isHumongous(), "Humongous regions shouldn't be on survivor list");
  4912           _ct_bs->dirty(MemRegion(r->bottom(), r->end()));
  4915     } while (*head_ptr != NULL);
  4917 };
  4920 #ifndef PRODUCT
  4921 class G1VerifyCardTableCleanup: public HeapRegionClosure {
  4922   CardTableModRefBS* _ct_bs;
  4923 public:
  4924   G1VerifyCardTableCleanup(CardTableModRefBS* ct_bs)
  4925     : _ct_bs(ct_bs) { }
  4926   virtual bool doHeapRegion(HeapRegion* r) {
  4927     MemRegion mr(r->bottom(), r->end());
  4928     if (r->is_survivor()) {
  4929       _ct_bs->verify_dirty_region(mr);
  4930     } else {
  4931       _ct_bs->verify_clean_region(mr);
  4933     return false;
  4935 };
  4937 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
  4938   CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
  4939   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
  4940     // We cannot guarantee that [bottom(),end()] is dirty.  Threads
  4941     // dirty allocated blocks as they allocate them. The thread that
  4942     // retires each region and replaces it with a new one will do a
  4943     // maximal allocation to fill in [pre_dummy_top(),end()] but will
  4944     // not dirty that area (one less thing to have to do while holding
  4945     // a lock). So we can only verify that [bottom(),pre_dummy_top()]
  4946     // is dirty. Also note that verify_dirty_region() requires
  4947     // mr.start() and mr.end() to be card aligned and pre_dummy_top()
  4948     // is not guaranteed to be.
  4949     MemRegion mr(hr->bottom(),
  4950                  ct_bs->align_to_card_boundary(hr->pre_dummy_top()));
  4951     ct_bs->verify_dirty_region(mr);
  4955 void G1CollectedHeap::verify_dirty_young_regions() {
  4956   verify_dirty_young_list(_young_list->first_region());
  4957   verify_dirty_young_list(_young_list->first_survivor_region());
  4959 #endif
  4961 void G1CollectedHeap::cleanUpCardTable() {
  4962   CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
  4963   double start = os::elapsedTime();
  4965   // Iterate over the dirty cards region list.
  4966   G1ParCleanupCTTask cleanup_task(ct_bs, this,
  4967                                   _young_list->first_survivor_region());
  4969   if (ParallelGCThreads > 0) {
  4970     set_par_threads(workers()->total_workers());
  4971     workers()->run_task(&cleanup_task);
  4972     set_par_threads(0);
  4973   } else {
  4974     while (_dirty_cards_region_list) {
  4975       HeapRegion* r = _dirty_cards_region_list;
  4976       cleanup_task.clear_cards(r);
  4977       _dirty_cards_region_list = r->get_next_dirty_cards_region();
  4978       if (_dirty_cards_region_list == r) {
  4979         // The last region.
  4980         _dirty_cards_region_list = NULL;
  4982       r->set_next_dirty_cards_region(NULL);
  4984     // now, redirty the cards of the survivor regions
  4985     // (it seemed faster to do it this way, instead of iterating over
  4986     // all regions and then clearing / dirtying as appropriate)
  4987     dirtyCardsForYoungRegions(ct_bs, _young_list->first_survivor_region());
  4990   double elapsed = os::elapsedTime() - start;
  4991   g1_policy()->record_clear_ct_time( elapsed * 1000.0);
  4992 #ifndef PRODUCT
  4993   if (G1VerifyCTCleanup || VerifyAfterGC) {
  4994     G1VerifyCardTableCleanup cleanup_verifier(ct_bs);
  4995     heap_region_iterate(&cleanup_verifier);
  4997 #endif
  5000 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
  5001   size_t pre_used = 0;
  5002   FreeRegionList local_free_list("Local List for CSet Freeing");
  5004   double young_time_ms     = 0.0;
  5005   double non_young_time_ms = 0.0;
  5007   // Since the collection set is a superset of the the young list,
  5008   // all we need to do to clear the young list is clear its
  5009   // head and length, and unlink any young regions in the code below
  5010   _young_list->clear();
  5012   G1CollectorPolicy* policy = g1_policy();
  5014   double start_sec = os::elapsedTime();
  5015   bool non_young = true;
  5017   HeapRegion* cur = cs_head;
  5018   int age_bound = -1;
  5019   size_t rs_lengths = 0;
  5021   while (cur != NULL) {
  5022     assert(!is_on_master_free_list(cur), "sanity");
  5024     if (non_young) {
  5025       if (cur->is_young()) {
  5026         double end_sec = os::elapsedTime();
  5027         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  5028         non_young_time_ms += elapsed_ms;
  5030         start_sec = os::elapsedTime();
