src/share/vm/adlc/dfa.cpp

Wed, 22 Jan 2014 17:42:23 -0800

author
kvn
date
Wed, 22 Jan 2014 17:42:23 -0800
changeset 6503
a9becfeecd1b
parent 6198
55fb97c4c58d
child 6876
710a3c8b516e
child 9615
c5e1abd2d0af
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // DFA.CPP - Method definitions for outputting the matcher DFA from ADLC
    26 #include "adlc.hpp"
    28 //---------------------------Switches for debugging output---------------------
    29 static bool debug_output   = false;
    30 static bool debug_output1  = false;    // top level chain rules
    32 //---------------------------Access to internals of class State----------------
    33 static const char *sLeft   = "_kids[0]";
    34 static const char *sRight  = "_kids[1]";
    36 //---------------------------DFA productions-----------------------------------
    37 static const char *dfa_production           = "DFA_PRODUCTION";
    38 static const char *dfa_production_set_valid = "DFA_PRODUCTION__SET_VALID";
    40 //---------------------------Production State----------------------------------
    41 static const char *knownInvalid = "knownInvalid";    // The result does NOT have a rule defined
    42 static const char *knownValid   = "knownValid";      // The result must be produced by a rule
    43 static const char *unknownValid = "unknownValid";    // Unknown (probably due to a child or predicate constraint)
    45 static const char *noConstraint  = "noConstraint";   // No constraints seen so far
    46 static const char *hasConstraint = "hasConstraint";  // Within the first constraint
    49 //------------------------------Production------------------------------------
    50 // Track the status of productions for a particular result
    51 class Production {
    52 public:
    53   const char *_result;
    54   const char *_constraint;
    55   const char *_valid;
    56   Expr       *_cost_lb;            // Cost lower bound for this production
    57   Expr       *_cost_ub;            // Cost upper bound for this production
    59 public:
    60   Production(const char *result, const char *constraint, const char *valid);
    61   ~Production() {};
    63   void        initialize();        // reset to be an empty container
    65   const char   *valid()  const { return _valid; }
    66   Expr       *cost_lb()  const { return (Expr *)_cost_lb;  }
    67   Expr       *cost_ub()  const { return (Expr *)_cost_ub;  }
    69   void print();
    70 };
    73 //------------------------------ProductionState--------------------------------
    74 // Track the status of all production rule results
    75 // Reset for each root opcode (e.g., Op_RegI, Op_AddI, ...)
    76 class ProductionState {
    77 private:
    78   Dict _production;    // map result of production, char*, to information or NULL
    79   const char *_constraint;
    81 public:
    82   // cmpstr does string comparisions.  hashstr computes a key.
    83   ProductionState(Arena *arena) : _production(cmpstr, hashstr, arena) { initialize(); };
    84   ~ProductionState() { };
    86   void        initialize();                // reset local and dictionary state
    88   const char *constraint();
    89   void    set_constraint(const char *constraint); // currently working inside of constraints
    91   const char *valid(const char *result);   // unknownValid, or status for this production
    92   void    set_valid(const char *result);   // if not constrained, set status to knownValid
    94   Expr           *cost_lb(const char *result);
    95   Expr           *cost_ub(const char *result);
    96   void    set_cost_bounds(const char *result, const Expr *cost, bool has_state_check, bool has_cost_check);
    98   // Return the Production associated with the result,
    99   // or create a new Production and insert it into the dictionary.
   100   Production *getProduction(const char *result);
   102   void print();
   104 private:
   105     // Disable public use of constructor, copy-ctor,  ...
   106   ProductionState( )                         : _production(cmpstr, hashstr, Form::arena) {  assert( false, "NotImplemented");  };
   107   ProductionState( const ProductionState & ) : _production(cmpstr, hashstr, Form::arena) {  assert( false, "NotImplemented");  }; // Deep-copy
   108 };
   111 //---------------------------Helper Functions----------------------------------
   112 // cost_check template:
   113 // 1)      if (STATE__NOT_YET_VALID(EBXREGI) || _cost[EBXREGI] > c) {
   114 // 2)        DFA_PRODUCTION__SET_VALID(EBXREGI, cmovI_memu_rule, c)
   115 // 3)      }
   116 //
   117 static void cost_check(FILE *fp, const char *spaces,
   118                        const char *arrayIdx, const Expr *cost, const char *rule, ProductionState &status) {
   119   bool state_check               = false;  // true if this production needs to check validity
   120   bool cost_check                = false;  // true if this production needs to check cost
   121   bool cost_is_above_upper_bound = false;  // true if this production is unnecessary due to high cost
   122   bool cost_is_below_lower_bound = false;  // true if this production replaces a higher cost production
   124   // Get information about this production
   125   const Expr *previous_ub = status.cost_ub(arrayIdx);
   126   if( !previous_ub->is_unknown() ) {
   127     if( previous_ub->less_than_or_equal(cost) ) {
   128       cost_is_above_upper_bound = true;
   129       if( debug_output ) { fprintf(fp, "// Previous rule with lower cost than: %s === %s_rule costs %s\n", arrayIdx, rule, cost->as_string()); }
   130     }
   131   }
   133   const Expr *previous_lb = status.cost_lb(arrayIdx);
   134   if( !previous_lb->is_unknown() ) {
   135     if( cost->less_than_or_equal(previous_lb) ) {
   136       cost_is_below_lower_bound = true;
   137       if( debug_output ) { fprintf(fp, "// Previous rule with higher cost\n"); }
   138     }
   139   }
   141   // line 1)
   142   // Check for validity and compare to other match costs
   143   const char *validity_check = status.valid(arrayIdx);
   144   if( validity_check == unknownValid ) {
   145     fprintf(fp, "%sif (STATE__NOT_YET_VALID(%s) || _cost[%s] > %s) {\n",  spaces, arrayIdx, arrayIdx, cost->as_string());
   146     state_check = true;
   147     cost_check  = true;
   148   }
   149   else if( validity_check == knownInvalid ) {
   150     if( debug_output ) { fprintf(fp, "%s// %s KNOWN_INVALID \n",  spaces, arrayIdx); }
   151   }
   152   else if( validity_check == knownValid ) {
   153     if( cost_is_above_upper_bound ) {
   154       // production cost is known to be too high.
