src/share/vm/gc_implementation/parallelScavenge/psMarkSweep.cpp

Fri, 16 Jul 2010 21:33:21 -0700

author
jcoomes
date
Fri, 16 Jul 2010 21:33:21 -0700
changeset 2020
a93a9eda13f7
parent 1907
c18cbe5936b8
child 2191
894b1d7c7e01
permissions
-rw-r--r--

6962947: shared TaskQueue statistics
Reviewed-by: tonyp, ysr

     1 /*
     2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_psMarkSweep.cpp.incl"
    28 elapsedTimer        PSMarkSweep::_accumulated_time;
    29 unsigned int        PSMarkSweep::_total_invocations = 0;
    30 jlong               PSMarkSweep::_time_of_last_gc   = 0;
    31 CollectorCounters*  PSMarkSweep::_counters = NULL;
    33 void PSMarkSweep::initialize() {
    34   MemRegion mr = Universe::heap()->reserved_region();
    35   _ref_processor = new ReferenceProcessor(mr,
    36                                           true,    // atomic_discovery
    37                                           false);  // mt_discovery
    38   _counters = new CollectorCounters("PSMarkSweep", 1);
    39 }
    41 // This method contains all heap specific policy for invoking mark sweep.
    42 // PSMarkSweep::invoke_no_policy() will only attempt to mark-sweep-compact
    43 // the heap. It will do nothing further. If we need to bail out for policy
    44 // reasons, scavenge before full gc, or any other specialized behavior, it
    45 // needs to be added here.
    46 //
    47 // Note that this method should only be called from the vm_thread while
    48 // at a safepoint!
    49 //
    50 // Note that the all_soft_refs_clear flag in the collector policy
    51 // may be true because this method can be called without intervening
    52 // activity.  For example when the heap space is tight and full measure
    53 // are being taken to free space.
    55 void PSMarkSweep::invoke(bool maximum_heap_compaction) {
    56   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
    57   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
    58   assert(!Universe::heap()->is_gc_active(), "not reentrant");
    60   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
    61   GCCause::Cause gc_cause = heap->gc_cause();
    62   PSAdaptiveSizePolicy* policy = heap->size_policy();
    63   IsGCActiveMark mark;
    65   if (ScavengeBeforeFullGC) {
    66     PSScavenge::invoke_no_policy();
    67   }
    69   const bool clear_all_soft_refs =
    70     heap->collector_policy()->should_clear_all_soft_refs();
    72   int count = (maximum_heap_compaction)?1:MarkSweepAlwaysCompactCount;
    73   IntFlagSetting flag_setting(MarkSweepAlwaysCompactCount, count);
    74   PSMarkSweep::invoke_no_policy(clear_all_soft_refs || maximum_heap_compaction);
    75 }
    77 // This method contains no policy. You should probably
    78 // be calling invoke() instead.
    79 void PSMarkSweep::invoke_no_policy(bool clear_all_softrefs) {
    80   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
    81   assert(ref_processor() != NULL, "Sanity");
    83   if (GC_locker::check_active_before_gc()) {
    84     return;
    85   }
    87   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
    88   GCCause::Cause gc_cause = heap->gc_cause();
    89   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
    90   PSAdaptiveSizePolicy* size_policy = heap->size_policy();
    92   // The scope of casr should end after code that can change
    93   // CollectorPolicy::_should_clear_all_soft_refs.
    94   ClearedAllSoftRefs casr(clear_all_softrefs, heap->collector_policy());
    96   PSYoungGen* young_gen = heap->young_gen();
    97   PSOldGen* old_gen = heap->old_gen();
    98   PSPermGen* perm_gen = heap->perm_gen();
   100   // Increment the invocation count
   101   heap->increment_total_collections(true /* full */);
   103   // Save information needed to minimize mangling
   104   heap->record_gen_tops_before_GC();
   106   // We need to track unique mark sweep invocations as well.
   107   _total_invocations++;
   109   AdaptiveSizePolicyOutput(size_policy, heap->total_collections());
   111   if (PrintHeapAtGC) {
   112     Universe::print_heap_before_gc();
   113   }
   115   // Fill in TLABs
   116   heap->accumulate_statistics_all_tlabs();
   117   heap->ensure_parsability(true);  // retire TLABs
   119   if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
   120     HandleMark hm;  // Discard invalid handles created during verification
   121     gclog_or_tty->print(" VerifyBeforeGC:");
   122     Universe::verify(true);
   123   }
   125   // Verify object start arrays
   126   if (VerifyObjectStartArray &&
   127       VerifyBeforeGC) {
   128     old_gen->verify_object_start_array();
   129     perm_gen->verify_object_start_array();
   130   }
   132   heap->pre_full_gc_dump();
   134   // Filled in below to track the state of the young gen after the collection.
