src/share/vm/opto/loopTransform.cpp

Wed, 22 Jan 2014 17:42:23 -0800

author
kvn
date
Wed, 22 Jan 2014 17:42:23 -0800
changeset 6503
a9becfeecd1b
parent 6485
da862781b584
parent 6198
55fb97c4c58d
child 6518
62c54fcc0a35
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "compiler/compileLog.hpp"
    27 #include "memory/allocation.inline.hpp"
    28 #include "opto/addnode.hpp"
    29 #include "opto/callnode.hpp"
    30 #include "opto/connode.hpp"
    31 #include "opto/divnode.hpp"
    32 #include "opto/loopnode.hpp"
    33 #include "opto/mulnode.hpp"
    34 #include "opto/rootnode.hpp"
    35 #include "opto/runtime.hpp"
    36 #include "opto/subnode.hpp"
    38 //------------------------------is_loop_exit-----------------------------------
    39 // Given an IfNode, return the loop-exiting projection or NULL if both
    40 // arms remain in the loop.
    41 Node *IdealLoopTree::is_loop_exit(Node *iff) const {
    42   if( iff->outcnt() != 2 ) return NULL; // Ignore partially dead tests
    43   PhaseIdealLoop *phase = _phase;
    44   // Test is an IfNode, has 2 projections.  If BOTH are in the loop
    45   // we need loop unswitching instead of peeling.
    46   if( !is_member(phase->get_loop( iff->raw_out(0) )) )
    47     return iff->raw_out(0);
    48   if( !is_member(phase->get_loop( iff->raw_out(1) )) )
    49     return iff->raw_out(1);
    50   return NULL;
    51 }
    54 //=============================================================================
    57 //------------------------------record_for_igvn----------------------------
    58 // Put loop body on igvn work list
    59 void IdealLoopTree::record_for_igvn() {
    60   for( uint i = 0; i < _body.size(); i++ ) {
    61     Node *n = _body.at(i);
    62     _phase->_igvn._worklist.push(n);
    63   }
    64 }
    66 //------------------------------compute_exact_trip_count-----------------------
    67 // Compute loop exact trip count if possible. Do not recalculate trip count for
    68 // split loops (pre-main-post) which have their limits and inits behind Opaque node.
    69 void IdealLoopTree::compute_exact_trip_count( PhaseIdealLoop *phase ) {
    70   if (!_head->as_Loop()->is_valid_counted_loop()) {
    71     return;
    72   }
    73   CountedLoopNode* cl = _head->as_CountedLoop();
    74   // Trip count may become nonexact for iteration split loops since
    75   // RCE modifies limits. Note, _trip_count value is not reset since
    76   // it is used to limit unrolling of main loop.
    77   cl->set_nonexact_trip_count();
    79   // Loop's test should be part of loop.
    80   if (!phase->is_member(this, phase->get_ctrl(cl->loopexit()->in(CountedLoopEndNode::TestValue))))
    81     return; // Infinite loop
    83 #ifdef ASSERT
    84   BoolTest::mask bt = cl->loopexit()->test_trip();
    85   assert(bt == BoolTest::lt || bt == BoolTest::gt ||
    86          bt == BoolTest::ne, "canonical test is expected");
    87 #endif
    89   Node* init_n = cl->init_trip();
    90   Node* limit_n = cl->limit();
    91   if (init_n  != NULL &&  init_n->is_Con() &&
    92       limit_n != NULL && limit_n->is_Con()) {
    93     // Use longs to avoid integer overflow.
    94     int stride_con  = cl->stride_con();
    95     jlong init_con   = cl->init_trip()->get_int();
    96     jlong limit_con  = cl->limit()->get_int();
    97     int stride_m    = stride_con - (stride_con > 0 ? 1 : -1);
    98     jlong trip_count = (limit_con - init_con + stride_m)/stride_con;
    99     if (trip_count > 0 && (julong)trip_count < (julong)max_juint) {
   100       // Set exact trip count.
   101       cl->set_exact_trip_count((uint)trip_count);
   102     }
   103   }
   104 }
   106 //------------------------------compute_profile_trip_cnt----------------------------
   107 // Compute loop trip count from profile data as
   108 //    (backedge_count + loop_exit_count) / loop_exit_count
   109 void IdealLoopTree::compute_profile_trip_cnt( PhaseIdealLoop *phase ) {
   110   if (!_head->is_CountedLoop()) {
   111     return;
   112   }
   113   CountedLoopNode* head = _head->as_CountedLoop();
   114   if (head->profile_trip_cnt() != COUNT_UNKNOWN) {
   115     return; // Already computed
   116   }
   117   float trip_cnt = (float)max_jint; // default is big
   119   Node* back = head->in(LoopNode::LoopBackControl);
   120   while (back != head) {
   121     if ((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
   122         back->in(0) &&
   123         back->in(0)->is_If() &&
   124         back->in(0)->as_If()->_fcnt != COUNT_UNKNOWN &&
   125         back->in(0)->as_If()->_prob != PROB_UNKNOWN) {
   126       break;
   127     }
   128     back = phase->idom(back);
   129   }
   130   if (back != head) {
   131     assert((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
   132            back->in(0), "if-projection exists");
   133     IfNode* back_if = back->in(0)->as_If();
   134     float loop_back_cnt = back_if->_fcnt * back_if->_prob;
   136     // Now compute a loop exit count
   137     float loop_exit_cnt = 0.0f;
   138     for( uint i = 0; i < _body.size(); i++ ) {
   139       Node *n = _body[i];
   140       if( n->is_If() ) {
   141         IfNode *iff = n->as_If();
   142         if( iff->_fcnt != COUNT_UNKNOWN && iff->_prob != PROB_UNKNOWN ) {
   143           Node *exit = is_loop_exit(iff);
   144           if( exit ) {
   145             float exit_prob = iff->_prob;
   146             if (exit->Opcode() == Op_IfFalse) exit_prob = 1.0 - exit_prob;
   147             if (exit_prob > PROB_MIN) {
   148               float exit_cnt = iff->_fcnt * exit_prob;
   149               loop_exit_cnt += exit_cnt;
   150             }
   151           }
   152         }
   153       }
   154     }
   155     if (loop_exit_cnt > 0.0f) {
   156       trip_cnt = (loop_back_cnt + loop_exit_cnt) / loop_exit_cnt;
   157     } else {
   158       // No exit count so use
   159       trip_cnt = loop_back_cnt;
   160     }
   161   }
   162 #ifndef PRODUCT
   163   if (TraceProfileTripCount) {
   164     tty->print_cr("compute_profile_trip_cnt  lp: %d cnt: %f\n", head->_idx, trip_cnt);
   165   }
   166 #endif
   167   head->set_profile_trip_cnt(trip_cnt);
   168 }
   170 //---------------------is_invariant_addition-----------------------------
   171 // Return nonzero index of invariant operand for an Add or Sub
   172 // of (nonconstant) invariant and variant values. Helper for reassociate_invariants.
   173 int IdealLoopTree::is_invariant_addition(Node* n, PhaseIdealLoop *phase) {
   174   int op = n->Opcode();
   175   if (op == Op_AddI || op == Op_SubI) {
   176     bool in1_invar = this->is_invariant(n->in(1));
   177     bool in2_invar = this->is_invariant(n->in(2));
   178     if (in1_invar && !in2_invar) return 1;
   179     if (!in1_invar && in2_invar) return 2;
   180   }
   181   return 0;
   182 }
   184 //---------------------reassociate_add_sub-----------------------------
   185 // Reassociate invariant add and subtract expressions:
   186 //
   187 // inv1 + (x + inv2)  =>  ( inv1 + inv2) + x
   188 // (x + inv2) + inv1  =>  ( inv1 + inv2) + x
   189 // inv1 + (x - inv2)  =>  ( inv1 - inv2) + x
   190 // inv1 - (inv2 - x)  =>  ( inv1 - inv2) + x
   191 // (x + inv2) - inv1  =>  (-inv1 + inv2) + x
   192 // (x - inv2) + inv1  =>  ( inv1 - inv2) + x
   193 // (x - inv2) - inv1  =>  (-inv1 - inv2) + x
   194 // inv1 + (inv2 - x)  =>  ( inv1 + inv2) - x
   195 // inv1 - (x - inv2)  =>  ( inv1 + inv2) - x
   196 // (inv2 - x) + inv1  =>  ( inv1 + inv2) - x
   197 // (inv2 - x) - inv1  =>  (-inv1 + inv2) - x
   198 // inv1 - (x + inv2)  =>  ( inv1 - inv2) - x
   199 //
   200 Node* IdealLoopTree::reassociate_add_sub(Node* n1, PhaseIdealLoop *phase) {
   201   if (!n1->is_Add() && !n1->is_Sub() || n1->outcnt() == 0) return NULL;
   202   if (is_invariant(n1)) return NULL;
   203   int inv1_idx = is_invariant_addition(n1, phase);
   204   if (!inv1_idx) return NULL;
   205   // Don't mess with add of constant (igvn moves them to expression tree root.)
   206   if (n1->is_Add() && n1->in(2)->is_Con()) return NULL;
   207   Node* inv1 = n1->in(inv1_idx);
   208   Node* n2 = n1->in(3 - inv1_idx);
   209   int inv2_idx = is_invariant_addition(n2, phase);
   210   if (!inv2_idx) return NULL;
   211   Node* x    = n2->in(3 - inv2_idx);
   212   Node* inv2 = n2->in(inv2_idx);
   214   bool neg_x    = n2->is_Sub() && inv2_idx == 1;
   215   bool neg_inv2 = n2->is_Sub() && inv2_idx == 2;
   216   bool neg_inv1 = n1->is_Sub() && inv1_idx == 2;
   217   if (n1->is_Sub() && inv1_idx == 1) {
   218     neg_x    = !neg_x;
   219     neg_inv2 = !neg_inv2;
   220   }
   221   Node* inv1_c = phase->get_ctrl(inv1);
   222   Node* inv2_c = phase->get_ctrl(inv2);
   223   Node* n_inv1;
   224   if (neg_inv1) {
   225     Node *zero = phase->_igvn.intcon(0);
   226     phase->set_ctrl(zero, phase->C->root());
   227     n_inv1 = new (phase->C) SubINode(zero, inv1);
   228     phase->register_new_node(n_inv1, inv1_c);
   229   } else {
   230     n_inv1 = inv1;
   231   }
   232   Node* inv;
   233   if (neg_inv2) {
   234     inv = new (phase->C) SubINode(n_inv1, inv2);
   235   } else {
   236     inv = new (phase->C) AddINode(n_inv1, inv2);
   237   }
   238   phase->register_new_node(inv, phase->get_early_ctrl(inv));
   240   Node* addx;
   241   if (neg_x) {
   242     addx = new (phase->C) SubINode(inv, x);
   243   } else {
   244     addx = new (phase->C) AddINode(x, inv);
   245   }
   246   phase->register_new_node(addx, phase->get_ctrl(x));
   247   phase->_igvn.replace_node(n1, addx);
   248   assert(phase->get_loop(phase->get_ctrl(n1)) == this, "");
   249   _body.yank(n1);
   250   return addx;
   251 }
   253 //---------------------reassociate_invariants-----------------------------
   254 // Reassociate invariant expressions:
   255 void IdealLoopTree::reassociate_invariants(PhaseIdealLoop *phase) {
   256   for (int i = _body.size() - 1; i >= 0; i--) {
   257     Node *n = _body.at(i);
   258     for (int j = 0; j < 5; j++) {
   259       Node* nn = reassociate_add_sub(n, phase);
   260       if (nn == NULL) break;
   261       n = nn; // again
   262     };
   263   }
   264 }
   266 //------------------------------policy_peeling---------------------------------
   267 // Return TRUE or FALSE if the loop should be peeled or not.  Peel if we can
   268 // make some loop-invariant test (usually a null-check) happen before the loop.
   269 bool IdealLoopTree::policy_peeling( PhaseIdealLoop *phase ) const {
   270   Node *test = ((IdealLoopTree*)this)->tail();
   271   int  body_size = ((IdealLoopTree*)this)->_body.size();
   272   int  live_node_count = phase->C->live_nodes();
   273   // Peeling does loop cloning which can result in O(N^2) node construction
   274   if( body_size > 255 /* Prevent overflow for large body_size */
   275       || (body_size * body_size + live_node_count > MaxNodeLimit) ) {
   276     return false;           // too large to safely clone
   277   }
   278   while( test != _head ) {      // Scan till run off top of loop
   279     if( test->is_If() ) {       // Test?
   280       Node *ctrl = phase->get_ctrl(test->in(1));
   281       if (ctrl->is_top())
   282         return false;           // Found dead test on live IF?  No peeling!
   283       // Standard IF only has one input value to check for loop invariance
   284       assert( test->Opcode() == Op_If || test->Opcode() == Op_CountedLoopEnd, "Check this code when new subtype is added");
   285       // Condition is not a member of this loop?
   286       if( !is_member(phase->get_loop(ctrl)) &&
   287           is_loop_exit(test) )
   288         return true;            // Found reason to peel!
   289     }
   290     // Walk up dominators to loop _head looking for test which is
   291     // executed on every path thru loop.
   292     test = phase->idom(test);
   293   }
   294   return false;
   295 }
   297 //------------------------------peeled_dom_test_elim---------------------------
   298 // If we got the effect of peeling, either by actually peeling or by making
   299 // a pre-loop which must execute at least once, we can remove all
   300 // loop-invariant dominated tests in the main body.
   301 void PhaseIdealLoop::peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new ) {
   302   bool progress = true;
   303   while( progress ) {
   304     progress = false;           // Reset for next iteration
   305     Node *prev = loop->_head->in(LoopNode::LoopBackControl);//loop->tail();
   306     Node *test = prev->in(0);
   307     while( test != loop->_head ) { // Scan till run off top of loop
   309       int p_op = prev->Opcode();
   310       if( (p_op == Op_IfFalse || p_op == Op_IfTrue) &&
   311           test->is_If() &&      // Test?
   312           !test->in(1)->is_Con() && // And not already obvious?
   313           // Condition is not a member of this loop?
   314           !loop->is_member(get_loop(get_ctrl(test->in(1))))){
   315         // Walk loop body looking for instances of this test
   316         for( uint i = 0; i < loop->_body.size(); i++ ) {
   317           Node *n = loop->_body.at(i);
   318           if( n->is_If() && n->in(1) == test->in(1) /*&& n != loop->tail()->in(0)*/ ) {
   319             // IfNode was dominated by version in peeled loop body
   320             progress = true;
   321             dominated_by( old_new[prev->_idx], n );
   322           }
   323         }
   324       }
   325       prev = test;
   326       test = idom(test);
   327     } // End of scan tests in loop
   329   } // End of while( progress )
   330 }
   332 //------------------------------do_peeling-------------------------------------
   333 // Peel the first iteration of the given loop.
   334 // Step 1: Clone the loop body.  The clone becomes the peeled iteration.
   335 //         The pre-loop illegally has 2 control users (old & new loops).
   336 // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
   337 //         Do this by making the old-loop fall-in edges act as if they came
   338 //         around the loopback from the prior iteration (follow the old-loop
   339 //         backedges) and then map to the new peeled iteration.  This leaves
   340 //         the pre-loop with only 1 user (the new peeled iteration), but the
   341 //         peeled-loop backedge has 2 users.
   342 // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
   343 //         extra backedge user.
