src/share/vm/utilities/globalDefinitions.hpp

Fri, 16 Jul 2010 21:33:21 -0700

author
jcoomes
date
Fri, 16 Jul 2010 21:33:21 -0700
changeset 2020
a93a9eda13f7
parent 1934
e9ff18c4ace7
child 2118
d6f45b55c972
permissions
-rw-r--r--

6962947: shared TaskQueue statistics
Reviewed-by: tonyp, ysr

     1 /*
     2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // This file holds all globally used constants & types, class (forward)
    26 // declarations and a few frequently used utility functions.
    28 //----------------------------------------------------------------------------------------------------
    29 // Constants
    31 const int LogBytesPerShort   = 1;
    32 const int LogBytesPerInt     = 2;
    33 #ifdef _LP64
    34 const int LogBytesPerWord    = 3;
    35 #else
    36 const int LogBytesPerWord    = 2;
    37 #endif
    38 const int LogBytesPerLong    = 3;
    40 const int BytesPerShort      = 1 << LogBytesPerShort;
    41 const int BytesPerInt        = 1 << LogBytesPerInt;
    42 const int BytesPerWord       = 1 << LogBytesPerWord;
    43 const int BytesPerLong       = 1 << LogBytesPerLong;
    45 const int LogBitsPerByte     = 3;
    46 const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
    47 const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
    48 const int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
    49 const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
    51 const int BitsPerByte        = 1 << LogBitsPerByte;
    52 const int BitsPerShort       = 1 << LogBitsPerShort;
    53 const int BitsPerInt         = 1 << LogBitsPerInt;
    54 const int BitsPerWord        = 1 << LogBitsPerWord;
    55 const int BitsPerLong        = 1 << LogBitsPerLong;
    57 const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
    58 const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
    60 const int WordsPerLong       = 2;       // Number of stack entries for longs
    62 const int oopSize            = sizeof(char*); // Full-width oop
    63 extern int heapOopSize;                       // Oop within a java object
    64 const int wordSize           = sizeof(char*);
    65 const int longSize           = sizeof(jlong);
    66 const int jintSize           = sizeof(jint);
    67 const int size_tSize         = sizeof(size_t);
    69 const int BytesPerOop        = BytesPerWord;  // Full-width oop
    71 extern int LogBytesPerHeapOop;                // Oop within a java object
    72 extern int LogBitsPerHeapOop;
    73 extern int BytesPerHeapOop;
    74 extern int BitsPerHeapOop;
    76 // Oop encoding heap max
    77 extern uint64_t OopEncodingHeapMax;
    79 const int BitsPerJavaInteger = 32;
    80 const int BitsPerJavaLong    = 64;
    81 const int BitsPerSize_t      = size_tSize * BitsPerByte;
    83 // Size of a char[] needed to represent a jint as a string in decimal.
    84 const int jintAsStringSize = 12;
    86 // In fact this should be
    87 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
    88 // see os::set_memory_serialize_page()
    89 #ifdef _LP64
    90 const int SerializePageShiftCount = 4;
    91 #else
    92 const int SerializePageShiftCount = 3;
    93 #endif
    95 // An opaque struct of heap-word width, so that HeapWord* can be a generic
    96 // pointer into the heap.  We require that object sizes be measured in
    97 // units of heap words, so that that
    98 //   HeapWord* hw;
    99 //   hw += oop(hw)->foo();
   100 // works, where foo is a method (like size or scavenge) that returns the
   101 // object size.
   102 class HeapWord {
   103   friend class VMStructs;
   104  private:
   105   char* i;
   106 #ifndef PRODUCT
   107  public:
   108   char* value() { return i; }
   109 #endif
   110 };
   112 // HeapWordSize must be 2^LogHeapWordSize.
   113 const int HeapWordSize        = sizeof(HeapWord);
   114 #ifdef _LP64
   115 const int LogHeapWordSize     = 3;
   116 #else
   117 const int LogHeapWordSize     = 2;
   118 #endif
   119 const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
   120 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
   122 // The larger HeapWordSize for 64bit requires larger heaps
   123 // for the same application running in 64bit.  See bug 4967770.
   124 // The minimum alignment to a heap word size is done.  Other
   125 // parts of the memory system may required additional alignment
   126 // and are responsible for those alignments.
   127 #ifdef _LP64
   128 #define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
   129 #else
   130 #define ScaleForWordSize(x) (x)
   131 #endif
   133 // The minimum number of native machine words necessary to contain "byte_size"
   134 // bytes.
