src/share/vm/gc_interface/collectedHeap.hpp

Wed, 01 Feb 2012 07:59:01 -0800

author
never
date
Wed, 01 Feb 2012 07:59:01 -0800
changeset 3499
aa3d708d67c4
parent 3357
441e946dc1af
child 3668
cc74fa5a91a9
permissions
-rw-r--r--

7141200: log some interesting information in ring buffers for crashes
Reviewed-by: kvn, jrose, kevinw, brutisso, twisti, jmasa

     1 /*
     2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_INTERFACE_COLLECTEDHEAP_HPP
    26 #define SHARE_VM_GC_INTERFACE_COLLECTEDHEAP_HPP
    28 #include "gc_interface/gcCause.hpp"
    29 #include "memory/allocation.hpp"
    30 #include "memory/barrierSet.hpp"
    31 #include "runtime/handles.hpp"
    32 #include "runtime/perfData.hpp"
    33 #include "runtime/safepoint.hpp"
    34 #include "utilities/events.hpp"
    36 // A "CollectedHeap" is an implementation of a java heap for HotSpot.  This
    37 // is an abstract class: there may be many different kinds of heaps.  This
    38 // class defines the functions that a heap must implement, and contains
    39 // infrastructure common to all heaps.
    41 class BarrierSet;
    42 class ThreadClosure;
    43 class AdaptiveSizePolicy;
    44 class Thread;
    45 class CollectorPolicy;
    47 class GCMessage : public FormatBuffer<1024> {
    48  public:
    49   bool is_before;
    51  public:
    52   GCMessage() {}
    53 };
    55 class GCHeapLog : public EventLogBase<GCMessage> {
    56  private:
    57   void log_heap(bool before);
    59  public:
    60   GCHeapLog() : EventLogBase<GCMessage>("GC Heap History") {}
    62   void log_heap_before() {
    63     log_heap(true);
    64   }
    65   void log_heap_after() {
    66     log_heap(false);
    67   }
    68 };
    70 //
    71 // CollectedHeap
    72 //   SharedHeap
    73 //     GenCollectedHeap
    74 //     G1CollectedHeap
    75 //   ParallelScavengeHeap
    76 //
    77 class CollectedHeap : public CHeapObj {
    78   friend class VMStructs;
    79   friend class IsGCActiveMark; // Block structured external access to _is_gc_active
    80   friend class constantPoolCacheKlass; // allocate() method inserts is_conc_safe
    82 #ifdef ASSERT
    83   static int       _fire_out_of_memory_count;
    84 #endif
    86   // Used for filler objects (static, but initialized in ctor).
    87   static size_t _filler_array_max_size;
    89   GCHeapLog* _gc_heap_log;
    91   // Used in support of ReduceInitialCardMarks; only consulted if COMPILER2 is being used
    92   bool _defer_initial_card_mark;
    94  protected:
    95   MemRegion _reserved;
    96   BarrierSet* _barrier_set;
    97   bool _is_gc_active;
    98   uint _n_par_threads;
   100   unsigned int _total_collections;          // ... started
   101   unsigned int _total_full_collections;     // ... started
   102   NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;)
   103   NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;)
   105   // Reason for current garbage collection.  Should be set to
   106   // a value reflecting no collection between collections.
   107   GCCause::Cause _gc_cause;
   108   GCCause::Cause _gc_lastcause;
   109   PerfStringVariable* _perf_gc_cause;
   110   PerfStringVariable* _perf_gc_lastcause;
   112   // Constructor
   113   CollectedHeap();
   115   // Do common initializations that must follow instance construction,
   116   // for example, those needing virtual calls.
   117   // This code could perhaps be moved into initialize() but would
   118   // be slightly more awkward because we want the latter to be a
   119   // pure virtual.
   120   void pre_initialize();
   122   // Create a new tlab. All TLAB allocations must go through this.
   123   virtual HeapWord* allocate_new_tlab(size_t size);
   125   // Accumulate statistics on all tlabs.
   126   virtual void accumulate_statistics_all_tlabs();
   128   // Reinitialize tlabs before resuming mutators.
   129   virtual void resize_all_tlabs();
   131  protected:
   132   // Allocate from the current thread's TLAB, with broken-out slow path.
