src/share/vm/gc_implementation/parNew/parNewGeneration.cpp

Mon, 06 Aug 2012 12:20:14 -0700

author
johnc
date
Mon, 06 Aug 2012 12:20:14 -0700
changeset 3982
aaf61e68b255
parent 3900
d2a62e0f25eb
child 4037
da91efe96a93
permissions
-rw-r--r--

6818524: G1: use ergonomic resizing of PLABs
Summary: Employ PLABStats instances to record information about survivor and old PLABs, and use the recorded stats to adjust the sizes of survivor and old PLABS.
Reviewed-by: johnc, ysr
Contributed-by: Brandon Mitchell <brandon@twitter.com>

     1 /*
     2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.hpp"
    27 #include "gc_implementation/parNew/parNewGeneration.hpp"
    28 #include "gc_implementation/parNew/parOopClosures.inline.hpp"
    29 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
    30 #include "gc_implementation/shared/ageTable.hpp"
    31 #include "gc_implementation/shared/parGCAllocBuffer.hpp"
    32 #include "gc_implementation/shared/spaceDecorator.hpp"
    33 #include "memory/defNewGeneration.inline.hpp"
    34 #include "memory/genCollectedHeap.hpp"
    35 #include "memory/genOopClosures.inline.hpp"
    36 #include "memory/generation.hpp"
    37 #include "memory/generation.inline.hpp"
    38 #include "memory/referencePolicy.hpp"
    39 #include "memory/resourceArea.hpp"
    40 #include "memory/sharedHeap.hpp"
    41 #include "memory/space.hpp"
    42 #include "oops/objArrayOop.hpp"
    43 #include "oops/oop.inline.hpp"
    44 #include "oops/oop.pcgc.inline.hpp"
    45 #include "runtime/handles.hpp"
    46 #include "runtime/handles.inline.hpp"
    47 #include "runtime/java.hpp"
    48 #include "runtime/thread.hpp"
    49 #include "utilities/copy.hpp"
    50 #include "utilities/globalDefinitions.hpp"
    51 #include "utilities/workgroup.hpp"
    53 #ifdef _MSC_VER
    54 #pragma warning( push )
    55 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
    56 #endif
    57 ParScanThreadState::ParScanThreadState(Space* to_space_,
    58                                        ParNewGeneration* gen_,
    59                                        Generation* old_gen_,
    60                                        int thread_num_,
    61                                        ObjToScanQueueSet* work_queue_set_,
    62                                        Stack<oop, mtGC>* overflow_stacks_,
    63                                        size_t desired_plab_sz_,
    64                                        ParallelTaskTerminator& term_) :
    65   _to_space(to_space_), _old_gen(old_gen_), _young_gen(gen_), _thread_num(thread_num_),
    66   _work_queue(work_queue_set_->queue(thread_num_)), _to_space_full(false),
    67   _overflow_stack(overflow_stacks_ ? overflow_stacks_ + thread_num_ : NULL),
    68   _ageTable(false), // false ==> not the global age table, no perf data.
    69   _to_space_alloc_buffer(desired_plab_sz_),
    70   _to_space_closure(gen_, this), _old_gen_closure(gen_, this),
    71   _to_space_root_closure(gen_, this), _old_gen_root_closure(gen_, this),
    72   _older_gen_closure(gen_, this),
    73   _evacuate_followers(this, &_to_space_closure, &_old_gen_closure,
    74                       &_to_space_root_closure, gen_, &_old_gen_root_closure,
    75                       work_queue_set_, &term_),
    76   _is_alive_closure(gen_), _scan_weak_ref_closure(gen_, this),
    77   _keep_alive_closure(&_scan_weak_ref_closure),
    78   _promotion_failure_size(0),
    79   _strong_roots_time(0.0), _term_time(0.0)
    80 {
    81   #if TASKQUEUE_STATS
    82   _term_attempts = 0;
    83   _overflow_refills = 0;
    84   _overflow_refill_objs = 0;
    85   #endif // TASKQUEUE_STATS
    87   _survivor_chunk_array =
    88     (ChunkArray*) old_gen()->get_data_recorder(thread_num());
    89   _hash_seed = 17;  // Might want to take time-based random value.
    90   _start = os::elapsedTime();
    91   _old_gen_closure.set_generation(old_gen_);
    92   _old_gen_root_closure.set_generation(old_gen_);
    93 }
    94 #ifdef _MSC_VER
    95 #pragma warning( pop )
    96 #endif
    98 void ParScanThreadState::record_survivor_plab(HeapWord* plab_start,
    99                                               size_t plab_word_size) {
   100   ChunkArray* sca = survivor_chunk_array();
   101   if (sca != NULL) {
   102     // A non-null SCA implies that we want the PLAB data recorded.
   103     sca->record_sample(plab_start, plab_word_size);
   104   }
   105 }
   107 bool ParScanThreadState::should_be_partially_scanned(oop new_obj, oop old_obj) const {
   108   return new_obj->is_objArray() &&
   109          arrayOop(new_obj)->length() > ParGCArrayScanChunk &&
   110          new_obj != old_obj;
   111 }
   113 void ParScanThreadState::scan_partial_array_and_push_remainder(oop old) {
   114   assert(old->is_objArray(), "must be obj array");
   115   assert(old->is_forwarded(), "must be forwarded");
   116   assert(Universe::heap()->is_in_reserved(old), "must be in heap.");
   117   assert(!old_gen()->is_in(old), "must be in young generation.");
   119   objArrayOop obj = objArrayOop(old->forwardee());
   120   // Process ParGCArrayScanChunk elements now
   121   // and push the remainder back onto queue
   122   int start     = arrayOop(old)->length();
   123   int end       = obj->length();
   124   int remainder = end - start;
   125   assert(start <= end, "just checking");
   126   if (remainder > 2 * ParGCArrayScanChunk) {
   127     // Test above combines last partial chunk with a full chunk
   128     end = start + ParGCArrayScanChunk;
   129     arrayOop(old)->set_length(end);
   130     // Push remainder.
   131     bool ok = work_queue()->push(old);
   132     assert(ok, "just popped, push must be okay");
   133   } else {
   134     // Restore length so that it can be used if there
   135     // is a promotion failure and forwarding pointers
   136     // must be removed.
   137     arrayOop(old)->set_length(end);
   138   }
   140   // process our set of indices (include header in first chunk)
   141   // should make sure end is even (aligned to HeapWord in case of compressed oops)
   142   if ((HeapWord *)obj < young_old_boundary()) {
   143     // object is in to_space
   144     obj->oop_iterate_range(&_to_space_closure, start, end);
   145   } else {
   146     // object is in old generation
   147     obj->oop_iterate_range(&_old_gen_closure, start, end);
   148   }
   149 }
   152 void ParScanThreadState::trim_queues(int max_size) {
   153   ObjToScanQueue* queue = work_queue();
   154   do {
   155     while (queue->size() > (juint)max_size) {
   156       oop obj_to_scan;
   157       if (queue->pop_local(obj_to_scan)) {
   158         if ((HeapWord *)obj_to_scan < young_old_boundary()) {
   159           if (obj_to_scan->is_objArray() &&
   160               obj_to_scan->is_forwarded() &&
   161               obj_to_scan->forwardee() != obj_to_scan) {
   162             scan_partial_array_and_push_remainder(obj_to_scan);
   163           } else {
   164             // object is in to_space
   165             obj_to_scan->oop_iterate(&_to_space_closure);
   166           }
   167         } else {
   168           // object is in old generation
   169           obj_to_scan->oop_iterate(&_old_gen_closure);
   170         }
   171       }
   172     }
   173     // For the  case of compressed oops, we have a private, non-shared
   174     // overflow stack, so we eagerly drain it so as to more evenly
   175     // distribute load early. Note: this may be good to do in
   176     // general rather than delay for the final stealing phase.
   177     // If applicable, we'll transfer a set of objects over to our
   178     // work queue, allowing them to be stolen and draining our
   179     // private overflow stack.
   180   } while (ParGCTrimOverflow && young_gen()->take_from_overflow_list(this));
   181 }
   183 bool ParScanThreadState::take_from_overflow_stack() {
   184   assert(ParGCUseLocalOverflow, "Else should not call");
   185   assert(young_gen()->overflow_list() == NULL, "Error");
   186   ObjToScanQueue* queue = work_queue();
   187   Stack<oop, mtGC>* const of_stack = overflow_stack();
   188   const size_t num_overflow_elems = of_stack->size();
   189   const size_t space_available = queue->max_elems() - queue->size();
   190   const size_t num_take_elems = MIN3(space_available / 4,
   191                                      ParGCDesiredObjsFromOverflowList,
   192                                      num_overflow_elems);
   193   // Transfer the most recent num_take_elems from the overflow
   194   // stack to our work queue.