   135 inline size_t heap_word_size(size_t byte_size) {
   136   return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
   137 }
   140 const size_t K                  = 1024;
   141 const size_t M                  = K*K;
   142 const size_t G                  = M*K;
   143 const size_t HWperKB            = K / sizeof(HeapWord);
   145 const size_t LOG_K              = 10;
   146 const size_t LOG_M              = 2 * LOG_K;
   147 const size_t LOG_G              = 2 * LOG_M;
   149 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
   150 const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
   152 // Constants for converting from a base unit to milli-base units.  For
   153 // example from seconds to milliseconds and microseconds
   155 const int MILLIUNITS    = 1000;         // milli units per base unit
   156 const int MICROUNITS    = 1000000;      // micro units per base unit
   157 const int NANOUNITS     = 1000000000;   // nano units per base unit
   159 inline const char* proper_unit_for_byte_size(size_t s) {
   160   if (s >= 10*M) {
   161     return "M";
   162   } else if (s >= 10*K) {
   163     return "K";
   164   } else {
   165     return "B";
   166   }
   167 }
   169 inline size_t byte_size_in_proper_unit(size_t s) {
   170   if (s >= 10*M) {
   171     return s/M;
   172   } else if (s >= 10*K) {
   173     return s/K;
   174   } else {
   175     return s;
   176   }
   177 }
   180 //----------------------------------------------------------------------------------------------------
   181 // VM type definitions
   183 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
   184 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
   186 typedef intptr_t  intx;
   187 typedef uintptr_t uintx;
   189 const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
   190 const intx  max_intx  = (uintx)min_intx - 1;
   191 const uintx max_uintx = (uintx)-1;
   193 // Table of values:
   194 //      sizeof intx         4               8
   195 // min_intx             0x80000000      0x8000000000000000
   196 // max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
   197 // max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
   199 typedef unsigned int uint;   NEEDS_CLEANUP
   202 //----------------------------------------------------------------------------------------------------
   203 // Java type definitions
   205 // All kinds of 'plain' byte addresses
   206 typedef   signed char s_char;
   207 typedef unsigned char u_char;
   208 typedef u_char*       address;
   209 typedef uintptr_t     address_word; // unsigned integer which will hold a pointer
   210                                     // except for some implementations of a C++
   211                                     // linkage pointer to function. Should never
   212                                     // need one of those to be placed in this
   213                                     // type anyway.
   215 //  Utility functions to "portably" (?) bit twiddle pointers
   216 //  Where portable means keep ANSI C++ compilers quiet
   218 inline address       set_address_bits(address x, int m)       { return address(intptr_t(x) | m); }
   219 inline address       clear_address_bits(address x, int m)     { return address(intptr_t(x) & ~m); }
   221 //  Utility functions to "portably" make cast to/from function pointers.
   223 inline address_word  mask_address_bits(address x, int m)      { return address_word(x) & m; }
   224 inline address_word  castable_address(address x)              { return address_word(x) ; }
   225 inline address_word  castable_address(void* x)                { return address_word(x) ; }
   227 // Pointer subtraction.
   228 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
   229 // the range we might need to find differences from one end of the heap
   230 // to the other.
   231 // A typical use might be:
   232 //     if (pointer_delta(end(), top()) >= size) {
   233 //       // enough room for an object of size
   234 //       ...
   235 // and then additions like
   236 //       ... top() + size ...
   237 // are safe because we know that top() is at least size below end().
   238 inline size_t pointer_delta(const void* left,
   239                             const void* right,
   240                             size_t element_size) {
   241   return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
   242 }
   243 // A version specialized for HeapWord*'s.
   244 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
   245   return pointer_delta(left, right, sizeof(HeapWord));
   246 }
   248 //
   249 // ANSI C++ does not allow casting from one pointer type to a function pointer
   250 // directly without at best a warning. This macro accomplishes it silently
   251 // In every case that is present at this point the value be cast is a pointer
   252 // to a C linkage function. In somecase the type used for the cast reflects
   253 // that linkage and a picky compiler would not complain. In other cases because
   254 // there is no convenient place to place a typedef with extern C linkage (i.e
   255 // a platform dependent header file) it doesn't. At this point no compiler seems
   256 // picky enough to catch these instances (which are few). It is possible that
   257 // using templates could fix these for all cases. This use of templates is likely
   258 // so far from the middle of the road that it is likely to be problematic in
   259 // many C++ compilers.
   260 //
   261 #define CAST_TO_FN_PTR(func_type, value) ((func_type)(castable_address(value)))
   262 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
   264 // Unsigned byte types for os and stream.hpp
   266 // Unsigned one, two, four and eigth byte quantities used for describing
   267 // the .class file format. See JVM book chapter 4.
   269 typedef jubyte  u1;
   270 typedef jushort u2;
   271 typedef juint   u4;
   272 typedef julong  u8;
   274 const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
   275 const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
   276 const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
   277 const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
   279 //----------------------------------------------------------------------------------------------------
   280 // JVM spec restrictions
   282 const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
   285 //----------------------------------------------------------------------------------------------------
   286 // HotSwap - for JVMTI   aka Class File Replacement and PopFrame
   287 //
   288 // Determines whether on-the-fly class replacement and frame popping are enabled.
   290 #define HOTSWAP
   292 //----------------------------------------------------------------------------------------------------
   293 // Object alignment, in units of HeapWords.
   294 //
   295 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
   296 // reference fields can be naturally aligned.
   298 extern int MinObjAlignment;
   299 extern int MinObjAlignmentInBytes;
   300 extern int MinObjAlignmentInBytesMask;
   302 extern int LogMinObjAlignment;
   303 extern int LogMinObjAlignmentInBytes;
   305 // Machine dependent stuff
   307 #include "incls/_globalDefinitions_pd.hpp.incl"
   309 // The byte alignment to be used by Arena::Amalloc.  See bugid 4169348.
   310 // Note: this value must be a power of 2
   312 #define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
   314 // Signed variants of alignment helpers.  There are two versions of each, a macro
   315 // for use in places like enum definitions that require compile-time constant
   316 // expressions and a function for all other places so as to get type checking.