   133   inline static HeapWord* allocate_from_tlab(Thread* thread, size_t size);
   134   static HeapWord* allocate_from_tlab_slow(Thread* thread, size_t size);
   136   // Allocate an uninitialized block of the given size, or returns NULL if
   137   // this is impossible.
   138   inline static HeapWord* common_mem_allocate_noinit(size_t size, TRAPS);
   140   // Like allocate_init, but the block returned by a successful allocation
   141   // is guaranteed initialized to zeros.
   142   inline static HeapWord* common_mem_allocate_init(size_t size, TRAPS);
   144   // Same as common_mem version, except memory is allocated in the permanent area
   145   // If there is no permanent area, revert to common_mem_allocate_noinit
   146   inline static HeapWord* common_permanent_mem_allocate_noinit(size_t size, TRAPS);
   148   // Same as common_mem version, except memory is allocated in the permanent area
   149   // If there is no permanent area, revert to common_mem_allocate_init
   150   inline static HeapWord* common_permanent_mem_allocate_init(size_t size, TRAPS);
   152   // Helper functions for (VM) allocation.
   153   inline static void post_allocation_setup_common(KlassHandle klass,
   154                                                   HeapWord* obj, size_t size);
   155   inline static void post_allocation_setup_no_klass_install(KlassHandle klass,
   156                                                             HeapWord* objPtr,
   157                                                             size_t size);
   159   inline static void post_allocation_setup_obj(KlassHandle klass,
   160                                                HeapWord* obj, size_t size);
   162   inline static void post_allocation_setup_array(KlassHandle klass,
   163                                                  HeapWord* obj, size_t size,
   164                                                  int length);
   166   // Clears an allocated object.
   167   inline static void init_obj(HeapWord* obj, size_t size);
   169   // Filler object utilities.
   170   static inline size_t filler_array_hdr_size();
   171   static inline size_t filler_array_min_size();
   172   static inline size_t filler_array_max_size();
   174   DEBUG_ONLY(static void fill_args_check(HeapWord* start, size_t words);)
   175   DEBUG_ONLY(static void zap_filler_array(HeapWord* start, size_t words, bool zap = true);)
   177   // Fill with a single array; caller must ensure filler_array_min_size() <=
   178   // words <= filler_array_max_size().
   179   static inline void fill_with_array(HeapWord* start, size_t words, bool zap = true);
   181   // Fill with a single object (either an int array or a java.lang.Object).
   182   static inline void fill_with_object_impl(HeapWord* start, size_t words, bool zap = true);
   184   // Verification functions
   185   virtual void check_for_bad_heap_word_value(HeapWord* addr, size_t size)
   186     PRODUCT_RETURN;
   187   virtual void check_for_non_bad_heap_word_value(HeapWord* addr, size_t size)
   188     PRODUCT_RETURN;
   189   debug_only(static void check_for_valid_allocation_state();)
   191  public:
   192   enum Name {
   193     Abstract,
   194     SharedHeap,
   195     GenCollectedHeap,
   196     ParallelScavengeHeap,
   197     G1CollectedHeap
   198   };
   200   virtual CollectedHeap::Name kind() const { return CollectedHeap::Abstract; }
   202   /**
   203    * Returns JNI error code JNI_ENOMEM if memory could not be allocated,
   204    * and JNI_OK on success.
   205    */
   206   virtual jint initialize() = 0;
   208   // In many heaps, there will be a need to perform some initialization activities
   209   // after the Universe is fully formed, but before general heap allocation is allowed.
   210   // This is the correct place to place such initialization methods.
   211   virtual void post_initialize() = 0;
   213   MemRegion reserved_region() const { return _reserved; }
   214   address base() const { return (address)reserved_region().start(); }
   216   // Future cleanup here. The following functions should specify bytes or
   217   // heapwords as part of their signature.
   218   virtual size_t capacity() const = 0;
   219   virtual size_t used() const = 0;
   221   // Return "true" if the part of the heap that allocates Java
   222   // objects has reached the maximal committed limit that it can
   223   // reach, without a garbage collection.
   224   virtual bool is_maximal_no_gc() const = 0;
   226   virtual size_t permanent_capacity() const = 0;
   227   virtual size_t permanent_used() const = 0;
   229   // Support for java.lang.Runtime.maxMemory():  return the maximum amount of
   230   // memory that the vm could make available for storing 'normal' java objects.