   195   for (size_t i = 0; i != num_take_elems; i++) {
   196     oop cur = of_stack->pop();
   197     oop obj_to_push = cur->forwardee();
   198     assert(Universe::heap()->is_in_reserved(cur), "Should be in heap");
   199     assert(!old_gen()->is_in_reserved(cur), "Should be in young gen");
   200     assert(Universe::heap()->is_in_reserved(obj_to_push), "Should be in heap");
   201     if (should_be_partially_scanned(obj_to_push, cur)) {
   202       assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
   203       obj_to_push = cur;
   204     }
   205     bool ok = queue->push(obj_to_push);
   206     assert(ok, "Should have succeeded");
   207   }
   208   assert(young_gen()->overflow_list() == NULL, "Error");
   209   return num_take_elems > 0;  // was something transferred?
   210 }
   212 void ParScanThreadState::push_on_overflow_stack(oop p) {
   213   assert(ParGCUseLocalOverflow, "Else should not call");
   214   overflow_stack()->push(p);
   215   assert(young_gen()->overflow_list() == NULL, "Error");
   216 }
   218 HeapWord* ParScanThreadState::alloc_in_to_space_slow(size_t word_sz) {
   220   // Otherwise, if the object is small enough, try to reallocate the
   221   // buffer.
   222   HeapWord* obj = NULL;
   223   if (!_to_space_full) {
   224     ParGCAllocBuffer* const plab = to_space_alloc_buffer();
   225     Space*            const sp   = to_space();
   226     if (word_sz * 100 <
   227         ParallelGCBufferWastePct * plab->word_sz()) {
   228       // Is small enough; abandon this buffer and start a new one.
   229       plab->retire(false, false);
   230       size_t buf_size = plab->word_sz();
   231       HeapWord* buf_space = sp->par_allocate(buf_size);
   232       if (buf_space == NULL) {
   233         const size_t min_bytes =
   234           ParGCAllocBuffer::min_size() << LogHeapWordSize;
   235         size_t free_bytes = sp->free();
   236         while(buf_space == NULL && free_bytes >= min_bytes) {
   237           buf_size = free_bytes >> LogHeapWordSize;
   238           assert(buf_size == (size_t)align_object_size(buf_size),
   239                  "Invariant");
   240           buf_space  = sp->par_allocate(buf_size);
   241           free_bytes = sp->free();
   242         }
   243       }
   244       if (buf_space != NULL) {
   245         plab->set_word_size(buf_size);
   246         plab->set_buf(buf_space);
   247         record_survivor_plab(buf_space, buf_size);
   248         obj = plab->allocate(word_sz);
   249         // Note that we cannot compare buf_size < word_sz below
   250         // because of AlignmentReserve (see ParGCAllocBuffer::allocate()).
   251         assert(obj != NULL || plab->words_remaining() < word_sz,
   252                "Else should have been able to allocate");
   253         // It's conceivable that we may be able to use the
   254         // buffer we just grabbed for subsequent small requests
   255         // even if not for this one.
   256       } else {
   257         // We're used up.
   258         _to_space_full = true;
   259       }
   261     } else {
   262       // Too large; allocate the object individually.
   263       obj = sp->par_allocate(word_sz);
   264     }
   265   }
   266   return obj;
   267 }
   270 void ParScanThreadState::undo_alloc_in_to_space(HeapWord* obj,
   271                                                 size_t word_sz) {
   272   // Is the alloc in the current alloc buffer?
   273   if (to_space_alloc_buffer()->contains(obj)) {
   274     assert(to_space_alloc_buffer()->contains(obj + word_sz - 1),
   275            "Should contain whole object.");
   276     to_space_alloc_buffer()->undo_allocation(obj, word_sz);
   277   } else {
   278     CollectedHeap::fill_with_object(obj, word_sz);
   279   }
   280 }
   282 void ParScanThreadState::print_and_clear_promotion_failure_size() {
   283   if (_promotion_failure_size != 0) {
   284     if (PrintPromotionFailure) {
   285       gclog_or_tty->print(" (%d: promotion failure size = " SIZE_FORMAT ") ",
   286         _thread_num, _promotion_failure_size);
   287     }
   288     _promotion_failure_size = 0;
   289   }
   290 }
   292 class ParScanThreadStateSet: private ResourceArray {
   293 public:
   294   // Initializes states for the specified number of threads;
   295   ParScanThreadStateSet(int                     num_threads,
   296                         Space&                  to_space,
   297                         ParNewGeneration&       gen,
   298                         Generation&             old_gen,
   299                         ObjToScanQueueSet&      queue_set,
   300                         Stack<oop, mtGC>*       overflow_stacks_,
   301                         size_t                  desired_plab_sz,
   302                         ParallelTaskTerminator& term);
   304   ~ParScanThreadStateSet() { TASKQUEUE_STATS_ONLY(reset_stats()); }
   306   inline ParScanThreadState& thread_state(int i);
   308   void reset(int active_workers, bool promotion_failed);
   309   void flush();
   311   #if TASKQUEUE_STATS
   312   static void
   313     print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
   314   void print_termination_stats(outputStream* const st = gclog_or_tty);
   315   static void
   316     print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
   317   void print_taskqueue_stats(outputStream* const st = gclog_or_tty);
   318   void reset_stats();
   319   #endif // TASKQUEUE_STATS
   321 private:
   322   ParallelTaskTerminator& _term;
   323   ParNewGeneration&       _gen;
   324   Generation&             _next_gen;
   325  public:
   326   bool is_valid(int id) const { return id < length(); }
   327   ParallelTaskTerminator* terminator() { return &_term; }
   328 };
   331 ParScanThreadStateSet::ParScanThreadStateSet(
   332   int num_threads, Space& to_space, ParNewGeneration& gen,
   333   Generation& old_gen, ObjToScanQueueSet& queue_set,
   334   Stack<oop, mtGC>* overflow_stacks,
   335   size_t desired_plab_sz, ParallelTaskTerminator& term)
   336   : ResourceArray(sizeof(ParScanThreadState), num_threads),
   337     _gen(gen), _next_gen(old_gen), _term(term)
   338 {
   339   assert(num_threads > 0, "sanity check!");
   340   assert(ParGCUseLocalOverflow == (overflow_stacks != NULL),
   341          "overflow_stack allocation mismatch");
   342   // Initialize states.
   343   for (int i = 0; i < num_threads; ++i) {
   344     new ((ParScanThreadState*)_data + i)
   345         ParScanThreadState(&to_space, &gen, &old_gen, i, &queue_set,
   346                            overflow_stacks, desired_plab_sz, term);
   347   }
   348 }
   350 inline ParScanThreadState& ParScanThreadStateSet::thread_state(int i)
   351 {
   352   assert(i >= 0 && i < length(), "sanity check!");
   353   return ((ParScanThreadState*)_data)[i];
   354 }
   357 void ParScanThreadStateSet::reset(int active_threads, bool promotion_failed)
   358 {
   359   _term.reset_for_reuse(active_threads);
   360   if (promotion_failed) {
   361     for (int i = 0; i < length(); ++i) {
   362       thread_state(i).print_and_clear_promotion_failure_size();
   363     }
   364   }
   365 }
   367 #if TASKQUEUE_STATS
   368 void
   369 ParScanThreadState::reset_stats()
   370 {
   371   taskqueue_stats().reset();
   372   _term_attempts = 0;
   373   _overflow_refills = 0;
   374   _overflow_refill_objs = 0;
   375 }
   377 void ParScanThreadStateSet::reset_stats()
   378 {
   379   for (int i = 0; i < length(); ++i) {
   380     thread_state(i).reset_stats();
   381   }
   382 }
   384 void
   385 ParScanThreadStateSet::print_termination_stats_hdr(outputStream* const st)
   386 {
   387   st->print_raw_cr("GC Termination Stats");
   388   st->print_raw_cr("     elapsed  --strong roots-- "
   389                    "-------termination-------");
   390   st->print_raw_cr("thr     ms        ms       %   "
   391                    "    ms       %   attempts");
   392   st->print_raw_cr("--- --------- --------- ------ "
   393                    "--------- ------ --------");
   394 }
   396 void ParScanThreadStateSet::print_termination_stats(outputStream* const st)
   397 {
   398   print_termination_stats_hdr(st);
   400   for (int i = 0; i < length(); ++i) {
   401     const ParScanThreadState & pss = thread_state(i);
   402     const double elapsed_ms = pss.elapsed_time() * 1000.0;
   403     const double s_roots_ms = pss.strong_roots_time() * 1000.0;
   404     const double term_ms = pss.term_time() * 1000.0;
   405     st->print_cr("%3d %9.2f %9.2f %6.2f "
   406                  "%9.2f %6.2f " SIZE_FORMAT_W(8),
   407                  i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
   408                  term_ms, term_ms * 100 / elapsed_ms, pss.term_attempts());
   409   }
   410 }
   412 // Print stats related to work queue activity.