   318 #define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
   320 inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
   321   return align_size_up_(size, alignment);
   322 }
   324 #define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
   326 inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
   327   return align_size_down_(size, alignment);
   328 }
   330 // Align objects by rounding up their size, in HeapWord units.
   332 #define align_object_size_(size) align_size_up_(size, MinObjAlignment)
   334 inline intptr_t align_object_size(intptr_t size) {
   335   return align_size_up(size, MinObjAlignment);
   336 }
   338 inline bool is_object_aligned(intptr_t addr) {
   339   return addr == align_object_size(addr);
   340 }
   342 // Pad out certain offsets to jlong alignment, in HeapWord units.
   344 inline intptr_t align_object_offset(intptr_t offset) {
   345   return align_size_up(offset, HeapWordsPerLong);
   346 }
   348 // The expected size in bytes of a cache line, used to pad data structures.
   349 #define DEFAULT_CACHE_LINE_SIZE 64
   351 // Bytes needed to pad type to avoid cache-line sharing; alignment should be the
   352 // expected cache line size (a power of two).  The first addend avoids sharing
   353 // when the start address is not a multiple of alignment; the second maintains
   354 // alignment of starting addresses that happen to be a multiple.
   355 #define PADDING_SIZE(type, alignment)                           \
   356   ((alignment) + align_size_up_(sizeof(type), alignment))
   358 // Templates to create a subclass padded to avoid cache line sharing.  These are
   359 // effective only when applied to derived-most (leaf) classes.
   361 // When no args are passed to the base ctor.
   362 template <class T, size_t alignment = DEFAULT_CACHE_LINE_SIZE>
   363 class Padded: public T {
   364 private:
   365   char _pad_buf_[PADDING_SIZE(T, alignment)];
   366 };
   368 // When either 0 or 1 args may be passed to the base ctor.
   369 template <class T, typename Arg1T, size_t alignment = DEFAULT_CACHE_LINE_SIZE>
   370 class Padded01: public T {
   371 public:
   372   Padded01(): T() { }
   373   Padded01(Arg1T arg1): T(arg1) { }
   374 private:
   375   char _pad_buf_[PADDING_SIZE(T, alignment)];
   376 };
   378 //----------------------------------------------------------------------------------------------------
   379 // Utility macros for compilers
   380 // used to silence compiler warnings
   382 #define Unused_Variable(var) var
   385 //----------------------------------------------------------------------------------------------------
   386 // Miscellaneous
   388 // 6302670 Eliminate Hotspot __fabsf dependency
   389 // All fabs() callers should call this function instead, which will implicitly
   390 // convert the operand to double, avoiding a dependency on __fabsf which
   391 // doesn't exist in early versions of Solaris 8.
   392 inline double fabsd(double value) {
   393   return fabs(value);
   394 }
   396 inline jint low (jlong value)                    { return jint(value); }
   397 inline jint high(jlong value)                    { return jint(value >> 32); }
   399 // the fancy casts are a hopefully portable way
   400 // to do unsigned 32 to 64 bit type conversion
   401 inline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
   402                                                    *value |= (jlong)(julong)(juint)low; }
   404 inline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
   405                                                    *value |= (jlong)high       << 32; }
   407 inline jlong jlong_from(jint h, jint l) {
   408   jlong result = 0; // initialization to avoid warning
   409   set_high(&result, h);
   410   set_low(&result,  l);
   411   return result;
   412 }
   414 union jlong_accessor {
   415   jint  words[2];
   416   jlong long_value;
   417 };
   419 void basic_types_init(); // cannot define here; uses assert
   422 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
   423 enum BasicType {
   424   T_BOOLEAN  =  4,
   425   T_CHAR     =  5,
   426   T_FLOAT    =  6,
   427   T_DOUBLE   =  7,
   428   T_BYTE     =  8,
   429   T_SHORT    =  9,
   430   T_INT      = 10,
   431   T_LONG     = 11,
   432   T_OBJECT   = 12,
   433   T_ARRAY    = 13,
   434   T_VOID     = 14,
   435   T_ADDRESS  = 15,
   436   T_NARROWOOP= 16,
   437   T_CONFLICT = 17, // for stack value type with conflicting contents
   438   T_ILLEGAL  = 99
   439 };
   441 inline bool is_java_primitive(BasicType t) {
   442   return T_BOOLEAN <= t && t <= T_LONG;
   443 }
   445 inline bool is_subword_type(BasicType t) {
   446   // these guys are processed exactly like T_INT in calling sequences:
   447   return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
   448 }
   450 inline bool is_signed_subword_type(BasicType t) {
   451   return (t == T_BYTE || t == T_SHORT);
   452 }
   454 // Convert a char from a classfile signature to a BasicType
