src/share/vm/opto/library_call.cpp

Thu, 21 May 2009 10:05:36 -0700

author
kvn
date
Thu, 21 May 2009 10:05:36 -0700
changeset 1222
aabd393cf1ee
parent 1210
93c14e5562c4
child 1260
8f5825e0aeaa
permissions
-rw-r--r--

6772683: Thread.isInterrupted() fails to return true on multiprocessor PC
Summary: Set the control edge for the field _interrupted load in inline_native_isInterrupted().
Reviewed-by: never

     1 /*
     2  * Copyright 1999-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_library_call.cpp.incl"
    28 class LibraryIntrinsic : public InlineCallGenerator {
    29   // Extend the set of intrinsics known to the runtime:
    30  public:
    31  private:
    32   bool             _is_virtual;
    33   vmIntrinsics::ID _intrinsic_id;
    35  public:
    36   LibraryIntrinsic(ciMethod* m, bool is_virtual, vmIntrinsics::ID id)
    37     : InlineCallGenerator(m),
    38       _is_virtual(is_virtual),
    39       _intrinsic_id(id)
    40   {
    41   }
    42   virtual bool is_intrinsic() const { return true; }
    43   virtual bool is_virtual()   const { return _is_virtual; }
    44   virtual JVMState* generate(JVMState* jvms);
    45   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
    46 };
    49 // Local helper class for LibraryIntrinsic:
    50 class LibraryCallKit : public GraphKit {
    51  private:
    52   LibraryIntrinsic* _intrinsic;   // the library intrinsic being called
    54  public:
    55   LibraryCallKit(JVMState* caller, LibraryIntrinsic* intrinsic)
    56     : GraphKit(caller),
    57       _intrinsic(intrinsic)
    58   {
    59   }
    61   ciMethod*         caller()    const    { return jvms()->method(); }
    62   int               bci()       const    { return jvms()->bci(); }
    63   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
    64   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
    65   ciMethod*         callee()    const    { return _intrinsic->method(); }
    66   ciSignature*      signature() const    { return callee()->signature(); }
    67   int               arg_size()  const    { return callee()->arg_size(); }
    69   bool try_to_inline();
    71   // Helper functions to inline natives
    72   void push_result(RegionNode* region, PhiNode* value);
    73   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
    74   Node* generate_slow_guard(Node* test, RegionNode* region);
    75   Node* generate_fair_guard(Node* test, RegionNode* region);
    76   Node* generate_negative_guard(Node* index, RegionNode* region,
    77                                 // resulting CastII of index:
    78                                 Node* *pos_index = NULL);
    79   Node* generate_nonpositive_guard(Node* index, bool never_negative,
    80                                    // resulting CastII of index:
    81                                    Node* *pos_index = NULL);
    82   Node* generate_limit_guard(Node* offset, Node* subseq_length,
    83                              Node* array_length,
    84                              RegionNode* region);
    85   Node* generate_current_thread(Node* &tls_output);
    86   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
    87                               bool disjoint_bases, const char* &name);
    88   Node* load_mirror_from_klass(Node* klass);
    89   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
    90                                       int nargs,
    91                                       RegionNode* region, int null_path,
    92                                       int offset);
    93   Node* load_klass_from_mirror(Node* mirror, bool never_see_null, int nargs,
    94                                RegionNode* region, int null_path) {
    95     int offset = java_lang_Class::klass_offset_in_bytes();
    96     return load_klass_from_mirror_common(mirror, never_see_null, nargs,
    97                                          region, null_path,
    98                                          offset);
    99   }
   100   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
   101                                      int nargs,
   102                                      RegionNode* region, int null_path) {
   103     int offset = java_lang_Class::array_klass_offset_in_bytes();
   104     return load_klass_from_mirror_common(mirror, never_see_null, nargs,
   105                                          region, null_path,
   106                                          offset);
   107   }
   108   Node* generate_access_flags_guard(Node* kls,
   109                                     int modifier_mask, int modifier_bits,
   110                                     RegionNode* region);
   111   Node* generate_interface_guard(Node* kls, RegionNode* region);
   112   Node* generate_array_guard(Node* kls, RegionNode* region) {
   113     return generate_array_guard_common(kls, region, false, false);
   114   }
   115   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
   116     return generate_array_guard_common(kls, region, false, true);
   117   }
   118   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
   119     return generate_array_guard_common(kls, region, true, false);
   120   }
   121   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
   122     return generate_array_guard_common(kls, region, true, true);
   123   }
   124   Node* generate_array_guard_common(Node* kls, RegionNode* region,
   125                                     bool obj_array, bool not_array);
   126   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
   127   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
   128                                      bool is_virtual = false, bool is_static = false);
   129   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
   130     return generate_method_call(method_id, false, true);
   131   }
   132   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
   133     return generate_method_call(method_id, true, false);
   134   }
   136   bool inline_string_compareTo();
   137   bool inline_string_indexOf();
   138   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
   139   bool inline_string_equals();
   140   Node* pop_math_arg();
   141   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
   142   bool inline_math_native(vmIntrinsics::ID id);
   143   bool inline_trig(vmIntrinsics::ID id);
   144   bool inline_trans(vmIntrinsics::ID id);
   145   bool inline_abs(vmIntrinsics::ID id);
   146   bool inline_sqrt(vmIntrinsics::ID id);
   147   bool inline_pow(vmIntrinsics::ID id);
   148   bool inline_exp(vmIntrinsics::ID id);
   149   bool inline_min_max(vmIntrinsics::ID id);
   150   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
   151   // This returns Type::AnyPtr, RawPtr, or OopPtr.
   152   int classify_unsafe_addr(Node* &base, Node* &offset);
   153   Node* make_unsafe_address(Node* base, Node* offset);
   154   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
   155   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
   156   bool inline_unsafe_allocate();
   157   bool inline_unsafe_copyMemory();
   158   bool inline_native_currentThread();
   159   bool inline_native_time_funcs(bool isNano);
   160   bool inline_native_isInterrupted();
   161   bool inline_native_Class_query(vmIntrinsics::ID id);
   162   bool inline_native_subtype_check();
   164   bool inline_native_newArray();
   165   bool inline_native_getLength();
   166   bool inline_array_copyOf(bool is_copyOfRange);
   167   bool inline_array_equals();
   168   bool inline_native_clone(bool is_virtual);
   169   bool inline_native_Reflection_getCallerClass();
   170   bool inline_native_AtomicLong_get();
   171   bool inline_native_AtomicLong_attemptUpdate();
   172   bool is_method_invoke_or_aux_frame(JVMState* jvms);
   173   // Helper function for inlining native object hash method
   174   bool inline_native_hashcode(bool is_virtual, bool is_static);
   175   bool inline_native_getClass();
   177   // Helper functions for inlining arraycopy
   178   bool inline_arraycopy();
   179   void generate_arraycopy(const TypePtr* adr_type,
   180                           BasicType basic_elem_type,
   181                           Node* src,  Node* src_offset,
   182                           Node* dest, Node* dest_offset,
   183                           Node* copy_length,
   184                           int nargs,  // arguments on stack for debug info
   185                           bool disjoint_bases = false,
   186                           bool length_never_negative = false,
   187                           RegionNode* slow_region = NULL);
   188   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
   189                                                 RegionNode* slow_region);
   190   void generate_clear_array(const TypePtr* adr_type,
   191                             Node* dest,
   192                             BasicType basic_elem_type,
   193                             Node* slice_off,
   194                             Node* slice_len,
   195                             Node* slice_end);
   196   bool generate_block_arraycopy(const TypePtr* adr_type,
   197                                 BasicType basic_elem_type,
   198                                 AllocateNode* alloc,
   199                                 Node* src,  Node* src_offset,
   200                                 Node* dest, Node* dest_offset,
   201                                 Node* dest_size);
   202   void generate_slow_arraycopy(const TypePtr* adr_type,
   203                                Node* src,  Node* src_offset,
   204                                Node* dest, Node* dest_offset,
   205                                Node* copy_length,
   206                                int nargs);
   207   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
   208                                      Node* dest_elem_klass,
   209                                      Node* src,  Node* src_offset,
   210                                      Node* dest, Node* dest_offset,
   211                                      Node* copy_length, int nargs);
   212   Node* generate_generic_arraycopy(const TypePtr* adr_type,
   213                                    Node* src,  Node* src_offset,
   214                                    Node* dest, Node* dest_offset,
   215                                    Node* copy_length, int nargs);
   216   void generate_unchecked_arraycopy(const TypePtr* adr_type,
   217                                     BasicType basic_elem_type,
   218                                     bool disjoint_bases,
   219                                     Node* src,  Node* src_offset,
   220                                     Node* dest, Node* dest_offset,
   221                                     Node* copy_length);
   222   bool inline_unsafe_CAS(BasicType type);
   223   bool inline_unsafe_ordered_store(BasicType type);
   224   bool inline_fp_conversions(vmIntrinsics::ID id);
   225   bool inline_numberOfLeadingZeros(vmIntrinsics::ID id);
   226   bool inline_numberOfTrailingZeros(vmIntrinsics::ID id);
   227   bool inline_bitCount(vmIntrinsics::ID id);
   228   bool inline_reverseBytes(vmIntrinsics::ID id);
   229 };
   232 //---------------------------make_vm_intrinsic----------------------------
   233 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
   234   vmIntrinsics::ID id = m->intrinsic_id();
   235   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
   237   if (DisableIntrinsic[0] != '\0'
   238       && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
   239     // disabled by a user request on the command line:
   240     // example: -XX:DisableIntrinsic=_hashCode,_getClass
   241     return NULL;
   242   }
   244   if (!m->is_loaded()) {
   245     // do not attempt to inline unloaded methods
   246     return NULL;
   247   }
   249   // Only a few intrinsics implement a virtual dispatch.
   250   // They are expensive calls which are also frequently overridden.
   251   if (is_virtual) {
   252     switch (id) {
   253     case vmIntrinsics::_hashCode:
   254     case vmIntrinsics::_clone:
   255       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
   256       break;
   257     default:
   258       return NULL;
   259     }
   260   }
   262   // -XX:-InlineNatives disables nearly all intrinsics:
   263   if (!InlineNatives) {
   264     switch (id) {
   265     case vmIntrinsics::_indexOf:
   266     case vmIntrinsics::_compareTo:
   267     case vmIntrinsics::_equals:
   268     case vmIntrinsics::_equalsC:
   269       break;  // InlineNatives does not control String.compareTo
   270     default:
   271       return NULL;
   272     }
   273   }
   275   switch (id) {
   276   case vmIntrinsics::_compareTo:
   277     if (!SpecialStringCompareTo)  return NULL;
   278     break;
   279   case vmIntrinsics::_indexOf:
   280     if (!SpecialStringIndexOf)  return NULL;
   281     break;
   282   case vmIntrinsics::_equals:
   283     if (!SpecialStringEquals)  return NULL;
   284     break;
   285   case vmIntrinsics::_equalsC:
   286     if (!SpecialArraysEquals)  return NULL;
   287     break;
   288   case vmIntrinsics::_arraycopy:
   289     if (!InlineArrayCopy)  return NULL;
   290     break;
   291   case vmIntrinsics::_copyMemory:
   292     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
   293     if (!InlineArrayCopy)  return NULL;
   294     break;
   295   case vmIntrinsics::_hashCode:
   296     if (!InlineObjectHash)  return NULL;
   297     break;
   298   case vmIntrinsics::_clone:
   299   case vmIntrinsics::_copyOf:
   300   case vmIntrinsics::_copyOfRange:
   301     if (!InlineObjectCopy)  return NULL;
   302     // These also use the arraycopy intrinsic mechanism:
   303     if (!InlineArrayCopy)  return NULL;
   304     break;
   305   case vmIntrinsics::_checkIndex:
   306     // We do not intrinsify this.  The optimizer does fine with it.
   307     return NULL;
   309   case vmIntrinsics::_get_AtomicLong:
   310   case vmIntrinsics::_attemptUpdate:
   311     if (!InlineAtomicLong)  return NULL;
   312     break;
   314   case vmIntrinsics::_Object_init:
   315   case vmIntrinsics::_invoke:
   316     // We do not intrinsify these; they are marked for other purposes.
   317     return NULL;
   319   case vmIntrinsics::_getCallerClass:
   320     if (!UseNewReflection)  return NULL;
   321     if (!InlineReflectionGetCallerClass)  return NULL;
   322     if (!JDK_Version::is_gte_jdk14x_version())  return NULL;
   323     break;
   325   case vmIntrinsics::_bitCount_i:
   326   case vmIntrinsics::_bitCount_l:
   327     if (!UsePopCountInstruction)  return NULL;
   328     break;
   330  default:
   331     break;
   332   }
   334   // -XX:-InlineClassNatives disables natives from the Class class.
   335   // The flag applies to all reflective calls, notably Array.newArray
   336   // (visible to Java programmers as Array.newInstance).
   337   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
   338       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
   339     if (!InlineClassNatives)  return NULL;
   340   }
   342   // -XX:-InlineThreadNatives disables natives from the Thread class.
   343   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
   344     if (!InlineThreadNatives)  return NULL;
   345   }
   347   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
   348   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
   349       m->holder()->name() == ciSymbol::java_lang_Float() ||
   350       m->holder()->name() == ciSymbol::java_lang_Double()) {
   351     if (!InlineMathNatives)  return NULL;
   352   }
   354   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
   355   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
   356     if (!InlineUnsafeOps)  return NULL;
   357   }
   359   return new LibraryIntrinsic(m, is_virtual, (vmIntrinsics::ID) id);
   360 }
   362 //----------------------register_library_intrinsics-----------------------
   363 // Initialize this file's data structures, for each Compile instance.
   364 void Compile::register_library_intrinsics() {
   365   // Nothing to do here.
   366 }
   368 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
   369   LibraryCallKit kit(jvms, this);
   370   Compile* C = kit.C;
   371   int nodes = C->unique();
   372 #ifndef PRODUCT
   373   if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
   374     char buf[1000];
   375     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
   376     tty->print_cr("Intrinsic %s", str);
   377   }
   378 #endif
   379   if (kit.try_to_inline()) {
   380     if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
   381       tty->print("Inlining intrinsic %s%s at bci:%d in",
   382                  vmIntrinsics::name_at(intrinsic_id()),
   383                  (is_virtual() ? " (virtual)" : ""), kit.bci());
   384       kit.caller()->print_short_name(tty);
   385       tty->print_cr(" (%d bytes)", kit.caller()->code_size());
   386     }
   387     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
   388     if (C->log()) {
   389       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
   390                      vmIntrinsics::name_at(intrinsic_id()),
   391                      (is_virtual() ? " virtual='1'" : ""),
   392                      C->unique() - nodes);
   393     }
   394     return kit.transfer_exceptions_into_jvms();
   395   }
   397   if (PrintIntrinsics) {
   398     switch (intrinsic_id()) {
   399     case vmIntrinsics::_invoke:
   400     case vmIntrinsics::_Object_init:
   401       // We do not expect to inline these, so do not produce any noise about them.
   402       break;
   403     default:
   404       tty->print("Did not inline intrinsic %s%s at bci:%d in",
   405                  vmIntrinsics::name_at(intrinsic_id()),
   406                  (is_virtual() ? " (virtual)" : ""), kit.bci());
   407       kit.caller()->print_short_name(tty);
   408       tty->print_cr(" (%d bytes)", kit.caller()->code_size());
   409     }
   410   }
   411   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
   412   return NULL;
   413 }
   415 bool LibraryCallKit::try_to_inline() {
   416   // Handle symbolic names for otherwise undistinguished boolean switches:
   417   const bool is_store       = true;
   418   const bool is_native_ptr  = true;
   419   const bool is_static      = true;
   421   switch (intrinsic_id()) {
   422   case vmIntrinsics::_hashCode:
   423     return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
   424   case vmIntrinsics::_identityHashCode:
   425     return inline_native_hashcode(/*!virtual*/ false, is_static);
   426   case vmIntrinsics::_getClass:
   427     return inline_native_getClass();
   429   case vmIntrinsics::_dsin:
   430   case vmIntrinsics::_dcos:
   431   case vmIntrinsics::_dtan:
   432   case vmIntrinsics::_dabs:
   433   case vmIntrinsics::_datan2:
   434   case vmIntrinsics::_dsqrt:
   435   case vmIntrinsics::_dexp:
   436   case vmIntrinsics::_dlog:
   437   case vmIntrinsics::_dlog10:
   438   case vmIntrinsics::_dpow:
   439     return inline_math_native(intrinsic_id());
   441   case vmIntrinsics::_min:
   442   case vmIntrinsics::_max:
   443     return inline_min_max(intrinsic_id());
   445   case vmIntrinsics::_arraycopy:
   446     return inline_arraycopy();
   448   case vmIntrinsics::_compareTo:
   449     return inline_string_compareTo();
   450   case vmIntrinsics::_indexOf:
   451     return inline_string_indexOf();
   452   case vmIntrinsics::_equals:
   453     return inline_string_equals();
   455   case vmIntrinsics::_getObject:
   456     return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, false);
   457   case vmIntrinsics::_getBoolean:
   458     return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, false);
   459   case vmIntrinsics::_getByte:
   460     return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, false);
   461   case vmIntrinsics::_getShort:
   462     return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, false);
   463   case vmIntrinsics::_getChar:
   464     return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, false);
   465   case vmIntrinsics::_getInt:
   466     return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, false);
   467   case vmIntrinsics::_getLong:
   468     return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, false);
   469   case vmIntrinsics::_getFloat:
   470     return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, false);
   471   case vmIntrinsics::_getDouble:
   472     return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, false);
   474   case vmIntrinsics::_putObject:
   475     return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, false);
   476   case vmIntrinsics::_putBoolean:
   477     return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, false);
   478   case vmIntrinsics::_putByte:
   479     return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, false);
   480   case vmIntrinsics::_putShort:
   481     return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, false);
   482   case vmIntrinsics::_putChar:
   483     return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, false);
   484   case vmIntrinsics::_putInt:
   485     return inline_unsafe_access(!is_native_ptr, is_store, T_INT, false);
   486   case vmIntrinsics::_putLong:
   487     return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, false);
   488   case vmIntrinsics::_putFloat:
   489     return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, false);
   490   case vmIntrinsics::_putDouble:
   491     return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, false);
   493   case vmIntrinsics::_getByte_raw:
   494     return inline_unsafe_access(is_native_ptr, !is_store, T_BYTE, false);
   495   case vmIntrinsics::_getShort_raw:
   496     return inline_unsafe_access(is_native_ptr, !is_store, T_SHORT, false);
   497   case vmIntrinsics::_getChar_raw:
   498     return inline_unsafe_access(is_native_ptr, !is_store, T_CHAR, false);
   499   case vmIntrinsics::_getInt_raw:
   500     return inline_unsafe_access(is_native_ptr, !is_store, T_INT, false);
   501   case vmIntrinsics::_getLong_raw:
   502     return inline_unsafe_access(is_native_ptr, !is_store, T_LONG, false);
   503   case vmIntrinsics::_getFloat_raw:
   504     return inline_unsafe_access(is_native_ptr, !is_store, T_FLOAT, false);
   505   case vmIntrinsics::_getDouble_raw:
   506     return inline_unsafe_access(is_native_ptr, !is_store, T_DOUBLE, false);
   507   case vmIntrinsics::_getAddress_raw:
   508     return inline_unsafe_access(is_native_ptr, !is_store, T_ADDRESS, false);
   510   case vmIntrinsics::_putByte_raw:
   511     return inline_unsafe_access(is_native_ptr, is_store, T_BYTE, false);
   512   case vmIntrinsics::_putShort_raw:
   513     return inline_unsafe_access(is_native_ptr, is_store, T_SHORT, false);
   514   case vmIntrinsics::_putChar_raw:
   515     return inline_unsafe_access(is_native_ptr, is_store, T_CHAR, false);
   516   case vmIntrinsics::_putInt_raw:
   517     return inline_unsafe_access(is_native_ptr, is_store, T_INT, false);
   518   case vmIntrinsics::_putLong_raw:
   519     return inline_unsafe_access(is_native_ptr, is_store, T_LONG, false);
   520   case vmIntrinsics::_putFloat_raw:
   521     return inline_unsafe_access(is_native_ptr, is_store, T_FLOAT, false);
   522   case vmIntrinsics::_putDouble_raw:
   523     return inline_unsafe_access(is_native_ptr, is_store, T_DOUBLE, false);
   524   case vmIntrinsics::_putAddress_raw:
   525     return inline_unsafe_access(is_native_ptr, is_store, T_ADDRESS, false);
   527   case vmIntrinsics::_getObjectVolatile:
   528     return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, true);
   529   case vmIntrinsics::_getBooleanVolatile:
   530     return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, true);
   531   case vmIntrinsics::_getByteVolatile:
   532     return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, true);
   533   case vmIntrinsics::_getShortVolatile:
   534     return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, true);
   535   case vmIntrinsics::_getCharVolatile:
   536     return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, true);
   537   case vmIntrinsics::_getIntVolatile:
   538     return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, true);
   539   case vmIntrinsics::_getLongVolatile:
   540     return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, true);
   541   case vmIntrinsics::_getFloatVolatile:
   542     return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, true);
   543   case vmIntrinsics::_getDoubleVolatile:
   544     return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, true);
   546   case vmIntrinsics::_putObjectVolatile:
   547     return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, true);
   548   case vmIntrinsics::_putBooleanVolatile:
   549     return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, true);
   550   case vmIntrinsics::_putByteVolatile:
   551     return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, true);
   552   case vmIntrinsics::_putShortVolatile:
   553     return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, true);
   554   case vmIntrinsics::_putCharVolatile:
   555     return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, true);
   556   case vmIntrinsics::_putIntVolatile:
   557     return inline_unsafe_access(!is_native_ptr, is_store, T_INT, true);
   558   case vmIntrinsics::_putLongVolatile:
   559     return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, true);
   560   case vmIntrinsics::_putFloatVolatile:
   561     return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, true);
   562   case vmIntrinsics::_putDoubleVolatile:
   563     return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, true);
   565   case vmIntrinsics::_prefetchRead:
   566     return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
   567   case vmIntrinsics::_prefetchWrite:
   568     return inline_unsafe_prefetch(!is_native_ptr, is_store, !is_static);
   569   case vmIntrinsics::_prefetchReadStatic:
   570     return inline_unsafe_prefetch(!is_native_ptr, !is_store, is_static);
   571   case vmIntrinsics::_prefetchWriteStatic:
   572     return inline_unsafe_prefetch(!is_native_ptr, is_store, is_static);
   574   case vmIntrinsics::_compareAndSwapObject:
   575     return inline_unsafe_CAS(T_OBJECT);
   576   case vmIntrinsics::_compareAndSwapInt:
   577     return inline_unsafe_CAS(T_INT);
   578   case vmIntrinsics::_compareAndSwapLong:
   579     return inline_unsafe_CAS(T_LONG);
   581   case vmIntrinsics::_putOrderedObject:
   582     return inline_unsafe_ordered_store(T_OBJECT);
   583   case vmIntrinsics::_putOrderedInt:
   584     return inline_unsafe_ordered_store(T_INT);
   585   case vmIntrinsics::_putOrderedLong:
   586     return inline_unsafe_ordered_store(T_LONG);
   588   case vmIntrinsics::_currentThread:
   589     return inline_native_currentThread();
   590   case vmIntrinsics::_isInterrupted:
   591     return inline_native_isInterrupted();
   593   case vmIntrinsics::_currentTimeMillis:
   594     return inline_native_time_funcs(false);
   595   case vmIntrinsics::_nanoTime:
   596     return inline_native_time_funcs(true);
   597   case vmIntrinsics::_allocateInstance:
   598     return inline_unsafe_allocate();
   599   case vmIntrinsics::_copyMemory:
   600     return inline_unsafe_copyMemory();
   601   case vmIntrinsics::_newArray:
   602     return inline_native_newArray();
   603   case vmIntrinsics::_getLength:
   604     return inline_native_getLength();
   605   case vmIntrinsics::_copyOf:
   606     return inline_array_copyOf(false);
   607   case vmIntrinsics::_copyOfRange:
   608     return inline_array_copyOf(true);
   609   case vmIntrinsics::_equalsC:
   610     return inline_array_equals();
   611   case vmIntrinsics::_clone:
   612     return inline_native_clone(intrinsic()->is_virtual());
   614   case vmIntrinsics::_isAssignableFrom:
   615     return inline_native_subtype_check();
   617   case vmIntrinsics::_isInstance:
   618   case vmIntrinsics::_getModifiers:
   619   case vmIntrinsics::_isInterface:
   620   case vmIntrinsics::_isArray:
   621   case vmIntrinsics::_isPrimitive:
   622   case vmIntrinsics::_getSuperclass:
   623   case vmIntrinsics::_getComponentType:
   624   case vmIntrinsics::_getClassAccessFlags:
   625     return inline_native_Class_query(intrinsic_id());
   627   case vmIntrinsics::_floatToRawIntBits:
   628   case vmIntrinsics::_floatToIntBits:
   629   case vmIntrinsics::_intBitsToFloat:
   630   case vmIntrinsics::_doubleToRawLongBits:
   631   case vmIntrinsics::_doubleToLongBits:
   632   case vmIntrinsics::_longBitsToDouble:
   633     return inline_fp_conversions(intrinsic_id());
   635   case vmIntrinsics::_numberOfLeadingZeros_i:
   636   case vmIntrinsics::_numberOfLeadingZeros_l:
   637     return inline_numberOfLeadingZeros(intrinsic_id());
   639   case vmIntrinsics::_numberOfTrailingZeros_i:
   640   case vmIntrinsics::_numberOfTrailingZeros_l:
   641     return inline_numberOfTrailingZeros(intrinsic_id());
   643   case vmIntrinsics::_bitCount_i:
   644   case vmIntrinsics::_bitCount_l:
   645     return inline_bitCount(intrinsic_id());
   647   case vmIntrinsics::_reverseBytes_i:
   648   case vmIntrinsics::_reverseBytes_l:
   649     return inline_reverseBytes((vmIntrinsics::ID) intrinsic_id());
   651   case vmIntrinsics::_get_AtomicLong:
   652     return inline_native_AtomicLong_get();
   653   case vmIntrinsics::_attemptUpdate:
   654     return inline_native_AtomicLong_attemptUpdate();
   656   case vmIntrinsics::_getCallerClass:
   657     return inline_native_Reflection_getCallerClass();
   659   default:
   660     // If you get here, it may be that someone has added a new intrinsic
   661     // to the list in vmSymbols.hpp without implementing it here.