   413 void ParScanThreadStateSet::print_taskqueue_stats_hdr(outputStream* const st)
   414 {
   415   st->print_raw_cr("GC Task Stats");
   416   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
   417   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
   418 }
   420 void ParScanThreadStateSet::print_taskqueue_stats(outputStream* const st)
   421 {
   422   print_taskqueue_stats_hdr(st);
   424   TaskQueueStats totals;
   425   for (int i = 0; i < length(); ++i) {
   426     const ParScanThreadState & pss = thread_state(i);
   427     const TaskQueueStats & stats = pss.taskqueue_stats();
   428     st->print("%3d ", i); stats.print(st); st->cr();
   429     totals += stats;
   431     if (pss.overflow_refills() > 0) {
   432       st->print_cr("    " SIZE_FORMAT_W(10) " overflow refills    "
   433                    SIZE_FORMAT_W(10) " overflow objects",
   434                    pss.overflow_refills(), pss.overflow_refill_objs());
   435     }
   436   }
   437   st->print("tot "); totals.print(st); st->cr();
   439   DEBUG_ONLY(totals.verify());
   440 }
   441 #endif // TASKQUEUE_STATS
   443 void ParScanThreadStateSet::flush()
   444 {
   445   // Work in this loop should be kept as lightweight as
   446   // possible since this might otherwise become a bottleneck
   447   // to scaling. Should we add heavy-weight work into this
   448   // loop, consider parallelizing the loop into the worker threads.
   449   for (int i = 0; i < length(); ++i) {
   450     ParScanThreadState& par_scan_state = thread_state(i);
   452     // Flush stats related to To-space PLAB activity and
   453     // retire the last buffer.
   454     par_scan_state.to_space_alloc_buffer()->
   455       flush_stats_and_retire(_gen.plab_stats(),
   456                              true /* end_of_gc */,
   457                              false /* retain */);
   459     // Every thread has its own age table.  We need to merge
   460     // them all into one.
   461     ageTable *local_table = par_scan_state.age_table();
   462     _gen.age_table()->merge(local_table);
   464     // Inform old gen that we're done.
   465     _next_gen.par_promote_alloc_done(i);
   466     _next_gen.par_oop_since_save_marks_iterate_done(i);
   467   }
   469   if (UseConcMarkSweepGC && ParallelGCThreads > 0) {
   470     // We need to call this even when ResizeOldPLAB is disabled
   471     // so as to avoid breaking some asserts. While we may be able
   472     // to avoid this by reorganizing the code a bit, I am loathe
   473     // to do that unless we find cases where ergo leads to bad
   474     // performance.
   475     CFLS_LAB::compute_desired_plab_size();
   476   }
   477 }
   479 ParScanClosure::ParScanClosure(ParNewGeneration* g,
   480                                ParScanThreadState* par_scan_state) :
   481   OopsInGenClosure(g), _par_scan_state(par_scan_state), _g(g)
   482 {
   483   assert(_g->level() == 0, "Optimized for youngest generation");
   484   _boundary = _g->reserved().end();
   485 }
   487 void ParScanWithBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, true, false); }
   488 void ParScanWithBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, true, false); }
   490 void ParScanWithoutBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, false, false); }
   491 void ParScanWithoutBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, false, false); }
   493 void ParRootScanWithBarrierTwoGensClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, true, true); }
   494 void ParRootScanWithBarrierTwoGensClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, true, true); }
   496 void ParRootScanWithoutBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, false, true); }
   497 void ParRootScanWithoutBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, false, true); }
   499 ParScanWeakRefClosure::ParScanWeakRefClosure(ParNewGeneration* g,
   500                                              ParScanThreadState* par_scan_state)
   501   : ScanWeakRefClosure(g), _par_scan_state(par_scan_state)
   502 {}
   504 void ParScanWeakRefClosure::do_oop(oop* p)       { ParScanWeakRefClosure::do_oop_work(p); }
   505 void ParScanWeakRefClosure::do_oop(narrowOop* p) { ParScanWeakRefClosure::do_oop_work(p); }
   507 #ifdef WIN32
   508 #pragma warning(disable: 4786) /* identifier was truncated to '255' characters in the browser information */
   509 #endif
   511 ParEvacuateFollowersClosure::ParEvacuateFollowersClosure(
   512     ParScanThreadState* par_scan_state_,
   513     ParScanWithoutBarrierClosure* to_space_closure_,
   514     ParScanWithBarrierClosure* old_gen_closure_,
   515     ParRootScanWithoutBarrierClosure* to_space_root_closure_,
   516     ParNewGeneration* par_gen_,
   517     ParRootScanWithBarrierTwoGensClosure* old_gen_root_closure_,
   518     ObjToScanQueueSet* task_queues_,
   519     ParallelTaskTerminator* terminator_) :
   521     _par_scan_state(par_scan_state_),
   522     _to_space_closure(to_space_closure_),
   523     _old_gen_closure(old_gen_closure_),
   524     _to_space_root_closure(to_space_root_closure_),
   525     _old_gen_root_closure(old_gen_root_closure_),
   526     _par_gen(par_gen_),
   527     _task_queues(task_queues_),
   528     _terminator(terminator_)
   529 {}
   531 void ParEvacuateFollowersClosure::do_void() {
   532   ObjToScanQueue* work_q = par_scan_state()->work_queue();
   534   while (true) {
   536     // Scan to-space and old-gen objs until we run out of both.
   537     oop obj_to_scan;
   538     par_scan_state()->trim_queues(0);
   540     // We have no local work, attempt to steal from other threads.
   542     // attempt to steal work from promoted.
   543     if (task_queues()->steal(par_scan_state()->thread_num(),
   544                              par_scan_state()->hash_seed(),
   545                              obj_to_scan)) {
   546       bool res = work_q->push(obj_to_scan);
   547       assert(res, "Empty queue should have room for a push.");
   549       //   if successful, goto Start.
   550       continue;
   552       // try global overflow list.
   553     } else if (par_gen()->take_from_overflow_list(par_scan_state())) {
   554       continue;
   555     }
   557     // Otherwise, offer termination.
   558     par_scan_state()->start_term_time();
   559     if (terminator()->offer_termination()) break;
   560     par_scan_state()->end_term_time();
   561   }
   562   assert(par_gen()->_overflow_list == NULL && par_gen()->_num_par_pushes == 0,
   563          "Broken overflow list?");
   564   // Finish the last termination pause.
   565   par_scan_state()->end_term_time();
   566 }
   568 ParNewGenTask::ParNewGenTask(ParNewGeneration* gen, Generation* next_gen,
   569                 HeapWord* young_old_boundary, ParScanThreadStateSet* state_set) :
   570     AbstractGangTask("ParNewGeneration collection"),
   571     _gen(gen), _next_gen(next_gen),
   572     _young_old_boundary(young_old_boundary),
   573     _state_set(state_set)
   574   {}
   576 // Reset the terminator for the given number of
   577 // active threads.
   578 void ParNewGenTask::set_for_termination(int active_workers) {
   579   _state_set->reset(active_workers, _gen->promotion_failed());
   580   // Should the heap be passed in?  There's only 1 for now so
   581   // grab it instead.
   582   GenCollectedHeap* gch = GenCollectedHeap::heap();
   583   gch->set_n_termination(active_workers);
   584 }
   586 // The "i" passed to this method is the part of the work for
   587 // this thread.  It is not the worker ID.  The "i" is derived
   588 // from _started_workers which is incremented in internal_note_start()
   589 // called in GangWorker loop() and which is called under the
   590 // which is  called under the protection of the gang monitor and is
   591 // called after a task is started.  So "i" is based on
   592 // first-come-first-served.
   594 void ParNewGenTask::work(uint worker_id) {
   595   GenCollectedHeap* gch = GenCollectedHeap::heap();
   596   // Since this is being done in a separate thread, need new resource
   597   // and handle marks.
   598   ResourceMark rm;
   599   HandleMark hm;
   600   // We would need multiple old-gen queues otherwise.
