src/share/vm/gc_implementation/g1/g1CollectedHeap.hpp

Wed, 15 Feb 2012 13:06:53 -0500

author
tonyp
date
Wed, 15 Feb 2012 13:06:53 -0500
changeset 3539
a9647476d1a4
parent 3537
caa4652b4414
child 3690
748051fd24ce
permissions
-rw-r--r--

7132029: G1: mixed GC phase lasts for longer than it should
Summary: Revamp of the mechanism that chooses old regions for inclusion in the CSet. It simplifies the code and introduces min and max bounds on the number of old regions added to the CSet at each mixed GC to avoid pathological cases. It also ensures that when we do a mixed GC we'll always find old regions to add to the CSet (i.e., it eliminates the case where a mixed GC will collect no old regions which can happen today).
Reviewed-by: johnc, brutisso

     1 /*
     2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
    28 #include "gc_implementation/g1/concurrentMark.hpp"
    29 #include "gc_implementation/g1/g1AllocRegion.hpp"
    30 #include "gc_implementation/g1/g1HRPrinter.hpp"
    31 #include "gc_implementation/g1/g1RemSet.hpp"
    32 #include "gc_implementation/g1/g1MonitoringSupport.hpp"
    33 #include "gc_implementation/g1/heapRegionSeq.hpp"
    34 #include "gc_implementation/g1/heapRegionSets.hpp"
    35 #include "gc_implementation/shared/hSpaceCounters.hpp"
    36 #include "gc_implementation/parNew/parGCAllocBuffer.hpp"
    37 #include "memory/barrierSet.hpp"
    38 #include "memory/memRegion.hpp"
    39 #include "memory/sharedHeap.hpp"
    41 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
    42 // It uses the "Garbage First" heap organization and algorithm, which
    43 // may combine concurrent marking with parallel, incremental compaction of
    44 // heap subsets that will yield large amounts of garbage.
    46 class HeapRegion;
    47 class HRRSCleanupTask;
    48 class PermanentGenerationSpec;
    49 class GenerationSpec;
    50 class OopsInHeapRegionClosure;
    51 class G1ScanHeapEvacClosure;
    52 class ObjectClosure;
    53 class SpaceClosure;
    54 class CompactibleSpaceClosure;
    55 class Space;
    56 class G1CollectorPolicy;
    57 class GenRemSet;
    58 class G1RemSet;
    59 class HeapRegionRemSetIterator;
    60 class ConcurrentMark;
    61 class ConcurrentMarkThread;
    62 class ConcurrentG1Refine;
    63 class GenerationCounters;
    65 typedef OverflowTaskQueue<StarTask>         RefToScanQueue;
    66 typedef GenericTaskQueueSet<RefToScanQueue> RefToScanQueueSet;
    68 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
    69 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
    71 enum GCAllocPurpose {
    72   GCAllocForTenured,
    73   GCAllocForSurvived,
    74   GCAllocPurposeCount
    75 };
    77 class YoungList : public CHeapObj {
    78 private:
    79   G1CollectedHeap* _g1h;
    81   HeapRegion* _head;
    83   HeapRegion* _survivor_head;
    84   HeapRegion* _survivor_tail;
    86   HeapRegion* _curr;
    88   size_t      _length;
    89   size_t      _survivor_length;
    91   size_t      _last_sampled_rs_lengths;
    92   size_t      _sampled_rs_lengths;
    94   void         empty_list(HeapRegion* list);
    96 public:
    97   YoungList(G1CollectedHeap* g1h);
    99   void         push_region(HeapRegion* hr);
   100   void         add_survivor_region(HeapRegion* hr);
   102   void         empty_list();
   103   bool         is_empty() { return _length == 0; }
   104   size_t       length() { return _length; }
   105   size_t       survivor_length() { return _survivor_length; }
   107   // Currently we do not keep track of the used byte sum for the
   108   // young list and the survivors and it'd be quite a lot of work to
   109   // do so. When we'll eventually replace the young list with
   110   // instances of HeapRegionLinkedList we'll get that for free. So,
   111   // we'll report the more accurate information then.
   112   size_t       eden_used_bytes() {
   113     assert(length() >= survivor_length(), "invariant");
   114     return (length() - survivor_length()) * HeapRegion::GrainBytes;
   115   }
   116   size_t       survivor_used_bytes() {
   117     return survivor_length() * HeapRegion::GrainBytes;
   118   }
   120   void rs_length_sampling_init();
   121   bool rs_length_sampling_more();
   122   void rs_length_sampling_next();
   124   void reset_sampled_info() {
   125     _last_sampled_rs_lengths =   0;
   126   }
   127   size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
   129   // for development purposes
   130   void reset_auxilary_lists();
   131   void clear() { _head = NULL; _length = 0; }
   133   void clear_survivors() {
   134     _survivor_head    = NULL;
   135     _survivor_tail    = NULL;
   136     _survivor_length  = 0;
   137   }
   139   HeapRegion* first_region() { return _head; }
   140   HeapRegion* first_survivor_region() { return _survivor_head; }
   141   HeapRegion* last_survivor_region() { return _survivor_tail; }
   143   // debugging
   144   bool          check_list_well_formed();
   145   bool          check_list_empty(bool check_sample = true);
   146   void          print();
   147 };
   149 class MutatorAllocRegion : public G1AllocRegion {
   150 protected:
   151   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
   152   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
   153 public:
   154   MutatorAllocRegion()
   155     : G1AllocRegion("Mutator Alloc Region", false /* bot_updates */) { }
   156 };
   158 // The G1 STW is alive closure.
   159 // An instance is embedded into the G1CH and used as the
   160 // (optional) _is_alive_non_header closure in the STW
   161 // reference processor. It is also extensively used during
   162 // refence processing during STW evacuation pauses.
   163 class G1STWIsAliveClosure: public BoolObjectClosure {
   164   G1CollectedHeap* _g1;
   165 public:
   166   G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
   167   void do_object(oop p) { assert(false, "Do not call."); }
   168   bool do_object_b(oop p);
   169 };
   171 class SurvivorGCAllocRegion : public G1AllocRegion {
   172 protected:
   173   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
   174   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
   175 public:
   176   SurvivorGCAllocRegion()
   177   : G1AllocRegion("Survivor GC Alloc Region", false /* bot_updates */) { }
   178 };
   180 class OldGCAllocRegion : public G1AllocRegion {
   181 protected:
   182   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
   183   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
   184 public:
   185   OldGCAllocRegion()
   186   : G1AllocRegion("Old GC Alloc Region", true /* bot_updates */) { }
   187 };
   189 class RefineCardTableEntryClosure;
   191 class G1CollectedHeap : public SharedHeap {
   192   friend class VM_G1CollectForAllocation;
   193   friend class VM_GenCollectForPermanentAllocation;
   194   friend class VM_G1CollectFull;
   195   friend class VM_G1IncCollectionPause;
   196   friend class VMStructs;
   197   friend class MutatorAllocRegion;
   198   friend class SurvivorGCAllocRegion;
   199   friend class OldGCAllocRegion;
   201   // Closures used in implementation.
   202   friend class G1ParCopyHelper;
   203   friend class G1IsAliveClosure;
   204   friend class G1EvacuateFollowersClosure;
   205   friend class G1ParScanThreadState;
   206   friend class G1ParScanClosureSuper;
   207   friend class G1ParEvacuateFollowersClosure;
   208   friend class G1ParTask;
   209   friend class G1FreeGarbageRegionClosure;
   210   friend class RefineCardTableEntryClosure;
   211   friend class G1PrepareCompactClosure;
   212   friend class RegionSorter;
   213   friend class RegionResetter;
   214   friend class CountRCClosure;
   215   friend class EvacPopObjClosure;
   216   friend class G1ParCleanupCTTask;
   218   // Other related classes.
   219   friend class G1MarkSweep;
   221 private:
   222   // The one and only G1CollectedHeap, so static functions can find it.
   223   static G1CollectedHeap* _g1h;
   225   static size_t _humongous_object_threshold_in_words;
   227   // Storage for the G1 heap (excludes the permanent generation).
   228   VirtualSpace _g1_storage;
   229   MemRegion    _g1_reserved;
   231   // The part of _g1_storage that is currently committed.
   232   MemRegion _g1_committed;
   234   // The master free list. It will satisfy all new region allocations.
   235   MasterFreeRegionList      _free_list;
   237   // The secondary free list which contains regions that have been
   238   // freed up during the cleanup process. This will be appended to the
   239   // master free list when appropriate.
   240   SecondaryFreeRegionList   _secondary_free_list;
   242   // It keeps track of the old regions.
   243   MasterOldRegionSet        _old_set;
   245   // It keeps track of the humongous regions.
   246   MasterHumongousRegionSet  _humongous_set;
   248   // The number of regions we could create by expansion.
   249   size_t _expansion_regions;
   251   // The block offset table for the G1 heap.
   252   G1BlockOffsetSharedArray* _bot_shared;
   254   // Tears down the region sets / lists so that they are empty and the
   255   // regions on the heap do not belong to a region set / list. The
   256   // only exception is the humongous set which we leave unaltered. If
   257   // free_list_only is true, it will only tear down the master free
   258   // list. It is called before a Full GC (free_list_only == false) or
   259   // before heap shrinking (free_list_only == true).
   260   void tear_down_region_sets(bool free_list_only);
   262   // Rebuilds the region sets / lists so that they are repopulated to
   263   // reflect the contents of the heap. The only exception is the
   264   // humongous set which was not torn down in the first place. If
   265   // free_list_only is true, it will only rebuild the master free
   266   // list. It is called after a Full GC (free_list_only == false) or
   267   // after heap shrinking (free_list_only == true).
   268   void rebuild_region_sets(bool free_list_only);
   270   // The sequence of all heap regions in the heap.
   271   HeapRegionSeq _hrs;
   273   // Alloc region used to satisfy mutator allocation requests.
   274   MutatorAllocRegion _mutator_alloc_region;
   276   // Alloc region used to satisfy allocation requests by the GC for
   277   // survivor objects.
   278   SurvivorGCAllocRegion _survivor_gc_alloc_region;
   280   // Alloc region used to satisfy allocation requests by the GC for
   281   // old objects.
   282   OldGCAllocRegion _old_gc_alloc_region;
   284   // The last old region we allocated to during the last GC.