   344 //
   345 //                   orig
   346 //
   347 //                  stmt1
   348 //                    |
   349 //                    v
   350 //              loop predicate
   351 //                    |
   352 //                    v
   353 //                   loop<----+
   354 //                     |      |
   355 //                   stmt2    |
   356 //                     |      |
   357 //                     v      |
   358 //                    if      ^
   359 //                   / \      |
   360 //                  /   \     |
   361 //                 v     v    |
   362 //               false true   |
   363 //               /       \    |
   364 //              /         ----+
   365 //             |
   366 //             v
   367 //           exit
   368 //
   369 //
   370 //            after clone loop
   371 //
   372 //                   stmt1
   373 //                     |
   374 //                     v
   375 //               loop predicate
   376 //                 /       \
   377 //        clone   /         \   orig
   378 //               /           \
   379 //              /             \
   380 //             v               v
   381 //   +---->loop clone          loop<----+
   382 //   |      |                    |      |
   383 //   |    stmt2 clone          stmt2    |
   384 //   |      |                    |      |
   385 //   |      v                    v      |
   386 //   ^      if clone            If      ^
   387 //   |      / \                / \      |
   388 //   |     /   \              /   \     |
   389 //   |    v     v            v     v    |
   390 //   |    true  false      false true   |
   391 //   |    /         \      /       \    |
   392 //   +----           \    /         ----+
   393 //                    \  /
   394 //                    1v v2
   395 //                  region
   396 //                     |
   397 //                     v
   398 //                   exit
   399 //
   400 //
   401 //         after peel and predicate move
   402 //
   403 //                   stmt1
   404 //                    /
   405 //                   /
   406 //        clone     /            orig
   407 //                 /
   408 //                /              +----------+
   409 //               /               |          |
   410 //              /          loop predicate   |
   411 //             /                 |          |
   412 //            v                  v          |
   413 //   TOP-->loop clone          loop<----+   |
   414 //          |                    |      |   |
   415 //        stmt2 clone          stmt2    |   |
   416 //          |                    |      |   ^
   417 //          v                    v      |   |
   418 //          if clone            If      ^   |
   419 //          / \                / \      |   |
   420 //         /   \              /   \     |   |
   421 //        v     v            v     v    |   |
   422 //      true   false      false  true   |   |
   423 //        |         \      /       \    |   |
   424 //        |          \    /         ----+   ^
   425 //        |           \  /                  |
   426 //        |           1v v2                 |
   427 //        v         region                  |
   428 //        |            |                    |
   429 //        |            v                    |
   430 //        |          exit                   |
   431 //        |                                 |
   432 //        +--------------->-----------------+
   433 //
   434 //
   435 //              final graph
   436 //
   437 //                  stmt1
   438 //                    |
   439 //                    v
   440 //                  stmt2 clone
   441 //                    |
   442 //                    v
   443 //                   if clone
   444 //                  / |
   445 //                 /  |
   446 //                v   v
   447 //            false  true
   448 //             |      |
   449 //             |      v
   450 //             | loop predicate
   451 //             |      |
   452 //             |      v
   453 //             |     loop<----+
   454 //             |      |       |
   455 //             |    stmt2     |
   456 //             |      |       |
   457 //             |      v       |
   458 //             v      if      ^
   459 //             |     /  \     |
   460 //             |    /    \    |
   461 //             |   v     v    |
   462 //             | false  true  |
   463 //             |  |        \  |
   464 //             v  v         --+
   465 //            region
   466 //              |
   467 //              v
   468 //             exit
   469 //
   470 void PhaseIdealLoop::do_peeling( IdealLoopTree *loop, Node_List &old_new ) {
   472   C->set_major_progress();
   473   // Peeling a 'main' loop in a pre/main/post situation obfuscates the
   474   // 'pre' loop from the main and the 'pre' can no longer have it's
   475   // iterations adjusted.  Therefore, we need to declare this loop as
   476   // no longer a 'main' loop; it will need new pre and post loops before
   477   // we can do further RCE.
   478 #ifndef PRODUCT
   479   if (TraceLoopOpts) {
   480     tty->print("Peel         ");
   481     loop->dump_head();
   482   }
   483 #endif
   484   Node* head = loop->_head;
   485   bool counted_loop = head->is_CountedLoop();
   486   if (counted_loop) {
   487     CountedLoopNode *cl = head->as_CountedLoop();
   488     assert(cl->trip_count() > 0, "peeling a fully unrolled loop");
   489     cl->set_trip_count(cl->trip_count() - 1);
   490     if (cl->is_main_loop()) {
   491       cl->set_normal_loop();
   492 #ifndef PRODUCT
   493       if (PrintOpto && VerifyLoopOptimizations) {
   494         tty->print("Peeling a 'main' loop; resetting to 'normal' ");
   495         loop->dump_head();
   496       }
   497 #endif
   498     }
   499   }
   500   Node* entry = head->in(LoopNode::EntryControl);
   502   // Step 1: Clone the loop body.  The clone becomes the peeled iteration.
   503   //         The pre-loop illegally has 2 control users (old & new loops).
   504   clone_loop( loop, old_new, dom_depth(head) );
   506   // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
   507   //         Do this by making the old-loop fall-in edges act as if they came
   508   //         around the loopback from the prior iteration (follow the old-loop
   509   //         backedges) and then map to the new peeled iteration.  This leaves
   510   //         the pre-loop with only 1 user (the new peeled iteration), but the
   511   //         peeled-loop backedge has 2 users.
   512   Node* new_entry = old_new[head->in(LoopNode::LoopBackControl)->_idx];
   513   _igvn.hash_delete(head);
   514   head->set_req(LoopNode::EntryControl, new_entry);
   515   for (DUIterator_Fast jmax, j = head->fast_outs(jmax); j < jmax; j++) {
   516     Node* old = head->fast_out(j);
   517     if (old->in(0) == loop->_head && old->req() == 3 && old->is_Phi()) {
   518       Node* new_exit_value = old_new[old->in(LoopNode::LoopBackControl)->_idx];
   519       if (!new_exit_value )     // Backedge value is ALSO loop invariant?
   520         // Then loop body backedge value remains the same.
   521         new_exit_value = old->in(LoopNode::LoopBackControl);
   522       _igvn.hash_delete(old);
   523       old->set_req(LoopNode::EntryControl, new_exit_value);
   524     }
   525   }
   528   // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
   529   //         extra backedge user.
   530   Node* new_head = old_new[head->_idx];
   531   _igvn.hash_delete(new_head);
   532   new_head->set_req(LoopNode::LoopBackControl, C->top());
   533   for (DUIterator_Fast j2max, j2 = new_head->fast_outs(j2max); j2 < j2max; j2++) {
   534     Node* use = new_head->fast_out(j2);
   535     if (use->in(0) == new_head && use->req() == 3 && use->is_Phi()) {
   536       _igvn.hash_delete(use);
   537       use->set_req(LoopNode::LoopBackControl, C->top());
   538     }
   539   }
   542   // Step 4: Correct dom-depth info.  Set to loop-head depth.
   543   int dd = dom_depth(head);
   544   set_idom(head, head->in(1), dd);
   545   for (uint j3 = 0; j3 < loop->_body.size(); j3++) {
   546     Node *old = loop->_body.at(j3);
   547     Node *nnn = old_new[old->_idx];
   548     if (!has_ctrl(nnn))
   549       set_idom(nnn, idom(nnn), dd-1);
   550   }
   552   // Now force out all loop-invariant dominating tests.  The optimizer
   553   // finds some, but we _know_ they are all useless.
   554   peeled_dom_test_elim(loop,old_new);
   556   loop->record_for_igvn();
   557 }
   559 #define EMPTY_LOOP_SIZE 7 // number of nodes in an empty loop
   561 //------------------------------policy_maximally_unroll------------------------
   562 // Calculate exact loop trip count and return true if loop can be maximally
   563 // unrolled.
   564 bool IdealLoopTree::policy_maximally_unroll( PhaseIdealLoop *phase ) const {
   565   CountedLoopNode *cl = _head->as_CountedLoop();
   566   assert(cl->is_normal_loop(), "");
   567   if (!cl->is_valid_counted_loop())
   568     return false; // Malformed counted loop
   570   if (!cl->has_exact_trip_count()) {
   571     // Trip count is not exact.
   572     return false;
   573   }
   575   uint trip_count = cl->trip_count();
   576   // Note, max_juint is used to indicate unknown trip count.
   577   assert(trip_count > 1, "one iteration loop should be optimized out already");
   578   assert(trip_count < max_juint, "exact trip_count should be less than max_uint.");
   580   // Real policy: if we maximally unroll, does it get too big?
   581   // Allow the unrolled mess to get larger than standard loop
   582   // size.  After all, it will no longer be a loop.
   583   uint body_size    = _body.size();
   584   uint unroll_limit = (uint)LoopUnrollLimit * 4;
   585   assert( (intx)unroll_limit == LoopUnrollLimit * 4, "LoopUnrollLimit must fit in 32bits");
   586   if (trip_count > unroll_limit || body_size > unroll_limit) {
   587     return false;
   588   }
   590   // Fully unroll a loop with few iterations regardless next
   591   // conditions since following loop optimizations will split
   592   // such loop anyway (pre-main-post).
   593   if (trip_count <= 3)
   594     return true;
   596   // Take into account that after unroll conjoined heads and tails will fold,
   597   // otherwise policy_unroll() may allow more unrolling than max unrolling.
   598   uint new_body_size = EMPTY_LOOP_SIZE + (body_size - EMPTY_LOOP_SIZE) * trip_count;
   599   uint tst_body_size = (new_body_size - EMPTY_LOOP_SIZE) / trip_count + EMPTY_LOOP_SIZE;
   600   if (body_size != tst_body_size) // Check for int overflow
   601     return false;
   602   if (new_body_size > unroll_limit ||
   603       // Unrolling can result in a large amount of node construction
   604       new_body_size >= MaxNodeLimit - (uint) phase->C->live_nodes()) {
   605     return false;
   606   }
   608   // Do not unroll a loop with String intrinsics code.
   609   // String intrinsics are large and have loops.
   610   for (uint k = 0; k < _body.size(); k++) {
   611     Node* n = _body.at(k);
   612     switch (n->Opcode()) {
   613       case Op_StrComp:
   614       case Op_StrEquals:
   615       case Op_StrIndexOf:
   616       case Op_EncodeISOArray:
   617       case Op_AryEq: {
   618         return false;
   619       }
   620     } // switch
   621   }
   623   return true; // Do maximally unroll
   624 }
   627 //------------------------------policy_unroll----------------------------------
   628 // Return TRUE or FALSE if the loop should be unrolled or not.  Unroll if
   629 // the loop is a CountedLoop and the body is small enough.
   630 bool IdealLoopTree::policy_unroll( PhaseIdealLoop *phase ) const {
   632   CountedLoopNode *cl = _head->as_CountedLoop();
   633   assert(cl->is_normal_loop() || cl->is_main_loop(), "");
   635   if (!cl->is_valid_counted_loop())
   636     return false; // Malformed counted loop
   638   // Protect against over-unrolling.
   639   // After split at least one iteration will be executed in pre-loop.
   640   if (cl->trip_count() <= (uint)(cl->is_normal_loop() ? 2 : 1)) return false;
   642   int future_unroll_ct = cl->unrolled_count() * 2;
   643   if (future_unroll_ct > LoopMaxUnroll) return false;
   645   // Check for initial stride being a small enough constant
   646   if (abs(cl->stride_con()) > (1<<2)*future_unroll_ct) return false;
   648   // Don't unroll if the next round of unrolling would push us
   649   // over the expected trip count of the loop.  One is subtracted
   650   // from the expected trip count because the pre-loop normally
   651   // executes 1 iteration.
   652   if (UnrollLimitForProfileCheck > 0 &&
   653       cl->profile_trip_cnt() != COUNT_UNKNOWN &&
   654       future_unroll_ct        > UnrollLimitForProfileCheck &&
   655       (float)future_unroll_ct > cl->profile_trip_cnt() - 1.0) {
   656     return false;
   657   }
   659   // When unroll count is greater than LoopUnrollMin, don't unroll if:
   660   //   the residual iterations are more than 10% of the trip count
   661   //   and rounds of "unroll,optimize" are not making significant progress
   662   //   Progress defined as current size less than 20% larger than previous size.
   663   if (UseSuperWord && cl->node_count_before_unroll() > 0 &&
   664       future_unroll_ct > LoopUnrollMin &&
   665       (future_unroll_ct - 1) * 10.0 > cl->profile_trip_cnt() &&
   666       1.2 * cl->node_count_before_unroll() < (double)_body.size()) {
   667     return false;
   668   }
   670   Node *init_n = cl->init_trip();
   671   Node *limit_n = cl->limit();
   672   int stride_con = cl->stride_con();
   673   // Non-constant bounds.
   674   // Protect against over-unrolling when init or/and limit are not constant
   675   // (so that trip_count's init value is maxint) but iv range is known.
   676   if (init_n   == NULL || !init_n->is_Con()  ||
   677       limit_n  == NULL || !limit_n->is_Con()) {
   678     Node* phi = cl->phi();
   679     if (phi != NULL) {
   680       assert(phi->is_Phi() && phi->in(0) == _head, "Counted loop should have iv phi.");
   681       const TypeInt* iv_type = phase->_igvn.type(phi)->is_int();
   682       int next_stride = stride_con * 2; // stride after this unroll
   683       if (next_stride > 0) {
   684         if (iv_type->_lo + next_stride <= iv_type->_lo || // overflow
   685             iv_type->_lo + next_stride >  iv_type->_hi) {
   686           return false;  // over-unrolling
   687         }
   688       } else if (next_stride < 0) {
   689         if (iv_type->_hi + next_stride >= iv_type->_hi || // overflow
   690             iv_type->_hi + next_stride <  iv_type->_lo) {
   691           return false;  // over-unrolling
   692         }
   693       }
   694     }
   695   }
   697   // After unroll limit will be adjusted: new_limit = limit-stride.
   698   // Bailout if adjustment overflow.
   699   const TypeInt* limit_type = phase->_igvn.type(limit_n)->is_int();
   700   if (stride_con > 0 && ((limit_type->_hi - stride_con) >= limit_type->_hi) ||
   701       stride_con < 0 && ((limit_type->_lo - stride_con) <= limit_type->_lo))
   702     return false;  // overflow
   704   // Adjust body_size to determine if we unroll or not
   705   uint body_size = _body.size();
   706   // Key test to unroll loop in CRC32 java code
   707   int xors_in_loop = 0;
   708   // Also count ModL, DivL and MulL which expand mightly
   709   for (uint k = 0; k < _body.size(); k++) {
   710     Node* n = _body.at(k);
   711     switch (n->Opcode()) {
   712       case Op_XorI: xors_in_loop++; break; // CRC32 java code
   713       case Op_ModL: body_size += 30; break;
   714       case Op_DivL: body_size += 30; break;
   715       case Op_MulL: body_size += 10; break;
   716       case Op_FlagsProj:
   717         // Can't handle unrolling of loops containing
   718         // nodes that generate a FlagsProj at the moment
   719         return false;
   720       case Op_StrComp:
   721       case Op_StrEquals:
   722       case Op_StrIndexOf:
   723       case Op_EncodeISOArray:
   724       case Op_AryEq: {
   725         // Do not unroll a loop with String intrinsics code.
   726         // String intrinsics are large and have loops.
   727         return false;
   728       }
   729     } // switch
   730   }
   732   // Check for being too big
   733   if (body_size > (uint)LoopUnrollLimit) {
   734     if (xors_in_loop >= 4 && body_size < (uint)LoopUnrollLimit*4) return true;
   735     // Normal case: loop too big
   736     return false;
   737   }
   739   // Unroll once!  (Each trip will soon do double iterations)
   740   return true;
   741 }
   743 //------------------------------policy_align-----------------------------------
   744 // Return TRUE or FALSE if the loop should be cache-line aligned.  Gather the
   745 // expression that does the alignment.  Note that only one array base can be
   746 // aligned in a loop (unless the VM guarantees mutual alignment).  Note that
   747 // if we vectorize short memory ops into longer memory ops, we may want to
   748 // increase alignment.