   601   assert(gch->n_gens() == 2, "Par young collection currently only works with one older gen.");
   603   Generation* old_gen = gch->next_gen(_gen);
   605   ParScanThreadState& par_scan_state = _state_set->thread_state(worker_id);
   606   assert(_state_set->is_valid(worker_id), "Should not have been called");
   608   par_scan_state.set_young_old_boundary(_young_old_boundary);
   610   par_scan_state.start_strong_roots();
   611   gch->gen_process_strong_roots(_gen->level(),
   612                                 true,  // Process younger gens, if any,
   613                                        // as strong roots.
   614                                 false, // no scope; this is parallel code
   615                                 false, // not collecting perm generation.
   616                                 SharedHeap::SO_AllClasses,
   617                                 &par_scan_state.to_space_root_closure(),
   618                                 true,   // walk *all* scavengable nmethods
   619                                 &par_scan_state.older_gen_closure());
   620   par_scan_state.end_strong_roots();
   622   // "evacuate followers".
   623   par_scan_state.evacuate_followers_closure().do_void();
   624 }
   626 #ifdef _MSC_VER
   627 #pragma warning( push )
   628 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
   629 #endif
   630 ParNewGeneration::
   631 ParNewGeneration(ReservedSpace rs, size_t initial_byte_size, int level)
   632   : DefNewGeneration(rs, initial_byte_size, level, "PCopy"),
   633   _overflow_list(NULL),
   634   _is_alive_closure(this),
   635   _plab_stats(YoungPLABSize, PLABWeight)
   636 {
   637   NOT_PRODUCT(_overflow_counter = ParGCWorkQueueOverflowInterval;)
   638   NOT_PRODUCT(_num_par_pushes = 0;)
   639   _task_queues = new ObjToScanQueueSet(ParallelGCThreads);
   640   guarantee(_task_queues != NULL, "task_queues allocation failure.");
   642   for (uint i1 = 0; i1 < ParallelGCThreads; i1++) {
   643     ObjToScanQueue *q = new ObjToScanQueue();
   644     guarantee(q != NULL, "work_queue Allocation failure.");
   645     _task_queues->register_queue(i1, q);
   646   }
   648   for (uint i2 = 0; i2 < ParallelGCThreads; i2++)
   649     _task_queues->queue(i2)->initialize();
   651   _overflow_stacks = NULL;
   652   if (ParGCUseLocalOverflow) {
   654     // typedef to workaround NEW_C_HEAP_ARRAY macro, which can not deal
   655     // with ','
   656     typedef Stack<oop, mtGC> GCOopStack;
   658     _overflow_stacks = NEW_C_HEAP_ARRAY(GCOopStack, ParallelGCThreads, mtGC);
   659     for (size_t i = 0; i < ParallelGCThreads; ++i) {
   660       new (_overflow_stacks + i) Stack<oop, mtGC>();
   661     }
   662   }
   664   if (UsePerfData) {
   665     EXCEPTION_MARK;
   666     ResourceMark rm;
   668     const char* cname =
   669          PerfDataManager::counter_name(_gen_counters->name_space(), "threads");
   670     PerfDataManager::create_constant(SUN_GC, cname, PerfData::U_None,
   671                                      ParallelGCThreads, CHECK);
   672   }
   673 }
   674 #ifdef _MSC_VER
   675 #pragma warning( pop )
   676 #endif
   678 // ParNewGeneration::
   679 ParKeepAliveClosure::ParKeepAliveClosure(ParScanWeakRefClosure* cl) :
   680   DefNewGeneration::KeepAliveClosure(cl), _par_cl(cl) {}
   682 template <class T>
   683 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop_work(T* p) {
   684 #ifdef ASSERT
   685   {
   686     assert(!oopDesc::is_null(*p), "expected non-null ref");
   687     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
   688     // We never expect to see a null reference being processed
   689     // as a weak reference.
   690     assert(obj->is_oop(), "expected an oop while scanning weak refs");
   691   }
   692 #endif // ASSERT
   694   _par_cl->do_oop_nv(p);
   696   if (Universe::heap()->is_in_reserved(p)) {
   697     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
   698     _rs->write_ref_field_gc_par(p, obj);
   699   }
   700 }
   702 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop(oop* p)       { ParKeepAliveClosure::do_oop_work(p); }
   703 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop(narrowOop* p) { ParKeepAliveClosure::do_oop_work(p); }
   705 // ParNewGeneration::
   706 KeepAliveClosure::KeepAliveClosure(ScanWeakRefClosure* cl) :
   707   DefNewGeneration::KeepAliveClosure(cl) {}
   709 template <class T>
   710 void /*ParNewGeneration::*/KeepAliveClosure::do_oop_work(T* p) {
   711 #ifdef ASSERT
   712   {
   713     assert(!oopDesc::is_null(*p), "expected non-null ref");
   714     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
   715     // We never expect to see a null reference being processed
   716     // as a weak reference.
   717     assert(obj->is_oop(), "expected an oop while scanning weak refs");
   718   }
   719 #endif // ASSERT
   721   _cl->do_oop_nv(p);
   723   if (Universe::heap()->is_in_reserved(p)) {
   724     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
   725     _rs->write_ref_field_gc_par(p, obj);
   726   }
   727 }
   729 void /*ParNewGeneration::*/KeepAliveClosure::do_oop(oop* p)       { KeepAliveClosure::do_oop_work(p); }
   730 void /*ParNewGeneration::*/KeepAliveClosure::do_oop(narrowOop* p) { KeepAliveClosure::do_oop_work(p); }
   732 template <class T> void ScanClosureWithParBarrier::do_oop_work(T* p) {
   733   T heap_oop = oopDesc::load_heap_oop(p);
   734   if (!oopDesc::is_null(heap_oop)) {
   735     oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
   736     if ((HeapWord*)obj < _boundary) {
   737       assert(!_g->to()->is_in_reserved(obj), "Scanning field twice?");
   738       oop new_obj = obj->is_forwarded()
   739                       ? obj->forwardee()
   740                       : _g->DefNewGeneration::copy_to_survivor_space(obj);
   741       oopDesc::encode_store_heap_oop_not_null(p, new_obj);
   742     }
   743     if (_gc_barrier) {
   744       // If p points to a younger generation, mark the card.
   745       if ((HeapWord*)obj < _gen_boundary) {
   746         _rs->write_ref_field_gc_par(p, obj);
   747       }
   748     }
   749   }
   750 }
   752 void ScanClosureWithParBarrier::do_oop(oop* p)       { ScanClosureWithParBarrier::do_oop_work(p); }
   753 void ScanClosureWithParBarrier::do_oop(narrowOop* p) { ScanClosureWithParBarrier::do_oop_work(p); }
   755 class ParNewRefProcTaskProxy: public AbstractGangTask {
   756   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
   757 public:
   758   ParNewRefProcTaskProxy(ProcessTask& task, ParNewGeneration& gen,
   759                          Generation& next_gen,
   760                          HeapWord* young_old_boundary,
   761                          ParScanThreadStateSet& state_set);
   763 private:
   764   virtual void work(uint worker_id);
   765   virtual void set_for_termination(int active_workers) {
   766     _state_set.terminator()->reset_for_reuse(active_workers);
   767   }
   768 private:
   769   ParNewGeneration&      _gen;
   770   ProcessTask&           _task;
   771   Generation&            _next_gen;
   772   HeapWord*              _young_old_boundary;
   773   ParScanThreadStateSet& _state_set;
   774 };
   776 ParNewRefProcTaskProxy::ParNewRefProcTaskProxy(
   777     ProcessTask& task, ParNewGeneration& gen,
   778     Generation& next_gen,
   779     HeapWord* young_old_boundary,
   780     ParScanThreadStateSet& state_set)
   781   : AbstractGangTask("ParNewGeneration parallel reference processing"),
   782     _gen(gen),
   783     _task(task),
   784     _next_gen(next_gen),
   785     _young_old_boundary(young_old_boundary),
   786     _state_set(state_set)
   787 {
   788 }
   790 void ParNewRefProcTaskProxy::work(uint worker_id)
   791 {
   792   ResourceMark rm;
   793   HandleMark hm;
   794   ParScanThreadState& par_scan_state = _state_set.thread_state(worker_id);
   795   par_scan_state.set_young_old_boundary(_young_old_boundary);
   796   _task.work(worker_id, par_scan_state.is_alive_closure(),
   797              par_scan_state.keep_alive_closure(),
   798              par_scan_state.evacuate_followers_closure());
   799 }
   801 class ParNewRefEnqueueTaskProxy: public AbstractGangTask {
   802   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
   803   EnqueueTask& _task;
   805 public:
   806   ParNewRefEnqueueTaskProxy(EnqueueTask& task)
   807     : AbstractGangTask("ParNewGeneration parallel reference enqueue"),
   808       _task(task)
   809   { }
   811   virtual void work(uint worker_id)
   812   {
   813     _task.work(worker_id);
   814   }
   815 };
   818 void ParNewRefProcTaskExecutor::execute(ProcessTask& task)
   819 {
   820   GenCollectedHeap* gch = GenCollectedHeap::heap();
   821   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
   822          "not a generational heap");
   823   FlexibleWorkGang* workers = gch->workers();
   824   assert(workers != NULL, "Need parallel worker threads.");
   825   _state_set.reset(workers->active_workers(), _generation.promotion_failed());
   826   ParNewRefProcTaskProxy rp_task(task, _generation, *_generation.next_gen(),
   827                                  _generation.reserved().end(), _state_set);
   828   workers->run_task(&rp_task);
   829   _state_set.reset(0 /* bad value in debug if not reset */,
   830                    _generation.promotion_failed());
   831 }
   833 void ParNewRefProcTaskExecutor::execute(EnqueueTask& task)
   834 {
   835   GenCollectedHeap* gch = GenCollectedHeap::heap();
   836   FlexibleWorkGang* workers = gch->workers();
   837   assert(workers != NULL, "Need parallel worker threads.");
   838   ParNewRefEnqueueTaskProxy enq_task(task);
   839   workers->run_task(&enq_task);
   840 }
   842 void ParNewRefProcTaskExecutor::set_single_threaded_mode()
   843 {
   844   _state_set.flush();
   845   GenCollectedHeap* gch = GenCollectedHeap::heap();
   846   gch->set_par_threads(0);  // 0 ==> non-parallel.