   662 #ifndef PRODUCT
   663     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
   664       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
   665                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
   666     }
   667 #endif
   668     return false;
   669   }
   670 }
   672 //------------------------------push_result------------------------------
   673 // Helper function for finishing intrinsics.
   674 void LibraryCallKit::push_result(RegionNode* region, PhiNode* value) {
   675   record_for_igvn(region);
   676   set_control(_gvn.transform(region));
   677   BasicType value_type = value->type()->basic_type();
   678   push_node(value_type, _gvn.transform(value));
   679 }
   681 //------------------------------generate_guard---------------------------
   682 // Helper function for generating guarded fast-slow graph structures.
   683 // The given 'test', if true, guards a slow path.  If the test fails
   684 // then a fast path can be taken.  (We generally hope it fails.)
   685 // In all cases, GraphKit::control() is updated to the fast path.
   686 // The returned value represents the control for the slow path.
   687 // The return value is never 'top'; it is either a valid control
   688 // or NULL if it is obvious that the slow path can never be taken.
   689 // Also, if region and the slow control are not NULL, the slow edge
   690 // is appended to the region.
   691 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
   692   if (stopped()) {
   693     // Already short circuited.
   694     return NULL;
   695   }
   697   // Build an if node and its projections.
   698   // If test is true we take the slow path, which we assume is uncommon.
   699   if (_gvn.type(test) == TypeInt::ZERO) {
   700     // The slow branch is never taken.  No need to build this guard.
   701     return NULL;
   702   }
   704   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
   706   Node* if_slow = _gvn.transform( new (C, 1) IfTrueNode(iff) );
   707   if (if_slow == top()) {
   708     // The slow branch is never taken.  No need to build this guard.
   709     return NULL;
   710   }
   712   if (region != NULL)
   713     region->add_req(if_slow);
   715   Node* if_fast = _gvn.transform( new (C, 1) IfFalseNode(iff) );
   716   set_control(if_fast);
   718   return if_slow;
   719 }
   721 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
   722   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
   723 }
   724 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
   725   return generate_guard(test, region, PROB_FAIR);
   726 }
   728 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
   729                                                      Node* *pos_index) {
   730   if (stopped())
   731     return NULL;                // already stopped
   732   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
   733     return NULL;                // index is already adequately typed
   734   Node* cmp_lt = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
   735   Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
   736   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
   737   if (is_neg != NULL && pos_index != NULL) {
   738     // Emulate effect of Parse::adjust_map_after_if.
   739     Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS);
   740     ccast->set_req(0, control());
   741     (*pos_index) = _gvn.transform(ccast);
   742   }
   743   return is_neg;
   744 }
   746 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
   747                                                         Node* *pos_index) {
   748   if (stopped())
   749     return NULL;                // already stopped
   750   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
   751     return NULL;                // index is already adequately typed
   752   Node* cmp_le = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
   753   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
   754   Node* bol_le = _gvn.transform( new (C, 2) BoolNode(cmp_le, le_or_eq) );
   755   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
   756   if (is_notp != NULL && pos_index != NULL) {
   757     // Emulate effect of Parse::adjust_map_after_if.
   758     Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS1);
   759     ccast->set_req(0, control());
   760     (*pos_index) = _gvn.transform(ccast);
   761   }
   762   return is_notp;
   763 }
   765 // Make sure that 'position' is a valid limit index, in [0..length].
   766 // There are two equivalent plans for checking this:
   767 //   A. (offset + copyLength)  unsigned<=  arrayLength
   768 //   B. offset  <=  (arrayLength - copyLength)
   769 // We require that all of the values above, except for the sum and
   770 // difference, are already known to be non-negative.
   771 // Plan A is robust in the face of overflow, if offset and copyLength
   772 // are both hugely positive.
   773 //
   774 // Plan B is less direct and intuitive, but it does not overflow at
   775 // all, since the difference of two non-negatives is always
   776 // representable.  Whenever Java methods must perform the equivalent
   777 // check they generally use Plan B instead of Plan A.
   778 // For the moment we use Plan A.
   779 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
   780                                                   Node* subseq_length,
   781                                                   Node* array_length,
   782                                                   RegionNode* region) {
   783   if (stopped())
   784     return NULL;                // already stopped
   785   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
   786   if (zero_offset && _gvn.eqv_uncast(subseq_length, array_length))
   787     return NULL;                // common case of whole-array copy
   788   Node* last = subseq_length;
   789   if (!zero_offset)             // last += offset
   790     last = _gvn.transform( new (C, 3) AddINode(last, offset));
   791   Node* cmp_lt = _gvn.transform( new (C, 3) CmpUNode(array_length, last) );
   792   Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
   793   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
   794   return is_over;
   795 }
   798 //--------------------------generate_current_thread--------------------
   799 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
   800   ciKlass*    thread_klass = env()->Thread_klass();
   801   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
   802   Node* thread = _gvn.transform(new (C, 1) ThreadLocalNode());
   803   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
   804   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
   805   tls_output = thread;
   806   return threadObj;
   807 }
   810 //------------------------------inline_string_compareTo------------------------
   811 bool LibraryCallKit::inline_string_compareTo() {
   813   if (!Matcher::has_match_rule(Op_StrComp)) return false;
   815   const int value_offset = java_lang_String::value_offset_in_bytes();
   816   const int count_offset = java_lang_String::count_offset_in_bytes();
   817   const int offset_offset = java_lang_String::offset_offset_in_bytes();
   819   _sp += 2;
   820   Node *argument = pop();  // pop non-receiver first:  it was pushed second
   821   Node *receiver = pop();
   823   // Null check on self without removing any arguments.  The argument
   824   // null check technically happens in the wrong place, which can lead to
   825   // invalid stack traces when string compare is inlined into a method
   826   // which handles NullPointerExceptions.
   827   _sp += 2;
   828   receiver = do_null_check(receiver, T_OBJECT);
   829   argument = do_null_check(argument, T_OBJECT);
   830   _sp -= 2;
   831   if (stopped()) {
   832     return true;
   833   }
   835   ciInstanceKlass* klass = env()->String_klass();
   836   const TypeInstPtr* string_type =
   837     TypeInstPtr::make(TypePtr::BotPTR, klass, false, NULL, 0);
   839   Node* compare =
   840     _gvn.transform(new (C, 7) StrCompNode(
   841                         control(),
   842                         memory(TypeAryPtr::CHARS),
   843                         memory(string_type->add_offset(value_offset)),
   844                         memory(string_type->add_offset(count_offset)),
   845                         memory(string_type->add_offset(offset_offset)),
   846                         receiver,
   847                         argument));
   848   push(compare);
   849   return true;
   850 }
   852 //------------------------------inline_string_equals------------------------
   853 bool LibraryCallKit::inline_string_equals() {
   855   if (!Matcher::has_match_rule(Op_StrEquals)) return false;
   857   const int value_offset = java_lang_String::value_offset_in_bytes();
   858   const int count_offset = java_lang_String::count_offset_in_bytes();
   859   const int offset_offset = java_lang_String::offset_offset_in_bytes();
   861   _sp += 2;
   862   Node* argument = pop();  // pop non-receiver first:  it was pushed second
   863   Node* receiver = pop();
   865   // Null check on self without removing any arguments.  The argument
   866   // null check technically happens in the wrong place, which can lead to
   867   // invalid stack traces when string compare is inlined into a method
   868   // which handles NullPointerExceptions.
   869   _sp += 2;
   870   receiver = do_null_check(receiver, T_OBJECT);
   871   //should not do null check for argument for String.equals(), because spec
   872   //allows to specify NULL as argument.
   873   _sp -= 2;
   875   if (stopped()) {
   876     return true;
   877   }
   879   // get String klass for instanceOf
   880   ciInstanceKlass* klass = env()->String_klass();
   882   // two paths (plus control) merge
   883   RegionNode* region = new (C, 3) RegionNode(3);
   884   Node* phi = new (C, 3) PhiNode(region, TypeInt::BOOL);
   886   Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
   887   Node* cmp  = _gvn.transform(new (C, 3) CmpINode(inst, intcon(1)));
   888   Node* bol  = _gvn.transform(new (C, 2) BoolNode(cmp, BoolTest::eq));
   890   IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
   892   Node* if_true  = _gvn.transform(new (C, 1) IfTrueNode(iff));
   893   set_control(if_true);
   895   const TypeInstPtr* string_type =
   896     TypeInstPtr::make(TypePtr::BotPTR, klass, false, NULL, 0);
   898   // instanceOf == true
   899   Node* equals =
   900     _gvn.transform(new (C, 7) StrEqualsNode(
   901                         control(),
   902                         memory(TypeAryPtr::CHARS),
   903                         memory(string_type->add_offset(value_offset)),
   904                         memory(string_type->add_offset(count_offset)),
   905                         memory(string_type->add_offset(offset_offset)),
   906                         receiver,
   907                         argument));
   909   phi->init_req(1, _gvn.transform(equals));
   910   region->init_req(1, if_true);
   912   //instanceOf == false, fallthrough
   913   Node* if_false = _gvn.transform(new (C, 1) IfFalseNode(iff));
   914   set_control(if_false);
   916   phi->init_req(2, _gvn.transform(intcon(0)));
   917   region->init_req(2, if_false);
   919   // post merge
   920   set_control(_gvn.transform(region));
   921   record_for_igvn(region);
   923   push(_gvn.transform(phi));
   925   return true;
   926 }
   928 //------------------------------inline_array_equals----------------------------
   929 bool LibraryCallKit::inline_array_equals() {
   931   if (!Matcher::has_match_rule(Op_AryEq)) return false;
   933   _sp += 2;
   934   Node *argument2 = pop();
   935   Node *argument1 = pop();
   937   Node* equals =
   938     _gvn.transform(new (C, 3) AryEqNode(control(),
   939                                         argument1,
   940                                         argument2)
   941                    );
   942   push(equals);
   943   return true;
   944 }
   946 // Java version of String.indexOf(constant string)
   947 // class StringDecl {
   948 //   StringDecl(char[] ca) {
   949 //     offset = 0;
   950 //     count = ca.length;
   951 //     value = ca;
   952 //   }
   953 //   int offset;
   954 //   int count;
   955 //   char[] value;
   956 // }
   957 //
   958 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
   959 //                             int targetOffset, int cache_i, int md2) {
   960 //   int cache = cache_i;
   961 //   int sourceOffset = string_object.offset;
   962 //   int sourceCount = string_object.count;
   963 //   int targetCount = target_object.length;
   964 //
   965 //   int targetCountLess1 = targetCount - 1;
   966 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
   967 //
   968 //   char[] source = string_object.value;
   969 //   char[] target = target_object;
   970 //   int lastChar = target[targetCountLess1];
   971 //
   972 //  outer_loop:
   973 //   for (int i = sourceOffset; i < sourceEnd; ) {
   974 //     int src = source[i + targetCountLess1];
   975 //     if (src == lastChar) {
   976 //       // With random strings and a 4-character alphabet,
   977 //       // reverse matching at this point sets up 0.8% fewer
   978 //       // frames, but (paradoxically) makes 0.3% more probes.
   979 //       // Since those probes are nearer the lastChar probe,
   980 //       // there is may be a net D$ win with reverse matching.
   981 //       // But, reversing loop inhibits unroll of inner loop
   982 //       // for unknown reason.  So, does running outer loop from
   983 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
   984 //       for (int j = 0; j < targetCountLess1; j++) {
   985 //         if (target[targetOffset + j] != source[i+j]) {
   986 //           if ((cache & (1 << source[i+j])) == 0) {
   987 //             if (md2 < j+1) {
   988 //               i += j+1;
   989 //               continue outer_loop;
   990 //             }
   991 //           }
   992 //           i += md2;
   993 //           continue outer_loop;
   994 //         }
   995 //       }
   996 //       return i - sourceOffset;
   997 //     }
   998 //     if ((cache & (1 << src)) == 0) {
   999 //       i += targetCountLess1;
  1000 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
  1001 //     i++;
  1002 //   }
  1003 //   return -1;
  1004 // }
  1006 //------------------------------string_indexOf------------------------
  1007 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
  1008                                      jint cache_i, jint md2_i) {
  1010   Node* no_ctrl  = NULL;
  1011   float likely   = PROB_LIKELY(0.9);
  1012   float unlikely = PROB_UNLIKELY(0.9);
  1014   const int value_offset  = java_lang_String::value_offset_in_bytes();
  1015   const int count_offset  = java_lang_String::count_offset_in_bytes();
  1016   const int offset_offset = java_lang_String::offset_offset_in_bytes();
  1018   ciInstanceKlass* klass = env()->String_klass();
  1019   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::BotPTR, klass, false, NULL, 0);
  1020   const TypeAryPtr*  source_type = TypeAryPtr::make(TypePtr::NotNull, TypeAry::make(TypeInt::CHAR,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, 0);
  1022   Node* sourceOffseta = basic_plus_adr(string_object, string_object, offset_offset);
  1023   Node* sourceOffset  = make_load(no_ctrl, sourceOffseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
  1024   Node* sourceCounta  = basic_plus_adr(string_object, string_object, count_offset);
  1025   Node* sourceCount   = make_load(no_ctrl, sourceCounta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
  1026   Node* sourcea       = basic_plus_adr(string_object, string_object, value_offset);
  1027   Node* source        = make_load(no_ctrl, sourcea, source_type, T_OBJECT, string_type->add_offset(value_offset));
  1029   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array)) );
  1030   jint target_length = target_array->length();
  1031   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
  1032   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
  1034   IdealKit kit(gvn(), control(), merged_memory());
  1035 #define __ kit.
  1036   Node* zero             = __ ConI(0);
  1037   Node* one              = __ ConI(1);
  1038   Node* cache            = __ ConI(cache_i);
  1039   Node* md2              = __ ConI(md2_i);
  1040   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
  1041   Node* targetCount      = __ ConI(target_length);
  1042   Node* targetCountLess1 = __ ConI(target_length - 1);
  1043   Node* targetOffset     = __ ConI(targetOffset_i);
  1044   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
  1046   IdealVariable rtn(kit), i(kit), j(kit); __ declares_done();
  1047   Node* outer_loop = __ make_label(2 /* goto */);
  1048   Node* return_    = __ make_label(1);
  1050   __ set(rtn,__ ConI(-1));
  1051   __ loop(i, sourceOffset, BoolTest::lt, sourceEnd); {
  1052        Node* i2  = __ AddI(__ value(i), targetCountLess1);
  1053        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
  1054        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
  1055        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
  1056          __ loop(j, zero, BoolTest::lt, targetCountLess1); {
  1057               Node* tpj = __ AddI(targetOffset, __ value(j));
  1058               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
  1059               Node* ipj  = __ AddI(__ value(i), __ value(j));
  1060               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
  1061               __ if_then(targ, BoolTest::ne, src2); {
  1062                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
  1063                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
  1064                     __ increment(i, __ AddI(__ value(j), one));
  1065                     __ goto_(outer_loop);
  1066                   } __ end_if(); __ dead(j);
  1067                 }__ end_if(); __ dead(j);
  1068                 __ increment(i, md2);
  1069                 __ goto_(outer_loop);
  1070               }__ end_if();
  1071               __ increment(j, one);
  1072          }__ end_loop(); __ dead(j);
  1073          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
  1074          __ goto_(return_);
  1075        }__ end_if();
  1076        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
  1077          __ increment(i, targetCountLess1);
  1078        }__ end_if();
  1079        __ increment(i, one);
  1080        __ bind(outer_loop);
  1081   }__ end_loop(); __ dead(i);
  1082   __ bind(return_);
  1083   __ drain_delay_transform();
  1085   set_control(__ ctrl());
  1086   Node* result = __ value(rtn);
  1087 #undef __
  1088   C->set_has_loops(true);
  1089   return result;
  1092 //------------------------------inline_string_indexOf------------------------
  1093 bool LibraryCallKit::inline_string_indexOf() {
  1095   const int value_offset  = java_lang_String::value_offset_in_bytes();
  1096   const int count_offset  = java_lang_String::count_offset_in_bytes();
  1097   const int offset_offset = java_lang_String::offset_offset_in_bytes();
  1099   _sp += 2;
  1100   Node *argument = pop();  // pop non-receiver first:  it was pushed second
  1101   Node *receiver = pop();
  1103   Node* result;
  1104   if (Matcher::has_match_rule(Op_StrIndexOf) &&
  1105       UseSSE42Intrinsics) {
  1106     // Generate SSE4.2 version of indexOf
  1107     // We currently only have match rules that use SSE4.2
  1109     // Null check on self without removing any arguments.  The argument
  1110     // null check technically happens in the wrong place, which can lead to
  1111     // invalid stack traces when string compare is inlined into a method
  1112     // which handles NullPointerExceptions.
  1113     _sp += 2;
  1114     receiver = do_null_check(receiver, T_OBJECT);
  1115     argument = do_null_check(argument, T_OBJECT);
  1116     _sp -= 2;
  1118     if (stopped()) {
  1119       return true;
  1122     ciInstanceKlass* klass = env()->String_klass();
  1123     const TypeInstPtr* string_type =
  1124       TypeInstPtr::make(TypePtr::BotPTR, klass, false, NULL, 0);
  1126     result =
  1127       _gvn.transform(new (C, 7)
  1128                      StrIndexOfNode(control(),
  1129                                     memory(TypeAryPtr::CHARS),
  1130                                     memory(string_type->add_offset(value_offset)),
  1131                                     memory(string_type->add_offset(count_offset)),
  1132                                     memory(string_type->add_offset(offset_offset)),
  1133                                     receiver,
  1134                                     argument));
  1135   } else { //Use LibraryCallKit::string_indexOf
  1136     // don't intrinsify is argument isn't a constant string.
  1137     if (!argument->is_Con()) {
  1138      return false;
  1140     const TypeOopPtr* str_type = _gvn.type(argument)->isa_oopptr();
  1141     if (str_type == NULL) {
  1142       return false;
  1144     ciInstanceKlass* klass = env()->String_klass();
  1145     ciObject* str_const = str_type->const_oop();
  1146     if (str_const == NULL || str_const->klass() != klass) {
  1147       return false;
  1149     ciInstance* str = str_const->as_instance();
  1150     assert(str != NULL, "must be instance");
  1152     ciObject* v = str->field_value_by_offset(value_offset).as_object();
  1153     int       o = str->field_value_by_offset(offset_offset).as_int();
  1154     int       c = str->field_value_by_offset(count_offset).as_int();
  1155     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
  1157     // constant strings have no offset and count == length which
  1158     // simplifies the resulting code somewhat so lets optimize for that.
  1159     if (o != 0 || c != pat->length()) {
  1160      return false;
  1163     // Null check on self without removing any arguments.  The argument
  1164     // null check technically happens in the wrong place, which can lead to
  1165     // invalid stack traces when string compare is inlined into a method
  1166     // which handles NullPointerExceptions.
  1167     _sp += 2;
  1168     receiver = do_null_check(receiver, T_OBJECT);
  1169     // No null check on the argument is needed since it's a constant String oop.
  1170     _sp -= 2;
  1171     if (stopped()) {
  1172      return true;
  1175     // The null string as a pattern always returns 0 (match at beginning of string)
  1176     if (c == 0) {
  1177       push(intcon(0));
  1178       return true;
  1181     // Generate default indexOf
  1182     jchar lastChar = pat->char_at(o + (c - 1));
  1183     int cache = 0;
  1184     int i;
  1185     for (i = 0; i < c - 1; i++) {
  1186       assert(i < pat->length(), "out of range");
  1187       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
  1190     int md2 = c;
  1191     for (i = 0; i < c - 1; i++) {
  1192       assert(i < pat->length(), "out of range");
  1193       if (pat->char_at(o + i) == lastChar) {
  1194         md2 = (c - 1) - i;
  1198     result = string_indexOf(receiver, pat, o, cache, md2);
  1201   push(result);
  1202   return true;
  1205 //--------------------------pop_math_arg--------------------------------
  1206 // Pop a double argument to a math function from the stack
  1207 // rounding it if necessary.
  1208 Node * LibraryCallKit::pop_math_arg() {
  1209   Node *arg = pop_pair();
  1210   if( Matcher::strict_fp_requires_explicit_rounding && UseSSE<=1 )
  1211     arg = _gvn.transform( new (C, 2) RoundDoubleNode(0, arg) );
  1212   return arg;
  1215 //------------------------------inline_trig----------------------------------
  1216 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
  1217 // argument reduction which will turn into a fast/slow diamond.
  1218 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
  1219   _sp += arg_size();            // restore stack pointer
  1220   Node* arg = pop_math_arg();
  1221   Node* trig = NULL;
  1223   switch (id) {
  1224   case vmIntrinsics::_dsin:
  1225     trig = _gvn.transform((Node*)new (C, 2) SinDNode(arg));
  1226     break;
  1227   case vmIntrinsics::_dcos:
  1228     trig = _gvn.transform((Node*)new (C, 2) CosDNode(arg));
  1229     break;
  1230   case vmIntrinsics::_dtan:
  1231     trig = _gvn.transform((Node*)new (C, 2) TanDNode(arg));
  1232     break;
  1233   default:
  1234     assert(false, "bad intrinsic was passed in");
  1235     return false;
  1238   // Rounding required?  Check for argument reduction!
  1239   if( Matcher::strict_fp_requires_explicit_rounding ) {
  1241     static const double     pi_4 =  0.7853981633974483;
  1242     static const double neg_pi_4 = -0.7853981633974483;
  1243     // pi/2 in 80-bit extended precision
  1244     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
  1245     // -pi/2 in 80-bit extended precision
  1246     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
  1247     // Cutoff value for using this argument reduction technique
  1248     //static const double    pi_2_minus_epsilon =  1.564660403643354;
  1249     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
  1251     // Pseudocode for sin:
  1252     // if (x <= Math.PI / 4.0) {
  1253     //   if (x >= -Math.PI / 4.0) return  fsin(x);
  1254     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
  1255     // } else {
  1256     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
  1257     // }
  1258     // return StrictMath.sin(x);
  1260     // Pseudocode for cos:
  1261     // if (x <= Math.PI / 4.0) {
  1262     //   if (x >= -Math.PI / 4.0) return  fcos(x);
  1263     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
  1264     // } else {
  1265     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
  1266     // }
  1267     // return StrictMath.cos(x);
  1269     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
  1270     // requires a special machine instruction to load it.  Instead we'll try
  1271     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
  1272     // probably do the math inside the SIN encoding.
  1274     // Make the merge point
  1275     RegionNode *r = new (C, 3) RegionNode(3);
  1276     Node *phi = new (C, 3) PhiNode(r,Type::DOUBLE);
  1278     // Flatten arg so we need only 1 test
  1279     Node *abs = _gvn.transform(new (C, 2) AbsDNode(arg));
  1280     // Node for PI/4 constant
  1281     Node *pi4 = makecon(TypeD::make(pi_4));
  1282     // Check PI/4 : abs(arg)
  1283     Node *cmp = _gvn.transform(new (C, 3) CmpDNode(pi4,abs));
  1284     // Check: If PI/4 < abs(arg) then go slow
  1285     Node *bol = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::lt ) );
  1286     // Branch either way
  1287     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  1288     set_control(opt_iff(r,iff));
  1290     // Set fast path result
  1291     phi->init_req(2,trig);
  1293     // Slow path - non-blocking leaf call
  1294     Node* call = NULL;
  1295     switch (id) {
  1296     case vmIntrinsics::_dsin:
  1297       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1298                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
  1299                                "Sin", NULL, arg, top());
  1300       break;
  1301     case vmIntrinsics::_dcos:
  1302       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1303                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
  1304                                "Cos", NULL, arg, top());
  1305       break;
  1306     case vmIntrinsics::_dtan:
  1307       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1308                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
  1309                                "Tan", NULL, arg, top());
  1310       break;
  1312     assert(control()->in(0) == call, "");
  1313     Node* slow_result = _gvn.transform(new (C, 1) ProjNode(call,TypeFunc::Parms));
  1314     r->init_req(1,control());
  1315     phi->init_req(1,slow_result);
  1317     // Post-merge
  1318     set_control(_gvn.transform(r));
  1319     record_for_igvn(r);
  1320     trig = _gvn.transform(phi);
  1322     C->set_has_split_ifs(true); // Has chance for split-if optimization
  1324   // Push result back on JVM stack
  1325   push_pair(trig);
  1326   return true;
  1329 //------------------------------inline_sqrt-------------------------------------
  1330 // Inline square root instruction, if possible.