   749 bool IdealLoopTree::policy_align( PhaseIdealLoop *phase ) const {
   750   return false;
   751 }
   753 //------------------------------policy_range_check-----------------------------
   754 // Return TRUE or FALSE if the loop should be range-check-eliminated.
   755 // Actually we do iteration-splitting, a more powerful form of RCE.
   756 bool IdealLoopTree::policy_range_check( PhaseIdealLoop *phase ) const {
   757   if (!RangeCheckElimination) return false;
   759   CountedLoopNode *cl = _head->as_CountedLoop();
   760   // If we unrolled with no intention of doing RCE and we later
   761   // changed our minds, we got no pre-loop.  Either we need to
   762   // make a new pre-loop, or we gotta disallow RCE.
   763   if (cl->is_main_no_pre_loop()) return false; // Disallowed for now.
   764   Node *trip_counter = cl->phi();
   766   // Check loop body for tests of trip-counter plus loop-invariant vs
   767   // loop-invariant.
   768   for (uint i = 0; i < _body.size(); i++) {
   769     Node *iff = _body[i];
   770     if (iff->Opcode() == Op_If) { // Test?
   772       // Comparing trip+off vs limit
   773       Node *bol = iff->in(1);
   774       if (bol->req() != 2) continue; // dead constant test
   775       if (!bol->is_Bool()) {
   776         assert(UseLoopPredicate && bol->Opcode() == Op_Conv2B, "predicate check only");
   777         continue;
   778       }
   779       if (bol->as_Bool()->_test._test == BoolTest::ne)
   780         continue; // not RC
   782       Node *cmp = bol->in(1);
   783       if (cmp->is_FlagsProj()) {
   784         continue;
   785       }
   787       Node *rc_exp = cmp->in(1);
   788       Node *limit = cmp->in(2);
   790       Node *limit_c = phase->get_ctrl(limit);
   791       if( limit_c == phase->C->top() )
   792         return false;           // Found dead test on live IF?  No RCE!
   793       if( is_member(phase->get_loop(limit_c) ) ) {
   794         // Compare might have operands swapped; commute them
   795         rc_exp = cmp->in(2);
   796         limit  = cmp->in(1);
   797         limit_c = phase->get_ctrl(limit);
   798         if( is_member(phase->get_loop(limit_c) ) )
   799           continue;             // Both inputs are loop varying; cannot RCE
   800       }
   802       if (!phase->is_scaled_iv_plus_offset(rc_exp, trip_counter, NULL, NULL)) {
   803         continue;
   804       }
   805       // Yeah!  Found a test like 'trip+off vs limit'
   806       // Test is an IfNode, has 2 projections.  If BOTH are in the loop
   807       // we need loop unswitching instead of iteration splitting.
   808       if( is_loop_exit(iff) )
   809         return true;            // Found reason to split iterations
   810     } // End of is IF
   811   }
   813   return false;
   814 }
   816 //------------------------------policy_peel_only-------------------------------
   817 // Return TRUE or FALSE if the loop should NEVER be RCE'd or aligned.  Useful
   818 // for unrolling loops with NO array accesses.
   819 bool IdealLoopTree::policy_peel_only( PhaseIdealLoop *phase ) const {
   821   for( uint i = 0; i < _body.size(); i++ )
   822     if( _body[i]->is_Mem() )
   823       return false;
   825   // No memory accesses at all!
   826   return true;
   827 }
   829 //------------------------------clone_up_backedge_goo--------------------------
   830 // If Node n lives in the back_ctrl block and cannot float, we clone a private
   831 // version of n in preheader_ctrl block and return that, otherwise return n.
   832 Node *PhaseIdealLoop::clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n, VectorSet &visited, Node_Stack &clones ) {
   833   if( get_ctrl(n) != back_ctrl ) return n;
   835   // Only visit once
   836   if (visited.test_set(n->_idx)) {
   837     Node *x = clones.find(n->_idx);
   838     if (x != NULL)
   839       return x;
   840     return n;
   841   }
   843   Node *x = NULL;               // If required, a clone of 'n'
   844   // Check for 'n' being pinned in the backedge.
   845   if( n->in(0) && n->in(0) == back_ctrl ) {
   846     assert(clones.find(n->_idx) == NULL, "dead loop");
   847     x = n->clone();             // Clone a copy of 'n' to preheader
   848     clones.push(x, n->_idx);
   849     x->set_req( 0, preheader_ctrl ); // Fix x's control input to preheader
   850   }
   852   // Recursive fixup any other input edges into x.
   853   // If there are no changes we can just return 'n', otherwise
   854   // we need to clone a private copy and change it.
   855   for( uint i = 1; i < n->req(); i++ ) {
   856     Node *g = clone_up_backedge_goo( back_ctrl, preheader_ctrl, n->in(i), visited, clones );
   857     if( g != n->in(i) ) {
   858       if( !x ) {
   859         assert(clones.find(n->_idx) == NULL, "dead loop");
   860         x = n->clone();
   861         clones.push(x, n->_idx);
   862       }
   863       x->set_req(i, g);
   864     }
   865   }
   866   if( x ) {                     // x can legally float to pre-header location
   867     register_new_node( x, preheader_ctrl );
   868     return x;
   869   } else {                      // raise n to cover LCA of uses
   870     set_ctrl( n, find_non_split_ctrl(back_ctrl->in(0)) );
   871   }
   872   return n;
   873 }
   875 //------------------------------insert_pre_post_loops--------------------------
   876 // Insert pre and post loops.  If peel_only is set, the pre-loop can not have
   877 // more iterations added.  It acts as a 'peel' only, no lower-bound RCE, no
   878 // alignment.  Useful to unroll loops that do no array accesses.
   879 void PhaseIdealLoop::insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only ) {
   881 #ifndef PRODUCT
   882   if (TraceLoopOpts) {
   883     if (peel_only)
   884       tty->print("PeelMainPost ");
   885     else
   886       tty->print("PreMainPost  ");
   887     loop->dump_head();
   888   }
   889 #endif
   890   C->set_major_progress();
   892   // Find common pieces of the loop being guarded with pre & post loops
   893   CountedLoopNode *main_head = loop->_head->as_CountedLoop();
   894   assert( main_head->is_normal_loop(), "" );
   895   CountedLoopEndNode *main_end = main_head->loopexit();
   896   guarantee(main_end != NULL, "no loop exit node");
   897   assert( main_end->outcnt() == 2, "1 true, 1 false path only" );
   898   uint dd_main_head = dom_depth(main_head);
   899   uint max = main_head->outcnt();
   901   Node *pre_header= main_head->in(LoopNode::EntryControl);
   902   Node *init      = main_head->init_trip();
   903   Node *incr      = main_end ->incr();
   904   Node *limit     = main_end ->limit();
   905   Node *stride    = main_end ->stride();
   906   Node *cmp       = main_end ->cmp_node();
   907   BoolTest::mask b_test = main_end->test_trip();
   909   // Need only 1 user of 'bol' because I will be hacking the loop bounds.
   910   Node *bol = main_end->in(CountedLoopEndNode::TestValue);
   911   if( bol->outcnt() != 1 ) {
   912     bol = bol->clone();
   913     register_new_node(bol,main_end->in(CountedLoopEndNode::TestControl));
   914     _igvn.hash_delete(main_end);
   915     main_end->set_req(CountedLoopEndNode::TestValue, bol);
   916   }
   917   // Need only 1 user of 'cmp' because I will be hacking the loop bounds.
   918   if( cmp->outcnt() != 1 ) {
   919     cmp = cmp->clone();
   920     register_new_node(cmp,main_end->in(CountedLoopEndNode::TestControl));
   921     _igvn.hash_delete(bol);
   922     bol->set_req(1, cmp);
   923   }
   925   //------------------------------
   926   // Step A: Create Post-Loop.
   927   Node* main_exit = main_end->proj_out(false);
   928   assert( main_exit->Opcode() == Op_IfFalse, "" );
   929   int dd_main_exit = dom_depth(main_exit);
   931   // Step A1: Clone the loop body.  The clone becomes the post-loop.  The main
   932   // loop pre-header illegally has 2 control users (old & new loops).
   933   clone_loop( loop, old_new, dd_main_exit );
   934   assert( old_new[main_end ->_idx]->Opcode() == Op_CountedLoopEnd, "" );
   935   CountedLoopNode *post_head = old_new[main_head->_idx]->as_CountedLoop();
   936   post_head->set_post_loop(main_head);
   938   // Reduce the post-loop trip count.
   939   CountedLoopEndNode* post_end = old_new[main_end ->_idx]->as_CountedLoopEnd();
   940   post_end->_prob = PROB_FAIR;
   942   // Build the main-loop normal exit.
   943   IfFalseNode *new_main_exit = new (C) IfFalseNode(main_end);
   944   _igvn.register_new_node_with_optimizer( new_main_exit );
   945   set_idom(new_main_exit, main_end, dd_main_exit );
   946   set_loop(new_main_exit, loop->_parent);
   948   // Step A2: Build a zero-trip guard for the post-loop.  After leaving the
   949   // main-loop, the post-loop may not execute at all.  We 'opaque' the incr
   950   // (the main-loop trip-counter exit value) because we will be changing
   951   // the exit value (via unrolling) so we cannot constant-fold away the zero
   952   // trip guard until all unrolling is done.
   953   Node *zer_opaq = new (C) Opaque1Node(C, incr);
   954   Node *zer_cmp  = new (C) CmpINode( zer_opaq, limit );
   955   Node *zer_bol  = new (C) BoolNode( zer_cmp, b_test );
   956   register_new_node( zer_opaq, new_main_exit );
   957   register_new_node( zer_cmp , new_main_exit );
   958   register_new_node( zer_bol , new_main_exit );
   960   // Build the IfNode
   961   IfNode *zer_iff = new (C) IfNode( new_main_exit, zer_bol, PROB_FAIR, COUNT_UNKNOWN );
   962   _igvn.register_new_node_with_optimizer( zer_iff );
   963   set_idom(zer_iff, new_main_exit, dd_main_exit);
   964   set_loop(zer_iff, loop->_parent);
   966   // Plug in the false-path, taken if we need to skip post-loop
   967   _igvn.replace_input_of(main_exit, 0, zer_iff);
   968   set_idom(main_exit, zer_iff, dd_main_exit);
   969   set_idom(main_exit->unique_out(), zer_iff, dd_main_exit);
   970   // Make the true-path, must enter the post loop
   971   Node *zer_taken = new (C) IfTrueNode( zer_iff );
   972   _igvn.register_new_node_with_optimizer( zer_taken );
   973   set_idom(zer_taken, zer_iff, dd_main_exit);
   974   set_loop(zer_taken, loop->_parent);
   975   // Plug in the true path
   976   _igvn.hash_delete( post_head );
   977   post_head->set_req(LoopNode::EntryControl, zer_taken);
   978   set_idom(post_head, zer_taken, dd_main_exit);
   980   Arena *a = Thread::current()->resource_area();
   981   VectorSet visited(a);
   982   Node_Stack clones(a, main_head->back_control()->outcnt());
   983   // Step A3: Make the fall-in values to the post-loop come from the
   984   // fall-out values of the main-loop.
   985   for (DUIterator_Fast imax, i = main_head->fast_outs(imax); i < imax; i++) {
   986     Node* main_phi = main_head->fast_out(i);
   987     if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() >0 ) {
   988       Node *post_phi = old_new[main_phi->_idx];
   989       Node *fallmain  = clone_up_backedge_goo(main_head->back_control(),
   990                                               post_head->init_control(),
   991                                               main_phi->in(LoopNode::LoopBackControl),
   992                                               visited, clones);
   993       _igvn.hash_delete(post_phi);
   994       post_phi->set_req( LoopNode::EntryControl, fallmain );
   995     }
   996   }
   998   // Update local caches for next stanza
   999   main_exit = new_main_exit;
  1002   //------------------------------
  1003   // Step B: Create Pre-Loop.
  1005   // Step B1: Clone the loop body.  The clone becomes the pre-loop.  The main
  1006   // loop pre-header illegally has 2 control users (old & new loops).
  1007   clone_loop( loop, old_new, dd_main_head );
  1008   CountedLoopNode*    pre_head = old_new[main_head->_idx]->as_CountedLoop();
  1009   CountedLoopEndNode* pre_end  = old_new[main_end ->_idx]->as_CountedLoopEnd();
  1010   pre_head->set_pre_loop(main_head);
  1011   Node *pre_incr = old_new[incr->_idx];
  1013   // Reduce the pre-loop trip count.
  1014   pre_end->_prob = PROB_FAIR;
  1016   // Find the pre-loop normal exit.
  1017   Node* pre_exit = pre_end->proj_out(false);
  1018   assert( pre_exit->Opcode() == Op_IfFalse, "" );
  1019   IfFalseNode *new_pre_exit = new (C) IfFalseNode(pre_end);
  1020   _igvn.register_new_node_with_optimizer( new_pre_exit );
  1021   set_idom(new_pre_exit, pre_end, dd_main_head);
  1022   set_loop(new_pre_exit, loop->_parent);
  1024   // Step B2: Build a zero-trip guard for the main-loop.  After leaving the
  1025   // pre-loop, the main-loop may not execute at all.  Later in life this
  1026   // zero-trip guard will become the minimum-trip guard when we unroll
  1027   // the main-loop.
  1028   Node *min_opaq = new (C) Opaque1Node(C, limit);
  1029   Node *min_cmp  = new (C) CmpINode( pre_incr, min_opaq );
  1030   Node *min_bol  = new (C) BoolNode( min_cmp, b_test );
  1031   register_new_node( min_opaq, new_pre_exit );
  1032   register_new_node( min_cmp , new_pre_exit );
  1033   register_new_node( min_bol , new_pre_exit );
  1035   // Build the IfNode (assume the main-loop is executed always).
  1036   IfNode *min_iff = new (C) IfNode( new_pre_exit, min_bol, PROB_ALWAYS, COUNT_UNKNOWN );
  1037   _igvn.register_new_node_with_optimizer( min_iff );
  1038   set_idom(min_iff, new_pre_exit, dd_main_head);
  1039   set_loop(min_iff, loop->_parent);
  1041   // Plug in the false-path, taken if we need to skip main-loop
  1042   _igvn.hash_delete( pre_exit );
  1043   pre_exit->set_req(0, min_iff);
  1044   set_idom(pre_exit, min_iff, dd_main_head);
  1045   set_idom(pre_exit->unique_out(), min_iff, dd_main_head);
  1046   // Make the true-path, must enter the main loop
  1047   Node *min_taken = new (C) IfTrueNode( min_iff );
  1048   _igvn.register_new_node_with_optimizer( min_taken );
  1049   set_idom(min_taken, min_iff, dd_main_head);
  1050   set_loop(min_taken, loop->_parent);
  1051   // Plug in the true path
  1052   _igvn.hash_delete( main_head );
  1053   main_head->set_req(LoopNode::EntryControl, min_taken);
  1054   set_idom(main_head, min_taken, dd_main_head);
  1056   visited.Clear();
  1057   clones.clear();
  1058   // Step B3: Make the fall-in values to the main-loop come from the
  1059   // fall-out values of the pre-loop.