  5031         non_young = false;
  5033     } else {
  5034       double end_sec = os::elapsedTime();
  5035       double elapsed_ms = (end_sec - start_sec) * 1000.0;
  5036       young_time_ms += elapsed_ms;
  5038       start_sec = os::elapsedTime();
  5039       non_young = true;
  5042     rs_lengths += cur->rem_set()->occupied();
  5044     HeapRegion* next = cur->next_in_collection_set();
  5045     assert(cur->in_collection_set(), "bad CS");
  5046     cur->set_next_in_collection_set(NULL);
  5047     cur->set_in_collection_set(false);
  5049     if (cur->is_young()) {
  5050       int index = cur->young_index_in_cset();
  5051       guarantee( index != -1, "invariant" );
  5052       guarantee( (size_t)index < policy->young_cset_length(), "invariant" );
  5053       size_t words_survived = _surviving_young_words[index];
  5054       cur->record_surv_words_in_group(words_survived);
  5056       // At this point the we have 'popped' cur from the collection set
  5057       // (linked via next_in_collection_set()) but it is still in the
  5058       // young list (linked via next_young_region()). Clear the
  5059       // _next_young_region field.
  5060       cur->set_next_young_region(NULL);
  5061     } else {
  5062       int index = cur->young_index_in_cset();
  5063       guarantee( index == -1, "invariant" );
  5066     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
  5067             (!cur->is_young() && cur->young_index_in_cset() == -1),
  5068             "invariant" );
  5070     if (!cur->evacuation_failed()) {
  5071       // And the region is empty.
  5072       assert(!cur->is_empty(), "Should not have empty regions in a CS.");
  5073       free_region(cur, &pre_used, &local_free_list, false /* par */);
  5074     } else {
  5075       cur->uninstall_surv_rate_group();
  5076       if (cur->is_young())
  5077         cur->set_young_index_in_cset(-1);
  5078       cur->set_not_young();
  5079       cur->set_evacuation_failed(false);
  5081     cur = next;
  5084   policy->record_max_rs_lengths(rs_lengths);
  5085   policy->cset_regions_freed();
  5087   double end_sec = os::elapsedTime();
  5088   double elapsed_ms = (end_sec - start_sec) * 1000.0;
  5089   if (non_young)
  5090     non_young_time_ms += elapsed_ms;
  5091   else
  5092     young_time_ms += elapsed_ms;
  5094   update_sets_after_freeing_regions(pre_used, &local_free_list,
  5095                                     NULL /* humongous_proxy_set */,
  5096                                     false /* par */);
  5097   policy->record_young_free_cset_time_ms(young_time_ms);
  5098   policy->record_non_young_free_cset_time_ms(non_young_time_ms);
  5101 // This routine is similar to the above but does not record
  5102 // any policy statistics or update free lists; we are abandoning
  5103 // the current incremental collection set in preparation of a
  5104 // full collection. After the full GC we will start to build up
  5105 // the incremental collection set again.
  5106 // This is only called when we're doing a full collection
  5107 // and is immediately followed by the tearing down of the young list.
  5109 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
  5110   HeapRegion* cur = cs_head;
  5112   while (cur != NULL) {
  5113     HeapRegion* next = cur->next_in_collection_set();
  5114     assert(cur->in_collection_set(), "bad CS");
  5115     cur->set_next_in_collection_set(NULL);
  5116     cur->set_in_collection_set(false);
  5117     cur->set_young_index_in_cset(-1);
  5118     cur = next;
  5122 void G1CollectedHeap::set_free_regions_coming() {
  5123   if (G1ConcRegionFreeingVerbose) {
  5124     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
  5125                            "setting free regions coming");
  5128   assert(!free_regions_coming(), "pre-condition");
  5129   _free_regions_coming = true;
  5132 void G1CollectedHeap::reset_free_regions_coming() {
  5134     assert(free_regions_coming(), "pre-condition");
  5135     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  5136     _free_regions_coming = false;
  5137     SecondaryFreeList_lock->notify_all();
  5140   if (G1ConcRegionFreeingVerbose) {
  5141     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
  5142                            "reset free regions coming");
  5146 void G1CollectedHeap::wait_while_free_regions_coming() {
  5147   // Most of the time we won't have to wait, so let's do a quick test
  5148   // first before we take the lock.