  1331 bool LibraryCallKit::inline_sqrt(vmIntrinsics::ID id) {
  1332   assert(id == vmIntrinsics::_dsqrt, "Not square root");
  1333   _sp += arg_size();        // restore stack pointer
  1334   push_pair(_gvn.transform(new (C, 2) SqrtDNode(0, pop_math_arg())));
  1335   return true;
  1338 //------------------------------inline_abs-------------------------------------
  1339 // Inline absolute value instruction, if possible.
  1340 bool LibraryCallKit::inline_abs(vmIntrinsics::ID id) {
  1341   assert(id == vmIntrinsics::_dabs, "Not absolute value");
  1342   _sp += arg_size();        // restore stack pointer
  1343   push_pair(_gvn.transform(new (C, 2) AbsDNode(pop_math_arg())));
  1344   return true;
  1347 //------------------------------inline_exp-------------------------------------
  1348 // Inline exp instructions, if possible.  The Intel hardware only misses
  1349 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
  1350 bool LibraryCallKit::inline_exp(vmIntrinsics::ID id) {
  1351   assert(id == vmIntrinsics::_dexp, "Not exp");
  1353   // If this inlining ever returned NaN in the past, we do not intrinsify it
  1354   // every again.  NaN results requires StrictMath.exp handling.
  1355   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  1357   // Do not intrinsify on older platforms which lack cmove.
  1358   if (ConditionalMoveLimit == 0)  return false;
  1360   _sp += arg_size();        // restore stack pointer
  1361   Node *x = pop_math_arg();
  1362   Node *result = _gvn.transform(new (C, 2) ExpDNode(0,x));
  1364   //-------------------
  1365   //result=(result.isNaN())? StrictMath::exp():result;
  1366   // Check: If isNaN() by checking result!=result? then go to Strict Math
  1367   Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
  1368   // Build the boolean node
  1369   Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
  1371   { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
  1372     // End the current control-flow path
  1373     push_pair(x);
  1374     // Math.exp intrinsic returned a NaN, which requires StrictMath.exp
  1375     // to handle.  Recompile without intrinsifying Math.exp
  1376     uncommon_trap(Deoptimization::Reason_intrinsic,
  1377                   Deoptimization::Action_make_not_entrant);
  1380   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1382   push_pair(result);
  1384   return true;
  1387 //------------------------------inline_pow-------------------------------------
  1388 // Inline power instructions, if possible.
  1389 bool LibraryCallKit::inline_pow(vmIntrinsics::ID id) {
  1390   assert(id == vmIntrinsics::_dpow, "Not pow");
  1392   // If this inlining ever returned NaN in the past, we do not intrinsify it
  1393   // every again.  NaN results requires StrictMath.pow handling.
  1394   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  1396   // Do not intrinsify on older platforms which lack cmove.
  1397   if (ConditionalMoveLimit == 0)  return false;
  1399   // Pseudocode for pow
  1400   // if (x <= 0.0) {
  1401   //   if ((double)((int)y)==y) { // if y is int
  1402   //     result = ((1&(int)y)==0)?-DPow(abs(x), y):DPow(abs(x), y)
  1403   //   } else {
  1404   //     result = NaN;
  1405   //   }
  1406   // } else {
  1407   //   result = DPow(x,y);
  1408   // }
  1409   // if (result != result)?  {
  1410   //   uncommon_trap();
  1411   // }
  1412   // return result;
  1414   _sp += arg_size();        // restore stack pointer
  1415   Node* y = pop_math_arg();
  1416   Node* x = pop_math_arg();
  1418   Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, x, y) );
  1420   // Short form: if not top-level (i.e., Math.pow but inlining Math.pow
  1421   // inside of something) then skip the fancy tests and just check for
  1422   // NaN result.
  1423   Node *result = NULL;
  1424   if( jvms()->depth() >= 1 ) {
  1425     result = fast_result;
  1426   } else {
  1428     // Set the merge point for If node with condition of (x <= 0.0)
  1429     // There are four possible paths to region node and phi node
  1430     RegionNode *r = new (C, 4) RegionNode(4);
  1431     Node *phi = new (C, 4) PhiNode(r, Type::DOUBLE);
  1433     // Build the first if node: if (x <= 0.0)
  1434     // Node for 0 constant
  1435     Node *zeronode = makecon(TypeD::ZERO);
  1436     // Check x:0
  1437     Node *cmp = _gvn.transform(new (C, 3) CmpDNode(x, zeronode));
  1438     // Check: If (x<=0) then go complex path
  1439     Node *bol1 = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::le ) );
  1440     // Branch either way
  1441     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1442     Node *opt_test = _gvn.transform(if1);
  1443     //assert( opt_test->is_If(), "Expect an IfNode");
  1444     IfNode *opt_if1 = (IfNode*)opt_test;
  1445     // Fast path taken; set region slot 3
  1446     Node *fast_taken = _gvn.transform( new (C, 1) IfFalseNode(opt_if1) );
  1447     r->init_req(3,fast_taken); // Capture fast-control
  1449     // Fast path not-taken, i.e. slow path
  1450     Node *complex_path = _gvn.transform( new (C, 1) IfTrueNode(opt_if1) );
  1452     // Set fast path result
  1453     Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, y, x) );
  1454     phi->init_req(3, fast_result);
  1456     // Complex path
  1457     // Build the second if node (if y is int)
  1458     // Node for (int)y
  1459     Node *inty = _gvn.transform( new (C, 2) ConvD2INode(y));
  1460     // Node for (double)((int) y)
  1461     Node *doubleinty= _gvn.transform( new (C, 2) ConvI2DNode(inty));
  1462     // Check (double)((int) y) : y
  1463     Node *cmpinty= _gvn.transform(new (C, 3) CmpDNode(doubleinty, y));
  1464     // Check if (y isn't int) then go to slow path
  1466     Node *bol2 = _gvn.transform( new (C, 2) BoolNode( cmpinty, BoolTest::ne ) );
  1467     // Branch either way
  1468     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1469     Node *slow_path = opt_iff(r,if2); // Set region path 2
  1471     // Calculate DPow(abs(x), y)*(1 & (int)y)
  1472     // Node for constant 1
  1473     Node *conone = intcon(1);
  1474     // 1& (int)y
  1475     Node *signnode= _gvn.transform( new (C, 3) AndINode(conone, inty) );
  1476     // zero node
  1477     Node *conzero = intcon(0);
  1478     // Check (1&(int)y)==0?
  1479     Node *cmpeq1 = _gvn.transform(new (C, 3) CmpINode(signnode, conzero));
  1480     // Check if (1&(int)y)!=0?, if so the result is negative
  1481     Node *bol3 = _gvn.transform( new (C, 2) BoolNode( cmpeq1, BoolTest::ne ) );
  1482     // abs(x)
  1483     Node *absx=_gvn.transform( new (C, 2) AbsDNode(x));
  1484     // abs(x)^y
  1485     Node *absxpowy = _gvn.transform( new (C, 3) PowDNode(0, y, absx) );
  1486     // -abs(x)^y
  1487     Node *negabsxpowy = _gvn.transform(new (C, 2) NegDNode (absxpowy));
  1488     // (1&(int)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
  1489     Node *signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
  1490     // Set complex path fast result
  1491     phi->init_req(2, signresult);
  1493     static const jlong nan_bits = CONST64(0x7ff8000000000000);
  1494     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
  1495     r->init_req(1,slow_path);
  1496     phi->init_req(1,slow_result);
  1498     // Post merge
  1499     set_control(_gvn.transform(r));
  1500     record_for_igvn(r);
  1501     result=_gvn.transform(phi);
  1504   //-------------------
  1505   //result=(result.isNaN())? uncommon_trap():result;
  1506   // Check: If isNaN() by checking result!=result? then go to Strict Math
  1507   Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
  1508   // Build the boolean node
  1509   Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
  1511   { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
  1512     // End the current control-flow path
  1513     push_pair(x);
  1514     push_pair(y);
  1515     // Math.pow intrinsic returned a NaN, which requires StrictMath.pow
  1516     // to handle.  Recompile without intrinsifying Math.pow.
  1517     uncommon_trap(Deoptimization::Reason_intrinsic,
  1518                   Deoptimization::Action_make_not_entrant);
  1521   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1523   push_pair(result);
  1525   return true;
  1528 //------------------------------inline_trans-------------------------------------
  1529 // Inline transcendental instructions, if possible.  The Intel hardware gets
  1530 // these right, no funny corner cases missed.
  1531 bool LibraryCallKit::inline_trans(vmIntrinsics::ID id) {
  1532   _sp += arg_size();        // restore stack pointer
  1533   Node* arg = pop_math_arg();
  1534   Node* trans = NULL;
  1536   switch (id) {
  1537   case vmIntrinsics::_dlog:
  1538     trans = _gvn.transform((Node*)new (C, 2) LogDNode(arg));
  1539     break;
  1540   case vmIntrinsics::_dlog10:
  1541     trans = _gvn.transform((Node*)new (C, 2) Log10DNode(arg));
  1542     break;
  1543   default:
  1544     assert(false, "bad intrinsic was passed in");
  1545     return false;
  1548   // Push result back on JVM stack
  1549   push_pair(trans);
  1550   return true;
  1553 //------------------------------runtime_math-----------------------------
  1554 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
  1555   Node* a = NULL;
  1556   Node* b = NULL;
  1558   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
  1559          "must be (DD)D or (D)D type");
  1561   // Inputs
  1562   _sp += arg_size();        // restore stack pointer
  1563   if (call_type == OptoRuntime::Math_DD_D_Type()) {
  1564     b = pop_math_arg();
  1566   a = pop_math_arg();
  1568   const TypePtr* no_memory_effects = NULL;
  1569   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
  1570                                  no_memory_effects,
  1571                                  a, top(), b, b ? top() : NULL);
  1572   Node* value = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+0));
  1573 #ifdef ASSERT
  1574   Node* value_top = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+1));
  1575   assert(value_top == top(), "second value must be top");
  1576 #endif
  1578   push_pair(value);
  1579   return true;
  1582 //------------------------------inline_math_native-----------------------------
  1583 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
  1584   switch (id) {
  1585     // These intrinsics are not properly supported on all hardware
  1586   case vmIntrinsics::_dcos: return Matcher::has_match_rule(Op_CosD) ? inline_trig(id) :
  1587     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS");
  1588   case vmIntrinsics::_dsin: return Matcher::has_match_rule(Op_SinD) ? inline_trig(id) :
  1589     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN");
  1590   case vmIntrinsics::_dtan: return Matcher::has_match_rule(Op_TanD) ? inline_trig(id) :
  1591     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN");
  1593   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD) ? inline_trans(id) :
  1594     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG");
  1595   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_trans(id) :
  1596     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10");
  1598     // These intrinsics are supported on all hardware
  1599   case vmIntrinsics::_dsqrt: return Matcher::has_match_rule(Op_SqrtD) ? inline_sqrt(id) : false;
  1600   case vmIntrinsics::_dabs:  return Matcher::has_match_rule(Op_AbsD)  ? inline_abs(id)  : false;
  1602     // These intrinsics don't work on X86.  The ad implementation doesn't
  1603     // handle NaN's properly.  Instead of returning infinity, the ad
  1604     // implementation returns a NaN on overflow. See bug: 6304089
  1605     // Once the ad implementations are fixed, change the code below
  1606     // to match the intrinsics above
  1608   case vmIntrinsics::_dexp:  return
  1609     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
  1610   case vmIntrinsics::_dpow:  return
  1611     runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
  1613    // These intrinsics are not yet correctly implemented
  1614   case vmIntrinsics::_datan2:
  1615     return false;
  1617   default:
  1618     ShouldNotReachHere();
  1619     return false;
  1623 static bool is_simple_name(Node* n) {
  1624   return (n->req() == 1         // constant
  1625           || (n->is_Type() && n->as_Type()->type()->singleton())
  1626           || n->is_Proj()       // parameter or return value
  1627           || n->is_Phi()        // local of some sort
  1628           );
  1631 //----------------------------inline_min_max-----------------------------------
  1632 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
  1633   push(generate_min_max(id, argument(0), argument(1)));
  1635   return true;
  1638 Node*
  1639 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
  1640   // These are the candidate return value:
  1641   Node* xvalue = x0;
  1642   Node* yvalue = y0;
  1644   if (xvalue == yvalue) {
  1645     return xvalue;
  1648   bool want_max = (id == vmIntrinsics::_max);
  1650   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
  1651   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
  1652   if (txvalue == NULL || tyvalue == NULL)  return top();
  1653   // This is not really necessary, but it is consistent with a
  1654   // hypothetical MaxINode::Value method:
  1655   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
  1657   // %%% This folding logic should (ideally) be in a different place.
  1658   // Some should be inside IfNode, and there to be a more reliable
  1659   // transformation of ?: style patterns into cmoves.  We also want
  1660   // more powerful optimizations around cmove and min/max.
  1662   // Try to find a dominating comparison of these guys.
  1663   // It can simplify the index computation for Arrays.copyOf
  1664   // and similar uses of System.arraycopy.
  1665   // First, compute the normalized version of CmpI(x, y).
  1666   int   cmp_op = Op_CmpI;
  1667   Node* xkey = xvalue;
  1668   Node* ykey = yvalue;
  1669   Node* ideal_cmpxy = _gvn.transform( new(C, 3) CmpINode(xkey, ykey) );
  1670   if (ideal_cmpxy->is_Cmp()) {
  1671     // E.g., if we have CmpI(length - offset, count),
  1672     // it might idealize to CmpI(length, count + offset)
  1673     cmp_op = ideal_cmpxy->Opcode();
  1674     xkey = ideal_cmpxy->in(1);
  1675     ykey = ideal_cmpxy->in(2);
  1678   // Start by locating any relevant comparisons.
  1679   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
  1680   Node* cmpxy = NULL;
  1681   Node* cmpyx = NULL;
  1682   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
  1683     Node* cmp = start_from->fast_out(k);
  1684     if (cmp->outcnt() > 0 &&            // must have prior uses
  1685         cmp->in(0) == NULL &&           // must be context-independent
  1686         cmp->Opcode() == cmp_op) {      // right kind of compare
  1687       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
  1688       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
  1692   const int NCMPS = 2;
  1693   Node* cmps[NCMPS] = { cmpxy, cmpyx };
  1694   int cmpn;
  1695   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  1696     if (cmps[cmpn] != NULL)  break;     // find a result
  1698   if (cmpn < NCMPS) {
  1699     // Look for a dominating test that tells us the min and max.
  1700     int depth = 0;                // Limit search depth for speed
  1701     Node* dom = control();
  1702     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
  1703       if (++depth >= 100)  break;
  1704       Node* ifproj = dom;
  1705       if (!ifproj->is_Proj())  continue;
  1706       Node* iff = ifproj->in(0);
  1707       if (!iff->is_If())  continue;
  1708       Node* bol = iff->in(1);
  1709       if (!bol->is_Bool())  continue;
  1710       Node* cmp = bol->in(1);
  1711       if (cmp == NULL)  continue;
  1712       for (cmpn = 0; cmpn < NCMPS; cmpn++)
  1713         if (cmps[cmpn] == cmp)  break;
  1714       if (cmpn == NCMPS)  continue;
  1715       BoolTest::mask btest = bol->as_Bool()->_test._test;
  1716       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
  1717       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
  1718       // At this point, we know that 'x btest y' is true.
  1719       switch (btest) {
  1720       case BoolTest::eq:
  1721         // They are proven equal, so we can collapse the min/max.
  1722         // Either value is the answer.  Choose the simpler.
  1723         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
  1724           return yvalue;
  1725         return xvalue;
  1726       case BoolTest::lt:          // x < y
  1727       case BoolTest::le:          // x <= y
  1728         return (want_max ? yvalue : xvalue);
  1729       case BoolTest::gt:          // x > y
  1730       case BoolTest::ge:          // x >= y
  1731         return (want_max ? xvalue : yvalue);
  1736   // We failed to find a dominating test.
  1737   // Let's pick a test that might GVN with prior tests.
  1738   Node*          best_bol   = NULL;
  1739   BoolTest::mask best_btest = BoolTest::illegal;
  1740   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  1741     Node* cmp = cmps[cmpn];
  1742     if (cmp == NULL)  continue;
  1743     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
  1744       Node* bol = cmp->fast_out(j);
  1745       if (!bol->is_Bool())  continue;
  1746       BoolTest::mask btest = bol->as_Bool()->_test._test;
  1747       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
  1748       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
  1749       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
  1750         best_bol   = bol->as_Bool();
  1751         best_btest = btest;
  1756   Node* answer_if_true  = NULL;
  1757   Node* answer_if_false = NULL;
  1758   switch (best_btest) {
  1759   default:
  1760     if (cmpxy == NULL)
  1761       cmpxy = ideal_cmpxy;
  1762     best_bol = _gvn.transform( new(C, 2) BoolNode(cmpxy, BoolTest::lt) );
  1763     // and fall through:
  1764   case BoolTest::lt:          // x < y
  1765   case BoolTest::le:          // x <= y
  1766     answer_if_true  = (want_max ? yvalue : xvalue);
  1767     answer_if_false = (want_max ? xvalue : yvalue);
  1768     break;
  1769   case BoolTest::gt:          // x > y
  1770   case BoolTest::ge:          // x >= y
  1771     answer_if_true  = (want_max ? xvalue : yvalue);
  1772     answer_if_false = (want_max ? yvalue : xvalue);
  1773     break;
  1776   jint hi, lo;
  1777   if (want_max) {
  1778     // We can sharpen the minimum.
  1779     hi = MAX2(txvalue->_hi, tyvalue->_hi);
  1780     lo = MAX2(txvalue->_lo, tyvalue->_lo);
  1781   } else {
  1782     // We can sharpen the maximum.
  1783     hi = MIN2(txvalue->_hi, tyvalue->_hi);
  1784     lo = MIN2(txvalue->_lo, tyvalue->_lo);
  1787   // Use a flow-free graph structure, to avoid creating excess control edges
  1788   // which could hinder other optimizations.
  1789   // Since Math.min/max is often used with arraycopy, we want
  1790   // tightly_coupled_allocation to be able to see beyond min/max expressions.
  1791   Node* cmov = CMoveNode::make(C, NULL, best_bol,
  1792                                answer_if_false, answer_if_true,
  1793                                TypeInt::make(lo, hi, widen));
  1795   return _gvn.transform(cmov);
  1797   /*
  1798   // This is not as desirable as it may seem, since Min and Max
  1799   // nodes do not have a full set of optimizations.
  1800   // And they would interfere, anyway, with 'if' optimizations
  1801   // and with CMoveI canonical forms.
  1802   switch (id) {
  1803   case vmIntrinsics::_min:
  1804     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
  1805   case vmIntrinsics::_max:
  1806     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
  1807   default:
  1808     ShouldNotReachHere();
  1810   */
  1813 inline int
  1814 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
  1815   const TypePtr* base_type = TypePtr::NULL_PTR;
  1816   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
  1817   if (base_type == NULL) {
  1818     // Unknown type.
  1819     return Type::AnyPtr;
  1820   } else if (base_type == TypePtr::NULL_PTR) {
  1821     // Since this is a NULL+long form, we have to switch to a rawptr.
  1822     base   = _gvn.transform( new (C, 2) CastX2PNode(offset) );
  1823     offset = MakeConX(0);
  1824     return Type::RawPtr;
  1825   } else if (base_type->base() == Type::RawPtr) {
  1826     return Type::RawPtr;
  1827   } else if (base_type->isa_oopptr()) {
  1828     // Base is never null => always a heap address.
  1829     if (base_type->ptr() == TypePtr::NotNull) {
  1830       return Type::OopPtr;
  1832     // Offset is small => always a heap address.
  1833     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
  1834     if (offset_type != NULL &&
  1835         base_type->offset() == 0 &&     // (should always be?)
  1836         offset_type->_lo >= 0 &&
  1837         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
  1838       return Type::OopPtr;
  1840     // Otherwise, it might either be oop+off or NULL+addr.
  1841     return Type::AnyPtr;
  1842   } else {
  1843     // No information:
  1844     return Type::AnyPtr;
  1848 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
  1849   int kind = classify_unsafe_addr(base, offset);
  1850   if (kind == Type::RawPtr) {
  1851     return basic_plus_adr(top(), base, offset);
  1852   } else {
  1853     return basic_plus_adr(base, offset);
  1857 //-------------------inline_numberOfLeadingZeros_int/long-----------------------
  1858 // inline int Integer.numberOfLeadingZeros(int)
  1859 // inline int Long.numberOfLeadingZeros(long)
  1860 bool LibraryCallKit::inline_numberOfLeadingZeros(vmIntrinsics::ID id) {
  1861   assert(id == vmIntrinsics::_numberOfLeadingZeros_i || id == vmIntrinsics::_numberOfLeadingZeros_l, "not numberOfLeadingZeros");
  1862   if (id == vmIntrinsics::_numberOfLeadingZeros_i && !Matcher::match_rule_supported(Op_CountLeadingZerosI)) return false;
  1863   if (id == vmIntrinsics::_numberOfLeadingZeros_l && !Matcher::match_rule_supported(Op_CountLeadingZerosL)) return false;
  1864   _sp += arg_size();  // restore stack pointer
  1865   switch (id) {
  1866   case vmIntrinsics::_numberOfLeadingZeros_i:
  1867     push(_gvn.transform(new (C, 2) CountLeadingZerosINode(pop())));
  1868     break;
  1869   case vmIntrinsics::_numberOfLeadingZeros_l:
  1870     push(_gvn.transform(new (C, 2) CountLeadingZerosLNode(pop_pair())));
  1871     break;
  1872   default:
  1873     ShouldNotReachHere();
  1875   return true;
  1878 //-------------------inline_numberOfTrailingZeros_int/long----------------------
  1879 // inline int Integer.numberOfTrailingZeros(int)
  1880 // inline int Long.numberOfTrailingZeros(long)
  1881 bool LibraryCallKit::inline_numberOfTrailingZeros(vmIntrinsics::ID id) {
  1882   assert(id == vmIntrinsics::_numberOfTrailingZeros_i || id == vmIntrinsics::_numberOfTrailingZeros_l, "not numberOfTrailingZeros");
  1883   if (id == vmIntrinsics::_numberOfTrailingZeros_i && !Matcher::match_rule_supported(Op_CountTrailingZerosI)) return false;
  1884   if (id == vmIntrinsics::_numberOfTrailingZeros_l && !Matcher::match_rule_supported(Op_CountTrailingZerosL)) return false;
  1885   _sp += arg_size();  // restore stack pointer
  1886   switch (id) {
  1887   case vmIntrinsics::_numberOfTrailingZeros_i:
  1888     push(_gvn.transform(new (C, 2) CountTrailingZerosINode(pop())));
  1889     break;
  1890   case vmIntrinsics::_numberOfTrailingZeros_l:
  1891     push(_gvn.transform(new (C, 2) CountTrailingZerosLNode(pop_pair())));
  1892     break;
  1893   default:
  1894     ShouldNotReachHere();
  1896   return true;
  1899 //----------------------------inline_bitCount_int/long-----------------------
  1900 // inline int Integer.bitCount(int)
  1901 // inline int Long.bitCount(long)
  1902 bool LibraryCallKit::inline_bitCount(vmIntrinsics::ID id) {
  1903   assert(id == vmIntrinsics::_bitCount_i || id == vmIntrinsics::_bitCount_l, "not bitCount");
  1904   if (id == vmIntrinsics::_bitCount_i && !Matcher::has_match_rule(Op_PopCountI)) return false;
  1905   if (id == vmIntrinsics::_bitCount_l && !Matcher::has_match_rule(Op_PopCountL)) return false;
  1906   _sp += arg_size();  // restore stack pointer
  1907   switch (id) {
  1908   case vmIntrinsics::_bitCount_i:
  1909     push(_gvn.transform(new (C, 2) PopCountINode(pop())));
  1910     break;
  1911   case vmIntrinsics::_bitCount_l:
  1912     push(_gvn.transform(new (C, 2) PopCountLNode(pop_pair())));
  1913     break;
  1914   default:
  1915     ShouldNotReachHere();
  1917   return true;
  1920 //----------------------------inline_reverseBytes_int/long-------------------
  1921 // inline Integer.reverseBytes(int)
  1922 // inline Long.reverseBytes(long)
  1923 bool LibraryCallKit::inline_reverseBytes(vmIntrinsics::ID id) {
  1924   assert(id == vmIntrinsics::_reverseBytes_i || id == vmIntrinsics::_reverseBytes_l, "not reverse Bytes");
  1925   if (id == vmIntrinsics::_reverseBytes_i && !Matcher::has_match_rule(Op_ReverseBytesI)) return false;
  1926   if (id == vmIntrinsics::_reverseBytes_l && !Matcher::has_match_rule(Op_ReverseBytesL)) return false;
  1927   _sp += arg_size();        // restore stack pointer
  1928   switch (id) {
  1929   case vmIntrinsics::_reverseBytes_i:
  1930     push(_gvn.transform(new (C, 2) ReverseBytesINode(0, pop())));
  1931     break;
  1932   case vmIntrinsics::_reverseBytes_l:
  1933     push_pair(_gvn.transform(new (C, 2) ReverseBytesLNode(0, pop_pair())));
  1934     break;
  1935   default:
  1938   return true;
  1941 //----------------------------inline_unsafe_access----------------------------
  1943 const static BasicType T_ADDRESS_HOLDER = T_LONG;
  1945 // Interpret Unsafe.fieldOffset cookies correctly:
  1946 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
  1948 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
  1949   if (callee()->is_static())  return false;  // caller must have the capability!