   847   gch->save_marks();
   848 }
   850 ScanClosureWithParBarrier::
   851 ScanClosureWithParBarrier(ParNewGeneration* g, bool gc_barrier) :
   852   ScanClosure(g, gc_barrier) {}
   854 EvacuateFollowersClosureGeneral::
   855 EvacuateFollowersClosureGeneral(GenCollectedHeap* gch, int level,
   856                                 OopsInGenClosure* cur,
   857                                 OopsInGenClosure* older) :
   858   _gch(gch), _level(level),
   859   _scan_cur_or_nonheap(cur), _scan_older(older)
   860 {}
   862 void EvacuateFollowersClosureGeneral::do_void() {
   863   do {
   864     // Beware: this call will lead to closure applications via virtual
   865     // calls.
   866     _gch->oop_since_save_marks_iterate(_level,
   867                                        _scan_cur_or_nonheap,
   868                                        _scan_older);
   869   } while (!_gch->no_allocs_since_save_marks(_level));
   870 }
   873 bool ParNewGeneration::_avoid_promotion_undo = false;
   875 void ParNewGeneration::adjust_desired_tenuring_threshold() {
   876   // Set the desired survivor size to half the real survivor space
   877   _tenuring_threshold =
   878     age_table()->compute_tenuring_threshold(to()->capacity()/HeapWordSize);
   879 }
   881 // A Generation that does parallel young-gen collection.
   883 void ParNewGeneration::collect(bool   full,
   884                                bool   clear_all_soft_refs,
   885                                size_t size,
   886                                bool   is_tlab) {
   887   assert(full || size > 0, "otherwise we don't want to collect");
   888   GenCollectedHeap* gch = GenCollectedHeap::heap();
   889   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
   890     "not a CMS generational heap");
   891   AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
   892   FlexibleWorkGang* workers = gch->workers();
   893   assert(workers != NULL, "Need workgang for parallel work");
   894   int active_workers =
   895       AdaptiveSizePolicy::calc_active_workers(workers->total_workers(),
   896                                    workers->active_workers(),
   897                                    Threads::number_of_non_daemon_threads());
   898   workers->set_active_workers(active_workers);
   899   _next_gen = gch->next_gen(this);
   900   assert(_next_gen != NULL,
   901     "This must be the youngest gen, and not the only gen");
   902   assert(gch->n_gens() == 2,
   903          "Par collection currently only works with single older gen.");
   904   // Do we have to avoid promotion_undo?
   905   if (gch->collector_policy()->is_concurrent_mark_sweep_policy()) {
   906     set_avoid_promotion_undo(true);
   907   }
   909   // If the next generation is too full to accomodate worst-case promotion
   910   // from this generation, pass on collection; let the next generation
   911   // do it.
   912   if (!collection_attempt_is_safe()) {
   913     gch->set_incremental_collection_failed();  // slight lie, in that we did not even attempt one
   914     return;
   915   }
   916   assert(to()->is_empty(), "Else not collection_attempt_is_safe");
   918   init_assuming_no_promotion_failure();
   920   if (UseAdaptiveSizePolicy) {
   921     set_survivor_overflow(false);
   922     size_policy->minor_collection_begin();
   923   }
   925   TraceTime t1(GCCauseString("GC", gch->gc_cause()), PrintGC && !PrintGCDetails, true, gclog_or_tty);
   926   // Capture heap used before collection (for printing).
   927   size_t gch_prev_used = gch->used();
   929   SpecializationStats::clear();
   931   age_table()->clear();
   932   to()->clear(SpaceDecorator::Mangle);
   934   gch->save_marks();
   935   assert(workers != NULL, "Need parallel worker threads.");
   936   int n_workers = active_workers;
   938   // Set the correct parallelism (number of queues) in the reference processor
   939   ref_processor()->set_active_mt_degree(n_workers);
   941   // Always set the terminator for the active number of workers
   942   // because only those workers go through the termination protocol.
   943   ParallelTaskTerminator _term(n_workers, task_queues());
   944   ParScanThreadStateSet thread_state_set(workers->active_workers(),
   945                                          *to(), *this, *_next_gen, *task_queues(),
   946                                          _overflow_stacks, desired_plab_sz(), _term);
   948   ParNewGenTask tsk(this, _next_gen, reserved().end(), &thread_state_set);
   949   gch->set_par_threads(n_workers);
   950   gch->rem_set()->prepare_for_younger_refs_iterate(true);
   951   // It turns out that even when we're using 1 thread, doing the work in a
   952   // separate thread causes wide variance in run times.  We can't help this
   953   // in the multi-threaded case, but we special-case n=1 here to get
   954   // repeatable measurements of the 1-thread overhead of the parallel code.
   955   if (n_workers > 1) {
   956     GenCollectedHeap::StrongRootsScope srs(gch);
   957     workers->run_task(&tsk);
   958   } else {
   959     GenCollectedHeap::StrongRootsScope srs(gch);
   960     tsk.work(0);
   961   }
   962   thread_state_set.reset(0 /* Bad value in debug if not reset */,
   963                          promotion_failed());
   965   // Process (weak) reference objects found during scavenge.
   966   ReferenceProcessor* rp = ref_processor();
   967   IsAliveClosure is_alive(this);
   968   ScanWeakRefClosure scan_weak_ref(this);
   969   KeepAliveClosure keep_alive(&scan_weak_ref);
   970   ScanClosure               scan_without_gc_barrier(this, false);
   971   ScanClosureWithParBarrier scan_with_gc_barrier(this, true);
   972   set_promo_failure_scan_stack_closure(&scan_without_gc_barrier);
   973   EvacuateFollowersClosureGeneral evacuate_followers(gch, _level,
   974     &scan_without_gc_barrier, &scan_with_gc_barrier);
   975   rp->setup_policy(clear_all_soft_refs);
   976   // Can  the mt_degree be set later (at run_task() time would be best)?
   977   rp->set_active_mt_degree(active_workers);
   978   if (rp->processing_is_mt()) {
   979     ParNewRefProcTaskExecutor task_executor(*this, thread_state_set);
   980     rp->process_discovered_references(&is_alive, &keep_alive,
   981                                       &evacuate_followers, &task_executor);
   982   } else {
   983     thread_state_set.flush();
   984     gch->set_par_threads(0);  // 0 ==> non-parallel.
   985     gch->save_marks();
   986     rp->process_discovered_references(&is_alive, &keep_alive,
   987                                       &evacuate_followers, NULL);
   988   }
   989   if (!promotion_failed()) {
   990     // Swap the survivor spaces.