   455 inline BasicType char2type(char c) {
   456   switch( c ) {
   457   case 'B': return T_BYTE;
   458   case 'C': return T_CHAR;
   459   case 'D': return T_DOUBLE;
   460   case 'F': return T_FLOAT;
   461   case 'I': return T_INT;
   462   case 'J': return T_LONG;
   463   case 'S': return T_SHORT;
   464   case 'Z': return T_BOOLEAN;
   465   case 'V': return T_VOID;
   466   case 'L': return T_OBJECT;
   467   case '[': return T_ARRAY;
   468   }
   469   return T_ILLEGAL;
   470 }
   472 extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
   473 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
   474 extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
   475 extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
   476 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
   477 extern BasicType name2type(const char* name);
   479 // Auxilary math routines
   480 // least common multiple
   481 extern size_t lcm(size_t a, size_t b);
   484 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
   485 enum BasicTypeSize {
   486   T_BOOLEAN_size = 1,
   487   T_CHAR_size    = 1,
   488   T_FLOAT_size   = 1,
   489   T_DOUBLE_size  = 2,
   490   T_BYTE_size    = 1,
   491   T_SHORT_size   = 1,
   492   T_INT_size     = 1,
   493   T_LONG_size    = 2,
   494   T_OBJECT_size  = 1,
   495   T_ARRAY_size   = 1,
   496   T_NARROWOOP_size = 1,
   497   T_VOID_size    = 0
   498 };
   501 // maps a BasicType to its instance field storage type:
   502 // all sub-word integral types are widened to T_INT
   503 extern BasicType type2field[T_CONFLICT+1];
   504 extern BasicType type2wfield[T_CONFLICT+1];
   507 // size in bytes
   508 enum ArrayElementSize {
   509   T_BOOLEAN_aelem_bytes = 1,
   510   T_CHAR_aelem_bytes    = 2,
   511   T_FLOAT_aelem_bytes   = 4,
   512   T_DOUBLE_aelem_bytes  = 8,
   513   T_BYTE_aelem_bytes    = 1,
   514   T_SHORT_aelem_bytes   = 2,
   515   T_INT_aelem_bytes     = 4,
   516   T_LONG_aelem_bytes    = 8,
   517 #ifdef _LP64
   518   T_OBJECT_aelem_bytes  = 8,
   519   T_ARRAY_aelem_bytes   = 8,
   520 #else
   521   T_OBJECT_aelem_bytes  = 4,
   522   T_ARRAY_aelem_bytes   = 4,
   523 #endif
   524   T_NARROWOOP_aelem_bytes = 4,
   525   T_VOID_aelem_bytes    = 0
   526 };
   528 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
   529 #ifdef ASSERT
   530 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
   531 #else
   532 inline int type2aelembytes(BasicType t) { return _type2aelembytes[t]; }
   533 #endif
   536 // JavaValue serves as a container for arbitrary Java values.
   538 class JavaValue {
   540  public:
   541   typedef union JavaCallValue {
   542     jfloat   f;
   543     jdouble  d;
   544     jint     i;
   545     jlong    l;
   546     jobject  h;
   547   } JavaCallValue;
   549  private:
   550   BasicType _type;
   551   JavaCallValue _value;
   553  public:
   554   JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
   556   JavaValue(jfloat value) {
   557     _type    = T_FLOAT;
   558     _value.f = value;
   559   }
   561   JavaValue(jdouble value) {
   562     _type    = T_DOUBLE;
   563     _value.d = value;
   564   }
   566  jfloat get_jfloat() const { return _value.f; }
   567  jdouble get_jdouble() const { return _value.d; }
   568  jint get_jint() const { return _value.i; }
   569  jlong get_jlong() const { return _value.l; }
   570  jobject get_jobject() const { return _value.h; }
   571  JavaCallValue* get_value_addr() { return &_value; }
   572  BasicType get_type() const { return _type; }
   574  void set_jfloat(jfloat f) { _value.f = f;}
   575  void set_jdouble(jdouble d) { _value.d = d;}
   576  void set_jint(jint i) { _value.i = i;}
   577  void set_jlong(jlong l) { _value.l = l;}
   578  void set_jobject(jobject h) { _value.h = h;}
   579  void set_type(BasicType t) { _type = t; }
   581  jboolean get_jboolean() const { return (jboolean) (_value.i);}
   582  jbyte get_jbyte() const { return (jbyte) (_value.i);}
   583  jchar get_jchar() const { return (jchar) (_value.i);}
   584  jshort get_jshort() const { return (jshort) (_value.i);}
   586 };
   589 #define STACK_BIAS      0
   590 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
   591 // in order to extend the reach of the stack pointer.
   592 #if defined(SPARC) && defined(_LP64)
   593 #undef STACK_BIAS
   594 #define STACK_BIAS      0x7ff
   595 #endif
   598 // TosState describes the top-of-stack state before and after the execution of
   599 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
   600 // registers. The TosState corresponds to the 'machine represention' of this cached
   601 // value. There's 4 states corresponding to the JAVA types int, long, float & double
   602 // as well as a 5th state in case the top-of-stack value is actually on the top
   603 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
   604 // state when it comes to machine representation but is used separately for (oop)
   605 // type specific operations (e.g. verification code).