   135   bool eden_empty;
   136   bool survivors_empty;
   137   bool young_gen_empty;
   139   {
   140     HandleMark hm;
   141     const bool is_system_gc = gc_cause == GCCause::_java_lang_system_gc;
   142     // This is useful for debugging but don't change the output the
   143     // the customer sees.
   144     const char* gc_cause_str = "Full GC";
   145     if (is_system_gc && PrintGCDetails) {
   146       gc_cause_str = "Full GC (System)";
   147     }
   148     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
   149     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
   150     TraceTime t1(gc_cause_str, PrintGC, !PrintGCDetails, gclog_or_tty);
   151     TraceCollectorStats tcs(counters());
   152     TraceMemoryManagerStats tms(true /* Full GC */);
   154     if (TraceGen1Time) accumulated_time()->start();
   156     // Let the size policy know we're starting
   157     size_policy->major_collection_begin();
   159     // When collecting the permanent generation methodOops may be moving,
   160     // so we either have to flush all bcp data or convert it into bci.
   161     CodeCache::gc_prologue();
   162     Threads::gc_prologue();
   163     BiasedLocking::preserve_marks();
   165     // Capture heap size before collection for printing.
   166     size_t prev_used = heap->used();
   168     // Capture perm gen size before collection for sizing.
   169     size_t perm_gen_prev_used = perm_gen->used_in_bytes();
   171     // For PrintGCDetails
   172     size_t old_gen_prev_used = old_gen->used_in_bytes();
   173     size_t young_gen_prev_used = young_gen->used_in_bytes();
   175     allocate_stacks();
   177     NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
   178     COMPILER2_PRESENT(DerivedPointerTable::clear());
   180     ref_processor()->enable_discovery();
   181     ref_processor()->setup_policy(clear_all_softrefs);
   183     mark_sweep_phase1(clear_all_softrefs);
   185     mark_sweep_phase2();
   187     // Don't add any more derived pointers during phase3
   188     COMPILER2_PRESENT(assert(DerivedPointerTable::is_active(), "Sanity"));
   189     COMPILER2_PRESENT(DerivedPointerTable::set_active(false));
   191     mark_sweep_phase3();
   193     mark_sweep_phase4();
   195     restore_marks();
   197     deallocate_stacks();
   199     if (ZapUnusedHeapArea) {
   200       // Do a complete mangle (top to end) because the usage for
   201       // scratch does not maintain a top pointer.
   202       young_gen->to_space()->mangle_unused_area_complete();
   203     }
   205     eden_empty = young_gen->eden_space()->is_empty();
   206     if (!eden_empty) {
   207       eden_empty = absorb_live_data_from_eden(size_policy, young_gen, old_gen);
   208     }
   210     // Update heap occupancy information which is used as
   211     // input to soft ref clearing policy at the next gc.
   212     Universe::update_heap_info_at_gc();
   214     survivors_empty = young_gen->from_space()->is_empty() &&
   215                       young_gen->to_space()->is_empty();
   216     young_gen_empty = eden_empty && survivors_empty;
   218     BarrierSet* bs = heap->barrier_set();
   219     if (bs->is_a(BarrierSet::ModRef)) {
   220       ModRefBarrierSet* modBS = (ModRefBarrierSet*)bs;
   221       MemRegion old_mr = heap->old_gen()->reserved();
   222       MemRegion perm_mr = heap->perm_gen()->reserved();
   223       assert(perm_mr.end() <= old_mr.start(), "Generations out of order");
   225       if (young_gen_empty) {
   226         modBS->clear(MemRegion(perm_mr.start(), old_mr.end()));
   227       } else {
   228         modBS->invalidate(MemRegion(perm_mr.start(), old_mr.end()));
   229       }
   230     }
   232     BiasedLocking::restore_marks();
   233     Threads::gc_epilogue();
   234     CodeCache::gc_epilogue();
   236     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
   238     ref_processor()->enqueue_discovered_references(NULL);
   240     // Update time of last GC
   241     reset_millis_since_last_gc();
   243     // Let the size policy know we're done
   244     size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
   246     if (UseAdaptiveSizePolicy) {
   248       if (PrintAdaptiveSizePolicy) {
   249         gclog_or_tty->print("AdaptiveSizeStart: ");
   250         gclog_or_tty->stamp();
   251         gclog_or_tty->print_cr(" collection: %d ",
   252                        heap->total_collections());
   253         if (Verbose) {
   254           gclog_or_tty->print("old_gen_capacity: %d young_gen_capacity: %d"
   255             " perm_gen_capacity: %d ",
   256             old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes(),
   257             perm_gen->capacity_in_bytes());
   258         }
   259       }
   261       // Don't check if the size_policy is ready here.  Let
   262       // the size_policy check that internally.