   285   // Typically, it is not full so we should re-use it during the next GC.
   286   HeapRegion* _retained_old_gc_alloc_region;
   288   // It specifies whether we should attempt to expand the heap after a
   289   // region allocation failure. If heap expansion fails we set this to
   290   // false so that we don't re-attempt the heap expansion (it's likely
   291   // that subsequent expansion attempts will also fail if one fails).
   292   // Currently, it is only consulted during GC and it's reset at the
   293   // start of each GC.
   294   bool _expand_heap_after_alloc_failure;
   296   // It resets the mutator alloc region before new allocations can take place.
   297   void init_mutator_alloc_region();
   299   // It releases the mutator alloc region.
   300   void release_mutator_alloc_region();
   302   // It initializes the GC alloc regions at the start of a GC.
   303   void init_gc_alloc_regions();
   305   // It releases the GC alloc regions at the end of a GC.
   306   void release_gc_alloc_regions();
   308   // It does any cleanup that needs to be done on the GC alloc regions
   309   // before a Full GC.
   310   void abandon_gc_alloc_regions();
   312   // Helper for monitoring and management support.
   313   G1MonitoringSupport* _g1mm;
   315   // Determines PLAB size for a particular allocation purpose.
   316   static size_t desired_plab_sz(GCAllocPurpose purpose);
   318   // Outside of GC pauses, the number of bytes used in all regions other
   319   // than the current allocation region.
   320   size_t _summary_bytes_used;
   322   // This is used for a quick test on whether a reference points into
   323   // the collection set or not. Basically, we have an array, with one
   324   // byte per region, and that byte denotes whether the corresponding
   325   // region is in the collection set or not. The entry corresponding
   326   // the bottom of the heap, i.e., region 0, is pointed to by
   327   // _in_cset_fast_test_base.  The _in_cset_fast_test field has been
   328   // biased so that it actually points to address 0 of the address
   329   // space, to make the test as fast as possible (we can simply shift
   330   // the address to address into it, instead of having to subtract the
   331   // bottom of the heap from the address before shifting it; basically
   332   // it works in the same way the card table works).
   333   bool* _in_cset_fast_test;
   335   // The allocated array used for the fast test on whether a reference
   336   // points into the collection set or not. This field is also used to
   337   // free the array.
   338   bool* _in_cset_fast_test_base;
   340   // The length of the _in_cset_fast_test_base array.
   341   size_t _in_cset_fast_test_length;
   343   volatile unsigned _gc_time_stamp;
   345   size_t* _surviving_young_words;
   347   G1HRPrinter _hr_printer;
   349   void setup_surviving_young_words();
   350   void update_surviving_young_words(size_t* surv_young_words);
   351   void cleanup_surviving_young_words();
   353   // It decides whether an explicit GC should start a concurrent cycle
   354   // instead of doing a STW GC. Currently, a concurrent cycle is
   355   // explicitly started if:
   356   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
   357   // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
   358   // (c) cause == _g1_humongous_allocation
   359   bool should_do_concurrent_full_gc(GCCause::Cause cause);
   361   // Keeps track of how many "full collections" (i.e., Full GCs or
   362   // concurrent cycles) we have completed. The number of them we have
   363   // started is maintained in _total_full_collections in CollectedHeap.
   364   volatile unsigned int _full_collections_completed;
   366   // This is a non-product method that is helpful for testing. It is
   367   // called at the end of a GC and artificially expands the heap by
   368   // allocating a number of dead regions. This way we can induce very
   369   // frequent marking cycles and stress the cleanup / concurrent
   370   // cleanup code more (as all the regions that will be allocated by
   371   // this method will be found dead by the marking cycle).
   372   void allocate_dummy_regions() PRODUCT_RETURN;
   374   // These are macros so that, if the assert fires, we get the correct
   375   // line number, file, etc.
   377 #define heap_locking_asserts_err_msg(_extra_message_)                         \
   378   err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",    \
   379           (_extra_message_),                                                  \
   380           BOOL_TO_STR(Heap_lock->owned_by_self()),                            \
   381           BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),               \
   382           BOOL_TO_STR(Thread::current()->is_VM_thread()))
   384 #define assert_heap_locked()                                                  \
   385   do {                                                                        \
   386     assert(Heap_lock->owned_by_self(),                                        \
   387            heap_locking_asserts_err_msg("should be holding the Heap_lock"));  \
   388   } while (0)
   390 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
   391   do {                                                                        \
   392     assert(Heap_lock->owned_by_self() ||                                      \
   393            (SafepointSynchronize::is_at_safepoint() &&                        \
   394              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
   395            heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
   396                                         "should be at a safepoint"));         \
   397   } while (0)
   399 #define assert_heap_locked_and_not_at_safepoint()                             \
   400   do {                                                                        \
   401     assert(Heap_lock->owned_by_self() &&                                      \
   402                                     !SafepointSynchronize::is_at_safepoint(), \
   403           heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
   404                                        "should not be at a safepoint"));      \
   405   } while (0)
   407 #define assert_heap_not_locked()                                              \
   408   do {                                                                        \
   409     assert(!Heap_lock->owned_by_self(),                                       \
   410         heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
   411   } while (0)
   413 #define assert_heap_not_locked_and_not_at_safepoint()                         \
   414   do {                                                                        \
   415     assert(!Heap_lock->owned_by_self() &&                                     \
   416                                     !SafepointSynchronize::is_at_safepoint(), \
   417       heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
   418                                    "should not be at a safepoint"));          \
   419   } while (0)
   421 #define assert_at_safepoint(_should_be_vm_thread_)                            \
   422   do {                                                                        \
   423     assert(SafepointSynchronize::is_at_safepoint() &&                         \
   424               ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
   425            heap_locking_asserts_err_msg("should be at a safepoint"));         \
   426   } while (0)
   428 #define assert_not_at_safepoint()                                             \
   429   do {                                                                        \
   430     assert(!SafepointSynchronize::is_at_safepoint(),                          \
   431            heap_locking_asserts_err_msg("should not be at a safepoint"));     \
   432   } while (0)
   434 protected:
   436   // The young region list.
   437   YoungList*  _young_list;
   439   // The current policy object for the collector.
   440   G1CollectorPolicy* _g1_policy;
   442   // This is the second level of trying to allocate a new region. If
   443   // new_region() didn't find a region on the free_list, this call will
   444   // check whether there's anything available on the
   445   // secondary_free_list and/or wait for more regions to appear on
   446   // that list, if _free_regions_coming is set.
   447   HeapRegion* new_region_try_secondary_free_list();
   449   // Try to allocate a single non-humongous HeapRegion sufficient for
   450   // an allocation of the given word_size. If do_expand is true,
   451   // attempt to expand the heap if necessary to satisfy the allocation
   452   // request.
   453   HeapRegion* new_region(size_t word_size, bool do_expand);
   455   // Attempt to satisfy a humongous allocation request of the given
   456   // size by finding a contiguous set of free regions of num_regions
   457   // length and remove them from the master free list. Return the
   458   // index of the first region or G1_NULL_HRS_INDEX if the search
   459   // was unsuccessful.
   460   size_t humongous_obj_allocate_find_first(size_t num_regions,
   461                                            size_t word_size);
   463   // Initialize a contiguous set of free regions of length num_regions
   464   // and starting at index first so that they appear as a single
   465   // humongous region.
   466   HeapWord* humongous_obj_allocate_initialize_regions(size_t first,
   467                                                       size_t num_regions,
   468                                                       size_t word_size);
   470   // Attempt to allocate a humongous object of the given size. Return
   471   // NULL if unsuccessful.
   472   HeapWord* humongous_obj_allocate(size_t word_size);
   474   // The following two methods, allocate_new_tlab() and
   475   // mem_allocate(), are the two main entry points from the runtime
   476   // into the G1's allocation routines. They have the following
   477   // assumptions:
   478   //
   479   // * They should both be called outside safepoints.
   480   //
   481   // * They should both be called without holding the Heap_lock.
   482   //
   483   // * All allocation requests for new TLABs should go to
   484   //   allocate_new_tlab().
   485   //
   486   // * All non-TLAB allocation requests should go to mem_allocate().
   487   //
   488   // * If either call cannot satisfy the allocation request using the
   489   //   current allocating region, they will try to get a new one. If
   490   //   this fails, they will attempt to do an evacuation pause and
   491   //   retry the allocation.
   492   //
   493   // * If all allocation attempts fail, even after trying to schedule
   494   //   an evacuation pause, allocate_new_tlab() will return NULL,
   495   //   whereas mem_allocate() will attempt a heap expansion and/or
   496   //   schedule a Full GC.
   497   //
   498   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
   499   //   should never be called with word_size being humongous. All
   500   //   humongous allocation requests should go to mem_allocate() which
   501   //   will satisfy them with a special path.
   503   virtual HeapWord* allocate_new_tlab(size_t word_size);
   505   virtual HeapWord* mem_allocate(size_t word_size,
   506                                  bool*  gc_overhead_limit_was_exceeded);
   508   // The following three methods take a gc_count_before_ret
   509   // parameter which is used to return the GC count if the method
   510   // returns NULL. Given that we are required to read the GC count
   511   // while holding the Heap_lock, and these paths will take the
   512   // Heap_lock at some point, it's easier to get them to read the GC
   513   // count while holding the Heap_lock before they return NULL instead
   514   // of the caller (namely: mem_allocate()) having to also take the
   515   // Heap_lock just to read the GC count.
   517   // First-level mutator allocation attempt: try to allocate out of
   518   // the mutator alloc region without taking the Heap_lock. This
   519   // should only be used for non-humongous allocations.
   520   inline HeapWord* attempt_allocation(size_t word_size,
   521                                       unsigned int* gc_count_before_ret);
   523   // Second-level mutator allocation attempt: take the Heap_lock and
   524   // retry the allocation attempt, potentially scheduling a GC
   525   // pause. This should only be used for non-humongous allocations.
   526   HeapWord* attempt_allocation_slow(size_t word_size,
   527                                     unsigned int* gc_count_before_ret);
   529   // Takes the Heap_lock and attempts a humongous allocation. It can
   530   // potentially schedule a GC pause.