   607 enum TosState {         // describes the tos cache contents
   608   btos = 0,             // byte, bool tos cached
   609   ctos = 1,             // char tos cached
   610   stos = 2,             // short tos cached
   611   itos = 3,             // int tos cached
   612   ltos = 4,             // long tos cached
   613   ftos = 5,             // float tos cached
   614   dtos = 6,             // double tos cached
   615   atos = 7,             // object cached
   616   vtos = 8,             // tos not cached
   617   number_of_states,
   618   ilgl                  // illegal state: should not occur
   619 };
   622 inline TosState as_TosState(BasicType type) {
   623   switch (type) {
   624     case T_BYTE   : return btos;
   625     case T_BOOLEAN: return btos; // FIXME: Add ztos
   626     case T_CHAR   : return ctos;
   627     case T_SHORT  : return stos;
   628     case T_INT    : return itos;
   629     case T_LONG   : return ltos;
   630     case T_FLOAT  : return ftos;
   631     case T_DOUBLE : return dtos;
   632     case T_VOID   : return vtos;
   633     case T_ARRAY  : // fall through
   634     case T_OBJECT : return atos;
   635   }
   636   return ilgl;
   637 }
   639 inline BasicType as_BasicType(TosState state) {
   640   switch (state) {
   641     //case ztos: return T_BOOLEAN;//FIXME
   642     case btos : return T_BYTE;
   643     case ctos : return T_CHAR;
   644     case stos : return T_SHORT;
   645     case itos : return T_INT;
   646     case ltos : return T_LONG;
   647     case ftos : return T_FLOAT;
   648     case dtos : return T_DOUBLE;
   649     case atos : return T_OBJECT;
   650     case vtos : return T_VOID;
   651   }
   652   return T_ILLEGAL;
   653 }
   656 // Helper function to convert BasicType info into TosState
   657 // Note: Cannot define here as it uses global constant at the time being.
   658 TosState as_TosState(BasicType type);
   661 // ReferenceType is used to distinguish between java/lang/ref/Reference subclasses
   663 enum ReferenceType {
   664  REF_NONE,      // Regular class
   665  REF_OTHER,     // Subclass of java/lang/ref/Reference, but not subclass of one of the classes below
   666  REF_SOFT,      // Subclass of java/lang/ref/SoftReference
   667  REF_WEAK,      // Subclass of java/lang/ref/WeakReference
   668  REF_FINAL,     // Subclass of java/lang/ref/FinalReference
   669  REF_PHANTOM    // Subclass of java/lang/ref/PhantomReference
   670 };
   673 // JavaThreadState keeps track of which part of the code a thread is executing in. This
   674 // information is needed by the safepoint code.
   675 //
   676 // There are 4 essential states:
   677 //
   678 //  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
   679 //  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
   680 //  _thread_in_vm       : Executing in the vm
   681 //  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
   682 //
   683 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
   684 // a transition from one state to another. These extra states makes it possible for the safepoint code to
   685 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
   686 //
   687 // Given a state, the xxx_trans state can always be found by adding 1.
   688 //
   689 enum JavaThreadState {
   690   _thread_uninitialized     =  0, // should never happen (missing initialization)
   691   _thread_new               =  2, // just starting up, i.e., in process of being initialized
   692   _thread_new_trans         =  3, // corresponding transition state (not used, included for completness)
   693   _thread_in_native         =  4, // running in native code
   694   _thread_in_native_trans   =  5, // corresponding transition state
   695   _thread_in_vm             =  6, // running in VM
   696   _thread_in_vm_trans       =  7, // corresponding transition state
   697   _thread_in_Java           =  8, // running in Java or in stub code
   698   _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completness)
   699   _thread_blocked           = 10, // blocked in vm
   700   _thread_blocked_trans     = 11, // corresponding transition state
   701   _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
   702 };
   705 // Handy constants for deciding which compiler mode to use.
   706 enum MethodCompilation {
   707   InvocationEntryBci = -1,     // i.e., not a on-stack replacement compilation
   708   InvalidOSREntryBci = -2
   709 };
   711 // Enumeration to distinguish tiers of compilation
   712 enum CompLevel {
   713   CompLevel_none              = 0,
   714   CompLevel_fast_compile      = 1,
   715   CompLevel_full_optimization = 2,
   717   CompLevel_highest_tier      = CompLevel_full_optimization,
   718 #ifdef TIERED
   719   CompLevel_initial_compile   = CompLevel_fast_compile
   720 #else
   721   CompLevel_initial_compile   = CompLevel_full_optimization
   722 #endif // TIERED
   723 };
   725 inline bool is_tier1_compile(int comp_level) {
   726   return comp_level == CompLevel_fast_compile;
   727 }
   728 inline bool is_tier2_compile(int comp_level) {
   729   return comp_level == CompLevel_full_optimization;
   730 }
   731 inline bool is_highest_tier_compile(int comp_level) {
   732   return comp_level == CompLevel_highest_tier;
   733 }
   735 //----------------------------------------------------------------------------------------------------
   736 // 'Forward' declarations of frequently used classes
   737 // (in order to reduce interface dependencies & reduce
   738 // number of unnecessary compilations after changes)
   740 class symbolTable;
   741 class ClassFileStream;
   743 class Event;
   745 class Thread;
   746 class  VMThread;
   747 class  JavaThread;
   748 class Threads;
   750 class VM_Operation;
   751 class VMOperationQueue;
   753 class CodeBlob;
   754 class  nmethod;
   755 class  OSRAdapter;
   756 class  I2CAdapter;