   991     eden()->clear(SpaceDecorator::Mangle);
   992     from()->clear(SpaceDecorator::Mangle);
   993     if (ZapUnusedHeapArea) {
   994       // This is now done here because of the piece-meal mangling which
   995       // can check for valid mangling at intermediate points in the
   996       // collection(s).  When a minor collection fails to collect
   997       // sufficient space resizing of the young generation can occur
   998       // an redistribute the spaces in the young generation.  Mangle
   999       // here so that unzapped regions don't get distributed to
  1000       // other spaces.
  1001       to()->mangle_unused_area();
  1003     swap_spaces();
  1005     // A successful scavenge should restart the GC time limit count which is
  1006     // for full GC's.
  1007     size_policy->reset_gc_overhead_limit_count();
  1009     assert(to()->is_empty(), "to space should be empty now");
  1010   } else {
  1011     assert(_promo_failure_scan_stack.is_empty(), "post condition");
  1012     _promo_failure_scan_stack.clear(true); // Clear cached segments.
  1014     remove_forwarding_pointers();
  1015     if (PrintGCDetails) {
  1016       gclog_or_tty->print(" (promotion failed)");
  1018     // All the spaces are in play for mark-sweep.
  1019     swap_spaces();  // Make life simpler for CMS || rescan; see 6483690.
  1020     from()->set_next_compaction_space(to());
  1021     gch->set_incremental_collection_failed();
  1022     // Inform the next generation that a promotion failure occurred.
  1023     _next_gen->promotion_failure_occurred();
  1025     // Reset the PromotionFailureALot counters.
  1026     NOT_PRODUCT(Universe::heap()->reset_promotion_should_fail();)
  1028   // set new iteration safe limit for the survivor spaces
  1029   from()->set_concurrent_iteration_safe_limit(from()->top());
  1030   to()->set_concurrent_iteration_safe_limit(to()->top());
  1032   adjust_desired_tenuring_threshold();
  1033   if (ResizePLAB) {
  1034     plab_stats()->adjust_desired_plab_sz();
  1037   if (PrintGC && !PrintGCDetails) {
  1038     gch->print_heap_change(gch_prev_used);
  1041   if (PrintGCDetails && ParallelGCVerbose) {
  1042     TASKQUEUE_STATS_ONLY(thread_state_set.print_termination_stats());
  1043     TASKQUEUE_STATS_ONLY(thread_state_set.print_taskqueue_stats());
  1046   if (UseAdaptiveSizePolicy) {
  1047     size_policy->minor_collection_end(gch->gc_cause());
  1048     size_policy->avg_survived()->sample(from()->used());
  1051   // We need to use a monotonically non-deccreasing time in ms
  1052   // or we will see time-warp warnings and os::javaTimeMillis()
  1053   // does not guarantee monotonicity.
  1054   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
  1055   update_time_of_last_gc(now);
  1057   SpecializationStats::print();
  1059   rp->set_enqueuing_is_done(true);
  1060   if (rp->processing_is_mt()) {
  1061     ParNewRefProcTaskExecutor task_executor(*this, thread_state_set);
  1062     rp->enqueue_discovered_references(&task_executor);
  1063   } else {
  1064     rp->enqueue_discovered_references(NULL);
  1066   rp->verify_no_references_recorded();
  1069 static int sum;
  1070 void ParNewGeneration::waste_some_time() {
  1071   for (int i = 0; i < 100; i++) {
  1072     sum += i;
  1076 static const oop ClaimedForwardPtr = oop(0x4);
  1078 // Because of concurrency, there are times where an object for which
  1079 // "is_forwarded()" is true contains an "interim" forwarding pointer
  1080 // value.  Such a value will soon be overwritten with a real value.
  1081 // This method requires "obj" to have a forwarding pointer, and waits, if
  1082 // necessary for a real one to be inserted, and returns it.
  1084 oop ParNewGeneration::real_forwardee(oop obj) {
  1085   oop forward_ptr = obj->forwardee();
  1086   if (forward_ptr != ClaimedForwardPtr) {
  1087     return forward_ptr;
  1088   } else {
  1089     return real_forwardee_slow(obj);
  1093 oop ParNewGeneration::real_forwardee_slow(oop obj) {
  1094   // Spin-read if it is claimed but not yet written by another thread.
  1095   oop forward_ptr = obj->forwardee();
  1096   while (forward_ptr == ClaimedForwardPtr) {
  1097     waste_some_time();
  1098     assert(obj->is_forwarded(), "precondition");
  1099     forward_ptr = obj->forwardee();
  1101   return forward_ptr;
  1104 #ifdef ASSERT
  1105 bool ParNewGeneration::is_legal_forward_ptr(oop p) {
  1106   return
  1107     (_avoid_promotion_undo && p == ClaimedForwardPtr)
  1108     || Universe::heap()->is_in_reserved(p);
  1110 #endif
  1112 void ParNewGeneration::preserve_mark_if_necessary(oop obj, markOop m) {
  1113   if (m->must_be_preserved_for_promotion_failure(obj)) {
  1114     // We should really have separate per-worker stacks, rather
  1115     // than use locking of a common pair of stacks.
  1116     MutexLocker ml(ParGCRareEvent_lock);
  1117     preserve_mark(obj, m);
  1121 // Multiple GC threads may try to promote an object.  If the object
  1122 // is successfully promoted, a forwarding pointer will be installed in
  1123 // the object in the young generation.  This method claims the right
  1124 // to install the forwarding pointer before it copies the object,
  1125 // thus avoiding the need to undo the copy as in
  1126 // copy_to_survivor_space_avoiding_with_undo.
  1128 oop ParNewGeneration::copy_to_survivor_space_avoiding_promotion_undo(
  1129         ParScanThreadState* par_scan_state, oop old, size_t sz, markOop m) {
  1130   // In the sequential version, this assert also says that the object is
  1131   // not forwarded.  That might not be the case here.  It is the case that
  1132   // the caller observed it to be not forwarded at some time in the past.
  1133   assert(is_in_reserved(old), "shouldn't be scavenging this oop");
  1135   // The sequential code read "old->age()" below.  That doesn't work here,
  1136   // since the age is in the mark word, and that might be overwritten with
  1137   // a forwarding pointer by a parallel thread.  So we must save the mark
  1138   // word in a local and then analyze it.
  1139   oopDesc dummyOld;
  1140   dummyOld.set_mark(m);
  1141   assert(!dummyOld.is_forwarded(),
  1142          "should not be called with forwarding pointer mark word.");
  1144   oop new_obj = NULL;
  1145   oop forward_ptr;
  1147   // Try allocating obj in to-space (unless too old)
  1148   if (dummyOld.age() < tenuring_threshold()) {
  1149     new_obj = (oop)par_scan_state->alloc_in_to_space(sz);
  1150     if (new_obj == NULL) {
  1151       set_survivor_overflow(true);
  1155   if (new_obj == NULL) {
  1156     // Either to-space is full or we decided to promote
  1157     // try allocating obj tenured
  1159     // Attempt to install a null forwarding pointer (atomically),
  1160     // to claim the right to install the real forwarding pointer.
  1161     forward_ptr = old->forward_to_atomic(ClaimedForwardPtr);
  1162     if (forward_ptr != NULL) {
  1163       // someone else beat us to it.
  1164         return real_forwardee(old);
  1167     new_obj = _next_gen->par_promote(par_scan_state->thread_num(),
  1168                                        old, m, sz);
  1170     if (new_obj == NULL) {
  1171       // promotion failed, forward to self
  1172       _promotion_failed = true;
  1173       new_obj = old;
  1175       preserve_mark_if_necessary(old, m);
  1176       // Log the size of the maiden promotion failure
  1177       par_scan_state->log_promotion_failure(sz);
  1180     old->forward_to(new_obj);
  1181     forward_ptr = NULL;
  1182   } else {
  1183     // Is in to-space; do copying ourselves.
  1184     Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)new_obj, sz);
  1185     forward_ptr = old->forward_to_atomic(new_obj);
  1186     // Restore the mark word copied above.
  1187     new_obj->set_mark(m);
  1188     // Increment age if obj still in new generation
  1189     new_obj->incr_age();
  1190     par_scan_state->age_table()->add(new_obj, sz);
  1192   assert(new_obj != NULL, "just checking");
  1194   if (forward_ptr == NULL) {
  1195     oop obj_to_push = new_obj;
  1196     if (par_scan_state->should_be_partially_scanned(obj_to_push, old)) {
  1197       // Length field used as index of next element to be scanned.
  1198       // Real length can be obtained from real_forwardee()
  1199       arrayOop(old)->set_length(0);
  1200       obj_to_push = old;
  1201       assert(obj_to_push->is_forwarded() && obj_to_push->forwardee() != obj_to_push,
  1202              "push forwarded object");
  1204     // Push it on one of the queues of to-be-scanned objects.