   231   // This is based on the reserved address space, but should not include space
   232   // that the vm uses internally for bookkeeping or temporary storage (e.g.,
   233   // perm gen space or, in the case of the young gen, one of the survivor
   234   // spaces).
   235   virtual size_t max_capacity() const = 0;
   237   // Returns "TRUE" if "p" points into the reserved area of the heap.
   238   bool is_in_reserved(const void* p) const {
   239     return _reserved.contains(p);
   240   }
   242   bool is_in_reserved_or_null(const void* p) const {
   243     return p == NULL || is_in_reserved(p);
   244   }
   246   // Returns "TRUE" iff "p" points into the committed areas of the heap.
   247   // Since this method can be expensive in general, we restrict its
   248   // use to assertion checking only.
   249   virtual bool is_in(const void* p) const = 0;
   251   bool is_in_or_null(const void* p) const {
   252     return p == NULL || is_in(p);
   253   }
   255   // Let's define some terms: a "closed" subset of a heap is one that
   256   //
   257   // 1) contains all currently-allocated objects, and
   258   //
   259   // 2) is closed under reference: no object in the closed subset
   260   //    references one outside the closed subset.
   261   //
   262   // Membership in a heap's closed subset is useful for assertions.
   263   // Clearly, the entire heap is a closed subset, so the default
   264   // implementation is to use "is_in_reserved".  But this may not be too
   265   // liberal to perform useful checking.  Also, the "is_in" predicate
   266   // defines a closed subset, but may be too expensive, since "is_in"
   267   // verifies that its argument points to an object head.  The
   268   // "closed_subset" method allows a heap to define an intermediate
   269   // predicate, allowing more precise checking than "is_in_reserved" at
   270   // lower cost than "is_in."
   272   // One important case is a heap composed of disjoint contiguous spaces,
   273   // such as the Garbage-First collector.  Such heaps have a convenient
   274   // closed subset consisting of the allocated portions of those
   275   // contiguous spaces.
   277   // Return "TRUE" iff the given pointer points into the heap's defined
   278   // closed subset (which defaults to the entire heap).
   279   virtual bool is_in_closed_subset(const void* p) const {
   280     return is_in_reserved(p);
   281   }
   283   bool is_in_closed_subset_or_null(const void* p) const {
   284     return p == NULL || is_in_closed_subset(p);
   285   }
   287   // XXX is_permanent() and is_in_permanent() should be better named
   288   // to distinguish one from the other.
   290   // Returns "TRUE" if "p" is allocated as "permanent" data.
   291   // If the heap does not use "permanent" data, returns the same
   292   // value is_in_reserved() would return.
   293   // NOTE: this actually returns true if "p" is in reserved space
   294   // for the space not that it is actually allocated (i.e. in committed
   295   // space). If you need the more conservative answer use is_permanent().
   296   virtual bool is_in_permanent(const void *p) const = 0;
   299 #ifdef ASSERT
   300   // Returns true if "p" is in the part of the
   301   // heap being collected.
   302   virtual bool is_in_partial_collection(const void *p) = 0;
   303 #endif
   305   bool is_in_permanent_or_null(const void *p) const {
   306     return p == NULL || is_in_permanent(p);
   307   }
   309   // Returns "TRUE" if "p" is in the committed area of  "permanent" data.
   310   // If the heap does not use "permanent" data, returns the same
   311   // value is_in() would return.
   312   virtual bool is_permanent(const void *p) const = 0;
   314   bool is_permanent_or_null(const void *p) const {
   315     return p == NULL || is_permanent(p);
   316   }
   318   // An object is scavengable if its location may move during a scavenge.
   319   // (A scavenge is a GC which is not a full GC.)
   320   virtual bool is_scavengable(const void *p) = 0;
   322   // Returns "TRUE" if "p" is a method oop in the
   323   // current heap, with high probability. This predicate
   324   // is not stable, in general.
   325   bool is_valid_method(oop p) const;
   327   void set_gc_cause(GCCause::Cause v) {
   328      if (UsePerfData) {
   329        _gc_lastcause = _gc_cause;
   330        _perf_gc_lastcause->set_value(GCCause::to_string(_gc_lastcause));
   331        _perf_gc_cause->set_value(GCCause::to_string(v));
   332      }
   333     _gc_cause = v;
   334   }
   335   GCCause::Cause gc_cause() { return _gc_cause; }
   337   // Number of threads currently working on GC tasks.