   757 class  C2IAdapter;
   758 class CompiledIC;
   759 class relocInfo;
   760 class ScopeDesc;
   761 class PcDesc;
   763 class Recompiler;
   764 class Recompilee;
   765 class RecompilationPolicy;
   766 class RFrame;
   767 class  CompiledRFrame;
   768 class  InterpretedRFrame;
   770 class frame;
   772 class vframe;
   773 class   javaVFrame;
   774 class     interpretedVFrame;
   775 class     compiledVFrame;
   776 class     deoptimizedVFrame;
   777 class   externalVFrame;
   778 class     entryVFrame;
   780 class RegisterMap;
   782 class Mutex;
   783 class Monitor;
   784 class BasicLock;
   785 class BasicObjectLock;
   787 class PeriodicTask;
   789 class JavaCallWrapper;
   791 class   oopDesc;
   793 class NativeCall;
   795 class zone;
   797 class StubQueue;
   799 class outputStream;
   801 class ResourceArea;
   803 class DebugInformationRecorder;
   804 class ScopeValue;
   805 class CompressedStream;
   806 class   DebugInfoReadStream;
   807 class   DebugInfoWriteStream;
   808 class LocationValue;
   809 class ConstantValue;
   810 class IllegalValue;
   812 class PrivilegedElement;
   813 class MonitorArray;
   815 class MonitorInfo;
   817 class OffsetClosure;
   818 class OopMapCache;
   819 class InterpreterOopMap;
   820 class OopMapCacheEntry;
   821 class OSThread;
   823 typedef int (*OSThreadStartFunc)(void*);
   825 class Space;
   827 class JavaValue;
   828 class methodHandle;
   829 class JavaCallArguments;
   831 // Basic support for errors (general debug facilities not defined at this point fo the include phase)
   833 extern void basic_fatal(const char* msg);
   836 //----------------------------------------------------------------------------------------------------
   837 // Special constants for debugging
   839 const jint     badInt           = -3;                       // generic "bad int" value
   840 const long     badAddressVal    = -2;                       // generic "bad address" value
   841 const long     badOopVal        = -1;                       // generic "bad oop" value
   842 const intptr_t badHeapOopVal    = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
   843 const int      badHandleValue   = 0xBC;                     // value used to zap vm handle area
   844 const int      badResourceValue = 0xAB;                     // value used to zap resource area
   845 const int      freeBlockPad     = 0xBA;                     // value used to pad freed blocks.
   846 const int      uninitBlockPad   = 0xF1;                     // value used to zap newly malloc'd blocks.
   847 const intptr_t badJNIHandleVal  = (intptr_t) CONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
   848 const juint    badHeapWordVal   = 0xBAADBABE;               // value used to zap heap after GC
   849 const int      badCodeHeapNewVal= 0xCC;                     // value used to zap Code heap at allocation
   850 const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
   853 // (These must be implemented as #defines because C++ compilers are
   854 // not obligated to inline non-integral constants!)
   855 #define       badAddress        ((address)::badAddressVal)
   856 #define       badOop            ((oop)::badOopVal)
   857 #define       badHeapWord       (::badHeapWordVal)
   858 #define       badJNIHandle      ((oop)::badJNIHandleVal)
   860 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
   861 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
   863 //----------------------------------------------------------------------------------------------------
   864 // Utility functions for bitfield manipulations
   866 const intptr_t AllBits    = ~0; // all bits set in a word
   867 const intptr_t NoBits     =  0; // no bits set in a word
   868 const jlong    NoLongBits =  0; // no bits set in a long
   869 const intptr_t OneBit     =  1; // only right_most bit set in a word
   871 // get a word with the n.th or the right-most or left-most n bits set
   872 // (note: #define used only so that they can be used in enum constant definitions)
   873 #define nth_bit(n)        (n >= BitsPerWord ? 0 : OneBit << (n))
   874 #define right_n_bits(n)   (nth_bit(n) - 1)
   875 #define left_n_bits(n)    (right_n_bits(n) << (n >= BitsPerWord ? 0 : (BitsPerWord - n)))
   877 // bit-operations using a mask m
   878 inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
   879 inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
   880 inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
   881 inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
   882 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
   884 // bit-operations using the n.th bit
   885 inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
   886 inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
   887 inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
   889 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
   890 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
   891   return mask_bits(x >> start_bit_no, right_n_bits(field_length));
   892 }
   895 //----------------------------------------------------------------------------------------------------
   896 // Utility functions for integers
   898 // Avoid use of global min/max macros which may cause unwanted double
   899 // evaluation of arguments.
   900 #ifdef max
   901 #undef max
   902 #endif
   904 #ifdef min
   905 #undef min
   906 #endif
   908 #define max(a,b) Do_not_use_max_use_MAX2_instead
   909 #define min(a,b) Do_not_use_min_use_MIN2_instead
   911 // It is necessary to use templates here. Having normal overloaded
   912 // functions does not work because it is necessary to provide both 32-
   913 // and 64-bit overloaded functions, which does not work, and having
   914 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
   915 // will be even more error-prone than macros.