   155       return;
   156     } else if( cost_is_below_lower_bound ) {
   157       // production will unconditionally overwrite a previous production that had higher cost
   158     } else {
   159       fprintf(fp, "%sif ( /* %s KNOWN_VALID || */ _cost[%s] > %s) {\n",  spaces, arrayIdx, arrayIdx, cost->as_string());
   160       cost_check  = true;
   161     }
   162   }
   164   // line 2)
   165   // no need to set State vector if our state is knownValid
   166   const char *production = (validity_check == knownValid) ? dfa_production : dfa_production_set_valid;
   167   fprintf(fp, "%s  %s(%s, %s_rule, %s)", spaces, production, arrayIdx, rule, cost->as_string() );
   168   if( validity_check == knownValid ) {
   169     if( cost_is_below_lower_bound ) { fprintf(fp, "\t  // overwrites higher cost rule"); }
   170    }
   171    fprintf(fp, "\n");
   173   // line 3)
   174   if( cost_check || state_check ) {
   175     fprintf(fp, "%s}\n", spaces);
   176   }
   178   status.set_cost_bounds(arrayIdx, cost, state_check, cost_check);
   180   // Update ProductionState
   181   if( validity_check != knownValid ) {
   182     // set State vector if not previously known
   183     status.set_valid(arrayIdx);
   184   }
   185 }
   188 //---------------------------child_test----------------------------------------
   189 // Example:
   190 //   STATE__VALID_CHILD(_kids[0], FOO) &&  STATE__VALID_CHILD(_kids[1], BAR)
   191 // Macro equivalent to: _kids[0]->valid(FOO) && _kids[1]->valid(BAR)
   192 //
   193 static void child_test(FILE *fp, MatchList &mList) {
   194   if (mList._lchild) { // If left child, check it
   195     const char* lchild_to_upper = ArchDesc::getMachOperEnum(mList._lchild);
   196     fprintf(fp, "STATE__VALID_CHILD(_kids[0], %s)", lchild_to_upper);
   197     delete[] lchild_to_upper;
   198   }
   199   if (mList._lchild && mList._rchild) { // If both, add the "&&"
   200     fprintf(fp, " && ");
   201   }
   202   if (mList._rchild) { // If right child, check it
   203     const char* rchild_to_upper = ArchDesc::getMachOperEnum(mList._rchild);
   204     fprintf(fp, "STATE__VALID_CHILD(_kids[1], %s)", rchild_to_upper);
   205     delete[] rchild_to_upper;
   206   }
   207 }
   209 //---------------------------calc_cost-----------------------------------------
   210 // Example:
   211 //           unsigned int c = _kids[0]->_cost[FOO] + _kids[1]->_cost[BAR] + 5;
   212 //
   213 Expr *ArchDesc::calc_cost(FILE *fp, const char *spaces, MatchList &mList, ProductionState &status) {
   214   fprintf(fp, "%sunsigned int c = ", spaces);
   215   Expr *c = new Expr("0");
   216   if (mList._lchild) { // If left child, add it in
   217     const char* lchild_to_upper = ArchDesc::getMachOperEnum(mList._lchild);
   218     sprintf(Expr::buffer(), "_kids[0]->_cost[%s]", lchild_to_upper);
   219     c->add(Expr::buffer());
   220     delete[] lchild_to_upper;
   221 }
   222   if (mList._rchild) { // If right child, add it in
   223     const char* rchild_to_upper = ArchDesc::getMachOperEnum(mList._rchild);
   224     sprintf(Expr::buffer(), "_kids[1]->_cost[%s]", rchild_to_upper);
   225     c->add(Expr::buffer());
   226     delete[] rchild_to_upper;
   227   }
   228   // Add in cost of this rule
   229   const char *mList_cost = mList.get_cost();
   230   c->add(mList_cost, *this);
   232   fprintf(fp, "%s;\n", c->as_string());
   233   c->set_external_name("c");
   234   return c;
   235 }
   238 //---------------------------gen_match-----------------------------------------
   239 void ArchDesc::gen_match(FILE *fp, MatchList &mList, ProductionState &status, Dict &operands_chained_from) {
   240   const char *spaces4 = "    ";
   241   const char *spaces6 = "      ";
   243   fprintf(fp, "%s", spaces4);
   244   // Only generate child tests if this is not a leaf node
   245   bool has_child_constraints = mList._lchild || mList._rchild;
   246   const char *predicate_test = mList.get_pred();
   247   if (has_child_constraints || predicate_test) {
   248     // Open the child-and-predicate-test braces
   249     fprintf(fp, "if( ");
   250     status.set_constraint(hasConstraint);
   251     child_test(fp, mList);
   252     // Only generate predicate test if one exists for this match
   253     if (predicate_test) {
   254       if (has_child_constraints) {
   255         fprintf(fp," &&\n");
   256       }
   257       fprintf(fp, "%s  %s", spaces6, predicate_test);
   258     }
   259     // End of outer tests
   260     fprintf(fp," ) ");
   261   } else {
   262     // No child or predicate test needed
   263     status.set_constraint(noConstraint);
   264   }
   266   // End of outer tests
   267   fprintf(fp,"{\n");
   269   // Calculate cost of this match
   270   const Expr *cost = calc_cost(fp, spaces6, mList, status);
   271   // Check against other match costs, and update cost & rule vectors
   272   cost_check(fp, spaces6, ArchDesc::getMachOperEnum(mList._resultStr), cost, mList._opcode, status);
   274   // If this is a member of an operand class, update the class cost & rule
   275   expand_opclass( fp, spaces6, cost, mList._resultStr, status);
   277   // Check if this rule should be used to generate the chains as well.
