src/os/windows/vm/perfMemory_windows.cpp

Wed, 15 Dec 2010 07:11:31 -0800

author
sla
date
Wed, 15 Dec 2010 07:11:31 -0800
changeset 2369
aa6e219afbf1
parent 2314
f95d63e2154a
child 2543
de14f1eee390
permissions
-rw-r--r--

7006354: Updates to Visual Studio project creation and development launcher
Summary: Updates to Visual Studio project creation and development launcher
Reviewed-by: stefank, coleenp

     1 /*
     2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/vmSymbols.hpp"
    27 #include "memory/allocation.inline.hpp"
    28 #include "memory/resourceArea.hpp"
    29 #include "oops/oop.inline.hpp"
    30 #include "os_windows.inline.hpp"
    31 #include "runtime/handles.inline.hpp"
    32 #include "runtime/perfMemory.hpp"
    33 #include "utilities/exceptions.hpp"
    35 #include <windows.h>
    36 #include <sys/types.h>
    37 #include <sys/stat.h>
    38 #include <errno.h>
    39 #include <lmcons.h>
    41 typedef BOOL (WINAPI *SetSecurityDescriptorControlFnPtr)(
    42    IN PSECURITY_DESCRIPTOR pSecurityDescriptor,
    43    IN SECURITY_DESCRIPTOR_CONTROL ControlBitsOfInterest,
    44    IN SECURITY_DESCRIPTOR_CONTROL ControlBitsToSet);
    46 // Standard Memory Implementation Details
    48 // create the PerfData memory region in standard memory.
    49 //
    50 static char* create_standard_memory(size_t size) {
    52   // allocate an aligned chuck of memory
    53   char* mapAddress = os::reserve_memory(size);
    55   if (mapAddress == NULL) {
    56     return NULL;
    57   }
    59   // commit memory
    60   if (!os::commit_memory(mapAddress, size)) {
    61     if (PrintMiscellaneous && Verbose) {
    62       warning("Could not commit PerfData memory\n");
    63     }
    64     os::release_memory(mapAddress, size);
    65     return NULL;
    66   }
    68   return mapAddress;
    69 }
    71 // delete the PerfData memory region
    72 //
    73 static void delete_standard_memory(char* addr, size_t size) {
    75   // there are no persistent external resources to cleanup for standard
    76   // memory. since DestroyJavaVM does not support unloading of the JVM,
    77   // cleanup of the memory resource is not performed. The memory will be
    78   // reclaimed by the OS upon termination of the process.
    79   //
    80   return;
    82 }
    84 // save the specified memory region to the given file
    85 //
    86 static void save_memory_to_file(char* addr, size_t size) {
    88   const char* destfile = PerfMemory::get_perfdata_file_path();
    89   assert(destfile[0] != '\0', "invalid Perfdata file path");
    91   int fd = ::_open(destfile, _O_BINARY|_O_CREAT|_O_WRONLY|_O_TRUNC,
    92                    _S_IREAD|_S_IWRITE);
    94   if (fd == OS_ERR) {
    95     if (PrintMiscellaneous && Verbose) {
    96       warning("Could not create Perfdata save file: %s: %s\n",
    97               destfile, strerror(errno));
    98     }
    99   } else {
   100     for (size_t remaining = size; remaining > 0;) {
   102       int nbytes = ::_write(fd, addr, (unsigned int)remaining);
   103       if (nbytes == OS_ERR) {
   104         if (PrintMiscellaneous && Verbose) {
   105           warning("Could not write Perfdata save file: %s: %s\n",
   106                   destfile, strerror(errno));
   107         }
   108         break;
   109       }
   111       remaining -= (size_t)nbytes;
   112       addr += nbytes;
   113     }
   115     int result = ::_close(fd);
   116     if (PrintMiscellaneous && Verbose) {
   117       if (result == OS_ERR) {
   118         warning("Could not close %s: %s\n", destfile, strerror(errno));
   119       }
   120     }
   121   }
   123   FREE_C_HEAP_ARRAY(char, destfile);
   124 }
   126 // Shared Memory Implementation Details
   128 // Note: the win32 shared memory implementation uses two objects to represent
   129 // the shared memory: a windows kernel based file mapping object and a backing
   130 // store file. On windows, the name space for shared memory is a kernel
   131 // based name space that is disjoint from other win32 name spaces. Since Java
   132 // is unaware of this name space, a parallel file system based name space is
   133 // maintained, which provides a common file system based shared memory name
   134 // space across the supported platforms and one that Java apps can deal with
   135 // through simple file apis.
   136 //
   137 // For performance and resource cleanup reasons, it is recommended that the
   138 // user specific directory and the backing store file be stored in either a
   139 // RAM based file system or a local disk based file system. Network based
   140 // file systems are not recommended for performance reasons. In addition,
   141 // use of SMB network based file systems may result in unsuccesful cleanup
   142 // of the disk based resource on exit of the VM. The Windows TMP and TEMP
   143 // environement variables, as used by the GetTempPath() Win32 API (see
   144 // os::get_temp_directory() in os_win32.cpp), control the location of the
   145 // user specific directory and the shared memory backing store file.
   147 static HANDLE sharedmem_fileMapHandle = NULL;
   148 static HANDLE sharedmem_fileHandle = INVALID_HANDLE_VALUE;
   149 static char*  sharedmem_fileName = NULL;
   151 // return the user specific temporary directory name.
   152 //
   153 // the caller is expected to free the allocated memory.
   154 //
   155 static char* get_user_tmp_dir(const char* user) {
   157   const char* tmpdir = os::get_temp_directory();
   158   const char* perfdir = PERFDATA_NAME;
   159   size_t nbytes = strlen(tmpdir) + strlen(perfdir) + strlen(user) + 3;
   160   char* dirname = NEW_C_HEAP_ARRAY(char, nbytes);
   162   // construct the path name to user specific tmp directory
   163   _snprintf(dirname, nbytes, "%s\\%s_%s", tmpdir, perfdir, user);
   165   return dirname;
   166 }
   168 // convert the given file name into a process id. if the file
   169 // does not meet the file naming constraints, return 0.
   170 //
   171 static int filename_to_pid(const char* filename) {
   173   // a filename that doesn't begin with a digit is not a
   174   // candidate for conversion.
   175   //
   176   if (!isdigit(*filename)) {
   177     return 0;
   178   }
   180   // check if file name can be converted to an integer without
   181   // any leftover characters.
   182   //
   183   char* remainder = NULL;
   184   errno = 0;
   185   int pid = (int)strtol(filename, &remainder, 10);
   187   if (errno != 0) {
   188     return 0;
   189   }
   191   // check for left over characters. If any, then the filename is
   192   // not a candidate for conversion.
   193   //
   194   if (remainder != NULL && *remainder != '\0') {
   195     return 0;
   196   }
   198   // successful conversion, return the pid
   199   return pid;
   200 }
   202 // check if the given path is considered a secure directory for
   203 // the backing store files. Returns true if the directory exists
   204 // and is considered a secure location. Returns false if the path
   205 // is a symbolic link or if an error occurred.
   206 //
   207 static bool is_directory_secure(const char* path) {
   209   DWORD fa;
   211   fa = GetFileAttributes(path);
   212   if (fa == 0xFFFFFFFF) {
   213     DWORD lasterror = GetLastError();
   214     if (lasterror == ERROR_FILE_NOT_FOUND) {
   215       return false;
   216     }
   217     else {
   218       // unexpected error, declare the path insecure
   219       if (PrintMiscellaneous && Verbose) {
   220         warning("could not get attributes for file %s: ",
   221                 " lasterror = %d\n", path, lasterror);
   222       }
   223       return false;
   224     }
   225   }
   227   if (fa & FILE_ATTRIBUTE_REPARSE_POINT) {
   228     // we don't accept any redirection for the user specific directory
   229     // so declare the path insecure. This may be too conservative,
   230     // as some types of reparse points might be acceptable, but it
   231     // is probably more secure to avoid these conditions.
   232     //
   233     if (PrintMiscellaneous && Verbose) {
   234       warning("%s is a reparse point\n", path);
   235     }
   236     return false;
   237   }
   239   if (fa & FILE_ATTRIBUTE_DIRECTORY) {
   240     // this is the expected case. Since windows supports symbolic
   241     // links to directories only, not to files, there is no need
   242     // to check for open write permissions on the directory. If the
   243     // directory has open write permissions, any files deposited that
   244     // are not expected will be removed by the cleanup code.