   531   HeapWord* attempt_allocation_humongous(size_t word_size,
   532                                          unsigned int* gc_count_before_ret);
   534   // Allocation attempt that should be called during safepoints (e.g.,
   535   // at the end of a successful GC). expect_null_mutator_alloc_region
   536   // specifies whether the mutator alloc region is expected to be NULL
   537   // or not.
   538   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
   539                                        bool expect_null_mutator_alloc_region);
   541   // It dirties the cards that cover the block so that so that the post
   542   // write barrier never queues anything when updating objects on this
   543   // block. It is assumed (and in fact we assert) that the block
   544   // belongs to a young region.
   545   inline void dirty_young_block(HeapWord* start, size_t word_size);
   547   // Allocate blocks during garbage collection. Will ensure an
   548   // allocation region, either by picking one or expanding the
   549   // heap, and then allocate a block of the given size. The block
   550   // may not be a humongous - it must fit into a single heap region.
   551   HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
   553   HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose,
   554                                     HeapRegion*    alloc_region,
   555                                     bool           par,
   556                                     size_t         word_size);
   558   // Ensure that no further allocations can happen in "r", bearing in mind
   559   // that parallel threads might be attempting allocations.
   560   void par_allocate_remaining_space(HeapRegion* r);
   562   // Allocation attempt during GC for a survivor object / PLAB.
   563   inline HeapWord* survivor_attempt_allocation(size_t word_size);
   565   // Allocation attempt during GC for an old object / PLAB.
   566   inline HeapWord* old_attempt_allocation(size_t word_size);
   568   // These methods are the "callbacks" from the G1AllocRegion class.
   570   // For mutator alloc regions.
   571   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
   572   void retire_mutator_alloc_region(HeapRegion* alloc_region,
   573                                    size_t allocated_bytes);
   575   // For GC alloc regions.
   576   HeapRegion* new_gc_alloc_region(size_t word_size, size_t count,
   577                                   GCAllocPurpose ap);
   578   void retire_gc_alloc_region(HeapRegion* alloc_region,
   579                               size_t allocated_bytes, GCAllocPurpose ap);
   581   // - if explicit_gc is true, the GC is for a System.gc() or a heap
   582   //   inspection request and should collect the entire heap
   583   // - if clear_all_soft_refs is true, all soft references should be
   584   //   cleared during the GC
   585   // - if explicit_gc is false, word_size describes the allocation that
   586   //   the GC should attempt (at least) to satisfy
   587   // - it returns false if it is unable to do the collection due to the
   588   //   GC locker being active, true otherwise
   589   bool do_collection(bool explicit_gc,
   590                      bool clear_all_soft_refs,
   591                      size_t word_size);
   593   // Callback from VM_G1CollectFull operation.
   594   // Perform a full collection.
   595   void do_full_collection(bool clear_all_soft_refs);
   597   // Resize the heap if necessary after a full collection.  If this is
   598   // after a collect-for allocation, "word_size" is the allocation size,
   599   // and will be considered part of the used portion of the heap.
   600   void resize_if_necessary_after_full_collection(size_t word_size);
   602   // Callback from VM_G1CollectForAllocation operation.
   603   // This function does everything necessary/possible to satisfy a
   604   // failed allocation request (including collection, expansion, etc.)
   605   HeapWord* satisfy_failed_allocation(size_t word_size, bool* succeeded);
   607   // Attempting to expand the heap sufficiently
   608   // to support an allocation of the given "word_size".  If
   609   // successful, perform the allocation and return the address of the
   610   // allocated block, or else "NULL".
   611   HeapWord* expand_and_allocate(size_t word_size);
   613   // Process any reference objects discovered during
   614   // an incremental evacuation pause.
   615   void process_discovered_references();
   617   // Enqueue any remaining discovered references
   618   // after processing.
   619   void enqueue_discovered_references();
   621 public:
   623   G1MonitoringSupport* g1mm() {
   624     assert(_g1mm != NULL, "should have been initialized");
   625     return _g1mm;
   626   }
   628   // Expand the garbage-first heap by at least the given size (in bytes!).
   629   // Returns true if the heap was expanded by the requested amount;
   630   // false otherwise.
   631   // (Rounds up to a HeapRegion boundary.)
   632   bool expand(size_t expand_bytes);
   634   // Do anything common to GC's.
   635   virtual void gc_prologue(bool full);
   636   virtual void gc_epilogue(bool full);
   638   // We register a region with the fast "in collection set" test. We
   639   // simply set to true the array slot corresponding to this region.
   640   void register_region_with_in_cset_fast_test(HeapRegion* r) {
   641     assert(_in_cset_fast_test_base != NULL, "sanity");
   642     assert(r->in_collection_set(), "invariant");
   643     size_t index = r->hrs_index();
   644     assert(index < _in_cset_fast_test_length, "invariant");
   645     assert(!_in_cset_fast_test_base[index], "invariant");
   646     _in_cset_fast_test_base[index] = true;
   647   }
   649   // This is a fast test on whether a reference points into the
   650   // collection set or not. It does not assume that the reference
   651   // points into the heap; if it doesn't, it will return false.
   652   bool in_cset_fast_test(oop obj) {
   653     assert(_in_cset_fast_test != NULL, "sanity");
   654     if (_g1_committed.contains((HeapWord*) obj)) {
   655       // no need to subtract the bottom of the heap from obj,
   656       // _in_cset_fast_test is biased
   657       size_t index = ((size_t) obj) >> HeapRegion::LogOfHRGrainBytes;
   658       bool ret = _in_cset_fast_test[index];
   659       // let's make sure the result is consistent with what the slower
   660       // test returns
   661       assert( ret || !obj_in_cs(obj), "sanity");
   662       assert(!ret ||  obj_in_cs(obj), "sanity");
   663       return ret;
   664     } else {
   665       return false;
   666     }
   667   }
   669   void clear_cset_fast_test() {
   670     assert(_in_cset_fast_test_base != NULL, "sanity");
   671     memset(_in_cset_fast_test_base, false,
   672         _in_cset_fast_test_length * sizeof(bool));
   673   }
   675   // This is called at the end of either a concurrent cycle or a Full
   676   // GC to update the number of full collections completed. Those two
   677   // can happen in a nested fashion, i.e., we start a concurrent
   678   // cycle, a Full GC happens half-way through it which ends first,
   679   // and then the cycle notices that a Full GC happened and ends
   680   // too. The concurrent parameter is a boolean to help us do a bit
   681   // tighter consistency checking in the method. If concurrent is
   682   // false, the caller is the inner caller in the nesting (i.e., the
   683   // Full GC). If concurrent is true, the caller is the outer caller
   684   // in this nesting (i.e., the concurrent cycle). Further nesting is
   685   // not currently supported. The end of the this call also notifies
   686   // the FullGCCount_lock in case a Java thread is waiting for a full
   687   // GC to happen (e.g., it called System.gc() with
   688   // +ExplicitGCInvokesConcurrent).
   689   void increment_full_collections_completed(bool concurrent);
   691   unsigned int full_collections_completed() {
   692     return _full_collections_completed;
   693   }
   695   G1HRPrinter* hr_printer() { return &_hr_printer; }
   697 protected:
   699   // Shrink the garbage-first heap by at most the given size (in bytes!).
   700   // (Rounds down to a HeapRegion boundary.)
   701   virtual void shrink(size_t expand_bytes);
   702   void shrink_helper(size_t expand_bytes);
   704   #if TASKQUEUE_STATS
   705   static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
   706   void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
   707   void reset_taskqueue_stats();
   708   #endif // TASKQUEUE_STATS
   710   // Schedule the VM operation that will do an evacuation pause to
   711   // satisfy an allocation request of word_size. *succeeded will
   712   // return whether the VM operation was successful (it did do an
   713   // evacuation pause) or not (another thread beat us to it or the GC
   714   // locker was active). Given that we should not be holding the
   715   // Heap_lock when we enter this method, we will pass the
   716   // gc_count_before (i.e., total_collections()) as a parameter since
   717   // it has to be read while holding the Heap_lock. Currently, both
   718   // methods that call do_collection_pause() release the Heap_lock
   719   // before the call, so it's easy to read gc_count_before just before.
   720   HeapWord* do_collection_pause(size_t       word_size,
   721                                 unsigned int gc_count_before,
   722                                 bool*        succeeded);
   724   // The guts of the incremental collection pause, executed by the vm
   725   // thread. It returns false if it is unable to do the collection due
   726   // to the GC locker being active, true otherwise
   727   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
   729   // Actually do the work of evacuating the collection set.
   730   void evacuate_collection_set();
   732   // The g1 remembered set of the heap.
   733   G1RemSet* _g1_rem_set;
   734   // And it's mod ref barrier set, used to track updates for the above.
   735   ModRefBarrierSet* _mr_bs;
   737   // A set of cards that cover the objects for which the Rsets should be updated
   738   // concurrently after the collection.
   739   DirtyCardQueueSet _dirty_card_queue_set;
   741   // The Heap Region Rem Set Iterator.
   742   HeapRegionRemSetIterator** _rem_set_iterator;
   744   // The closure used to refine a single card.
   745   RefineCardTableEntryClosure* _refine_cte_cl;
   747   // A function to check the consistency of dirty card logs.
   748   void check_ct_logs_at_safepoint();
   750   // A DirtyCardQueueSet that is used to hold cards that contain
   751   // references into the current collection set. This is used to
   752   // update the remembered sets of the regions in the collection
   753   // set in the event of an evacuation failure.
   754   DirtyCardQueueSet _into_cset_dirty_card_queue_set;
   756   // After a collection pause, make the regions in the CS into free
   757   // regions.
   758   void free_collection_set(HeapRegion* cs_head);
   760   // Abandon the current collection set without recording policy
   761   // statistics or updating free lists.
   762   void abandon_collection_set(HeapRegion* cs_head);
   764   // Applies "scan_non_heap_roots" to roots outside the heap,
   765   // "scan_rs" to roots inside the heap (having done "set_region" to
   766   // indicate the region in which the root resides), and does "scan_perm"
   767   // (setting the generation to the perm generation.)  If "scan_rs" is
   768   // NULL, then this step is skipped.  The "worker_i"
   769   // param is for use with parallel roots processing, and should be
   770   // the "i" of the calling parallel worker thread's work(i) function.
   771   // In the sequential case this param will be ignored.