   278   const char *rule = /* set rule to "Invalid" for internal operands */
   279     strcmp(mList._opcode,mList._resultStr) ? mList._opcode : "Invalid";
   281   // If this rule produces an operand which has associated chain rules,
   282   // update the operands with the chain rule + this rule cost & this rule.
   283   chain_rule(fp, spaces6, mList._resultStr, cost, rule, operands_chained_from, status);
   285   // Close the child-and-predicate-test braces
   286   fprintf(fp, "    }\n");
   288 }
   291 //---------------------------expand_opclass------------------------------------
   292 // Chain from one result_type to all other members of its operand class
   293 void ArchDesc::expand_opclass(FILE *fp, const char *indent, const Expr *cost,
   294                               const char *result_type, ProductionState &status) {
   295   const Form *form = _globalNames[result_type];
   296   OperandForm *op = form ? form->is_operand() : NULL;
   297   if( op && op->_classes.count() > 0 ) {
   298     if( debug_output ) { fprintf(fp, "// expand operand classes for operand: %s \n", (char *)op->_ident  ); } // %%%%% Explanation
   299     // Iterate through all operand classes which include this operand
   300     op->_classes.reset();
   301     const char *oclass;
   302     // Expr *cCost = new Expr(cost);
   303     while( (oclass = op->_classes.iter()) != NULL )
   304       // Check against other match costs, and update cost & rule vectors
   305       cost_check(fp, indent, ArchDesc::getMachOperEnum(oclass), cost, result_type, status);
   306   }
   307 }
   309 //---------------------------chain_rule----------------------------------------
   310 // Starting at 'operand', check if we know how to automatically generate other results
   311 void ArchDesc::chain_rule(FILE *fp, const char *indent, const char *operand,
   312      const Expr *icost, const char *irule, Dict &operands_chained_from,  ProductionState &status) {
   314   // Check if we have already generated chains from this starting point
   315   if( operands_chained_from[operand] != NULL ) {
   316     return;
   317   } else {
   318     operands_chained_from.Insert( operand, operand);
   319   }
   320   if( debug_output ) { fprintf(fp, "// chain rules starting from: %s  and  %s \n", (char *)operand, (char *)irule); } // %%%%% Explanation
   322   ChainList *lst = (ChainList *)_chainRules[operand];
   323   if (lst) {
   324     // printf("\nChain from <%s> at cost #%s\n",operand, icost ? icost : "_");
   325     const char *result, *cost, *rule;
   326     for(lst->reset(); (lst->iter(result,cost,rule)) == true; ) {
   327       // Do not generate operands that are already available
   328       if( operands_chained_from[result] != NULL ) {
   329         continue;
   330       } else {
   331         // Compute the cost for previous match + chain_rule_cost
   332         // total_cost = icost + cost;
   333         Expr *total_cost = icost->clone();  // icost + cost
   334         total_cost->add(cost, *this);
   336         // Check for transitive chain rules
   337         Form *form = (Form *)_globalNames[rule];
   338         if ( ! form->is_instruction()) {
   339           // printf("   result=%s cost=%s rule=%s\n", result, total_cost, rule);
   340           // Check against other match costs, and update cost & rule vectors
   341           const char *reduce_rule = strcmp(irule,"Invalid") ? irule : rule;
   342           cost_check(fp, indent, ArchDesc::getMachOperEnum(result), total_cost, reduce_rule, status);
   343           chain_rule(fp, indent, result, total_cost, irule, operands_chained_from, status);
   344         } else {
   345           // printf("   result=%s cost=%s rule=%s\n", result, total_cost, rule);
   346           // Check against other match costs, and update cost & rule vectors
   347           cost_check(fp, indent, ArchDesc::getMachOperEnum(result), total_cost, rule, status);
   348           chain_rule(fp, indent, result, total_cost, rule, operands_chained_from, status);
   349         }
   351         // If this is a member of an operand class, update class cost & rule
   352         expand_opclass( fp, indent, total_cost, result, status );
   353       }
   354     }
   355   }
   356 }
   358 //---------------------------prune_matchlist-----------------------------------
   359 // Check for duplicate entries in a matchlist, and prune out the higher cost
   360 // entry.
   361 void ArchDesc::prune_matchlist(Dict &minimize, MatchList &mlist) {
   363 }
   365 //---------------------------buildDFA------------------------------------------
   366 // DFA is a large switch with case statements for each ideal opcode encountered
   367 // in any match rule in the ad file.  Each case has a series of if's to handle
   368 // the match or fail decisions.  The matches test the cost function of that
   369 // rule, and prune any cases which are higher cost for the same reduction.