  1951 #ifndef PRODUCT
  1953     ResourceMark rm;
  1954     // Check the signatures.
  1955     ciSignature* sig = signature();
  1956 #ifdef ASSERT
  1957     if (!is_store) {
  1958       // Object getObject(Object base, int/long offset), etc.
  1959       BasicType rtype = sig->return_type()->basic_type();
  1960       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
  1961           rtype = T_ADDRESS;  // it is really a C void*
  1962       assert(rtype == type, "getter must return the expected value");
  1963       if (!is_native_ptr) {
  1964         assert(sig->count() == 2, "oop getter has 2 arguments");
  1965         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
  1966         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
  1967       } else {
  1968         assert(sig->count() == 1, "native getter has 1 argument");
  1969         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
  1971     } else {
  1972       // void putObject(Object base, int/long offset, Object x), etc.
  1973       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
  1974       if (!is_native_ptr) {
  1975         assert(sig->count() == 3, "oop putter has 3 arguments");
  1976         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
  1977         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
  1978       } else {
  1979         assert(sig->count() == 2, "native putter has 2 arguments");
  1980         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
  1982       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
  1983       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
  1984         vtype = T_ADDRESS;  // it is really a C void*
  1985       assert(vtype == type, "putter must accept the expected value");
  1987 #endif // ASSERT
  1989 #endif //PRODUCT
  1991   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  1993   int type_words = type2size[ (type == T_ADDRESS) ? T_LONG : type ];
  1995   // Argument words:  "this" plus (oop/offset) or (lo/hi) args plus maybe 1 or 2 value words
  1996   int nargs = 1 + (is_native_ptr ? 2 : 3) + (is_store ? type_words : 0);
  1998   debug_only(int saved_sp = _sp);
  1999   _sp += nargs;
  2001   Node* val;
  2002   debug_only(val = (Node*)(uintptr_t)-1);
  2005   if (is_store) {
  2006     // Get the value being stored.  (Pop it first; it was pushed last.)
  2007     switch (type) {
  2008     case T_DOUBLE:
  2009     case T_LONG:
  2010     case T_ADDRESS:
  2011       val = pop_pair();
  2012       break;
  2013     default:
  2014       val = pop();
  2018   // Build address expression.  See the code in inline_unsafe_prefetch.
  2019   Node *adr;
  2020   Node *heap_base_oop = top();
  2021   if (!is_native_ptr) {
  2022     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  2023     Node* offset = pop_pair();
  2024     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  2025     Node* base   = pop();
  2026     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2027     // to be plain byte offsets, which are also the same as those accepted
  2028     // by oopDesc::field_base.
  2029     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  2030            "fieldOffset must be byte-scaled");
  2031     // 32-bit machines ignore the high half!
  2032     offset = ConvL2X(offset);
  2033     adr = make_unsafe_address(base, offset);
  2034     heap_base_oop = base;
  2035   } else {
  2036     Node* ptr = pop_pair();
  2037     // Adjust Java long to machine word:
  2038     ptr = ConvL2X(ptr);
  2039     adr = make_unsafe_address(NULL, ptr);
  2042   // Pop receiver last:  it was pushed first.
  2043   Node *receiver = pop();
  2045   assert(saved_sp == _sp, "must have correct argument count");
  2047   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2049   // First guess at the value type.
  2050   const Type *value_type = Type::get_const_basic_type(type);
  2052   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
  2053   // there was not enough information to nail it down.
  2054   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2055   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  2057   // We will need memory barriers unless we can determine a unique
  2058   // alias category for this reference.  (Note:  If for some reason
  2059   // the barriers get omitted and the unsafe reference begins to "pollute"
  2060   // the alias analysis of the rest of the graph, either Compile::can_alias
  2061   // or Compile::must_alias will throw a diagnostic assert.)
  2062   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
  2064   if (!is_store && type == T_OBJECT) {
  2065     // Attempt to infer a sharper value type from the offset and base type.
  2066     ciKlass* sharpened_klass = NULL;
  2068     // See if it is an instance field, with an object type.
  2069     if (alias_type->field() != NULL) {
  2070       assert(!is_native_ptr, "native pointer op cannot use a java address");
  2071       if (alias_type->field()->type()->is_klass()) {
  2072         sharpened_klass = alias_type->field()->type()->as_klass();
  2076     // See if it is a narrow oop array.
  2077     if (adr_type->isa_aryptr()) {
  2078       if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes(type)) {
  2079         const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
  2080         if (elem_type != NULL) {
  2081           sharpened_klass = elem_type->klass();
  2086     if (sharpened_klass != NULL) {
  2087       const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
  2089       // Sharpen the value type.
  2090       value_type = tjp;
  2092 #ifndef PRODUCT
  2093       if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
  2094         tty->print("  from base type:  ");   adr_type->dump();
  2095         tty->print("  sharpened value: "); value_type->dump();
  2097 #endif
  2101   // Null check on self without removing any arguments.  The argument
  2102   // null check technically happens in the wrong place, which can lead to
  2103   // invalid stack traces when the primitive is inlined into a method
  2104   // which handles NullPointerExceptions.
  2105   _sp += nargs;
  2106   do_null_check(receiver, T_OBJECT);
  2107   _sp -= nargs;
  2108   if (stopped()) {
  2109     return true;
  2111   // Heap pointers get a null-check from the interpreter,
  2112   // as a courtesy.  However, this is not guaranteed by Unsafe,
  2113   // and it is not possible to fully distinguish unintended nulls
  2114   // from intended ones in this API.
  2116   if (is_volatile) {
  2117     // We need to emit leading and trailing CPU membars (see below) in
  2118     // addition to memory membars when is_volatile. This is a little
  2119     // too strong, but avoids the need to insert per-alias-type
  2120     // volatile membars (for stores; compare Parse::do_put_xxx), which
  2121     // we cannot do effectively here because we probably only have a
  2122     // rough approximation of type.
  2123     need_mem_bar = true;
  2124     // For Stores, place a memory ordering barrier now.
  2125     if (is_store)
  2126       insert_mem_bar(Op_MemBarRelease);
  2129   // Memory barrier to prevent normal and 'unsafe' accesses from
  2130   // bypassing each other.  Happens after null checks, so the
  2131   // exception paths do not take memory state from the memory barrier,
  2132   // so there's no problems making a strong assert about mixing users
  2133   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
  2134   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
  2135   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  2137   if (!is_store) {
  2138     Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
  2139     // load value and push onto stack
  2140     switch (type) {
  2141     case T_BOOLEAN:
  2142     case T_CHAR:
  2143     case T_BYTE:
  2144     case T_SHORT:
  2145     case T_INT:
  2146     case T_FLOAT:
  2147     case T_OBJECT:
  2148       push( p );
  2149       break;
  2150     case T_ADDRESS:
  2151       // Cast to an int type.
  2152       p = _gvn.transform( new (C, 2) CastP2XNode(NULL,p) );
  2153       p = ConvX2L(p);
  2154       push_pair(p);
  2155       break;
  2156     case T_DOUBLE:
  2157     case T_LONG:
  2158       push_pair( p );
  2159       break;
  2160     default: ShouldNotReachHere();
  2162   } else {
  2163     // place effect of store into memory
  2164     switch (type) {
  2165     case T_DOUBLE:
  2166       val = dstore_rounding(val);
  2167       break;
  2168     case T_ADDRESS:
  2169       // Repackage the long as a pointer.
  2170       val = ConvL2X(val);
  2171       val = _gvn.transform( new (C, 2) CastX2PNode(val) );
  2172       break;
  2175     if (type != T_OBJECT ) {
  2176       (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
  2177     } else {
  2178       // Possibly an oop being stored to Java heap or native memory
  2179       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
  2180         // oop to Java heap.
  2181         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, val->bottom_type(), type);
  2182       } else {
  2184         // We can't tell at compile time if we are storing in the Java heap or outside
  2185         // of it. So we need to emit code to conditionally do the proper type of
  2186         // store.
  2188         IdealKit kit(gvn(), control(),  merged_memory());
  2189         kit.declares_done();
  2190         // QQQ who knows what probability is here??
  2191         kit.if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
  2192           (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, val->bottom_type(), type);
  2193         } kit.else_(); {
  2194           (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
  2195         } kit.end_if();
  2200   if (is_volatile) {
  2201     if (!is_store)
  2202       insert_mem_bar(Op_MemBarAcquire);
  2203     else
  2204       insert_mem_bar(Op_MemBarVolatile);
  2207   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  2209   return true;
  2212 //----------------------------inline_unsafe_prefetch----------------------------
  2214 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
  2215 #ifndef PRODUCT
  2217     ResourceMark rm;
  2218     // Check the signatures.
  2219     ciSignature* sig = signature();
  2220 #ifdef ASSERT
  2221     // Object getObject(Object base, int/long offset), etc.
  2222     BasicType rtype = sig->return_type()->basic_type();
  2223     if (!is_native_ptr) {
  2224       assert(sig->count() == 2, "oop prefetch has 2 arguments");
  2225       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
  2226       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
  2227     } else {
  2228       assert(sig->count() == 1, "native prefetch has 1 argument");
  2229       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
  2231 #endif // ASSERT
  2233 #endif // !PRODUCT
  2235   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2237   // Argument words:  "this" if not static, plus (oop/offset) or (lo/hi) args
  2238   int nargs = (is_static ? 0 : 1) + (is_native_ptr ? 2 : 3);
  2240   debug_only(int saved_sp = _sp);
  2241   _sp += nargs;
  2243   // Build address expression.  See the code in inline_unsafe_access.
  2244   Node *adr;
  2245   if (!is_native_ptr) {
  2246     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  2247     Node* offset = pop_pair();
  2248     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  2249     Node* base   = pop();
  2250     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2251     // to be plain byte offsets, which are also the same as those accepted
  2252     // by oopDesc::field_base.
  2253     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  2254            "fieldOffset must be byte-scaled");
  2255     // 32-bit machines ignore the high half!
  2256     offset = ConvL2X(offset);
  2257     adr = make_unsafe_address(base, offset);
  2258   } else {
  2259     Node* ptr = pop_pair();
  2260     // Adjust Java long to machine word:
  2261     ptr = ConvL2X(ptr);
  2262     adr = make_unsafe_address(NULL, ptr);
  2265   if (is_static) {
  2266     assert(saved_sp == _sp, "must have correct argument count");
  2267   } else {
  2268     // Pop receiver last:  it was pushed first.
  2269     Node *receiver = pop();
  2270     assert(saved_sp == _sp, "must have correct argument count");
  2272     // Null check on self without removing any arguments.  The argument
  2273     // null check technically happens in the wrong place, which can lead to
  2274     // invalid stack traces when the primitive is inlined into a method
  2275     // which handles NullPointerExceptions.
  2276     _sp += nargs;
  2277     do_null_check(receiver, T_OBJECT);
  2278     _sp -= nargs;
  2279     if (stopped()) {
  2280       return true;
  2284   // Generate the read or write prefetch
  2285   Node *prefetch;
  2286   if (is_store) {
  2287     prefetch = new (C, 3) PrefetchWriteNode(i_o(), adr);
  2288   } else {
  2289     prefetch = new (C, 3) PrefetchReadNode(i_o(), adr);
  2291   prefetch->init_req(0, control());
  2292   set_i_o(_gvn.transform(prefetch));
  2294   return true;
  2297 //----------------------------inline_unsafe_CAS----------------------------
  2299 bool LibraryCallKit::inline_unsafe_CAS(BasicType type) {
  2300   // This basic scheme here is the same as inline_unsafe_access, but
  2301   // differs in enough details that combining them would make the code
  2302   // overly confusing.  (This is a true fact! I originally combined
  2303   // them, but even I was confused by it!) As much code/comments as
  2304   // possible are retained from inline_unsafe_access though to make
  2305   // the correspondences clearer. - dl
  2307   if (callee()->is_static())  return false;  // caller must have the capability!
  2309 #ifndef PRODUCT
  2311     ResourceMark rm;
  2312     // Check the signatures.
  2313     ciSignature* sig = signature();
  2314 #ifdef ASSERT
  2315     BasicType rtype = sig->return_type()->basic_type();
  2316     assert(rtype == T_BOOLEAN, "CAS must return boolean");
  2317     assert(sig->count() == 4, "CAS has 4 arguments");
  2318     assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
  2319     assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
  2320 #endif // ASSERT
  2322 #endif //PRODUCT
  2324   // number of stack slots per value argument (1 or 2)
  2325   int type_words = type2size[type];
  2327   // Cannot inline wide CAS on machines that don't support it natively
  2328   if (type2aelembytes(type) > BytesPerInt && !VM_Version::supports_cx8())
  2329     return false;
  2331   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2333   // Argument words:  "this" plus oop plus offset plus oldvalue plus newvalue;
  2334   int nargs = 1 + 1 + 2  + type_words + type_words;
  2336   // pop arguments: newval, oldval, offset, base, and receiver
  2337   debug_only(int saved_sp = _sp);
  2338   _sp += nargs;
  2339   Node* newval   = (type_words == 1) ? pop() : pop_pair();
  2340   Node* oldval   = (type_words == 1) ? pop() : pop_pair();
  2341   Node *offset   = pop_pair();
  2342   Node *base     = pop();
  2343   Node *receiver = pop();
  2344   assert(saved_sp == _sp, "must have correct argument count");
  2346   //  Null check receiver.
  2347   _sp += nargs;
  2348   do_null_check(receiver, T_OBJECT);
  2349   _sp -= nargs;
  2350   if (stopped()) {
  2351     return true;
  2354   // Build field offset expression.
  2355   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2356   // to be plain byte offsets, which are also the same as those accepted
  2357   // by oopDesc::field_base.
  2358   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  2359   // 32-bit machines ignore the high half of long offsets
  2360   offset = ConvL2X(offset);
  2361   Node* adr = make_unsafe_address(base, offset);
  2362   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2364   // (Unlike inline_unsafe_access, there seems no point in trying
  2365   // to refine types. Just use the coarse types here.
  2366   const Type *value_type = Type::get_const_basic_type(type);
  2367   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2368   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  2369   int alias_idx = C->get_alias_index(adr_type);
  2371   // Memory-model-wise, a CAS acts like a little synchronized block,
  2372   // so needs barriers on each side.  These don't translate into
  2373   // actual barriers on most machines, but we still need rest of
  2374   // compiler to respect ordering.
  2376   insert_mem_bar(Op_MemBarRelease);
  2377   insert_mem_bar(Op_MemBarCPUOrder);
  2379   // 4984716: MemBars must be inserted before this
  2380   //          memory node in order to avoid a false
  2381   //          dependency which will confuse the scheduler.
  2382   Node *mem = memory(alias_idx);
  2384   // For now, we handle only those cases that actually exist: ints,
  2385   // longs, and Object. Adding others should be straightforward.
  2386   Node* cas;
  2387   switch(type) {
  2388   case T_INT:
  2389     cas = _gvn.transform(new (C, 5) CompareAndSwapINode(control(), mem, adr, newval, oldval));
  2390     break;
  2391   case T_LONG:
  2392     cas = _gvn.transform(new (C, 5) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
  2393     break;
  2394   case T_OBJECT:
  2395      // reference stores need a store barrier.
  2396     // (They don't if CAS fails, but it isn't worth checking.)
  2397     pre_barrier(control(), base, adr, alias_idx, newval, value_type, T_OBJECT);
  2398 #ifdef _LP64
  2399     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  2400       Node *newval_enc = _gvn.transform(new (C, 2) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
  2401       Node *oldval_enc = _gvn.transform(new (C, 2) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
  2402       cas = _gvn.transform(new (C, 5) CompareAndSwapNNode(control(), mem, adr,
  2403                                                           newval_enc, oldval_enc));
  2404     } else
  2405 #endif
  2407       cas = _gvn.transform(new (C, 5) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
  2409     post_barrier(control(), cas, base, adr, alias_idx, newval, T_OBJECT, true);
  2410     break;
  2411   default:
  2412     ShouldNotReachHere();
  2413     break;
  2416   // SCMemProjNodes represent the memory state of CAS. Their main
  2417   // role is to prevent CAS nodes from being optimized away when their
  2418   // results aren't used.
  2419   Node* proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
  2420   set_memory(proj, alias_idx);
  2422   // Add the trailing membar surrounding the access
  2423   insert_mem_bar(Op_MemBarCPUOrder);
  2424   insert_mem_bar(Op_MemBarAcquire);
  2426   push(cas);
  2427   return true;
  2430 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
  2431   // This is another variant of inline_unsafe_access, differing in
  2432   // that it always issues store-store ("release") barrier and ensures
  2433   // store-atomicity (which only matters for "long").
  2435   if (callee()->is_static())  return false;  // caller must have the capability!
  2437 #ifndef PRODUCT
  2439     ResourceMark rm;
  2440     // Check the signatures.
  2441     ciSignature* sig = signature();
  2442 #ifdef ASSERT
  2443     BasicType rtype = sig->return_type()->basic_type();
  2444     assert(rtype == T_VOID, "must return void");
  2445     assert(sig->count() == 3, "has 3 arguments");
  2446     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
  2447     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
  2448 #endif // ASSERT
  2450 #endif //PRODUCT
  2452   // number of stack slots per value argument (1 or 2)
  2453   int type_words = type2size[type];
  2455   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2457   // Argument words:  "this" plus oop plus offset plus value;
  2458   int nargs = 1 + 1 + 2 + type_words;
  2460   // pop arguments: val, offset, base, and receiver
  2461   debug_only(int saved_sp = _sp);
  2462   _sp += nargs;
  2463   Node* val      = (type_words == 1) ? pop() : pop_pair();
  2464   Node *offset   = pop_pair();
  2465   Node *base     = pop();
  2466   Node *receiver = pop();
  2467   assert(saved_sp == _sp, "must have correct argument count");
  2469   //  Null check receiver.
  2470   _sp += nargs;
  2471   do_null_check(receiver, T_OBJECT);
  2472   _sp -= nargs;
  2473   if (stopped()) {
  2474     return true;
  2477   // Build field offset expression.
  2478   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  2479   // 32-bit machines ignore the high half of long offsets
  2480   offset = ConvL2X(offset);
  2481   Node* adr = make_unsafe_address(base, offset);
  2482   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2483   const Type *value_type = Type::get_const_basic_type(type);
  2484   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2486   insert_mem_bar(Op_MemBarRelease);
  2487   insert_mem_bar(Op_MemBarCPUOrder);
  2488   // Ensure that the store is atomic for longs:
  2489   bool require_atomic_access = true;
  2490   Node* store;
  2491   if (type == T_OBJECT) // reference stores need a store barrier.
  2492     store = store_oop_to_unknown(control(), base, adr, adr_type, val, value_type, type);
  2493   else {
  2494     store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
  2496   insert_mem_bar(Op_MemBarCPUOrder);
  2497   return true;
  2500 bool LibraryCallKit::inline_unsafe_allocate() {
  2501   if (callee()->is_static())  return false;  // caller must have the capability!
  2502   int nargs = 1 + 1;
  2503   assert(signature()->size() == nargs-1, "alloc has 1 argument");
  2504   null_check_receiver(callee());  // check then ignore argument(0)
  2505   _sp += nargs;  // set original stack for use by uncommon_trap
  2506   Node* cls = do_null_check(argument(1), T_OBJECT);
  2507   _sp -= nargs;
  2508   if (stopped())  return true;
  2510   Node* kls = load_klass_from_mirror(cls, false, nargs, NULL, 0);
  2511   _sp += nargs;  // set original stack for use by uncommon_trap
  2512   kls = do_null_check(kls, T_OBJECT);
  2513   _sp -= nargs;
  2514   if (stopped())  return true;  // argument was like int.class
  2516   // Note:  The argument might still be an illegal value like
  2517   // Serializable.class or Object[].class.   The runtime will handle it.
  2518   // But we must make an explicit check for initialization.
  2519   Node* insp = basic_plus_adr(kls, instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc));
  2520   Node* inst = make_load(NULL, insp, TypeInt::INT, T_INT);
  2521   Node* bits = intcon(instanceKlass::fully_initialized);
  2522   Node* test = _gvn.transform( new (C, 3) SubINode(inst, bits) );
  2523   // The 'test' is non-zero if we need to take a slow path.
  2525   Node* obj = new_instance(kls, test);
  2526   push(obj);
  2528   return true;
  2531 //------------------------inline_native_time_funcs--------------
  2532 // inline code for System.currentTimeMillis() and System.nanoTime()
  2533 // these have the same type and signature
  2534 bool LibraryCallKit::inline_native_time_funcs(bool isNano) {
  2535   address funcAddr = isNano ? CAST_FROM_FN_PTR(address, os::javaTimeNanos) :
  2536                               CAST_FROM_FN_PTR(address, os::javaTimeMillis);
  2537   const char * funcName = isNano ? "nanoTime" : "currentTimeMillis";
  2538   const TypeFunc *tf = OptoRuntime::current_time_millis_Type();
  2539   const TypePtr* no_memory_effects = NULL;
  2540   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
  2541   Node* value = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms+0));
  2542 #ifdef ASSERT
  2543   Node* value_top = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms + 1));
  2544   assert(value_top == top(), "second value must be top");
  2545 #endif
  2546   push_pair(value);
  2547   return true;
  2550 //------------------------inline_native_currentThread------------------
  2551 bool LibraryCallKit::inline_native_currentThread() {
  2552   Node* junk = NULL;
  2553   push(generate_current_thread(junk));
  2554   return true;
  2557 //------------------------inline_native_isInterrupted------------------
  2558 bool LibraryCallKit::inline_native_isInterrupted() {
  2559   const int nargs = 1+1;  // receiver + boolean
  2560   assert(nargs == arg_size(), "sanity");
  2561   // Add a fast path to t.isInterrupted(clear_int):
  2562   //   (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
  2563   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
  2564   // So, in the common case that the interrupt bit is false,
  2565   // we avoid making a call into the VM.  Even if the interrupt bit
  2566   // is true, if the clear_int argument is false, we avoid the VM call.
  2567   // However, if the receiver is not currentThread, we must call the VM,
  2568   // because there must be some locking done around the operation.
  2570   // We only go to the fast case code if we pass two guards.
  2571   // Paths which do not pass are accumulated in the slow_region.
  2572   RegionNode* slow_region = new (C, 1) RegionNode(1);
  2573   record_for_igvn(slow_region);
  2574   RegionNode* result_rgn = new (C, 4) RegionNode(1+3); // fast1, fast2, slow
  2575   PhiNode*    result_val = new (C, 4) PhiNode(result_rgn, TypeInt::BOOL);
  2576   enum { no_int_result_path   = 1,
  2577          no_clear_result_path = 2,
  2578          slow_result_path     = 3
  2579   };
  2581   // (a) Receiving thread must be the current thread.
  2582   Node* rec_thr = argument(0);
  2583   Node* tls_ptr = NULL;
  2584   Node* cur_thr = generate_current_thread(tls_ptr);
  2585   Node* cmp_thr = _gvn.transform( new (C, 3) CmpPNode(cur_thr, rec_thr) );
  2586   Node* bol_thr = _gvn.transform( new (C, 2) BoolNode(cmp_thr, BoolTest::ne) );
  2588   bool known_current_thread = (_gvn.type(bol_thr) == TypeInt::ZERO);
  2589   if (!known_current_thread)
  2590     generate_slow_guard(bol_thr, slow_region);
  2592   // (b) Interrupt bit on TLS must be false.
  2593   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
  2594   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
  2595   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
  2596   // Set the control input on the field _interrupted read to prevent it floating up.
  2597   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT);
  2598   Node* cmp_bit = _gvn.transform( new (C, 3) CmpINode(int_bit, intcon(0)) );
  2599   Node* bol_bit = _gvn.transform( new (C, 2) BoolNode(cmp_bit, BoolTest::ne) );
  2601   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
  2603   // First fast path:  if (!TLS._interrupted) return false;
  2604   Node* false_bit = _gvn.transform( new (C, 1) IfFalseNode(iff_bit) );
  2605   result_rgn->init_req(no_int_result_path, false_bit);
  2606   result_val->init_req(no_int_result_path, intcon(0));
  2608   // drop through to next case
  2609   set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_bit)) );
  2611   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
  2612   Node* clr_arg = argument(1);
  2613   Node* cmp_arg = _gvn.transform( new (C, 3) CmpINode(clr_arg, intcon(0)) );
  2614   Node* bol_arg = _gvn.transform( new (C, 2) BoolNode(cmp_arg, BoolTest::ne) );
  2615   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
  2617   // Second fast path:  ... else if (!clear_int) return true;
  2618   Node* false_arg = _gvn.transform( new (C, 1) IfFalseNode(iff_arg) );
  2619   result_rgn->init_req(no_clear_result_path, false_arg);
  2620   result_val->init_req(no_clear_result_path, intcon(1));
  2622   // drop through to next case
  2623   set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_arg)) );
  2625   // (d) Otherwise, go to the slow path.