   772   void g1_process_strong_roots(bool collecting_perm_gen,
   773                                ScanningOption so,
   774                                OopClosure* scan_non_heap_roots,
   775                                OopsInHeapRegionClosure* scan_rs,
   776                                OopsInGenClosure* scan_perm,
   777                                int worker_i);
   779   // Apply "blk" to all the weak roots of the system.  These include
   780   // JNI weak roots, the code cache, system dictionary, symbol table,
   781   // string table, and referents of reachable weak refs.
   782   void g1_process_weak_roots(OopClosure* root_closure,
   783                              OopClosure* non_root_closure);
   785   // Frees a non-humongous region by initializing its contents and
   786   // adding it to the free list that's passed as a parameter (this is
   787   // usually a local list which will be appended to the master free
   788   // list later). The used bytes of freed regions are accumulated in
   789   // pre_used. If par is true, the region's RSet will not be freed
   790   // up. The assumption is that this will be done later.
   791   void free_region(HeapRegion* hr,
   792                    size_t* pre_used,
   793                    FreeRegionList* free_list,
   794                    bool par);
   796   // Frees a humongous region by collapsing it into individual regions
   797   // and calling free_region() for each of them. The freed regions
   798   // will be added to the free list that's passed as a parameter (this
   799   // is usually a local list which will be appended to the master free
   800   // list later). The used bytes of freed regions are accumulated in
   801   // pre_used. If par is true, the region's RSet will not be freed
   802   // up. The assumption is that this will be done later.
   803   void free_humongous_region(HeapRegion* hr,
   804                              size_t* pre_used,
   805                              FreeRegionList* free_list,
   806                              HumongousRegionSet* humongous_proxy_set,
   807                              bool par);
   809   // Notifies all the necessary spaces that the committed space has
   810   // been updated (either expanded or shrunk). It should be called
   811   // after _g1_storage is updated.
   812   void update_committed_space(HeapWord* old_end, HeapWord* new_end);
   814   // The concurrent marker (and the thread it runs in.)
   815   ConcurrentMark* _cm;
   816   ConcurrentMarkThread* _cmThread;
   817   bool _mark_in_progress;
   819   // The concurrent refiner.
   820   ConcurrentG1Refine* _cg1r;
   822   // The parallel task queues
   823   RefToScanQueueSet *_task_queues;
   825   // True iff a evacuation has failed in the current collection.
   826   bool _evacuation_failed;
   828   // Set the attribute indicating whether evacuation has failed in the
   829   // current collection.
   830   void set_evacuation_failed(bool b) { _evacuation_failed = b; }
   832   // Failed evacuations cause some logical from-space objects to have
   833   // forwarding pointers to themselves.  Reset them.
   834   void remove_self_forwarding_pointers();
   836   // When one is non-null, so is the other.  Together, they each pair is
   837   // an object with a preserved mark, and its mark value.
   838   GrowableArray<oop>*     _objs_with_preserved_marks;
   839   GrowableArray<markOop>* _preserved_marks_of_objs;
   841   // Preserve the mark of "obj", if necessary, in preparation for its mark
   842   // word being overwritten with a self-forwarding-pointer.
   843   void preserve_mark_if_necessary(oop obj, markOop m);
   845   // The stack of evac-failure objects left to be scanned.
   846   GrowableArray<oop>*    _evac_failure_scan_stack;
   847   // The closure to apply to evac-failure objects.
   849   OopsInHeapRegionClosure* _evac_failure_closure;
   850   // Set the field above.
   851   void
   852   set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
   853     _evac_failure_closure = evac_failure_closure;
   854   }
   856   // Push "obj" on the scan stack.
   857   void push_on_evac_failure_scan_stack(oop obj);
   858   // Process scan stack entries until the stack is empty.
   859   void drain_evac_failure_scan_stack();
   860   // True iff an invocation of "drain_scan_stack" is in progress; to
   861   // prevent unnecessary recursion.
   862   bool _drain_in_progress;
   864   // Do any necessary initialization for evacuation-failure handling.
   865   // "cl" is the closure that will be used to process evac-failure
   866   // objects.
   867   void init_for_evac_failure(OopsInHeapRegionClosure* cl);
   868   // Do any necessary cleanup for evacuation-failure handling data
   869   // structures.
   870   void finalize_for_evac_failure();
   872   // An attempt to evacuate "obj" has failed; take necessary steps.
   873   oop handle_evacuation_failure_par(OopsInHeapRegionClosure* cl, oop obj);
   874   void handle_evacuation_failure_common(oop obj, markOop m);
   876   // ("Weak") Reference processing support.
   877   //
   878   // G1 has 2 instances of the referece processor class. One
   879   // (_ref_processor_cm) handles reference object discovery
   880   // and subsequent processing during concurrent marking cycles.
   881   //
   882   // The other (_ref_processor_stw) handles reference object
   883   // discovery and processing during full GCs and incremental
   884   // evacuation pauses.
   885   //
   886   // During an incremental pause, reference discovery will be
   887   // temporarily disabled for _ref_processor_cm and will be
   888   // enabled for _ref_processor_stw. At the end of the evacuation
   889   // pause references discovered by _ref_processor_stw will be
   890   // processed and discovery will be disabled. The previous
   891   // setting for reference object discovery for _ref_processor_cm
   892   // will be re-instated.
   893   //
   894   // At the start of marking:
   895   //  * Discovery by the CM ref processor is verified to be inactive
   896   //    and it's discovered lists are empty.
   897   //  * Discovery by the CM ref processor is then enabled.
   898   //
   899   // At the end of marking:
   900   //  * Any references on the CM ref processor's discovered
   901   //    lists are processed (possibly MT).
   902   //
   903   // At the start of full GC we:
   904   //  * Disable discovery by the CM ref processor and
   905   //    empty CM ref processor's discovered lists
   906   //    (without processing any entries).
   907   //  * Verify that the STW ref processor is inactive and it's
   908   //    discovered lists are empty.
   909   //  * Temporarily set STW ref processor discovery as single threaded.
   910   //  * Temporarily clear the STW ref processor's _is_alive_non_header
   911   //    field.
   912   //  * Finally enable discovery by the STW ref processor.
   913   //
   914   // The STW ref processor is used to record any discovered
   915   // references during the full GC.
   916   //
   917   // At the end of a full GC we:
   918   //  * Enqueue any reference objects discovered by the STW ref processor
   919   //    that have non-live referents. This has the side-effect of
   920   //    making the STW ref processor inactive by disabling discovery.
   921   //  * Verify that the CM ref processor is still inactive
   922   //    and no references have been placed on it's discovered
   923   //    lists (also checked as a precondition during initial marking).
   925   // The (stw) reference processor...
   926   ReferenceProcessor* _ref_processor_stw;
   928   // During reference object discovery, the _is_alive_non_header
   929   // closure (if non-null) is applied to the referent object to
   930   // determine whether the referent is live. If so then the
   931   // reference object does not need to be 'discovered' and can
   932   // be treated as a regular oop. This has the benefit of reducing
   933   // the number of 'discovered' reference objects that need to
   934   // be processed.
   935   //
   936   // Instance of the is_alive closure for embedding into the
   937   // STW reference processor as the _is_alive_non_header field.
   938   // Supplying a value for the _is_alive_non_header field is
   939   // optional but doing so prevents unnecessary additions to
   940   // the discovered lists during reference discovery.
   941   G1STWIsAliveClosure _is_alive_closure_stw;
   943   // The (concurrent marking) reference processor...
   944   ReferenceProcessor* _ref_processor_cm;
   946   // Instance of the concurrent mark is_alive closure for embedding
   947   // into the Concurrent Marking reference processor as the
   948   // _is_alive_non_header field. Supplying a value for the
   949   // _is_alive_non_header field is optional but doing so prevents
   950   // unnecessary additions to the discovered lists during reference
   951   // discovery.
   952   G1CMIsAliveClosure _is_alive_closure_cm;
   954   // Cache used by G1CollectedHeap::start_cset_region_for_worker().
   955   HeapRegion** _worker_cset_start_region;
   957   // Time stamp to validate the regions recorded in the cache
   958   // used by G1CollectedHeap::start_cset_region_for_worker().
   959   // The heap region entry for a given worker is valid iff
   960   // the associated time stamp value matches the current value
   961   // of G1CollectedHeap::_gc_time_stamp.
   962   unsigned int* _worker_cset_start_region_time_stamp;
   964   enum G1H_process_strong_roots_tasks {
   965     G1H_PS_filter_satb_buffers,
   966     G1H_PS_refProcessor_oops_do,
   967     // Leave this one last.
   968     G1H_PS_NumElements
   969   };
   971   SubTasksDone* _process_strong_tasks;
   973   volatile bool _free_regions_coming;
   975 public:
   977   SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }
   979   void set_refine_cte_cl_concurrency(bool concurrent);
   981   RefToScanQueue *task_queue(int i) const;
   983   // A set of cards where updates happened during the GC
   984   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
   986   // A DirtyCardQueueSet that is used to hold cards that contain
   987   // references into the current collection set. This is used to
   988   // update the remembered sets of the regions in the collection
   989   // set in the event of an evacuation failure.
   990   DirtyCardQueueSet& into_cset_dirty_card_queue_set()
   991         { return _into_cset_dirty_card_queue_set; }
   993   // Create a G1CollectedHeap with the specified policy.
   994   // Must call the initialize method afterwards.
   995   // May not return if something goes wrong.
   996   G1CollectedHeap(G1CollectorPolicy* policy);
   998   // Initialize the G1CollectedHeap to have the initial and
   999   // maximum sizes, permanent generation, and remembered and barrier sets
  1000   // specified by the policy object.
  1001   jint initialize();
  1003   // Initialize weak reference processing.
  1004   virtual void ref_processing_init();
  1006   void set_par_threads(uint t) {
  1007     SharedHeap::set_par_threads(t);
  1008     // Done in SharedHeap but oddly there are
  1009     // two _process_strong_tasks's in a G1CollectedHeap
  1010     // so do it here too.
  1011     _process_strong_tasks->set_n_threads(t);
  1014   // Set _n_par_threads according to a policy TBD.
