src/cpu/sparc/vm/sparc.ad

Mon, 26 Sep 2011 10:24:05 -0700

author
kvn
date
Mon, 26 Sep 2011 10:24:05 -0700
changeset 3157
a92cdbac8b9e
parent 3098
a64d352d1118
child 3199
4bac06a82bc3
permissions
-rw-r--r--

7081933: Use zeroing elimination optimization for large array
Summary: Don't zero new typeArray during runtime call if the allocation is followed by arraycopy into it.
Reviewed-by: twisti

     1 //
     2 // Copyright (c) 1998, 2011, Oracle and/or its affiliates. All rights reserved.
     3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4 //
     5 // This code is free software; you can redistribute it and/or modify it
     6 // under the terms of the GNU General Public License version 2 only, as
     7 // published by the Free Software Foundation.
     8 //
     9 // This code is distributed in the hope that it will be useful, but WITHOUT
    10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12 // version 2 for more details (a copy is included in the LICENSE file that
    13 // accompanied this code).
    14 //
    15 // You should have received a copy of the GNU General Public License version
    16 // 2 along with this work; if not, write to the Free Software Foundation,
    17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18 //
    19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20 // or visit www.oracle.com if you need additional information or have any
    21 // questions.
    22 //
    23 //
    25 // SPARC Architecture Description File
    27 //----------REGISTER DEFINITION BLOCK------------------------------------------
    28 // This information is used by the matcher and the register allocator to
    29 // describe individual registers and classes of registers within the target
    30 // archtecture.
    31 register %{
    32 //----------Architecture Description Register Definitions----------------------
    33 // General Registers
    34 // "reg_def"  name ( register save type, C convention save type,
    35 //                   ideal register type, encoding, vm name );
    36 // Register Save Types:
    37 //
    38 // NS  = No-Save:       The register allocator assumes that these registers
    39 //                      can be used without saving upon entry to the method, &
    40 //                      that they do not need to be saved at call sites.
    41 //
    42 // SOC = Save-On-Call:  The register allocator assumes that these registers
    43 //                      can be used without saving upon entry to the method,
    44 //                      but that they must be saved at call sites.
    45 //
    46 // SOE = Save-On-Entry: The register allocator assumes that these registers
    47 //                      must be saved before using them upon entry to the
    48 //                      method, but they do not need to be saved at call
    49 //                      sites.
    50 //
    51 // AS  = Always-Save:   The register allocator assumes that these registers
    52 //                      must be saved before using them upon entry to the
    53 //                      method, & that they must be saved at call sites.
    54 //
    55 // Ideal Register Type is used to determine how to save & restore a
    56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
    58 //
    59 // The encoding number is the actual bit-pattern placed into the opcodes.
    62 // ----------------------------
    63 // Integer/Long Registers
    64 // ----------------------------
    66 // Need to expose the hi/lo aspect of 64-bit registers
    67 // This register set is used for both the 64-bit build and
    68 // the 32-bit build with 1-register longs.
    70 // Global Registers 0-7
    71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
    72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
    73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
    74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
    75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
    76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
    77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
    78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
    79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
    80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
    81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
    82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
    83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
    84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
    85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
    86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
    88 // Output Registers 0-7
    89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
    90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
    91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
    92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
    93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
    94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
    95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
    96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
    97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
    98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
    99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
   100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
   101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
   102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
   103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
   104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
   106 // Local Registers 0-7
   107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
   108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
   109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
   110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
   111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
   112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
   113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
   114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
   115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
   116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
   117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
   118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
   119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
   120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
   121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
   122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
   124 // Input Registers 0-7
   125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
   126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
   127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
   128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
   129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
   130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
   131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
   132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
   133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
   134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
   135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
   136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
   137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
   138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
   139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
   140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
   142 // ----------------------------
   143 // Float/Double Registers
   144 // ----------------------------
   146 // Float Registers
   147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
   148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
   149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
   150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
   151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
   152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
   153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
   154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
   155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
   156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
   157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
   158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
   159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
   160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
   161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
   162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
   163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
   164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
   165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
   166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
   167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
   168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
   169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
   170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
   171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
   172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
   173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
   174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
   175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
   176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
   177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
   178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
   180 // Double Registers
   181 // The rules of ADL require that double registers be defined in pairs.
   182 // Each pair must be two 32-bit values, but not necessarily a pair of
   183 // single float registers.  In each pair, ADLC-assigned register numbers
   184 // must be adjacent, with the lower number even.  Finally, when the
   185 // CPU stores such a register pair to memory, the word associated with
   186 // the lower ADLC-assigned number must be stored to the lower address.
   188 // These definitions specify the actual bit encodings of the sparc
   189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
   190 // wants 0-63, so we have to convert every time we want to use fp regs
   191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
   192 // 255 is a flag meaning "don't go here".
   193 // I believe we can't handle callee-save doubles D32 and up until
   194 // the place in the sparc stack crawler that asserts on the 255 is
   195 // fixed up.
   196 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg());
   197 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg()->next());
   198 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg());
   199 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg()->next());
   200 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg());
   201 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg()->next());
   202 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg());
   203 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg()->next());
   204 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg());
   205 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg()->next());
   206 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg());
   207 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg()->next());
   208 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg());
   209 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg()->next());
   210 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg());
   211 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg()->next());
   212 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg());
   213 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg()->next());
   214 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg());
   215 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg()->next());
   216 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg());
   217 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg()->next());
   218 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg());
   219 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg()->next());
   220 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg());
   221 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg()->next());
   222 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg());
   223 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg()->next());
   224 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg());
   225 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg()->next());
   226 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg());
   227 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg()->next());
   230 // ----------------------------
   231 // Special Registers
   232 // Condition Codes Flag Registers
   233 // I tried to break out ICC and XCC but it's not very pretty.
   234 // Every Sparc instruction which defs/kills one also kills the other.
   235 // Hence every compare instruction which defs one kind of flags ends
   236 // up needing a kill of the other.
   237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
   241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
   242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
   244 // ----------------------------
   245 // Specify the enum values for the registers.  These enums are only used by the
   246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
   247 // for visibility to the rest of the vm. The order of this enum influences the
   248 // register allocator so having the freedom to set this order and not be stuck
   249 // with the order that is natural for the rest of the vm is worth it.
   250 alloc_class chunk0(
   251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
   252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
   253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
   254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
   256 // Note that a register is not allocatable unless it is also mentioned
   257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
   259 alloc_class chunk1(
   260   // The first registers listed here are those most likely to be used
   261   // as temporaries.  We move F0..F7 away from the front of the list,
   262   // to reduce the likelihood of interferences with parameters and
   263   // return values.  Likewise, we avoid using F0/F1 for parameters,
   264   // since they are used for return values.
   265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
   266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
   268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
   269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
   270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
   271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
   273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
   275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
   277 //----------Architecture Description Register Classes--------------------------
   278 // Several register classes are automatically defined based upon information in
   279 // this architecture description.
   280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
   281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
   282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   283 //
   285 // G0 is not included in integer class since it has special meaning.
   286 reg_class g0_reg(R_G0);
   288 // ----------------------------
   289 // Integer Register Classes
   290 // ----------------------------
   291 // Exclusions from i_reg:
   292 // R_G0: hardwired zero
   293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
   294 // R_G6: reserved by Solaris ABI to tools
   295 // R_G7: reserved by Solaris ABI to libthread
   296 // R_O7: Used as a temp in many encodings
   297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   299 // Class for all integer registers, except the G registers.  This is used for
   300 // encodings which use G registers as temps.  The regular inputs to such
   301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
   302 // will not put an input into a temp register.
   303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   305 reg_class g1_regI(R_G1);
   306 reg_class g3_regI(R_G3);
   307 reg_class g4_regI(R_G4);
   308 reg_class o0_regI(R_O0);
   309 reg_class o7_regI(R_O7);
   311 // ----------------------------
   312 // Pointer Register Classes
   313 // ----------------------------
   314 #ifdef _LP64
   315 // 64-bit build means 64-bit pointers means hi/lo pairs
   316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   320 // Lock encodings use G3 and G4 internally
   321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
   322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   325 // Special class for storeP instructions, which can store SP or RPC to TLS.
   326 // It is also used for memory addressing, allowing direct TLS addressing.
   327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
   329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
   331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   332 // We use it to save R_G2 across calls out of Java.
   333 reg_class l7_regP(R_L7H,R_L7);
   335 // Other special pointer regs
   336 reg_class g1_regP(R_G1H,R_G1);
   337 reg_class g2_regP(R_G2H,R_G2);
   338 reg_class g3_regP(R_G3H,R_G3);
   339 reg_class g4_regP(R_G4H,R_G4);
   340 reg_class g5_regP(R_G5H,R_G5);
   341 reg_class i0_regP(R_I0H,R_I0);
   342 reg_class o0_regP(R_O0H,R_O0);
   343 reg_class o1_regP(R_O1H,R_O1);
   344 reg_class o2_regP(R_O2H,R_O2);
   345 reg_class o7_regP(R_O7H,R_O7);
   347 #else // _LP64
   348 // 32-bit build means 32-bit pointers means 1 register.
   349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
   350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   353 // Lock encodings use G3 and G4 internally
   354 reg_class lock_ptr_reg(R_G1,               R_G5,
   355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   358 // Special class for storeP instructions, which can store SP or RPC to TLS.
   359 // It is also used for memory addressing, allowing direct TLS addressing.
   360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
   361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
   362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
   364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   365 // We use it to save R_G2 across calls out of Java.
   366 reg_class l7_regP(R_L7);
   368 // Other special pointer regs
   369 reg_class g1_regP(R_G1);
   370 reg_class g2_regP(R_G2);
   371 reg_class g3_regP(R_G3);
   372 reg_class g4_regP(R_G4);
   373 reg_class g5_regP(R_G5);
   374 reg_class i0_regP(R_I0);
   375 reg_class o0_regP(R_O0);
   376 reg_class o1_regP(R_O1);
   377 reg_class o2_regP(R_O2);
   378 reg_class o7_regP(R_O7);
   379 #endif // _LP64
   382 // ----------------------------
   383 // Long Register Classes
   384 // ----------------------------
   385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
   386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
   387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
   388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
   389 #ifdef _LP64
   390 // 64-bit, longs in 1 register: use all 64-bit integer registers
   391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
   392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
   393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
   394 #endif // _LP64
   395                   );
   397 reg_class g1_regL(R_G1H,R_G1);
   398 reg_class g3_regL(R_G3H,R_G3);
   399 reg_class o2_regL(R_O2H,R_O2);
   400 reg_class o7_regL(R_O7H,R_O7);
   402 // ----------------------------
   403 // Special Class for Condition Code Flags Register
   404 reg_class int_flags(CCR);
   405 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
   406 reg_class float_flag0(FCC0);
   409 // ----------------------------
   410 // Float Point Register Classes
   411 // ----------------------------
   412 // Skip F30/F31, they are reserved for mem-mem copies
   413 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
   415 // Paired floating point registers--they show up in the same order as the floats,
   416 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   417 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   418                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
   419                    /* Use extra V9 double registers; this AD file does not support V8 */
   420                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   421                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
   422                    );
   424 // Paired floating point registers--they show up in the same order as the floats,
   425 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   426 // This class is usable for mis-aligned loads as happen in I2C adapters.