  1060   for (DUIterator_Fast i2max, i2 = main_head->fast_outs(i2max); i2 < i2max; i2++) {
  1061     Node* main_phi = main_head->fast_out(i2);
  1062     if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() > 0 ) {
  1063       Node *pre_phi = old_new[main_phi->_idx];
  1064       Node *fallpre  = clone_up_backedge_goo(pre_head->back_control(),
  1065                                              main_head->init_control(),
  1066                                              pre_phi->in(LoopNode::LoopBackControl),
  1067                                              visited, clones);
  1068       _igvn.hash_delete(main_phi);
  1069       main_phi->set_req( LoopNode::EntryControl, fallpre );
  1073   // Step B4: Shorten the pre-loop to run only 1 iteration (for now).
  1074   // RCE and alignment may change this later.
  1075   Node *cmp_end = pre_end->cmp_node();
  1076   assert( cmp_end->in(2) == limit, "" );
  1077   Node *pre_limit = new (C) AddINode( init, stride );
  1079   // Save the original loop limit in this Opaque1 node for
  1080   // use by range check elimination.
  1081   Node *pre_opaq  = new (C) Opaque1Node(C, pre_limit, limit);
  1083   register_new_node( pre_limit, pre_head->in(0) );
  1084   register_new_node( pre_opaq , pre_head->in(0) );
  1086   // Since no other users of pre-loop compare, I can hack limit directly
  1087   assert( cmp_end->outcnt() == 1, "no other users" );
  1088   _igvn.hash_delete(cmp_end);
  1089   cmp_end->set_req(2, peel_only ? pre_limit : pre_opaq);
  1091   // Special case for not-equal loop bounds:
  1092   // Change pre loop test, main loop test, and the
  1093   // main loop guard test to use lt or gt depending on stride
  1094   // direction:
  1095   // positive stride use <
  1096   // negative stride use >
  1097   //
  1098   // not-equal test is kept for post loop to handle case
  1099   // when init > limit when stride > 0 (and reverse).
  1101   if (pre_end->in(CountedLoopEndNode::TestValue)->as_Bool()->_test._test == BoolTest::ne) {
  1103     BoolTest::mask new_test = (main_end->stride_con() > 0) ? BoolTest::lt : BoolTest::gt;
  1104     // Modify pre loop end condition
  1105     Node* pre_bol = pre_end->in(CountedLoopEndNode::TestValue)->as_Bool();
  1106     BoolNode* new_bol0 = new (C) BoolNode(pre_bol->in(1), new_test);
  1107     register_new_node( new_bol0, pre_head->in(0) );
  1108     _igvn.hash_delete(pre_end);
  1109     pre_end->set_req(CountedLoopEndNode::TestValue, new_bol0);
  1110     // Modify main loop guard condition
  1111     assert(min_iff->in(CountedLoopEndNode::TestValue) == min_bol, "guard okay");
  1112     BoolNode* new_bol1 = new (C) BoolNode(min_bol->in(1), new_test);
  1113     register_new_node( new_bol1, new_pre_exit );
  1114     _igvn.hash_delete(min_iff);
  1115     min_iff->set_req(CountedLoopEndNode::TestValue, new_bol1);
  1116     // Modify main loop end condition
  1117     BoolNode* main_bol = main_end->in(CountedLoopEndNode::TestValue)->as_Bool();
  1118     BoolNode* new_bol2 = new (C) BoolNode(main_bol->in(1), new_test);
  1119     register_new_node( new_bol2, main_end->in(CountedLoopEndNode::TestControl) );
  1120     _igvn.hash_delete(main_end);
  1121     main_end->set_req(CountedLoopEndNode::TestValue, new_bol2);
  1124   // Flag main loop
  1125   main_head->set_main_loop();
  1126   if( peel_only ) main_head->set_main_no_pre_loop();
  1128   // Subtract a trip count for the pre-loop.
  1129   main_head->set_trip_count(main_head->trip_count() - 1);
  1131   // It's difficult to be precise about the trip-counts
  1132   // for the pre/post loops.  They are usually very short,
  1133   // so guess that 4 trips is a reasonable value.
  1134   post_head->set_profile_trip_cnt(4.0);
  1135   pre_head->set_profile_trip_cnt(4.0);
  1137   // Now force out all loop-invariant dominating tests.  The optimizer
  1138   // finds some, but we _know_ they are all useless.
  1139   peeled_dom_test_elim(loop,old_new);
  1142 //------------------------------is_invariant-----------------------------
  1143 // Return true if n is invariant
  1144 bool IdealLoopTree::is_invariant(Node* n) const {
  1145   Node *n_c = _phase->has_ctrl(n) ? _phase->get_ctrl(n) : n;
  1146   if (n_c->is_top()) return false;
  1147   return !is_member(_phase->get_loop(n_c));
  1151 //------------------------------do_unroll--------------------------------------
  1152 // Unroll the loop body one step - make each trip do 2 iterations.
  1153 void PhaseIdealLoop::do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip ) {
  1154   assert(LoopUnrollLimit, "");
  1155   CountedLoopNode *loop_head = loop->_head->as_CountedLoop();
  1156   CountedLoopEndNode *loop_end = loop_head->loopexit();
  1157   assert(loop_end, "");
  1158 #ifndef PRODUCT
  1159   if (PrintOpto && VerifyLoopOptimizations) {
  1160     tty->print("Unrolling ");
  1161     loop->dump_head();
  1162   } else if (TraceLoopOpts) {
  1163     if (loop_head->trip_count() < (uint)LoopUnrollLimit) {
  1164       tty->print("Unroll %d(%2d) ", loop_head->unrolled_count()*2, loop_head->trip_count());
  1165     } else {
  1166       tty->print("Unroll %d     ", loop_head->unrolled_count()*2);
  1168     loop->dump_head();
  1170 #endif
  1172   // Remember loop node count before unrolling to detect
  1173   // if rounds of unroll,optimize are making progress
  1174   loop_head->set_node_count_before_unroll(loop->_body.size());
  1176   Node *ctrl  = loop_head->in(LoopNode::EntryControl);
  1177   Node *limit = loop_head->limit();
  1178   Node *init  = loop_head->init_trip();
  1179   Node *stride = loop_head->stride();
  1181   Node *opaq = NULL;
  1182   if (adjust_min_trip) {       // If not maximally unrolling, need adjustment
  1183     // Search for zero-trip guard.
  1184     assert( loop_head->is_main_loop(), "" );
  1185     assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
  1186     Node *iff = ctrl->in(0);
  1187     assert( iff->Opcode() == Op_If, "" );
  1188     Node *bol = iff->in(1);
  1189     assert( bol->Opcode() == Op_Bool, "" );
  1190     Node *cmp = bol->in(1);
  1191     assert( cmp->Opcode() == Op_CmpI, "" );
  1192     opaq = cmp->in(2);
  1193     // Occasionally it's possible for a zero-trip guard Opaque1 node to be
  1194     // optimized away and then another round of loop opts attempted.
  1195     // We can not optimize this particular loop in that case.
  1196     if (opaq->Opcode() != Op_Opaque1)
  1197       return; // Cannot find zero-trip guard!  Bail out!
  1198     // Zero-trip test uses an 'opaque' node which is not shared.
  1199     assert(opaq->outcnt() == 1 && opaq->in(1) == limit, "");
  1202   C->set_major_progress();
  1204   Node* new_limit = NULL;
  1205   if (UnrollLimitCheck) {
  1206     int stride_con = stride->get_int();
  1207     int stride_p = (stride_con > 0) ? stride_con : -stride_con;
  1208     uint old_trip_count = loop_head->trip_count();
  1209     // Verify that unroll policy result is still valid.
  1210     assert(old_trip_count > 1 &&
  1211            (!adjust_min_trip || stride_p <= (1<<3)*loop_head->unrolled_count()), "sanity");
  1213     // Adjust loop limit to keep valid iterations number after unroll.
  1214     // Use (limit - stride) instead of (((limit - init)/stride) & (-2))*stride
  1215     // which may overflow.
  1216     if (!adjust_min_trip) {
  1217       assert(old_trip_count > 1 && (old_trip_count & 1) == 0,
  1218              "odd trip count for maximally unroll");
  1219       // Don't need to adjust limit for maximally unroll since trip count is even.
  1220     } else if (loop_head->has_exact_trip_count() && init->is_Con()) {
  1221       // Loop's limit is constant. Loop's init could be constant when pre-loop
  1222       // become peeled iteration.
  1223       jlong init_con = init->get_int();
  1224       // We can keep old loop limit if iterations count stays the same:
  1225       //   old_trip_count == new_trip_count * 2
  1226       // Note: since old_trip_count >= 2 then new_trip_count >= 1
  1227       // so we also don't need to adjust zero trip test.
  1228       jlong limit_con  = limit->get_int();
  1229       // (stride_con*2) not overflow since stride_con <= 8.
  1230       int new_stride_con = stride_con * 2;
  1231       int stride_m    = new_stride_con - (stride_con > 0 ? 1 : -1);
  1232       jlong trip_count = (limit_con - init_con + stride_m)/new_stride_con;
  1233       // New trip count should satisfy next conditions.
  1234       assert(trip_count > 0 && (julong)trip_count < (julong)max_juint/2, "sanity");
  1235       uint new_trip_count = (uint)trip_count;
  1236       adjust_min_trip = (old_trip_count != new_trip_count*2);
  1239     if (adjust_min_trip) {
  1240       // Step 2: Adjust the trip limit if it is called for.
  1241       // The adjustment amount is -stride. Need to make sure if the
  1242       // adjustment underflows or overflows, then the main loop is skipped.
  1243       Node* cmp = loop_end->cmp_node();
  1244       assert(cmp->in(2) == limit, "sanity");
  1245       assert(opaq != NULL && opaq->in(1) == limit, "sanity");
  1247       // Verify that policy_unroll result is still valid.
  1248       const TypeInt* limit_type = _igvn.type(limit)->is_int();
  1249       assert(stride_con > 0 && ((limit_type->_hi - stride_con) < limit_type->_hi) ||
  1250              stride_con < 0 && ((limit_type->_lo - stride_con) > limit_type->_lo), "sanity");
  1252       if (limit->is_Con()) {
  1253         // The check in policy_unroll and the assert above guarantee
  1254         // no underflow if limit is constant.
  1255         new_limit = _igvn.intcon(limit->get_int() - stride_con);
  1256         set_ctrl(new_limit, C->root());
  1257       } else {
  1258         // Limit is not constant.
  1259         if (loop_head->unrolled_count() == 1) { // only for first unroll
  1260           // Separate limit by Opaque node in case it is an incremented
  1261           // variable from previous loop to avoid using pre-incremented
  1262           // value which could increase register pressure.
  1263           // Otherwise reorg_offsets() optimization will create a separate
  1264           // Opaque node for each use of trip-counter and as result
  1265           // zero trip guard limit will be different from loop limit.
  1266           assert(has_ctrl(opaq), "should have it");
  1267           Node* opaq_ctrl = get_ctrl(opaq);
  1268           limit = new (C) Opaque2Node( C, limit );
  1269           register_new_node( limit, opaq_ctrl );
  1271         if (stride_con > 0 && ((limit_type->_lo - stride_con) < limit_type->_lo) ||
  1272                    stride_con < 0 && ((limit_type->_hi - stride_con) > limit_type->_hi)) {
  1273           // No underflow.
  1274           new_limit = new (C) SubINode(limit, stride);
  1275         } else {
  1276           // (limit - stride) may underflow.
  1277           // Clamp the adjustment value with MININT or MAXINT:
  1278           //
  1279           //   new_limit = limit-stride
  1280           //   if (stride > 0)
  1281           //     new_limit = (limit < new_limit) ? MININT : new_limit;
  1282           //   else
  1283           //     new_limit = (limit > new_limit) ? MAXINT : new_limit;
  1284           //
  1285           BoolTest::mask bt = loop_end->test_trip();
  1286           assert(bt == BoolTest::lt || bt == BoolTest::gt, "canonical test is expected");
  1287           Node* adj_max = _igvn.intcon((stride_con > 0) ? min_jint : max_jint);
  1288           set_ctrl(adj_max, C->root());
  1289           Node* old_limit = NULL;
  1290           Node* adj_limit = NULL;
  1291           Node* bol = limit->is_CMove() ? limit->in(CMoveNode::Condition) : NULL;
  1292           if (loop_head->unrolled_count() > 1 &&
  1293               limit->is_CMove() && limit->Opcode() == Op_CMoveI &&
  1294               limit->in(CMoveNode::IfTrue) == adj_max &&
  1295               bol->as_Bool()->_test._test == bt &&
  1296               bol->in(1)->Opcode() == Op_CmpI &&
  1297               bol->in(1)->in(2) == limit->in(CMoveNode::IfFalse)) {
  1298             // Loop was unrolled before.
  1299             // Optimize the limit to avoid nested CMove:
  1300             // use original limit as old limit.
  1301             old_limit = bol->in(1)->in(1);
  1302             // Adjust previous adjusted limit.
  1303             adj_limit = limit->in(CMoveNode::IfFalse);
  1304             adj_limit = new (C) SubINode(adj_limit, stride);
  1305           } else {
  1306             old_limit = limit;
  1307             adj_limit = new (C) SubINode(limit, stride);
  1309           assert(old_limit != NULL && adj_limit != NULL, "");
  1310           register_new_node( adj_limit, ctrl ); // adjust amount
  1311           Node* adj_cmp = new (C) CmpINode(old_limit, adj_limit);
  1312           register_new_node( adj_cmp, ctrl );
  1313           Node* adj_bool = new (C) BoolNode(adj_cmp, bt);
  1314           register_new_node( adj_bool, ctrl );
  1315           new_limit = new (C) CMoveINode(adj_bool, adj_limit, adj_max, TypeInt::INT);
  1317         register_new_node(new_limit, ctrl);
  1319       assert(new_limit != NULL, "");
  1320       // Replace in loop test.
  1321       assert(loop_end->in(1)->in(1) == cmp, "sanity");
  1322       if (cmp->outcnt() == 1 && loop_end->in(1)->outcnt() == 1) {
  1323         // Don't need to create new test since only one user.
  1324         _igvn.hash_delete(cmp);
  1325         cmp->set_req(2, new_limit);
  1326       } else {
  1327         // Create new test since it is shared.
  1328         Node* ctrl2 = loop_end->in(0);
  1329         Node* cmp2  = cmp->clone();
  1330         cmp2->set_req(2, new_limit);
  1331         register_new_node(cmp2, ctrl2);
  1332         Node* bol2 = loop_end->in(1)->clone();
  1333         bol2->set_req(1, cmp2);
  1334         register_new_node(bol2, ctrl2);
  1335         _igvn.hash_delete(loop_end);
  1336         loop_end->set_req(1, bol2);
  1338       // Step 3: Find the min-trip test guaranteed before a 'main' loop.
  1339       // Make it a 1-trip test (means at least 2 trips).
  1341       // Guard test uses an 'opaque' node which is not shared.  Hence I
  1342       // can edit it's inputs directly.  Hammer in the new limit for the
  1343       // minimum-trip guard.
  1344       assert(opaq->outcnt() == 1, "");
  1345       _igvn.hash_delete(opaq);
  1346       opaq->set_req(1, new_limit);
  1349     // Adjust max trip count. The trip count is intentionally rounded
  1350     // down here (e.g. 15-> 7-> 3-> 1) because if we unwittingly over-unroll,
  1351     // the main, unrolled, part of the loop will never execute as it is protected
  1352     // by the min-trip test.  See bug 4834191 for a case where we over-unrolled
  1353     // and later determined that part of the unrolled loop was dead.
  1354     loop_head->set_trip_count(old_trip_count / 2);
  1356     // Double the count of original iterations in the unrolled loop body.