   245     //
   246     return true;
   247   }
   248   else {
   249     // this is either a regular file or some other type of file,
   250     // any of which are unexpected and therefore insecure.
   251     //
   252     if (PrintMiscellaneous && Verbose) {
   253       warning("%s is not a directory, file attributes = "
   254               INTPTR_FORMAT "\n", path, fa);
   255     }
   256     return false;
   257   }
   258 }
   260 // return the user name for the owner of this process
   261 //
   262 // the caller is expected to free the allocated memory.
   263 //
   264 static char* get_user_name() {
   266   /* get the user name. This code is adapted from code found in
   267    * the jdk in src/windows/native/java/lang/java_props_md.c
   268    * java_props_md.c  1.29 02/02/06. According to the original
   269    * source, the call to GetUserName is avoided because of a resulting
   270    * increase in footprint of 100K.
   271    */
   272   char* user = getenv("USERNAME");
   273   char buf[UNLEN+1];
   274   DWORD buflen = sizeof(buf);
   275   if (user == NULL || strlen(user) == 0) {
   276     if (GetUserName(buf, &buflen)) {
   277       user = buf;
   278     }
   279     else {
   280       return NULL;
   281     }
   282   }
   284   char* user_name = NEW_C_HEAP_ARRAY(char, strlen(user)+1);
   285   strcpy(user_name, user);
   287   return user_name;
   288 }
   290 // return the name of the user that owns the process identified by vmid.
   291 //
   292 // This method uses a slow directory search algorithm to find the backing
   293 // store file for the specified vmid and returns the user name, as determined
   294 // by the user name suffix of the hsperfdata_<username> directory name.
   295 //
   296 // the caller is expected to free the allocated memory.
   297 //
   298 static char* get_user_name_slow(int vmid) {
   300   // directory search
   301   char* oldest_user = NULL;
   302   time_t oldest_ctime = 0;
   304   const char* tmpdirname = os::get_temp_directory();
   306   DIR* tmpdirp = os::opendir(tmpdirname);
   308   if (tmpdirp == NULL) {
   309     return NULL;
   310   }
   312   // for each entry in the directory that matches the pattern hsperfdata_*,
   313   // open the directory and check if the file for the given vmid exists.
   314   // The file with the expected name and the latest creation date is used
   315   // to determine the user name for the process id.
   316   //
   317   struct dirent* dentry;
   318   char* tdbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(tmpdirname));
   319   errno = 0;
   320   while ((dentry = os::readdir(tmpdirp, (struct dirent *)tdbuf)) != NULL) {
   322     // check if the directory entry is a hsperfdata file
   323     if (strncmp(dentry->d_name, PERFDATA_NAME, strlen(PERFDATA_NAME)) != 0) {
   324       continue;
   325     }
   327     char* usrdir_name = NEW_C_HEAP_ARRAY(char,
   328                               strlen(tmpdirname) + strlen(dentry->d_name) + 2);
   329     strcpy(usrdir_name, tmpdirname);
   330     strcat(usrdir_name, "\\");
   331     strcat(usrdir_name, dentry->d_name);
   333     DIR* subdirp = os::opendir(usrdir_name);
   335     if (subdirp == NULL) {
   336       FREE_C_HEAP_ARRAY(char, usrdir_name);
   337       continue;
   338     }
   340     // Since we don't create the backing store files in directories
   341     // pointed to by symbolic links, we also don't follow them when
   342     // looking for the files. We check for a symbolic link after the
   343     // call to opendir in order to eliminate a small window where the
   344     // symlink can be exploited.
   345     //
   346     if (!is_directory_secure(usrdir_name)) {
   347       FREE_C_HEAP_ARRAY(char, usrdir_name);
   348       os::closedir(subdirp);
   349       continue;
   350     }
   352     struct dirent* udentry;
   353     char* udbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(usrdir_name));
   354     errno = 0;
   355     while ((udentry = os::readdir(subdirp, (struct dirent *)udbuf)) != NULL) {
   357       if (filename_to_pid(udentry->d_name) == vmid) {
   358         struct stat statbuf;
   360         char* filename = NEW_C_HEAP_ARRAY(char,
   361                             strlen(usrdir_name) + strlen(udentry->d_name) + 2);
   363         strcpy(filename, usrdir_name);
   364         strcat(filename, "\\");
   365         strcat(filename, udentry->d_name);
   367         if (::stat(filename, &statbuf) == OS_ERR) {
   368            FREE_C_HEAP_ARRAY(char, filename);
   369            continue;
   370         }
   372         // skip over files that are not regular files.
   373         if ((statbuf.st_mode & S_IFMT) != S_IFREG) {
   374           FREE_C_HEAP_ARRAY(char, filename);
   375           continue;
   376         }
   378         // compare and save filename with latest creation time
   379         if (statbuf.st_size > 0 && statbuf.st_ctime > oldest_ctime) {
   381           if (statbuf.st_ctime > oldest_ctime) {
   382             char* user = strchr(dentry->d_name, '_') + 1;
   384             if (oldest_user != NULL) FREE_C_HEAP_ARRAY(char, oldest_user);
   385             oldest_user = NEW_C_HEAP_ARRAY(char, strlen(user)+1);
   387             strcpy(oldest_user, user);
   388             oldest_ctime = statbuf.st_ctime;
   389           }
   390         }
   392         FREE_C_HEAP_ARRAY(char, filename);
   393       }
   394     }
   395     os::closedir(subdirp);
   396     FREE_C_HEAP_ARRAY(char, udbuf);
   397     FREE_C_HEAP_ARRAY(char, usrdir_name);
   398   }
   399   os::closedir(tmpdirp);
   400   FREE_C_HEAP_ARRAY(char, tdbuf);
   402   return(oldest_user);
   403 }
   405 // return the name of the user that owns the process identified by vmid.
   406 //
   407 // note: this method should only be used via the Perf native methods.
   408 // There are various costs to this method and limiting its use to the
   409 // Perf native methods limits the impact to monitoring applications only.
   410 //
   411 static char* get_user_name(int vmid) {
   413   // A fast implementation is not provided at this time. It's possible
   414   // to provide a fast process id to user name mapping function using
   415   // the win32 apis, but the default ACL for the process object only
   416   // allows processes with the same owner SID to acquire the process
   417   // handle (via OpenProcess(PROCESS_QUERY_INFORMATION)). It's possible
   418   // to have the JVM change the ACL for the process object to allow arbitrary
   419   // users to access the process handle and the process security token.
   420   // The security ramifications need to be studied before providing this
   421   // mechanism.
   422   //
   423   return get_user_name_slow(vmid);
   424 }
   426 // return the name of the shared memory file mapping object for the
   427 // named shared memory region for the given user name and vmid.
   428 //
   429 // The file mapping object's name is not the file name. It is a name
   430 // in a separate name space.
   431 //
   432 // the caller is expected to free the allocated memory.
   433 //
   434 static char *get_sharedmem_objectname(const char* user, int vmid) {
   436   // construct file mapping object's name, add 3 for two '_' and a
   437   // null terminator.
   438   int nbytes = (int)strlen(PERFDATA_NAME) + (int)strlen(user) + 3;
   440   // the id is converted to an unsigned value here because win32 allows
   441   // negative process ids. However, OpenFileMapping API complains
   442   // about a name containing a '-' characters.
   443   //
   444   nbytes += UINT_CHARS;
   445   char* name = NEW_C_HEAP_ARRAY(char, nbytes);
   446   _snprintf(name, nbytes, "%s_%s_%u", PERFDATA_NAME, user, vmid);
   448   return name;
   449 }
   451 // return the file name of the backing store file for the named
   452 // shared memory region for the given user name and vmid.
   453 //
   454 // the caller is expected to free the allocated memory.
   455 //
   456 static char* get_sharedmem_filename(const char* dirname, int vmid) {
   458   // add 2 for the file separator and a null terminator.
   459   size_t nbytes = strlen(dirname) + UINT_CHARS + 2;
   461   char* name = NEW_C_HEAP_ARRAY(char, nbytes);
   462   _snprintf(name, nbytes, "%s\\%d", dirname, vmid);
   464   return name;
   465 }
   467 // remove file
   468 //
   469 // this method removes the file with the given file name.
   470 //
   471 // Note: if the indicated file is on an SMB network file system, this
   472 // method may be unsuccessful in removing the file.