   263       if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
   264           ((gc_cause != GCCause::_java_lang_system_gc) ||
   265             UseAdaptiveSizePolicyWithSystemGC)) {
   266         // Calculate optimal free space amounts
   267         assert(young_gen->max_size() >
   268           young_gen->from_space()->capacity_in_bytes() +
   269           young_gen->to_space()->capacity_in_bytes(),
   270           "Sizes of space in young gen are out-of-bounds");
   271         size_t max_eden_size = young_gen->max_size() -
   272           young_gen->from_space()->capacity_in_bytes() -
   273           young_gen->to_space()->capacity_in_bytes();
   274         size_policy->compute_generation_free_space(young_gen->used_in_bytes(),
   275                                  young_gen->eden_space()->used_in_bytes(),
   276                                  old_gen->used_in_bytes(),
   277                                  perm_gen->used_in_bytes(),
   278                                  young_gen->eden_space()->capacity_in_bytes(),
   279                                  old_gen->max_gen_size(),
   280                                  max_eden_size,
   281                                  true /* full gc*/,
   282                                  gc_cause,
   283                                  heap->collector_policy());
   285         heap->resize_old_gen(size_policy->calculated_old_free_size_in_bytes());
   287         // Don't resize the young generation at an major collection.  A
   288         // desired young generation size may have been calculated but
   289         // resizing the young generation complicates the code because the
   290         // resizing of the old generation may have moved the boundary
   291         // between the young generation and the old generation.  Let the
   292         // young generation resizing happen at the minor collections.
   293       }
   294       if (PrintAdaptiveSizePolicy) {
   295         gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
   296                        heap->total_collections());
   297       }
   298     }
   300     if (UsePerfData) {
   301       heap->gc_policy_counters()->update_counters();
   302       heap->gc_policy_counters()->update_old_capacity(
   303         old_gen->capacity_in_bytes());
   304       heap->gc_policy_counters()->update_young_capacity(
   305         young_gen->capacity_in_bytes());
   306     }
   308     heap->resize_all_tlabs();
   310     // We collected the perm gen, so we'll resize it here.
   311     perm_gen->compute_new_size(perm_gen_prev_used);
   313     if (TraceGen1Time) accumulated_time()->stop();
   315     if (PrintGC) {
   316       if (PrintGCDetails) {
   317         // Don't print a GC timestamp here.  This is after the GC so
   318         // would be confusing.
   319         young_gen->print_used_change(young_gen_prev_used);
   320         old_gen->print_used_change(old_gen_prev_used);
   321       }
   322       heap->print_heap_change(prev_used);
   323       // Do perm gen after heap becase prev_used does
   324       // not include the perm gen (done this way in the other
   325       // collectors).
   326       if (PrintGCDetails) {
   327         perm_gen->print_used_change(perm_gen_prev_used);
   328       }
   329     }
   331     // Track memory usage and detect low memory
   332     MemoryService::track_memory_usage();
   333     heap->update_counters();
   334   }
   336   if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
   337     HandleMark hm;  // Discard invalid handles created during verification
   338     gclog_or_tty->print(" VerifyAfterGC:");
   339     Universe::verify(false);
   340   }
   342   // Re-verify object start arrays
   343   if (VerifyObjectStartArray &&
   344       VerifyAfterGC) {
   345     old_gen->verify_object_start_array();
   346     perm_gen->verify_object_start_array();
   347   }
   349   if (ZapUnusedHeapArea) {
   350     old_gen->object_space()->check_mangled_unused_area_complete();
   351     perm_gen->object_space()->check_mangled_unused_area_complete();
   352   }
   354   NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
   356   if (PrintHeapAtGC) {
   357     Universe::print_heap_after_gc();
   358   }
   360   heap->post_full_gc_dump();
   362 #ifdef TRACESPINNING
   363   ParallelTaskTerminator::print_termination_counts();
   364 #endif
   365 }
   367 bool PSMarkSweep::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
   368                                              PSYoungGen* young_gen,
   369                                              PSOldGen* old_gen) {
   370   MutableSpace* const eden_space = young_gen->eden_space();
   371   assert(!eden_space->is_empty(), "eden must be non-empty");
   372   assert(young_gen->virtual_space()->alignment() ==
   373          old_gen->virtual_space()->alignment(), "alignments do not match");
   375   if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
   376     return false;
   377   }
   379   // Both generations must be completely committed.