  1357     loop_head->double_unrolled_count();
  1359   } else { // LoopLimitCheck
  1361     // Adjust max trip count. The trip count is intentionally rounded
  1362     // down here (e.g. 15-> 7-> 3-> 1) because if we unwittingly over-unroll,
  1363     // the main, unrolled, part of the loop will never execute as it is protected
  1364     // by the min-trip test.  See bug 4834191 for a case where we over-unrolled
  1365     // and later determined that part of the unrolled loop was dead.
  1366     loop_head->set_trip_count(loop_head->trip_count() / 2);
  1368     // Double the count of original iterations in the unrolled loop body.
  1369     loop_head->double_unrolled_count();
  1371     // -----------
  1372     // Step 2: Cut back the trip counter for an unroll amount of 2.
  1373     // Loop will normally trip (limit - init)/stride_con.  Since it's a
  1374     // CountedLoop this is exact (stride divides limit-init exactly).
  1375     // We are going to double the loop body, so we want to knock off any
  1376     // odd iteration: (trip_cnt & ~1).  Then back compute a new limit.
  1377     Node *span = new (C) SubINode( limit, init );
  1378     register_new_node( span, ctrl );
  1379     Node *trip = new (C) DivINode( 0, span, stride );
  1380     register_new_node( trip, ctrl );
  1381     Node *mtwo = _igvn.intcon(-2);
  1382     set_ctrl(mtwo, C->root());
  1383     Node *rond = new (C) AndINode( trip, mtwo );
  1384     register_new_node( rond, ctrl );
  1385     Node *spn2 = new (C) MulINode( rond, stride );
  1386     register_new_node( spn2, ctrl );
  1387     new_limit = new (C) AddINode( spn2, init );
  1388     register_new_node( new_limit, ctrl );
  1390     // Hammer in the new limit
  1391     Node *ctrl2 = loop_end->in(0);
  1392     Node *cmp2 = new (C) CmpINode( loop_head->incr(), new_limit );
  1393     register_new_node( cmp2, ctrl2 );
  1394     Node *bol2 = new (C) BoolNode( cmp2, loop_end->test_trip() );
  1395     register_new_node( bol2, ctrl2 );
  1396     _igvn.hash_delete(loop_end);
  1397     loop_end->set_req(CountedLoopEndNode::TestValue, bol2);
  1399     // Step 3: Find the min-trip test guaranteed before a 'main' loop.
  1400     // Make it a 1-trip test (means at least 2 trips).
  1401     if( adjust_min_trip ) {
  1402       assert( new_limit != NULL, "" );
  1403       // Guard test uses an 'opaque' node which is not shared.  Hence I
  1404       // can edit it's inputs directly.  Hammer in the new limit for the
  1405       // minimum-trip guard.
  1406       assert( opaq->outcnt() == 1, "" );
  1407       _igvn.hash_delete(opaq);
  1408       opaq->set_req(1, new_limit);
  1410   } // LoopLimitCheck
  1412   // ---------
  1413   // Step 4: Clone the loop body.  Move it inside the loop.  This loop body
  1414   // represents the odd iterations; since the loop trips an even number of
  1415   // times its backedge is never taken.  Kill the backedge.
  1416   uint dd = dom_depth(loop_head);
  1417   clone_loop( loop, old_new, dd );
  1419   // Make backedges of the clone equal to backedges of the original.
  1420   // Make the fall-in from the original come from the fall-out of the clone.
  1421   for (DUIterator_Fast jmax, j = loop_head->fast_outs(jmax); j < jmax; j++) {
  1422     Node* phi = loop_head->fast_out(j);
  1423     if( phi->is_Phi() && phi->in(0) == loop_head && phi->outcnt() > 0 ) {
  1424       Node *newphi = old_new[phi->_idx];
  1425       _igvn.hash_delete( phi );
  1426       _igvn.hash_delete( newphi );
  1428       phi   ->set_req(LoopNode::   EntryControl, newphi->in(LoopNode::LoopBackControl));
  1429       newphi->set_req(LoopNode::LoopBackControl, phi   ->in(LoopNode::LoopBackControl));
  1430       phi   ->set_req(LoopNode::LoopBackControl, C->top());
  1433   Node *clone_head = old_new[loop_head->_idx];
  1434   _igvn.hash_delete( clone_head );
  1435   loop_head ->set_req(LoopNode::   EntryControl, clone_head->in(LoopNode::LoopBackControl));
  1436   clone_head->set_req(LoopNode::LoopBackControl, loop_head ->in(LoopNode::LoopBackControl));
  1437   loop_head ->set_req(LoopNode::LoopBackControl, C->top());
  1438   loop->_head = clone_head;     // New loop header
  1440   set_idom(loop_head,  loop_head ->in(LoopNode::EntryControl), dd);
  1441   set_idom(clone_head, clone_head->in(LoopNode::EntryControl), dd);
  1443   // Kill the clone's backedge
  1444   Node *newcle = old_new[loop_end->_idx];
  1445   _igvn.hash_delete( newcle );
  1446   Node *one = _igvn.intcon(1);
  1447   set_ctrl(one, C->root());
  1448   newcle->set_req(1, one);
  1449   // Force clone into same loop body
  1450   uint max = loop->_body.size();
  1451   for( uint k = 0; k < max; k++ ) {
  1452     Node *old = loop->_body.at(k);
  1453     Node *nnn = old_new[old->_idx];
  1454     loop->_body.push(nnn);
  1455     if (!has_ctrl(old))
  1456       set_loop(nnn, loop);
  1459   loop->record_for_igvn();
  1462 //------------------------------do_maximally_unroll----------------------------
  1464 void PhaseIdealLoop::do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new ) {
  1465   CountedLoopNode *cl = loop->_head->as_CountedLoop();
  1466   assert(cl->has_exact_trip_count(), "trip count is not exact");
  1467   assert(cl->trip_count() > 0, "");
  1468 #ifndef PRODUCT
  1469   if (TraceLoopOpts) {
  1470     tty->print("MaxUnroll  %d ", cl->trip_count());
  1471     loop->dump_head();
  1473 #endif
  1475   // If loop is tripping an odd number of times, peel odd iteration
  1476   if ((cl->trip_count() & 1) == 1) {
  1477     do_peeling(loop, old_new);
  1480   // Now its tripping an even number of times remaining.  Double loop body.
  1481   // Do not adjust pre-guards; they are not needed and do not exist.
  1482   if (cl->trip_count() > 0) {
  1483     assert((cl->trip_count() & 1) == 0, "missed peeling");
  1484     do_unroll(loop, old_new, false);
  1488 //------------------------------dominates_backedge---------------------------------
  1489 // Returns true if ctrl is executed on every complete iteration
  1490 bool IdealLoopTree::dominates_backedge(Node* ctrl) {
  1491   assert(ctrl->is_CFG(), "must be control");
  1492   Node* backedge = _head->as_Loop()->in(LoopNode::LoopBackControl);
  1493   return _phase->dom_lca_internal(ctrl, backedge) == ctrl;
  1496 //------------------------------adjust_limit-----------------------------------
  1497 // Helper function for add_constraint().
  1498 Node* PhaseIdealLoop::adjust_limit(int stride_con, Node * scale, Node *offset, Node *rc_limit, Node *loop_limit, Node *pre_ctrl) {
  1499   // Compute "I :: (limit-offset)/scale"
  1500   Node *con = new (C) SubINode(rc_limit, offset);
  1501   register_new_node(con, pre_ctrl);
  1502   Node *X = new (C) DivINode(0, con, scale);
  1503   register_new_node(X, pre_ctrl);
  1505   // Adjust loop limit
  1506   loop_limit = (stride_con > 0)
  1507                ? (Node*)(new (C) MinINode(loop_limit, X))
  1508                : (Node*)(new (C) MaxINode(loop_limit, X));
  1509   register_new_node(loop_limit, pre_ctrl);
  1510   return loop_limit;
  1513 //------------------------------add_constraint---------------------------------
  1514 // Constrain the main loop iterations so the conditions:
  1515 //    low_limit <= scale_con * I + offset  <  upper_limit
  1516 // always holds true.  That is, either increase the number of iterations in
  1517 // the pre-loop or the post-loop until the condition holds true in the main
  1518 // loop.  Stride, scale, offset and limit are all loop invariant.  Further,
  1519 // stride and scale are constants (offset and limit often are).
  1520 void PhaseIdealLoop::add_constraint( int stride_con, int scale_con, Node *offset, Node *low_limit, Node *upper_limit, Node *pre_ctrl, Node **pre_limit, Node **main_limit ) {
  1521   // For positive stride, the pre-loop limit always uses a MAX function
  1522   // and the main loop a MIN function.  For negative stride these are
  1523   // reversed.
  1525   // Also for positive stride*scale the affine function is increasing, so the
  1526   // pre-loop must check for underflow and the post-loop for overflow.
  1527   // Negative stride*scale reverses this; pre-loop checks for overflow and
  1528   // post-loop for underflow.
  1530   Node *scale = _igvn.intcon(scale_con);
  1531   set_ctrl(scale, C->root());
  1533   if ((stride_con^scale_con) >= 0) { // Use XOR to avoid overflow
  1534     // The overflow limit: scale*I+offset < upper_limit
  1535     // For main-loop compute
  1536     //   ( if (scale > 0) /* and stride > 0 */
  1537     //       I < (upper_limit-offset)/scale
  1538     //     else /* scale < 0 and stride < 0 */
  1539     //       I > (upper_limit-offset)/scale
  1540     //   )
  1541     //
  1542     // (upper_limit-offset) may overflow or underflow.
  1543     // But it is fine since main loop will either have
  1544     // less iterations or will be skipped in such case.
  1545     *main_limit = adjust_limit(stride_con, scale, offset, upper_limit, *main_limit, pre_ctrl);
  1547     // The underflow limit: low_limit <= scale*I+offset.
  1548     // For pre-loop compute
  1549     //   NOT(scale*I+offset >= low_limit)
  1550     //   scale*I+offset < low_limit
  1551     //   ( if (scale > 0) /* and stride > 0 */
  1552     //       I < (low_limit-offset)/scale
  1553     //     else /* scale < 0 and stride < 0 */
  1554     //       I > (low_limit-offset)/scale
  1555     //   )
  1557     if (low_limit->get_int() == -max_jint) {
  1558       if (!RangeLimitCheck) return;
  1559       // We need this guard when scale*pre_limit+offset >= limit
  1560       // due to underflow. So we need execute pre-loop until
  1561       // scale*I+offset >= min_int. But (min_int-offset) will
  1562       // underflow when offset > 0 and X will be > original_limit
  1563       // when stride > 0. To avoid it we replace positive offset with 0.
  1564       //
  1565       // Also (min_int+1 == -max_int) is used instead of min_int here
  1566       // to avoid problem with scale == -1 (min_int/(-1) == min_int).
  1567       Node* shift = _igvn.intcon(31);
  1568       set_ctrl(shift, C->root());
  1569       Node* sign = new (C) RShiftINode(offset, shift);
  1570       register_new_node(sign, pre_ctrl);
  1571       offset = new (C) AndINode(offset, sign);
  1572       register_new_node(offset, pre_ctrl);
  1573     } else {
  1574       assert(low_limit->get_int() == 0, "wrong low limit for range check");
  1575       // The only problem we have here when offset == min_int
  1576       // since (0-min_int) == min_int. It may be fine for stride > 0
  1577       // but for stride < 0 X will be < original_limit. To avoid it
  1578       // max(pre_limit, original_limit) is used in do_range_check().
  1580     // Pass (-stride) to indicate pre_loop_cond = NOT(main_loop_cond);
  1581     *pre_limit = adjust_limit((-stride_con), scale, offset, low_limit, *pre_limit, pre_ctrl);
  1583   } else { // stride_con*scale_con < 0
  1584     // For negative stride*scale pre-loop checks for overflow and
  1585     // post-loop for underflow.
  1586     //
  1587     // The overflow limit: scale*I+offset < upper_limit
  1588     // For pre-loop compute
  1589     //   NOT(scale*I+offset < upper_limit)
  1590     //   scale*I+offset >= upper_limit
  1591     //   scale*I+offset+1 > upper_limit
  1592     //   ( if (scale < 0) /* and stride > 0 */
  1593     //       I < (upper_limit-(offset+1))/scale
  1594     //     else /* scale > 0 and stride < 0 */
  1595     //       I > (upper_limit-(offset+1))/scale
  1596     //   )
  1597     //
  1598     // (upper_limit-offset-1) may underflow or overflow.
  1599     // To avoid it min(pre_limit, original_limit) is used
  1600     // in do_range_check() for stride > 0 and max() for < 0.
  1601     Node *one  = _igvn.intcon(1);
  1602     set_ctrl(one, C->root());
  1604     Node *plus_one = new (C) AddINode(offset, one);
  1605     register_new_node( plus_one, pre_ctrl );
  1606     // Pass (-stride) to indicate pre_loop_cond = NOT(main_loop_cond);
  1607     *pre_limit = adjust_limit((-stride_con), scale, plus_one, upper_limit, *pre_limit, pre_ctrl);
  1609     if (low_limit->get_int() == -max_jint) {
  1610       if (!RangeLimitCheck) return;
  1611       // We need this guard when scale*main_limit+offset >= limit
  1612       // due to underflow. So we need execute main-loop while
  1613       // scale*I+offset+1 > min_int. But (min_int-offset-1) will
  1614       // underflow when (offset+1) > 0 and X will be < main_limit
  1615       // when scale < 0 (and stride > 0). To avoid it we replace
  1616       // positive (offset+1) with 0.
  1617       //
  1618       // Also (min_int+1 == -max_int) is used instead of min_int here
  1619       // to avoid problem with scale == -1 (min_int/(-1) == min_int).
  1620       Node* shift = _igvn.intcon(31);
  1621       set_ctrl(shift, C->root());
  1622       Node* sign = new (C) RShiftINode(plus_one, shift);
  1623       register_new_node(sign, pre_ctrl);
  1624       plus_one = new (C) AndINode(plus_one, sign);
  1625       register_new_node(plus_one, pre_ctrl);
  1626     } else {
  1627       assert(low_limit->get_int() == 0, "wrong low limit for range check");
  1628       // The only problem we have here when offset == max_int
  1629       // since (max_int+1) == min_int and (0-min_int) == min_int.
  1630       // But it is fine since main loop will either have
  1631       // less iterations or will be skipped in such case.
  1633     // The underflow limit: low_limit <= scale*I+offset.