   427 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   428                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
   429 %}
   431 //----------DEFINITION BLOCK---------------------------------------------------
   432 // Define name --> value mappings to inform the ADLC of an integer valued name
   433 // Current support includes integer values in the range [0, 0x7FFFFFFF]
   434 // Format:
   435 //        int_def  <name>         ( <int_value>, <expression>);
   436 // Generated Code in ad_<arch>.hpp
   437 //        #define  <name>   (<expression>)
   438 //        // value == <int_value>
   439 // Generated code in ad_<arch>.cpp adlc_verification()
   440 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
   441 //
   442 definitions %{
   443 // The default cost (of an ALU instruction).
   444   int_def DEFAULT_COST      (    100,     100);
   445   int_def HUGE_COST         (1000000, 1000000);
   447 // Memory refs are twice as expensive as run-of-the-mill.
   448   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
   450 // Branches are even more expensive.
   451   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
   452   int_def CALL_COST         (    300, DEFAULT_COST * 3);
   453 %}
   456 //----------SOURCE BLOCK-------------------------------------------------------
   457 // This is a block of C++ code which provides values, functions, and
   458 // definitions necessary in the rest of the architecture description
   459 source_hpp %{
   460 // Must be visible to the DFA in dfa_sparc.cpp
   461 extern bool can_branch_register( Node *bol, Node *cmp );
   463 extern bool use_block_zeroing(Node* count);
   465 // Macros to extract hi & lo halves from a long pair.
   466 // G0 is not part of any long pair, so assert on that.
   467 // Prevents accidentally using G1 instead of G0.
   468 #define LONG_HI_REG(x) (x)
   469 #define LONG_LO_REG(x) (x)
   471 %}
   473 source %{
   474 #define __ _masm.
   476 // tertiary op of a LoadP or StoreP encoding
   477 #define REGP_OP true
   479 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
   480 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
   481 static Register reg_to_register_object(int register_encoding);
   483 // Used by the DFA in dfa_sparc.cpp.
   484 // Check for being able to use a V9 branch-on-register.  Requires a
   485 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
   486 // extended.  Doesn't work following an integer ADD, for example, because of
   487 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
   488 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
   489 // replace them with zero, which could become sign-extension in a different OS
   490 // release.  There's no obvious reason why an interrupt will ever fill these
   491 // bits with non-zero junk (the registers are reloaded with standard LD
   492 // instructions which either zero-fill or sign-fill).
   493 bool can_branch_register( Node *bol, Node *cmp ) {
   494   if( !BranchOnRegister ) return false;
   495 #ifdef _LP64
   496   if( cmp->Opcode() == Op_CmpP )
   497     return true;  // No problems with pointer compares
   498 #endif
   499   if( cmp->Opcode() == Op_CmpL )
   500     return true;  // No problems with long compares
   502   if( !SparcV9RegsHiBitsZero ) return false;
   503   if( bol->as_Bool()->_test._test != BoolTest::ne &&
   504       bol->as_Bool()->_test._test != BoolTest::eq )
   505      return false;
   507   // Check for comparing against a 'safe' value.  Any operation which
   508   // clears out the high word is safe.  Thus, loads and certain shifts
   509   // are safe, as are non-negative constants.  Any operation which
   510   // preserves zero bits in the high word is safe as long as each of its
   511   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
   512   // inputs are safe.  At present, the only important case to recognize
   513   // seems to be loads.  Constants should fold away, and shifts &
   514   // logicals can use the 'cc' forms.
   515   Node *x = cmp->in(1);
   516   if( x->is_Load() ) return true;
   517   if( x->is_Phi() ) {
   518     for( uint i = 1; i < x->req(); i++ )
   519       if( !x->in(i)->is_Load() )
   520         return false;
   521     return true;
   522   }
   523   return false;
   524 }
   526 bool use_block_zeroing(Node* count) {
   527   // Use BIS for zeroing if count is not constant
   528   // or it is >= BlockZeroingLowLimit.
   529   return UseBlockZeroing && (count->find_intptr_t_con(BlockZeroingLowLimit) >= BlockZeroingLowLimit);
   530 }
   532 // ****************************************************************************
   534 // REQUIRED FUNCTIONALITY
   536 // !!!!! Special hack to get all type of calls to specify the byte offset
   537 //       from the start of the call to the point where the return address
   538 //       will point.
   539 //       The "return address" is the address of the call instruction, plus 8.
   541 int MachCallStaticJavaNode::ret_addr_offset() {
   542   int offset = NativeCall::instruction_size;  // call; delay slot
   543   if (_method_handle_invoke)
   544     offset += 4;  // restore SP
   545   return offset;
   546 }
   548 int MachCallDynamicJavaNode::ret_addr_offset() {
   549   int vtable_index = this->_vtable_index;
   550   if (vtable_index < 0) {
   551     // must be invalid_vtable_index, not nonvirtual_vtable_index
   552     assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
   553     return (NativeMovConstReg::instruction_size +
   554            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
   555   } else {
   556     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
   557     int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
   558     int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
   559     int klass_load_size;
   560     if (UseCompressedOops) {
   561       assert(Universe::heap() != NULL, "java heap should be initialized");
   562       if (Universe::narrow_oop_base() == NULL)
   563         klass_load_size = 2*BytesPerInstWord; // see MacroAssembler::load_klass()
   564       else
   565         klass_load_size = 3*BytesPerInstWord;
   566     } else {
   567       klass_load_size = 1*BytesPerInstWord;
   568     }
   569     if( Assembler::is_simm13(v_off) ) {
   570       return klass_load_size +
   571              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
   572              NativeCall::instruction_size);  // call; delay slot
   573     } else {
   574       return klass_load_size +
   575              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
   576              NativeCall::instruction_size);  // call; delay slot
   577     }
   578   }
   579 }
   581 int MachCallRuntimeNode::ret_addr_offset() {
   582 #ifdef _LP64
   583   if (MacroAssembler::is_far_target(entry_point())) {
   584     return NativeFarCall::instruction_size;
   585   } else {
   586     return NativeCall::instruction_size;
   587   }
   588 #else
   589   return NativeCall::instruction_size;  // call; delay slot
   590 #endif
   591 }
   593 // Indicate if the safepoint node needs the polling page as an input.
   594 // Since Sparc does not have absolute addressing, it does.
   595 bool SafePointNode::needs_polling_address_input() {
   596   return true;
   597 }
   599 // emit an interrupt that is caught by the debugger (for debugging compiler)
   600 void emit_break(CodeBuffer &cbuf) {
   601   MacroAssembler _masm(&cbuf);
   602   __ breakpoint_trap();
   603 }
   605 #ifndef PRODUCT
   606 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
   607   st->print("TA");
   608 }
   609 #endif
   611 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   612   emit_break(cbuf);
   613 }
   615 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
   616   return MachNode::size(ra_);
   617 }
   619 // Traceable jump
   620 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
   621   MacroAssembler _masm(&cbuf);
   622   Register rdest = reg_to_register_object(jump_target);
   623   __ JMP(rdest, 0);
   624   __ delayed()->nop();
   625 }
   627 // Traceable jump and set exception pc
   628 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
   629   MacroAssembler _masm(&cbuf);
   630   Register rdest = reg_to_register_object(jump_target);
   631   __ JMP(rdest, 0);
   632   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
   633 }
   635 void emit_nop(CodeBuffer &cbuf) {
   636   MacroAssembler _masm(&cbuf);
   637   __ nop();
   638 }
   640 void emit_illtrap(CodeBuffer &cbuf) {
   641   MacroAssembler _masm(&cbuf);
   642   __ illtrap(0);
   643 }
   646 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
   647   assert(n->rule() != loadUB_rule, "");
   649   intptr_t offset = 0;
   650   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
   651   const Node* addr = n->get_base_and_disp(offset, adr_type);
   652   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
   653   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
   654   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   655   atype = atype->add_offset(offset);
   656   assert(disp32 == offset, "wrong disp32");
   657   return atype->_offset;
   658 }
   661 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
   662   assert(n->rule() != loadUB_rule, "");
   664   intptr_t offset = 0;
   665   Node* addr = n->in(2);
   666   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   667   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
   668     Node* a = addr->in(2/*AddPNode::Address*/);
   669     Node* o = addr->in(3/*AddPNode::Offset*/);
   670     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
   671     atype = a->bottom_type()->is_ptr()->add_offset(offset);
   672     assert(atype->isa_oop_ptr(), "still an oop");
   673   }
   674   offset = atype->is_ptr()->_offset;
   675   if (offset != Type::OffsetBot)  offset += disp32;
   676   return offset;
   677 }
   679 static inline jdouble replicate_immI(int con, int count, int width) {
   680   // Load a constant replicated "count" times with width "width"
   681   int bit_width = width * 8;
   682   jlong elt_val = con;
   683   elt_val &= (((jlong) 1) << bit_width) - 1;  // mask off sign bits
   684   jlong val = elt_val;
   685   for (int i = 0; i < count - 1; i++) {
   686     val <<= bit_width;
   687     val |= elt_val;
   688   }
   689   jdouble dval = *((jdouble*) &val);  // coerce to double type
   690   return dval;
   691 }
   693 // Standard Sparc opcode form2 field breakdown
   694 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
   695   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
   696   int op = (f30 << 30) |
   697            (f29 << 29) |
   698            (f25 << 25) |
   699            (f22 << 22) |
   700            (f20 << 20) |
   701            (f19 << 19) |
   702            (f0  <<  0);
   703   cbuf.insts()->emit_int32(op);
   704 }
   706 // Standard Sparc opcode form2 field breakdown
   707 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
   708   f0 >>= 10;           // Drop 10 bits
   709   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
   710   int op = (f30 << 30) |
   711            (f25 << 25) |
   712            (f22 << 22) |
   713            (f0  <<  0);
   714   cbuf.insts()->emit_int32(op);
   715 }
   717 // Standard Sparc opcode form3 field breakdown
   718 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
   719   int op = (f30 << 30) |
   720            (f25 << 25) |
   721            (f19 << 19) |
   722            (f14 << 14) |
   723            (f5  <<  5) |
   724            (f0  <<  0);
   725   cbuf.insts()->emit_int32(op);
   726 }
   728 // Standard Sparc opcode form3 field breakdown
   729 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
   730   simm13 &= (1<<13)-1; // Mask to 13 bits
   731   int op = (f30 << 30) |
   732            (f25 << 25) |
   733            (f19 << 19) |
   734            (f14 << 14) |
   735            (1   << 13) | // bit to indicate immediate-mode
   736            (simm13<<0);
   737   cbuf.insts()->emit_int32(op);
   738 }
   740 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
   741   simm10 &= (1<<10)-1; // Mask to 10 bits
   742   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
   743 }
   745 #ifdef ASSERT
   746 // Helper function for VerifyOops in emit_form3_mem_reg
   747 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
   748   warning("VerifyOops encountered unexpected instruction:");
   749   n->dump(2);
   750   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
   751 }
   752 #endif
   755 void emit_form3_mem_reg(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
   756                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
   758 #ifdef ASSERT
   759   // The following code implements the +VerifyOops feature.