   338   uint n_par_threads() { return _n_par_threads; }
   340   // May be overridden to set additional parallelism.
   341   virtual void set_par_threads(uint t) { _n_par_threads = t; };
   343   // Preload classes into the shared portion of the heap, and then dump
   344   // that data to a file so that it can be loaded directly by another
   345   // VM (then terminate).
   346   virtual void preload_and_dump(TRAPS) { ShouldNotReachHere(); }
   348   // Allocate and initialize instances of Class
   349   static oop Class_obj_allocate(KlassHandle klass, int size, KlassHandle real_klass, TRAPS);
   351   // General obj/array allocation facilities.
   352   inline static oop obj_allocate(KlassHandle klass, int size, TRAPS);
   353   inline static oop array_allocate(KlassHandle klass, int size, int length, TRAPS);
   354   inline static oop array_allocate_nozero(KlassHandle klass, int size, int length, TRAPS);
   356   // Special obj/array allocation facilities.
   357   // Some heaps may want to manage "permanent" data uniquely. These default
   358   // to the general routines if the heap does not support such handling.
   359   inline static oop permanent_obj_allocate(KlassHandle klass, int size, TRAPS);
   360   // permanent_obj_allocate_no_klass_install() does not do the installation of
   361   // the klass pointer in the newly created object (as permanent_obj_allocate()
   362   // above does).  This allows for a delay in the installation of the klass
   363   // pointer that is needed during the create of klassKlass's.  The
   364   // method post_allocation_install_obj_klass() is used to install the
   365   // klass pointer.
   366   inline static oop permanent_obj_allocate_no_klass_install(KlassHandle klass,
   367                                                             int size,
   368                                                             TRAPS);
   369   inline static void post_allocation_install_obj_klass(KlassHandle klass,
   370                                                        oop obj,
   371                                                        int size);
   372   inline static oop permanent_array_allocate(KlassHandle klass, int size, int length, TRAPS);
   374   // Raw memory allocation facilities
   375   // The obj and array allocate methods are covers for these methods.
   376   // The permanent allocation method should default to mem_allocate if
   377   // permanent memory isn't supported. mem_allocate() should never be
   378   // called to allocate TLABs, only individual objects.
   379   virtual HeapWord* mem_allocate(size_t size,
   380                                  bool* gc_overhead_limit_was_exceeded) = 0;
   381   virtual HeapWord* permanent_mem_allocate(size_t size) = 0;
   383   // Utilities for turning raw memory into filler objects.
   384   //
   385   // min_fill_size() is the smallest region that can be filled.
   386   // fill_with_objects() can fill arbitrary-sized regions of the heap using
   387   // multiple objects.  fill_with_object() is for regions known to be smaller
   388   // than the largest array of integers; it uses a single object to fill the
   389   // region and has slightly less overhead.
   390   static size_t min_fill_size() {
   391     return size_t(align_object_size(oopDesc::header_size()));
   392   }
   394   static void fill_with_objects(HeapWord* start, size_t words, bool zap = true);
   396   static void fill_with_object(HeapWord* start, size_t words, bool zap = true);
   397   static void fill_with_object(MemRegion region, bool zap = true) {
   398     fill_with_object(region.start(), region.word_size(), zap);
   399   }
   400   static void fill_with_object(HeapWord* start, HeapWord* end, bool zap = true) {
   401     fill_with_object(start, pointer_delta(end, start), zap);
   402   }
   404   // Some heaps may offer a contiguous region for shared non-blocking
   405   // allocation, via inlined code (by exporting the address of the top and
   406   // end fields defining the extent of the contiguous allocation region.)
   408   // This function returns "true" iff the heap supports this kind of
   409   // allocation.  (Default is "no".)
   410   virtual bool supports_inline_contig_alloc() const {
   411     return false;
   412   }
   413   // These functions return the addresses of the fields that define the
   414   // boundaries of the contiguous allocation area.  (These fields should be
   415   // physically near to one another.)
   416   virtual HeapWord** top_addr() const {
   417     guarantee(false, "inline contiguous allocation not supported");
   418     return NULL;
   419   }
   420   virtual HeapWord** end_addr() const {
   421     guarantee(false, "inline contiguous allocation not supported");
   422     return NULL;
   423   }
   425   // Some heaps may be in an unparseable state at certain times between
   426   // collections. This may be necessary for efficient implementation of
   427   // certain allocation-related activities. Calling this function before
   428   // attempting to parse a heap ensures that the heap is in a parsable
   429   // state (provided other concurrent activity does not introduce
   430   // unparsability). It is normally expected, therefore, that this
   431   // method is invoked with the world stopped.