   370 // In order to generate the DFA we walk the table of ideal opcode/MatchList
   371 // pairs generated by the ADLC front end to build the contents of the case
   372 // statements (a series of if statements).
   373 void ArchDesc::buildDFA(FILE* fp) {
   374   int i;
   375   // Remember operands that are the starting points for chain rules.
   376   // Prevent cycles by checking if we have already generated chain.
   377   Dict operands_chained_from(cmpstr, hashstr, Form::arena);
   379   // Hash inputs to match rules so that final DFA contains only one entry for
   380   // each match pattern which is the low cost entry.
   381   Dict minimize(cmpstr, hashstr, Form::arena);
   383   // Track status of dfa for each resulting production
   384   // reset for each ideal root.
   385   ProductionState status(Form::arena);
   387   // Output the start of the DFA method into the output file
   389   fprintf(fp, "\n");
   390   fprintf(fp, "//------------------------- Source -----------------------------------------\n");
   391   // Do not put random source code into the DFA.
   392   // If there are constants which need sharing, put them in "source_hpp" forms.
   393   // _source.output(fp);
   394   fprintf(fp, "\n");
   395   fprintf(fp, "//------------------------- Attributes -------------------------------------\n");
   396   _attributes.output(fp);
   397   fprintf(fp, "\n");
   398   fprintf(fp, "//------------------------- Macros -----------------------------------------\n");
   399   // #define DFA_PRODUCTION(result, rule, cost)\
   400   //   _cost[ (result) ] = cost; _rule[ (result) ] = rule;
   401   fprintf(fp, "#define %s(result, rule, cost)\\\n", dfa_production);
   402   fprintf(fp, "  _cost[ (result) ] = cost; _rule[ (result) ] = rule;\n");
   403   fprintf(fp, "\n");
   405   // #define DFA_PRODUCTION__SET_VALID(result, rule, cost)\
   406   //     DFA_PRODUCTION( (result), (rule), (cost) ); STATE__SET_VALID( (result) );
   407   fprintf(fp, "#define %s(result, rule, cost)\\\n", dfa_production_set_valid);
   408   fprintf(fp, "  %s( (result), (rule), (cost) ); STATE__SET_VALID( (result) );\n", dfa_production);
   409   fprintf(fp, "\n");
   411   fprintf(fp, "//------------------------- DFA --------------------------------------------\n");
   413   fprintf(fp,
   414 "// DFA is a large switch with case statements for each ideal opcode encountered\n"
   415 "// in any match rule in the ad file.  Each case has a series of if's to handle\n"
   416 "// the match or fail decisions.  The matches test the cost function of that\n"
   417 "// rule, and prune any cases which are higher cost for the same reduction.\n"
   418 "// In order to generate the DFA we walk the table of ideal opcode/MatchList\n"
   419 "// pairs generated by the ADLC front end to build the contents of the case\n"
   420 "// statements (a series of if statements).\n"
   421 );
   422   fprintf(fp, "\n");
   423   fprintf(fp, "\n");
   424   if (_dfa_small) {
   425     // Now build the individual routines just like the switch entries in large version
   426     // Iterate over the table of MatchLists, start at first valid opcode of 1
   427     for (i = 1; i < _last_opcode; i++) {
   428       if (_mlistab[i] == NULL) continue;
   429       // Generate the routine header statement for this opcode
   430       fprintf(fp, "void  State::_sub_Op_%s(const Node *n){\n", NodeClassNames[i]);
   431       // Generate body. Shared for both inline and out-of-line version
   432       gen_dfa_state_body(fp, minimize, status, operands_chained_from, i);
   433       // End of routine
   434       fprintf(fp, "}\n");
   435     }
   436   }
   437   fprintf(fp, "bool State::DFA");
   438   fprintf(fp, "(int opcode, const Node *n) {\n");
   439   fprintf(fp, "  switch(opcode) {\n");
   441   // Iterate over the table of MatchLists, start at first valid opcode of 1
   442   for (i = 1; i < _last_opcode; i++) {
   443     if (_mlistab[i] == NULL) continue;
   444     // Generate the case statement for this opcode
   445     if (_dfa_small) {
   446       fprintf(fp, "  case Op_%s: { _sub_Op_%s(n);\n", NodeClassNames[i], NodeClassNames[i]);
   447     } else {
   448       fprintf(fp, "  case Op_%s: {\n", NodeClassNames[i]);
   449       // Walk the list, compacting it
   450       gen_dfa_state_body(fp, minimize, status, operands_chained_from, i);
   451     }
   452     // Print the "break"
   453     fprintf(fp, "    break;\n");
   454     fprintf(fp, "  }\n");
   455   }
   457   // Generate the default case for switch(opcode)
   458   fprintf(fp, "  \n");
   459   fprintf(fp, "  default:\n");
   460   fprintf(fp, "    tty->print(\"Default case invoked for: \\n\");\n");
   461   fprintf(fp, "    tty->print(\"   opcode  = %cd, \\\"%cs\\\"\\n\", opcode, NodeClassNames[opcode]);\n", '%', '%');
   462   fprintf(fp, "    return false;\n");
   463   fprintf(fp, "  }\n");
   465   // Return status, indicating a successful match.