   760   // It verifies oop values which are loaded into or stored out of
   761   // the current method activation.  +VerifyOops complements techniques
   762   // like ScavengeALot, because it eagerly inspects oops in transit,
   763   // as they enter or leave the stack, as opposed to ScavengeALot,
   764   // which inspects oops "at rest", in the stack or heap, at safepoints.
   765   // For this reason, +VerifyOops can sometimes detect bugs very close
   766   // to their point of creation.  It can also serve as a cross-check
   767   // on the validity of oop maps, when used toegether with ScavengeALot.
   769   // It would be good to verify oops at other points, especially
   770   // when an oop is used as a base pointer for a load or store.
   771   // This is presently difficult, because it is hard to know when
   772   // a base address is biased or not.  (If we had such information,
   773   // it would be easy and useful to make a two-argument version of
   774   // verify_oop which unbiases the base, and performs verification.)
   776   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
   777   bool is_verified_oop_base  = false;
   778   bool is_verified_oop_load  = false;
   779   bool is_verified_oop_store = false;
   780   int tmp_enc = -1;
   781   if (VerifyOops && src1_enc != R_SP_enc) {
   782     // classify the op, mainly for an assert check
   783     int st_op = 0, ld_op = 0;
   784     switch (primary) {
   785     case Assembler::stb_op3:  st_op = Op_StoreB; break;
   786     case Assembler::sth_op3:  st_op = Op_StoreC; break;
   787     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
   788     case Assembler::stw_op3:  st_op = Op_StoreI; break;
   789     case Assembler::std_op3:  st_op = Op_StoreL; break;
   790     case Assembler::stf_op3:  st_op = Op_StoreF; break;
   791     case Assembler::stdf_op3: st_op = Op_StoreD; break;
   793     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
   794     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
   795     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
   796     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
   797     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
   798     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
   799     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
   800     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
   801     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
   802     case Assembler::ldub_op3: ld_op = Op_LoadB; break;
   803     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
   805     default: ShouldNotReachHere();
   806     }
   807     if (tertiary == REGP_OP) {
   808       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
   809       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
   810       else                          ShouldNotReachHere();
   811       if (st_op) {
   812         // a store
   813         // inputs are (0:control, 1:memory, 2:address, 3:value)
   814         Node* n2 = n->in(3);
   815         if (n2 != NULL) {
   816           const Type* t = n2->bottom_type();
   817           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   818         }
   819       } else {
   820         // a load
   821         const Type* t = n->bottom_type();
   822         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   823       }
   824     }
   826     if (ld_op) {
   827       // a Load
   828       // inputs are (0:control, 1:memory, 2:address)
   829       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
   830           !(n->ideal_Opcode()==Op_LoadLLocked && ld_op==Op_LoadI) &&
   831           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
   832           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
   833           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
   834           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
   835           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
   836           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
   837           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
   838           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
   839           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
   840           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
   841           !(n->ideal_Opcode()==Op_PrefetchRead  && ld_op==Op_LoadI) &&
   842           !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
   843           !(n->ideal_Opcode()==Op_PrefetchAllocation && ld_op==Op_LoadI) &&
   844           !(n->ideal_Opcode()==Op_Load2I    && ld_op==Op_LoadD) &&
   845           !(n->ideal_Opcode()==Op_Load4C    && ld_op==Op_LoadD) &&
   846           !(n->ideal_Opcode()==Op_Load4S    && ld_op==Op_LoadD) &&
   847           !(n->ideal_Opcode()==Op_Load8B    && ld_op==Op_LoadD) &&
   848           !(n->rule() == loadUB_rule)) {
   849         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
   850       }
   851     } else if (st_op) {
   852       // a Store
   853       // inputs are (0:control, 1:memory, 2:address, 3:value)
   854       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
   855           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
   856           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
   857           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
   858           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
   859           !(n->ideal_Opcode()==Op_Store2I && st_op==Op_StoreD) &&
   860           !(n->ideal_Opcode()==Op_Store4C && st_op==Op_StoreD) &&
   861           !(n->ideal_Opcode()==Op_Store8B && st_op==Op_StoreD) &&
   862           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
   863         verify_oops_warning(n, n->ideal_Opcode(), st_op);
   864       }
   865     }
   867     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
   868       Node* addr = n->in(2);
   869       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
   870         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
   871         if (atype != NULL) {
   872           intptr_t offset = get_offset_from_base(n, atype, disp32);
   873           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
   874           if (offset != offset_2) {
   875             get_offset_from_base(n, atype, disp32);
   876             get_offset_from_base_2(n, atype, disp32);
   877           }
   878           assert(offset == offset_2, "different offsets");
   879           if (offset == disp32) {
   880             // we now know that src1 is a true oop pointer
   881             is_verified_oop_base = true;
   882             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
   883               if( primary == Assembler::ldd_op3 ) {
   884                 is_verified_oop_base = false; // Cannot 'ldd' into O7
   885               } else {
   886                 tmp_enc = dst_enc;
   887                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
   888                 assert(src1_enc != dst_enc, "");
   889               }
   890             }
   891           }
   892           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
   893                        || offset == oopDesc::mark_offset_in_bytes())) {
   894                       // loading the mark should not be allowed either, but
   895                       // we don't check this since it conflicts with InlineObjectHash
   896                       // usage of LoadINode to get the mark. We could keep the
   897                       // check if we create a new LoadMarkNode
   898             // but do not verify the object before its header is initialized
   899             ShouldNotReachHere();
   900           }
   901         }
   902       }
   903     }
   904   }
   905 #endif
   907   uint instr;
   908   instr = (Assembler::ldst_op << 30)
   909         | (dst_enc        << 25)
   910         | (primary        << 19)
   911         | (src1_enc       << 14);
   913   uint index = src2_enc;
   914   int disp = disp32;
   916   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
   917     disp += STACK_BIAS;
   919   // We should have a compiler bailout here rather than a guarantee.
   920   // Better yet would be some mechanism to handle variable-size matches correctly.
   921   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
   923   if( disp == 0 ) {
   924     // use reg-reg form
   925     // bit 13 is already zero
   926     instr |= index;
   927   } else {
   928     // use reg-imm form
   929     instr |= 0x00002000;          // set bit 13 to one
   930     instr |= disp & 0x1FFF;
   931   }
   933   cbuf.insts()->emit_int32(instr);
   935 #ifdef ASSERT
   936   {
   937     MacroAssembler _masm(&cbuf);
   938     if (is_verified_oop_base) {
   939       __ verify_oop(reg_to_register_object(src1_enc));
   940     }
   941     if (is_verified_oop_store) {
   942       __ verify_oop(reg_to_register_object(dst_enc));
   943     }
   944     if (tmp_enc != -1) {
   945       __ mov(O7, reg_to_register_object(tmp_enc));
   946     }
   947     if (is_verified_oop_load) {
   948       __ verify_oop(reg_to_register_object(dst_enc));
   949     }
   950   }
   951 #endif
   952 }
   954 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false) {
   955   // The method which records debug information at every safepoint
   956   // expects the call to be the first instruction in the snippet as
   957   // it creates a PcDesc structure which tracks the offset of a call
   958   // from the start of the codeBlob. This offset is computed as
   959   // code_end() - code_begin() of the code which has been emitted
   960   // so far.
   961   // In this particular case we have skirted around the problem by
   962   // putting the "mov" instruction in the delay slot but the problem
   963   // may bite us again at some other point and a cleaner/generic
   964   // solution using relocations would be needed.
   965   MacroAssembler _masm(&cbuf);
   966   __ set_inst_mark();
   968   // We flush the current window just so that there is a valid stack copy
   969   // the fact that the current window becomes active again instantly is
   970   // not a problem there is nothing live in it.
   972 #ifdef ASSERT
   973   int startpos = __ offset();
   974 #endif /* ASSERT */
   976   __ call((address)entry_point, rtype);
   978   if (preserve_g2)   __ delayed()->mov(G2, L7);
   979   else __ delayed()->nop();
   981   if (preserve_g2)   __ mov(L7, G2);
   983 #ifdef ASSERT
   984   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
   985 #ifdef _LP64
   986     // Trash argument dump slots.
   987     __ set(0xb0b8ac0db0b8ac0d, G1);
   988     __ mov(G1, G5);
   989     __ stx(G1, SP, STACK_BIAS + 0x80);
   990     __ stx(G1, SP, STACK_BIAS + 0x88);
   991     __ stx(G1, SP, STACK_BIAS + 0x90);
   992     __ stx(G1, SP, STACK_BIAS + 0x98);
   993     __ stx(G1, SP, STACK_BIAS + 0xA0);
   994     __ stx(G1, SP, STACK_BIAS + 0xA8);
   995 #else // _LP64
   996     // this is also a native call, so smash the first 7 stack locations,
   997     // and the various registers
   999     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
  1000     // while [SP+0x44..0x58] are the argument dump slots.