   432   // NOTE: if you override this method, make sure you call
   433   // super::ensure_parsability so that the non-generational
   434   // part of the work gets done. See implementation of
   435   // CollectedHeap::ensure_parsability and, for instance,
   436   // that of GenCollectedHeap::ensure_parsability().
   437   // The argument "retire_tlabs" controls whether existing TLABs
   438   // are merely filled or also retired, thus preventing further
   439   // allocation from them and necessitating allocation of new TLABs.
   440   virtual void ensure_parsability(bool retire_tlabs);
   442   // Return an estimate of the maximum allocation that could be performed
   443   // without triggering any collection or expansion activity.  In a
   444   // generational collector, for example, this is probably the largest
   445   // allocation that could be supported (without expansion) in the youngest
   446   // generation.  It is "unsafe" because no locks are taken; the result
   447   // should be treated as an approximation, not a guarantee, for use in
   448   // heuristic resizing decisions.
   449   virtual size_t unsafe_max_alloc() = 0;
   451   // Section on thread-local allocation buffers (TLABs)
   452   // If the heap supports thread-local allocation buffers, it should override
   453   // the following methods:
   454   // Returns "true" iff the heap supports thread-local allocation buffers.
   455   // The default is "no".
   456   virtual bool supports_tlab_allocation() const {
   457     return false;
   458   }
   459   // The amount of space available for thread-local allocation buffers.
   460   virtual size_t tlab_capacity(Thread *thr) const {
   461     guarantee(false, "thread-local allocation buffers not supported");
   462     return 0;
   463   }
   464   // An estimate of the maximum allocation that could be performed
   465   // for thread-local allocation buffers without triggering any
   466   // collection or expansion activity.
   467   virtual size_t unsafe_max_tlab_alloc(Thread *thr) const {
   468     guarantee(false, "thread-local allocation buffers not supported");
   469     return 0;
   470   }
   472   // Can a compiler initialize a new object without store barriers?
   473   // This permission only extends from the creation of a new object
   474   // via a TLAB up to the first subsequent safepoint. If such permission
   475   // is granted for this heap type, the compiler promises to call
   476   // defer_store_barrier() below on any slow path allocation of
   477   // a new object for which such initializing store barriers will
   478   // have been elided.
   479   virtual bool can_elide_tlab_store_barriers() const = 0;
   481   // If a compiler is eliding store barriers for TLAB-allocated objects,
   482   // there is probably a corresponding slow path which can produce
   483   // an object allocated anywhere.  The compiler's runtime support
   484   // promises to call this function on such a slow-path-allocated
   485   // object before performing initializations that have elided
   486   // store barriers. Returns new_obj, or maybe a safer copy thereof.
   487   virtual oop new_store_pre_barrier(JavaThread* thread, oop new_obj);
   489   // Answers whether an initializing store to a new object currently
   490   // allocated at the given address doesn't need a store
   491   // barrier. Returns "true" if it doesn't need an initializing
   492   // store barrier; answers "false" if it does.
   493   virtual bool can_elide_initializing_store_barrier(oop new_obj) = 0;
   495   // If a compiler is eliding store barriers for TLAB-allocated objects,
   496   // we will be informed of a slow-path allocation by a call
   497   // to new_store_pre_barrier() above. Such a call precedes the
   498   // initialization of the object itself, and no post-store-barriers will
   499   // be issued. Some heap types require that the barrier strictly follows
   500   // the initializing stores. (This is currently implemented by deferring the
   501   // barrier until the next slow-path allocation or gc-related safepoint.)
   502   // This interface answers whether a particular heap type needs the card
   503   // mark to be thus strictly sequenced after the stores.
   504   virtual bool card_mark_must_follow_store() const = 0;
   506   // If the CollectedHeap was asked to defer a store barrier above,
   507   // this informs it to flush such a deferred store barrier to the
   508   // remembered set.
   509   virtual void flush_deferred_store_barrier(JavaThread* thread);
   511   // Can a compiler elide a store barrier when it writes
   512   // a permanent oop into the heap?  Applies when the compiler
   513   // is storing x to the heap, where x->is_perm() is true.