  2626   slow_region->add_req(control());
  2627   set_control( _gvn.transform(slow_region) );
  2629   if (stopped()) {
  2630     // There is no slow path.
  2631     result_rgn->init_req(slow_result_path, top());
  2632     result_val->init_req(slow_result_path, top());
  2633   } else {
  2634     // non-virtual because it is a private non-static
  2635     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
  2637     Node* slow_val = set_results_for_java_call(slow_call);
  2638     // this->control() comes from set_results_for_java_call
  2640     // If we know that the result of the slow call will be true, tell the optimizer!
  2641     if (known_current_thread)  slow_val = intcon(1);
  2643     Node* fast_io  = slow_call->in(TypeFunc::I_O);
  2644     Node* fast_mem = slow_call->in(TypeFunc::Memory);
  2645     // These two phis are pre-filled with copies of of the fast IO and Memory
  2646     Node* io_phi   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
  2647     Node* mem_phi  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
  2649     result_rgn->init_req(slow_result_path, control());
  2650     io_phi    ->init_req(slow_result_path, i_o());
  2651     mem_phi   ->init_req(slow_result_path, reset_memory());
  2652     result_val->init_req(slow_result_path, slow_val);
  2654     set_all_memory( _gvn.transform(mem_phi) );
  2655     set_i_o(        _gvn.transform(io_phi) );
  2658   push_result(result_rgn, result_val);
  2659   C->set_has_split_ifs(true); // Has chance for split-if optimization
  2661   return true;
  2664 //---------------------------load_mirror_from_klass----------------------------
  2665 // Given a klass oop, load its java mirror (a java.lang.Class oop).
  2666 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
  2667   Node* p = basic_plus_adr(klass, Klass::java_mirror_offset_in_bytes() + sizeof(oopDesc));
  2668   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
  2671 //-----------------------load_klass_from_mirror_common-------------------------
  2672 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
  2673 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
  2674 // and branch to the given path on the region.
  2675 // If never_see_null, take an uncommon trap on null, so we can optimistically
  2676 // compile for the non-null case.
  2677 // If the region is NULL, force never_see_null = true.
  2678 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
  2679                                                     bool never_see_null,
  2680                                                     int nargs,
  2681                                                     RegionNode* region,
  2682                                                     int null_path,
  2683                                                     int offset) {
  2684   if (region == NULL)  never_see_null = true;
  2685   Node* p = basic_plus_adr(mirror, offset);
  2686   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  2687   Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type) );
  2688   _sp += nargs; // any deopt will start just before call to enclosing method
  2689   Node* null_ctl = top();
  2690   kls = null_check_oop(kls, &null_ctl, never_see_null);
  2691   if (region != NULL) {
  2692     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
  2693     region->init_req(null_path, null_ctl);
  2694   } else {
  2695     assert(null_ctl == top(), "no loose ends");
  2697   _sp -= nargs;
  2698   return kls;
  2701 //--------------------(inline_native_Class_query helpers)---------------------
  2702 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
  2703 // Fall through if (mods & mask) == bits, take the guard otherwise.
  2704 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
  2705   // Branch around if the given klass has the given modifier bit set.
  2706   // Like generate_guard, adds a new path onto the region.
  2707   Node* modp = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
  2708   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
  2709   Node* mask = intcon(modifier_mask);
  2710   Node* bits = intcon(modifier_bits);
  2711   Node* mbit = _gvn.transform( new (C, 3) AndINode(mods, mask) );
  2712   Node* cmp  = _gvn.transform( new (C, 3) CmpINode(mbit, bits) );
  2713   Node* bol  = _gvn.transform( new (C, 2) BoolNode(cmp, BoolTest::ne) );
  2714   return generate_fair_guard(bol, region);
  2716 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
  2717   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
  2720 //-------------------------inline_native_Class_query-------------------
  2721 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
  2722   int nargs = 1+0;  // just the Class mirror, in most cases
  2723   const Type* return_type = TypeInt::BOOL;
  2724   Node* prim_return_value = top();  // what happens if it's a primitive class?
  2725   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  2726   bool expect_prim = false;     // most of these guys expect to work on refs
  2728   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
  2730   switch (id) {
  2731   case vmIntrinsics::_isInstance:
  2732     nargs = 1+1;  // the Class mirror, plus the object getting queried about
  2733     // nothing is an instance of a primitive type
  2734     prim_return_value = intcon(0);
  2735     break;
  2736   case vmIntrinsics::_getModifiers:
  2737     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  2738     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
  2739     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
  2740     break;
  2741   case vmIntrinsics::_isInterface:
  2742     prim_return_value = intcon(0);
  2743     break;
  2744   case vmIntrinsics::_isArray:
  2745     prim_return_value = intcon(0);
  2746     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
  2747     break;
  2748   case vmIntrinsics::_isPrimitive:
  2749     prim_return_value = intcon(1);
  2750     expect_prim = true;  // obviously
  2751     break;
  2752   case vmIntrinsics::_getSuperclass:
  2753     prim_return_value = null();
  2754     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  2755     break;
  2756   case vmIntrinsics::_getComponentType:
  2757     prim_return_value = null();
  2758     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  2759     break;
  2760   case vmIntrinsics::_getClassAccessFlags:
  2761     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  2762     return_type = TypeInt::INT;  // not bool!  6297094
  2763     break;
  2764   default:
  2765     ShouldNotReachHere();
  2768   Node* mirror =                      argument(0);
  2769   Node* obj    = (nargs <= 1)? top(): argument(1);
  2771   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
  2772   if (mirror_con == NULL)  return false;  // cannot happen?
  2774 #ifndef PRODUCT
  2775   if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
  2776     ciType* k = mirror_con->java_mirror_type();
  2777     if (k) {
  2778       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
  2779       k->print_name();
  2780       tty->cr();
  2783 #endif
  2785   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
  2786   RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  2787   record_for_igvn(region);
  2788   PhiNode* phi = new (C, PATH_LIMIT) PhiNode(region, return_type);
  2790   // The mirror will never be null of Reflection.getClassAccessFlags, however
  2791   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
  2792   // if it is. See bug 4774291.
  2794   // For Reflection.getClassAccessFlags(), the null check occurs in
  2795   // the wrong place; see inline_unsafe_access(), above, for a similar
  2796   // situation.
  2797   _sp += nargs;  // set original stack for use by uncommon_trap
  2798   mirror = do_null_check(mirror, T_OBJECT);
  2799   _sp -= nargs;
  2800   // If mirror or obj is dead, only null-path is taken.
  2801   if (stopped())  return true;
  2803   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
  2805   // Now load the mirror's klass metaobject, and null-check it.
  2806   // Side-effects region with the control path if the klass is null.
  2807   Node* kls = load_klass_from_mirror(mirror, never_see_null, nargs,
  2808                                      region, _prim_path);
  2809   // If kls is null, we have a primitive mirror.
  2810   phi->init_req(_prim_path, prim_return_value);
  2811   if (stopped()) { push_result(region, phi); return true; }
  2813   Node* p;  // handy temp
  2814   Node* null_ctl;
  2816   // Now that we have the non-null klass, we can perform the real query.
  2817   // For constant classes, the query will constant-fold in LoadNode::Value.
  2818   Node* query_value = top();
  2819   switch (id) {
  2820   case vmIntrinsics::_isInstance:
  2821     // nothing is an instance of a primitive type
  2822     query_value = gen_instanceof(obj, kls);
  2823     break;
  2825   case vmIntrinsics::_getModifiers:
  2826     p = basic_plus_adr(kls, Klass::modifier_flags_offset_in_bytes() + sizeof(oopDesc));
  2827     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
  2828     break;
  2830   case vmIntrinsics::_isInterface:
  2831     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  2832     if (generate_interface_guard(kls, region) != NULL)
  2833       // A guard was added.  If the guard is taken, it was an interface.
  2834       phi->add_req(intcon(1));
  2835     // If we fall through, it's a plain class.
  2836     query_value = intcon(0);
  2837     break;
  2839   case vmIntrinsics::_isArray:
  2840     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
  2841     if (generate_array_guard(kls, region) != NULL)
  2842       // A guard was added.  If the guard is taken, it was an array.
  2843       phi->add_req(intcon(1));
  2844     // If we fall through, it's a plain class.
  2845     query_value = intcon(0);
  2846     break;
  2848   case vmIntrinsics::_isPrimitive:
  2849     query_value = intcon(0); // "normal" path produces false
  2850     break;
  2852   case vmIntrinsics::_getSuperclass:
  2853     // The rules here are somewhat unfortunate, but we can still do better
  2854     // with random logic than with a JNI call.
  2855     // Interfaces store null or Object as _super, but must report null.
  2856     // Arrays store an intermediate super as _super, but must report Object.
  2857     // Other types can report the actual _super.
  2858     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  2859     if (generate_interface_guard(kls, region) != NULL)
  2860       // A guard was added.  If the guard is taken, it was an interface.
  2861       phi->add_req(null());
  2862     if (generate_array_guard(kls, region) != NULL)
  2863       // A guard was added.  If the guard is taken, it was an array.
  2864       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
  2865     // If we fall through, it's a plain class.  Get its _super.
  2866     p = basic_plus_adr(kls, Klass::super_offset_in_bytes() + sizeof(oopDesc));
  2867     kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL) );
  2868     null_ctl = top();
  2869     kls = null_check_oop(kls, &null_ctl);
  2870     if (null_ctl != top()) {
  2871       // If the guard is taken, Object.superClass is null (both klass and mirror).
  2872       region->add_req(null_ctl);
  2873       phi   ->add_req(null());
  2875     if (!stopped()) {
  2876       query_value = load_mirror_from_klass(kls);
  2878     break;
  2880   case vmIntrinsics::_getComponentType:
  2881     if (generate_array_guard(kls, region) != NULL) {
  2882       // Be sure to pin the oop load to the guard edge just created:
  2883       Node* is_array_ctrl = region->in(region->req()-1);
  2884       Node* cma = basic_plus_adr(kls, in_bytes(arrayKlass::component_mirror_offset()) + sizeof(oopDesc));
  2885       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
  2886       phi->add_req(cmo);
  2888     query_value = null();  // non-array case is null
  2889     break;
  2891   case vmIntrinsics::_getClassAccessFlags:
  2892     p = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
  2893     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
  2894     break;
  2896   default:
  2897     ShouldNotReachHere();
  2900   // Fall-through is the normal case of a query to a real class.
  2901   phi->init_req(1, query_value);
  2902   region->init_req(1, control());
  2904   push_result(region, phi);
  2905   C->set_has_split_ifs(true); // Has chance for split-if optimization
  2907   return true;
  2910 //--------------------------inline_native_subtype_check------------------------
  2911 // This intrinsic takes the JNI calls out of the heart of
  2912 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
  2913 bool LibraryCallKit::inline_native_subtype_check() {
  2914   int nargs = 1+1;  // the Class mirror, plus the other class getting examined
  2916   // Pull both arguments off the stack.
  2917   Node* args[2];                // two java.lang.Class mirrors: superc, subc
  2918   args[0] = argument(0);
  2919   args[1] = argument(1);
  2920   Node* klasses[2];             // corresponding Klasses: superk, subk
  2921   klasses[0] = klasses[1] = top();
  2923   enum {
  2924     // A full decision tree on {superc is prim, subc is prim}:
  2925     _prim_0_path = 1,           // {P,N} => false
  2926                                 // {P,P} & superc!=subc => false
  2927     _prim_same_path,            // {P,P} & superc==subc => true
  2928     _prim_1_path,               // {N,P} => false
  2929     _ref_subtype_path,          // {N,N} & subtype check wins => true
  2930     _both_ref_path,             // {N,N} & subtype check loses => false
  2931     PATH_LIMIT
  2932   };
  2934   RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  2935   Node*       phi    = new (C, PATH_LIMIT) PhiNode(region, TypeInt::BOOL);
  2936   record_for_igvn(region);
  2938   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
  2939   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  2940   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
  2942   // First null-check both mirrors and load each mirror's klass metaobject.
  2943   int which_arg;
  2944   for (which_arg = 0; which_arg <= 1; which_arg++) {
  2945     Node* arg = args[which_arg];
  2946     _sp += nargs;  // set original stack for use by uncommon_trap
  2947     arg = do_null_check(arg, T_OBJECT);
  2948     _sp -= nargs;
  2949     if (stopped())  break;
  2950     args[which_arg] = _gvn.transform(arg);
  2952     Node* p = basic_plus_adr(arg, class_klass_offset);
  2953     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
  2954     klasses[which_arg] = _gvn.transform(kls);
  2957   // Having loaded both klasses, test each for null.
  2958   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  2959   for (which_arg = 0; which_arg <= 1; which_arg++) {
  2960     Node* kls = klasses[which_arg];
  2961     Node* null_ctl = top();
  2962     _sp += nargs;  // set original stack for use by uncommon_trap
  2963     kls = null_check_oop(kls, &null_ctl, never_see_null);
  2964     _sp -= nargs;
  2965     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
  2966     region->init_req(prim_path, null_ctl);
  2967     if (stopped())  break;
  2968     klasses[which_arg] = kls;
  2971   if (!stopped()) {
  2972     // now we have two reference types, in klasses[0..1]
  2973     Node* subk   = klasses[1];  // the argument to isAssignableFrom
  2974     Node* superk = klasses[0];  // the receiver
  2975     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
  2976     // now we have a successful reference subtype check
  2977     region->set_req(_ref_subtype_path, control());
  2980   // If both operands are primitive (both klasses null), then
  2981   // we must return true when they are identical primitives.
  2982   // It is convenient to test this after the first null klass check.
  2983   set_control(region->in(_prim_0_path)); // go back to first null check
  2984   if (!stopped()) {
  2985     // Since superc is primitive, make a guard for the superc==subc case.
  2986     Node* cmp_eq = _gvn.transform( new (C, 3) CmpPNode(args[0], args[1]) );
  2987     Node* bol_eq = _gvn.transform( new (C, 2) BoolNode(cmp_eq, BoolTest::eq) );
  2988     generate_guard(bol_eq, region, PROB_FAIR);
  2989     if (region->req() == PATH_LIMIT+1) {
  2990       // A guard was added.  If the added guard is taken, superc==subc.
  2991       region->swap_edges(PATH_LIMIT, _prim_same_path);
  2992       region->del_req(PATH_LIMIT);
  2994     region->set_req(_prim_0_path, control()); // Not equal after all.
  2997   // these are the only paths that produce 'true':
  2998   phi->set_req(_prim_same_path,   intcon(1));
  2999   phi->set_req(_ref_subtype_path, intcon(1));
  3001   // pull together the cases:
  3002   assert(region->req() == PATH_LIMIT, "sane region");
  3003   for (uint i = 1; i < region->req(); i++) {
  3004     Node* ctl = region->in(i);
  3005     if (ctl == NULL || ctl == top()) {
  3006       region->set_req(i, top());
  3007       phi   ->set_req(i, top());
  3008     } else if (phi->in(i) == NULL) {
  3009       phi->set_req(i, intcon(0)); // all other paths produce 'false'
  3013   set_control(_gvn.transform(region));
  3014   push(_gvn.transform(phi));
  3016   return true;
  3019 //---------------------generate_array_guard_common------------------------
  3020 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
  3021                                                   bool obj_array, bool not_array) {
  3022   // If obj_array/non_array==false/false:
  3023   // Branch around if the given klass is in fact an array (either obj or prim).
  3024   // If obj_array/non_array==false/true:
  3025   // Branch around if the given klass is not an array klass of any kind.
  3026   // If obj_array/non_array==true/true:
  3027   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
  3028   // If obj_array/non_array==true/false:
  3029   // Branch around if the kls is an oop array (Object[] or subtype)
  3030   //
  3031   // Like generate_guard, adds a new path onto the region.
  3032   jint  layout_con = 0;
  3033   Node* layout_val = get_layout_helper(kls, layout_con);
  3034   if (layout_val == NULL) {
  3035     bool query = (obj_array
  3036                   ? Klass::layout_helper_is_objArray(layout_con)
  3037                   : Klass::layout_helper_is_javaArray(layout_con));
  3038     if (query == not_array) {
  3039       return NULL;                       // never a branch
  3040     } else {                             // always a branch
  3041       Node* always_branch = control();
  3042       if (region != NULL)
  3043         region->add_req(always_branch);
  3044       set_control(top());
  3045       return always_branch;
  3048   // Now test the correct condition.
  3049   jint  nval = (obj_array
  3050                 ? ((jint)Klass::_lh_array_tag_type_value
  3051                    <<    Klass::_lh_array_tag_shift)
  3052                 : Klass::_lh_neutral_value);
  3053   Node* cmp = _gvn.transform( new(C, 3) CmpINode(layout_val, intcon(nval)) );
  3054   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
  3055   // invert the test if we are looking for a non-array
  3056   if (not_array)  btest = BoolTest(btest).negate();
  3057   Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, btest) );
  3058   return generate_fair_guard(bol, region);
  3062 //-----------------------inline_native_newArray--------------------------
  3063 bool LibraryCallKit::inline_native_newArray() {
  3064   int nargs = 2;
  3065   Node* mirror    = argument(0);
  3066   Node* count_val = argument(1);
  3068   _sp += nargs;  // set original stack for use by uncommon_trap
  3069   mirror = do_null_check(mirror, T_OBJECT);
  3070   _sp -= nargs;
  3071   // If mirror or obj is dead, only null-path is taken.
  3072   if (stopped())  return true;
  3074   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
  3075   RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  3076   PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
  3077                                                       TypeInstPtr::NOTNULL);
  3078   PhiNode*    result_io  = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
  3079   PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
  3080                                                       TypePtr::BOTTOM);
  3082   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3083   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
  3084                                                   nargs,
  3085                                                   result_reg, _slow_path);
  3086   Node* normal_ctl   = control();
  3087   Node* no_array_ctl = result_reg->in(_slow_path);
  3089   // Generate code for the slow case.  We make a call to newArray().
  3090   set_control(no_array_ctl);
  3091   if (!stopped()) {
  3092     // Either the input type is void.class, or else the
  3093     // array klass has not yet been cached.  Either the
  3094     // ensuing call will throw an exception, or else it
  3095     // will cache the array klass for next time.
  3096     PreserveJVMState pjvms(this);
  3097     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
  3098     Node* slow_result = set_results_for_java_call(slow_call);
  3099     // this->control() comes from set_results_for_java_call
  3100     result_reg->set_req(_slow_path, control());
  3101     result_val->set_req(_slow_path, slow_result);
  3102     result_io ->set_req(_slow_path, i_o());
  3103     result_mem->set_req(_slow_path, reset_memory());
  3106   set_control(normal_ctl);
  3107   if (!stopped()) {
  3108     // Normal case:  The array type has been cached in the java.lang.Class.
  3109     // The following call works fine even if the array type is polymorphic.
  3110     // It could be a dynamic mix of int[], boolean[], Object[], etc.
  3111     Node* obj = new_array(klass_node, count_val, nargs);
  3112     result_reg->init_req(_normal_path, control());
  3113     result_val->init_req(_normal_path, obj);
  3114     result_io ->init_req(_normal_path, i_o());
  3115     result_mem->init_req(_normal_path, reset_memory());
  3118   // Return the combined state.
  3119   set_i_o(        _gvn.transform(result_io)  );
  3120   set_all_memory( _gvn.transform(result_mem) );
  3121   push_result(result_reg, result_val);
  3122   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3124   return true;
  3127 //----------------------inline_native_getLength--------------------------
  3128 bool LibraryCallKit::inline_native_getLength() {
  3129   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  3131   int nargs = 1;
  3132   Node* array = argument(0);
  3134   _sp += nargs;  // set original stack for use by uncommon_trap
  3135   array = do_null_check(array, T_OBJECT);
  3136   _sp -= nargs;
  3138   // If array is dead, only null-path is taken.
  3139   if (stopped())  return true;
  3141   // Deoptimize if it is a non-array.
  3142   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
  3144   if (non_array != NULL) {
  3145     PreserveJVMState pjvms(this);
  3146     set_control(non_array);
  3147     _sp += nargs;  // push the arguments back on the stack
  3148     uncommon_trap(Deoptimization::Reason_intrinsic,
  3149                   Deoptimization::Action_maybe_recompile);
  3152   // If control is dead, only non-array-path is taken.
  3153   if (stopped())  return true;
  3155   // The works fine even if the array type is polymorphic.
  3156   // It could be a dynamic mix of int[], boolean[], Object[], etc.
  3157   push( load_array_length(array) );
  3159   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3161   return true;
  3164 //------------------------inline_array_copyOf----------------------------
  3165 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
  3166   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  3168   // Restore the stack and pop off the arguments.
  3169   int nargs = 3 + (is_copyOfRange? 1: 0);
  3170   Node* original          = argument(0);
  3171   Node* start             = is_copyOfRange? argument(1): intcon(0);
  3172   Node* end               = is_copyOfRange? argument(2): argument(1);
  3173   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
  3175   _sp += nargs;  // set original stack for use by uncommon_trap
  3176   array_type_mirror = do_null_check(array_type_mirror, T_OBJECT);
  3177   original          = do_null_check(original, T_OBJECT);
  3178   _sp -= nargs;
  3180   // Check if a null path was taken unconditionally.
  3181   if (stopped())  return true;
  3183   Node* orig_length = load_array_length(original);
  3185   Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nargs,
  3186                                             NULL, 0);
  3187   _sp += nargs;  // set original stack for use by uncommon_trap
  3188   klass_node = do_null_check(klass_node, T_OBJECT);
  3189   _sp -= nargs;
  3191   RegionNode* bailout = new (C, 1) RegionNode(1);
  3192   record_for_igvn(bailout);
  3194   // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
  3195   // Bail out if that is so.
  3196   Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
  3197   if (not_objArray != NULL) {
  3198     // Improve the klass node's type from the new optimistic assumption:
  3199     ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
  3200     const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
  3201     Node* cast = new (C, 2) CastPPNode(klass_node, akls);
  3202     cast->init_req(0, control());
  3203     klass_node = _gvn.transform(cast);
  3206   // Bail out if either start or end is negative.
  3207   generate_negative_guard(start, bailout, &start);
  3208   generate_negative_guard(end,   bailout, &end);
  3210   Node* length = end;
  3211   if (_gvn.type(start) != TypeInt::ZERO) {
  3212     length = _gvn.transform( new (C, 3) SubINode(end, start) );
  3215   // Bail out if length is negative.
  3216   // ...Not needed, since the new_array will throw the right exception.
  3217   //generate_negative_guard(length, bailout, &length);
  3219   if (bailout->req() > 1) {
  3220     PreserveJVMState pjvms(this);
  3221     set_control( _gvn.transform(bailout) );
  3222     _sp += nargs;  // push the arguments back on the stack
  3223     uncommon_trap(Deoptimization::Reason_intrinsic,
  3224                   Deoptimization::Action_maybe_recompile);
  3227   if (!stopped()) {
  3228     // How many elements will we copy from the original?
  3229     // The answer is MinI(orig_length - start, length).
  3230     Node* orig_tail = _gvn.transform( new(C, 3) SubINode(orig_length, start) );
  3231     Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
  3233     Node* newcopy = new_array(klass_node, length, nargs);
  3235     // Generate a direct call to the right arraycopy function(s).
  3236     // We know the copy is disjoint but we might not know if the
  3237     // oop stores need checking.
  3238     // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
  3239     // This will fail a store-check if x contains any non-nulls.
  3240     bool disjoint_bases = true;
  3241     bool length_never_negative = true;
  3242     generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  3243                        original, start, newcopy, intcon(0), moved,
  3244                        nargs, disjoint_bases, length_never_negative);
  3246     push(newcopy);
  3249   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3251   return true;
  3255 //----------------------generate_virtual_guard---------------------------
  3256 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
  3257 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
  3258                                              RegionNode* slow_region) {
  3259   ciMethod* method = callee();
  3260   int vtable_index = method->vtable_index();
  3261   // Get the methodOop out of the appropriate vtable entry.
  3262   int entry_offset  = (instanceKlass::vtable_start_offset() +
  3263                      vtable_index*vtableEntry::size()) * wordSize +
  3264                      vtableEntry::method_offset_in_bytes();
  3265   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
  3266   Node* target_call = make_load(NULL, entry_addr, TypeInstPtr::NOTNULL, T_OBJECT);
  3268   // Compare the target method with the expected method (e.g., Object.hashCode).
  3269   const TypeInstPtr* native_call_addr = TypeInstPtr::make(method);
  3271   Node* native_call = makecon(native_call_addr);
  3272   Node* chk_native  = _gvn.transform( new(C, 3) CmpPNode(target_call, native_call) );
  3273   Node* test_native = _gvn.transform( new(C, 2) BoolNode(chk_native, BoolTest::ne) );
  3275   return generate_slow_guard(test_native, slow_region);
  3278 //-----------------------generate_method_call----------------------------
  3279 // Use generate_method_call to make a slow-call to the real
  3280 // method if the fast path fails.  An alternative would be to
  3281 // use a stub like OptoRuntime::slow_arraycopy_Java.
  3282 // This only works for expanding the current library call,
  3283 // not another intrinsic.  (E.g., don't use this for making an
  3284 // arraycopy call inside of the copyOf intrinsic.)
  3285 CallJavaNode*
  3286 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
  3287   // When compiling the intrinsic method itself, do not use this technique.