  1001     __ set((intptr_t)0xbaadf00d, G1);
  1002     __ mov(G1, G5);
  1003     __ sllx(G1, 32, G1);
  1004     __ or3(G1, G5, G1);
  1005     __ mov(G1, G5);
  1006     __ stx(G1, SP, 0x40);
  1007     __ stx(G1, SP, 0x48);
  1008     __ stx(G1, SP, 0x50);
  1009     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
  1010 #endif // _LP64
  1012 #endif /*ASSERT*/
  1015 //=============================================================================
  1016 // REQUIRED FUNCTIONALITY for encoding
  1017 void emit_lo(CodeBuffer &cbuf, int val) {  }
  1018 void emit_hi(CodeBuffer &cbuf, int val) {  }
  1021 //=============================================================================
  1022 const bool Matcher::constant_table_absolute_addressing = false;
  1023 const RegMask& MachConstantBaseNode::_out_RegMask = PTR_REG_mask;
  1025 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
  1026   Compile* C = ra_->C;
  1027   Compile::ConstantTable& constant_table = C->constant_table();
  1028   MacroAssembler _masm(&cbuf);
  1030   Register r = as_Register(ra_->get_encode(this));
  1031   CodeSection* cs = __ code()->consts();
  1032   int consts_size = cs->align_at_start(cs->size());
  1034   if (UseRDPCForConstantTableBase) {
  1035     // For the following RDPC logic to work correctly the consts
  1036     // section must be allocated right before the insts section.  This
  1037     // assert checks for that.  The layout and the SECT_* constants
  1038     // are defined in src/share/vm/asm/codeBuffer.hpp.
  1039     assert(CodeBuffer::SECT_CONSTS + 1 == CodeBuffer::SECT_INSTS, "must be");
  1040     int offset = __ offset();
  1041     int disp;
  1043     // If the displacement from the current PC to the constant table
  1044     // base fits into simm13 we set the constant table base to the
  1045     // current PC.
  1046     if (__ is_simm13(-(consts_size + offset))) {
  1047       constant_table.set_table_base_offset(-(consts_size + offset));
  1048       disp = 0;
  1049     } else {
  1050       // If the offset of the top constant (last entry in the table)
  1051       // fits into simm13 we set the constant table base to the actual
  1052       // table base.
  1053       if (__ is_simm13(constant_table.top_offset())) {
  1054         constant_table.set_table_base_offset(0);
  1055         disp = consts_size + offset;
  1056       } else {
  1057         // Otherwise we set the constant table base in the middle of the
  1058         // constant table.
  1059         int half_consts_size = consts_size / 2;
  1060         assert(half_consts_size * 2 == consts_size, "sanity");
  1061         constant_table.set_table_base_offset(-half_consts_size);  // table base offset gets added to the load displacement.
  1062         disp = half_consts_size + offset;
  1066     __ rdpc(r);
  1068     if (disp != 0) {
  1069       assert(r != O7, "need temporary");
  1070       __ sub(r, __ ensure_simm13_or_reg(disp, O7), r);
  1073   else {
  1074     // Materialize the constant table base.
  1075     assert(constant_table.size() == consts_size, err_msg("must be: %d == %d", constant_table.size(), consts_size));
  1076     address baseaddr = cs->start() + -(constant_table.table_base_offset());
  1077     RelocationHolder rspec = internal_word_Relocation::spec(baseaddr);
  1078     AddressLiteral base(baseaddr, rspec);
  1079     __ set(base, r);
  1083 uint MachConstantBaseNode::size(PhaseRegAlloc*) const {
  1084   if (UseRDPCForConstantTableBase) {
  1085     // This is really the worst case but generally it's only 1 instruction.
  1086     return (1 /*rdpc*/ + 1 /*sub*/ + MacroAssembler::worst_case_insts_for_set()) * BytesPerInstWord;
  1087   } else {
  1088     return MacroAssembler::worst_case_insts_for_set() * BytesPerInstWord;
  1092 #ifndef PRODUCT
  1093 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
  1094   char reg[128];
  1095   ra_->dump_register(this, reg);
  1096   if (UseRDPCForConstantTableBase) {
  1097     st->print("RDPC   %s\t! constant table base", reg);
  1098   } else {
  1099     st->print("SET    &constanttable,%s\t! constant table base", reg);
  1102 #endif
  1105 //=============================================================================
  1107 #ifndef PRODUCT
  1108 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1109   Compile* C = ra_->C;
  1111   for (int i = 0; i < OptoPrologueNops; i++) {
  1112     st->print_cr("NOP"); st->print("\t");
  1115   if( VerifyThread ) {
  1116     st->print_cr("Verify_Thread"); st->print("\t");
  1119   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1121   // Calls to C2R adapters often do not accept exceptional returns.
  1122   // We require that their callers must bang for them.  But be careful, because
  1123   // some VM calls (such as call site linkage) can use several kilobytes of
  1124   // stack.  But the stack safety zone should account for that.
  1125   // See bugs 4446381, 4468289, 4497237.
  1126   if (C->need_stack_bang(framesize)) {
  1127     st->print_cr("! stack bang"); st->print("\t");
  1130   if (Assembler::is_simm13(-framesize)) {
  1131     st->print   ("SAVE   R_SP,-%d,R_SP",framesize);
  1132   } else {
  1133     st->print_cr("SETHI  R_SP,hi%%(-%d),R_G3",framesize); st->print("\t");
  1134     st->print_cr("ADD    R_G3,lo%%(-%d),R_G3",framesize); st->print("\t");
  1135     st->print   ("SAVE   R_SP,R_G3,R_SP");
  1139 #endif
  1141 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1142   Compile* C = ra_->C;
  1143   MacroAssembler _masm(&cbuf);
  1145   for (int i = 0; i < OptoPrologueNops; i++) {
  1146     __ nop();
  1149   __ verify_thread();
  1151   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1152   assert(framesize >= 16*wordSize, "must have room for reg. save area");
  1153   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
  1155   // Calls to C2R adapters often do not accept exceptional returns.
  1156   // We require that their callers must bang for them.  But be careful, because
  1157   // some VM calls (such as call site linkage) can use several kilobytes of
  1158   // stack.  But the stack safety zone should account for that.
  1159   // See bugs 4446381, 4468289, 4497237.
  1160   if (C->need_stack_bang(framesize)) {
  1161     __ generate_stack_overflow_check(framesize);
  1164   if (Assembler::is_simm13(-framesize)) {
  1165     __ save(SP, -framesize, SP);
  1166   } else {
  1167     __ sethi(-framesize & ~0x3ff, G3);
  1168     __ add(G3, -framesize & 0x3ff, G3);
  1169     __ save(SP, G3, SP);
  1171   C->set_frame_complete( __ offset() );
  1174 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
  1175   return MachNode::size(ra_);
  1178 int MachPrologNode::reloc() const {
  1179   return 10; // a large enough number
  1182 //=============================================================================
  1183 #ifndef PRODUCT
  1184 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1185   Compile* C = ra_->C;
  1187   if( do_polling() && ra_->C->is_method_compilation() ) {
  1188     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
  1189 #ifdef _LP64
  1190     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
  1191 #else
  1192     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
  1193 #endif
  1196   if( do_polling() )
  1197     st->print("RET\n\t");
  1199   st->print("RESTORE");
  1201 #endif
  1203 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1204   MacroAssembler _masm(&cbuf);
  1205   Compile* C = ra_->C;
  1207   __ verify_thread();
  1209   // If this does safepoint polling, then do it here
  1210   if( do_polling() && ra_->C->is_method_compilation() ) {
  1211     AddressLiteral polling_page(os::get_polling_page());
  1212     __ sethi(polling_page, L0);
  1213     __ relocate(relocInfo::poll_return_type);
  1214     __ ld_ptr( L0, 0, G0 );
  1217   // If this is a return, then stuff the restore in the delay slot
  1218   if( do_polling() ) {
  1219     __ ret();
  1220     __ delayed()->restore();
  1221   } else {
  1222     __ restore();
  1226 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
  1227   return MachNode::size(ra_);
  1230 int MachEpilogNode::reloc() const {
  1231   return 16; // a large enough number
  1234 const Pipeline * MachEpilogNode::pipeline() const {
  1235   return MachNode::pipeline_class();
  1238 int MachEpilogNode::safepoint_offset() const {
  1239   assert( do_polling(), "no return for this epilog node");
  1240   return MacroAssembler::insts_for_sethi(os::get_polling_page()) * BytesPerInstWord;
  1243 //=============================================================================
  1245 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
  1246 enum RC { rc_bad, rc_int, rc_float, rc_stack };
  1247 static enum RC rc_class( OptoReg::Name reg ) {
  1248   if( !OptoReg::is_valid(reg)  ) return rc_bad;
  1249   if (OptoReg::is_stack(reg)) return rc_stack;
  1250   VMReg r = OptoReg::as_VMReg(reg);
  1251   if (r->is_Register()) return rc_int;
  1252   assert(r->is_FloatRegister(), "must be");
  1253   return rc_float;
  1256 static int impl_helper( const MachNode *mach, CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
  1257   if( cbuf ) {
  1258     // Better yet would be some mechanism to handle variable-size matches correctly
  1259     if (!Assembler::is_simm13(offset + STACK_BIAS)) {
  1260       ra_->C->record_method_not_compilable("unable to handle large constant offsets");
  1261     } else {
  1262       emit_form3_mem_reg(*cbuf, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
  1265 #ifndef PRODUCT
  1266   else if( !do_size ) {
  1267     if( size != 0 ) st->print("\n\t");
  1268     if( is_load ) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
  1269     else          st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
  1271 #endif
  1272   return size+4;
  1275 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
  1276   if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
  1277 #ifndef PRODUCT
  1278   else if( !do_size ) {
  1279     if( size != 0 ) st->print("\n\t");
  1280     st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
  1282 #endif
  1283   return size+4;
  1286 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
  1287                                         PhaseRegAlloc *ra_,
  1288                                         bool do_size,
  1289                                         outputStream* st ) const {
  1290   // Get registers to move
  1291   OptoReg::Name src_second = ra_->get_reg_second(in(1));
  1292   OptoReg::Name src_first = ra_->get_reg_first(in(1));
  1293   OptoReg::Name dst_second = ra_->get_reg_second(this );
  1294   OptoReg::Name dst_first = ra_->get_reg_first(this );
  1296   enum RC src_second_rc = rc_class(src_second);
  1297   enum RC src_first_rc = rc_class(src_first);
  1298   enum RC dst_second_rc = rc_class(dst_second);
  1299   enum RC dst_first_rc = rc_class(dst_first);
  1301   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
  1303   // Generate spill code!