  1015   void set_par_threads();
  1017   void set_n_termination(int t) {
  1018     _process_strong_tasks->set_n_threads(t);
  1021   virtual CollectedHeap::Name kind() const {
  1022     return CollectedHeap::G1CollectedHeap;
  1025   // The current policy object for the collector.
  1026   G1CollectorPolicy* g1_policy() const { return _g1_policy; }
  1028   // Adaptive size policy.  No such thing for g1.
  1029   virtual AdaptiveSizePolicy* size_policy() { return NULL; }
  1031   // The rem set and barrier set.
  1032   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
  1033   ModRefBarrierSet* mr_bs() const { return _mr_bs; }
  1035   // The rem set iterator.
  1036   HeapRegionRemSetIterator* rem_set_iterator(int i) {
  1037     return _rem_set_iterator[i];
  1040   HeapRegionRemSetIterator* rem_set_iterator() {
  1041     return _rem_set_iterator[0];
  1044   unsigned get_gc_time_stamp() {
  1045     return _gc_time_stamp;
  1048   void reset_gc_time_stamp() {
  1049     _gc_time_stamp = 0;
  1050     OrderAccess::fence();
  1051     // Clear the cached CSet starting regions and time stamps.
  1052     // Their validity is dependent on the GC timestamp.
  1053     clear_cset_start_regions();
  1056   void increment_gc_time_stamp() {
  1057     ++_gc_time_stamp;
  1058     OrderAccess::fence();
  1061   void iterate_dirty_card_closure(CardTableEntryClosure* cl,
  1062                                   DirtyCardQueue* into_cset_dcq,
  1063                                   bool concurrent, int worker_i);
  1065   // The shared block offset table array.
  1066   G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
  1068   // Reference Processing accessors
  1070   // The STW reference processor....
  1071   ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
  1073   // The Concurent Marking reference processor...
  1074   ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
  1076   virtual size_t capacity() const;
  1077   virtual size_t used() const;
  1078   // This should be called when we're not holding the heap lock. The
  1079   // result might be a bit inaccurate.
  1080   size_t used_unlocked() const;
  1081   size_t recalculate_used() const;
  1083   // These virtual functions do the actual allocation.
  1084   // Some heaps may offer a contiguous region for shared non-blocking
  1085   // allocation, via inlined code (by exporting the address of the top and
  1086   // end fields defining the extent of the contiguous allocation region.)
  1087   // But G1CollectedHeap doesn't yet support this.
  1089   // Return an estimate of the maximum allocation that could be performed
  1090   // without triggering any collection or expansion activity.  In a
  1091   // generational collector, for example, this is probably the largest
  1092   // allocation that could be supported (without expansion) in the youngest
  1093   // generation.  It is "unsafe" because no locks are taken; the result
  1094   // should be treated as an approximation, not a guarantee, for use in
  1095   // heuristic resizing decisions.
  1096   virtual size_t unsafe_max_alloc();
  1098   virtual bool is_maximal_no_gc() const {
  1099     return _g1_storage.uncommitted_size() == 0;
  1102   // The total number of regions in the heap.
  1103   size_t n_regions() { return _hrs.length(); }
  1105   // The max number of regions in the heap.
  1106   size_t max_regions() { return _hrs.max_length(); }
  1108   // The number of regions that are completely free.
  1109   size_t free_regions() { return _free_list.length(); }
  1111   // The number of regions that are not completely free.
  1112   size_t used_regions() { return n_regions() - free_regions(); }
  1114   // The number of regions available for "regular" expansion.
  1115   size_t expansion_regions() { return _expansion_regions; }
  1117   // Factory method for HeapRegion instances. It will return NULL if
  1118   // the allocation fails.
  1119   HeapRegion* new_heap_region(size_t hrs_index, HeapWord* bottom);
  1121   void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
  1122   void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
  1123   void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
  1124   void verify_dirty_young_regions() PRODUCT_RETURN;
  1126   // verify_region_sets() performs verification over the region
  1127   // lists. It will be compiled in the product code to be used when
  1128   // necessary (i.e., during heap verification).
  1129   void verify_region_sets();
  1131   // verify_region_sets_optional() is planted in the code for
  1132   // list verification in non-product builds (and it can be enabled in
  1133   // product builds by definning HEAP_REGION_SET_FORCE_VERIFY to be 1).
  1134 #if HEAP_REGION_SET_FORCE_VERIFY
  1135   void verify_region_sets_optional() {
  1136     verify_region_sets();
  1138 #else // HEAP_REGION_SET_FORCE_VERIFY
  1139   void verify_region_sets_optional() { }
  1140 #endif // HEAP_REGION_SET_FORCE_VERIFY
  1142 #ifdef ASSERT
  1143   bool is_on_master_free_list(HeapRegion* hr) {
  1144     return hr->containing_set() == &_free_list;
  1147   bool is_in_humongous_set(HeapRegion* hr) {
  1148     return hr->containing_set() == &_humongous_set;
  1150 #endif // ASSERT
  1152   // Wrapper for the region list operations that can be called from
  1153   // methods outside this class.
  1155   void secondary_free_list_add_as_tail(FreeRegionList* list) {
  1156     _secondary_free_list.add_as_tail(list);
  1159   void append_secondary_free_list() {
  1160     _free_list.add_as_head(&_secondary_free_list);
  1163   void append_secondary_free_list_if_not_empty_with_lock() {
  1164     // If the secondary free list looks empty there's no reason to
  1165     // take the lock and then try to append it.
  1166     if (!_secondary_free_list.is_empty()) {
  1167       MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  1168       append_secondary_free_list();
  1172   void old_set_remove(HeapRegion* hr) {
  1173     _old_set.remove(hr);
  1176   size_t non_young_capacity_bytes() {
  1177     return _old_set.total_capacity_bytes() + _humongous_set.total_capacity_bytes();
  1180   void set_free_regions_coming();
  1181   void reset_free_regions_coming();
  1182   bool free_regions_coming() { return _free_regions_coming; }
  1183   void wait_while_free_regions_coming();
  1185   // Determine whether the given region is one that we are using as an
  1186   // old GC alloc region.
  1187   bool is_old_gc_alloc_region(HeapRegion* hr) {
  1188     return hr == _retained_old_gc_alloc_region;
  1191   // Perform a collection of the heap; intended for use in implementing
  1192   // "System.gc".  This probably implies as full a collection as the
  1193   // "CollectedHeap" supports.
  1194   virtual void collect(GCCause::Cause cause);
  1196   // The same as above but assume that the caller holds the Heap_lock.
  1197   void collect_locked(GCCause::Cause cause);
  1199   // This interface assumes that it's being called by the
  1200   // vm thread. It collects the heap assuming that the
  1201   // heap lock is already held and that we are executing in
  1202   // the context of the vm thread.
  1203   virtual void collect_as_vm_thread(GCCause::Cause cause);
  1205   // True iff a evacuation has failed in the most-recent collection.
  1206   bool evacuation_failed() { return _evacuation_failed; }
  1208   // It will free a region if it has allocated objects in it that are
  1209   // all dead. It calls either free_region() or
  1210   // free_humongous_region() depending on the type of the region that
  1211   // is passed to it.
  1212   void free_region_if_empty(HeapRegion* hr,
  1213                             size_t* pre_used,
  1214                             FreeRegionList* free_list,
  1215                             OldRegionSet* old_proxy_set,
  1216                             HumongousRegionSet* humongous_proxy_set,
  1217                             HRRSCleanupTask* hrrs_cleanup_task,
  1218                             bool par);
  1220   // It appends the free list to the master free list and updates the
  1221   // master humongous list according to the contents of the proxy
  1222   // list. It also adjusts the total used bytes according to pre_used
  1223   // (if par is true, it will do so by taking the ParGCRareEvent_lock).
  1224   void update_sets_after_freeing_regions(size_t pre_used,
  1225                                        FreeRegionList* free_list,
  1226                                        OldRegionSet* old_proxy_set,
  1227                                        HumongousRegionSet* humongous_proxy_set,
  1228                                        bool par);
  1230   // Returns "TRUE" iff "p" points into the committed areas of the heap.
  1231   virtual bool is_in(const void* p) const;
  1233   // Return "TRUE" iff the given object address is within the collection
  1234   // set.
  1235   inline bool obj_in_cs(oop obj);
  1237   // Return "TRUE" iff the given object address is in the reserved
  1238   // region of g1 (excluding the permanent generation).
  1239   bool is_in_g1_reserved(const void* p) const {
  1240     return _g1_reserved.contains(p);
  1243   // Returns a MemRegion that corresponds to the space that has been
  1244   // reserved for the heap
  1245   MemRegion g1_reserved() {
  1246     return _g1_reserved;
  1249   // Returns a MemRegion that corresponds to the space that has been
  1250   // committed in the heap
  1251   MemRegion g1_committed() {
  1252     return _g1_committed;
  1255   virtual bool is_in_closed_subset(const void* p) const;
  1257   // This resets the card table to all zeros.  It is used after
  1258   // a collection pause which used the card table to claim cards.
  1259   void cleanUpCardTable();
  1261   // Iteration functions.
  1263   // Iterate over all the ref-containing fields of all objects, calling
  1264   // "cl.do_oop" on each.
  1265   virtual void oop_iterate(OopClosure* cl) {
  1266     oop_iterate(cl, true);
  1268   void oop_iterate(OopClosure* cl, bool do_perm);
  1270   // Same as above, restricted to a memory region.
  1271   virtual void oop_iterate(MemRegion mr, OopClosure* cl) {
  1272     oop_iterate(mr, cl, true);
  1274   void oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm);
  1276   // Iterate over all objects, calling "cl.do_object" on each.
  1277   virtual void object_iterate(ObjectClosure* cl) {
  1278     object_iterate(cl, true);
  1280   virtual void safe_object_iterate(ObjectClosure* cl) {
  1281     object_iterate(cl, true);
  1283   void object_iterate(ObjectClosure* cl, bool do_perm);
  1285   // Iterate over all objects allocated since the last collection, calling
  1286   // "cl.do_object" on each.  The heap must have been initialized properly
  1287   // to support this function, or else this call will fail.
  1288   virtual void object_iterate_since_last_GC(ObjectClosure* cl);
  1290   // Iterate over all spaces in use in the heap, in ascending address order.
  1291   virtual void space_iterate(SpaceClosure* cl);
  1293   // Iterate over heap regions, in address order, terminating the
  1294   // iteration early if the "doHeapRegion" method returns "true".