   466   fprintf(fp, "  return true;\n");
   467   // Generate the closing brace for method Matcher::DFA
   468   fprintf(fp, "}\n");
   469   Expr::check_buffers();
   470 }
   473 class dfa_shared_preds {
   474   enum { count = 4 };
   476   static bool        _found[count];
   477   static const char* _type [count];
   478   static const char* _var  [count];
   479   static const char* _pred [count];
   481   static void check_index(int index) { assert( 0 <= index && index < count, "Invalid index"); }
   483   // Confirm that this is a separate sub-expression.
   484   // Only need to catch common cases like " ... && shared ..."
   485   // and avoid hazardous ones like "...->shared"
   486   static bool valid_loc(char *pred, char *shared) {
   487     // start of predicate is valid
   488     if( shared == pred ) return true;
   490     // Check previous character and recurse if needed
   491     char *prev = shared - 1;
   492     char c  = *prev;
   493     switch( c ) {
   494     case ' ':
   495     case '\n':
   496       return dfa_shared_preds::valid_loc(pred, prev);
   497     case '!':
   498     case '(':
   499     case '<':
   500     case '=':
   501       return true;
   502     case '"':  // such as: #line 10 "myfile.ad"\n mypredicate
   503       return true;
   504     case '|':
   505       if( prev != pred && *(prev-1) == '|' ) return true;
   506     case '&':
   507       if( prev != pred && *(prev-1) == '&' ) return true;
   508     default:
   509       return false;
   510     }
   512     return false;
   513   }
   515 public:
   517   static bool        found(int index){ check_index(index); return _found[index]; }
   518   static void    set_found(int index, bool val) { check_index(index); _found[index] = val; }
   519   static void  reset_found() {
   520     for( int i = 0; i < count; ++i ) { _found[i] = false; }
   521   };
   523   static const char* type(int index) { check_index(index); return _type[index]; }
   524   static const char* var (int index) { check_index(index); return _var [index];  }
   525   static const char* pred(int index) { check_index(index); return _pred[index]; }
   527   // Check each predicate in the MatchList for common sub-expressions
   528   static void cse_matchlist(MatchList *matchList) {
   529     for( MatchList *mList = matchList; mList != NULL; mList = mList->get_next() ) {
   530       Predicate* predicate = mList->get_pred_obj();
   531       char*      pred      = mList->get_pred();
   532       if( pred != NULL ) {
   533         for(int index = 0; index < count; ++index ) {
   534           const char *shared_pred      = dfa_shared_preds::pred(index);
   535           const char *shared_pred_var  = dfa_shared_preds::var(index);
   536           bool result = dfa_shared_preds::cse_predicate(predicate, shared_pred, shared_pred_var);
   537           if( result ) dfa_shared_preds::set_found(index, true);
   538         }
   539       }
   540     }
   541   }
   543   // If the Predicate contains a common sub-expression, replace the Predicate's
   544   // string with one that uses the variable name.
   545   static bool cse_predicate(Predicate* predicate, const char *shared_pred, const char *shared_pred_var) {
   546     bool result = false;
   547     char *pred = predicate->_pred;
   548     if( pred != NULL ) {
   549       char *new_pred = pred;
   550       for( char *shared_pred_loc = strstr(new_pred, shared_pred);
   551       shared_pred_loc != NULL && dfa_shared_preds::valid_loc(new_pred,shared_pred_loc);
   552       shared_pred_loc = strstr(new_pred, shared_pred) ) {
   553         // Do not modify the original predicate string, it is shared
   554         if( new_pred == pred ) {
   555           new_pred = strdup(pred);
   556           shared_pred_loc = strstr(new_pred, shared_pred);
   557         }
   558         // Replace shared_pred with variable name
   559         strncpy(shared_pred_loc, shared_pred_var, strlen(shared_pred_var));
   560       }
   561       // Install new predicate
   562       if( new_pred != pred ) {
   563         predicate->_pred = new_pred;
   564         result = true;
   565       }
   566     }
   567     return result;
   568   }
   570   // Output the hoisted common sub-expression if we found it in predicates
   571   static void generate_cse(FILE *fp) {
   572     for(int j = 0; j < count; ++j ) {
   573       if( dfa_shared_preds::found(j) ) {
   574         const char *shared_pred_type = dfa_shared_preds::type(j);
   575         const char *shared_pred_var  = dfa_shared_preds::var(j);
   576         const char *shared_pred      = dfa_shared_preds::pred(j);
   577         fprintf(fp, "    %s %s = %s;\n", shared_pred_type, shared_pred_var, shared_pred);
   578       }
   579     }
   580   }
   581 };
   582 // shared predicates, _var and _pred entry should be the same length
   583 bool         dfa_shared_preds::_found[dfa_shared_preds::count]
   584   = { false, false, false, false };
   585 const char*  dfa_shared_preds::_type[dfa_shared_preds::count]
   586   = { "int", "jlong", "intptr_t", "bool" };
   587 const char*  dfa_shared_preds::_var [dfa_shared_preds::count]
   588   = { "_n_get_int__", "_n_get_long__", "_n_get_intptr_t__", "Compile__current____select_24_bit_instr__" };
   589 const char*  dfa_shared_preds::_pred[dfa_shared_preds::count]
   590   = { "n->get_int()", "n->get_long()", "n->get_intptr_t()", "Compile::current()->select_24_bit_instr()" };
   593 void ArchDesc::gen_dfa_state_body(FILE* fp, Dict &minimize, ProductionState &status, Dict &operands_chained_from, int i) {
   594   // Start the body of each Op_XXX sub-dfa with a clean state.