   473 //
   474 static void remove_file(const char* dirname, const char* filename) {
   476   size_t nbytes = strlen(dirname) + strlen(filename) + 2;
   477   char* path = NEW_C_HEAP_ARRAY(char, nbytes);
   479   strcpy(path, dirname);
   480   strcat(path, "\\");
   481   strcat(path, filename);
   483   if (::unlink(path) == OS_ERR) {
   484     if (PrintMiscellaneous && Verbose) {
   485       if (errno != ENOENT) {
   486         warning("Could not unlink shared memory backing"
   487                 " store file %s : %s\n", path, strerror(errno));
   488       }
   489     }
   490   }
   492   FREE_C_HEAP_ARRAY(char, path);
   493 }
   495 // returns true if the process represented by pid is alive, otherwise
   496 // returns false. the validity of the result is only accurate if the
   497 // target process is owned by the same principal that owns this process.
   498 // this method should not be used if to test the status of an otherwise
   499 // arbitrary process unless it is know that this process has the appropriate
   500 // privileges to guarantee a result valid.
   501 //
   502 static bool is_alive(int pid) {
   504   HANDLE ph = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE, pid);
   505   if (ph == NULL) {
   506     // the process does not exist.
   507     if (PrintMiscellaneous && Verbose) {
   508       DWORD lastError = GetLastError();
   509       if (lastError != ERROR_INVALID_PARAMETER) {
   510         warning("OpenProcess failed: %d\n", GetLastError());
   511       }
   512     }
   513     return false;
   514   }
   516   DWORD exit_status;
   517   if (!GetExitCodeProcess(ph, &exit_status)) {
   518     if (PrintMiscellaneous && Verbose) {
   519       warning("GetExitCodeProcess failed: %d\n", GetLastError());
   520     }
   521     CloseHandle(ph);
   522     return false;
   523   }
   525   CloseHandle(ph);
   526   return (exit_status == STILL_ACTIVE) ? true : false;
   527 }
   529 // check if the file system is considered secure for the backing store files
   530 //
   531 static bool is_filesystem_secure(const char* path) {
   533   char root_path[MAX_PATH];
   534   char fs_type[MAX_PATH];
   536   if (PerfBypassFileSystemCheck) {
   537     if (PrintMiscellaneous && Verbose) {
   538       warning("bypassing file system criteria checks for %s\n", path);
   539     }
   540     return true;
   541   }
   543   char* first_colon = strchr((char *)path, ':');
   544   if (first_colon == NULL) {
   545     if (PrintMiscellaneous && Verbose) {
   546       warning("expected device specifier in path: %s\n", path);
   547     }
   548     return false;
   549   }
   551   size_t len = (size_t)(first_colon - path);
   552   assert(len + 2 <= MAX_PATH, "unexpected device specifier length");
   553   strncpy(root_path, path, len + 1);
   554   root_path[len + 1] = '\\';
   555   root_path[len + 2] = '\0';
   557   // check that we have something like "C:\" or "AA:\"
   558   assert(strlen(root_path) >= 3, "device specifier too short");
   559   assert(strchr(root_path, ':') != NULL, "bad device specifier format");
   560   assert(strchr(root_path, '\\') != NULL, "bad device specifier format");
   562   DWORD maxpath;
   563   DWORD flags;
   565   if (!GetVolumeInformation(root_path, NULL, 0, NULL, &maxpath,
   566                             &flags, fs_type, MAX_PATH)) {
   567     // we can't get information about the volume, so assume unsafe.
   568     if (PrintMiscellaneous && Verbose) {
   569       warning("could not get device information for %s: "
   570               " path = %s: lasterror = %d\n",
   571               root_path, path, GetLastError());
   572     }
   573     return false;
   574   }
   576   if ((flags & FS_PERSISTENT_ACLS) == 0) {
   577     // file system doesn't support ACLs, declare file system unsafe
   578     if (PrintMiscellaneous && Verbose) {
   579       warning("file system type %s on device %s does not support"
   580               " ACLs\n", fs_type, root_path);
   581     }
   582     return false;
   583   }
   585   if ((flags & FS_VOL_IS_COMPRESSED) != 0) {
   586     // file system is compressed, declare file system unsafe
   587     if (PrintMiscellaneous && Verbose) {
   588       warning("file system type %s on device %s is compressed\n",
   589               fs_type, root_path);
   590     }
   591     return false;
   592   }
   594   return true;
   595 }
   597 // cleanup stale shared memory resources
   598 //
   599 // This method attempts to remove all stale shared memory files in
   600 // the named user temporary directory. It scans the named directory
   601 // for files matching the pattern ^$[0-9]*$. For each file found, the
   602 // process id is extracted from the file name and a test is run to
   603 // determine if the process is alive. If the process is not alive,
   604 // any stale file resources are removed.
   605 //
   606 static void cleanup_sharedmem_resources(const char* dirname) {
   608   // open the user temp directory
   609   DIR* dirp = os::opendir(dirname);
   611   if (dirp == NULL) {
   612     // directory doesn't exist, so there is nothing to cleanup
   613     return;
   614   }
   616   if (!is_directory_secure(dirname)) {
   617     // the directory is not secure, don't attempt any cleanup
   618     return;
   619   }
   621   // for each entry in the directory that matches the expected file
   622   // name pattern, determine if the file resources are stale and if
   623   // so, remove the file resources. Note, instrumented HotSpot processes
   624   // for this user may start and/or terminate during this search and
   625   // remove or create new files in this directory. The behavior of this
   626   // loop under these conditions is dependent upon the implementation of
   627   // opendir/readdir.
   628   //
   629   struct dirent* entry;
   630   char* dbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(dirname));
   631   errno = 0;
   632   while ((entry = os::readdir(dirp, (struct dirent *)dbuf)) != NULL) {
   634     int pid = filename_to_pid(entry->d_name);
   636     if (pid == 0) {
   638       if (strcmp(entry->d_name, ".") != 0 && strcmp(entry->d_name, "..") != 0) {
   640         // attempt to remove all unexpected files, except "." and ".."
   641         remove_file(dirname, entry->d_name);
   642       }
   644       errno = 0;
   645       continue;
   646     }
   648     // we now have a file name that converts to a valid integer
   649     // that could represent a process id . if this process id
   650     // matches the current process id or the process is not running,
   651     // then remove the stale file resources.
   652     //
   653     // process liveness is detected by checking the exit status
   654     // of the process. if the process id is valid and the exit status
   655     // indicates that it is still running, the file file resources
   656     // are not removed. If the process id is invalid, or if we don't
   657     // have permissions to check the process status, or if the process
   658     // id is valid and the process has terminated, the the file resources
   659     // are assumed to be stale and are removed.
   660     //
   661     if (pid == os::current_process_id() || !is_alive(pid)) {
   663       // we can only remove the file resources. Any mapped views
   664       // of the file can only be unmapped by the processes that
   665       // opened those views and the file mapping object will not
   666       // get removed until all views are unmapped.
   667       //
   668       remove_file(dirname, entry->d_name);
   669     }
   670     errno = 0;
   671   }
   672   os::closedir(dirp);
   673   FREE_C_HEAP_ARRAY(char, dbuf);
   674 }
   676 // create a file mapping object with the requested name, and size
   677 // from the file represented by the given Handle object
   678 //
   679 static HANDLE create_file_mapping(const char* name, HANDLE fh, LPSECURITY_ATTRIBUTES fsa, size_t size) {
   681   DWORD lowSize = (DWORD)size;
   682   DWORD highSize = 0;
   683   HANDLE fmh = NULL;
   685   // Create a file mapping object with the given name. This function
   686   // will grow the file to the specified size.
   687   //
   688   fmh = CreateFileMapping(
   689                fh,                 /* HANDLE file handle for backing store */
   690                fsa,                /* LPSECURITY_ATTRIBUTES Not inheritable */
   691                PAGE_READWRITE,     /* DWORD protections */
   692                highSize,           /* DWORD High word of max size */
   693                lowSize,            /* DWORD Low word of max size */
   694                name);              /* LPCTSTR name for object */
   696   if (fmh == NULL) {
   697     if (PrintMiscellaneous && Verbose) {
   698       warning("CreateFileMapping failed, lasterror = %d\n", GetLastError());
   699     }
   700     return NULL;
   701   }
   703   if (GetLastError() == ERROR_ALREADY_EXISTS) {
   705     // a stale file mapping object was encountered. This object may be
   706     // owned by this or some other user and cannot be removed until
   707     // the other processes either exit or close their mapping objects
   708     // and/or mapped views of this mapping object.