   380   if (young_gen->virtual_space()->uncommitted_size() != 0) {
   381     return false;
   382   }
   383   if (old_gen->virtual_space()->uncommitted_size() != 0) {
   384     return false;
   385   }
   387   // Figure out how much to take from eden.  Include the average amount promoted
   388   // in the total; otherwise the next young gen GC will simply bail out to a
   389   // full GC.
   390   const size_t alignment = old_gen->virtual_space()->alignment();
   391   const size_t eden_used = eden_space->used_in_bytes();
   392   const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
   393   const size_t absorb_size = align_size_up(eden_used + promoted, alignment);
   394   const size_t eden_capacity = eden_space->capacity_in_bytes();
   396   if (absorb_size >= eden_capacity) {
   397     return false; // Must leave some space in eden.
   398   }
   400   const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
   401   if (new_young_size < young_gen->min_gen_size()) {
   402     return false; // Respect young gen minimum size.
   403   }
   405   if (TraceAdaptiveGCBoundary && Verbose) {
   406     gclog_or_tty->print(" absorbing " SIZE_FORMAT "K:  "
   407                         "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
   408                         "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
   409                         "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
   410                         absorb_size / K,
   411                         eden_capacity / K, (eden_capacity - absorb_size) / K,
   412                         young_gen->from_space()->used_in_bytes() / K,
   413                         young_gen->to_space()->used_in_bytes() / K,
   414                         young_gen->capacity_in_bytes() / K, new_young_size / K);
   415   }
   417   // Fill the unused part of the old gen.
   418   MutableSpace* const old_space = old_gen->object_space();
   419   HeapWord* const unused_start = old_space->top();
   420   size_t const unused_words = pointer_delta(old_space->end(), unused_start);
   422   if (unused_words > 0) {
   423     if (unused_words < CollectedHeap::min_fill_size()) {
   424       return false;  // If the old gen cannot be filled, must give up.
   425     }
   426     CollectedHeap::fill_with_objects(unused_start, unused_words);
   427   }
   429   // Take the live data from eden and set both top and end in the old gen to
   430   // eden top.  (Need to set end because reset_after_change() mangles the region
   431   // from end to virtual_space->high() in debug builds).
   432   HeapWord* const new_top = eden_space->top();
   433   old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
   434                                         absorb_size);
   435   young_gen->reset_after_change();
   436   old_space->set_top(new_top);
   437   old_space->set_end(new_top);
   438   old_gen->reset_after_change();
   440   // Update the object start array for the filler object and the data from eden.
   441   ObjectStartArray* const start_array = old_gen->start_array();
   442   for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) {
   443     start_array->allocate_block(p);
   444   }
   446   // Could update the promoted average here, but it is not typically updated at
   447   // full GCs and the value to use is unclear.  Something like
   448   //
   449   // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.
   451   size_policy->set_bytes_absorbed_from_eden(absorb_size);
   452   return true;
   453 }
   455 void PSMarkSweep::allocate_stacks() {
   456   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   457   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   459   PSYoungGen* young_gen = heap->young_gen();
   461   MutableSpace* to_space = young_gen->to_space();
   462   _preserved_marks = (PreservedMark*)to_space->top();
   463   _preserved_count = 0;
   465   // We want to calculate the size in bytes first.
   466   _preserved_count_max  = pointer_delta(to_space->end(), to_space->top(), sizeof(jbyte));
   467   // Now divide by the size of a PreservedMark
   468   _preserved_count_max /= sizeof(PreservedMark);
   470   _preserved_mark_stack = NULL;
   471   _preserved_oop_stack = NULL;
   473   _marking_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(4000, true);
   474   _objarray_stack = new (ResourceObj::C_HEAP) GrowableArray<ObjArrayTask>(50, true);
   476   int size = SystemDictionary::number_of_classes() * 2;
   477   _revisit_klass_stack = new (ResourceObj::C_HEAP) GrowableArray<Klass*>(size, true);
   478   // (#klass/k)^2, for k ~ 10 appears a better setting, but this will have to do for
   479   // now until we investigate a more optimal setting.