   595   status.initialize();
   597   // Walk the list, compacting it
   598   MatchList* mList = _mlistab[i];
   599   do {
   600     // Hash each entry using inputs as key and pointer as data.
   601     // If there is already an entry, keep the one with lower cost, and
   602     // remove the other one from the list.
   603     prune_matchlist(minimize, *mList);
   604     // Iterate
   605     mList = mList->get_next();
   606   } while(mList != NULL);
   608   // Hoist previously specified common sub-expressions out of predicates
   609   dfa_shared_preds::reset_found();
   610   dfa_shared_preds::cse_matchlist(_mlistab[i]);
   611   dfa_shared_preds::generate_cse(fp);
   613   mList = _mlistab[i];
   615   // Walk the list again, generating code
   616   do {
   617     // Each match can generate its own chains
   618     operands_chained_from.Clear();
   619     gen_match(fp, *mList, status, operands_chained_from);
   620     mList = mList->get_next();
   621   } while(mList != NULL);
   622   // Fill in any chain rules which add instructions
   623   // These can generate their own chains as well.
   624   operands_chained_from.Clear();  //
   625   if( debug_output1 ) { fprintf(fp, "// top level chain rules for: %s \n", (char *)NodeClassNames[i]); } // %%%%% Explanation
   626   const Expr *zeroCost = new Expr("0");
   627   chain_rule(fp, "   ", (char *)NodeClassNames[i], zeroCost, "Invalid",
   628              operands_chained_from, status);
   629 }
   633 //------------------------------Expr------------------------------------------
   634 Expr *Expr::_unknown_expr = NULL;
   635 char  Expr::string_buffer[STRING_BUFFER_LENGTH];
   636 char  Expr::external_buffer[STRING_BUFFER_LENGTH];
   637 bool  Expr::_init_buffers = Expr::init_buffers();
   639 Expr::Expr() {
   640   _external_name = NULL;
   641   _expr          = "Invalid_Expr";
   642   _min_value     = Expr::Max;
   643   _max_value     = Expr::Zero;
   644 }
   645 Expr::Expr(const char *cost) {
   646   _external_name = NULL;
   648   int intval = 0;
   649   if( cost == NULL ) {
   650     _expr = "0";
   651     _min_value = Expr::Zero;
   652     _max_value = Expr::Zero;
   653   }
   654   else if( ADLParser::is_int_token(cost, intval) ) {
   655     _expr = cost;
   656     _min_value = intval;
   657     _max_value = intval;
   658   }
   659   else {
   660     assert( strcmp(cost,"0") != 0, "Recognize string zero as an int");
   661     _expr = cost;
   662     _min_value = Expr::Zero;
   663     _max_value = Expr::Max;
   664   }
   665 }
   667 Expr::Expr(const char *name, const char *expression, int min_value, int max_value) {
   668   _external_name = name;
   669   _expr          = expression ? expression : name;
   670   _min_value     = min_value;
   671   _max_value     = max_value;
   672   assert(_min_value >= 0 && _min_value <= Expr::Max, "value out of range");
   673   assert(_max_value >= 0 && _max_value <= Expr::Max, "value out of range");
   674 }
   676 Expr *Expr::clone() const {
   677   Expr *cost = new Expr();
   678   cost->_external_name = _external_name;
   679   cost->_expr          = _expr;
   680   cost->_min_value     = _min_value;
   681   cost->_max_value     = _max_value;
   683   return cost;
   684 }
   686 void Expr::add(const Expr *c) {
   687   // Do not update fields until all computation is complete
   688   const char *external  = compute_external(this, c);
   689   const char *expr      = compute_expr(this, c);
   690   int         min_value = compute_min (this, c);
   691   int         max_value = compute_max (this, c);
   693   _external_name = external;
   694   _expr      = expr;
   695   _min_value = min_value;
   696   _max_value = max_value;
   697 }
   699 void Expr::add(const char *c) {
   700   Expr *cost = new Expr(c);
   701   add(cost);
   702 }
   704 void Expr::add(const char *c, ArchDesc &AD) {
   705   const Expr *e = AD.globalDefs()[c];
   706   if( e != NULL ) {
   707     // use the value of 'c' defined in <arch>.ad
   708     add(e);
   709   } else {
   710     Expr *cost = new Expr(c);
   711     add(cost);
   712   }
   713 }
   715 const char *Expr::compute_external(const Expr *c1, const Expr *c2) {
   716   const char * result = NULL;
   718   // Preserve use of external name which has a zero value
   719   if( c1->_external_name != NULL ) {
   720     sprintf( string_buffer, "%s", c1->as_string());
   721     if( !c2->is_zero() ) {
   722       strcat( string_buffer, "+");
   723       strcat( string_buffer, c2->as_string());
   724     }
   725     result = strdup(string_buffer);
   726   }
   727   else if( c2->_external_name != NULL ) {
   728     if( !c1->is_zero() ) {
   729       sprintf( string_buffer, "%s", c1->as_string());
   730       strcat( string_buffer, " + ");
   731     } else {
   732       string_buffer[0] = '\0';
   733     }
   734     strcat( string_buffer, c2->_external_name );
   735     result = strdup(string_buffer);
   736   }
   737   return result;
   738 }
   740 const char *Expr::compute_expr(const Expr *c1, const Expr *c2) {
   741   if( !c1->is_zero() ) {
   742     sprintf( string_buffer, "%s", c1->_expr);
   743     if( !c2->is_zero() ) {
   744       strcat( string_buffer, "+");
   745       strcat( string_buffer, c2->_expr);
   746     }
   747   }
   748   else if( !c2->is_zero() ) {
   749     sprintf( string_buffer, "%s", c2->_expr);
   750   }
   751   else {
   752     sprintf( string_buffer, "0");
   753   }
   754   char *cost = strdup(string_buffer);
   756   return cost;
   757 }