  1295   void heap_region_iterate(HeapRegionClosure* blk) const;
  1297   // Iterate over heap regions starting with r (or the first region if "r"
  1298   // is NULL), in address order, terminating early if the "doHeapRegion"
  1299   // method returns "true".
  1300   void heap_region_iterate_from(HeapRegion* r, HeapRegionClosure* blk) const;
  1302   // Return the region with the given index. It assumes the index is valid.
  1303   HeapRegion* region_at(size_t index) const { return _hrs.at(index); }
  1305   // Divide the heap region sequence into "chunks" of some size (the number
  1306   // of regions divided by the number of parallel threads times some
  1307   // overpartition factor, currently 4).  Assumes that this will be called
  1308   // in parallel by ParallelGCThreads worker threads with discinct worker
  1309   // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
  1310   // calls will use the same "claim_value", and that that claim value is
  1311   // different from the claim_value of any heap region before the start of
  1312   // the iteration.  Applies "blk->doHeapRegion" to each of the regions, by
  1313   // attempting to claim the first region in each chunk, and, if
  1314   // successful, applying the closure to each region in the chunk (and
  1315   // setting the claim value of the second and subsequent regions of the
  1316   // chunk.)  For now requires that "doHeapRegion" always returns "false",
  1317   // i.e., that a closure never attempt to abort a traversal.
  1318   void heap_region_par_iterate_chunked(HeapRegionClosure* blk,
  1319                                        uint worker,
  1320                                        uint no_of_par_workers,
  1321                                        jint claim_value);
  1323   // It resets all the region claim values to the default.
  1324   void reset_heap_region_claim_values();
  1326   // Resets the claim values of regions in the current
  1327   // collection set to the default.
  1328   void reset_cset_heap_region_claim_values();
  1330 #ifdef ASSERT
  1331   bool check_heap_region_claim_values(jint claim_value);
  1333   // Same as the routine above but only checks regions in the
  1334   // current collection set.
  1335   bool check_cset_heap_region_claim_values(jint claim_value);
  1336 #endif // ASSERT
  1338   // Clear the cached cset start regions and (more importantly)
  1339   // the time stamps. Called when we reset the GC time stamp.
  1340   void clear_cset_start_regions();
  1342   // Given the id of a worker, obtain or calculate a suitable
  1343   // starting region for iterating over the current collection set.
  1344   HeapRegion* start_cset_region_for_worker(int worker_i);
  1346   // Iterate over the regions (if any) in the current collection set.
  1347   void collection_set_iterate(HeapRegionClosure* blk);
  1349   // As above but starting from region r
  1350   void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
  1352   // Returns the first (lowest address) compactible space in the heap.
  1353   virtual CompactibleSpace* first_compactible_space();
  1355   // A CollectedHeap will contain some number of spaces.  This finds the
  1356   // space containing a given address, or else returns NULL.
  1357   virtual Space* space_containing(const void* addr) const;
  1359   // A G1CollectedHeap will contain some number of heap regions.  This
  1360   // finds the region containing a given address, or else returns NULL.
  1361   template <class T>
  1362   inline HeapRegion* heap_region_containing(const T addr) const;
  1364   // Like the above, but requires "addr" to be in the heap (to avoid a
  1365   // null-check), and unlike the above, may return an continuing humongous
  1366   // region.
  1367   template <class T>
  1368   inline HeapRegion* heap_region_containing_raw(const T addr) const;
  1370   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
  1371   // each address in the (reserved) heap is a member of exactly
  1372   // one block.  The defining characteristic of a block is that it is
  1373   // possible to find its size, and thus to progress forward to the next
  1374   // block.  (Blocks may be of different sizes.)  Thus, blocks may
  1375   // represent Java objects, or they might be free blocks in a
  1376   // free-list-based heap (or subheap), as long as the two kinds are
  1377   // distinguishable and the size of each is determinable.
  1379   // Returns the address of the start of the "block" that contains the
  1380   // address "addr".  We say "blocks" instead of "object" since some heaps
  1381   // may not pack objects densely; a chunk may either be an object or a
  1382   // non-object.
  1383   virtual HeapWord* block_start(const void* addr) const;
  1385   // Requires "addr" to be the start of a chunk, and returns its size.
  1386   // "addr + size" is required to be the start of a new chunk, or the end
  1387   // of the active area of the heap.
  1388   virtual size_t block_size(const HeapWord* addr) const;
  1390   // Requires "addr" to be the start of a block, and returns "TRUE" iff
  1391   // the block is an object.
  1392   virtual bool block_is_obj(const HeapWord* addr) const;
  1394   // Does this heap support heap inspection? (+PrintClassHistogram)
  1395   virtual bool supports_heap_inspection() const { return true; }
  1397   // Section on thread-local allocation buffers (TLABs)
  1398   // See CollectedHeap for semantics.
  1400   virtual bool supports_tlab_allocation() const;
  1401   virtual size_t tlab_capacity(Thread* thr) const;
  1402   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
  1404   // Can a compiler initialize a new object without store barriers?
  1405   // This permission only extends from the creation of a new object
  1406   // via a TLAB up to the first subsequent safepoint. If such permission
  1407   // is granted for this heap type, the compiler promises to call
  1408   // defer_store_barrier() below on any slow path allocation of
  1409   // a new object for which such initializing store barriers will
  1410   // have been elided. G1, like CMS, allows this, but should be
  1411   // ready to provide a compensating write barrier as necessary
  1412   // if that storage came out of a non-young region. The efficiency
  1413   // of this implementation depends crucially on being able to
  1414   // answer very efficiently in constant time whether a piece of
  1415   // storage in the heap comes from a young region or not.
  1416   // See ReduceInitialCardMarks.
  1417   virtual bool can_elide_tlab_store_barriers() const {
  1418     return true;
  1421   virtual bool card_mark_must_follow_store() const {
  1422     return true;
  1425   bool is_in_young(const oop obj) {
  1426     HeapRegion* hr = heap_region_containing(obj);
  1427     return hr != NULL && hr->is_young();
  1430 #ifdef ASSERT
  1431   virtual bool is_in_partial_collection(const void* p);
  1432 #endif
  1434   virtual bool is_scavengable(const void* addr);
  1436   // We don't need barriers for initializing stores to objects
  1437   // in the young gen: for the SATB pre-barrier, there is no
  1438   // pre-value that needs to be remembered; for the remembered-set
  1439   // update logging post-barrier, we don't maintain remembered set
  1440   // information for young gen objects.
  1441   virtual bool can_elide_initializing_store_barrier(oop new_obj) {
  1442     return is_in_young(new_obj);
  1445   // Can a compiler elide a store barrier when it writes
  1446   // a permanent oop into the heap?  Applies when the compiler
  1447   // is storing x to the heap, where x->is_perm() is true.
  1448   virtual bool can_elide_permanent_oop_store_barriers() const {
  1449     // At least until perm gen collection is also G1-ified, at
  1450     // which point this should return false.
  1451     return true;
  1454   // Returns "true" iff the given word_size is "very large".
  1455   static bool isHumongous(size_t word_size) {
  1456     // Note this has to be strictly greater-than as the TLABs
  1457     // are capped at the humongous thresold and we want to
  1458     // ensure that we don't try to allocate a TLAB as
  1459     // humongous and that we don't allocate a humongous
  1460     // object in a TLAB.
  1461     return word_size > _humongous_object_threshold_in_words;
  1464   // Update mod union table with the set of dirty cards.
  1465   void updateModUnion();
  1467   // Set the mod union bits corresponding to the given memRegion.  Note
  1468   // that this is always a safe operation, since it doesn't clear any
  1469   // bits.
  1470   void markModUnionRange(MemRegion mr);
  1472   // Records the fact that a marking phase is no longer in progress.
  1473   void set_marking_complete() {
  1474     _mark_in_progress = false;
  1476   void set_marking_started() {
  1477     _mark_in_progress = true;
  1479   bool mark_in_progress() {
  1480     return _mark_in_progress;
  1483   // Print the maximum heap capacity.
  1484   virtual size_t max_capacity() const;
  1486   virtual jlong millis_since_last_gc();
  1488   // Perform any cleanup actions necessary before allowing a verification.
  1489   virtual void prepare_for_verify();
  1491   // Perform verification.
  1493   // vo == UsePrevMarking  -> use "prev" marking information,
  1494   // vo == UseNextMarking -> use "next" marking information
  1495   // vo == UseMarkWord    -> use the mark word in the object header
  1496   //
  1497   // NOTE: Only the "prev" marking information is guaranteed to be
  1498   // consistent most of the time, so most calls to this should use
  1499   // vo == UsePrevMarking.
  1500   // Currently, there is only one case where this is called with
  1501   // vo == UseNextMarking, which is to verify the "next" marking
  1502   // information at the end of remark.
  1503   // Currently there is only one place where this is called with
  1504   // vo == UseMarkWord, which is to verify the marking during a
  1505   // full GC.
  1506   void verify(bool allow_dirty, bool silent, VerifyOption vo);
  1508   // Override; it uses the "prev" marking information
  1509   virtual void verify(bool allow_dirty, bool silent);
  1510   virtual void print_on(outputStream* st) const;
  1511   virtual void print_extended_on(outputStream* st) const;
  1513   virtual void print_gc_threads_on(outputStream* st) const;
  1514   virtual void gc_threads_do(ThreadClosure* tc) const;
  1516   // Override
  1517   void print_tracing_info() const;
  1519   // The following two methods are helpful for debugging RSet issues.
  1520   void print_cset_rsets() PRODUCT_RETURN;
  1521   void print_all_rsets() PRODUCT_RETURN;
  1523   // Convenience function to be used in situations where the heap type can be
  1524   // asserted to be this type.
  1525   static G1CollectedHeap* heap();
  1527   void set_region_short_lived_locked(HeapRegion* hr);
  1528   // add appropriate methods for any other surv rate groups
  1530   YoungList* young_list() { return _young_list; }
  1532   // debugging
  1533   bool check_young_list_well_formed() {
  1534     return _young_list->check_list_well_formed();
  1537   bool check_young_list_empty(bool check_heap,
  1538                               bool check_sample = true);
  1540   // *** Stuff related to concurrent marking.  It's not clear to me that so
  1541   // many of these need to be public.