  1634     // For main-loop compute
  1635     //   scale*I+offset+1 > low_limit
  1636     //   ( if (scale < 0) /* and stride > 0 */
  1637     //       I < (low_limit-(offset+1))/scale
  1638     //     else /* scale > 0 and stride < 0 */
  1639     //       I > (low_limit-(offset+1))/scale
  1640     //   )
  1642     *main_limit = adjust_limit(stride_con, scale, plus_one, low_limit, *main_limit, pre_ctrl);
  1647 //------------------------------is_scaled_iv---------------------------------
  1648 // Return true if exp is a constant times an induction var
  1649 bool PhaseIdealLoop::is_scaled_iv(Node* exp, Node* iv, int* p_scale) {
  1650   if (exp == iv) {
  1651     if (p_scale != NULL) {
  1652       *p_scale = 1;
  1654     return true;
  1656   int opc = exp->Opcode();
  1657   if (opc == Op_MulI) {
  1658     if (exp->in(1) == iv && exp->in(2)->is_Con()) {
  1659       if (p_scale != NULL) {
  1660         *p_scale = exp->in(2)->get_int();
  1662       return true;
  1664     if (exp->in(2) == iv && exp->in(1)->is_Con()) {
  1665       if (p_scale != NULL) {
  1666         *p_scale = exp->in(1)->get_int();
  1668       return true;
  1670   } else if (opc == Op_LShiftI) {
  1671     if (exp->in(1) == iv && exp->in(2)->is_Con()) {
  1672       if (p_scale != NULL) {
  1673         *p_scale = 1 << exp->in(2)->get_int();
  1675       return true;
  1678   return false;
  1681 //-----------------------------is_scaled_iv_plus_offset------------------------------
  1682 // Return true if exp is a simple induction variable expression: k1*iv + (invar + k2)
  1683 bool PhaseIdealLoop::is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset, int depth) {
  1684   if (is_scaled_iv(exp, iv, p_scale)) {
  1685     if (p_offset != NULL) {
  1686       Node *zero = _igvn.intcon(0);
  1687       set_ctrl(zero, C->root());
  1688       *p_offset = zero;
  1690     return true;
  1692   int opc = exp->Opcode();
  1693   if (opc == Op_AddI) {
  1694     if (is_scaled_iv(exp->in(1), iv, p_scale)) {
  1695       if (p_offset != NULL) {
  1696         *p_offset = exp->in(2);
  1698       return true;
  1700     if (exp->in(2)->is_Con()) {
  1701       Node* offset2 = NULL;
  1702       if (depth < 2 &&
  1703           is_scaled_iv_plus_offset(exp->in(1), iv, p_scale,
  1704                                    p_offset != NULL ? &offset2 : NULL, depth+1)) {
  1705         if (p_offset != NULL) {
  1706           Node *ctrl_off2 = get_ctrl(offset2);
  1707           Node* offset = new (C) AddINode(offset2, exp->in(2));
  1708           register_new_node(offset, ctrl_off2);
  1709           *p_offset = offset;
  1711         return true;
  1714   } else if (opc == Op_SubI) {
  1715     if (is_scaled_iv(exp->in(1), iv, p_scale)) {
  1716       if (p_offset != NULL) {
  1717         Node *zero = _igvn.intcon(0);
  1718         set_ctrl(zero, C->root());
  1719         Node *ctrl_off = get_ctrl(exp->in(2));
  1720         Node* offset = new (C) SubINode(zero, exp->in(2));
  1721         register_new_node(offset, ctrl_off);
  1722         *p_offset = offset;
  1724       return true;
  1726     if (is_scaled_iv(exp->in(2), iv, p_scale)) {
  1727       if (p_offset != NULL) {
  1728         *p_scale *= -1;
  1729         *p_offset = exp->in(1);
  1731       return true;
  1734   return false;
  1737 //------------------------------do_range_check---------------------------------
  1738 // Eliminate range-checks and other trip-counter vs loop-invariant tests.
  1739 void PhaseIdealLoop::do_range_check( IdealLoopTree *loop, Node_List &old_new ) {
  1740 #ifndef PRODUCT
  1741   if (PrintOpto && VerifyLoopOptimizations) {
  1742     tty->print("Range Check Elimination ");
  1743     loop->dump_head();
  1744   } else if (TraceLoopOpts) {
  1745     tty->print("RangeCheck   ");
  1746     loop->dump_head();
  1748 #endif
  1749   assert(RangeCheckElimination, "");
  1750   CountedLoopNode *cl = loop->_head->as_CountedLoop();
  1751   assert(cl->is_main_loop(), "");
  1753   // protect against stride not being a constant
  1754   if (!cl->stride_is_con())
  1755     return;
  1757   // Find the trip counter; we are iteration splitting based on it
  1758   Node *trip_counter = cl->phi();
  1759   // Find the main loop limit; we will trim it's iterations
  1760   // to not ever trip end tests
  1761   Node *main_limit = cl->limit();
  1763   // Need to find the main-loop zero-trip guard
  1764   Node *ctrl  = cl->in(LoopNode::EntryControl);
  1765   assert(ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "");
  1766   Node *iffm = ctrl->in(0);
  1767   assert(iffm->Opcode() == Op_If, "");
  1768   Node *bolzm = iffm->in(1);
  1769   assert(bolzm->Opcode() == Op_Bool, "");
  1770   Node *cmpzm = bolzm->in(1);
  1771   assert(cmpzm->is_Cmp(), "");
  1772   Node *opqzm = cmpzm->in(2);
  1773   // Can not optimize a loop if zero-trip Opaque1 node is optimized
  1774   // away and then another round of loop opts attempted.
  1775   if (opqzm->Opcode() != Op_Opaque1)
  1776     return;
  1777   assert(opqzm->in(1) == main_limit, "do not understand situation");
  1779   // Find the pre-loop limit; we will expand it's iterations to
  1780   // not ever trip low tests.
  1781   Node *p_f = iffm->in(0);
  1782   assert(p_f->Opcode() == Op_IfFalse, "");
  1783   CountedLoopEndNode *pre_end = p_f->in(0)->as_CountedLoopEnd();
  1784   assert(pre_end->loopnode()->is_pre_loop(), "");
  1785   Node *pre_opaq1 = pre_end->limit();
  1786   // Occasionally it's possible for a pre-loop Opaque1 node to be
  1787   // optimized away and then another round of loop opts attempted.
  1788   // We can not optimize this particular loop in that case.
  1789   if (pre_opaq1->Opcode() != Op_Opaque1)
  1790     return;
  1791   Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
  1792   Node *pre_limit = pre_opaq->in(1);
  1794   // Where do we put new limit calculations
  1795   Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
  1797   // Ensure the original loop limit is available from the
  1798   // pre-loop Opaque1 node.
  1799   Node *orig_limit = pre_opaq->original_loop_limit();
  1800   if (orig_limit == NULL || _igvn.type(orig_limit) == Type::TOP)
  1801     return;
  1803   // Must know if its a count-up or count-down loop
  1805   int stride_con = cl->stride_con();
  1806   Node *zero = _igvn.intcon(0);
  1807   Node *one  = _igvn.intcon(1);
  1808   // Use symmetrical int range [-max_jint,max_jint]
  1809   Node *mini = _igvn.intcon(-max_jint);
  1810   set_ctrl(zero, C->root());
  1811   set_ctrl(one,  C->root());
  1812   set_ctrl(mini, C->root());
  1814   // Range checks that do not dominate the loop backedge (ie.
  1815   // conditionally executed) can lengthen the pre loop limit beyond
  1816   // the original loop limit. To prevent this, the pre limit is
  1817   // (for stride > 0) MINed with the original loop limit (MAXed
  1818   // stride < 0) when some range_check (rc) is conditionally
  1819   // executed.
  1820   bool conditional_rc = false;
  1822   // Check loop body for tests of trip-counter plus loop-invariant vs
  1823   // loop-invariant.
  1824   for( uint i = 0; i < loop->_body.size(); i++ ) {
  1825     Node *iff = loop->_body[i];
  1826     if( iff->Opcode() == Op_If ) { // Test?
  1828       // Test is an IfNode, has 2 projections.  If BOTH are in the loop
  1829       // we need loop unswitching instead of iteration splitting.
  1830       Node *exit = loop->is_loop_exit(iff);
  1831       if( !exit ) continue;
  1832       int flip = (exit->Opcode() == Op_IfTrue) ? 1 : 0;
  1834       // Get boolean condition to test
  1835       Node *i1 = iff->in(1);
  1836       if( !i1->is_Bool() ) continue;
  1837       BoolNode *bol = i1->as_Bool();
  1838       BoolTest b_test = bol->_test;
  1839       // Flip sense of test if exit condition is flipped
  1840       if( flip )
  1841         b_test = b_test.negate();
  1843       // Get compare
  1844       Node *cmp = bol->in(1);
  1846       // Look for trip_counter + offset vs limit
  1847       Node *rc_exp = cmp->in(1);
  1848       Node *limit  = cmp->in(2);
  1849       jint scale_con= 1;        // Assume trip counter not scaled
  1851       Node *limit_c = get_ctrl(limit);
  1852       if( loop->is_member(get_loop(limit_c) ) ) {
  1853         // Compare might have operands swapped; commute them
  1854         b_test = b_test.commute();
  1855         rc_exp = cmp->in(2);
  1856         limit  = cmp->in(1);
  1857         limit_c = get_ctrl(limit);
  1858         if( loop->is_member(get_loop(limit_c) ) )
  1859           continue;             // Both inputs are loop varying; cannot RCE
  1861       // Here we know 'limit' is loop invariant
  1863       // 'limit' maybe pinned below the zero trip test (probably from a
  1864       // previous round of rce), in which case, it can't be used in the
  1865       // zero trip test expression which must occur before the zero test's if.
  1866       if( limit_c == ctrl ) {
  1867         continue;  // Don't rce this check but continue looking for other candidates.
  1870       // Check for scaled induction variable plus an offset
  1871       Node *offset = NULL;
  1873       if (!is_scaled_iv_plus_offset(rc_exp, trip_counter, &scale_con, &offset)) {
  1874         continue;
  1877       Node *offset_c = get_ctrl(offset);
  1878       if( loop->is_member( get_loop(offset_c) ) )
  1879         continue;               // Offset is not really loop invariant
  1880       // Here we know 'offset' is loop invariant.
  1882       // As above for the 'limit', the 'offset' maybe pinned below the
  1883       // zero trip test.
  1884       if( offset_c == ctrl ) {
  1885         continue; // Don't rce this check but continue looking for other candidates.
  1887 #ifdef ASSERT
  1888       if (TraceRangeLimitCheck) {
  1889         tty->print_cr("RC bool node%s", flip ? " flipped:" : ":");
  1890         bol->dump(2);
  1892 #endif
  1893       // At this point we have the expression as:
  1894       //   scale_con * trip_counter + offset :: limit
  1895       // where scale_con, offset and limit are loop invariant.  Trip_counter
  1896       // monotonically increases by stride_con, a constant.  Both (or either)
  1897       // stride_con and scale_con can be negative which will flip about the
  1898       // sense of the test.
  1900       // Adjust pre and main loop limits to guard the correct iteration set
  1901       if( cmp->Opcode() == Op_CmpU ) {// Unsigned compare is really 2 tests
  1902         if( b_test._test == BoolTest::lt ) { // Range checks always use lt
  1903           // The underflow and overflow limits: 0 <= scale*I+offset < limit
  1904           add_constraint( stride_con, scale_con, offset, zero, limit, pre_ctrl, &pre_limit, &main_limit );
  1905           if (!conditional_rc) {
  1906             // (0-offset)/scale could be outside of loop iterations range.
  1907             conditional_rc = !loop->dominates_backedge(iff) || RangeLimitCheck;
  1909         } else {
  1910 #ifndef PRODUCT
  1911           if( PrintOpto )
  1912             tty->print_cr("missed RCE opportunity");
  1913 #endif
  1914           continue;             // In release mode, ignore it
  1916       } else {                  // Otherwise work on normal compares
  1917         switch( b_test._test ) {
  1918         case BoolTest::gt:
  1919           // Fall into GE case
  1920         case BoolTest::ge:
  1921           // Convert (I*scale+offset) >= Limit to (I*(-scale)+(-offset)) <= -Limit
  1922           scale_con = -scale_con;
  1923           offset = new (C) SubINode( zero, offset );
  1924           register_new_node( offset, pre_ctrl );
  1925           limit  = new (C) SubINode( zero, limit  );
  1926           register_new_node( limit, pre_ctrl );
  1927           // Fall into LE case
  1928         case BoolTest::le:
  1929           if (b_test._test != BoolTest::gt) {
  1930             // Convert X <= Y to X < Y+1
  1931             limit = new (C) AddINode( limit, one );
  1932             register_new_node( limit, pre_ctrl );
  1934           // Fall into LT case
  1935         case BoolTest::lt:
  1936           // The underflow and overflow limits: MIN_INT <= scale*I+offset < limit
  1937           // Note: (MIN_INT+1 == -MAX_INT) is used instead of MIN_INT here
  1938           // to avoid problem with scale == -1: MIN_INT/(-1) == MIN_INT.
  1939           add_constraint( stride_con, scale_con, offset, mini, limit, pre_ctrl, &pre_limit, &main_limit );
  1940           if (!conditional_rc) {
  1941             // ((MIN_INT+1)-offset)/scale could be outside of loop iterations range.
  1942             // Note: negative offset is replaced with 0 but (MIN_INT+1)/scale could
  1943             // still be outside of loop range.
  1944             conditional_rc = !loop->dominates_backedge(iff) || RangeLimitCheck;
  1946           break;
  1947         default:
  1948 #ifndef PRODUCT
  1949           if( PrintOpto )
  1950             tty->print_cr("missed RCE opportunity");
  1951 #endif
  1952           continue;             // Unhandled case
  1956       // Kill the eliminated test
  1957       C->set_major_progress();
  1958       Node *kill_con = _igvn.intcon( 1-flip );
  1959       set_ctrl(kill_con, C->root());
  1960       _igvn.replace_input_of(iff, 1, kill_con);
  1961       // Find surviving projection
  1962       assert(iff->is_If(), "");
  1963       ProjNode* dp = ((IfNode*)iff)->proj_out(1-flip);
  1964       // Find loads off the surviving projection; remove their control edge
  1965       for (DUIterator_Fast imax, i = dp->fast_outs(imax); i < imax; i++) {
  1966         Node* cd = dp->fast_out(i); // Control-dependent node
  1967         if (cd->is_Load() && cd->depends_only_on_test()) {   // Loads can now float around in the loop
  1968           // Allow the load to float around in the loop, or before it
  1969           // but NOT before the pre-loop.
  1970           _igvn.replace_input_of(cd, 0, ctrl); // ctrl, not NULL
  1971           --i;
  1972           --imax;
  1976     } // End of is IF
  1980   // Update loop limits
  1981   if (conditional_rc) {
  1982     pre_limit = (stride_con > 0) ? (Node*)new (C) MinINode(pre_limit, orig_limit)
  1983                                  : (Node*)new (C) MaxINode(pre_limit, orig_limit);
  1984     register_new_node(pre_limit, pre_ctrl);
  1986   _igvn.hash_delete(pre_opaq);
  1987   pre_opaq->set_req(1, pre_limit);
  1989   // Note:: we are making the main loop limit no longer precise;
  1990   // need to round up based on stride.
  1991   cl->set_nonexact_trip_count();
  1992   if (!LoopLimitCheck && stride_con != 1 && stride_con != -1) { // Cutout for common case
  1993     // "Standard" round-up logic:  ([main_limit-init+(y-1)]/y)*y+init
  1994     // Hopefully, compiler will optimize for powers of 2.
  1995     Node *ctrl = get_ctrl(main_limit);
  1996     Node *stride = cl->stride();
  1997     Node *init = cl->init_trip();
  1998     Node *span = new (C) SubINode(main_limit,init);
  1999     register_new_node(span,ctrl);
  2000     Node *rndup = _igvn.intcon(stride_con + ((stride_con>0)?-1:1));
  2001     Node *add = new (C) AddINode(span,rndup);
  2002     register_new_node(add,ctrl);
  2003     Node *div = new (C) DivINode(0,add,stride);
  2004     register_new_node(div,ctrl);
  2005     Node *mul = new (C) MulINode(div,stride);
  2006     register_new_node(mul,ctrl);
  2007     Node *newlim = new (C) AddINode(mul,init);
  2008     register_new_node(newlim,ctrl);
  2009     main_limit = newlim;
  2012   Node *main_cle = cl->loopexit();
  2013   Node *main_bol = main_cle->in(1);
  2014   // Hacking loop bounds; need private copies of exit test
  2015   if( main_bol->outcnt() > 1 ) {// BoolNode shared?
  2016     _igvn.hash_delete(main_cle);
  2017     main_bol = main_bol->clone();// Clone a private BoolNode
  2018     register_new_node( main_bol, main_cle->in(0) );
  2019     main_cle->set_req(1,main_bol);
  2021   Node *main_cmp = main_bol->in(1);
  2022   if( main_cmp->outcnt() > 1 ) { // CmpNode shared?