   709     //
   710     if (PrintMiscellaneous && Verbose) {
   711       warning("file mapping already exists, lasterror = %d\n", GetLastError());
   712     }
   714     CloseHandle(fmh);
   715     return NULL;
   716   }
   718   return fmh;
   719 }
   722 // method to free the given security descriptor and the contained
   723 // access control list.
   724 //
   725 static void free_security_desc(PSECURITY_DESCRIPTOR pSD) {
   727   BOOL success, exists, isdefault;
   728   PACL pACL;
   730   if (pSD != NULL) {
   732     // get the access control list from the security descriptor
   733     success = GetSecurityDescriptorDacl(pSD, &exists, &pACL, &isdefault);
   735     // if an ACL existed and it was not a default acl, then it must
   736     // be an ACL we enlisted. free the resources.
   737     //
   738     if (success && exists && pACL != NULL && !isdefault) {
   739       FREE_C_HEAP_ARRAY(char, pACL);
   740     }
   742     // free the security descriptor
   743     FREE_C_HEAP_ARRAY(char, pSD);
   744   }
   745 }
   747 // method to free up a security attributes structure and any
   748 // contained security descriptors and ACL
   749 //
   750 static void free_security_attr(LPSECURITY_ATTRIBUTES lpSA) {
   752   if (lpSA != NULL) {
   753     // free the contained security descriptor and the ACL
   754     free_security_desc(lpSA->lpSecurityDescriptor);
   755     lpSA->lpSecurityDescriptor = NULL;
   757     // free the security attributes structure
   758     FREE_C_HEAP_ARRAY(char, lpSA);
   759   }
   760 }
   762 // get the user SID for the process indicated by the process handle
   763 //
   764 static PSID get_user_sid(HANDLE hProcess) {
   766   HANDLE hAccessToken;
   767   PTOKEN_USER token_buf = NULL;
   768   DWORD rsize = 0;
   770   if (hProcess == NULL) {
   771     return NULL;
   772   }
   774   // get the process token
   775   if (!OpenProcessToken(hProcess, TOKEN_READ, &hAccessToken)) {
   776     if (PrintMiscellaneous && Verbose) {
   777       warning("OpenProcessToken failure: lasterror = %d \n", GetLastError());
   778     }
   779     return NULL;
   780   }
   782   // determine the size of the token structured needed to retrieve
   783   // the user token information from the access token.
   784   //
   785   if (!GetTokenInformation(hAccessToken, TokenUser, NULL, rsize, &rsize)) {
   786     DWORD lasterror = GetLastError();
   787     if (lasterror != ERROR_INSUFFICIENT_BUFFER) {
   788       if (PrintMiscellaneous && Verbose) {
   789         warning("GetTokenInformation failure: lasterror = %d,"
   790                 " rsize = %d\n", lasterror, rsize);
   791       }
   792       CloseHandle(hAccessToken);
   793       return NULL;
   794     }
   795   }
   797   token_buf = (PTOKEN_USER) NEW_C_HEAP_ARRAY(char, rsize);
   799   // get the user token information
   800   if (!GetTokenInformation(hAccessToken, TokenUser, token_buf, rsize, &rsize)) {
   801     if (PrintMiscellaneous && Verbose) {
   802       warning("GetTokenInformation failure: lasterror = %d,"
   803               " rsize = %d\n", GetLastError(), rsize);
   804     }
   805     FREE_C_HEAP_ARRAY(char, token_buf);
   806     CloseHandle(hAccessToken);
   807     return NULL;
   808   }
   810   DWORD nbytes = GetLengthSid(token_buf->User.Sid);
   811   PSID pSID = NEW_C_HEAP_ARRAY(char, nbytes);
   813   if (!CopySid(nbytes, pSID, token_buf->User.Sid)) {
   814     if (PrintMiscellaneous && Verbose) {
   815       warning("GetTokenInformation failure: lasterror = %d,"
   816               " rsize = %d\n", GetLastError(), rsize);
   817     }
   818     FREE_C_HEAP_ARRAY(char, token_buf);
   819     FREE_C_HEAP_ARRAY(char, pSID);
   820     CloseHandle(hAccessToken);
   821     return NULL;
   822   }
   824   // close the access token.
   825   CloseHandle(hAccessToken);
   826   FREE_C_HEAP_ARRAY(char, token_buf);
   828   return pSID;
   829 }
   831 // structure used to consolidate access control entry information
   832 //
   833 typedef struct ace_data {
   834   PSID pSid;      // SID of the ACE
   835   DWORD mask;     // mask for the ACE
   836 } ace_data_t;
   839 // method to add an allow access control entry with the access rights
   840 // indicated in mask for the principal indicated in SID to the given
   841 // security descriptor. Much of the DACL handling was adapted from
   842 // the example provided here:
   843 //      http://support.microsoft.com/kb/102102/EN-US/
   844 //
   846 static bool add_allow_aces(PSECURITY_DESCRIPTOR pSD,
   847                            ace_data_t aces[], int ace_count) {
   848   PACL newACL = NULL;
   849   PACL oldACL = NULL;
   851   if (pSD == NULL) {
   852     return false;
   853   }
   855   BOOL exists, isdefault;
   857   // retrieve any existing access control list.
   858   if (!GetSecurityDescriptorDacl(pSD, &exists, &oldACL, &isdefault)) {
   859     if (PrintMiscellaneous && Verbose) {
   860       warning("GetSecurityDescriptor failure: lasterror = %d \n",
   861               GetLastError());
   862     }
   863     return false;
   864   }
   866   // get the size of the DACL
   867   ACL_SIZE_INFORMATION aclinfo;
   869   // GetSecurityDescriptorDacl may return true value for exists (lpbDaclPresent)
   870   // while oldACL is NULL for some case.
   871   if (oldACL == NULL) {
   872     exists = FALSE;
   873   }
   875   if (exists) {
   876     if (!GetAclInformation(oldACL, &aclinfo,
   877                            sizeof(ACL_SIZE_INFORMATION),
   878                            AclSizeInformation)) {
   879       if (PrintMiscellaneous && Verbose) {
   880         warning("GetAclInformation failure: lasterror = %d \n", GetLastError());
   881         return false;
   882       }
   883     }
   884   } else {
   885     aclinfo.AceCount = 0; // assume NULL DACL
   886     aclinfo.AclBytesFree = 0;
   887     aclinfo.AclBytesInUse = sizeof(ACL);
   888   }
   890   // compute the size needed for the new ACL
   891   // initial size of ACL is sum of the following:
   892   //   * size of ACL structure.
   893   //   * size of each ACE structure that ACL is to contain minus the sid
   894   //     sidStart member (DWORD) of the ACE.
   895   //   * length of the SID that each ACE is to contain.
   896   DWORD newACLsize = aclinfo.AclBytesInUse +
   897                         (sizeof(ACCESS_ALLOWED_ACE) - sizeof(DWORD)) * ace_count;
   898   for (int i = 0; i < ace_count; i++) {
   899      assert(aces[i].pSid != 0, "pSid should not be 0");
   900      newACLsize += GetLengthSid(aces[i].pSid);
   901   }
   903   // create the new ACL
   904   newACL = (PACL) NEW_C_HEAP_ARRAY(char, newACLsize);
   906   if (!InitializeAcl(newACL, newACLsize, ACL_REVISION)) {
   907     if (PrintMiscellaneous && Verbose) {
   908       warning("InitializeAcl failure: lasterror = %d \n", GetLastError());
   909     }
   910     FREE_C_HEAP_ARRAY(char, newACL);
   911     return false;
   912   }
   914   unsigned int ace_index = 0;
   915   // copy any existing ACEs from the old ACL (if any) to the new ACL.
   916   if (aclinfo.AceCount != 0) {
   917     while (ace_index < aclinfo.AceCount) {
   918       LPVOID ace;
   919       if (!GetAce(oldACL, ace_index, &ace)) {
   920         if (PrintMiscellaneous && Verbose) {
   921           warning("InitializeAcl failure: lasterror = %d \n", GetLastError());
   922         }
   923         FREE_C_HEAP_ARRAY(char, newACL);
   924         return false;
   925       }
   926       if (((ACCESS_ALLOWED_ACE *)ace)->Header.AceFlags && INHERITED_ACE) {
   927         // this is an inherited, allowed ACE; break from loop so we can
   928         // add the new access allowed, non-inherited ACE in the correct
   929         // position, immediately following all non-inherited ACEs.