   759 int Expr::compute_min(const Expr *c1, const Expr *c2) {
   760   int result = c1->_min_value + c2->_min_value;
   761   assert( result >= 0, "Invalid cost computation");
   763   return result;
   764 }
   766 int Expr::compute_max(const Expr *c1, const Expr *c2) {
   767   int result = c1->_max_value + c2->_max_value;
   768   if( result < 0 ) {  // check for overflow
   769     result = Expr::Max;
   770   }
   772   return result;
   773 }
   775 void Expr::print() const {
   776   if( _external_name != NULL ) {
   777     printf("  %s == (%s) === [%d, %d]\n", _external_name, _expr, _min_value, _max_value);
   778   } else {
   779     printf("  %s === [%d, %d]\n", _expr, _min_value, _max_value);
   780   }
   781 }
   783 void Expr::print_define(FILE *fp) const {
   784   assert( _external_name != NULL, "definition does not have a name");
   785   assert( _min_value == _max_value, "Expect user definitions to have constant value");
   786   fprintf(fp, "#define  %s  (%s)  \n", _external_name, _expr);
   787   fprintf(fp, "// value == %d \n", _min_value);
   788 }
   790 void Expr::print_assert(FILE *fp) const {
   791   assert( _external_name != NULL, "definition does not have a name");
   792   assert( _min_value == _max_value, "Expect user definitions to have constant value");
   793   fprintf(fp, "  assert( %s == %d, \"Expect (%s) to equal %d\");\n", _external_name, _min_value, _expr, _min_value);
   794 }
   796 Expr *Expr::get_unknown() {
   797   if( Expr::_unknown_expr == NULL ) {
   798     Expr::_unknown_expr = new Expr();
   799   }
   801   return Expr::_unknown_expr;
   802 }
   804 bool Expr::init_buffers() {
   805   // Fill buffers with 0
   806   for( int i = 0; i < STRING_BUFFER_LENGTH; ++i ) {
   807     external_buffer[i] = '\0';
   808     string_buffer[i]   = '\0';
   809   }
   811   return true;
   812 }
   814 bool Expr::check_buffers() {
   815   // returns 'true' if buffer use may have overflowed
   816   bool ok = true;
   817   for( int i = STRING_BUFFER_LENGTH - 100; i < STRING_BUFFER_LENGTH; ++i) {
   818     if( external_buffer[i] != '\0' || string_buffer[i]   != '\0' ) {
   819       ok = false;
   820       assert( false, "Expr:: Buffer overflow");
   821     }
   822   }
   824   return ok;
   825 }
   828 //------------------------------ExprDict---------------------------------------
   829 // Constructor
   830 ExprDict::ExprDict( CmpKey cmp, Hash hash, Arena *arena )
   831   : _expr(cmp, hash, arena), _defines()  {
   832 }
   833 ExprDict::~ExprDict() {
   834 }
   836 // Return # of name-Expr pairs in dict
   837 int ExprDict::Size(void) const {
   838   return _expr.Size();
   839 }
   841 // define inserts the given key-value pair into the dictionary,
   842 // and records the name in order for later output, ...
   843 const Expr  *ExprDict::define(const char *name, Expr *expr) {
   844   const Expr *old_expr = (*this)[name];
   845   assert(old_expr == NULL, "Implementation does not support redefinition");
   847   _expr.Insert(name, expr);
   848   _defines.addName(name);
   850   return old_expr;
   851 }
   853 // Insert inserts the given key-value pair into the dictionary.  The prior
   854 // value of the key is returned; NULL if the key was not previously defined.
   855 const Expr  *ExprDict::Insert(const char *name, Expr *expr) {
   856   return (Expr*)_expr.Insert((void*)name, (void*)expr);
   857 }
   859 // Finds the value of a given key; or NULL if not found.
   860 // The dictionary is NOT changed.
   861 const Expr  *ExprDict::operator [](const char *name) const {
   862   return (Expr*)_expr[name];
   863 }
   865 void ExprDict::print_defines(FILE *fp) {
   866   fprintf(fp, "\n");
   867   const char *name = NULL;
   868   for( _defines.reset(); (name = _defines.iter()) != NULL; ) {
   869     const Expr *expr = (const Expr*)_expr[name];
   870     assert( expr != NULL, "name in ExprDict without matching Expr in dictionary");
   871     expr->print_define(fp);
   872   }
   873 }
   874 void ExprDict::print_asserts(FILE *fp) {
   875   fprintf(fp, "\n");
   876   fprintf(fp, "  // Following assertions generated from definition section\n");
   877   const char *name = NULL;
   878   for( _defines.reset(); (name = _defines.iter()) != NULL; ) {
   879     const Expr *expr = (const Expr*)_expr[name];
   880     assert( expr != NULL, "name in ExprDict without matching Expr in dictionary");
   881     expr->print_assert(fp);
   882   }
   883 }
   885 // Print out the dictionary contents as key-value pairs
   886 static void dumpekey(const void* key)  { fprintf(stdout, "%s", (char*) key); }
   887 static void dumpexpr(const void* expr) { fflush(stdout); ((Expr*)expr)->print(); }
   889 void ExprDict::dump() {
   890   _expr.print(dumpekey, dumpexpr);
   891 }
   894 //------------------------------ExprDict::private------------------------------
   895 // Disable public use of constructor, copy-ctor, operator =, operator ==
   896 ExprDict::ExprDict( ) : _expr(cmpkey,hashkey), _defines()  {
   897   assert( false, "NotImplemented");
   898 }
   899 ExprDict::ExprDict( const ExprDict & ) : _expr(cmpkey,hashkey), _defines() {
   900   assert( false, "NotImplemented");
   901 }
   902 ExprDict &ExprDict::operator =( const ExprDict &rhs) {
   903   assert( false, "NotImplemented");
   904   _expr = rhs._expr;
   905   return *this;
   906 }
   907 // == compares two dictionaries; they must have the same keys (their keys
   908 // must match using CmpKey) and they must have the same values (pointer
   909 // comparison).  If so 1 is returned, if not 0 is returned.