  3288   guarantee(callee() != C->method(), "cannot make slow-call to self");
  3290   ciMethod* method = callee();
  3291   // ensure the JVMS we have will be correct for this call
  3292   guarantee(method_id == method->intrinsic_id(), "must match");
  3294   const TypeFunc* tf = TypeFunc::make(method);
  3295   int tfdc = tf->domain()->cnt();
  3296   CallJavaNode* slow_call;
  3297   if (is_static) {
  3298     assert(!is_virtual, "");
  3299     slow_call = new(C, tfdc) CallStaticJavaNode(tf,
  3300                                 SharedRuntime::get_resolve_static_call_stub(),
  3301                                 method, bci());
  3302   } else if (is_virtual) {
  3303     null_check_receiver(method);
  3304     int vtable_index = methodOopDesc::invalid_vtable_index;
  3305     if (UseInlineCaches) {
  3306       // Suppress the vtable call
  3307     } else {
  3308       // hashCode and clone are not a miranda methods,
  3309       // so the vtable index is fixed.
  3310       // No need to use the linkResolver to get it.
  3311        vtable_index = method->vtable_index();
  3313     slow_call = new(C, tfdc) CallDynamicJavaNode(tf,
  3314                                 SharedRuntime::get_resolve_virtual_call_stub(),
  3315                                 method, vtable_index, bci());
  3316   } else {  // neither virtual nor static:  opt_virtual
  3317     null_check_receiver(method);
  3318     slow_call = new(C, tfdc) CallStaticJavaNode(tf,
  3319                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
  3320                                 method, bci());
  3321     slow_call->set_optimized_virtual(true);
  3323   set_arguments_for_java_call(slow_call);
  3324   set_edges_for_java_call(slow_call);
  3325   return slow_call;
  3329 //------------------------------inline_native_hashcode--------------------
  3330 // Build special case code for calls to hashCode on an object.
  3331 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
  3332   assert(is_static == callee()->is_static(), "correct intrinsic selection");
  3333   assert(!(is_virtual && is_static), "either virtual, special, or static");
  3335   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
  3337   RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  3338   PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
  3339                                                       TypeInt::INT);
  3340   PhiNode*    result_io  = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
  3341   PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
  3342                                                       TypePtr::BOTTOM);
  3343   Node* obj = NULL;
  3344   if (!is_static) {
  3345     // Check for hashing null object
  3346     obj = null_check_receiver(callee());
  3347     if (stopped())  return true;        // unconditionally null
  3348     result_reg->init_req(_null_path, top());
  3349     result_val->init_req(_null_path, top());
  3350   } else {
  3351     // Do a null check, and return zero if null.
  3352     // System.identityHashCode(null) == 0
  3353     obj = argument(0);
  3354     Node* null_ctl = top();
  3355     obj = null_check_oop(obj, &null_ctl);
  3356     result_reg->init_req(_null_path, null_ctl);
  3357     result_val->init_req(_null_path, _gvn.intcon(0));
  3360   // Unconditionally null?  Then return right away.
  3361   if (stopped()) {
  3362     set_control( result_reg->in(_null_path) );
  3363     if (!stopped())
  3364       push(      result_val ->in(_null_path) );
  3365     return true;
  3368   // After null check, get the object's klass.
  3369   Node* obj_klass = load_object_klass(obj);
  3371   // This call may be virtual (invokevirtual) or bound (invokespecial).
  3372   // For each case we generate slightly different code.
  3374   // We only go to the fast case code if we pass a number of guards.  The
  3375   // paths which do not pass are accumulated in the slow_region.
  3376   RegionNode* slow_region = new (C, 1) RegionNode(1);
  3377   record_for_igvn(slow_region);
  3379   // If this is a virtual call, we generate a funny guard.  We pull out
  3380   // the vtable entry corresponding to hashCode() from the target object.
  3381   // If the target method which we are calling happens to be the native
  3382   // Object hashCode() method, we pass the guard.  We do not need this
  3383   // guard for non-virtual calls -- the caller is known to be the native
  3384   // Object hashCode().
  3385   if (is_virtual) {
  3386     generate_virtual_guard(obj_klass, slow_region);
  3389   // Get the header out of the object, use LoadMarkNode when available
  3390   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
  3391   Node* header = make_load(NULL, header_addr, TypeRawPtr::BOTTOM, T_ADDRESS);
  3392   header = _gvn.transform( new (C, 2) CastP2XNode(NULL, header) );
  3394   // Test the header to see if it is unlocked.
  3395   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
  3396   Node *lmasked_header = _gvn.transform( new (C, 3) AndXNode(header, lock_mask) );
  3397   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
  3398   Node *chk_unlocked   = _gvn.transform( new (C, 3) CmpXNode( lmasked_header, unlocked_val));
  3399   Node *test_unlocked  = _gvn.transform( new (C, 2) BoolNode( chk_unlocked, BoolTest::ne) );
  3401   generate_slow_guard(test_unlocked, slow_region);
  3403   // Get the hash value and check to see that it has been properly assigned.
  3404   // We depend on hash_mask being at most 32 bits and avoid the use of
  3405   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
  3406   // vm: see markOop.hpp.
  3407   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
  3408   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
  3409   Node *hshifted_header= _gvn.transform( new (C, 3) URShiftXNode(header, hash_shift) );
  3410   // This hack lets the hash bits live anywhere in the mark object now, as long
  3411   // as the shift drops the relevant bits into the low 32 bits.  Note that
  3412   // Java spec says that HashCode is an int so there's no point in capturing
  3413   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
  3414   hshifted_header      = ConvX2I(hshifted_header);
  3415   Node *hash_val       = _gvn.transform( new (C, 3) AndINode(hshifted_header, hash_mask) );
  3417   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
  3418   Node *chk_assigned   = _gvn.transform( new (C, 3) CmpINode( hash_val, no_hash_val));
  3419   Node *test_assigned  = _gvn.transform( new (C, 2) BoolNode( chk_assigned, BoolTest::eq) );
  3421   generate_slow_guard(test_assigned, slow_region);
  3423   Node* init_mem = reset_memory();
  3424   // fill in the rest of the null path:
  3425   result_io ->init_req(_null_path, i_o());
  3426   result_mem->init_req(_null_path, init_mem);
  3428   result_val->init_req(_fast_path, hash_val);
  3429   result_reg->init_req(_fast_path, control());
  3430   result_io ->init_req(_fast_path, i_o());
  3431   result_mem->init_req(_fast_path, init_mem);
  3433   // Generate code for the slow case.  We make a call to hashCode().
  3434   set_control(_gvn.transform(slow_region));
  3435   if (!stopped()) {
  3436     // No need for PreserveJVMState, because we're using up the present state.
  3437     set_all_memory(init_mem);
  3438     vmIntrinsics::ID hashCode_id = vmIntrinsics::_hashCode;
  3439     if (is_static)   hashCode_id = vmIntrinsics::_identityHashCode;
  3440     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
  3441     Node* slow_result = set_results_for_java_call(slow_call);
  3442     // this->control() comes from set_results_for_java_call
  3443     result_reg->init_req(_slow_path, control());
  3444     result_val->init_req(_slow_path, slow_result);
  3445     result_io  ->set_req(_slow_path, i_o());
  3446     result_mem ->set_req(_slow_path, reset_memory());
  3449   // Return the combined state.
  3450   set_i_o(        _gvn.transform(result_io)  );
  3451   set_all_memory( _gvn.transform(result_mem) );
  3452   push_result(result_reg, result_val);
  3454   return true;
  3457 //---------------------------inline_native_getClass----------------------------
  3458 // Build special case code for calls to getClass on an object.
  3459 bool LibraryCallKit::inline_native_getClass() {
  3460   Node* obj = null_check_receiver(callee());
  3461   if (stopped())  return true;
  3462   push( load_mirror_from_klass(load_object_klass(obj)) );
  3463   return true;
  3466 //-----------------inline_native_Reflection_getCallerClass---------------------
  3467 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
  3468 //
  3469 // NOTE that this code must perform the same logic as
  3470 // vframeStream::security_get_caller_frame in that it must skip
  3471 // Method.invoke() and auxiliary frames.
  3476 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
  3477   ciMethod*       method = callee();
  3479 #ifndef PRODUCT
  3480   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3481     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
  3483 #endif
  3485   debug_only(int saved_sp = _sp);
  3487   // Argument words:  (int depth)
  3488   int nargs = 1;
  3490   _sp += nargs;
  3491   Node* caller_depth_node = pop();
  3493   assert(saved_sp == _sp, "must have correct argument count");
  3495   // The depth value must be a constant in order for the runtime call
  3496   // to be eliminated.
  3497   const TypeInt* caller_depth_type = _gvn.type(caller_depth_node)->isa_int();
  3498   if (caller_depth_type == NULL || !caller_depth_type->is_con()) {
  3499 #ifndef PRODUCT
  3500     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3501       tty->print_cr("  Bailing out because caller depth was not a constant");
  3503 #endif
  3504     return false;
  3506   // Note that the JVM state at this point does not include the
  3507   // getCallerClass() frame which we are trying to inline. The
  3508   // semantics of getCallerClass(), however, are that the "first"
  3509   // frame is the getCallerClass() frame, so we subtract one from the
  3510   // requested depth before continuing. We don't inline requests of
  3511   // getCallerClass(0).
  3512   int caller_depth = caller_depth_type->get_con() - 1;
  3513   if (caller_depth < 0) {
  3514 #ifndef PRODUCT
  3515     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3516       tty->print_cr("  Bailing out because caller depth was %d", caller_depth);
  3518 #endif
  3519     return false;
  3522   if (!jvms()->has_method()) {
  3523 #ifndef PRODUCT
  3524     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3525       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
  3527 #endif
  3528     return false;
  3530   int _depth = jvms()->depth();  // cache call chain depth
  3532   // Walk back up the JVM state to find the caller at the required
  3533   // depth. NOTE that this code must perform the same logic as
  3534   // vframeStream::security_get_caller_frame in that it must skip
  3535   // Method.invoke() and auxiliary frames. Note also that depth is
  3536   // 1-based (1 is the bottom of the inlining).
  3537   int inlining_depth = _depth;
  3538   JVMState* caller_jvms = NULL;
  3540   if (inlining_depth > 0) {
  3541     caller_jvms = jvms();
  3542     assert(caller_jvms = jvms()->of_depth(inlining_depth), "inlining_depth == our depth");
  3543     do {
  3544       // The following if-tests should be performed in this order
  3545       if (is_method_invoke_or_aux_frame(caller_jvms)) {
  3546         // Skip a Method.invoke() or auxiliary frame
  3547       } else if (caller_depth > 0) {
  3548         // Skip real frame
  3549         --caller_depth;
  3550       } else {
  3551         // We're done: reached desired caller after skipping.
  3552         break;
  3554       caller_jvms = caller_jvms->caller();
  3555       --inlining_depth;
  3556     } while (inlining_depth > 0);
  3559   if (inlining_depth == 0) {
  3560 #ifndef PRODUCT
  3561     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3562       tty->print_cr("  Bailing out because caller depth (%d) exceeded inlining depth (%d)", caller_depth_type->get_con(), _depth);
  3563       tty->print_cr("  JVM state at this point:");
  3564       for (int i = _depth; i >= 1; i--) {
  3565         tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
  3568 #endif
  3569     return false; // Reached end of inlining
  3572   // Acquire method holder as java.lang.Class
  3573   ciInstanceKlass* caller_klass  = caller_jvms->method()->holder();
  3574   ciInstance*      caller_mirror = caller_klass->java_mirror();
  3575   // Push this as a constant
  3576   push(makecon(TypeInstPtr::make(caller_mirror)));
  3577 #ifndef PRODUCT
  3578   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3579     tty->print_cr("  Succeeded: caller = %s.%s, caller depth = %d, depth = %d", caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), caller_depth_type->get_con(), _depth);
  3580     tty->print_cr("  JVM state at this point:");
  3581     for (int i = _depth; i >= 1; i--) {
  3582       tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
  3585 #endif
  3586   return true;
  3589 // Helper routine for above
  3590 bool LibraryCallKit::is_method_invoke_or_aux_frame(JVMState* jvms) {
  3591   // Is this the Method.invoke method itself?
  3592   if (jvms->method()->intrinsic_id() == vmIntrinsics::_invoke)
  3593     return true;
  3595   // Is this a helper, defined somewhere underneath MethodAccessorImpl.
  3596   ciKlass* k = jvms->method()->holder();
  3597   if (k->is_instance_klass()) {
  3598     ciInstanceKlass* ik = k->as_instance_klass();
  3599     for (; ik != NULL; ik = ik->super()) {
  3600       if (ik->name() == ciSymbol::sun_reflect_MethodAccessorImpl() &&
  3601           ik == env()->find_system_klass(ik->name())) {
  3602         return true;
  3607   return false;
  3610 static int value_field_offset = -1;  // offset of the "value" field of AtomicLongCSImpl.  This is needed by
  3611                                      // inline_native_AtomicLong_attemptUpdate() but it has no way of
  3612                                      // computing it since there is no lookup field by name function in the
  3613                                      // CI interface.  This is computed and set by inline_native_AtomicLong_get().
  3614                                      // Using a static variable here is safe even if we have multiple compilation
  3615                                      // threads because the offset is constant.  At worst the same offset will be
  3616                                      // computed and  stored multiple
  3618 bool LibraryCallKit::inline_native_AtomicLong_get() {
  3619   // Restore the stack and pop off the argument
  3620   _sp+=1;
  3621   Node *obj = pop();
  3623   // get the offset of the "value" field. Since the CI interfaces
  3624   // does not provide a way to look up a field by name, we scan the bytecodes
  3625   // to get the field index.  We expect the first 2 instructions of the method
  3626   // to be:
  3627   //    0 aload_0
  3628   //    1 getfield "value"
  3629   ciMethod* method = callee();
  3630   if (value_field_offset == -1)
  3632     ciField* value_field;
  3633     ciBytecodeStream iter(method);
  3634     Bytecodes::Code bc = iter.next();
  3636     if ((bc != Bytecodes::_aload_0) &&
  3637               ((bc != Bytecodes::_aload) || (iter.get_index() != 0)))
  3638       return false;
  3639     bc = iter.next();
  3640     if (bc != Bytecodes::_getfield)
  3641       return false;
  3642     bool ignore;
  3643     value_field = iter.get_field(ignore);
  3644     value_field_offset = value_field->offset_in_bytes();
  3647   // Null check without removing any arguments.
  3648   _sp++;
  3649   obj = do_null_check(obj, T_OBJECT);
  3650   _sp--;
  3651   // Check for locking null object
  3652   if (stopped()) return true;
  3654   Node *adr = basic_plus_adr(obj, obj, value_field_offset);
  3655   const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
  3656   int alias_idx = C->get_alias_index(adr_type);
  3658   Node *result = _gvn.transform(new (C, 3) LoadLLockedNode(control(), memory(alias_idx), adr));
  3660   push_pair(result);
  3662   return true;
  3665 bool LibraryCallKit::inline_native_AtomicLong_attemptUpdate() {
  3666   // Restore the stack and pop off the arguments
  3667   _sp+=5;
  3668   Node *newVal = pop_pair();
  3669   Node *oldVal = pop_pair();
  3670   Node *obj = pop();
  3672   // we need the offset of the "value" field which was computed when
  3673   // inlining the get() method.  Give up if we don't have it.
  3674   if (value_field_offset == -1)
  3675     return false;
  3677   // Null check without removing any arguments.
  3678   _sp+=5;
  3679   obj = do_null_check(obj, T_OBJECT);
  3680   _sp-=5;
  3681   // Check for locking null object
  3682   if (stopped()) return true;
  3684   Node *adr = basic_plus_adr(obj, obj, value_field_offset);
  3685   const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
  3686   int alias_idx = C->get_alias_index(adr_type);
  3688   Node *cas = _gvn.transform(new (C, 5) StoreLConditionalNode(control(), memory(alias_idx), adr, newVal, oldVal));
  3689   Node *store_proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
  3690   set_memory(store_proj, alias_idx);
  3691   Node *bol = _gvn.transform( new (C, 2) BoolNode( cas, BoolTest::eq ) );
  3693   Node *result;
  3694   // CMove node is not used to be able fold a possible check code
  3695   // after attemptUpdate() call. This code could be transformed
  3696   // into CMove node by loop optimizations.
  3698     RegionNode *r = new (C, 3) RegionNode(3);
  3699     result = new (C, 3) PhiNode(r, TypeInt::BOOL);
  3701     Node *iff = create_and_xform_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN);
  3702     Node *iftrue = opt_iff(r, iff);
  3703     r->init_req(1, iftrue);
  3704     result->init_req(1, intcon(1));
  3705     result->init_req(2, intcon(0));
  3707     set_control(_gvn.transform(r));
  3708     record_for_igvn(r);
  3710     C->set_has_split_ifs(true); // Has chance for split-if optimization
  3713   push(_gvn.transform(result));
  3714   return true;
  3717 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
  3718   // restore the arguments
  3719   _sp += arg_size();
  3721   switch (id) {
  3722   case vmIntrinsics::_floatToRawIntBits:
  3723     push(_gvn.transform( new (C, 2) MoveF2INode(pop())));
  3724     break;
  3726   case vmIntrinsics::_intBitsToFloat:
  3727     push(_gvn.transform( new (C, 2) MoveI2FNode(pop())));
  3728     break;
  3730   case vmIntrinsics::_doubleToRawLongBits:
  3731     push_pair(_gvn.transform( new (C, 2) MoveD2LNode(pop_pair())));
  3732     break;
  3734   case vmIntrinsics::_longBitsToDouble:
  3735     push_pair(_gvn.transform( new (C, 2) MoveL2DNode(pop_pair())));
  3736     break;
  3738   case vmIntrinsics::_doubleToLongBits: {
  3739     Node* value = pop_pair();
  3741     // two paths (plus control) merge in a wood
  3742     RegionNode *r = new (C, 3) RegionNode(3);
  3743     Node *phi = new (C, 3) PhiNode(r, TypeLong::LONG);
  3745     Node *cmpisnan = _gvn.transform( new (C, 3) CmpDNode(value, value));
  3746     // Build the boolean node
  3747     Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
  3749     // Branch either way.
  3750     // NaN case is less traveled, which makes all the difference.
  3751     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  3752     Node *opt_isnan = _gvn.transform(ifisnan);
  3753     assert( opt_isnan->is_If(), "Expect an IfNode");
  3754     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  3755     Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
  3757     set_control(iftrue);
  3759     static const jlong nan_bits = CONST64(0x7ff8000000000000);
  3760     Node *slow_result = longcon(nan_bits); // return NaN
  3761     phi->init_req(1, _gvn.transform( slow_result ));
  3762     r->init_req(1, iftrue);
  3764     // Else fall through
  3765     Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
  3766     set_control(iffalse);
  3768     phi->init_req(2, _gvn.transform( new (C, 2) MoveD2LNode(value)));
  3769     r->init_req(2, iffalse);
  3771     // Post merge
  3772     set_control(_gvn.transform(r));
  3773     record_for_igvn(r);
  3775     Node* result = _gvn.transform(phi);
  3776     assert(result->bottom_type()->isa_long(), "must be");
  3777     push_pair(result);
  3779     C->set_has_split_ifs(true); // Has chance for split-if optimization
  3781     break;
  3784   case vmIntrinsics::_floatToIntBits: {
  3785     Node* value = pop();
  3787     // two paths (plus control) merge in a wood
  3788     RegionNode *r = new (C, 3) RegionNode(3);
  3789     Node *phi = new (C, 3) PhiNode(r, TypeInt::INT);
  3791     Node *cmpisnan = _gvn.transform( new (C, 3) CmpFNode(value, value));
  3792     // Build the boolean node
  3793     Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
  3795     // Branch either way.
  3796     // NaN case is less traveled, which makes all the difference.
  3797     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  3798     Node *opt_isnan = _gvn.transform(ifisnan);
  3799     assert( opt_isnan->is_If(), "Expect an IfNode");
  3800     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  3801     Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
  3803     set_control(iftrue);
  3805     static const jint nan_bits = 0x7fc00000;
  3806     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
  3807     phi->init_req(1, _gvn.transform( slow_result ));
  3808     r->init_req(1, iftrue);
  3810     // Else fall through
  3811     Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
  3812     set_control(iffalse);
  3814     phi->init_req(2, _gvn.transform( new (C, 2) MoveF2INode(value)));
  3815     r->init_req(2, iffalse);
  3817     // Post merge
  3818     set_control(_gvn.transform(r));
  3819     record_for_igvn(r);
  3821     Node* result = _gvn.transform(phi);
  3822     assert(result->bottom_type()->isa_int(), "must be");
  3823     push(result);
  3825     C->set_has_split_ifs(true); // Has chance for split-if optimization
  3827     break;
  3830   default:
  3831     ShouldNotReachHere();
  3834   return true;
  3837 #ifdef _LP64
  3838 #define XTOP ,top() /*additional argument*/
  3839 #else  //_LP64
  3840 #define XTOP        /*no additional argument*/
  3841 #endif //_LP64
  3843 //----------------------inline_unsafe_copyMemory-------------------------
  3844 bool LibraryCallKit::inline_unsafe_copyMemory() {
  3845   if (callee()->is_static())  return false;  // caller must have the capability!
  3846   int nargs = 1 + 5 + 3;  // 5 args:  (src: ptr,off, dst: ptr,off, size)
  3847   assert(signature()->size() == nargs-1, "copy has 5 arguments");
  3848   null_check_receiver(callee());  // check then ignore argument(0)
  3849   if (stopped())  return true;
  3851   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  3853   Node* src_ptr = argument(1);
  3854   Node* src_off = ConvL2X(argument(2));
  3855   assert(argument(3)->is_top(), "2nd half of long");
  3856   Node* dst_ptr = argument(4);
  3857   Node* dst_off = ConvL2X(argument(5));
  3858   assert(argument(6)->is_top(), "2nd half of long");
  3859   Node* size    = ConvL2X(argument(7));
  3860   assert(argument(8)->is_top(), "2nd half of long");
  3862   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  3863          "fieldOffset must be byte-scaled");
  3865   Node* src = make_unsafe_address(src_ptr, src_off);
  3866   Node* dst = make_unsafe_address(dst_ptr, dst_off);
  3868   // Conservatively insert a memory barrier on all memory slices.
  3869   // Do not let writes of the copy source or destination float below the copy.
  3870   insert_mem_bar(Op_MemBarCPUOrder);
  3872   // Call it.  Note that the length argument is not scaled.
  3873   make_runtime_call(RC_LEAF|RC_NO_FP,
  3874                     OptoRuntime::fast_arraycopy_Type(),
  3875                     StubRoutines::unsafe_arraycopy(),
  3876                     "unsafe_arraycopy",
  3877                     TypeRawPtr::BOTTOM,
  3878                     src, dst, size XTOP);
  3880   // Do not let reads of the copy destination float above the copy.
  3881   insert_mem_bar(Op_MemBarCPUOrder);
  3883   return true;
  3887 //------------------------inline_native_clone----------------------------
  3888 // Here are the simple edge cases:
  3889 //  null receiver => normal trap
  3890 //  virtual and clone was overridden => slow path to out-of-line clone
  3891 //  not cloneable or finalizer => slow path to out-of-line Object.clone
  3892 //
  3893 // The general case has two steps, allocation and copying.
  3894 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
  3895 //
  3896 // Copying also has two cases, oop arrays and everything else.
  3897 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
  3898 // Everything else uses the tight inline loop supplied by CopyArrayNode.
  3899 //
  3900 // These steps fold up nicely if and when the cloned object's klass
  3901 // can be sharply typed as an object array, a type array, or an instance.
  3902 //
  3903 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
  3904   int nargs = 1;
  3905   Node* obj = null_check_receiver(callee());
  3906   if (stopped())  return true;
  3907   Node* obj_klass = load_object_klass(obj);
  3908   const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
  3909   const TypeOopPtr*   toop   = ((tklass != NULL)
  3910                                 ? tklass->as_instance_type()
  3911                                 : TypeInstPtr::NOTNULL);
  3913   // Conservatively insert a memory barrier on all memory slices.
  3914   // Do not let writes into the original float below the clone.
  3915   insert_mem_bar(Op_MemBarCPUOrder);
  3917   // paths into result_reg:
  3918   enum {
  3919     _slow_path = 1,     // out-of-line call to clone method (virtual or not)
  3920     _objArray_path,     // plain allocation, plus arrayof_oop_arraycopy
  3921     _fast_path,         // plain allocation, plus a CopyArray operation
  3922     PATH_LIMIT
  3923   };
  3924   RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  3925   PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
  3926                                                       TypeInstPtr::NOTNULL);
  3927   PhiNode*    result_i_o = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
  3928   PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
  3929                                                       TypePtr::BOTTOM);
  3930   record_for_igvn(result_reg);
  3932   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
  3933   int raw_adr_idx = Compile::AliasIdxRaw;
  3934   const bool raw_mem_only = true;
  3936   // paths into alloc_reg (on the fast path, just before the CopyArray):
  3937   enum { _typeArray_alloc = 1, _instance_alloc, ALLOC_LIMIT };
  3938   RegionNode* alloc_reg = new(C, ALLOC_LIMIT) RegionNode(ALLOC_LIMIT);
  3939   PhiNode*    alloc_val = new(C, ALLOC_LIMIT) PhiNode(alloc_reg, raw_adr_type);
  3940   PhiNode*    alloc_siz = new(C, ALLOC_LIMIT) PhiNode(alloc_reg, TypeX_X);
  3941   PhiNode*    alloc_i_o = new(C, ALLOC_LIMIT) PhiNode(alloc_reg, Type::ABIO);
  3942   PhiNode*    alloc_mem = new(C, ALLOC_LIMIT) PhiNode(alloc_reg, Type::MEMORY,
  3943                                                       raw_adr_type);
  3944   record_for_igvn(alloc_reg);
  3946   bool card_mark = false;  // (see below)
  3948   Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
  3949   if (array_ctl != NULL) {
  3950     // It's an array.