  2023     _igvn.hash_delete(main_bol);
  2024     main_cmp = main_cmp->clone();// Clone a private CmpNode
  2025     register_new_node( main_cmp, main_cle->in(0) );
  2026     main_bol->set_req(1,main_cmp);
  2028   // Hack the now-private loop bounds
  2029   _igvn.replace_input_of(main_cmp, 2, main_limit);
  2030   // The OpaqueNode is unshared by design
  2031   assert( opqzm->outcnt() == 1, "cannot hack shared node" );
  2032   _igvn.replace_input_of(opqzm, 1, main_limit);
  2035 //------------------------------DCE_loop_body----------------------------------
  2036 // Remove simplistic dead code from loop body
  2037 void IdealLoopTree::DCE_loop_body() {
  2038   for( uint i = 0; i < _body.size(); i++ )
  2039     if( _body.at(i)->outcnt() == 0 )
  2040       _body.map( i--, _body.pop() );
  2044 //------------------------------adjust_loop_exit_prob--------------------------
  2045 // Look for loop-exit tests with the 50/50 (or worse) guesses from the parsing stage.
  2046 // Replace with a 1-in-10 exit guess.
  2047 void IdealLoopTree::adjust_loop_exit_prob( PhaseIdealLoop *phase ) {
  2048   Node *test = tail();
  2049   while( test != _head ) {
  2050     uint top = test->Opcode();
  2051     if( top == Op_IfTrue || top == Op_IfFalse ) {
  2052       int test_con = ((ProjNode*)test)->_con;
  2053       assert(top == (uint)(test_con? Op_IfTrue: Op_IfFalse), "sanity");
  2054       IfNode *iff = test->in(0)->as_If();
  2055       if( iff->outcnt() == 2 ) {        // Ignore dead tests
  2056         Node *bol = iff->in(1);
  2057         if( bol && bol->req() > 1 && bol->in(1) &&
  2058             ((bol->in(1)->Opcode() == Op_StorePConditional ) ||
  2059              (bol->in(1)->Opcode() == Op_StoreIConditional ) ||
  2060              (bol->in(1)->Opcode() == Op_StoreLConditional ) ||
  2061              (bol->in(1)->Opcode() == Op_CompareAndSwapI ) ||
  2062              (bol->in(1)->Opcode() == Op_CompareAndSwapL ) ||
  2063              (bol->in(1)->Opcode() == Op_CompareAndSwapP ) ||
  2064              (bol->in(1)->Opcode() == Op_CompareAndSwapN )))
  2065           return;               // Allocation loops RARELY take backedge
  2066         // Find the OTHER exit path from the IF
  2067         Node* ex = iff->proj_out(1-test_con);
  2068         float p = iff->_prob;
  2069         if( !phase->is_member( this, ex ) && iff->_fcnt == COUNT_UNKNOWN ) {
  2070           if( top == Op_IfTrue ) {
  2071             if( p < (PROB_FAIR + PROB_UNLIKELY_MAG(3))) {
  2072               iff->_prob = PROB_STATIC_FREQUENT;
  2074           } else {
  2075             if( p > (PROB_FAIR - PROB_UNLIKELY_MAG(3))) {
  2076               iff->_prob = PROB_STATIC_INFREQUENT;
  2082     test = phase->idom(test);
  2087 //------------------------------policy_do_remove_empty_loop--------------------
  2088 // Micro-benchmark spamming.  Policy is to always remove empty loops.
  2089 // The 'DO' part is to replace the trip counter with the value it will
  2090 // have on the last iteration.  This will break the loop.
  2091 bool IdealLoopTree::policy_do_remove_empty_loop( PhaseIdealLoop *phase ) {
  2092   // Minimum size must be empty loop
  2093   if (_body.size() > EMPTY_LOOP_SIZE)
  2094     return false;
  2096   if (!_head->is_CountedLoop())
  2097     return false;     // Dead loop
  2098   CountedLoopNode *cl = _head->as_CountedLoop();
  2099   if (!cl->is_valid_counted_loop())
  2100     return false; // Malformed loop
  2101   if (!phase->is_member(this, phase->get_ctrl(cl->loopexit()->in(CountedLoopEndNode::TestValue))))
  2102     return false;             // Infinite loop
  2104 #ifdef ASSERT
  2105   // Ensure only one phi which is the iv.
  2106   Node* iv = NULL;
  2107   for (DUIterator_Fast imax, i = cl->fast_outs(imax); i < imax; i++) {
  2108     Node* n = cl->fast_out(i);
  2109     if (n->Opcode() == Op_Phi) {
  2110       assert(iv == NULL, "Too many phis" );
  2111       iv = n;
  2114   assert(iv == cl->phi(), "Wrong phi" );
  2115 #endif
  2117   // main and post loops have explicitly created zero trip guard
  2118   bool needs_guard = !cl->is_main_loop() && !cl->is_post_loop();
  2119   if (needs_guard) {
  2120     // Skip guard if values not overlap.
  2121     const TypeInt* init_t = phase->_igvn.type(cl->init_trip())->is_int();
  2122     const TypeInt* limit_t = phase->_igvn.type(cl->limit())->is_int();
  2123     int  stride_con = cl->stride_con();
  2124     if (stride_con > 0) {
  2125       needs_guard = (init_t->_hi >= limit_t->_lo);
  2126     } else {
  2127       needs_guard = (init_t->_lo <= limit_t->_hi);
  2130   if (needs_guard) {
  2131     // Check for an obvious zero trip guard.
  2132     Node* inctrl = PhaseIdealLoop::skip_loop_predicates(cl->in(LoopNode::EntryControl));
  2133     if (inctrl->Opcode() == Op_IfTrue) {
  2134       // The test should look like just the backedge of a CountedLoop
  2135       Node* iff = inctrl->in(0);
  2136       if (iff->is_If()) {
  2137         Node* bol = iff->in(1);
  2138         if (bol->is_Bool() && bol->as_Bool()->_test._test == cl->loopexit()->test_trip()) {
  2139           Node* cmp = bol->in(1);
  2140           if (cmp->is_Cmp() && cmp->in(1) == cl->init_trip() && cmp->in(2) == cl->limit()) {
  2141             needs_guard = false;
  2148 #ifndef PRODUCT
  2149   if (PrintOpto) {
  2150     tty->print("Removing empty loop with%s zero trip guard", needs_guard ? "out" : "");
  2151     this->dump_head();
  2152   } else if (TraceLoopOpts) {
  2153     tty->print("Empty with%s zero trip guard   ", needs_guard ? "out" : "");
  2154     this->dump_head();
  2156 #endif
  2158   if (needs_guard) {
  2159     // Peel the loop to ensure there's a zero trip guard
  2160     Node_List old_new;
  2161     phase->do_peeling(this, old_new);
  2164   // Replace the phi at loop head with the final value of the last
  2165   // iteration.  Then the CountedLoopEnd will collapse (backedge never
  2166   // taken) and all loop-invariant uses of the exit values will be correct.
  2167   Node *phi = cl->phi();
  2168   Node *exact_limit = phase->exact_limit(this);
  2169   if (exact_limit != cl->limit()) {
  2170     // We also need to replace the original limit to collapse loop exit.
  2171     Node* cmp = cl->loopexit()->cmp_node();
  2172     assert(cl->limit() == cmp->in(2), "sanity");
  2173     phase->_igvn._worklist.push(cmp->in(2)); // put limit on worklist
  2174     phase->_igvn.replace_input_of(cmp, 2, exact_limit); // put cmp on worklist
  2176   // Note: the final value after increment should not overflow since
  2177   // counted loop has limit check predicate.
  2178   Node *final = new (phase->C) SubINode( exact_limit, cl->stride() );
  2179   phase->register_new_node(final,cl->in(LoopNode::EntryControl));
  2180   phase->_igvn.replace_node(phi,final);
  2181   phase->C->set_major_progress();
  2182   return true;
  2185 //------------------------------policy_do_one_iteration_loop-------------------
  2186 // Convert one iteration loop into normal code.
  2187 bool IdealLoopTree::policy_do_one_iteration_loop( PhaseIdealLoop *phase ) {
  2188   if (!_head->as_Loop()->is_valid_counted_loop())
  2189     return false; // Only for counted loop
  2191   CountedLoopNode *cl = _head->as_CountedLoop();
  2192   if (!cl->has_exact_trip_count() || cl->trip_count() != 1) {
  2193     return false;
  2196 #ifndef PRODUCT
  2197   if(TraceLoopOpts) {
  2198     tty->print("OneIteration ");
  2199     this->dump_head();
  2201 #endif
  2203   Node *init_n = cl->init_trip();
  2204 #ifdef ASSERT
  2205   // Loop boundaries should be constant since trip count is exact.
  2206   assert(init_n->get_int() + cl->stride_con() >= cl->limit()->get_int(), "should be one iteration");
  2207 #endif
  2208   // Replace the phi at loop head with the value of the init_trip.
  2209   // Then the CountedLoopEnd will collapse (backedge will not be taken)
  2210   // and all loop-invariant uses of the exit values will be correct.
  2211   phase->_igvn.replace_node(cl->phi(), cl->init_trip());
  2212   phase->C->set_major_progress();
  2213   return true;
  2216 //=============================================================================
  2217 //------------------------------iteration_split_impl---------------------------
  2218 bool IdealLoopTree::iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new ) {
  2219   // Compute exact loop trip count if possible.
  2220   compute_exact_trip_count(phase);
  2222   // Convert one iteration loop into normal code.
  2223   if (policy_do_one_iteration_loop(phase))
  2224     return true;
  2226   // Check and remove empty loops (spam micro-benchmarks)
  2227   if (policy_do_remove_empty_loop(phase))
  2228     return true;  // Here we removed an empty loop
  2230   bool should_peel = policy_peeling(phase); // Should we peel?
  2232   bool should_unswitch = policy_unswitching(phase);
  2234   // Non-counted loops may be peeled; exactly 1 iteration is peeled.
  2235   // This removes loop-invariant tests (usually null checks).
  2236   if (!_head->is_CountedLoop()) { // Non-counted loop
  2237     if (PartialPeelLoop && phase->partial_peel(this, old_new)) {
  2238       // Partial peel succeeded so terminate this round of loop opts
  2239       return false;
  2241     if (should_peel) {            // Should we peel?
  2242 #ifndef PRODUCT
  2243       if (PrintOpto) tty->print_cr("should_peel");
  2244 #endif
  2245       phase->do_peeling(this,old_new);
  2246     } else if (should_unswitch) {
  2247       phase->do_unswitching(this, old_new);
  2249     return true;
  2251   CountedLoopNode *cl = _head->as_CountedLoop();
  2253   if (!cl->is_valid_counted_loop()) return true; // Ignore various kinds of broken loops
  2255   // Do nothing special to pre- and post- loops
  2256   if (cl->is_pre_loop() || cl->is_post_loop()) return true;
  2258   // Compute loop trip count from profile data
  2259   compute_profile_trip_cnt(phase);
  2261   // Before attempting fancy unrolling, RCE or alignment, see if we want
  2262   // to completely unroll this loop or do loop unswitching.
  2263   if (cl->is_normal_loop()) {
  2264     if (should_unswitch) {
  2265       phase->do_unswitching(this, old_new);
  2266       return true;
  2268     bool should_maximally_unroll =  policy_maximally_unroll(phase);
  2269     if (should_maximally_unroll) {
  2270       // Here we did some unrolling and peeling.  Eventually we will
  2271       // completely unroll this loop and it will no longer be a loop.
  2272       phase->do_maximally_unroll(this,old_new);
  2273       return true;
  2277   // Skip next optimizations if running low on nodes. Note that
  2278   // policy_unswitching and policy_maximally_unroll have this check.
  2279   uint nodes_left = MaxNodeLimit - (uint) phase->C->live_nodes();
  2280   if ((2 * _body.size()) > nodes_left) {
  2281     return true;
  2284   // Counted loops may be peeled, may need some iterations run up
  2285   // front for RCE, and may want to align loop refs to a cache
  2286   // line.  Thus we clone a full loop up front whose trip count is
  2287   // at least 1 (if peeling), but may be several more.
  2289   // The main loop will start cache-line aligned with at least 1
  2290   // iteration of the unrolled body (zero-trip test required) and
  2291   // will have some range checks removed.
  2293   // A post-loop will finish any odd iterations (leftover after
  2294   // unrolling), plus any needed for RCE purposes.
  2296   bool should_unroll = policy_unroll(phase);
  2298   bool should_rce = policy_range_check(phase);
  2300   bool should_align = policy_align(phase);
  2302   // If not RCE'ing (iteration splitting) or Aligning, then we do not
  2303   // need a pre-loop.  We may still need to peel an initial iteration but
  2304   // we will not be needing an unknown number of pre-iterations.
  2305   //
  2306   // Basically, if may_rce_align reports FALSE first time through,
  2307   // we will not be able to later do RCE or Aligning on this loop.
  2308   bool may_rce_align = !policy_peel_only(phase) || should_rce || should_align;
  2310   // If we have any of these conditions (RCE, alignment, unrolling) met, then
  2311   // we switch to the pre-/main-/post-loop model.  This model also covers
  2312   // peeling.
  2313   if (should_rce || should_align || should_unroll) {
  2314     if (cl->is_normal_loop())  // Convert to 'pre/main/post' loops
  2315       phase->insert_pre_post_loops(this,old_new, !may_rce_align);
  2317     // Adjust the pre- and main-loop limits to let the pre and post loops run
  2318     // with full checks, but the main-loop with no checks.  Remove said
  2319     // checks from the main body.
  2320     if (should_rce)
  2321       phase->do_range_check(this,old_new);
  2323     // Double loop body for unrolling.  Adjust the minimum-trip test (will do
  2324     // twice as many iterations as before) and the main body limit (only do
  2325     // an even number of trips).  If we are peeling, we might enable some RCE
  2326     // and we'd rather unroll the post-RCE'd loop SO... do not unroll if
  2327     // peeling.
  2328     if (should_unroll && !should_peel)
  2329       phase->do_unroll(this,old_new, true);
  2331     // Adjust the pre-loop limits to align the main body
  2332     // iterations.
  2333     if (should_align)
  2334       Unimplemented();
  2336   } else {                      // Else we have an unchanged counted loop
  2337     if (should_peel)           // Might want to peel but do nothing else
  2338       phase->do_peeling(this,old_new);
  2340   return true;
  2344 //=============================================================================
  2345 //------------------------------iteration_split--------------------------------
  2346 bool IdealLoopTree::iteration_split( PhaseIdealLoop *phase, Node_List &old_new ) {
  2347   // Recursively iteration split nested loops
  2348   if (_child && !_child->iteration_split(phase, old_new))
  2349     return false;
  2351   // Clean out prior deadwood
  2352   DCE_loop_body();
  2355   // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
  2356   // Replace with a 1-in-10 exit guess.
  2357   if (_parent /*not the root loop*/ &&
  2358       !_irreducible &&
  2359       // Also ignore the occasional dead backedge
  2360       !tail()->is_top()) {
  2361     adjust_loop_exit_prob(phase);
  2364   // Gate unrolling, RCE and peeling efforts.
  2365   if (!_child &&                // If not an inner loop, do not split
  2366       !_irreducible &&
  2367       _allow_optimizations &&
  2368       !tail()->is_top()) {     // Also ignore the occasional dead backedge
  2369     if (!_has_call) {
  2370         if (!iteration_split_impl(phase, old_new)) {
  2371           return false;
  2373     } else if (policy_unswitching(phase)) {
  2374       phase->do_unswitching(this, old_new);
  2378   // Minor offset re-organization to remove loop-fallout uses of
  2379   // trip counter when there was no major reshaping.