   930         break;
   931       }
   933       // determine if the SID of this ACE matches any of the SIDs
   934       // for which we plan to set ACEs.
   935       int matches = 0;
   936       for (int i = 0; i < ace_count; i++) {
   937         if (EqualSid(aces[i].pSid, &(((ACCESS_ALLOWED_ACE *)ace)->SidStart))) {
   938           matches++;
   939           break;
   940         }
   941       }
   943       // if there are no SID matches, then add this existing ACE to the new ACL
   944       if (matches == 0) {
   945         if (!AddAce(newACL, ACL_REVISION, MAXDWORD, ace,
   946                     ((PACE_HEADER)ace)->AceSize)) {
   947           if (PrintMiscellaneous && Verbose) {
   948             warning("AddAce failure: lasterror = %d \n", GetLastError());
   949           }
   950           FREE_C_HEAP_ARRAY(char, newACL);
   951           return false;
   952         }
   953       }
   954       ace_index++;
   955     }
   956   }
   958   // add the passed-in access control entries to the new ACL
   959   for (int i = 0; i < ace_count; i++) {
   960     if (!AddAccessAllowedAce(newACL, ACL_REVISION,
   961                              aces[i].mask, aces[i].pSid)) {
   962       if (PrintMiscellaneous && Verbose) {
   963         warning("AddAccessAllowedAce failure: lasterror = %d \n",
   964                 GetLastError());
   965       }
   966       FREE_C_HEAP_ARRAY(char, newACL);
   967       return false;
   968     }
   969   }
   971   // now copy the rest of the inherited ACEs from the old ACL
   972   if (aclinfo.AceCount != 0) {
   973     // picking up at ace_index, where we left off in the
   974     // previous ace_index loop
   975     while (ace_index < aclinfo.AceCount) {
   976       LPVOID ace;
   977       if (!GetAce(oldACL, ace_index, &ace)) {
   978         if (PrintMiscellaneous && Verbose) {
   979           warning("InitializeAcl failure: lasterror = %d \n", GetLastError());
   980         }
   981         FREE_C_HEAP_ARRAY(char, newACL);
   982         return false;
   983       }
   984       if (!AddAce(newACL, ACL_REVISION, MAXDWORD, ace,
   985                   ((PACE_HEADER)ace)->AceSize)) {
   986         if (PrintMiscellaneous && Verbose) {
   987           warning("AddAce failure: lasterror = %d \n", GetLastError());
   988         }
   989         FREE_C_HEAP_ARRAY(char, newACL);
   990         return false;
   991       }
   992       ace_index++;
   993     }
   994   }
   996   // add the new ACL to the security descriptor.
   997   if (!SetSecurityDescriptorDacl(pSD, TRUE, newACL, FALSE)) {
   998     if (PrintMiscellaneous && Verbose) {
   999       warning("SetSecurityDescriptorDacl failure:"
  1000               " lasterror = %d \n", GetLastError());
  1002     FREE_C_HEAP_ARRAY(char, newACL);
  1003     return false;
  1006   // if running on windows 2000 or later, set the automatic inheritance
  1007   // control flags.
  1008   SetSecurityDescriptorControlFnPtr _SetSecurityDescriptorControl;
  1009   _SetSecurityDescriptorControl = (SetSecurityDescriptorControlFnPtr)
  1010        GetProcAddress(GetModuleHandle(TEXT("advapi32.dll")),
  1011                       "SetSecurityDescriptorControl");
  1013   if (_SetSecurityDescriptorControl != NULL) {
  1014     // We do not want to further propagate inherited DACLs, so making them
  1015     // protected prevents that.
  1016     if (!_SetSecurityDescriptorControl(pSD, SE_DACL_PROTECTED,
  1017                                             SE_DACL_PROTECTED)) {
  1018       if (PrintMiscellaneous && Verbose) {
  1019         warning("SetSecurityDescriptorControl failure:"
  1020                 " lasterror = %d \n", GetLastError());
  1022       FREE_C_HEAP_ARRAY(char, newACL);
  1023       return false;
  1026    // Note, the security descriptor maintains a reference to the newACL, not
  1027    // a copy of it. Therefore, the newACL is not freed here. It is freed when
  1028    // the security descriptor containing its reference is freed.
  1029    //
  1030    return true;
  1033 // method to create a security attributes structure, which contains a
  1034 // security descriptor and an access control list comprised of 0 or more
  1035 // access control entries. The method take an array of ace_data structures
  1036 // that indicate the ACE to be added to the security descriptor.
  1037 //
  1038 // the caller must free the resources associated with the security
  1039 // attributes structure created by this method by calling the
  1040 // free_security_attr() method.
  1041 //
  1042 static LPSECURITY_ATTRIBUTES make_security_attr(ace_data_t aces[], int count) {
  1044   // allocate space for a security descriptor
  1045   PSECURITY_DESCRIPTOR pSD = (PSECURITY_DESCRIPTOR)
  1046                          NEW_C_HEAP_ARRAY(char, SECURITY_DESCRIPTOR_MIN_LENGTH);
  1048   // initialize the security descriptor
  1049   if (!InitializeSecurityDescriptor(pSD, SECURITY_DESCRIPTOR_REVISION)) {
  1050     if (PrintMiscellaneous && Verbose) {
  1051       warning("InitializeSecurityDescriptor failure: "
  1052               "lasterror = %d \n", GetLastError());
  1054     free_security_desc(pSD);
  1055     return NULL;
  1058   // add the access control entries
  1059   if (!add_allow_aces(pSD, aces, count)) {
  1060     free_security_desc(pSD);
  1061     return NULL;
  1064   // allocate and initialize the security attributes structure and
  1065   // return it to the caller.
  1066   //
  1067   LPSECURITY_ATTRIBUTES lpSA = (LPSECURITY_ATTRIBUTES)
  1068                             NEW_C_HEAP_ARRAY(char, sizeof(SECURITY_ATTRIBUTES));
  1069   lpSA->nLength = sizeof(SECURITY_ATTRIBUTES);
  1070   lpSA->lpSecurityDescriptor = pSD;
  1071   lpSA->bInheritHandle = FALSE;
  1073   return(lpSA);
  1076 // method to create a security attributes structure with a restrictive
  1077 // access control list that creates a set access rights for the user/owner
  1078 // of the securable object and a separate set access rights for everyone else.
  1079 // also provides for full access rights for the administrator group.
  1080 //
  1081 // the caller must free the resources associated with the security
  1082 // attributes structure created by this method by calling the
  1083 // free_security_attr() method.
  1084 //
  1086 static LPSECURITY_ATTRIBUTES make_user_everybody_admin_security_attr(
  1087                                 DWORD umask, DWORD emask, DWORD amask) {
  1089   ace_data_t aces[3];
  1091   // initialize the user ace data
  1092   aces[0].pSid = get_user_sid(GetCurrentProcess());
  1093   aces[0].mask = umask;
  1095   if (aces[0].pSid == 0)
  1096     return NULL;
  1098   // get the well known SID for BUILTIN\Administrators
  1099   PSID administratorsSid = NULL;
  1100   SID_IDENTIFIER_AUTHORITY SIDAuthAdministrators = SECURITY_NT_AUTHORITY;
  1102   if (!AllocateAndInitializeSid( &SIDAuthAdministrators, 2,
  1103            SECURITY_BUILTIN_DOMAIN_RID,
  1104            DOMAIN_ALIAS_RID_ADMINS,
  1105            0, 0, 0, 0, 0, 0, &administratorsSid)) {
  1107     if (PrintMiscellaneous && Verbose) {
  1108       warning("AllocateAndInitializeSid failure: "
  1109               "lasterror = %d \n", GetLastError());
  1111     return NULL;
  1114   // initialize the ace data for administrator group
  1115   aces[1].pSid = administratorsSid;
  1116   aces[1].mask = amask;
  1118   // get the well known SID for the universal Everybody
  1119   PSID everybodySid = NULL;
  1120   SID_IDENTIFIER_AUTHORITY SIDAuthEverybody = SECURITY_WORLD_SID_AUTHORITY;
  1122   if (!AllocateAndInitializeSid( &SIDAuthEverybody, 1, SECURITY_WORLD_RID,
  1123            0, 0, 0, 0, 0, 0, 0, &everybodySid)) {
  1125     if (PrintMiscellaneous && Verbose) {
  1126       warning("AllocateAndInitializeSid failure: "
  1127               "lasterror = %d \n", GetLastError());
  1129     return NULL;
  1132   // initialize the ace data for everybody else.