  1543   // The functions below are helper functions that a subclass of
  1544   // "CollectedHeap" can use in the implementation of its virtual
  1545   // functions.
  1546   // This performs a concurrent marking of the live objects in a
  1547   // bitmap off to the side.
  1548   void doConcurrentMark();
  1550   bool isMarkedPrev(oop obj) const;
  1551   bool isMarkedNext(oop obj) const;
  1553   // vo == UsePrevMarking -> use "prev" marking information,
  1554   // vo == UseNextMarking -> use "next" marking information,
  1555   // vo == UseMarkWord    -> use mark word from object header
  1556   bool is_obj_dead_cond(const oop obj,
  1557                         const HeapRegion* hr,
  1558                         const VerifyOption vo) const {
  1560     switch (vo) {
  1561       case VerifyOption_G1UsePrevMarking:
  1562         return is_obj_dead(obj, hr);
  1563       case VerifyOption_G1UseNextMarking:
  1564         return is_obj_ill(obj, hr);
  1565       default:
  1566         assert(vo == VerifyOption_G1UseMarkWord, "must be");
  1567         return !obj->is_gc_marked();
  1571   // Determine if an object is dead, given the object and also
  1572   // the region to which the object belongs. An object is dead
  1573   // iff a) it was not allocated since the last mark and b) it
  1574   // is not marked.
  1576   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
  1577     return
  1578       !hr->obj_allocated_since_prev_marking(obj) &&
  1579       !isMarkedPrev(obj);
  1582   // This is used when copying an object to survivor space.
  1583   // If the object is marked live, then we mark the copy live.
  1584   // If the object is allocated since the start of this mark
  1585   // cycle, then we mark the copy live.
  1586   // If the object has been around since the previous mark
  1587   // phase, and hasn't been marked yet during this phase,
  1588   // then we don't mark it, we just wait for the
  1589   // current marking cycle to get to it.
  1591   // This function returns true when an object has been
  1592   // around since the previous marking and hasn't yet
  1593   // been marked during this marking.
  1595   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
  1596     return
  1597       !hr->obj_allocated_since_next_marking(obj) &&
  1598       !isMarkedNext(obj);
  1601   // Determine if an object is dead, given only the object itself.
  1602   // This will find the region to which the object belongs and
  1603   // then call the region version of the same function.
  1605   // Added if it is in permanent gen it isn't dead.
  1606   // Added if it is NULL it isn't dead.
  1608   // vo == UsePrevMarking -> use "prev" marking information,
  1609   // vo == UseNextMarking -> use "next" marking information,
  1610   // vo == UseMarkWord    -> use mark word from object header
  1611   bool is_obj_dead_cond(const oop obj,
  1612                         const VerifyOption vo) const {
  1614     switch (vo) {
  1615       case VerifyOption_G1UsePrevMarking:
  1616         return is_obj_dead(obj);
  1617       case VerifyOption_G1UseNextMarking:
  1618         return is_obj_ill(obj);
  1619       default:
  1620         assert(vo == VerifyOption_G1UseMarkWord, "must be");
  1621         return !obj->is_gc_marked();
  1625   bool is_obj_dead(const oop obj) const {
  1626     const HeapRegion* hr = heap_region_containing(obj);
  1627     if (hr == NULL) {
  1628       if (Universe::heap()->is_in_permanent(obj))
  1629         return false;
  1630       else if (obj == NULL) return false;
  1631       else return true;
  1633     else return is_obj_dead(obj, hr);
  1636   bool is_obj_ill(const oop obj) const {
  1637     const HeapRegion* hr = heap_region_containing(obj);
  1638     if (hr == NULL) {
  1639       if (Universe::heap()->is_in_permanent(obj))
  1640         return false;
  1641       else if (obj == NULL) return false;
  1642       else return true;
  1644     else return is_obj_ill(obj, hr);
  1647   // The following is just to alert the verification code
  1648   // that a full collection has occurred and that the
  1649   // remembered sets are no longer up to date.
  1650   bool _full_collection;
  1651   void set_full_collection() { _full_collection = true;}
  1652   void clear_full_collection() {_full_collection = false;}
  1653   bool full_collection() {return _full_collection;}
  1655   ConcurrentMark* concurrent_mark() const { return _cm; }
  1656   ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
  1658   // The dirty cards region list is used to record a subset of regions
  1659   // whose cards need clearing. The list if populated during the
  1660   // remembered set scanning and drained during the card table
  1661   // cleanup. Although the methods are reentrant, population/draining
  1662   // phases must not overlap. For synchronization purposes the last
  1663   // element on the list points to itself.
  1664   HeapRegion* _dirty_cards_region_list;
  1665   void push_dirty_cards_region(HeapRegion* hr);
  1666   HeapRegion* pop_dirty_cards_region();
  1668 public:
  1669   void stop_conc_gc_threads();
  1671   size_t pending_card_num();
  1672   size_t max_pending_card_num();
  1673   size_t cards_scanned();
  1675 protected:
  1676   size_t _max_heap_capacity;
  1677 };
  1679 #define use_local_bitmaps         1
  1680 #define verify_local_bitmaps      0
  1681 #define oop_buffer_length       256
  1683 #ifndef PRODUCT
  1684 class GCLabBitMap;
  1685 class GCLabBitMapClosure: public BitMapClosure {
  1686 private:
  1687   ConcurrentMark* _cm;
  1688   GCLabBitMap*    _bitmap;
  1690 public:
  1691   GCLabBitMapClosure(ConcurrentMark* cm,
  1692                      GCLabBitMap* bitmap) {
  1693     _cm     = cm;
  1694     _bitmap = bitmap;
  1697   virtual bool do_bit(size_t offset);
  1698 };
  1699 #endif // !PRODUCT
  1701 class GCLabBitMap: public BitMap {
  1702 private:
  1703   ConcurrentMark* _cm;
  1705   int       _shifter;
  1706   size_t    _bitmap_word_covers_words;
  1708   // beginning of the heap
  1709   HeapWord* _heap_start;
  1711   // this is the actual start of the GCLab
  1712   HeapWord* _real_start_word;
  1714   // this is the actual end of the GCLab
  1715   HeapWord* _real_end_word;
  1717   // this is the first word, possibly located before the actual start
  1718   // of the GCLab, that corresponds to the first bit of the bitmap
  1719   HeapWord* _start_word;
  1721   // size of a GCLab in words
  1722   size_t _gclab_word_size;
  1724   static int shifter() {
  1725     return MinObjAlignment - 1;
  1728   // how many heap words does a single bitmap word corresponds to?
  1729   static size_t bitmap_word_covers_words() {
  1730     return BitsPerWord << shifter();
  1733   size_t gclab_word_size() const {
  1734     return _gclab_word_size;
  1737   // Calculates actual GCLab size in words
  1738   size_t gclab_real_word_size() const {
  1739     return bitmap_size_in_bits(pointer_delta(_real_end_word, _start_word))
  1740            / BitsPerWord;
  1743   static size_t bitmap_size_in_bits(size_t gclab_word_size) {
  1744     size_t bits_in_bitmap = gclab_word_size >> shifter();
  1745     // We are going to ensure that the beginning of a word in this
  1746     // bitmap also corresponds to the beginning of a word in the
  1747     // global marking bitmap. To handle the case where a GCLab
  1748     // starts from the middle of the bitmap, we need to add enough
  1749     // space (i.e. up to a bitmap word) to ensure that we have
  1750     // enough bits in the bitmap.