  1304   int size = 0;
  1306   if( src_first == dst_first && src_second == dst_second )
  1307     return size;            // Self copy, no move
  1309   // --------------------------------------
  1310   // Check for mem-mem move.  Load into unused float registers and fall into
  1311   // the float-store case.
  1312   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
  1313     int offset = ra_->reg2offset(src_first);
  1314     // Further check for aligned-adjacent pair, so we can use a double load
  1315     if( (src_first&1)==0 && src_first+1 == src_second ) {
  1316       src_second    = OptoReg::Name(R_F31_num);
  1317       src_second_rc = rc_float;
  1318       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
  1319     } else {
  1320       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
  1322     src_first    = OptoReg::Name(R_F30_num);
  1323     src_first_rc = rc_float;
  1326   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
  1327     int offset = ra_->reg2offset(src_second);
  1328     size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
  1329     src_second    = OptoReg::Name(R_F31_num);
  1330     src_second_rc = rc_float;
  1333   // --------------------------------------
  1334   // Check for float->int copy; requires a trip through memory
  1335   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS < 3) {
  1336     int offset = frame::register_save_words*wordSize;
  1337     if (cbuf) {
  1338       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
  1339       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1340       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1341       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
  1343 #ifndef PRODUCT
  1344     else if (!do_size) {
  1345       if (size != 0) st->print("\n\t");
  1346       st->print(  "SUB    R_SP,16,R_SP\n");
  1347       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1348       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1349       st->print("\tADD    R_SP,16,R_SP\n");
  1351 #endif
  1352     size += 16;
  1355   // Check for float->int copy on T4
  1356   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS >= 3) {
  1357     // Further check for aligned-adjacent pair, so we can use a double move
  1358     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
  1359       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mdtox_opf,"MOVDTOX",size, st);
  1360     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mstouw_opf,"MOVSTOUW",size, st);
  1362   // Check for int->float copy on T4
  1363   if (src_first_rc == rc_int && dst_first_rc == rc_float && UseVIS >= 3) {
  1364     // Further check for aligned-adjacent pair, so we can use a double move
  1365     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
  1366       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mxtod_opf,"MOVXTOD",size, st);
  1367     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mwtos_opf,"MOVWTOS",size, st);
  1370   // --------------------------------------
  1371   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
  1372   // In such cases, I have to do the big-endian swap.  For aligned targets, the
  1373   // hardware does the flop for me.  Doubles are always aligned, so no problem
  1374   // there.  Misaligned sources only come from native-long-returns (handled
  1375   // special below).
  1376 #ifndef _LP64
  1377   if( src_first_rc == rc_int &&     // source is already big-endian
  1378       src_second_rc != rc_bad &&    // 64-bit move
  1379       ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
  1380     assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
  1381     // Do the big-endian flop.
  1382     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
  1383     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
  1385 #endif
  1387   // --------------------------------------
  1388   // Check for integer reg-reg copy
  1389   if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
  1390 #ifndef _LP64
  1391     if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
  1392       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1393       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1394       //       operand contains the least significant word of the 64-bit value and vice versa.
  1395       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
  1396       assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
  1397       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
  1398       if( cbuf ) {
  1399         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
  1400         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
  1401         emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
  1402 #ifndef PRODUCT
  1403       } else if( !do_size ) {
  1404         if( size != 0 ) st->print("\n\t");
  1405         st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
  1406         st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
  1407         st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
  1408 #endif
  1410       return size+12;
  1412     else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
  1413       // returning a long value in I0/I1
  1414       // a SpillCopy must be able to target a return instruction's reg_class
  1415       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1416       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1417       //       operand contains the least significant word of the 64-bit value and vice versa.
  1418       OptoReg::Name tdest = dst_first;
  1420       if (src_first == dst_first) {
  1421         tdest = OptoReg::Name(R_O7_num);
  1422         size += 4;
  1425       if( cbuf ) {
  1426         assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
  1427         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
  1428         // ShrL_reg_imm6
  1429         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
  1430         // ShrR_reg_imm6  src, 0, dst
  1431         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
  1432         if (tdest != dst_first) {
  1433           emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
  1436 #ifndef PRODUCT
  1437       else if( !do_size ) {
  1438         if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
  1439         st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
  1440         st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
  1441         if (tdest != dst_first) {
  1442           st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
  1445 #endif // PRODUCT
  1446       return size+8;
  1448 #endif // !_LP64
  1449     // Else normal reg-reg copy
  1450     assert( src_second != dst_first, "smashed second before evacuating it" );
  1451     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
  1452     assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
  1453     // This moves an aligned adjacent pair.
  1454     // See if we are done.
  1455     if( src_first+1 == src_second && dst_first+1 == dst_second )
  1456       return size;
  1459   // Check for integer store
  1460   if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
  1461     int offset = ra_->reg2offset(dst_first);
  1462     // Further check for aligned-adjacent pair, so we can use a double store
  1463     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1464       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
  1465     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
  1468   // Check for integer load
  1469   if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
  1470     int offset = ra_->reg2offset(src_first);
  1471     // Further check for aligned-adjacent pair, so we can use a double load
  1472     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1473       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
  1474     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1477   // Check for float reg-reg copy
  1478   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
  1479     // Further check for aligned-adjacent pair, so we can use a double move
  1480     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1481       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
  1482     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
  1485   // Check for float store
  1486   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
  1487     int offset = ra_->reg2offset(dst_first);
  1488     // Further check for aligned-adjacent pair, so we can use a double store
  1489     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1490       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
  1491     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1494   // Check for float load
  1495   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
  1496     int offset = ra_->reg2offset(src_first);
  1497     // Further check for aligned-adjacent pair, so we can use a double load
  1498     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1499       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
  1500     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
  1503   // --------------------------------------------------------------------
  1504   // Check for hi bits still needing moving.  Only happens for misaligned
  1505   // arguments to native calls.
  1506   if( src_second == dst_second )
  1507     return size;               // Self copy; no move
  1508   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
  1510 #ifndef _LP64
  1511   // In the LP64 build, all registers can be moved as aligned/adjacent
  1512   // pairs, so there's never any need to move the high bits separately.
  1513   // The 32-bit builds have to deal with the 32-bit ABI which can force
  1514   // all sorts of silly alignment problems.
  1516   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
  1517   // 32-bits of a 64-bit register, but are needed in low bits of another
  1518   // register (else it's a hi-bits-to-hi-bits copy which should have
  1519   // happened already as part of a 64-bit move)
  1520   if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
  1521     assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
  1522     assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
  1523     // Shift src_second down to dst_second's low bits.
  1524     if( cbuf ) {
  1525       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1526 #ifndef PRODUCT
  1527     } else if( !do_size ) {
  1528       if( size != 0 ) st->print("\n\t");
  1529       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
  1530 #endif
  1532     return size+4;
  1535   // Check for high word integer store.  Must down-shift the hi bits
  1536   // into a temp register, then fall into the case of storing int bits.
  1537   if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
  1538     // Shift src_second down to dst_second's low bits.
  1539     if( cbuf ) {
  1540       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1541 #ifndef PRODUCT
  1542     } else if( !do_size ) {
  1543       if( size != 0 ) st->print("\n\t");
  1544       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
  1545 #endif
  1547     size+=4;
  1548     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
  1551   // Check for high word integer load
  1552   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
  1553     return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
  1555   // Check for high word integer store
  1556   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
  1557     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
  1559   // Check for high word float store
  1560   if( src_second_rc == rc_float && dst_second_rc == rc_stack )
  1561     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
  1563 #endif // !_LP64
  1565   Unimplemented();
  1568 #ifndef PRODUCT
  1569 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1570   implementation( NULL, ra_, false, st );
  1572 #endif
  1574 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1575   implementation( &cbuf, ra_, false, NULL );
  1578 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1579   return implementation( NULL, ra_, true, NULL );
  1582 //=============================================================================
  1583 #ifndef PRODUCT
  1584 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
  1585   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
  1587 #endif
  1589 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
  1590   MacroAssembler _masm(&cbuf);
  1591   for(int i = 0; i < _count; i += 1) {
  1592     __ nop();
  1596 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
  1597   return 4 * _count;
  1601 //=============================================================================
  1602 #ifndef PRODUCT
  1603 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1604   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1605   int reg = ra_->get_reg_first(this);
  1606   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
  1608 #endif
  1610 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1611   MacroAssembler _masm(&cbuf);
  1612   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
  1613   int reg = ra_->get_encode(this);
  1615   if (Assembler::is_simm13(offset)) {
  1616      __ add(SP, offset, reg_to_register_object(reg));
  1617   } else {
  1618      __ set(offset, O7);
  1619      __ add(SP, O7, reg_to_register_object(reg));
  1623 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1624   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
  1625   assert(ra_ == ra_->C->regalloc(), "sanity");
  1626   return ra_->C->scratch_emit_size(this);
  1629 //=============================================================================
  1631 // emit call stub, compiled java to interpretor
  1632 void emit_java_to_interp(CodeBuffer &cbuf ) {
  1634   // Stub is fixed up when the corresponding call is converted from calling
  1635   // compiled code to calling interpreted code.
  1636   // set (empty), G5
  1637   // jmp -1
  1639   address mark = cbuf.insts_mark();  // get mark within main instrs section
  1641   MacroAssembler _masm(&cbuf);
  1643   address base =
  1644   __ start_a_stub(Compile::MAX_stubs_size);
  1645   if (base == NULL)  return;  // CodeBuffer::expand failed
  1647   // static stub relocation stores the instruction address of the call
  1648   __ relocate(static_stub_Relocation::spec(mark));
  1650   __ set_oop(NULL, reg_to_register_object(Matcher::inline_cache_reg_encode()));
  1652   __ set_inst_mark();
  1653   AddressLiteral addrlit(-1);
  1654   __ JUMP(addrlit, G3, 0);
  1656   __ delayed()->nop();
  1658   // Update current stubs pointer and restore code_end.
  1659   __ end_a_stub();
  1662 // size of call stub, compiled java to interpretor
  1663 uint size_java_to_interp() {
  1664   // This doesn't need to be accurate but it must be larger or equal to
  1665   // the real size of the stub.