   916 template<class T> inline T MAX2(T a, T b)           { return (a > b) ? a : b; }
   917 template<class T> inline T MIN2(T a, T b)           { return (a < b) ? a : b; }
   918 template<class T> inline T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
   919 template<class T> inline T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
   920 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
   921 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
   923 template<class T> inline T ABS(T x)                 { return (x > 0) ? x : -x; }
   925 // true if x is a power of 2, false otherwise
   926 inline bool is_power_of_2(intptr_t x) {
   927   return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
   928 }
   930 // long version of is_power_of_2
   931 inline bool is_power_of_2_long(jlong x) {
   932   return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
   933 }
   935 //* largest i such that 2^i <= x
   936 //  A negative value of 'x' will return '31'
   937 inline int log2_intptr(intptr_t x) {
   938   int i = -1;
   939   uintptr_t p =  1;
   940   while (p != 0 && p <= (uintptr_t)x) {
   941     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
   942     i++; p *= 2;
   943   }
   944   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
   945   // (if p = 0 then overflow occurred and i = 31)
   946   return i;
   947 }
   949 //* largest i such that 2^i <= x
   950 //  A negative value of 'x' will return '63'
   951 inline int log2_long(jlong x) {
   952   int i = -1;
   953   julong p =  1;
   954   while (p != 0 && p <= (julong)x) {
   955     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
   956     i++; p *= 2;
   957   }
   958   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
   959   // (if p = 0 then overflow occurred and i = 63)
   960   return i;
   961 }
   963 //* the argument must be exactly a power of 2
   964 inline int exact_log2(intptr_t x) {
   965   #ifdef ASSERT
   966     if (!is_power_of_2(x)) basic_fatal("x must be a power of 2");
   967   #endif
   968   return log2_intptr(x);
   969 }
   971 //* the argument must be exactly a power of 2
   972 inline int exact_log2_long(jlong x) {
   973   #ifdef ASSERT
   974     if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2");
   975   #endif
   976   return log2_long(x);
   977 }
   980 // returns integer round-up to the nearest multiple of s (s must be a power of two)
   981 inline intptr_t round_to(intptr_t x, uintx s) {
   982   #ifdef ASSERT
   983     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
   984   #endif
   985   const uintx m = s - 1;
   986   return mask_bits(x + m, ~m);
   987 }
   989 // returns integer round-down to the nearest multiple of s (s must be a power of two)
   990 inline intptr_t round_down(intptr_t x, uintx s) {
   991   #ifdef ASSERT
   992     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
   993   #endif
   994   const uintx m = s - 1;
   995   return mask_bits(x, ~m);
   996 }
   999 inline bool is_odd (intx x) { return x & 1;      }
  1000 inline bool is_even(intx x) { return !is_odd(x); }
  1002 // "to" should be greater than "from."
  1003 inline intx byte_size(void* from, void* to) {
  1004   return (address)to - (address)from;
  1007 //----------------------------------------------------------------------------------------------------
  1008 // Avoid non-portable casts with these routines (DEPRECATED)
  1010 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
  1011 //       Bytes is optimized machine-specifically and may be much faster then the portable routines below.
  1013 // Given sequence of four bytes, build into a 32-bit word
  1014 // following the conventions used in class files.
  1015 // On the 386, this could be realized with a simple address cast.
  1016 //
  1018 // This routine takes eight bytes:
  1019 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
  1020   return  ( u8(c1) << 56 )  &  ( u8(0xff) << 56 )
  1021        |  ( u8(c2) << 48 )  &  ( u8(0xff) << 48 )
  1022        |  ( u8(c3) << 40 )  &  ( u8(0xff) << 40 )
  1023        |  ( u8(c4) << 32 )  &  ( u8(0xff) << 32 )
  1024        |  ( u8(c5) << 24 )  &  ( u8(0xff) << 24 )
  1025        |  ( u8(c6) << 16 )  &  ( u8(0xff) << 16 )
  1026        |  ( u8(c7) <<  8 )  &  ( u8(0xff) <<  8 )
  1027        |  ( u8(c8) <<  0 )  &  ( u8(0xff) <<  0 );
  1030 // This routine takes four bytes:
  1031 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
  1032   return  ( u4(c1) << 24 )  &  0xff000000
  1033        |  ( u4(c2) << 16 )  &  0x00ff0000
  1034        |  ( u4(c3) <<  8 )  &  0x0000ff00
  1035        |  ( u4(c4) <<  0 )  &  0x000000ff;
  1038 // And this one works if the four bytes are contiguous in memory:
  1039 inline u4 build_u4_from( u1* p ) {
  1040   return  build_u4_from( p[0], p[1], p[2], p[3] );
  1043 // Ditto for two-byte ints:
  1044 inline u2 build_u2_from( u1 c1, u1 c2 ) {
  1045   return  u2(( u2(c1) <<  8 )  &  0xff00
  1046           |  ( u2(c2) <<  0 )  &  0x00ff);
  1049 // And this one works if the two bytes are contiguous in memory:
  1050 inline u2 build_u2_from( u1* p ) {
  1051   return  build_u2_from( p[0], p[1] );
  1054 // Ditto for floats:
  1055 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
  1056   u4 u = build_u4_from( c1, c2, c3, c4 );
  1057   return  *(jfloat*)&u;
  1060 inline jfloat build_float_from( u1* p ) {
  1061   u4 u = build_u4_from( p );
  1062   return  *(jfloat*)&u;
  1066 // now (64-bit) longs
  1068 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
  1069   return  ( jlong(c1) << 56 )  &  ( jlong(0xff) << 56 )
  1070        |  ( jlong(c2) << 48 )  &  ( jlong(0xff) << 48 )
  1071        |  ( jlong(c3) << 40 )  &  ( jlong(0xff) << 40 )
  1072        |  ( jlong(c4) << 32 )  &  ( jlong(0xff) << 32 )
  1073        |  ( jlong(c5) << 24 )  &  ( jlong(0xff) << 24 )
  1074        |  ( jlong(c6) << 16 )  &  ( jlong(0xff) << 16 )
  1075        |  ( jlong(c7) <<  8 )  &  ( jlong(0xff) <<  8 )
  1076        |  ( jlong(c8) <<  0 )  &  ( jlong(0xff) <<  0 );
  1079 inline jlong build_long_from( u1* p ) {
  1080   return  build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
  1084 // Doubles, too!