  1751     return bits_in_bitmap + BitsPerWord - 1;
  1753 public:
  1754   GCLabBitMap(HeapWord* heap_start, size_t gclab_word_size)
  1755     : BitMap(bitmap_size_in_bits(gclab_word_size)),
  1756       _cm(G1CollectedHeap::heap()->concurrent_mark()),
  1757       _shifter(shifter()),
  1758       _bitmap_word_covers_words(bitmap_word_covers_words()),
  1759       _heap_start(heap_start),
  1760       _gclab_word_size(gclab_word_size),
  1761       _real_start_word(NULL),
  1762       _real_end_word(NULL),
  1763       _start_word(NULL) {
  1764     guarantee(false, "GCLabBitMap::GCLabBitmap(): don't call this any more");
  1767   inline unsigned heapWordToOffset(HeapWord* addr) {
  1768     unsigned offset = (unsigned) pointer_delta(addr, _start_word) >> _shifter;
  1769     assert(offset < size(), "offset should be within bounds");
  1770     return offset;
  1773   inline HeapWord* offsetToHeapWord(size_t offset) {
  1774     HeapWord* addr =  _start_word + (offset << _shifter);
  1775     assert(_real_start_word <= addr && addr < _real_end_word, "invariant");
  1776     return addr;
  1779   bool fields_well_formed() {
  1780     bool ret1 = (_real_start_word == NULL) &&
  1781                 (_real_end_word == NULL) &&
  1782                 (_start_word == NULL);
  1783     if (ret1)
  1784       return true;
  1786     bool ret2 = _real_start_word >= _start_word &&
  1787       _start_word < _real_end_word &&
  1788       (_real_start_word + _gclab_word_size) == _real_end_word &&
  1789       (_start_word + _gclab_word_size + _bitmap_word_covers_words)
  1790                                                               > _real_end_word;
  1791     return ret2;
  1794   inline bool mark(HeapWord* addr) {
  1795     guarantee(use_local_bitmaps, "invariant");
  1796     assert(fields_well_formed(), "invariant");
  1798     if (addr >= _real_start_word && addr < _real_end_word) {
  1799       assert(!isMarked(addr), "should not have already been marked");
  1801       // first mark it on the bitmap
  1802       at_put(heapWordToOffset(addr), true);
  1804       return true;
  1805     } else {
  1806       return false;
  1810   inline bool isMarked(HeapWord* addr) {
  1811     guarantee(use_local_bitmaps, "invariant");
  1812     assert(fields_well_formed(), "invariant");
  1814     return at(heapWordToOffset(addr));
  1817   void set_buffer(HeapWord* start) {
  1818     guarantee(false, "set_buffer(): don't call this any more");
  1820     guarantee(use_local_bitmaps, "invariant");
  1821     clear();
  1823     assert(start != NULL, "invariant");
  1824     _real_start_word = start;
  1825     _real_end_word   = start + _gclab_word_size;
  1827     size_t diff =
  1828       pointer_delta(start, _heap_start) % _bitmap_word_covers_words;
  1829     _start_word = start - diff;
  1831     assert(fields_well_formed(), "invariant");
  1834 #ifndef PRODUCT
  1835   void verify() {
  1836     // verify that the marks have been propagated
  1837     GCLabBitMapClosure cl(_cm, this);
  1838     iterate(&cl);
  1840 #endif // PRODUCT
  1842   void retire() {
  1843     guarantee(false, "retire(): don't call this any more");
  1845     guarantee(use_local_bitmaps, "invariant");
  1846     assert(fields_well_formed(), "invariant");
  1848     if (_start_word != NULL) {
  1849       CMBitMap*       mark_bitmap = _cm->nextMarkBitMap();
  1851       // this means that the bitmap was set up for the GCLab
  1852       assert(_real_start_word != NULL && _real_end_word != NULL, "invariant");
  1854       mark_bitmap->mostly_disjoint_range_union(this,
  1855                                 0, // always start from the start of the bitmap
  1856                                 _start_word,
  1857                                 gclab_real_word_size());
  1858       _cm->grayRegionIfNecessary(MemRegion(_real_start_word, _real_end_word));
  1860 #ifndef PRODUCT
  1861       if (use_local_bitmaps && verify_local_bitmaps)
  1862         verify();
  1863 #endif // PRODUCT
  1864     } else {
  1865       assert(_real_start_word == NULL && _real_end_word == NULL, "invariant");
  1869   size_t bitmap_size_in_words() const {
  1870     return (bitmap_size_in_bits(gclab_word_size()) + BitsPerWord - 1) / BitsPerWord;
  1873 };
  1875 class G1ParGCAllocBuffer: public ParGCAllocBuffer {
  1876 private:
  1877   bool        _retired;
  1879 public:
  1880   G1ParGCAllocBuffer(size_t gclab_word_size);
  1882   void set_buf(HeapWord* buf) {
  1883     ParGCAllocBuffer::set_buf(buf);
  1884     _retired = false;
  1887   void retire(bool end_of_gc, bool retain) {
  1888     if (_retired)
  1889       return;
  1890     ParGCAllocBuffer::retire(end_of_gc, retain);
  1891     _retired = true;
  1893 };
  1895 class G1ParScanThreadState : public StackObj {
  1896 protected:
  1897   G1CollectedHeap* _g1h;
  1898   RefToScanQueue*  _refs;
  1899   DirtyCardQueue   _dcq;
  1900   CardTableModRefBS* _ct_bs;
  1901   G1RemSet* _g1_rem;
  1903   G1ParGCAllocBuffer  _surviving_alloc_buffer;
  1904   G1ParGCAllocBuffer  _tenured_alloc_buffer;
  1905   G1ParGCAllocBuffer* _alloc_buffers[GCAllocPurposeCount];
  1906   ageTable            _age_table;
  1908   size_t           _alloc_buffer_waste;
  1909   size_t           _undo_waste;
  1911   OopsInHeapRegionClosure*      _evac_failure_cl;
  1912   G1ParScanHeapEvacClosure*     _evac_cl;
  1913   G1ParScanPartialArrayClosure* _partial_scan_cl;
  1915   int _hash_seed;
  1916   uint _queue_num;
  1918   size_t _term_attempts;
  1920   double _start;
  1921   double _start_strong_roots;
  1922   double _strong_roots_time;
  1923   double _start_term;
  1924   double _term_time;
  1926   // Map from young-age-index (0 == not young, 1 is youngest) to
  1927   // surviving words. base is what we get back from the malloc call
  1928   size_t* _surviving_young_words_base;
  1929   // this points into the array, as we use the first few entries for padding
  1930   size_t* _surviving_young_words;
  1932 #define PADDING_ELEM_NUM (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t))
  1934   void   add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
  1936   void   add_to_undo_waste(size_t waste)         { _undo_waste += waste; }
  1938   DirtyCardQueue& dirty_card_queue()             { return _dcq;  }
  1939   CardTableModRefBS* ctbs()                      { return _ct_bs; }
  1941   template <class T> void immediate_rs_update(HeapRegion* from, T* p, int tid) {
  1942     if (!from->is_survivor()) {
  1943       _g1_rem->par_write_ref(from, p, tid);
  1947   template <class T> void deferred_rs_update(HeapRegion* from, T* p, int tid) {
  1948     // If the new value of the field points to the same region or
  1949     // is the to-space, we don't need to include it in the Rset updates.
  1950     if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) {
  1951       size_t card_index = ctbs()->index_for(p);
  1952       // If the card hasn't been added to the buffer, do it.
  1953       if (ctbs()->mark_card_deferred(card_index)) {
  1954         dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
  1959 public:
  1960   G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num);
  1962   ~G1ParScanThreadState() {
  1963     FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
  1966   RefToScanQueue*   refs()            { return _refs;             }
  1967   ageTable*         age_table()       { return &_age_table;       }
  1969   G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
  1970     return _alloc_buffers[purpose];
  1973   size_t alloc_buffer_waste() const              { return _alloc_buffer_waste; }
  1974   size_t undo_waste() const                      { return _undo_waste; }
  1976 #ifdef ASSERT
  1977   bool verify_ref(narrowOop* ref) const;
  1978   bool verify_ref(oop* ref) const;
  1979   bool verify_task(StarTask ref) const;
  1980 #endif // ASSERT
  1982   template <class T> void push_on_queue(T* ref) {
  1983     assert(verify_ref(ref), "sanity");
  1984     refs()->push(ref);
  1987   template <class T> void update_rs(HeapRegion* from, T* p, int tid) {
  1988     if (G1DeferredRSUpdate) {
  1989       deferred_rs_update(from, p, tid);
  1990     } else {
  1991       immediate_rs_update(from, p, tid);
  1995   HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
  1997     HeapWord* obj = NULL;
  1998     size_t gclab_word_size = _g1h->desired_plab_sz(purpose);
  1999     if (word_sz * 100 < gclab_word_size * ParallelGCBufferWastePct) {
  2000       G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose);
  2001       assert(gclab_word_size == alloc_buf->word_sz(),
  2002              "dynamic resizing is not supported");
  2003       add_to_alloc_buffer_waste(alloc_buf->words_remaining());
  2004       alloc_buf->retire(false, false);
  2006       HeapWord* buf = _g1h->par_allocate_during_gc(purpose, gclab_word_size);
  2007       if (buf == NULL) return NULL; // Let caller handle allocation failure.
  2008       // Otherwise.
  2009       alloc_buf->set_buf(buf);
  2011       obj = alloc_buf->allocate(word_sz);
  2012       assert(obj != NULL, "buffer was definitely big enough...");
  2013     } else {
  2014       obj = _g1h->par_allocate_during_gc(purpose, word_sz);
  2016     return obj;
  2019   HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
  2020     HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
  2021     if (obj != NULL) return obj;
  2022     return allocate_slow(purpose, word_sz);
  2025   void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
  2026     if (alloc_buffer(purpose)->contains(obj)) {
  2027       assert(alloc_buffer(purpose)->contains(obj + word_sz - 1),
  2028              "should contain whole object");
  2029       alloc_buffer(purpose)->undo_allocation(obj, word_sz);
  2030     } else {
  2031       CollectedHeap::fill_with_object(obj, word_sz);
  2032       add_to_undo_waste(word_sz);
  2036   void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
  2037     _evac_failure_cl = evac_failure_cl;
  2039   OopsInHeapRegionClosure* evac_failure_closure() {
  2040     return _evac_failure_cl;
  2043   void set_evac_closure(G1ParScanHeapEvacClosure* evac_cl) {
  2044     _evac_cl = evac_cl;
  2047   void set_partial_scan_closure(G1ParScanPartialArrayClosure* partial_scan_cl) {
  2048     _partial_scan_cl = partial_scan_cl;
  2051   int* hash_seed() { return &_hash_seed; }
  2052   uint queue_num() { return _queue_num; }
  2054   size_t term_attempts() const  { return _term_attempts; }
  2055   void note_term_attempt() { _term_attempts++; }
  2057   void start_strong_roots() {
  2058     _start_strong_roots = os::elapsedTime();
  2060   void end_strong_roots() {
  2061     _strong_roots_time += (os::elapsedTime() - _start_strong_roots);
  2063   double strong_roots_time() const { return _strong_roots_time; }
  2065   void start_term_time() {
  2066     note_term_attempt();
  2067     _start_term = os::elapsedTime();
  2069   void end_term_time() {
  2070     _term_time += (os::elapsedTime() - _start_term);
  2072   double term_time() const { return _term_time; }
  2074   double elapsed_time() const {
  2075     return os::elapsedTime() - _start;
  2078   static void
  2079     print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
  2080   void
  2081     print_termination_stats(int i, outputStream* const st = gclog_or_tty) const;
  2083   size_t* surviving_young_words() {
  2084     // We add on to hide entry 0 which accumulates surviving words for
  2085     // age -1 regions (i.e. non-young ones)
  2086     return _surviving_young_words;
  2089   void retire_alloc_buffers() {
  2090     for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  2091       size_t waste = _alloc_buffers[ap]->words_remaining();
  2092       add_to_alloc_buffer_waste(waste);
  2093       _alloc_buffers[ap]->retire(true, false);
  2097   template <class T> void deal_with_reference(T* ref_to_scan) {
  2098     if (has_partial_array_mask(ref_to_scan)) {
  2099       _partial_scan_cl->do_oop_nv(ref_to_scan);
  2100     } else {
  2101       // Note: we can use "raw" versions of "region_containing" because
  2102       // "obj_to_scan" is definitely in the heap, and is not in a
  2103       // humongous region.
  2104       HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
  2105       _evac_cl->set_region(r);
  2106       _evac_cl->do_oop_nv(ref_to_scan);
  2110   void deal_with_reference(StarTask ref) {
  2111     assert(verify_task(ref), "sanity");
  2112     if (ref.is_narrow()) {
  2113       deal_with_reference((narrowOop*)ref);
  2114     } else {
  2115       deal_with_reference((oop*)ref);
  2119 public:
  2120   void trim_queue();
  2121 };
  2123 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP

mercurial