  1666   return (NativeMovConstReg::instruction_size +  // sethi/setlo;
  1667           NativeJump::instruction_size + // sethi; jmp; nop
  1668           (TraceJumps ? 20 * BytesPerInstWord : 0) );
  1670 // relocation entries for call stub, compiled java to interpretor
  1671 uint reloc_java_to_interp() {
  1672   return 10;  // 4 in emit_java_to_interp + 1 in Java_Static_Call
  1676 //=============================================================================
  1677 #ifndef PRODUCT
  1678 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1679   st->print_cr("\nUEP:");
  1680 #ifdef    _LP64
  1681   if (UseCompressedOops) {
  1682     assert(Universe::heap() != NULL, "java heap should be initialized");
  1683     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
  1684     st->print_cr("\tSLL    R_G5,3,R_G5");
  1685     if (Universe::narrow_oop_base() != NULL)
  1686       st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
  1687   } else {
  1688     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1690   st->print_cr("\tCMP    R_G5,R_G3" );
  1691   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1692 #else  // _LP64
  1693   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1694   st->print_cr("\tCMP    R_G5,R_G3" );
  1695   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1696 #endif // _LP64
  1698 #endif
  1700 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1701   MacroAssembler _masm(&cbuf);
  1702   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
  1703   Register temp_reg   = G3;
  1704   assert( G5_ic_reg != temp_reg, "conflicting registers" );
  1706   // Load klass from receiver
  1707   __ load_klass(O0, temp_reg);
  1708   // Compare against expected klass
  1709   __ cmp(temp_reg, G5_ic_reg);
  1710   // Branch to miss code, checks xcc or icc depending
  1711   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
  1714 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  1715   return MachNode::size(ra_);
  1719 //=============================================================================
  1721 uint size_exception_handler() {
  1722   if (TraceJumps) {
  1723     return (400); // just a guess
  1725   return ( NativeJump::instruction_size ); // sethi;jmp;nop
  1728 uint size_deopt_handler() {
  1729   if (TraceJumps) {
  1730     return (400); // just a guess
  1732   return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
  1735 // Emit exception handler code.
  1736 int emit_exception_handler(CodeBuffer& cbuf) {
  1737   Register temp_reg = G3;
  1738   AddressLiteral exception_blob(OptoRuntime::exception_blob()->entry_point());
  1739   MacroAssembler _masm(&cbuf);
  1741   address base =
  1742   __ start_a_stub(size_exception_handler());
  1743   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1745   int offset = __ offset();
  1747   __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
  1748   __ delayed()->nop();
  1750   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
  1752   __ end_a_stub();
  1754   return offset;
  1757 int emit_deopt_handler(CodeBuffer& cbuf) {
  1758   // Can't use any of the current frame's registers as we may have deopted
  1759   // at a poll and everything (including G3) can be live.
  1760   Register temp_reg = L0;
  1761   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
  1762   MacroAssembler _masm(&cbuf);
  1764   address base =
  1765   __ start_a_stub(size_deopt_handler());
  1766   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1768   int offset = __ offset();
  1769   __ save_frame(0);
  1770   __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
  1771   __ delayed()->restore();
  1773   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
  1775   __ end_a_stub();
  1776   return offset;
  1780 // Given a register encoding, produce a Integer Register object
  1781 static Register reg_to_register_object(int register_encoding) {
  1782   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
  1783   return as_Register(register_encoding);
  1786 // Given a register encoding, produce a single-precision Float Register object
  1787 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
  1788   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
  1789   return as_SingleFloatRegister(register_encoding);
  1792 // Given a register encoding, produce a double-precision Float Register object
  1793 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
  1794   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
  1795   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
  1796   return as_DoubleFloatRegister(register_encoding);
  1799 const bool Matcher::match_rule_supported(int opcode) {
  1800   if (!has_match_rule(opcode))
  1801     return false;
  1803   switch (opcode) {
  1804   case Op_CountLeadingZerosI:
  1805   case Op_CountLeadingZerosL:
  1806   case Op_CountTrailingZerosI:
  1807   case Op_CountTrailingZerosL:
  1808     if (!UsePopCountInstruction)
  1809       return false;
  1810     break;
  1813   return true;  // Per default match rules are supported.
  1816 int Matcher::regnum_to_fpu_offset(int regnum) {
  1817   return regnum - 32; // The FP registers are in the second chunk
  1820 #ifdef ASSERT
  1821 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
  1822 #endif
  1824 // Vector width in bytes
  1825 const uint Matcher::vector_width_in_bytes(void) {
  1826   return 8;
  1829 // Vector ideal reg
  1830 const uint Matcher::vector_ideal_reg(void) {
  1831   return Op_RegD;
  1834 // USII supports fxtof through the whole range of number, USIII doesn't
  1835 const bool Matcher::convL2FSupported(void) {
  1836   return VM_Version::has_fast_fxtof();
  1839 // Is this branch offset short enough that a short branch can be used?
  1840 //
  1841 // NOTE: If the platform does not provide any short branch variants, then
  1842 //       this method should return false for offset 0.
  1843 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
  1844   // The passed offset is relative to address of the branch.
  1845   // Don't need to adjust the offset.
  1846   return UseCBCond && Assembler::is_simm(offset, 12);
  1849 const bool Matcher::isSimpleConstant64(jlong value) {
  1850   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
  1851   // Depends on optimizations in MacroAssembler::setx.
  1852   int hi = (int)(value >> 32);
  1853   int lo = (int)(value & ~0);
  1854   return (hi == 0) || (hi == -1) || (lo == 0);
  1857 // No scaling for the parameter the ClearArray node.
  1858 const bool Matcher::init_array_count_is_in_bytes = true;
  1860 // Threshold size for cleararray.
  1861 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  1863 // Should the Matcher clone shifts on addressing modes, expecting them to
  1864 // be subsumed into complex addressing expressions or compute them into
  1865 // registers?  True for Intel but false for most RISCs
  1866 const bool Matcher::clone_shift_expressions = false;
  1868 // Do we need to mask the count passed to shift instructions or does
  1869 // the cpu only look at the lower 5/6 bits anyway?
  1870 const bool Matcher::need_masked_shift_count = false;
  1872 bool Matcher::narrow_oop_use_complex_address() {
  1873   NOT_LP64(ShouldNotCallThis());
  1874   assert(UseCompressedOops, "only for compressed oops code");
  1875   return false;
  1878 // Is it better to copy float constants, or load them directly from memory?
  1879 // Intel can load a float constant from a direct address, requiring no
  1880 // extra registers.  Most RISCs will have to materialize an address into a
  1881 // register first, so they would do better to copy the constant from stack.
  1882 const bool Matcher::rematerialize_float_constants = false;
  1884 // If CPU can load and store mis-aligned doubles directly then no fixup is
  1885 // needed.  Else we split the double into 2 integer pieces and move it
  1886 // piece-by-piece.  Only happens when passing doubles into C code as the
  1887 // Java calling convention forces doubles to be aligned.
  1888 #ifdef _LP64
  1889 const bool Matcher::misaligned_doubles_ok = true;
  1890 #else
  1891 const bool Matcher::misaligned_doubles_ok = false;
  1892 #endif
  1894 // No-op on SPARC.
  1895 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  1898 // Advertise here if the CPU requires explicit rounding operations
  1899 // to implement the UseStrictFP mode.
  1900 const bool Matcher::strict_fp_requires_explicit_rounding = false;
  1902 // Are floats conerted to double when stored to stack during deoptimization?
  1903 // Sparc does not handle callee-save floats.
  1904 bool Matcher::float_in_double() { return false; }
  1906 // Do ints take an entire long register or just half?
  1907 // Note that we if-def off of _LP64.
  1908 // The relevant question is how the int is callee-saved.  In _LP64
  1909 // the whole long is written but de-opt'ing will have to extract
  1910 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
  1911 #ifdef _LP64
  1912 const bool Matcher::int_in_long = true;
  1913 #else
  1914 const bool Matcher::int_in_long = false;
  1915 #endif
  1917 // Return whether or not this register is ever used as an argument.  This
  1918 // function is used on startup to build the trampoline stubs in generateOptoStub.
  1919 // Registers not mentioned will be killed by the VM call in the trampoline, and
  1920 // arguments in those registers not be available to the callee.
  1921 bool Matcher::can_be_java_arg( int reg ) {
  1922   // Standard sparc 6 args in registers
  1923   if( reg == R_I0_num ||
  1924       reg == R_I1_num ||
  1925       reg == R_I2_num ||
  1926       reg == R_I3_num ||
  1927       reg == R_I4_num ||
  1928       reg == R_I5_num ) return true;
  1929 #ifdef _LP64
  1930   // 64-bit builds can pass 64-bit pointers and longs in
  1931   // the high I registers
  1932   if( reg == R_I0H_num ||
  1933       reg == R_I1H_num ||
  1934       reg == R_I2H_num ||
  1935       reg == R_I3H_num ||
  1936       reg == R_I4H_num ||
  1937       reg == R_I5H_num ) return true;
  1939   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
  1940     return true;
  1943 #else
  1944   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
  1945   // Longs cannot be passed in O regs, because O regs become I regs
  1946   // after a 'save' and I regs get their high bits chopped off on
  1947   // interrupt.
  1948   if( reg == R_G1H_num || reg == R_G1_num ) return true;
  1949   if( reg == R_G4H_num || reg == R_G4_num ) return true;
  1950 #endif
  1951   // A few float args in registers
  1952   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
  1954   return false;
  1957 bool Matcher::is_spillable_arg( int reg ) {
  1958   return can_be_java_arg(reg);
  1961 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
  1962   // Use hardware SDIVX instruction when it is
  1963   // faster than a code which use multiply.
  1964   return VM_Version::has_fast_idiv();
  1967 // Register for DIVI projection of divmodI
  1968 RegMask Matcher::divI_proj_mask() {
  1969   ShouldNotReachHere();
  1970   return RegMask();
  1973 // Register for MODI projection of divmodI
  1974 RegMask Matcher::modI_proj_mask() {
  1975   ShouldNotReachHere();
  1976   return RegMask();
  1979 // Register for DIVL projection of divmodL
  1980 RegMask Matcher::divL_proj_mask() {
  1981   ShouldNotReachHere();
  1982   return RegMask();
  1985 // Register for MODL projection of divmodL
  1986 RegMask Matcher::modL_proj_mask() {
  1987   ShouldNotReachHere();
  1988   return RegMask();
  1991 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
  1992   return L7_REGP_mask;
  1995 %}
  1998 // The intptr_t operand types, defined by textual substitution.