   514   virtual bool can_elide_permanent_oop_store_barriers() const = 0;
   516   // Does this heap support heap inspection (+PrintClassHistogram?)
   517   virtual bool supports_heap_inspection() const = 0;
   519   // Perform a collection of the heap; intended for use in implementing
   520   // "System.gc".  This probably implies as full a collection as the
   521   // "CollectedHeap" supports.
   522   virtual void collect(GCCause::Cause cause) = 0;
   524   // This interface assumes that it's being called by the
   525   // vm thread. It collects the heap assuming that the
   526   // heap lock is already held and that we are executing in
   527   // the context of the vm thread.
   528   virtual void collect_as_vm_thread(GCCause::Cause cause) = 0;
   530   // Returns the barrier set for this heap
   531   BarrierSet* barrier_set() { return _barrier_set; }
   533   // Returns "true" iff there is a stop-world GC in progress.  (I assume
   534   // that it should answer "false" for the concurrent part of a concurrent
   535   // collector -- dld).
   536   bool is_gc_active() const { return _is_gc_active; }
   538   // Total number of GC collections (started)
   539   unsigned int total_collections() const { return _total_collections; }
   540   unsigned int total_full_collections() const { return _total_full_collections;}
   542   // Increment total number of GC collections (started)
   543   // Should be protected but used by PSMarkSweep - cleanup for 1.4.2
   544   void increment_total_collections(bool full = false) {
   545     _total_collections++;
   546     if (full) {
   547       increment_total_full_collections();
   548     }
   549   }
   551   void increment_total_full_collections() { _total_full_collections++; }
   553   // Return the AdaptiveSizePolicy for the heap.
   554   virtual AdaptiveSizePolicy* size_policy() = 0;
   556   // Return the CollectorPolicy for the heap
   557   virtual CollectorPolicy* collector_policy() const = 0;
   559   // Iterate over all the ref-containing fields of all objects, calling
   560   // "cl.do_oop" on each. This includes objects in permanent memory.
   561   virtual void oop_iterate(OopClosure* cl) = 0;
   563   // Iterate over all objects, calling "cl.do_object" on each.
   564   // This includes objects in permanent memory.
   565   virtual void object_iterate(ObjectClosure* cl) = 0;
   567   // Similar to object_iterate() except iterates only
   568   // over live objects.
   569   virtual void safe_object_iterate(ObjectClosure* cl) = 0;
   571   // Behaves the same as oop_iterate, except only traverses
   572   // interior pointers contained in permanent memory. If there
   573   // is no permanent memory, does nothing.
   574   virtual void permanent_oop_iterate(OopClosure* cl) = 0;
   576   // Behaves the same as object_iterate, except only traverses
   577   // object contained in permanent memory. If there is no
   578   // permanent memory, does nothing.
   579   virtual void permanent_object_iterate(ObjectClosure* cl) = 0;
   581   // NOTE! There is no requirement that a collector implement these
   582   // functions.
   583   //
   584   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
   585   // each address in the (reserved) heap is a member of exactly
   586   // one block.  The defining characteristic of a block is that it is
   587   // possible to find its size, and thus to progress forward to the next
   588   // block.  (Blocks may be of different sizes.)  Thus, blocks may
   589   // represent Java objects, or they might be free blocks in a
   590   // free-list-based heap (or subheap), as long as the two kinds are
   591   // distinguishable and the size of each is determinable.
   593   // Returns the address of the start of the "block" that contains the
   594   // address "addr".  We say "blocks" instead of "object" since some heaps
   595   // may not pack objects densely; a chunk may either be an object or a
   596   // non-object.
   597   virtual HeapWord* block_start(const void* addr) const = 0;
   599   // Requires "addr" to be the start of a chunk, and returns its size.
   600   // "addr + size" is required to be the start of a new chunk, or the end
   601   // of the active area of the heap.
   602   virtual size_t block_size(const HeapWord* addr) const = 0;
   604   // Requires "addr" to be the start of a block, and returns "TRUE" iff
   605   // the block is an object.
   606   virtual bool block_is_obj(const HeapWord* addr) const = 0;
   608   // Returns the longest time (in ms) that has elapsed since the last
   609   // time that any part of the heap was examined by a garbage collection.
   610   virtual jlong millis_since_last_gc() = 0;
   612   // Perform any cleanup actions necessary before allowing a verification.