  3951     PreserveJVMState pjvms(this);
  3952     set_control(array_ctl);
  3953     Node* obj_length = load_array_length(obj);
  3954     Node* obj_size = NULL;
  3955     Node* alloc_obj = new_array(obj_klass, obj_length, nargs,
  3956                                 raw_mem_only, &obj_size);
  3957     assert(obj_size != NULL, "");
  3958     Node* raw_obj = alloc_obj->in(1);
  3959     assert(raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
  3960     if (ReduceBulkZeroing) {
  3961       AllocateNode* alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
  3962       if (alloc != NULL) {
  3963         // We will be completely responsible for initializing this object.
  3964         alloc->maybe_set_complete(&_gvn);
  3968     if (!use_ReduceInitialCardMarks()) {
  3969       // If it is an oop array, it requires very special treatment,
  3970       // because card marking is required on each card of the array.
  3971       Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
  3972       if (is_obja != NULL) {
  3973         PreserveJVMState pjvms2(this);
  3974         set_control(is_obja);
  3975         // Generate a direct call to the right arraycopy function(s).
  3976         bool disjoint_bases = true;
  3977         bool length_never_negative = true;
  3978         generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  3979                            obj, intcon(0), alloc_obj, intcon(0),
  3980                            obj_length, nargs,
  3981                            disjoint_bases, length_never_negative);
  3982         result_reg->init_req(_objArray_path, control());
  3983         result_val->init_req(_objArray_path, alloc_obj);
  3984         result_i_o ->set_req(_objArray_path, i_o());
  3985         result_mem ->set_req(_objArray_path, reset_memory());
  3988     // We can dispense with card marks if we know the allocation
  3989     // comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
  3990     // causes the non-eden paths to simulate a fresh allocation,
  3991     // insofar that no further card marks are required to initialize
  3992     // the object.
  3994     // Otherwise, there are no card marks to worry about.
  3995     alloc_val->init_req(_typeArray_alloc, raw_obj);
  3996     alloc_siz->init_req(_typeArray_alloc, obj_size);
  3997     alloc_reg->init_req(_typeArray_alloc, control());
  3998     alloc_i_o->init_req(_typeArray_alloc, i_o());
  3999     alloc_mem->init_req(_typeArray_alloc, memory(raw_adr_type));
  4002   // We only go to the fast case code if we pass a number of guards.
  4003   // The paths which do not pass are accumulated in the slow_region.
  4004   RegionNode* slow_region = new (C, 1) RegionNode(1);
  4005   record_for_igvn(slow_region);
  4006   if (!stopped()) {
  4007     // It's an instance.  Make the slow-path tests.
  4008     // If this is a virtual call, we generate a funny guard.  We grab
  4009     // the vtable entry corresponding to clone() from the target object.
  4010     // If the target method which we are calling happens to be the
  4011     // Object clone() method, we pass the guard.  We do not need this
  4012     // guard for non-virtual calls; the caller is known to be the native
  4013     // Object clone().
  4014     if (is_virtual) {
  4015       generate_virtual_guard(obj_klass, slow_region);
  4018     // The object must be cloneable and must not have a finalizer.
  4019     // Both of these conditions may be checked in a single test.
  4020     // We could optimize the cloneable test further, but we don't care.
  4021     generate_access_flags_guard(obj_klass,
  4022                                 // Test both conditions:
  4023                                 JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
  4024                                 // Must be cloneable but not finalizer:
  4025                                 JVM_ACC_IS_CLONEABLE,
  4026                                 slow_region);
  4029   if (!stopped()) {
  4030     // It's an instance, and it passed the slow-path tests.
  4031     PreserveJVMState pjvms(this);
  4032     Node* obj_size = NULL;
  4033     Node* alloc_obj = new_instance(obj_klass, NULL, raw_mem_only, &obj_size);
  4034     assert(obj_size != NULL, "");
  4035     Node* raw_obj = alloc_obj->in(1);
  4036     assert(raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
  4037     if (ReduceBulkZeroing) {
  4038       AllocateNode* alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
  4039       if (alloc != NULL && !alloc->maybe_set_complete(&_gvn))
  4040         alloc = NULL;
  4042     if (!use_ReduceInitialCardMarks()) {
  4043       // Put in store barrier for any and all oops we are sticking
  4044       // into this object.  (We could avoid this if we could prove
  4045       // that the object type contains no oop fields at all.)
  4046       card_mark = true;
  4048     alloc_val->init_req(_instance_alloc, raw_obj);
  4049     alloc_siz->init_req(_instance_alloc, obj_size);
  4050     alloc_reg->init_req(_instance_alloc, control());
  4051     alloc_i_o->init_req(_instance_alloc, i_o());
  4052     alloc_mem->init_req(_instance_alloc, memory(raw_adr_type));
  4055   // Generate code for the slow case.  We make a call to clone().
  4056   set_control(_gvn.transform(slow_region));
  4057   if (!stopped()) {
  4058     PreserveJVMState pjvms(this);
  4059     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
  4060     Node* slow_result = set_results_for_java_call(slow_call);
  4061     // this->control() comes from set_results_for_java_call
  4062     result_reg->init_req(_slow_path, control());
  4063     result_val->init_req(_slow_path, slow_result);
  4064     result_i_o ->set_req(_slow_path, i_o());
  4065     result_mem ->set_req(_slow_path, reset_memory());
  4068   // The object is allocated, as an array and/or an instance.  Now copy it.
  4069   set_control( _gvn.transform(alloc_reg) );
  4070   set_i_o(     _gvn.transform(alloc_i_o) );
  4071   set_memory(  _gvn.transform(alloc_mem), raw_adr_type );
  4072   Node* raw_obj  = _gvn.transform(alloc_val);
  4074   if (!stopped()) {
  4075     // Copy the fastest available way.
  4076     // (No need for PreserveJVMState, since we're using it all up now.)
  4077     // TODO: generate fields/elements copies for small objects instead.
  4078     Node* src  = obj;
  4079     Node* dest = raw_obj;
  4080     Node* size = _gvn.transform(alloc_siz);
  4082     // Exclude the header.
  4083     int base_off = instanceOopDesc::base_offset_in_bytes();
  4084     if (UseCompressedOops) {
  4085       assert(base_off % BytesPerLong != 0, "base with compressed oops");
  4086       // With compressed oops base_offset_in_bytes is 12 which creates
  4087       // the gap since countx is rounded by 8 bytes below.
  4088       // Copy klass and the gap.
  4089       base_off = instanceOopDesc::klass_offset_in_bytes();
  4091     src  = basic_plus_adr(src,  base_off);
  4092     dest = basic_plus_adr(dest, base_off);
  4094     // Compute the length also, if needed:
  4095     Node* countx = size;
  4096     countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(base_off)) );
  4097     countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong) ));
  4099     // Select an appropriate instruction to initialize the range.
  4100     // The CopyArray instruction (if supported) can be optimized
  4101     // into a discrete set of scalar loads and stores.
  4102     bool disjoint_bases = true;
  4103     generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
  4104                                  src, NULL, dest, NULL, countx);
  4106     // Now that the object is properly initialized, type it as an oop.
  4107     // Use a secondary InitializeNode memory barrier.
  4108     InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, raw_adr_idx,
  4109                                                    raw_obj)->as_Initialize();
  4110     init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
  4111     Node* new_obj = new(C, 2) CheckCastPPNode(control(), raw_obj,
  4112                                               TypeInstPtr::NOTNULL);
  4113     new_obj = _gvn.transform(new_obj);
  4115     // If necessary, emit some card marks afterwards.  (Non-arrays only.)
  4116     if (card_mark) {
  4117       Node* no_particular_value = NULL;
  4118       Node* no_particular_field = NULL;
  4119       post_barrier(control(),
  4120                    memory(raw_adr_type),
  4121                    new_obj,
  4122                    no_particular_field,
  4123                    raw_adr_idx,
  4124                    no_particular_value,
  4125                    T_OBJECT,
  4126                    false);
  4128     // Present the results of the slow call.
  4129     result_reg->init_req(_fast_path, control());
  4130     result_val->init_req(_fast_path, new_obj);
  4131     result_i_o ->set_req(_fast_path, i_o());
  4132     result_mem ->set_req(_fast_path, reset_memory());
  4135   // Return the combined state.
  4136   set_control(    _gvn.transform(result_reg) );
  4137   set_i_o(        _gvn.transform(result_i_o) );
  4138   set_all_memory( _gvn.transform(result_mem) );
  4140   // Cast the result to a sharper type, since we know what clone does.
  4141   Node* new_obj = _gvn.transform(result_val);
  4142   Node* cast    = new (C, 2) CheckCastPPNode(control(), new_obj, toop);
  4143   push(_gvn.transform(cast));
  4145   return true;
  4149 // constants for computing the copy function
  4150 enum {
  4151   COPYFUNC_UNALIGNED = 0,
  4152   COPYFUNC_ALIGNED = 1,                 // src, dest aligned to HeapWordSize
  4153   COPYFUNC_CONJOINT = 0,
  4154   COPYFUNC_DISJOINT = 2                 // src != dest, or transfer can descend
  4155 };
  4157 // Note:  The condition "disjoint" applies also for overlapping copies
  4158 // where an descending copy is permitted (i.e., dest_offset <= src_offset).
  4159 static address
  4160 select_arraycopy_function(BasicType t, bool aligned, bool disjoint, const char* &name) {
  4161   int selector =
  4162     (aligned  ? COPYFUNC_ALIGNED  : COPYFUNC_UNALIGNED) +
  4163     (disjoint ? COPYFUNC_DISJOINT : COPYFUNC_CONJOINT);
  4165 #define RETURN_STUB(xxx_arraycopy) { \
  4166   name = #xxx_arraycopy; \
  4167   return StubRoutines::xxx_arraycopy(); }
  4169   switch (t) {
  4170   case T_BYTE:
  4171   case T_BOOLEAN:
  4172     switch (selector) {
  4173     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jbyte_arraycopy);
  4174     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jbyte_arraycopy);
  4175     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jbyte_disjoint_arraycopy);
  4176     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jbyte_disjoint_arraycopy);
  4178   case T_CHAR:
  4179   case T_SHORT:
  4180     switch (selector) {
  4181     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jshort_arraycopy);
  4182     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jshort_arraycopy);
  4183     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jshort_disjoint_arraycopy);
  4184     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jshort_disjoint_arraycopy);
  4186   case T_INT:
  4187   case T_FLOAT:
  4188     switch (selector) {
  4189     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jint_arraycopy);
  4190     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jint_arraycopy);
  4191     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jint_disjoint_arraycopy);
  4192     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jint_disjoint_arraycopy);
  4194   case T_DOUBLE:
  4195   case T_LONG:
  4196     switch (selector) {
  4197     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jlong_arraycopy);
  4198     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jlong_arraycopy);
  4199     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jlong_disjoint_arraycopy);
  4200     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jlong_disjoint_arraycopy);
  4202   case T_ARRAY:
  4203   case T_OBJECT:
  4204     switch (selector) {
  4205     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(oop_arraycopy);
  4206     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_oop_arraycopy);
  4207     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(oop_disjoint_arraycopy);
  4208     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_oop_disjoint_arraycopy);
  4210   default:
  4211     ShouldNotReachHere();
  4212     return NULL;
  4215 #undef RETURN_STUB
  4218 //------------------------------basictype2arraycopy----------------------------
  4219 address LibraryCallKit::basictype2arraycopy(BasicType t,
  4220                                             Node* src_offset,
  4221                                             Node* dest_offset,
  4222                                             bool disjoint_bases,
  4223                                             const char* &name) {
  4224   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
  4225   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
  4227   bool aligned = false;
  4228   bool disjoint = disjoint_bases;
  4230   // if the offsets are the same, we can treat the memory regions as
  4231   // disjoint, because either the memory regions are in different arrays,
  4232   // or they are identical (which we can treat as disjoint.)  We can also
  4233   // treat a copy with a destination index  less that the source index
  4234   // as disjoint since a low->high copy will work correctly in this case.
  4235   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
  4236       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
  4237     // both indices are constants
  4238     int s_offs = src_offset_inttype->get_con();
  4239     int d_offs = dest_offset_inttype->get_con();
  4240     int element_size = type2aelembytes(t);
  4241     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
  4242               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
  4243     if (s_offs >= d_offs)  disjoint = true;
  4244   } else if (src_offset == dest_offset && src_offset != NULL) {
  4245     // This can occur if the offsets are identical non-constants.
  4246     disjoint = true;
  4249   return select_arraycopy_function(t, aligned, disjoint, name);
  4253 //------------------------------inline_arraycopy-----------------------
  4254 bool LibraryCallKit::inline_arraycopy() {
  4255   // Restore the stack and pop off the arguments.
  4256   int nargs = 5;  // 2 oops, 3 ints, no size_t or long
  4257   assert(callee()->signature()->size() == nargs, "copy has 5 arguments");
  4259   Node *src         = argument(0);
  4260   Node *src_offset  = argument(1);
  4261   Node *dest        = argument(2);
  4262   Node *dest_offset = argument(3);
  4263   Node *length      = argument(4);
  4265   // Compile time checks.  If any of these checks cannot be verified at compile time,
  4266   // we do not make a fast path for this call.  Instead, we let the call remain as it
  4267   // is.  The checks we choose to mandate at compile time are:
  4268   //
  4269   // (1) src and dest are arrays.
  4270   const Type* src_type = src->Value(&_gvn);
  4271   const Type* dest_type = dest->Value(&_gvn);
  4272   const TypeAryPtr* top_src = src_type->isa_aryptr();
  4273   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  4274   if (top_src  == NULL || top_src->klass()  == NULL ||
  4275       top_dest == NULL || top_dest->klass() == NULL) {
  4276     // Conservatively insert a memory barrier on all memory slices.
  4277     // Do not let writes into the source float below the arraycopy.
  4278     insert_mem_bar(Op_MemBarCPUOrder);
  4280     // Call StubRoutines::generic_arraycopy stub.
  4281     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
  4282                        src, src_offset, dest, dest_offset, length,
  4283                        nargs);
  4285     // Do not let reads from the destination float above the arraycopy.
  4286     // Since we cannot type the arrays, we don't know which slices
  4287     // might be affected.  We could restrict this barrier only to those
  4288     // memory slices which pertain to array elements--but don't bother.
  4289     if (!InsertMemBarAfterArraycopy)
  4290       // (If InsertMemBarAfterArraycopy, there is already one in place.)
  4291       insert_mem_bar(Op_MemBarCPUOrder);
  4292     return true;
  4295   // (2) src and dest arrays must have elements of the same BasicType
  4296   // Figure out the size and type of the elements we will be copying.
  4297   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
  4298   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
  4299   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
  4300   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
  4302   if (src_elem != dest_elem || dest_elem == T_VOID) {
  4303     // The component types are not the same or are not recognized.  Punt.
  4304     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
  4305     generate_slow_arraycopy(TypePtr::BOTTOM,
  4306                             src, src_offset, dest, dest_offset, length,
  4307                             nargs);
  4308     return true;
  4311   //---------------------------------------------------------------------------
  4312   // We will make a fast path for this call to arraycopy.
  4314   // We have the following tests left to perform:
  4315   //
  4316   // (3) src and dest must not be null.
  4317   // (4) src_offset must not be negative.
  4318   // (5) dest_offset must not be negative.
  4319   // (6) length must not be negative.
  4320   // (7) src_offset + length must not exceed length of src.
  4321   // (8) dest_offset + length must not exceed length of dest.
  4322   // (9) each element of an oop array must be assignable
  4324   RegionNode* slow_region = new (C, 1) RegionNode(1);
  4325   record_for_igvn(slow_region);
  4327   // (3) operands must not be null
  4328   // We currently perform our null checks with the do_null_check routine.
  4329   // This means that the null exceptions will be reported in the caller
  4330   // rather than (correctly) reported inside of the native arraycopy call.
  4331   // This should be corrected, given time.  We do our null check with the
  4332   // stack pointer restored.
  4333   _sp += nargs;
  4334   src  = do_null_check(src,  T_ARRAY);
  4335   dest = do_null_check(dest, T_ARRAY);
  4336   _sp -= nargs;
  4338   // (4) src_offset must not be negative.
  4339   generate_negative_guard(src_offset, slow_region);
  4341   // (5) dest_offset must not be negative.
  4342   generate_negative_guard(dest_offset, slow_region);
  4344   // (6) length must not be negative (moved to generate_arraycopy()).
  4345   // generate_negative_guard(length, slow_region);
  4347   // (7) src_offset + length must not exceed length of src.
  4348   generate_limit_guard(src_offset, length,
  4349                        load_array_length(src),
  4350                        slow_region);
  4352   // (8) dest_offset + length must not exceed length of dest.
  4353   generate_limit_guard(dest_offset, length,
  4354                        load_array_length(dest),
  4355                        slow_region);
  4357   // (9) each element of an oop array must be assignable
  4358   // The generate_arraycopy subroutine checks this.
  4360   // This is where the memory effects are placed:
  4361   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
  4362   generate_arraycopy(adr_type, dest_elem,
  4363                      src, src_offset, dest, dest_offset, length,
  4364                      nargs, false, false, slow_region);
  4366   return true;
  4369 //-----------------------------generate_arraycopy----------------------
  4370 // Generate an optimized call to arraycopy.
  4371 // Caller must guard against non-arrays.
  4372 // Caller must determine a common array basic-type for both arrays.
  4373 // Caller must validate offsets against array bounds.
  4374 // The slow_region has already collected guard failure paths
  4375 // (such as out of bounds length or non-conformable array types).
  4376 // The generated code has this shape, in general:
  4377 //
  4378 //     if (length == 0)  return   // via zero_path
  4379 //     slowval = -1
  4380 //     if (types unknown) {
  4381 //       slowval = call generic copy loop
  4382 //       if (slowval == 0)  return  // via checked_path
  4383 //     } else if (indexes in bounds) {
  4384 //       if ((is object array) && !(array type check)) {
  4385 //         slowval = call checked copy loop
  4386 //         if (slowval == 0)  return  // via checked_path
  4387 //       } else {
  4388 //         call bulk copy loop
  4389 //         return  // via fast_path
  4390 //       }
  4391 //     }
  4392 //     // adjust params for remaining work:
  4393 //     if (slowval != -1) {
  4394 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
  4395 //     }
  4396 //   slow_region:
  4397 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
  4398 //     return  // via slow_call_path
  4399 //
  4400 // This routine is used from several intrinsics:  System.arraycopy,
  4401 // Object.clone (the array subcase), and Arrays.copyOf[Range].
  4402 //
  4403 void
  4404 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
  4405                                    BasicType basic_elem_type,
  4406                                    Node* src,  Node* src_offset,
  4407                                    Node* dest, Node* dest_offset,
  4408                                    Node* copy_length,
  4409                                    int nargs,
  4410                                    bool disjoint_bases,
  4411                                    bool length_never_negative,
  4412                                    RegionNode* slow_region) {
  4414   if (slow_region == NULL) {
  4415     slow_region = new(C,1) RegionNode(1);
  4416     record_for_igvn(slow_region);
  4419   Node* original_dest      = dest;
  4420   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
  4421   Node* raw_dest           = NULL;  // used before zeroing, if needed
  4422   bool  must_clear_dest    = false;
  4424   // See if this is the initialization of a newly-allocated array.
  4425   // If so, we will take responsibility here for initializing it to zero.
  4426   // (Note:  Because tightly_coupled_allocation performs checks on the
  4427   // out-edges of the dest, we need to avoid making derived pointers
  4428   // from it until we have checked its uses.)
  4429   if (ReduceBulkZeroing
  4430       && !ZeroTLAB              // pointless if already zeroed
  4431       && basic_elem_type != T_CONFLICT // avoid corner case
  4432       && !_gvn.eqv_uncast(src, dest)
  4433       && ((alloc = tightly_coupled_allocation(dest, slow_region))
  4434           != NULL)
  4435       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
  4436       && alloc->maybe_set_complete(&_gvn)) {
  4437     // "You break it, you buy it."
  4438     InitializeNode* init = alloc->initialization();
  4439     assert(init->is_complete(), "we just did this");
  4440     assert(dest->Opcode() == Op_CheckCastPP, "sanity");
  4441     assert(dest->in(0)->in(0) == init, "dest pinned");
  4442     raw_dest = dest->in(1);  // grab the raw pointer!
  4443     original_dest = dest;
  4444     dest = raw_dest;
  4445     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
  4446     // Decouple the original InitializeNode, turning it into a simple membar.
  4447     // We will build a new one at the end of this routine.
  4448     init->set_req(InitializeNode::RawAddress, top());
  4449     // From this point on, every exit path is responsible for
  4450     // initializing any non-copied parts of the object to zero.
  4451     must_clear_dest = true;
  4452   } else {
  4453     // No zeroing elimination here.
  4454     alloc             = NULL;
  4455     //original_dest   = dest;
  4456     //must_clear_dest = false;
  4459   // Results are placed here:
  4460   enum { fast_path        = 1,  // normal void-returning assembly stub
  4461          checked_path     = 2,  // special assembly stub with cleanup
  4462          slow_call_path   = 3,  // something went wrong; call the VM
  4463          zero_path        = 4,  // bypass when length of copy is zero
  4464          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
  4465          PATH_LIMIT       = 6
  4466   };
  4467   RegionNode* result_region = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  4468   PhiNode*    result_i_o    = new(C, PATH_LIMIT) PhiNode(result_region, Type::ABIO);
  4469   PhiNode*    result_memory = new(C, PATH_LIMIT) PhiNode(result_region, Type::MEMORY, adr_type);
  4470   record_for_igvn(result_region);
  4471   _gvn.set_type_bottom(result_i_o);
  4472   _gvn.set_type_bottom(result_memory);
  4473   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
  4475   // The slow_control path:
  4476   Node* slow_control;
  4477   Node* slow_i_o = i_o();
  4478   Node* slow_mem = memory(adr_type);
  4479   debug_only(slow_control = (Node*) badAddress);
  4481   // Checked control path:
  4482   Node* checked_control = top();
  4483   Node* checked_mem     = NULL;
  4484   Node* checked_i_o     = NULL;
  4485   Node* checked_value   = NULL;
  4487   if (basic_elem_type == T_CONFLICT) {
  4488     assert(!must_clear_dest, "");
  4489     Node* cv = generate_generic_arraycopy(adr_type,
  4490                                           src, src_offset, dest, dest_offset,
  4491                                           copy_length, nargs);
  4492     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  4493     checked_control = control();
  4494     checked_i_o     = i_o();
  4495     checked_mem     = memory(adr_type);
  4496     checked_value   = cv;
  4497     set_control(top());         // no fast path
  4500   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
  4501   if (not_pos != NULL) {
  4502     PreserveJVMState pjvms(this);
  4503     set_control(not_pos);
  4505     // (6) length must not be negative.
  4506     if (!length_never_negative) {
  4507       generate_negative_guard(copy_length, slow_region);
  4510     if (!stopped() && must_clear_dest) {
  4511       Node* dest_length = alloc->in(AllocateNode::ALength);
  4512       if (_gvn.eqv_uncast(copy_length, dest_length)
  4513           || _gvn.find_int_con(dest_length, 1) <= 0) {
  4514         // There is no zeroing to do.
  4515       } else {
  4516         // Clear the whole thing since there are no source elements to copy.
  4517         generate_clear_array(adr_type, dest, basic_elem_type,
  4518                              intcon(0), NULL,
  4519                              alloc->in(AllocateNode::AllocSize));
  4523     // Present the results of the fast call.
  4524     result_region->init_req(zero_path, control());
  4525     result_i_o   ->init_req(zero_path, i_o());
  4526     result_memory->init_req(zero_path, memory(adr_type));
  4529   if (!stopped() && must_clear_dest) {
  4530     // We have to initialize the *uncopied* part of the array to zero.
  4531     // The copy destination is the slice dest[off..off+len].  The other slices
  4532     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
  4533     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
  4534     Node* dest_length = alloc->in(AllocateNode::ALength);
  4535     Node* dest_tail   = _gvn.transform( new(C,3) AddINode(dest_offset,
  4536                                                           copy_length) );
  4538     // If there is a head section that needs zeroing, do it now.
  4539     if (find_int_con(dest_offset, -1) != 0) {
  4540       generate_clear_array(adr_type, dest, basic_elem_type,
  4541                            intcon(0), dest_offset,
  4542                            NULL);
  4545     // Next, perform a dynamic check on the tail length.
  4546     // It is often zero, and we can win big if we prove this.
  4547     // There are two wins:  Avoid generating the ClearArray
  4548     // with its attendant messy index arithmetic, and upgrade
  4549     // the copy to a more hardware-friendly word size of 64 bits.