  1085 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
  1086   jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
  1087   return  *(jdouble*)&u;
  1090 inline jdouble build_double_from( u1* p ) {
  1091   jlong u = build_long_from( p );
  1092   return  *(jdouble*)&u;
  1096 // Portable routines to go the other way:
  1098 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
  1099   c1 = u1(x >> 8);
  1100   c2 = u1(x);
  1103 inline void explode_short_to( u2 x, u1* p ) {
  1104   explode_short_to( x, p[0], p[1]);
  1107 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
  1108   c1 = u1(x >> 24);
  1109   c2 = u1(x >> 16);
  1110   c3 = u1(x >>  8);
  1111   c4 = u1(x);
  1114 inline void explode_int_to( u4 x, u1* p ) {
  1115   explode_int_to( x, p[0], p[1], p[2], p[3]);
  1119 // Pack and extract shorts to/from ints:
  1121 inline int extract_low_short_from_int(jint x) {
  1122   return x & 0xffff;
  1125 inline int extract_high_short_from_int(jint x) {
  1126   return (x >> 16) & 0xffff;
  1129 inline int build_int_from_shorts( jushort low, jushort high ) {
  1130   return ((int)((unsigned int)high << 16) | (unsigned int)low);
  1133 // Printf-style formatters for fixed- and variable-width types as pointers and
  1134 // integers.
  1135 //
  1136 // Each compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
  1137 // must define the macro FORMAT64_MODIFIER, which is the modifier for '%x' or
  1138 // '%d' formats to indicate a 64-bit quantity; commonly "l" (in LP64) or "ll"
  1139 // (in ILP32).
  1141 // Format 32-bit quantities.
  1142 #define INT32_FORMAT  "%d"
  1143 #define UINT32_FORMAT "%u"
  1144 #define INT32_FORMAT_W(width)   "%" #width "d"
  1145 #define UINT32_FORMAT_W(width)  "%" #width "u"
  1147 #define PTR32_FORMAT  "0x%08x"
  1149 // Format 64-bit quantities.
  1150 #define INT64_FORMAT  "%" FORMAT64_MODIFIER "d"
  1151 #define UINT64_FORMAT "%" FORMAT64_MODIFIER "u"
  1152 #define PTR64_FORMAT  "0x%016" FORMAT64_MODIFIER "x"
  1154 #define INT64_FORMAT_W(width)  "%" #width FORMAT64_MODIFIER "d"
  1155 #define UINT64_FORMAT_W(width) "%" #width FORMAT64_MODIFIER "u"
  1157 // Format macros that allow the field width to be specified.  The width must be
  1158 // a string literal (e.g., "8") or a macro that evaluates to one.
  1159 #ifdef _LP64
  1160 #define UINTX_FORMAT_W(width)   UINT64_FORMAT_W(width)
  1161 #define SSIZE_FORMAT_W(width)   INT64_FORMAT_W(width)
  1162 #define SIZE_FORMAT_W(width)    UINT64_FORMAT_W(width)
  1163 #else
  1164 #define UINTX_FORMAT_W(width)   UINT32_FORMAT_W(width)
  1165 #define SSIZE_FORMAT_W(width)   INT32_FORMAT_W(width)
  1166 #define SIZE_FORMAT_W(width)    UINT32_FORMAT_W(width)
  1167 #endif // _LP64
  1169 // Format pointers and size_t (or size_t-like integer types) which change size
  1170 // between 32- and 64-bit. The pointer format theoretically should be "%p",
  1171 // however, it has different output on different platforms. On Windows, the data
  1172 // will be padded with zeros automatically. On Solaris, we can use "%016p" &
  1173 // "%08p" on 64 bit & 32 bit platforms to make the data padded with extra zeros.
  1174 // On Linux, "%016p" or "%08p" is not be allowed, at least on the latest GCC
  1175 // 4.3.2. So we have to use "%016x" or "%08x" to simulate the printing format.
  1176 // GCC 4.3.2, however requires the data to be converted to "intptr_t" when
  1177 // using "%x".
  1178 #ifdef  _LP64
  1179 #define PTR_FORMAT    PTR64_FORMAT
  1180 #define UINTX_FORMAT  UINT64_FORMAT
  1181 #define INTX_FORMAT   INT64_FORMAT
  1182 #define SIZE_FORMAT   UINT64_FORMAT
  1183 #define SSIZE_FORMAT  INT64_FORMAT
  1184 #else   // !_LP64
  1185 #define PTR_FORMAT    PTR32_FORMAT
  1186 #define UINTX_FORMAT  UINT32_FORMAT
  1187 #define INTX_FORMAT   INT32_FORMAT
  1188 #define SIZE_FORMAT   UINT32_FORMAT
  1189 #define SSIZE_FORMAT  INT32_FORMAT
  1190 #endif  // _LP64
  1192 #define INTPTR_FORMAT PTR_FORMAT
  1194 // Enable zap-a-lot if in debug version.
  1196 # ifdef ASSERT
  1197 # ifdef COMPILER2
  1198 #   define ENABLE_ZAP_DEAD_LOCALS
  1199 #endif /* COMPILER2 */
  1200 # endif /* ASSERT */
  1202 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))

mercurial