  1133   aces[2].pSid = everybodySid;
  1134   aces[2].mask = emask;
  1136   // create a security attributes structure with access control
  1137   // entries as initialized above.
  1138   LPSECURITY_ATTRIBUTES lpSA = make_security_attr(aces, 3);
  1139   FREE_C_HEAP_ARRAY(char, aces[0].pSid);
  1140   FreeSid(everybodySid);
  1141   FreeSid(administratorsSid);
  1142   return(lpSA);
  1146 // method to create the security attributes structure for restricting
  1147 // access to the user temporary directory.
  1148 //
  1149 // the caller must free the resources associated with the security
  1150 // attributes structure created by this method by calling the
  1151 // free_security_attr() method.
  1152 //
  1153 static LPSECURITY_ATTRIBUTES make_tmpdir_security_attr() {
  1155   // create full access rights for the user/owner of the directory
  1156   // and read-only access rights for everybody else. This is
  1157   // effectively equivalent to UNIX 755 permissions on a directory.
  1158   //
  1159   DWORD umask = STANDARD_RIGHTS_REQUIRED | FILE_ALL_ACCESS;
  1160   DWORD emask = GENERIC_READ | FILE_LIST_DIRECTORY | FILE_TRAVERSE;
  1161   DWORD amask = STANDARD_RIGHTS_ALL | FILE_ALL_ACCESS;
  1163   return make_user_everybody_admin_security_attr(umask, emask, amask);
  1166 // method to create the security attributes structure for restricting
  1167 // access to the shared memory backing store file.
  1168 //
  1169 // the caller must free the resources associated with the security
  1170 // attributes structure created by this method by calling the
  1171 // free_security_attr() method.
  1172 //
  1173 static LPSECURITY_ATTRIBUTES make_file_security_attr() {
  1175   // create extensive access rights for the user/owner of the file
  1176   // and attribute read-only access rights for everybody else. This
  1177   // is effectively equivalent to UNIX 600 permissions on a file.
  1178   //
  1179   DWORD umask = STANDARD_RIGHTS_ALL | FILE_ALL_ACCESS;
  1180   DWORD emask = STANDARD_RIGHTS_READ | FILE_READ_ATTRIBUTES |
  1181                  FILE_READ_EA | FILE_LIST_DIRECTORY | FILE_TRAVERSE;
  1182   DWORD amask = STANDARD_RIGHTS_ALL | FILE_ALL_ACCESS;
  1184   return make_user_everybody_admin_security_attr(umask, emask, amask);
  1187 // method to create the security attributes structure for restricting
  1188 // access to the name shared memory file mapping object.
  1189 //
  1190 // the caller must free the resources associated with the security
  1191 // attributes structure created by this method by calling the
  1192 // free_security_attr() method.
  1193 //
  1194 static LPSECURITY_ATTRIBUTES make_smo_security_attr() {
  1196   // create extensive access rights for the user/owner of the shared
  1197   // memory object and attribute read-only access rights for everybody
  1198   // else. This is effectively equivalent to UNIX 600 permissions on
  1199   // on the shared memory object.
  1200   //
  1201   DWORD umask = STANDARD_RIGHTS_REQUIRED | FILE_MAP_ALL_ACCESS;
  1202   DWORD emask = STANDARD_RIGHTS_READ; // attributes only
  1203   DWORD amask = STANDARD_RIGHTS_ALL | FILE_MAP_ALL_ACCESS;
  1205   return make_user_everybody_admin_security_attr(umask, emask, amask);
  1208 // make the user specific temporary directory
  1209 //
  1210 static bool make_user_tmp_dir(const char* dirname) {
  1213   LPSECURITY_ATTRIBUTES pDirSA = make_tmpdir_security_attr();
  1214   if (pDirSA == NULL) {
  1215     return false;
  1219   // create the directory with the given security attributes
  1220   if (!CreateDirectory(dirname, pDirSA)) {
  1221     DWORD lasterror = GetLastError();
  1222     if (lasterror == ERROR_ALREADY_EXISTS) {
  1223       // The directory already exists and was probably created by another
  1224       // JVM instance. However, this could also be the result of a
  1225       // deliberate symlink. Verify that the existing directory is safe.
  1226       //
  1227       if (!is_directory_secure(dirname)) {
  1228         // directory is not secure
  1229         if (PrintMiscellaneous && Verbose) {
  1230           warning("%s directory is insecure\n", dirname);
  1232         return false;
  1234       // The administrator should be able to delete this directory.
  1235       // But the directory created by previous version of JVM may not
  1236       // have permission for administrators to delete this directory.
  1237       // So add full permission to the administrator. Also setting new
  1238       // DACLs might fix the corrupted the DACLs.
  1239       SECURITY_INFORMATION secInfo = DACL_SECURITY_INFORMATION;
  1240       if (!SetFileSecurity(dirname, secInfo, pDirSA->lpSecurityDescriptor)) {
  1241         if (PrintMiscellaneous && Verbose) {
  1242           lasterror = GetLastError();
  1243           warning("SetFileSecurity failed for %s directory.  lasterror %d \n",
  1244                                                         dirname, lasterror);
  1248     else {
  1249       if (PrintMiscellaneous && Verbose) {
  1250         warning("CreateDirectory failed: %d\n", GetLastError());
  1252       return false;
  1256   // free the security attributes structure
  1257   free_security_attr(pDirSA);
  1259   return true;
  1262 // create the shared memory resources
  1263 //
  1264 // This function creates the shared memory resources. This includes
  1265 // the backing store file and the file mapping shared memory object.
  1266 //
  1267 static HANDLE create_sharedmem_resources(const char* dirname, const char* filename, const char* objectname, size_t size) {
  1269   HANDLE fh = INVALID_HANDLE_VALUE;
  1270   HANDLE fmh = NULL;
  1273   // create the security attributes for the backing store file
  1274   LPSECURITY_ATTRIBUTES lpFileSA = make_file_security_attr();
  1275   if (lpFileSA == NULL) {
  1276     return NULL;
  1279   // create the security attributes for the shared memory object
  1280   LPSECURITY_ATTRIBUTES lpSmoSA = make_smo_security_attr();
  1281   if (lpSmoSA == NULL) {
  1282     free_security_attr(lpFileSA);
  1283     return NULL;
  1286   // create the user temporary directory
  1287   if (!make_user_tmp_dir(dirname)) {
  1288     // could not make/find the directory or the found directory
  1289     // was not secure
  1290     return NULL;
  1293   // Create the file - the FILE_FLAG_DELETE_ON_CLOSE flag allows the
  1294   // file to be deleted by the last process that closes its handle to
  1295   // the file. This is important as the apis do not allow a terminating
  1296   // JVM being monitored by another process to remove the file name.
  1297   //
  1298   // the FILE_SHARE_DELETE share mode is valid only in winnt
  1299   //
  1300   fh = CreateFile(
  1301              filename,                   /* LPCTSTR file name */
  1303              GENERIC_READ|GENERIC_WRITE, /* DWORD desired access */
  1305              (os::win32::is_nt() ? FILE_SHARE_DELETE : 0)|
  1306              FILE_SHARE_READ,            /* DWORD share mode, future READONLY
  1307                                           * open operations allowed
  1308                                           */
  1309              lpFileSA,                   /* LPSECURITY security attributes */
  1310              CREATE_ALWAYS,              /* DWORD creation disposition
  1311                                           * create file, if it already
  1312                                           * exists, overwrite it.
  1313                                           */
  1314              FILE_FLAG_DELETE_ON_CLOSE,  /* DWORD flags and attributes */
  1316              NULL);                      /* HANDLE template file access */
  1318   free_security_attr(lpFileSA);
  1320   if (fh == INVALID_HANDLE_VALUE) {
  1321     DWORD lasterror = GetLastError();
  1322     if (PrintMiscellaneous && Verbose) {
  1323       warning("could not create file %s: %d\n", filename, lasterror);
  1325     return NULL;
  1328   // try to create the file mapping
  1329   fmh = create_file_mapping(objectname, fh, lpSmoSA, size);
  1331   free_security_attr(lpSmoSA);
  1333   if (fmh == NULL) {
  1334     // closing the file handle here will decrement the reference count
  1335     // on the file. When all processes accessing the file close their
  1336     // handle to it, the reference count will decrement to 0 and the
  1337     // OS will delete the file. These semantics are requested by the
  1338     // FILE_FLAG_DELETE_ON_CLOSE flag in CreateFile call above.