  2380   phase->reorg_offsets(this);
  2382   if (_next && !_next->iteration_split(phase, old_new))
  2383     return false;
  2384   return true;
  2388 //=============================================================================
  2389 // Process all the loops in the loop tree and replace any fill
  2390 // patterns with an intrisc version.
  2391 bool PhaseIdealLoop::do_intrinsify_fill() {
  2392   bool changed = false;
  2393   for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
  2394     IdealLoopTree* lpt = iter.current();
  2395     changed |= intrinsify_fill(lpt);
  2397   return changed;
  2401 // Examine an inner loop looking for a a single store of an invariant
  2402 // value in a unit stride loop,
  2403 bool PhaseIdealLoop::match_fill_loop(IdealLoopTree* lpt, Node*& store, Node*& store_value,
  2404                                      Node*& shift, Node*& con) {
  2405   const char* msg = NULL;
  2406   Node* msg_node = NULL;
  2408   store_value = NULL;
  2409   con = NULL;
  2410   shift = NULL;
  2412   // Process the loop looking for stores.  If there are multiple
  2413   // stores or extra control flow give at this point.
  2414   CountedLoopNode* head = lpt->_head->as_CountedLoop();
  2415   for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
  2416     Node* n = lpt->_body.at(i);
  2417     if (n->outcnt() == 0) continue; // Ignore dead
  2418     if (n->is_Store()) {
  2419       if (store != NULL) {
  2420         msg = "multiple stores";
  2421         break;
  2423       int opc = n->Opcode();
  2424       if (opc == Op_StoreP || opc == Op_StoreN || opc == Op_StoreNKlass || opc == Op_StoreCM) {
  2425         msg = "oop fills not handled";
  2426         break;
  2428       Node* value = n->in(MemNode::ValueIn);
  2429       if (!lpt->is_invariant(value)) {
  2430         msg  = "variant store value";
  2431       } else if (!_igvn.type(n->in(MemNode::Address))->isa_aryptr()) {
  2432         msg = "not array address";
  2434       store = n;
  2435       store_value = value;
  2436     } else if (n->is_If() && n != head->loopexit()) {
  2437       msg = "extra control flow";
  2438       msg_node = n;
  2442   if (store == NULL) {
  2443     // No store in loop
  2444     return false;
  2447   if (msg == NULL && head->stride_con() != 1) {
  2448     // could handle negative strides too
  2449     if (head->stride_con() < 0) {
  2450       msg = "negative stride";
  2451     } else {
  2452       msg = "non-unit stride";
  2456   if (msg == NULL && !store->in(MemNode::Address)->is_AddP()) {
  2457     msg = "can't handle store address";
  2458     msg_node = store->in(MemNode::Address);
  2461   if (msg == NULL &&
  2462       (!store->in(MemNode::Memory)->is_Phi() ||
  2463        store->in(MemNode::Memory)->in(LoopNode::LoopBackControl) != store)) {
  2464     msg = "store memory isn't proper phi";
  2465     msg_node = store->in(MemNode::Memory);
  2468   // Make sure there is an appropriate fill routine
  2469   BasicType t = store->as_Mem()->memory_type();
  2470   const char* fill_name;
  2471   if (msg == NULL &&
  2472       StubRoutines::select_fill_function(t, false, fill_name) == NULL) {
  2473     msg = "unsupported store";
  2474     msg_node = store;
  2477   if (msg != NULL) {
  2478 #ifndef PRODUCT
  2479     if (TraceOptimizeFill) {
  2480       tty->print_cr("not fill intrinsic candidate: %s", msg);
  2481       if (msg_node != NULL) msg_node->dump();
  2483 #endif
  2484     return false;
  2487   // Make sure the address expression can be handled.  It should be
  2488   // head->phi * elsize + con.  head->phi might have a ConvI2L.
  2489   Node* elements[4];
  2490   Node* conv = NULL;
  2491   bool found_index = false;
  2492   int count = store->in(MemNode::Address)->as_AddP()->unpack_offsets(elements, ARRAY_SIZE(elements));
  2493   for (int e = 0; e < count; e++) {
  2494     Node* n = elements[e];
  2495     if (n->is_Con() && con == NULL) {
  2496       con = n;
  2497     } else if (n->Opcode() == Op_LShiftX && shift == NULL) {
  2498       Node* value = n->in(1);
  2499 #ifdef _LP64
  2500       if (value->Opcode() == Op_ConvI2L) {
  2501         conv = value;
  2502         value = value->in(1);
  2504 #endif
  2505       if (value != head->phi()) {
  2506         msg = "unhandled shift in address";
  2507       } else {
  2508         if (type2aelembytes(store->as_Mem()->memory_type(), true) != (1 << n->in(2)->get_int())) {
  2509           msg = "scale doesn't match";
  2510         } else {
  2511           found_index = true;
  2512           shift = n;
  2515     } else if (n->Opcode() == Op_ConvI2L && conv == NULL) {
  2516       if (n->in(1) == head->phi()) {
  2517         found_index = true;
  2518         conv = n;
  2519       } else {
  2520         msg = "unhandled input to ConvI2L";
  2522     } else if (n == head->phi()) {
  2523       // no shift, check below for allowed cases
  2524       found_index = true;
  2525     } else {
  2526       msg = "unhandled node in address";
  2527       msg_node = n;
  2531   if (count == -1) {
  2532     msg = "malformed address expression";
  2533     msg_node = store;
  2536   if (!found_index) {
  2537     msg = "missing use of index";
  2540   // byte sized items won't have a shift
  2541   if (msg == NULL && shift == NULL && t != T_BYTE && t != T_BOOLEAN) {
  2542     msg = "can't find shift";
  2543     msg_node = store;
  2546   if (msg != NULL) {
  2547 #ifndef PRODUCT
  2548     if (TraceOptimizeFill) {
  2549       tty->print_cr("not fill intrinsic: %s", msg);
  2550       if (msg_node != NULL) msg_node->dump();
  2552 #endif
  2553     return false;
  2556   // No make sure all the other nodes in the loop can be handled
  2557   VectorSet ok(Thread::current()->resource_area());
  2559   // store related values are ok
  2560   ok.set(store->_idx);
  2561   ok.set(store->in(MemNode::Memory)->_idx);
  2563   CountedLoopEndNode* loop_exit = head->loopexit();
  2564   guarantee(loop_exit != NULL, "no loop exit node");
  2566   // Loop structure is ok
  2567   ok.set(head->_idx);
  2568   ok.set(loop_exit->_idx);
  2569   ok.set(head->phi()->_idx);
  2570   ok.set(head->incr()->_idx);
  2571   ok.set(loop_exit->cmp_node()->_idx);
  2572   ok.set(loop_exit->in(1)->_idx);
  2574   // Address elements are ok
  2575   if (con)   ok.set(con->_idx);
  2576   if (shift) ok.set(shift->_idx);
  2577   if (conv)  ok.set(conv->_idx);
  2579   for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
  2580     Node* n = lpt->_body.at(i);
  2581     if (n->outcnt() == 0) continue; // Ignore dead
  2582     if (ok.test(n->_idx)) continue;
  2583     // Backedge projection is ok
  2584     if (n->is_IfTrue() && n->in(0) == loop_exit) continue;
  2585     if (!n->is_AddP()) {
  2586       msg = "unhandled node";
  2587       msg_node = n;
  2588       break;
  2592   // Make sure no unexpected values are used outside the loop
  2593   for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
  2594     Node* n = lpt->_body.at(i);
  2595     // These values can be replaced with other nodes if they are used
  2596     // outside the loop.
  2597     if (n == store || n == loop_exit || n == head->incr() || n == store->in(MemNode::Memory)) continue;
  2598     for (SimpleDUIterator iter(n); iter.has_next(); iter.next()) {
  2599       Node* use = iter.get();
  2600       if (!lpt->_body.contains(use)) {
  2601         msg = "node is used outside loop";
  2602         // lpt->_body.dump();
  2603         msg_node = n;
  2604         break;
  2609 #ifdef ASSERT
  2610   if (TraceOptimizeFill) {
  2611     if (msg != NULL) {
  2612       tty->print_cr("no fill intrinsic: %s", msg);
  2613       if (msg_node != NULL) msg_node->dump();
  2614     } else {
  2615       tty->print_cr("fill intrinsic for:");
  2617     store->dump();
  2618     if (Verbose) {
  2619       lpt->_body.dump();
  2622 #endif
  2624   return msg == NULL;
  2629 bool PhaseIdealLoop::intrinsify_fill(IdealLoopTree* lpt) {
  2630   // Only for counted inner loops
  2631   if (!lpt->is_counted() || !lpt->is_inner()) {
  2632     return false;
  2635   // Must have constant stride
  2636   CountedLoopNode* head = lpt->_head->as_CountedLoop();
  2637   if (!head->is_valid_counted_loop() || !head->is_normal_loop()) {
  2638     return false;
  2641   // Check that the body only contains a store of a loop invariant
  2642   // value that is indexed by the loop phi.
  2643   Node* store = NULL;
  2644   Node* store_value = NULL;
  2645   Node* shift = NULL;
  2646   Node* offset = NULL;
  2647   if (!match_fill_loop(lpt, store, store_value, shift, offset)) {
  2648     return false;
  2651 #ifndef PRODUCT
  2652   if (TraceLoopOpts) {
  2653     tty->print("ArrayFill    ");
  2654     lpt->dump_head();
  2656 #endif
  2658   // Now replace the whole loop body by a call to a fill routine that
  2659   // covers the same region as the loop.
  2660   Node* base = store->in(MemNode::Address)->as_AddP()->in(AddPNode::Base);
  2662   // Build an expression for the beginning of the copy region
  2663   Node* index = head->init_trip();
  2664 #ifdef _LP64
  2665   index = new (C) ConvI2LNode(index);
  2666   _igvn.register_new_node_with_optimizer(index);
  2667 #endif
  2668   if (shift != NULL) {
  2669     // byte arrays don't require a shift but others do.
  2670     index = new (C) LShiftXNode(index, shift->in(2));
  2671     _igvn.register_new_node_with_optimizer(index);
  2673   index = new (C) AddPNode(base, base, index);
  2674   _igvn.register_new_node_with_optimizer(index);
  2675   Node* from = new (C) AddPNode(base, index, offset);
  2676   _igvn.register_new_node_with_optimizer(from);
  2677   // Compute the number of elements to copy
  2678   Node* len = new (C) SubINode(head->limit(), head->init_trip());
  2679   _igvn.register_new_node_with_optimizer(len);
  2681   BasicType t = store->as_Mem()->memory_type();
  2682   bool aligned = false;
  2683   if (offset != NULL && head->init_trip()->is_Con()) {
  2684     int element_size = type2aelembytes(t);
  2685     aligned = (offset->find_intptr_t_type()->get_con() + head->init_trip()->get_int() * element_size) % HeapWordSize == 0;
  2688   // Build a call to the fill routine
  2689   const char* fill_name;
  2690   address fill = StubRoutines::select_fill_function(t, aligned, fill_name);
  2691   assert(fill != NULL, "what?");
  2693   // Convert float/double to int/long for fill routines
  2694   if (t == T_FLOAT) {
  2695     store_value = new (C) MoveF2INode(store_value);
  2696     _igvn.register_new_node_with_optimizer(store_value);
  2697   } else if (t == T_DOUBLE) {
  2698     store_value = new (C) MoveD2LNode(store_value);
  2699     _igvn.register_new_node_with_optimizer(store_value);
  2702   if (CCallingConventionRequiresIntsAsLongs &&
  2703       // See StubRoutines::select_fill_function for types. FLOAT has been converted to INT.
  2704       (t == T_FLOAT || t == T_INT ||  is_subword_type(t))) {
  2705     store_value = new (C) ConvI2LNode(store_value);
  2706     _igvn.register_new_node_with_optimizer(store_value);
  2709   Node* mem_phi = store->in(MemNode::Memory);
  2710   Node* result_ctrl;
  2711   Node* result_mem;
  2712   const TypeFunc* call_type = OptoRuntime::array_fill_Type();
  2713   CallLeafNode *call = new (C) CallLeafNoFPNode(call_type, fill,
  2714                                                 fill_name, TypeAryPtr::get_array_body_type(t));
  2715   uint cnt = 0;
  2716   call->init_req(TypeFunc::Parms + cnt++, from);
  2717   call->init_req(TypeFunc::Parms + cnt++, store_value);
  2718   if (CCallingConventionRequiresIntsAsLongs) {
  2719     call->init_req(TypeFunc::Parms + cnt++, C->top());
  2721 #ifdef _LP64
  2722   len = new (C) ConvI2LNode(len);
  2723   _igvn.register_new_node_with_optimizer(len);
  2724 #endif
  2725   call->init_req(TypeFunc::Parms + cnt++, len);
  2726 #ifdef _LP64
  2727   call->init_req(TypeFunc::Parms + cnt++, C->top());
  2728 #endif
  2729   call->init_req(TypeFunc::Control,   head->init_control());
  2730   call->init_req(TypeFunc::I_O,       C->top());       // Does no I/O.
  2731   call->init_req(TypeFunc::Memory,    mem_phi->in(LoopNode::EntryControl));
  2732   call->init_req(TypeFunc::ReturnAdr, C->start()->proj_out(TypeFunc::ReturnAdr));
  2733   call->init_req(TypeFunc::FramePtr,  C->start()->proj_out(TypeFunc::FramePtr));
  2734   _igvn.register_new_node_with_optimizer(call);
  2735   result_ctrl = new (C) ProjNode(call,TypeFunc::Control);
  2736   _igvn.register_new_node_with_optimizer(result_ctrl);
  2737   result_mem = new (C) ProjNode(call,TypeFunc::Memory);
  2738   _igvn.register_new_node_with_optimizer(result_mem);
  2740 /* Disable following optimization until proper fix (add missing checks).
  2742   // If this fill is tightly coupled to an allocation and overwrites
  2743   // the whole body, allow it to take over the zeroing.
  2744   AllocateNode* alloc = AllocateNode::Ideal_allocation(base, this);
  2745   if (alloc != NULL && alloc->is_AllocateArray()) {
  2746     Node* length = alloc->as_AllocateArray()->Ideal_length();
  2747     if (head->limit() == length &&
  2748         head->init_trip() == _igvn.intcon(0)) {
  2749       if (TraceOptimizeFill) {
  2750         tty->print_cr("Eliminated zeroing in allocation");
  2752       alloc->maybe_set_complete(&_igvn);
  2753     } else {
  2754 #ifdef ASSERT
  2755       if (TraceOptimizeFill) {
  2756         tty->print_cr("filling array but bounds don't match");
  2757         alloc->dump();
  2758         head->init_trip()->dump();
  2759         head->limit()->dump();
  2760         length->dump();
  2762 #endif
  2765 */
  2767   // Redirect the old control and memory edges that are outside the loop.
  2768   Node* exit = head->loopexit()->proj_out(0);
  2769   // Sometimes the memory phi of the head is used as the outgoing
  2770   // state of the loop.  It's safe in this case to replace it with the
  2771   // result_mem.
  2772   _igvn.replace_node(store->in(MemNode::Memory), result_mem);
  2773   _igvn.replace_node(exit, result_ctrl);
  2774   _igvn.replace_node(store, result_mem);
  2775   // Any uses the increment outside of the loop become the loop limit.
  2776   _igvn.replace_node(head->incr(), head->limit());
  2778   // Disconnect the head from the loop.
  2779   for (uint i = 0; i < lpt->_body.size(); i++) {
  2780     Node* n = lpt->_body.at(i);
  2781     _igvn.replace_node(n, C->top());
  2784   return true;

mercurial