  1999 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
  2000 #ifdef _LP64
  2001 #define immX      immL
  2002 #define immX13    immL13
  2003 #define immX13m7  immL13m7
  2004 #define iRegX     iRegL
  2005 #define g1RegX    g1RegL
  2006 #else
  2007 #define immX      immI
  2008 #define immX13    immI13
  2009 #define immX13m7  immI13m7
  2010 #define iRegX     iRegI
  2011 #define g1RegX    g1RegI
  2012 #endif
  2014 //----------ENCODING BLOCK-----------------------------------------------------
  2015 // This block specifies the encoding classes used by the compiler to output
  2016 // byte streams.  Encoding classes are parameterized macros used by
  2017 // Machine Instruction Nodes in order to generate the bit encoding of the
  2018 // instruction.  Operands specify their base encoding interface with the
  2019 // interface keyword.  There are currently supported four interfaces,
  2020 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
  2021 // operand to generate a function which returns its register number when
  2022 // queried.   CONST_INTER causes an operand to generate a function which
  2023 // returns the value of the constant when queried.  MEMORY_INTER causes an
  2024 // operand to generate four functions which return the Base Register, the
  2025 // Index Register, the Scale Value, and the Offset Value of the operand when
  2026 // queried.  COND_INTER causes an operand to generate six functions which
  2027 // return the encoding code (ie - encoding bits for the instruction)
  2028 // associated with each basic boolean condition for a conditional instruction.
  2029 //
  2030 // Instructions specify two basic values for encoding.  Again, a function
  2031 // is available to check if the constant displacement is an oop. They use the
  2032 // ins_encode keyword to specify their encoding classes (which must be
  2033 // a sequence of enc_class names, and their parameters, specified in
  2034 // the encoding block), and they use the
  2035 // opcode keyword to specify, in order, their primary, secondary, and
  2036 // tertiary opcode.  Only the opcode sections which a particular instruction
  2037 // needs for encoding need to be specified.
  2038 encode %{
  2039   enc_class enc_untested %{
  2040 #ifdef ASSERT
  2041     MacroAssembler _masm(&cbuf);
  2042     __ untested("encoding");
  2043 #endif
  2044   %}
  2046   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
  2047     emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
  2048                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  2049   %}
  2051   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
  2052     emit_form3_mem_reg(cbuf, this, $primary, -1,
  2053                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  2054   %}
  2056   enc_class form3_mem_prefetch_read( memory mem ) %{
  2057     emit_form3_mem_reg(cbuf, this, $primary, -1,
  2058                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
  2059   %}
  2061   enc_class form3_mem_prefetch_write( memory mem ) %{
  2062     emit_form3_mem_reg(cbuf, this, $primary, -1,
  2063                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
  2064   %}
  2066   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
  2067     assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
  2068     assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
  2069     guarantee($mem$$index == R_G0_enc, "double index?");
  2070     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
  2071     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
  2072     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
  2073     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
  2074   %}
  2076   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
  2077     assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
  2078     assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
  2079     guarantee($mem$$index == R_G0_enc, "double index?");
  2080     // Load long with 2 instructions
  2081     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
  2082     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
  2083   %}
  2085   //%%% form3_mem_plus_4_reg is a hack--get rid of it
  2086   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
  2087     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
  2088     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
  2089   %}
  2091   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
  2092     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2093     if( $rs2$$reg != $rd$$reg )
  2094       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
  2095   %}
  2097   // Target lo half of long
  2098   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
  2099     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2100     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
  2101       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
  2102   %}
  2104   // Source lo half of long
  2105   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
  2106     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2107     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
  2108       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
  2109   %}
  2111   // Target hi half of long
  2112   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
  2113     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
  2114   %}
  2116   // Source lo half of long, and leave it sign extended.
  2117   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
  2118     // Sign extend low half
  2119     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
  2120   %}
  2122   // Source hi half of long, and leave it sign extended.
  2123   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
  2124     // Shift high half to low half
  2125     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
  2126   %}
  2128   // Source hi half of long
  2129   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
  2130     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2131     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
  2132       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
  2133   %}
  2135   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
  2136     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
  2137   %}
  2139   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
  2140     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
  2141     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
  2142   %}
  2144   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
  2145     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
  2146     // clear if nothing else is happening
  2147     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
  2148     // blt,a,pn done
  2149     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
  2150     // mov dst,-1 in delay slot
  2151     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2152   %}
  2154   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
  2155     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
  2156   %}
  2158   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
  2159     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
  2160   %}
  2162   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
  2163     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
  2164   %}
  2166   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
  2167     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
  2168   %}
  2170   enc_class move_return_pc_to_o1() %{
  2171     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
  2172   %}
  2174 #ifdef _LP64
  2175   /* %%% merge with enc_to_bool */
  2176   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
  2177     MacroAssembler _masm(&cbuf);
  2179     Register   src_reg = reg_to_register_object($src$$reg);
  2180     Register   dst_reg = reg_to_register_object($dst$$reg);
  2181     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
  2182   %}
  2183 #endif
  2185   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
  2186     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
  2187     MacroAssembler _masm(&cbuf);
  2189     Register   p_reg = reg_to_register_object($p$$reg);
  2190     Register   q_reg = reg_to_register_object($q$$reg);
  2191     Register   y_reg = reg_to_register_object($y$$reg);
  2192     Register tmp_reg = reg_to_register_object($tmp$$reg);
  2194     __ subcc( p_reg, q_reg,   p_reg );
  2195     __ add  ( p_reg, y_reg, tmp_reg );
  2196     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
  2197   %}
  2199   enc_class form_d2i_helper(regD src, regF dst) %{
  2200     // fcmp %fcc0,$src,$src
  2201     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2202     // branch %fcc0 not-nan, predict taken
  2203     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2204     // fdtoi $src,$dst
  2205     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
  2206     // fitos $dst,$dst (if nan)
  2207     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2208     // clear $dst (if nan)
  2209     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2210     // carry on here...
  2211   %}
  2213   enc_class form_d2l_helper(regD src, regD dst) %{
  2214     // fcmp %fcc0,$src,$src  check for NAN
  2215     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2216     // branch %fcc0 not-nan, predict taken
  2217     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2218     // fdtox $src,$dst   convert in delay slot
  2219     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
  2220     // fxtod $dst,$dst  (if nan)
  2221     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2222     // clear $dst (if nan)
  2223     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2224     // carry on here...
  2225   %}
  2227   enc_class form_f2i_helper(regF src, regF dst) %{
  2228     // fcmps %fcc0,$src,$src
  2229     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2230     // branch %fcc0 not-nan, predict taken
  2231     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2232     // fstoi $src,$dst
  2233     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
  2234     // fitos $dst,$dst (if nan)
  2235     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2236     // clear $dst (if nan)
  2237     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2238     // carry on here...
  2239   %}
  2241   enc_class form_f2l_helper(regF src, regD dst) %{
  2242     // fcmps %fcc0,$src,$src
  2243     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2244     // branch %fcc0 not-nan, predict taken
  2245     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2246     // fstox $src,$dst
  2247     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
  2248     // fxtod $dst,$dst (if nan)
  2249     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2250     // clear $dst (if nan)
  2251     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2252     // carry on here...
  2253   %}
  2255   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2256   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2257   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2258   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2260   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
  2262   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2263   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
  2265   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
  2266     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2267   %}
  2269   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
  2270     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2271   %}
  2273   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
  2274     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2275   %}
  2277   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
  2278     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2279   %}
  2281   enc_class form3_convI2F(regF rs2, regF rd) %{
  2282     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
  2283   %}
  2285   // Encloding class for traceable jumps
  2286   enc_class form_jmpl(g3RegP dest) %{
  2287     emit_jmpl(cbuf, $dest$$reg);
  2288   %}
  2290   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
  2291     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
  2292   %}
  2294   enc_class form2_nop() %{
  2295     emit_nop(cbuf);
  2296   %}
  2298   enc_class form2_illtrap() %{
  2299     emit_illtrap(cbuf);
  2300   %}
  2303   // Compare longs and convert into -1, 0, 1.
  2304   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
  2305     // CMP $src1,$src2
  2306     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
  2307     // blt,a,pn done
  2308     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
  2309     // mov dst,-1 in delay slot
  2310     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2311     // bgt,a,pn done
  2312     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
  2313     // mov dst,1 in delay slot
  2314     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
  2315     // CLR    $dst
  2316     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
  2317   %}
  2319   enc_class enc_PartialSubtypeCheck() %{
  2320     MacroAssembler _masm(&cbuf);
  2321     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
  2322     __ delayed()->nop();
  2323   %}
  2325   enc_class enc_bp( label labl, cmpOp cmp, flagsReg cc ) %{
  2326     MacroAssembler _masm(&cbuf);
  2327     Label* L = $labl$$label;
  2328     Assembler::Predict predict_taken =
  2329       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  2331     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  2332     __ delayed()->nop();
  2333   %}
  2335   enc_class enc_bpr( label labl, cmpOp_reg cmp, iRegI op1 ) %{
  2336     MacroAssembler _masm(&cbuf);
  2337     Label* L = $labl$$label;
  2338     Assembler::Predict predict_taken =
  2339       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  2341     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), *L);
  2342     __ delayed()->nop();
  2343   %}
  2345   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
  2346     int op = (Assembler::arith_op << 30) |
  2347              ($dst$$reg << 25) |
  2348              (Assembler::movcc_op3 << 19) |
  2349              (1 << 18) |                    // cc2 bit for 'icc'
  2350              ($cmp$$cmpcode << 14) |
  2351              (0 << 13) |                    // select register move
  2352              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
  2353              ($src$$reg << 0);
  2354     cbuf.insts()->emit_int32(op);
  2355   %}
  2357   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
  2358     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2359     int op = (Assembler::arith_op << 30) |
  2360              ($dst$$reg << 25) |
  2361              (Assembler::movcc_op3 << 19) |
  2362              (1 << 18) |                    // cc2 bit for 'icc'
  2363              ($cmp$$cmpcode << 14) |
  2364              (1 << 13) |                    // select immediate move
  2365              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
  2366              (simm11 << 0);
  2367     cbuf.insts()->emit_int32(op);
  2368   %}
  2370   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
  2371     int op = (Assembler::arith_op << 30) |
  2372              ($dst$$reg << 25) |
  2373              (Assembler::movcc_op3 << 19) |
  2374              (0 << 18) |                    // cc2 bit for 'fccX'
  2375              ($cmp$$cmpcode << 14) |
  2376              (0 << 13) |                    // select register move
  2377              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2378              ($src$$reg << 0);
  2379     cbuf.insts()->emit_int32(op);
  2380   %}
  2382   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
  2383     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2384     int op = (Assembler::arith_op << 30) |
  2385              ($dst$$reg << 25) |
  2386              (Assembler::movcc_op3 << 19) |
  2387              (0 << 18) |                    // cc2 bit for 'fccX'
  2388              ($cmp$$cmpcode << 14) |
  2389              (1 << 13) |                    // select immediate move
  2390              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2391              (simm11 << 0);
  2392     cbuf.insts()->emit_int32(op);
  2393   %}
  2395   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
  2396     int op = (Assembler::arith_op << 30) |
  2397              ($dst$$reg << 25) |
  2398              (Assembler::fpop2_op3 << 19) |
  2399              (0 << 18) |
  2400              ($cmp$$cmpcode << 14) |
  2401              (1 << 13) |                    // select register move
  2402              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
  2403              ($primary << 5) |              // select single, double or quad
  2404              ($src$$reg << 0);
  2405     cbuf.insts()->emit_int32(op);
  2406   %}
  2408   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
  2409     int op = (Assembler::arith_op << 30) |
  2410              ($dst$$reg << 25) |
  2411              (Assembler::fpop2_op3 << 19) |
  2412              (0 << 18) |
  2413              ($cmp$$cmpcode << 14) |
  2414              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
  2415              ($primary << 5) |              // select single, double or quad
  2416              ($src$$reg << 0);
  2417     cbuf.insts()->emit_int32(op);
  2418   %}
  2420   // Used by the MIN/MAX encodings.  Same as a CMOV, but
  2421   // the condition comes from opcode-field instead of an argument.