   910 bool ExprDict::operator ==(const ExprDict &d) const {
   911   assert( false, "NotImplemented");
   912   return false;
   913 }
   916 //------------------------------Production-------------------------------------
   917 Production::Production(const char *result, const char *constraint, const char *valid) {
   918   initialize();
   919   _result     = result;
   920   _constraint = constraint;
   921   _valid      = valid;
   922 }
   924 void Production::initialize() {
   925   _result     = NULL;
   926   _constraint = NULL;
   927   _valid      = knownInvalid;
   928   _cost_lb    = Expr::get_unknown();
   929   _cost_ub    = Expr::get_unknown();
   930 }
   932 void Production::print() {
   933   printf("%s", (_result     == NULL ? "NULL" : _result ) );
   934   printf("%s", (_constraint == NULL ? "NULL" : _constraint ) );
   935   printf("%s", (_valid      == NULL ? "NULL" : _valid ) );
   936   _cost_lb->print();
   937   _cost_ub->print();
   938 }
   941 //------------------------------ProductionState--------------------------------
   942 void ProductionState::initialize() {
   943   _constraint = noConstraint;
   945   // reset each Production currently in the dictionary
   946   DictI iter( &_production );
   947   const void *x, *y = NULL;
   948   for( ; iter.test(); ++iter) {
   949     x = iter._key;
   950     y = iter._value;
   951     Production *p = (Production*)y;
   952     if( p != NULL ) {
   953       p->initialize();
   954     }
   955   }
   956 }
   958 Production *ProductionState::getProduction(const char *result) {
   959   Production *p = (Production *)_production[result];
   960   if( p == NULL ) {
   961     p = new Production(result, _constraint, knownInvalid);
   962     _production.Insert(result, p);
   963   }
   965   return p;
   966 }
   968 void ProductionState::set_constraint(const char *constraint) {
   969   _constraint = constraint;
   970 }
   972 const char *ProductionState::valid(const char *result) {
   973   return getProduction(result)->valid();
   974 }
   976 void ProductionState::set_valid(const char *result) {
   977   Production *p = getProduction(result);
   979   // Update valid as allowed by current constraints
   980   if( _constraint == noConstraint ) {
   981     p->_valid = knownValid;
   982   } else {
   983     if( p->_valid != knownValid ) {
   984       p->_valid = unknownValid;
   985     }
   986   }
   987 }
   989 Expr *ProductionState::cost_lb(const char *result) {
   990   return getProduction(result)->cost_lb();
   991 }
   993 Expr *ProductionState::cost_ub(const char *result) {
   994   return getProduction(result)->cost_ub();
   995 }
   997 void ProductionState::set_cost_bounds(const char *result, const Expr *cost, bool has_state_check, bool has_cost_check) {
   998   Production *p = getProduction(result);
  1000   if( p->_valid == knownInvalid ) {
  1001     // Our cost bounds are not unknown, just not defined.
  1002     p->_cost_lb = cost->clone();
  1003     p->_cost_ub = cost->clone();
  1004   } else if (has_state_check || _constraint != noConstraint) {
  1005     // The production is protected by a condition, so
  1006     // the cost bounds may expand.
  1007     // _cost_lb = min(cost, _cost_lb)
  1008     if( cost->less_than_or_equal(p->_cost_lb) ) {
  1009       p->_cost_lb = cost->clone();
  1011     // _cost_ub = max(cost, _cost_ub)
  1012     if( p->_cost_ub->less_than_or_equal(cost) ) {
  1013       p->_cost_ub = cost->clone();
  1015   } else if (has_cost_check) {
  1016     // The production has no condition check, but does
  1017     // have a cost check that could reduce the upper
  1018     // and/or lower bound.
  1019     // _cost_lb = min(cost, _cost_lb)
  1020     if( cost->less_than_or_equal(p->_cost_lb) ) {
  1021       p->_cost_lb = cost->clone();
  1023     // _cost_ub = min(cost, _cost_ub)
  1024     if( cost->less_than_or_equal(p->_cost_ub) ) {
  1025       p->_cost_ub = cost->clone();
  1027   } else {
  1028     // The costs are unconditionally set.
  1029     p->_cost_lb = cost->clone();
  1030     p->_cost_ub = cost->clone();
  1035 // Print out the dictionary contents as key-value pairs
  1036 static void print_key (const void* key)              { fprintf(stdout, "%s", (char*) key); }
  1037 static void print_production(const void* production) { fflush(stdout); ((Production*)production)->print(); }
  1039 void ProductionState::print() {
  1040   _production.print(print_key, print_production);

mercurial