  1339     CloseHandle(fh);
  1340     fh = NULL;
  1341     return NULL;
  1344   // the file has been successfully created and the file mapping
  1345   // object has been created.
  1346   sharedmem_fileHandle = fh;
  1347   sharedmem_fileName = strdup(filename);
  1349   return fmh;
  1352 // open the shared memory object for the given vmid.
  1353 //
  1354 static HANDLE open_sharedmem_object(const char* objectname, DWORD ofm_access, TRAPS) {
  1356   HANDLE fmh;
  1358   // open the file mapping with the requested mode
  1359   fmh = OpenFileMapping(
  1360                ofm_access,       /* DWORD access mode */
  1361                FALSE,            /* BOOL inherit flag - Do not allow inherit */
  1362                objectname);      /* name for object */
  1364   if (fmh == NULL) {
  1365     if (PrintMiscellaneous && Verbose) {
  1366       warning("OpenFileMapping failed for shared memory object %s:"
  1367               " lasterror = %d\n", objectname, GetLastError());
  1369     THROW_MSG_(vmSymbols::java_lang_Exception(),
  1370                "Could not open PerfMemory", INVALID_HANDLE_VALUE);
  1373   return fmh;;
  1376 // create a named shared memory region
  1377 //
  1378 // On Win32, a named shared memory object has a name space that
  1379 // is independent of the file system name space. Shared memory object,
  1380 // or more precisely, file mapping objects, provide no mechanism to
  1381 // inquire the size of the memory region. There is also no api to
  1382 // enumerate the memory regions for various processes.
  1383 //
  1384 // This implementation utilizes the shared memory name space in parallel
  1385 // with the file system name space. This allows us to determine the
  1386 // size of the shared memory region from the size of the file and it
  1387 // allows us to provide a common, file system based name space for
  1388 // shared memory across platforms.
  1389 //
  1390 static char* mapping_create_shared(size_t size) {
  1392   void *mapAddress;
  1393   int vmid = os::current_process_id();
  1395   // get the name of the user associated with this process
  1396   char* user = get_user_name();
  1398   if (user == NULL) {
  1399     return NULL;
  1402   // construct the name of the user specific temporary directory
  1403   char* dirname = get_user_tmp_dir(user);
  1405   // check that the file system is secure - i.e. it supports ACLs.
  1406   if (!is_filesystem_secure(dirname)) {
  1407     return NULL;
  1410   // create the names of the backing store files and for the
  1411   // share memory object.
  1412   //
  1413   char* filename = get_sharedmem_filename(dirname, vmid);
  1414   char* objectname = get_sharedmem_objectname(user, vmid);
  1416   // cleanup any stale shared memory resources
  1417   cleanup_sharedmem_resources(dirname);
  1419   assert(((size != 0) && (size % os::vm_page_size() == 0)),
  1420          "unexpected PerfMemry region size");
  1422   FREE_C_HEAP_ARRAY(char, user);
  1424   // create the shared memory resources
  1425   sharedmem_fileMapHandle =
  1426                create_sharedmem_resources(dirname, filename, objectname, size);
  1428   FREE_C_HEAP_ARRAY(char, filename);
  1429   FREE_C_HEAP_ARRAY(char, objectname);
  1430   FREE_C_HEAP_ARRAY(char, dirname);
  1432   if (sharedmem_fileMapHandle == NULL) {
  1433     return NULL;
  1436   // map the file into the address space
  1437   mapAddress = MapViewOfFile(
  1438                    sharedmem_fileMapHandle, /* HANDLE = file mapping object */
  1439                    FILE_MAP_ALL_ACCESS,     /* DWORD access flags */
  1440                    0,                       /* DWORD High word of offset */
  1441                    0,                       /* DWORD Low word of offset */
  1442                    (DWORD)size);            /* DWORD Number of bytes to map */
  1444   if (mapAddress == NULL) {
  1445     if (PrintMiscellaneous && Verbose) {
  1446       warning("MapViewOfFile failed, lasterror = %d\n", GetLastError());
  1448     CloseHandle(sharedmem_fileMapHandle);
  1449     sharedmem_fileMapHandle = NULL;
  1450     return NULL;
  1453   // clear the shared memory region
  1454   (void)memset(mapAddress, '\0', size);
  1456   return (char*) mapAddress;
  1459 // this method deletes the file mapping object.
  1460 //
  1461 static void delete_file_mapping(char* addr, size_t size) {
  1463   // cleanup the persistent shared memory resources. since DestroyJavaVM does
  1464   // not support unloading of the JVM, unmapping of the memory resource is not
  1465   // performed. The memory will be reclaimed by the OS upon termination of all
  1466   // processes mapping the resource. The file mapping handle and the file
  1467   // handle are closed here to expedite the remove of the file by the OS. The
  1468   // file is not removed directly because it was created with
  1469   // FILE_FLAG_DELETE_ON_CLOSE semantics and any attempt to remove it would
  1470   // be unsuccessful.
  1472   // close the fileMapHandle. the file mapping will still be retained
  1473   // by the OS as long as any other JVM processes has an open file mapping
  1474   // handle or a mapped view of the file.
  1475   //
  1476   if (sharedmem_fileMapHandle != NULL) {
  1477     CloseHandle(sharedmem_fileMapHandle);
  1478     sharedmem_fileMapHandle = NULL;
  1481   // close the file handle. This will decrement the reference count on the
  1482   // backing store file. When the reference count decrements to 0, the OS
  1483   // will delete the file. These semantics apply because the file was
  1484   // created with the FILE_FLAG_DELETE_ON_CLOSE flag.
  1485   //
  1486   if (sharedmem_fileHandle != INVALID_HANDLE_VALUE) {
  1487     CloseHandle(sharedmem_fileHandle);
  1488     sharedmem_fileHandle = INVALID_HANDLE_VALUE;
  1492 // this method determines the size of the shared memory file
  1493 //
  1494 static size_t sharedmem_filesize(const char* filename, TRAPS) {
  1496   struct stat statbuf;
  1498   // get the file size
  1499   //
  1500   // on win95/98/me, _stat returns a file size of 0 bytes, but on
  1501   // winnt/2k the appropriate file size is returned. support for
  1502   // the sharable aspects of performance counters was abandonded
  1503   // on the non-nt win32 platforms due to this and other api
  1504   // inconsistencies
  1505   //
  1506   if (::stat(filename, &statbuf) == OS_ERR) {
  1507     if (PrintMiscellaneous && Verbose) {
  1508       warning("stat %s failed: %s\n", filename, strerror(errno));
  1510     THROW_MSG_0(vmSymbols::java_io_IOException(),
  1511                 "Could not determine PerfMemory size");
  1514   if ((statbuf.st_size == 0) || (statbuf.st_size % os::vm_page_size() != 0)) {
  1515     if (PrintMiscellaneous && Verbose) {
  1516       warning("unexpected file size: size = " SIZE_FORMAT "\n",
  1517               statbuf.st_size);
  1519     THROW_MSG_0(vmSymbols::java_lang_Exception(),
  1520                 "Invalid PerfMemory size");
  1523   return statbuf.st_size;
  1526 // this method opens a file mapping object and maps the object
  1527 // into the address space of the process
  1528 //
  1529 static void open_file_mapping(const char* user, int vmid,
  1530                               PerfMemory::PerfMemoryMode mode,
  1531                               char** addrp, size_t* sizep, TRAPS) {
  1533   ResourceMark rm;
  1535   void *mapAddress = 0;
  1536   size_t size;
  1537   HANDLE fmh;
  1538   DWORD ofm_access;
  1539   DWORD mv_access;
  1540   const char* luser = NULL;
  1542   if (mode == PerfMemory::PERF_MODE_RO) {
  1543     ofm_access = FILE_MAP_READ;
  1544     mv_access = FILE_MAP_READ;
  1546   else if (mode == PerfMemory::PERF_MODE_RW) {
  1547 #ifdef LATER
  1548     ofm_access = FILE_MAP_READ | FILE_MAP_WRITE;
  1549     mv_access = FILE_MAP_READ | FILE_MAP_WRITE;
  1550 #else
  1551     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
  1552               "Unsupported access mode");
  1553 #endif
  1555   else {
  1556     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
  1557               "Illegal access mode");
  1560   // if a user name wasn't specified, then find the user name for
  1561   // the owner of the target vm.