   480   _revisit_mdo_stack   = new (ResourceObj::C_HEAP) GrowableArray<DataLayout*>(size*2, true);
   481 }
   484 void PSMarkSweep::deallocate_stacks() {
   485   if (_preserved_oop_stack) {
   486     delete _preserved_mark_stack;
   487     _preserved_mark_stack = NULL;
   488     delete _preserved_oop_stack;
   489     _preserved_oop_stack = NULL;
   490   }
   492   delete _marking_stack;
   493   delete _objarray_stack;
   494   delete _revisit_klass_stack;
   495   delete _revisit_mdo_stack;
   496 }
   498 void PSMarkSweep::mark_sweep_phase1(bool clear_all_softrefs) {
   499   // Recursively traverse all live objects and mark them
   500   EventMark m("1 mark object");
   501   TraceTime tm("phase 1", PrintGCDetails && Verbose, true, gclog_or_tty);
   502   trace(" 1");
   504   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   505   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   507   // General strong roots.
   508   {
   509     ParallelScavengeHeap::ParStrongRootsScope psrs;
   510     Universe::oops_do(mark_and_push_closure());
   511     ReferenceProcessor::oops_do(mark_and_push_closure());
   512     JNIHandles::oops_do(mark_and_push_closure());   // Global (strong) JNI handles
   513     CodeBlobToOopClosure each_active_code_blob(mark_and_push_closure(), /*do_marking=*/ true);
   514     Threads::oops_do(mark_and_push_closure(), &each_active_code_blob);
   515     ObjectSynchronizer::oops_do(mark_and_push_closure());
   516     FlatProfiler::oops_do(mark_and_push_closure());
   517     Management::oops_do(mark_and_push_closure());
   518     JvmtiExport::oops_do(mark_and_push_closure());
   519     SystemDictionary::always_strong_oops_do(mark_and_push_closure());
   520     vmSymbols::oops_do(mark_and_push_closure());
   521     // Do not treat nmethods as strong roots for mark/sweep, since we can unload them.
   522     //CodeCache::scavenge_root_nmethods_do(CodeBlobToOopClosure(mark_and_push_closure()));
   523   }
   525   // Flush marking stack.
   526   follow_stack();
   528   // Process reference objects found during marking
   529   {
   530     ref_processor()->setup_policy(clear_all_softrefs);
   531     ref_processor()->process_discovered_references(
   532       is_alive_closure(), mark_and_push_closure(), follow_stack_closure(), NULL);
   533   }
   535   // Follow system dictionary roots and unload classes
   536   bool purged_class = SystemDictionary::do_unloading(is_alive_closure());
   538   // Follow code cache roots
   539   CodeCache::do_unloading(is_alive_closure(), mark_and_push_closure(),
   540                           purged_class);
   541   follow_stack(); // Flush marking stack
   543   // Update subklass/sibling/implementor links of live klasses
   544   follow_weak_klass_links();
   545   assert(_marking_stack->is_empty(), "just drained");
   547   // Visit memoized mdo's and clear unmarked weak refs
   548   follow_mdo_weak_refs();
   549   assert(_marking_stack->is_empty(), "just drained");
   551   // Visit symbol and interned string tables and delete unmarked oops
   552   SymbolTable::unlink(is_alive_closure());
   553   StringTable::unlink(is_alive_closure());
   555   assert(_marking_stack->is_empty(), "stack should be empty by now");
   556 }
   559 void PSMarkSweep::mark_sweep_phase2() {
   560   EventMark m("2 compute new addresses");
   561   TraceTime tm("phase 2", PrintGCDetails && Verbose, true, gclog_or_tty);
   562   trace("2");
   564   // Now all live objects are marked, compute the new object addresses.
   566   // It is imperative that we traverse perm_gen LAST. If dead space is
   567   // allowed a range of dead object may get overwritten by a dead int
   568   // array. If perm_gen is not traversed last a klassOop may get
   569   // overwritten. This is fine since it is dead, but if the class has dead
   570   // instances we have to skip them, and in order to find their size we
   571   // need the klassOop!
   572   //
   573   // It is not required that we traverse spaces in the same order in
   574   // phase2, phase3 and phase4, but the ValidateMarkSweep live oops
   575   // tracking expects us to do so. See comment under phase4.