  5149   if (!free_regions_coming()) {
  5150     return;
  5153   if (G1ConcRegionFreeingVerbose) {
  5154     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
  5155                            "waiting for free regions");
  5159     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  5160     while (free_regions_coming()) {
  5161       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
  5165   if (G1ConcRegionFreeingVerbose) {
  5166     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
  5167                            "done waiting for free regions");
  5171 size_t G1CollectedHeap::n_regions() {
  5172   return _hrs->length();
  5175 size_t G1CollectedHeap::max_regions() {
  5176   return
  5177     (size_t)align_size_up(max_capacity(), HeapRegion::GrainBytes) /
  5178     HeapRegion::GrainBytes;
  5181 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
  5182   assert(heap_lock_held_for_gc(),
  5183               "the heap lock should already be held by or for this thread");
  5184   _young_list->push_region(hr);
  5185   g1_policy()->set_region_short_lived(hr);
  5188 class NoYoungRegionsClosure: public HeapRegionClosure {
  5189 private:
  5190   bool _success;
  5191 public:
  5192   NoYoungRegionsClosure() : _success(true) { }
  5193   bool doHeapRegion(HeapRegion* r) {
  5194     if (r->is_young()) {
  5195       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
  5196                              r->bottom(), r->end());
  5197       _success = false;
  5199     return false;
  5201   bool success() { return _success; }
  5202 };
  5204 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
  5205   bool ret = _young_list->check_list_empty(check_sample);
  5207   if (check_heap) {
  5208     NoYoungRegionsClosure closure;
  5209     heap_region_iterate(&closure);
  5210     ret = ret && closure.success();
  5213   return ret;
  5216 void G1CollectedHeap::empty_young_list() {
  5217   assert(heap_lock_held_for_gc(),
  5218               "the heap lock should already be held by or for this thread");
  5219   assert(g1_policy()->in_young_gc_mode(), "should be in young GC mode");
  5221   _young_list->empty_list();
  5224 bool G1CollectedHeap::all_alloc_regions_no_allocs_since_save_marks() {
  5225   bool no_allocs = true;
  5226   for (int ap = 0; ap < GCAllocPurposeCount && no_allocs; ++ap) {
  5227     HeapRegion* r = _gc_alloc_regions[ap];
  5228     no_allocs = r == NULL || r->saved_mark_at_top();
  5230   return no_allocs;
  5233 void G1CollectedHeap::retire_all_alloc_regions() {
  5234   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  5235     HeapRegion* r = _gc_alloc_regions[ap];
  5236     if (r != NULL) {
  5237       // Check for aliases.
  5238       bool has_processed_alias = false;
  5239       for (int i = 0; i < ap; ++i) {
  5240         if (_gc_alloc_regions[i] == r) {
  5241           has_processed_alias = true;
  5242           break;
  5245       if (!has_processed_alias) {
  5246         retire_alloc_region(r, false /* par */);
  5252 // Done at the start of full GC.
  5253 void G1CollectedHeap::tear_down_region_lists() {
  5254   _free_list.remove_all();
  5257 class RegionResetter: public HeapRegionClosure {
  5258   G1CollectedHeap* _g1h;
  5259   FreeRegionList _local_free_list;
  5261 public:
  5262   RegionResetter() : _g1h(G1CollectedHeap::heap()),
  5263                      _local_free_list("Local Free List for RegionResetter") { }
  5265   bool doHeapRegion(HeapRegion* r) {
  5266     if (r->continuesHumongous()) return false;
  5267     if (r->top() > r->bottom()) {
  5268       if (r->top() < r->end()) {
  5269         Copy::fill_to_words(r->top(),
  5270                           pointer_delta(r->end(), r->top()));
  5272     } else {
  5273       assert(r->is_empty(), "tautology");
  5274       _local_free_list.add_as_tail(r);
  5276     return false;
  5279   void update_free_lists() {
  5280     _g1h->update_sets_after_freeing_regions(0, &_local_free_list, NULL,
  5281                                             false /* par */);
  5283 };
  5285 // Done at the end of full GC.