  4550     Node* tail_ctl = NULL;
  4551     if (!stopped() && !_gvn.eqv_uncast(dest_tail, dest_length)) {
  4552       Node* cmp_lt   = _gvn.transform( new(C,3) CmpINode(dest_tail, dest_length) );
  4553       Node* bol_lt   = _gvn.transform( new(C,2) BoolNode(cmp_lt, BoolTest::lt) );
  4554       tail_ctl = generate_slow_guard(bol_lt, NULL);
  4555       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
  4558     // At this point, let's assume there is no tail.
  4559     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
  4560       // There is no tail.  Try an upgrade to a 64-bit copy.
  4561       bool didit = false;
  4562       { PreserveJVMState pjvms(this);
  4563         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
  4564                                          src, src_offset, dest, dest_offset,
  4565                                          dest_size);
  4566         if (didit) {
  4567           // Present the results of the block-copying fast call.
  4568           result_region->init_req(bcopy_path, control());
  4569           result_i_o   ->init_req(bcopy_path, i_o());
  4570           result_memory->init_req(bcopy_path, memory(adr_type));
  4573       if (didit)
  4574         set_control(top());     // no regular fast path
  4577     // Clear the tail, if any.
  4578     if (tail_ctl != NULL) {
  4579       Node* notail_ctl = stopped() ? NULL : control();
  4580       set_control(tail_ctl);
  4581       if (notail_ctl == NULL) {
  4582         generate_clear_array(adr_type, dest, basic_elem_type,
  4583                              dest_tail, NULL,
  4584                              dest_size);
  4585       } else {
  4586         // Make a local merge.
  4587         Node* done_ctl = new(C,3) RegionNode(3);
  4588         Node* done_mem = new(C,3) PhiNode(done_ctl, Type::MEMORY, adr_type);
  4589         done_ctl->init_req(1, notail_ctl);
  4590         done_mem->init_req(1, memory(adr_type));
  4591         generate_clear_array(adr_type, dest, basic_elem_type,
  4592                              dest_tail, NULL,
  4593                              dest_size);
  4594         done_ctl->init_req(2, control());
  4595         done_mem->init_req(2, memory(adr_type));
  4596         set_control( _gvn.transform(done_ctl) );
  4597         set_memory(  _gvn.transform(done_mem), adr_type );
  4602   BasicType copy_type = basic_elem_type;
  4603   assert(basic_elem_type != T_ARRAY, "caller must fix this");
  4604   if (!stopped() && copy_type == T_OBJECT) {
  4605     // If src and dest have compatible element types, we can copy bits.
  4606     // Types S[] and D[] are compatible if D is a supertype of S.
  4607     //
  4608     // If they are not, we will use checked_oop_disjoint_arraycopy,
  4609     // which performs a fast optimistic per-oop check, and backs off
  4610     // further to JVM_ArrayCopy on the first per-oop check that fails.
  4611     // (Actually, we don't move raw bits only; the GC requires card marks.)
  4613     // Get the klassOop for both src and dest
  4614     Node* src_klass  = load_object_klass(src);
  4615     Node* dest_klass = load_object_klass(dest);
  4617     // Generate the subtype check.
  4618     // This might fold up statically, or then again it might not.
  4619     //
  4620     // Non-static example:  Copying List<String>.elements to a new String[].
  4621     // The backing store for a List<String> is always an Object[],
  4622     // but its elements are always type String, if the generic types
  4623     // are correct at the source level.
  4624     //
  4625     // Test S[] against D[], not S against D, because (probably)
  4626     // the secondary supertype cache is less busy for S[] than S.
  4627     // This usually only matters when D is an interface.
  4628     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
  4629     // Plug failing path into checked_oop_disjoint_arraycopy
  4630     if (not_subtype_ctrl != top()) {
  4631       PreserveJVMState pjvms(this);
  4632       set_control(not_subtype_ctrl);
  4633       // (At this point we can assume disjoint_bases, since types differ.)
  4634       int ek_offset = objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc);
  4635       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
  4636       Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
  4637       Node* dest_elem_klass = _gvn.transform(n1);
  4638       Node* cv = generate_checkcast_arraycopy(adr_type,
  4639                                               dest_elem_klass,
  4640                                               src, src_offset, dest, dest_offset,
  4641                                               copy_length,
  4642                                               nargs);
  4643       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  4644       checked_control = control();
  4645       checked_i_o     = i_o();
  4646       checked_mem     = memory(adr_type);
  4647       checked_value   = cv;
  4649     // At this point we know we do not need type checks on oop stores.
  4651     // Let's see if we need card marks:
  4652     if (alloc != NULL && use_ReduceInitialCardMarks()) {
  4653       // If we do not need card marks, copy using the jint or jlong stub.
  4654       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
  4655       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
  4656              "sizes agree");
  4660   if (!stopped()) {
  4661     // Generate the fast path, if possible.
  4662     PreserveJVMState pjvms(this);
  4663     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
  4664                                  src, src_offset, dest, dest_offset,
  4665                                  ConvI2X(copy_length));
  4667     // Present the results of the fast call.
  4668     result_region->init_req(fast_path, control());
  4669     result_i_o   ->init_req(fast_path, i_o());
  4670     result_memory->init_req(fast_path, memory(adr_type));
  4673   // Here are all the slow paths up to this point, in one bundle:
  4674   slow_control = top();
  4675   if (slow_region != NULL)
  4676     slow_control = _gvn.transform(slow_region);
  4677   debug_only(slow_region = (RegionNode*)badAddress);
  4679   set_control(checked_control);
  4680   if (!stopped()) {
  4681     // Clean up after the checked call.
  4682     // The returned value is either 0 or -1^K,
  4683     // where K = number of partially transferred array elements.
  4684     Node* cmp = _gvn.transform( new(C, 3) CmpINode(checked_value, intcon(0)) );
  4685     Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
  4686     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
  4688     // If it is 0, we are done, so transfer to the end.
  4689     Node* checks_done = _gvn.transform( new(C, 1) IfTrueNode(iff) );
  4690     result_region->init_req(checked_path, checks_done);
  4691     result_i_o   ->init_req(checked_path, checked_i_o);
  4692     result_memory->init_req(checked_path, checked_mem);
  4694     // If it is not zero, merge into the slow call.
  4695     set_control( _gvn.transform( new(C, 1) IfFalseNode(iff) ));
  4696     RegionNode* slow_reg2 = new(C, 3) RegionNode(3);
  4697     PhiNode*    slow_i_o2 = new(C, 3) PhiNode(slow_reg2, Type::ABIO);
  4698     PhiNode*    slow_mem2 = new(C, 3) PhiNode(slow_reg2, Type::MEMORY, adr_type);
  4699     record_for_igvn(slow_reg2);
  4700     slow_reg2  ->init_req(1, slow_control);
  4701     slow_i_o2  ->init_req(1, slow_i_o);
  4702     slow_mem2  ->init_req(1, slow_mem);
  4703     slow_reg2  ->init_req(2, control());
  4704     slow_i_o2  ->init_req(2, i_o());
  4705     slow_mem2  ->init_req(2, memory(adr_type));
  4707     slow_control = _gvn.transform(slow_reg2);
  4708     slow_i_o     = _gvn.transform(slow_i_o2);
  4709     slow_mem     = _gvn.transform(slow_mem2);
  4711     if (alloc != NULL) {
  4712       // We'll restart from the very beginning, after zeroing the whole thing.
  4713       // This can cause double writes, but that's OK since dest is brand new.
  4714       // So we ignore the low 31 bits of the value returned from the stub.
  4715     } else {
  4716       // We must continue the copy exactly where it failed, or else
  4717       // another thread might see the wrong number of writes to dest.
  4718       Node* checked_offset = _gvn.transform( new(C, 3) XorINode(checked_value, intcon(-1)) );
  4719       Node* slow_offset    = new(C, 3) PhiNode(slow_reg2, TypeInt::INT);
  4720       slow_offset->init_req(1, intcon(0));
  4721       slow_offset->init_req(2, checked_offset);
  4722       slow_offset  = _gvn.transform(slow_offset);
  4724       // Adjust the arguments by the conditionally incoming offset.
  4725       Node* src_off_plus  = _gvn.transform( new(C, 3) AddINode(src_offset,  slow_offset) );
  4726       Node* dest_off_plus = _gvn.transform( new(C, 3) AddINode(dest_offset, slow_offset) );
  4727       Node* length_minus  = _gvn.transform( new(C, 3) SubINode(copy_length, slow_offset) );
  4729       // Tweak the node variables to adjust the code produced below:
  4730       src_offset  = src_off_plus;
  4731       dest_offset = dest_off_plus;
  4732       copy_length = length_minus;
  4736   set_control(slow_control);
  4737   if (!stopped()) {
  4738     // Generate the slow path, if needed.
  4739     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
  4741     set_memory(slow_mem, adr_type);
  4742     set_i_o(slow_i_o);
  4744     if (must_clear_dest) {
  4745       generate_clear_array(adr_type, dest, basic_elem_type,
  4746                            intcon(0), NULL,
  4747                            alloc->in(AllocateNode::AllocSize));
  4750     if (dest != original_dest) {
  4751       // Promote from rawptr to oop, so it looks right in the call's GC map.
  4752       dest = _gvn.transform( new(C,2) CheckCastPPNode(control(), dest,
  4753                                                       TypeInstPtr::NOTNULL) );
  4755       // Edit the call's debug-info to avoid referring to original_dest.
  4756       // (The problem with original_dest is that it isn't ready until
  4757       // after the InitializeNode completes, but this stuff is before.)
  4758       // Substitute in the locally valid dest_oop.
  4759       replace_in_map(original_dest, dest);
  4762     generate_slow_arraycopy(adr_type,
  4763                             src, src_offset, dest, dest_offset,
  4764                             copy_length, nargs);
  4766     result_region->init_req(slow_call_path, control());
  4767     result_i_o   ->init_req(slow_call_path, i_o());
  4768     result_memory->init_req(slow_call_path, memory(adr_type));
  4771   // Remove unused edges.
  4772   for (uint i = 1; i < result_region->req(); i++) {
  4773     if (result_region->in(i) == NULL)
  4774       result_region->init_req(i, top());
  4777   // Finished; return the combined state.
  4778   set_control( _gvn.transform(result_region) );
  4779   set_i_o(     _gvn.transform(result_i_o)    );
  4780   set_memory(  _gvn.transform(result_memory), adr_type );
  4782   if (dest != original_dest) {
  4783     // Pin the "finished" array node after the arraycopy/zeroing operations.
  4784     // Use a secondary InitializeNode memory barrier.
  4785     InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
  4786                                                    Compile::AliasIdxRaw,
  4787                                                    raw_dest)->as_Initialize();
  4788     init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
  4789     _gvn.hash_delete(original_dest);
  4790     original_dest->set_req(0, control());
  4791     _gvn.hash_find_insert(original_dest);  // put back into GVN table
  4794   // The memory edges above are precise in order to model effects around
  4795   // array copies accurately to allow value numbering of field loads around
  4796   // arraycopy.  Such field loads, both before and after, are common in Java
  4797   // collections and similar classes involving header/array data structures.
  4798   //
  4799   // But with low number of register or when some registers are used or killed
  4800   // by arraycopy calls it causes registers spilling on stack. See 6544710.
  4801   // The next memory barrier is added to avoid it. If the arraycopy can be
  4802   // optimized away (which it can, sometimes) then we can manually remove
  4803   // the membar also.
  4804   if (InsertMemBarAfterArraycopy)
  4805     insert_mem_bar(Op_MemBarCPUOrder);
  4809 // Helper function which determines if an arraycopy immediately follows
  4810 // an allocation, with no intervening tests or other escapes for the object.
  4811 AllocateArrayNode*
  4812 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
  4813                                            RegionNode* slow_region) {
  4814   if (stopped())             return NULL;  // no fast path
  4815   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
  4817   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
  4818   if (alloc == NULL)  return NULL;
  4820   Node* rawmem = memory(Compile::AliasIdxRaw);
  4821   // Is the allocation's memory state untouched?
  4822   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
  4823     // Bail out if there have been raw-memory effects since the allocation.
  4824     // (Example:  There might have been a call or safepoint.)
  4825     return NULL;
  4827   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
  4828   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
  4829     return NULL;
  4832   // There must be no unexpected observers of this allocation.
  4833   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
  4834     Node* obs = ptr->fast_out(i);
  4835     if (obs != this->map()) {
  4836       return NULL;
  4840   // This arraycopy must unconditionally follow the allocation of the ptr.
  4841   Node* alloc_ctl = ptr->in(0);
  4842   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
  4844   Node* ctl = control();
  4845   while (ctl != alloc_ctl) {
  4846     // There may be guards which feed into the slow_region.
  4847     // Any other control flow means that we might not get a chance
  4848     // to finish initializing the allocated object.
  4849     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
  4850       IfNode* iff = ctl->in(0)->as_If();
  4851       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
  4852       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
  4853       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
  4854         ctl = iff->in(0);       // This test feeds the known slow_region.
  4855         continue;
  4857       // One more try:  Various low-level checks bottom out in
  4858       // uncommon traps.  If the debug-info of the trap omits
  4859       // any reference to the allocation, as we've already
  4860       // observed, then there can be no objection to the trap.
  4861       bool found_trap = false;
  4862       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
  4863         Node* obs = not_ctl->fast_out(j);
  4864         if (obs->in(0) == not_ctl && obs->is_Call() &&
  4865             (obs->as_Call()->entry_point() ==
  4866              SharedRuntime::uncommon_trap_blob()->instructions_begin())) {
  4867           found_trap = true; break;
  4870       if (found_trap) {
  4871         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
  4872         continue;
  4875     return NULL;
  4878   // If we get this far, we have an allocation which immediately
  4879   // precedes the arraycopy, and we can take over zeroing the new object.
  4880   // The arraycopy will finish the initialization, and provide
  4881   // a new control state to which we will anchor the destination pointer.
  4883   return alloc;
  4886 // Helper for initialization of arrays, creating a ClearArray.
  4887 // It writes zero bits in [start..end), within the body of an array object.
  4888 // The memory effects are all chained onto the 'adr_type' alias category.
  4889 //
  4890 // Since the object is otherwise uninitialized, we are free
  4891 // to put a little "slop" around the edges of the cleared area,
  4892 // as long as it does not go back into the array's header,
  4893 // or beyond the array end within the heap.
  4894 //
  4895 // The lower edge can be rounded down to the nearest jint and the
  4896 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
  4897 //
  4898 // Arguments:
  4899 //   adr_type           memory slice where writes are generated
  4900 //   dest               oop of the destination array
  4901 //   basic_elem_type    element type of the destination
  4902 //   slice_idx          array index of first element to store
  4903 //   slice_len          number of elements to store (or NULL)
  4904 //   dest_size          total size in bytes of the array object
  4905 //
  4906 // Exactly one of slice_len or dest_size must be non-NULL.
  4907 // If dest_size is non-NULL, zeroing extends to the end of the object.
  4908 // If slice_len is non-NULL, the slice_idx value must be a constant.
  4909 void
  4910 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
  4911                                      Node* dest,
  4912                                      BasicType basic_elem_type,
  4913                                      Node* slice_idx,
  4914                                      Node* slice_len,
  4915                                      Node* dest_size) {
  4916   // one or the other but not both of slice_len and dest_size:
  4917   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
  4918   if (slice_len == NULL)  slice_len = top();
  4919   if (dest_size == NULL)  dest_size = top();
  4921   // operate on this memory slice:
  4922   Node* mem = memory(adr_type); // memory slice to operate on
  4924   // scaling and rounding of indexes:
  4925   int scale = exact_log2(type2aelembytes(basic_elem_type));
  4926   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  4927   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
  4928   int bump_bit  = (-1 << scale) & BytesPerInt;
  4930   // determine constant starts and ends
  4931   const intptr_t BIG_NEG = -128;
  4932   assert(BIG_NEG + 2*abase < 0, "neg enough");
  4933   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
  4934   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
  4935   if (slice_len_con == 0) {
  4936     return;                     // nothing to do here
  4938   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
  4939   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
  4940   if (slice_idx_con >= 0 && slice_len_con >= 0) {
  4941     assert(end_con < 0, "not two cons");
  4942     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
  4943                        BytesPerLong);
  4946   if (start_con >= 0 && end_con >= 0) {
  4947     // Constant start and end.  Simple.
  4948     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  4949                                        start_con, end_con, &_gvn);
  4950   } else if (start_con >= 0 && dest_size != top()) {
  4951     // Constant start, pre-rounded end after the tail of the array.
  4952     Node* end = dest_size;
  4953     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  4954                                        start_con, end, &_gvn);
  4955   } else if (start_con >= 0 && slice_len != top()) {
  4956     // Constant start, non-constant end.  End needs rounding up.
  4957     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
  4958     intptr_t end_base  = abase + (slice_idx_con << scale);
  4959     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
  4960     Node*    end       = ConvI2X(slice_len);
  4961     if (scale != 0)
  4962       end = _gvn.transform( new(C,3) LShiftXNode(end, intcon(scale) ));
  4963     end_base += end_round;
  4964     end = _gvn.transform( new(C,3) AddXNode(end, MakeConX(end_base)) );
  4965     end = _gvn.transform( new(C,3) AndXNode(end, MakeConX(~end_round)) );
  4966     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  4967                                        start_con, end, &_gvn);
  4968   } else if (start_con < 0 && dest_size != top()) {
  4969     // Non-constant start, pre-rounded end after the tail of the array.
  4970     // This is almost certainly a "round-to-end" operation.
  4971     Node* start = slice_idx;
  4972     start = ConvI2X(start);
  4973     if (scale != 0)
  4974       start = _gvn.transform( new(C,3) LShiftXNode( start, intcon(scale) ));
  4975     start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(abase)) );
  4976     if ((bump_bit | clear_low) != 0) {
  4977       int to_clear = (bump_bit | clear_low);
  4978       // Align up mod 8, then store a jint zero unconditionally
  4979       // just before the mod-8 boundary.
  4980       if (((abase + bump_bit) & ~to_clear) - bump_bit
  4981           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
  4982         bump_bit = 0;
  4983         assert((abase & to_clear) == 0, "array base must be long-aligned");
  4984       } else {
  4985         // Bump 'start' up to (or past) the next jint boundary:
  4986         start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(bump_bit)) );
  4987         assert((abase & clear_low) == 0, "array base must be int-aligned");
  4989       // Round bumped 'start' down to jlong boundary in body of array.
  4990       start = _gvn.transform( new(C,3) AndXNode(start, MakeConX(~to_clear)) );
  4991       if (bump_bit != 0) {
  4992         // Store a zero to the immediately preceding jint:
  4993         Node* x1 = _gvn.transform( new(C,3) AddXNode(start, MakeConX(-bump_bit)) );
  4994         Node* p1 = basic_plus_adr(dest, x1);
  4995         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT);
  4996         mem = _gvn.transform(mem);
  4999     Node* end = dest_size; // pre-rounded
  5000     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5001                                        start, end, &_gvn);
  5002   } else {
  5003     // Non-constant start, unrounded non-constant end.
  5004     // (Nobody zeroes a random midsection of an array using this routine.)
  5005     ShouldNotReachHere();       // fix caller
  5008   // Done.
  5009   set_memory(mem, adr_type);
  5013 bool
  5014 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
  5015                                          BasicType basic_elem_type,
  5016                                          AllocateNode* alloc,
  5017                                          Node* src,  Node* src_offset,
  5018                                          Node* dest, Node* dest_offset,
  5019                                          Node* dest_size) {
  5020   // See if there is an advantage from block transfer.
  5021   int scale = exact_log2(type2aelembytes(basic_elem_type));
  5022   if (scale >= LogBytesPerLong)
  5023     return false;               // it is already a block transfer
  5025   // Look at the alignment of the starting offsets.
  5026   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  5027   const intptr_t BIG_NEG = -128;
  5028   assert(BIG_NEG + 2*abase < 0, "neg enough");
  5030   intptr_t src_off  = abase + ((intptr_t) find_int_con(src_offset, -1)  << scale);
  5031   intptr_t dest_off = abase + ((intptr_t) find_int_con(dest_offset, -1) << scale);
  5032   if (src_off < 0 || dest_off < 0)
  5033     // At present, we can only understand constants.
  5034     return false;
  5036   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
  5037     // Non-aligned; too bad.
  5038     // One more chance:  Pick off an initial 32-bit word.
  5039     // This is a common case, since abase can be odd mod 8.
  5040     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
  5041         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
  5042       Node* sptr = basic_plus_adr(src,  src_off);
  5043       Node* dptr = basic_plus_adr(dest, dest_off);
  5044       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
  5045       store_to_memory(control(), dptr, sval, T_INT, adr_type);
  5046       src_off += BytesPerInt;
  5047       dest_off += BytesPerInt;
  5048     } else {
  5049       return false;
  5052   assert(src_off % BytesPerLong == 0, "");
  5053   assert(dest_off % BytesPerLong == 0, "");
  5055   // Do this copy by giant steps.
  5056   Node* sptr  = basic_plus_adr(src,  src_off);
  5057   Node* dptr  = basic_plus_adr(dest, dest_off);
  5058   Node* countx = dest_size;
  5059   countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(dest_off)) );
  5060   countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong)) );
  5062   bool disjoint_bases = true;   // since alloc != NULL
  5063   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
  5064                                sptr, NULL, dptr, NULL, countx);
  5066   return true;
  5070 // Helper function; generates code for the slow case.
  5071 // We make a call to a runtime method which emulates the native method,
  5072 // but without the native wrapper overhead.
  5073 void
  5074 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
  5075                                         Node* src,  Node* src_offset,
  5076                                         Node* dest, Node* dest_offset,
  5077                                         Node* copy_length,
  5078                                         int nargs) {
  5079   _sp += nargs; // any deopt will start just before call to enclosing method
  5080   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
  5081                                  OptoRuntime::slow_arraycopy_Type(),
  5082                                  OptoRuntime::slow_arraycopy_Java(),
  5083                                  "slow_arraycopy", adr_type,
  5084                                  src, src_offset, dest, dest_offset,
  5085                                  copy_length);
  5086   _sp -= nargs;
  5088   // Handle exceptions thrown by this fellow:
  5089   make_slow_call_ex(call, env()->Throwable_klass(), false);
  5092 // Helper function; generates code for cases requiring runtime checks.
  5093 Node*
  5094 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
  5095                                              Node* dest_elem_klass,
  5096                                              Node* src,  Node* src_offset,
  5097                                              Node* dest, Node* dest_offset,
  5098                                              Node* copy_length,
  5099                                              int nargs) {
  5100   if (stopped())  return NULL;
  5102   address copyfunc_addr = StubRoutines::checkcast_arraycopy();
  5103   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  5104     return NULL;
  5107   // Pick out the parameters required to perform a store-check
  5108   // for the target array.  This is an optimistic check.  It will
  5109   // look in each non-null element's class, at the desired klass's
  5110   // super_check_offset, for the desired klass.
  5111   int sco_offset = Klass::super_check_offset_offset_in_bytes() + sizeof(oopDesc);
  5112   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
  5113   Node* n3 = new(C, 3) LoadINode(NULL, immutable_memory(), p3, TypeRawPtr::BOTTOM);
  5114   Node* check_offset = _gvn.transform(n3);
  5115   Node* check_value  = dest_elem_klass;
  5117   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
  5118   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
  5120   // (We know the arrays are never conjoint, because their types differ.)
  5121   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5122                                  OptoRuntime::checkcast_arraycopy_Type(),
  5123                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
  5124                                  // five arguments, of which two are
  5125                                  // intptr_t (jlong in LP64)
  5126                                  src_start, dest_start,
  5127                                  copy_length XTOP,
  5128                                  check_offset XTOP,
  5129                                  check_value);
  5131   return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
  5135 // Helper function; generates code for cases requiring runtime checks.
  5136 Node*
  5137 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
  5138                                            Node* src,  Node* src_offset,
  5139                                            Node* dest, Node* dest_offset,
  5140                                            Node* copy_length,
  5141                                            int nargs) {
  5142   if (stopped())  return NULL;
  5144   address copyfunc_addr = StubRoutines::generic_arraycopy();
  5145   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  5146     return NULL;
  5149   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5150                     OptoRuntime::generic_arraycopy_Type(),
  5151                     copyfunc_addr, "generic_arraycopy", adr_type,
  5152                     src, src_offset, dest, dest_offset, copy_length);
  5154   return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
  5157 // Helper function; generates the fast out-of-line call to an arraycopy stub.
  5158 void
  5159 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
  5160                                              BasicType basic_elem_type,
  5161                                              bool disjoint_bases,
  5162                                              Node* src,  Node* src_offset,
  5163                                              Node* dest, Node* dest_offset,
  5164                                              Node* copy_length) {
  5165   if (stopped())  return;               // nothing to do
  5167   Node* src_start  = src;
  5168   Node* dest_start = dest;
  5169   if (src_offset != NULL || dest_offset != NULL) {
  5170     assert(src_offset != NULL && dest_offset != NULL, "");
  5171     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
  5172     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
  5175   // Figure out which arraycopy runtime method to call.
  5176   const char* copyfunc_name = "arraycopy";
  5177   address     copyfunc_addr =
  5178       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
  5179                           disjoint_bases, copyfunc_name);
  5181   // Call it.  Note that the count_ix value is not scaled to a byte-size.
  5182   make_runtime_call(RC_LEAF|RC_NO_FP,
  5183                     OptoRuntime::fast_arraycopy_Type(),
  5184                     copyfunc_addr, copyfunc_name, adr_type,
  5185                     src_start, dest_start, copy_length XTOP);

mercurial