   613   virtual void prepare_for_verify() = 0;
   615   // Generate any dumps preceding or following a full gc
   616   void pre_full_gc_dump();
   617   void post_full_gc_dump();
   619   // Print heap information on the given outputStream.
   620   virtual void print_on(outputStream* st) const = 0;
   621   // The default behavior is to call print_on() on tty.
   622   virtual void print() const {
   623     print_on(tty);
   624   }
   625   // Print more detailed heap information on the given
   626   // outputStream. The default behaviour is to call print_on(). It is
   627   // up to each subclass to override it and add any additional output
   628   // it needs.
   629   virtual void print_extended_on(outputStream* st) const {
   630     print_on(st);
   631   }
   633   // Print all GC threads (other than the VM thread)
   634   // used by this heap.
   635   virtual void print_gc_threads_on(outputStream* st) const = 0;
   636   // The default behavior is to call print_gc_threads_on() on tty.
   637   void print_gc_threads() {
   638     print_gc_threads_on(tty);
   639   }
   640   // Iterator for all GC threads (other than VM thread)
   641   virtual void gc_threads_do(ThreadClosure* tc) const = 0;
   643   // Print any relevant tracing info that flags imply.
   644   // Default implementation does nothing.
   645   virtual void print_tracing_info() const = 0;
   647   // If PrintHeapAtGC is set call the appropriate routi
   648   void print_heap_before_gc() {
   649     if (PrintHeapAtGC) {
   650       Universe::print_heap_before_gc();
   651     }
   652     if (_gc_heap_log != NULL) {
   653       _gc_heap_log->log_heap_before();
   654     }
   655   }
   656   void print_heap_after_gc() {
   657     if (PrintHeapAtGC) {
   658       Universe::print_heap_after_gc();
   659     }
   660     if (_gc_heap_log != NULL) {
   661       _gc_heap_log->log_heap_after();
   662     }
   663   }
   665   // Allocate GCHeapLog during VM startup
   666   static void initialize_heap_log();
   668   // Heap verification
   669   virtual void verify(bool allow_dirty, bool silent, VerifyOption option) = 0;
   671   // Non product verification and debugging.
   672 #ifndef PRODUCT
   673   // Support for PromotionFailureALot.  Return true if it's time to cause a
   674   // promotion failure.  The no-argument version uses
   675   // this->_promotion_failure_alot_count as the counter.
   676   inline bool promotion_should_fail(volatile size_t* count);
   677   inline bool promotion_should_fail();
   679   // Reset the PromotionFailureALot counters.  Should be called at the end of a
   680   // GC in which promotion failure ocurred.
   681   inline void reset_promotion_should_fail(volatile size_t* count);
   682   inline void reset_promotion_should_fail();
   683 #endif  // #ifndef PRODUCT
   685 #ifdef ASSERT
   686   static int fired_fake_oom() {
   687     return (CIFireOOMAt > 1 && _fire_out_of_memory_count >= CIFireOOMAt);
   688   }
   689 #endif
   691  public:
   692   // This is a convenience method that is used in cases where
   693   // the actual number of GC worker threads is not pertinent but
   694   // only whether there more than 0.  Use of this method helps
   695   // reduce the occurrence of ParallelGCThreads to uses where the
   696   // actual number may be germane.
   697   static bool use_parallel_gc_threads() { return ParallelGCThreads > 0; }
   699   /////////////// Unit tests ///////////////
   701   NOT_PRODUCT(static void test_is_in();)
   702 };
   704 // Class to set and reset the GC cause for a CollectedHeap.
   706 class GCCauseSetter : StackObj {
   707   CollectedHeap* _heap;
   708   GCCause::Cause _previous_cause;
   709  public:
   710   GCCauseSetter(CollectedHeap* heap, GCCause::Cause cause) {
   711     assert(SafepointSynchronize::is_at_safepoint(),
   712            "This method manipulates heap state without locking");
   713     _heap = heap;
   714     _previous_cause = _heap->gc_cause();
   715     _heap->set_gc_cause(cause);
   716   }
   718   ~GCCauseSetter() {
   719     assert(SafepointSynchronize::is_at_safepoint(),
   720           "This method manipulates heap state without locking");
   721     _heap->set_gc_cause(_previous_cause);
   722   }
   723 };
   725 #endif // SHARE_VM_GC_INTERFACE_COLLECTEDHEAP_HPP

mercurial