  5286 void G1CollectedHeap::rebuild_region_lists() {
  5287   // This needs to go at the end of the full GC.
  5288   RegionResetter rs;
  5289   heap_region_iterate(&rs);
  5290   rs.update_free_lists();
  5293 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
  5294   _refine_cte_cl->set_concurrent(concurrent);
  5297 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
  5298   HeapRegion* hr = heap_region_containing(p);
  5299   if (hr == NULL) {
  5300     return is_in_permanent(p);
  5301   } else {
  5302     return hr->is_in(p);
  5306 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
  5307                                                       bool force) {
  5308   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  5309   assert(!force || g1_policy()->can_expand_young_list(),
  5310          "if force is true we should be able to expand the young list");
  5311   if (force || !g1_policy()->is_young_list_full()) {
  5312     HeapRegion* new_alloc_region = new_region(word_size,
  5313                                               false /* do_expand */);
  5314     if (new_alloc_region != NULL) {
  5315       g1_policy()->update_region_num(true /* next_is_young */);
  5316       set_region_short_lived_locked(new_alloc_region);
  5317       return new_alloc_region;
  5320   return NULL;
  5323 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
  5324                                                   size_t allocated_bytes) {
  5325   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  5326   assert(alloc_region->is_young(), "all mutator alloc regions should be young");
  5328   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
  5329   _summary_bytes_used += allocated_bytes;
  5332 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
  5333                                                     bool force) {
  5334   return _g1h->new_mutator_alloc_region(word_size, force);
  5337 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
  5338                                        size_t allocated_bytes) {
  5339   _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
  5342 // Heap region set verification
  5344 class VerifyRegionListsClosure : public HeapRegionClosure {
  5345 private:
  5346   HumongousRegionSet* _humongous_set;
  5347   FreeRegionList*     _free_list;
  5348   size_t              _region_count;
  5350 public:
  5351   VerifyRegionListsClosure(HumongousRegionSet* humongous_set,
  5352                            FreeRegionList* free_list) :
  5353     _humongous_set(humongous_set), _free_list(free_list),
  5354     _region_count(0) { }
  5356   size_t region_count()      { return _region_count;      }
  5358   bool doHeapRegion(HeapRegion* hr) {
  5359     _region_count += 1;
  5361     if (hr->continuesHumongous()) {
  5362       return false;
  5365     if (hr->is_young()) {
  5366       // TODO
  5367     } else if (hr->startsHumongous()) {
  5368       _humongous_set->verify_next_region(hr);
  5369     } else if (hr->is_empty()) {
  5370       _free_list->verify_next_region(hr);
  5372     return false;
  5374 };
  5376 void G1CollectedHeap::verify_region_sets() {
  5377   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  5379   // First, check the explicit lists.
  5380   _free_list.verify();
  5382     // Given that a concurrent operation might be adding regions to
  5383     // the secondary free list we have to take the lock before
  5384     // verifying it.
  5385     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  5386     _secondary_free_list.verify();
  5388   _humongous_set.verify();
  5390   // If a concurrent region freeing operation is in progress it will
  5391   // be difficult to correctly attributed any free regions we come
  5392   // across to the correct free list given that they might belong to
  5393   // one of several (free_list, secondary_free_list, any local lists,
  5394   // etc.). So, if that's the case we will skip the rest of the
  5395   // verification operation. Alternatively, waiting for the concurrent
  5396   // operation to complete will have a non-trivial effect on the GC's
  5397   // operation (no concurrent operation will last longer than the
  5398   // interval between two calls to verification) and it might hide
  5399   // any issues that we would like to catch during testing.
  5400   if (free_regions_coming()) {
  5401     return;
  5404   // Make sure we append the secondary_free_list on the free_list so
  5405   // that all free regions we will come across can be safely
  5406   // attributed to the free_list.
  5407   append_secondary_free_list_if_not_empty_with_lock();
  5409   // Finally, make sure that the region accounting in the lists is
  5410   // consistent with what we see in the heap.
  5411   _humongous_set.verify_start();
  5412   _free_list.verify_start();
  5414   VerifyRegionListsClosure cl(&_humongous_set, &_free_list);
  5415   heap_region_iterate(&cl);
  5417   _humongous_set.verify_end();
  5418   _free_list.verify_end();

mercurial