  1562   if (user == NULL || strlen(user) == 0) {
  1563     luser = get_user_name(vmid);
  1565   else {
  1566     luser = user;
  1569   if (luser == NULL) {
  1570     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
  1571               "Could not map vmid to user name");
  1574   // get the names for the resources for the target vm
  1575   char* dirname = get_user_tmp_dir(luser);
  1577   // since we don't follow symbolic links when creating the backing
  1578   // store file, we also don't following them when attaching
  1579   //
  1580   if (!is_directory_secure(dirname)) {
  1581     FREE_C_HEAP_ARRAY(char, dirname);
  1582     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
  1583               "Process not found");
  1586   char* filename = get_sharedmem_filename(dirname, vmid);
  1587   char* objectname = get_sharedmem_objectname(luser, vmid);
  1589   // copy heap memory to resource memory. the objectname and
  1590   // filename are passed to methods that may throw exceptions.
  1591   // using resource arrays for these names prevents the leaks
  1592   // that would otherwise occur.
  1593   //
  1594   char* rfilename = NEW_RESOURCE_ARRAY(char, strlen(filename) + 1);
  1595   char* robjectname = NEW_RESOURCE_ARRAY(char, strlen(objectname) + 1);
  1596   strcpy(rfilename, filename);
  1597   strcpy(robjectname, objectname);
  1599   // free the c heap resources that are no longer needed
  1600   if (luser != user) FREE_C_HEAP_ARRAY(char, luser);
  1601   FREE_C_HEAP_ARRAY(char, dirname);
  1602   FREE_C_HEAP_ARRAY(char, filename);
  1603   FREE_C_HEAP_ARRAY(char, objectname);
  1605   if (*sizep == 0) {
  1606     size = sharedmem_filesize(rfilename, CHECK);
  1607     assert(size != 0, "unexpected size");
  1610   // Open the file mapping object with the given name
  1611   fmh = open_sharedmem_object(robjectname, ofm_access, CHECK);
  1613   assert(fmh != INVALID_HANDLE_VALUE, "unexpected handle value");
  1615   // map the entire file into the address space
  1616   mapAddress = MapViewOfFile(
  1617                  fmh,             /* HANDLE Handle of file mapping object */
  1618                  mv_access,       /* DWORD access flags */
  1619                  0,               /* DWORD High word of offset */
  1620                  0,               /* DWORD Low word of offset */
  1621                  size);           /* DWORD Number of bytes to map */
  1623   if (mapAddress == NULL) {
  1624     if (PrintMiscellaneous && Verbose) {
  1625       warning("MapViewOfFile failed, lasterror = %d\n", GetLastError());
  1627     CloseHandle(fmh);
  1628     THROW_MSG(vmSymbols::java_lang_OutOfMemoryError(),
  1629               "Could not map PerfMemory");
  1632   *addrp = (char*)mapAddress;
  1633   *sizep = size;
  1635   // File mapping object can be closed at this time without
  1636   // invalidating the mapped view of the file
  1637   CloseHandle(fmh);
  1639   if (PerfTraceMemOps) {
  1640     tty->print("mapped " SIZE_FORMAT " bytes for vmid %d at "
  1641                INTPTR_FORMAT "\n", size, vmid, mapAddress);
  1645 // this method unmaps the the mapped view of the the
  1646 // file mapping object.
  1647 //
  1648 static void remove_file_mapping(char* addr) {
  1650   // the file mapping object was closed in open_file_mapping()
  1651   // after the file map view was created. We only need to
  1652   // unmap the file view here.
  1653   UnmapViewOfFile(addr);
  1656 // create the PerfData memory region in shared memory.
  1657 static char* create_shared_memory(size_t size) {
  1659   return mapping_create_shared(size);
  1662 // release a named, shared memory region
  1663 //
  1664 void delete_shared_memory(char* addr, size_t size) {
  1666   delete_file_mapping(addr, size);
  1672 // create the PerfData memory region
  1673 //
  1674 // This method creates the memory region used to store performance
  1675 // data for the JVM. The memory may be created in standard or
  1676 // shared memory.
  1677 //
  1678 void PerfMemory::create_memory_region(size_t size) {
  1680   if (PerfDisableSharedMem || !os::win32::is_nt()) {
  1681     // do not share the memory for the performance data.
  1682     PerfDisableSharedMem = true;
  1683     _start = create_standard_memory(size);
  1685   else {
  1686     _start = create_shared_memory(size);
  1687     if (_start == NULL) {
  1689       // creation of the shared memory region failed, attempt
  1690       // to create a contiguous, non-shared memory region instead.
  1691       //
  1692       if (PrintMiscellaneous && Verbose) {
  1693         warning("Reverting to non-shared PerfMemory region.\n");
  1695       PerfDisableSharedMem = true;
  1696       _start = create_standard_memory(size);
  1700   if (_start != NULL) _capacity = size;
  1704 // delete the PerfData memory region
  1705 //
  1706 // This method deletes the memory region used to store performance
  1707 // data for the JVM. The memory region indicated by the <address, size>
  1708 // tuple will be inaccessible after a call to this method.
  1709 //
  1710 void PerfMemory::delete_memory_region() {
  1712   assert((start() != NULL && capacity() > 0), "verify proper state");
  1714   // If user specifies PerfDataSaveFile, it will save the performance data
  1715   // to the specified file name no matter whether PerfDataSaveToFile is specified
  1716   // or not. In other word, -XX:PerfDataSaveFile=.. overrides flag
  1717   // -XX:+PerfDataSaveToFile.
  1718   if (PerfDataSaveToFile || PerfDataSaveFile != NULL) {
  1719     save_memory_to_file(start(), capacity());
  1722   if (PerfDisableSharedMem) {
  1723     delete_standard_memory(start(), capacity());
  1725   else {
  1726     delete_shared_memory(start(), capacity());
  1730 // attach to the PerfData memory region for another JVM
  1731 //
  1732 // This method returns an <address, size> tuple that points to
  1733 // a memory buffer that is kept reasonably synchronized with
  1734 // the PerfData memory region for the indicated JVM. This
  1735 // buffer may be kept in synchronization via shared memory
  1736 // or some other mechanism that keeps the buffer updated.
  1737 //
  1738 // If the JVM chooses not to support the attachability feature,
  1739 // this method should throw an UnsupportedOperation exception.
  1740 //
  1741 // This implementation utilizes named shared memory to map
  1742 // the indicated process's PerfData memory region into this JVMs
  1743 // address space.
  1744 //
  1745 void PerfMemory::attach(const char* user, int vmid, PerfMemoryMode mode,
  1746                         char** addrp, size_t* sizep, TRAPS) {
  1748   if (vmid == 0 || vmid == os::current_process_id()) {
  1749      *addrp = start();
  1750      *sizep = capacity();
  1751      return;
  1754   open_file_mapping(user, vmid, mode, addrp, sizep, CHECK);
  1757 // detach from the PerfData memory region of another JVM
  1758 //
  1759 // This method detaches the PerfData memory region of another
  1760 // JVM, specified as an <address, size> tuple of a buffer
  1761 // in this process's address space. This method may perform
  1762 // arbitrary actions to accomplish the detachment. The memory
  1763 // region specified by <address, size> will be inaccessible after
  1764 // a call to this method.
  1765 //
  1766 // If the JVM chooses not to support the attachability feature,
  1767 // this method should throw an UnsupportedOperation exception.
  1768 //
  1769 // This implementation utilizes named shared memory to detach
  1770 // the indicated process's PerfData memory region from this
  1771 // process's address space.
  1772 //
  1773 void PerfMemory::detach(char* addr, size_t bytes, TRAPS) {
  1775   assert(addr != 0, "address sanity check");
  1776   assert(bytes > 0, "capacity sanity check");
  1778   if (PerfMemory::contains(addr) || PerfMemory::contains(addr + bytes - 1)) {
  1779     // prevent accidental detachment of this process's PerfMemory region
  1780     return;
  1783   remove_file_mapping(addr);
  1786 char* PerfMemory::backing_store_filename() {
  1787   return sharedmem_fileName;

mercurial