  1205     bool simulate_overflow = false;
  1206     NOT_PRODUCT(
  1207       if (ParGCWorkQueueOverflowALot && should_simulate_overflow()) {
  1208         // simulate a stack overflow
  1209         simulate_overflow = true;
  1212     if (simulate_overflow || !par_scan_state->work_queue()->push(obj_to_push)) {
  1213       // Add stats for overflow pushes.
  1214       if (Verbose && PrintGCDetails) {
  1215         gclog_or_tty->print("queue overflow!\n");
  1217       push_on_overflow_list(old, par_scan_state);
  1218       TASKQUEUE_STATS_ONLY(par_scan_state->taskqueue_stats().record_overflow(0));
  1221     return new_obj;
  1224   // Oops.  Someone beat us to it.  Undo the allocation.  Where did we
  1225   // allocate it?
  1226   if (is_in_reserved(new_obj)) {
  1227     // Must be in to_space.
  1228     assert(to()->is_in_reserved(new_obj), "Checking");
  1229     if (forward_ptr == ClaimedForwardPtr) {
  1230       // Wait to get the real forwarding pointer value.
  1231       forward_ptr = real_forwardee(old);
  1233     par_scan_state->undo_alloc_in_to_space((HeapWord*)new_obj, sz);
  1236   return forward_ptr;
  1240 // Multiple GC threads may try to promote the same object.  If two
  1241 // or more GC threads copy the object, only one wins the race to install
  1242 // the forwarding pointer.  The other threads have to undo their copy.
  1244 oop ParNewGeneration::copy_to_survivor_space_with_undo(
  1245         ParScanThreadState* par_scan_state, oop old, size_t sz, markOop m) {
  1247   // In the sequential version, this assert also says that the object is
  1248   // not forwarded.  That might not be the case here.  It is the case that
  1249   // the caller observed it to be not forwarded at some time in the past.
  1250   assert(is_in_reserved(old), "shouldn't be scavenging this oop");
  1252   // The sequential code read "old->age()" below.  That doesn't work here,
  1253   // since the age is in the mark word, and that might be overwritten with
  1254   // a forwarding pointer by a parallel thread.  So we must save the mark
  1255   // word here, install it in a local oopDesc, and then analyze it.
  1256   oopDesc dummyOld;
  1257   dummyOld.set_mark(m);
  1258   assert(!dummyOld.is_forwarded(),
  1259          "should not be called with forwarding pointer mark word.");
  1261   bool failed_to_promote = false;
  1262   oop new_obj = NULL;
  1263   oop forward_ptr;
  1265   // Try allocating obj in to-space (unless too old)
  1266   if (dummyOld.age() < tenuring_threshold()) {
  1267     new_obj = (oop)par_scan_state->alloc_in_to_space(sz);
  1268     if (new_obj == NULL) {
  1269       set_survivor_overflow(true);
  1273   if (new_obj == NULL) {
  1274     // Either to-space is full or we decided to promote
  1275     // try allocating obj tenured
  1276     new_obj = _next_gen->par_promote(par_scan_state->thread_num(),
  1277                                        old, m, sz);
  1279     if (new_obj == NULL) {
  1280       // promotion failed, forward to self
  1281       forward_ptr = old->forward_to_atomic(old);
  1282       new_obj = old;
  1284       if (forward_ptr != NULL) {
  1285         return forward_ptr;   // someone else succeeded
  1288       _promotion_failed = true;
  1289       failed_to_promote = true;
  1291       preserve_mark_if_necessary(old, m);
  1292       // Log the size of the maiden promotion failure
  1293       par_scan_state->log_promotion_failure(sz);
  1295   } else {
  1296     // Is in to-space; do copying ourselves.
  1297     Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)new_obj, sz);
  1298     // Restore the mark word copied above.
  1299     new_obj->set_mark(m);
  1300     // Increment age if new_obj still in new generation
  1301     new_obj->incr_age();
  1302     par_scan_state->age_table()->add(new_obj, sz);
  1304   assert(new_obj != NULL, "just checking");
  1306   // Now attempt to install the forwarding pointer (atomically).
  1307   // We have to copy the mark word before overwriting with forwarding
  1308   // ptr, so we can restore it below in the copy.
  1309   if (!failed_to_promote) {
  1310     forward_ptr = old->forward_to_atomic(new_obj);
  1313   if (forward_ptr == NULL) {
  1314     oop obj_to_push = new_obj;
  1315     if (par_scan_state->should_be_partially_scanned(obj_to_push, old)) {
  1316       // Length field used as index of next element to be scanned.
  1317       // Real length can be obtained from real_forwardee()
  1318       arrayOop(old)->set_length(0);
  1319       obj_to_push = old;
  1320       assert(obj_to_push->is_forwarded() && obj_to_push->forwardee() != obj_to_push,
  1321              "push forwarded object");
  1323     // Push it on one of the queues of to-be-scanned objects.
  1324     bool simulate_overflow = false;
  1325     NOT_PRODUCT(
  1326       if (ParGCWorkQueueOverflowALot && should_simulate_overflow()) {
  1327         // simulate a stack overflow
  1328         simulate_overflow = true;
  1331     if (simulate_overflow || !par_scan_state->work_queue()->push(obj_to_push)) {
  1332       // Add stats for overflow pushes.
  1333       push_on_overflow_list(old, par_scan_state);
  1334       TASKQUEUE_STATS_ONLY(par_scan_state->taskqueue_stats().record_overflow(0));
  1337     return new_obj;
  1340   // Oops.  Someone beat us to it.  Undo the allocation.  Where did we
  1341   // allocate it?
  1342   if (is_in_reserved(new_obj)) {
  1343     // Must be in to_space.
  1344     assert(to()->is_in_reserved(new_obj), "Checking");
  1345     par_scan_state->undo_alloc_in_to_space((HeapWord*)new_obj, sz);
  1346   } else {
  1347     assert(!_avoid_promotion_undo, "Should not be here if avoiding.");
  1348     _next_gen->par_promote_alloc_undo(par_scan_state->thread_num(),
  1349                                       (HeapWord*)new_obj, sz);
  1352   return forward_ptr;
  1355 #ifndef PRODUCT
  1356 // It's OK to call this multi-threaded;  the worst thing
  1357 // that can happen is that we'll get a bunch of closely
  1358 // spaced simulated oveflows, but that's OK, in fact
  1359 // probably good as it would exercise the overflow code
  1360 // under contention.
  1361 bool ParNewGeneration::should_simulate_overflow() {
  1362   if (_overflow_counter-- <= 0) { // just being defensive
  1363     _overflow_counter = ParGCWorkQueueOverflowInterval;
  1364     return true;
  1365   } else {
  1366     return false;
  1369 #endif
  1371 // In case we are using compressed oops, we need to be careful.
  1372 // If the object being pushed is an object array, then its length
  1373 // field keeps track of the "grey boundary" at which the next
  1374 // incremental scan will be done (see ParGCArrayScanChunk).
  1375 // When using compressed oops, this length field is kept in the
  1376 // lower 32 bits of the erstwhile klass word and cannot be used
  1377 // for the overflow chaining pointer (OCP below). As such the OCP
  1378 // would itself need to be compressed into the top 32-bits in this
  1379 // case. Unfortunately, see below, in the event that we have a
  1380 // promotion failure, the node to be pushed on the list can be
  1381 // outside of the Java heap, so the heap-based pointer compression
  1382 // would not work (we would have potential aliasing between C-heap
  1383 // and Java-heap pointers). For this reason, when using compressed
  1384 // oops, we simply use a worker-thread-local, non-shared overflow
  1385 // list in the form of a growable array, with a slightly different
  1386 // overflow stack draining strategy. If/when we start using fat
  1387 // stacks here, we can go back to using (fat) pointer chains
  1388 // (although some performance comparisons would be useful since
  1389 // single global lists have their own performance disadvantages
  1390 // as we were made painfully aware not long ago, see 6786503).
  1391 #define BUSY (oop(0x1aff1aff))
  1392 void ParNewGeneration::push_on_overflow_list(oop from_space_obj, ParScanThreadState* par_scan_state) {
  1393   assert(is_in_reserved(from_space_obj), "Should be from this generation");
  1394   if (ParGCUseLocalOverflow) {
  1395     // In the case of compressed oops, we use a private, not-shared
  1396     // overflow stack.
  1397     par_scan_state->push_on_overflow_stack(from_space_obj);
  1398   } else {
  1399     assert(!UseCompressedOops, "Error");
  1400     // if the object has been forwarded to itself, then we cannot
  1401     // use the klass pointer for the linked list.  Instead we have
  1402     // to allocate an oopDesc in the C-Heap and use that for the linked list.