   577   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   578   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   580   PSOldGen* old_gen = heap->old_gen();
   581   PSPermGen* perm_gen = heap->perm_gen();
   583   // Begin compacting into the old gen
   584   PSMarkSweepDecorator::set_destination_decorator_tenured();
   586   // This will also compact the young gen spaces.
   587   old_gen->precompact();
   589   // Compact the perm gen into the perm gen
   590   PSMarkSweepDecorator::set_destination_decorator_perm_gen();
   592   perm_gen->precompact();
   593 }
   595 // This should be moved to the shared markSweep code!
   596 class PSAlwaysTrueClosure: public BoolObjectClosure {
   597 public:
   598   void do_object(oop p) { ShouldNotReachHere(); }
   599   bool do_object_b(oop p) { return true; }
   600 };
   601 static PSAlwaysTrueClosure always_true;
   603 void PSMarkSweep::mark_sweep_phase3() {
   604   // Adjust the pointers to reflect the new locations
   605   EventMark m("3 adjust pointers");
   606   TraceTime tm("phase 3", PrintGCDetails && Verbose, true, gclog_or_tty);
   607   trace("3");
   609   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   610   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   612   PSYoungGen* young_gen = heap->young_gen();
   613   PSOldGen* old_gen = heap->old_gen();
   614   PSPermGen* perm_gen = heap->perm_gen();
   616   // General strong roots.
   617   Universe::oops_do(adjust_root_pointer_closure());
   618   ReferenceProcessor::oops_do(adjust_root_pointer_closure());
   619   JNIHandles::oops_do(adjust_root_pointer_closure());   // Global (strong) JNI handles
   620   Threads::oops_do(adjust_root_pointer_closure(), NULL);
   621   ObjectSynchronizer::oops_do(adjust_root_pointer_closure());
   622   FlatProfiler::oops_do(adjust_root_pointer_closure());
   623   Management::oops_do(adjust_root_pointer_closure());
   624   JvmtiExport::oops_do(adjust_root_pointer_closure());
   625   // SO_AllClasses
   626   SystemDictionary::oops_do(adjust_root_pointer_closure());
   627   vmSymbols::oops_do(adjust_root_pointer_closure());
   628   //CodeCache::scavenge_root_nmethods_oops_do(adjust_root_pointer_closure());
   630   // Now adjust pointers in remaining weak roots.  (All of which should
   631   // have been cleared if they pointed to non-surviving objects.)
   632   // Global (weak) JNI handles
   633   JNIHandles::weak_oops_do(&always_true, adjust_root_pointer_closure());
   635   CodeCache::oops_do(adjust_pointer_closure());
   636   SymbolTable::oops_do(adjust_root_pointer_closure());
   637   StringTable::oops_do(adjust_root_pointer_closure());
   638   ref_processor()->weak_oops_do(adjust_root_pointer_closure());
   639   PSScavenge::reference_processor()->weak_oops_do(adjust_root_pointer_closure());
   641   adjust_marks();
   643   young_gen->adjust_pointers();
   644   old_gen->adjust_pointers();
   645   perm_gen->adjust_pointers();
   646 }
   648 void PSMarkSweep::mark_sweep_phase4() {
   649   EventMark m("4 compact heap");
   650   TraceTime tm("phase 4", PrintGCDetails && Verbose, true, gclog_or_tty);
   651   trace("4");
   653   // All pointers are now adjusted, move objects accordingly
   655   // It is imperative that we traverse perm_gen first in phase4. All
   656   // classes must be allocated earlier than their instances, and traversing
   657   // perm_gen first makes sure that all klassOops have moved to their new
   658   // location before any instance does a dispatch through it's klass!
   659   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   660   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   662   PSYoungGen* young_gen = heap->young_gen();
   663   PSOldGen* old_gen = heap->old_gen();
   664   PSPermGen* perm_gen = heap->perm_gen();
   666   perm_gen->compact();
   667   old_gen->compact();
   668   young_gen->compact();
   669 }
   671 jlong PSMarkSweep::millis_since_last_gc() {
   672   jlong ret_val = os::javaTimeMillis() - _time_of_last_gc;
   673   // XXX See note in genCollectedHeap::millis_since_last_gc().
   674   if (ret_val < 0) {
   675     NOT_PRODUCT(warning("time warp: %d", ret_val);)
   676     return 0;
   677   }
   678   return ret_val;
   679 }
   681 void PSMarkSweep::reset_millis_since_last_gc() {
   682   _time_of_last_gc = os::javaTimeMillis();
   683 }

mercurial