  1403     // XXX This is horribly inefficient when a promotion failure occurs
  1404     // and should be fixed. XXX FIX ME !!!
  1405 #ifndef PRODUCT
  1406     Atomic::inc_ptr(&_num_par_pushes);
  1407     assert(_num_par_pushes > 0, "Tautology");
  1408 #endif
  1409     if (from_space_obj->forwardee() == from_space_obj) {
  1410       oopDesc* listhead = NEW_C_HEAP_ARRAY(oopDesc, 1, mtGC);
  1411       listhead->forward_to(from_space_obj);
  1412       from_space_obj = listhead;
  1414     oop observed_overflow_list = _overflow_list;
  1415     oop cur_overflow_list;
  1416     do {
  1417       cur_overflow_list = observed_overflow_list;
  1418       if (cur_overflow_list != BUSY) {
  1419         from_space_obj->set_klass_to_list_ptr(cur_overflow_list);
  1420       } else {
  1421         from_space_obj->set_klass_to_list_ptr(NULL);
  1423       observed_overflow_list =
  1424         (oop)Atomic::cmpxchg_ptr(from_space_obj, &_overflow_list, cur_overflow_list);
  1425     } while (cur_overflow_list != observed_overflow_list);
  1429 bool ParNewGeneration::take_from_overflow_list(ParScanThreadState* par_scan_state) {
  1430   bool res;
  1432   if (ParGCUseLocalOverflow) {
  1433     res = par_scan_state->take_from_overflow_stack();
  1434   } else {
  1435     assert(!UseCompressedOops, "Error");
  1436     res = take_from_overflow_list_work(par_scan_state);
  1438   return res;
  1442 // *NOTE*: The overflow list manipulation code here and
  1443 // in CMSCollector:: are very similar in shape,
  1444 // except that in the CMS case we thread the objects
  1445 // directly into the list via their mark word, and do
  1446 // not need to deal with special cases below related
  1447 // to chunking of object arrays and promotion failure
  1448 // handling.
  1449 // CR 6797058 has been filed to attempt consolidation of
  1450 // the common code.
  1451 // Because of the common code, if you make any changes in
  1452 // the code below, please check the CMS version to see if
  1453 // similar changes might be needed.
  1454 // See CMSCollector::par_take_from_overflow_list() for
  1455 // more extensive documentation comments.
  1456 bool ParNewGeneration::take_from_overflow_list_work(ParScanThreadState* par_scan_state) {
  1457   ObjToScanQueue* work_q = par_scan_state->work_queue();
  1458   // How many to take?
  1459   size_t objsFromOverflow = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
  1460                                  (size_t)ParGCDesiredObjsFromOverflowList);
  1462   assert(!UseCompressedOops, "Error");
  1463   assert(par_scan_state->overflow_stack() == NULL, "Error");
  1464   if (_overflow_list == NULL) return false;
  1466   // Otherwise, there was something there; try claiming the list.
  1467   oop prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list);
  1468   // Trim off a prefix of at most objsFromOverflow items
  1469   Thread* tid = Thread::current();
  1470   size_t spin_count = (size_t)ParallelGCThreads;
  1471   size_t sleep_time_millis = MAX2((size_t)1, objsFromOverflow/100);
  1472   for (size_t spin = 0; prefix == BUSY && spin < spin_count; spin++) {
  1473     // someone grabbed it before we did ...
  1474     // ... we spin for a short while...
  1475     os::sleep(tid, sleep_time_millis, false);
  1476     if (_overflow_list == NULL) {
  1477       // nothing left to take
  1478       return false;
  1479     } else if (_overflow_list != BUSY) {
  1480      // try and grab the prefix
  1481      prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list);
  1484   if (prefix == NULL || prefix == BUSY) {
  1485      // Nothing to take or waited long enough
  1486      if (prefix == NULL) {
  1487        // Write back the NULL in case we overwrote it with BUSY above
  1488        // and it is still the same value.
  1489        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
  1491      return false;
  1493   assert(prefix != NULL && prefix != BUSY, "Error");
  1494   size_t i = 1;
  1495   oop cur = prefix;
  1496   while (i < objsFromOverflow && cur->klass_or_null() != NULL) {
  1497     i++; cur = oop(cur->klass());
  1500   // Reattach remaining (suffix) to overflow list
  1501   if (cur->klass_or_null() == NULL) {
  1502     // Write back the NULL in lieu of the BUSY we wrote
  1503     // above and it is still the same value.
  1504     if (_overflow_list == BUSY) {
  1505       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
  1507   } else {
  1508     assert(cur->klass_or_null() != BUSY, "Error");
  1509     oop suffix = oop(cur->klass());       // suffix will be put back on global list
  1510     cur->set_klass_to_list_ptr(NULL);     // break off suffix
  1511     // It's possible that the list is still in the empty(busy) state
  1512     // we left it in a short while ago; in that case we may be
  1513     // able to place back the suffix.
  1514     oop observed_overflow_list = _overflow_list;
  1515     oop cur_overflow_list = observed_overflow_list;
  1516     bool attached = false;
  1517     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
  1518       observed_overflow_list =
  1519         (oop) Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
  1520       if (cur_overflow_list == observed_overflow_list) {
  1521         attached = true;
  1522         break;
  1523       } else cur_overflow_list = observed_overflow_list;
  1525     if (!attached) {
  1526       // Too bad, someone else got in in between; we'll need to do a splice.
  1527       // Find the last item of suffix list
  1528       oop last = suffix;
  1529       while (last->klass_or_null() != NULL) {
  1530         last = oop(last->klass());
  1532       // Atomically prepend suffix to current overflow list
  1533       observed_overflow_list = _overflow_list;
  1534       do {
  1535         cur_overflow_list = observed_overflow_list;
  1536         if (cur_overflow_list != BUSY) {
  1537           // Do the splice ...
  1538           last->set_klass_to_list_ptr(cur_overflow_list);
  1539         } else { // cur_overflow_list == BUSY
  1540           last->set_klass_to_list_ptr(NULL);
  1542         observed_overflow_list =
  1543           (oop)Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
  1544       } while (cur_overflow_list != observed_overflow_list);
  1548   // Push objects on prefix list onto this thread's work queue
  1549   assert(prefix != NULL && prefix != BUSY, "program logic");
  1550   cur = prefix;
  1551   ssize_t n = 0;
  1552   while (cur != NULL) {
  1553     oop obj_to_push = cur->forwardee();
  1554     oop next        = oop(cur->klass_or_null());
  1555     cur->set_klass(obj_to_push->klass());
  1556     // This may be an array object that is self-forwarded. In that case, the list pointer
  1557     // space, cur, is not in the Java heap, but rather in the C-heap and should be freed.
  1558     if (!is_in_reserved(cur)) {
  1559       // This can become a scaling bottleneck when there is work queue overflow coincident
  1560       // with promotion failure.
  1561       oopDesc* f = cur;
  1562       FREE_C_HEAP_ARRAY(oopDesc, f, mtGC);
  1563     } else if (par_scan_state->should_be_partially_scanned(obj_to_push, cur)) {
  1564       assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
  1565       obj_to_push = cur;
  1567     bool ok = work_q->push(obj_to_push);
  1568     assert(ok, "Should have succeeded");
  1569     cur = next;
  1570     n++;
  1572   TASKQUEUE_STATS_ONLY(par_scan_state->note_overflow_refill(n));
  1573 #ifndef PRODUCT
  1574   assert(_num_par_pushes >= n, "Too many pops?");
  1575   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
  1576 #endif
  1577   return true;
  1579 #undef BUSY
  1581 void ParNewGeneration::ref_processor_init()
  1583   if (_ref_processor == NULL) {
  1584     // Allocate and initialize a reference processor
  1585     _ref_processor =
  1586       new ReferenceProcessor(_reserved,                  // span
  1587                              ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
  1588                              (int) ParallelGCThreads,    // mt processing degree
  1589                              refs_discovery_is_mt(),     // mt discovery
  1590                              (int) ParallelGCThreads,    // mt discovery degree
  1591                              refs_discovery_is_atomic(), // atomic_discovery
  1592                              NULL,                       // is_alive_non_header
  1593                              false);                     // write barrier for next field updates
  1597 const char* ParNewGeneration::name() const {
  1598   return "par new generation";
  1601 bool ParNewGeneration::in_use() {
  1602   return UseParNewGC && ParallelGCThreads > 0;

mercurial