  2422   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
  2423     int op = (Assembler::arith_op << 30) |
  2424              ($dst$$reg << 25) |
  2425              (Assembler::movcc_op3 << 19) |
  2426              (1 << 18) |                    // cc2 bit for 'icc'
  2427              ($primary << 14) |
  2428              (0 << 13) |                    // select register move
  2429              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2430              ($src$$reg << 0);
  2431     cbuf.insts()->emit_int32(op);
  2432   %}
  2434   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
  2435     int op = (Assembler::arith_op << 30) |
  2436              ($dst$$reg << 25) |
  2437              (Assembler::movcc_op3 << 19) |
  2438              (6 << 16) |                    // cc2 bit for 'xcc'
  2439              ($primary << 14) |
  2440              (0 << 13) |                    // select register move
  2441              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2442              ($src$$reg << 0);
  2443     cbuf.insts()->emit_int32(op);
  2444   %}
  2446   enc_class Set13( immI13 src, iRegI rd ) %{
  2447     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
  2448   %}
  2450   enc_class SetHi22( immI src, iRegI rd ) %{
  2451     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
  2452   %}
  2454   enc_class Set32( immI src, iRegI rd ) %{
  2455     MacroAssembler _masm(&cbuf);
  2456     __ set($src$$constant, reg_to_register_object($rd$$reg));
  2457   %}
  2459   enc_class call_epilog %{
  2460     if( VerifyStackAtCalls ) {
  2461       MacroAssembler _masm(&cbuf);
  2462       int framesize = ra_->C->frame_slots() << LogBytesPerInt;
  2463       Register temp_reg = G3;
  2464       __ add(SP, framesize, temp_reg);
  2465       __ cmp(temp_reg, FP);
  2466       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
  2468   %}
  2470   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
  2471   // to G1 so the register allocator will not have to deal with the misaligned register
  2472   // pair.
  2473   enc_class adjust_long_from_native_call %{
  2474 #ifndef _LP64
  2475     if (returns_long()) {
  2476       //    sllx  O0,32,O0
  2477       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
  2478       //    srl   O1,0,O1
  2479       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
  2480       //    or    O0,O1,G1
  2481       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
  2483 #endif
  2484   %}
  2486   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
  2487     // CALL directly to the runtime
  2488     // The user of this is responsible for ensuring that R_L7 is empty (killed).
  2489     emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
  2490                     /*preserve_g2=*/true);
  2491   %}
  2493   enc_class preserve_SP %{
  2494     MacroAssembler _masm(&cbuf);
  2495     __ mov(SP, L7_mh_SP_save);
  2496   %}
  2498   enc_class restore_SP %{
  2499     MacroAssembler _masm(&cbuf);
  2500     __ mov(L7_mh_SP_save, SP);
  2501   %}
  2503   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
  2504     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  2505     // who we intended to call.
  2506     if ( !_method ) {
  2507       emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
  2508     } else if (_optimized_virtual) {
  2509       emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
  2510     } else {
  2511       emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
  2513     if( _method ) {  // Emit stub for static call
  2514       emit_java_to_interp(cbuf);
  2516   %}
  2518   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
  2519     MacroAssembler _masm(&cbuf);
  2520     __ set_inst_mark();
  2521     int vtable_index = this->_vtable_index;
  2522     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
  2523     if (vtable_index < 0) {
  2524       // must be invalid_vtable_index, not nonvirtual_vtable_index
  2525       assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
  2526       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2527       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
  2528       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
  2529       // !!!!!
  2530       // Generate  "set 0x01, R_G5", placeholder instruction to load oop-info
  2531       // emit_call_dynamic_prologue( cbuf );
  2532       __ set_oop((jobject)Universe::non_oop_word(), G5_ic_reg);
  2534       address  virtual_call_oop_addr = __ inst_mark();
  2535       // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  2536       // who we intended to call.
  2537       __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr));
  2538       emit_call_reloc(cbuf, $meth$$method, relocInfo::none);
  2539     } else {
  2540       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
  2541       // Just go thru the vtable
  2542       // get receiver klass (receiver already checked for non-null)
  2543       // If we end up going thru a c2i adapter interpreter expects method in G5
  2544       int off = __ offset();
  2545       __ load_klass(O0, G3_scratch);
  2546       int klass_load_size;
  2547       if (UseCompressedOops) {
  2548         assert(Universe::heap() != NULL, "java heap should be initialized");
  2549         if (Universe::narrow_oop_base() == NULL)
  2550           klass_load_size = 2*BytesPerInstWord;
  2551         else
  2552           klass_load_size = 3*BytesPerInstWord;
  2553       } else {
  2554         klass_load_size = 1*BytesPerInstWord;
  2556       int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
  2557       int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
  2558       if( __ is_simm13(v_off) ) {
  2559         __ ld_ptr(G3, v_off, G5_method);
  2560       } else {
  2561         // Generate 2 instructions
  2562         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
  2563         __ or3(G5_method, v_off & 0x3ff, G5_method);
  2564         // ld_ptr, set_hi, set
  2565         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
  2566                "Unexpected instruction size(s)");
  2567         __ ld_ptr(G3, G5_method, G5_method);
  2569       // NOTE: for vtable dispatches, the vtable entry will never be null.
  2570       // However it may very well end up in handle_wrong_method if the
  2571       // method is abstract for the particular class.
  2572       __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3_scratch);
  2573       // jump to target (either compiled code or c2iadapter)
  2574       __ jmpl(G3_scratch, G0, O7);
  2575       __ delayed()->nop();
  2577   %}
  2579   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
  2580     MacroAssembler _masm(&cbuf);
  2582     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2583     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
  2584                               // we might be calling a C2I adapter which needs it.
  2586     assert(temp_reg != G5_ic_reg, "conflicting registers");
  2587     // Load nmethod
  2588     __ ld_ptr(G5_ic_reg, in_bytes(methodOopDesc::from_compiled_offset()), temp_reg);
  2590     // CALL to compiled java, indirect the contents of G3
  2591     __ set_inst_mark();
  2592     __ callr(temp_reg, G0);
  2593     __ delayed()->nop();
  2594   %}
  2596 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
  2597     MacroAssembler _masm(&cbuf);
  2598     Register Rdividend = reg_to_register_object($src1$$reg);
  2599     Register Rdivisor = reg_to_register_object($src2$$reg);
  2600     Register Rresult = reg_to_register_object($dst$$reg);
  2602     __ sra(Rdivisor, 0, Rdivisor);
  2603     __ sra(Rdividend, 0, Rdividend);
  2604     __ sdivx(Rdividend, Rdivisor, Rresult);
  2605 %}
  2607 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
  2608     MacroAssembler _masm(&cbuf);
  2610     Register Rdividend = reg_to_register_object($src1$$reg);
  2611     int divisor = $imm$$constant;
  2612     Register Rresult = reg_to_register_object($dst$$reg);
  2614     __ sra(Rdividend, 0, Rdividend);
  2615     __ sdivx(Rdividend, divisor, Rresult);
  2616 %}
  2618 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
  2619     MacroAssembler _masm(&cbuf);
  2620     Register Rsrc1 = reg_to_register_object($src1$$reg);
  2621     Register Rsrc2 = reg_to_register_object($src2$$reg);
  2622     Register Rdst  = reg_to_register_object($dst$$reg);
  2624     __ sra( Rsrc1, 0, Rsrc1 );
  2625     __ sra( Rsrc2, 0, Rsrc2 );
  2626     __ mulx( Rsrc1, Rsrc2, Rdst );
  2627     __ srlx( Rdst, 32, Rdst );
  2628 %}
  2630 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
  2631     MacroAssembler _masm(&cbuf);
  2632     Register Rdividend = reg_to_register_object($src1$$reg);
  2633     Register Rdivisor = reg_to_register_object($src2$$reg);
  2634     Register Rresult = reg_to_register_object($dst$$reg);
  2635     Register Rscratch = reg_to_register_object($scratch$$reg);
  2637     assert(Rdividend != Rscratch, "");
  2638     assert(Rdivisor  != Rscratch, "");
  2640     __ sra(Rdividend, 0, Rdividend);
  2641     __ sra(Rdivisor, 0, Rdivisor);
  2642     __ sdivx(Rdividend, Rdivisor, Rscratch);
  2643     __ mulx(Rscratch, Rdivisor, Rscratch);
  2644     __ sub(Rdividend, Rscratch, Rresult);
  2645 %}
  2647 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
  2648     MacroAssembler _masm(&cbuf);
  2650     Register Rdividend = reg_to_register_object($src1$$reg);
  2651     int divisor = $imm$$constant;
  2652     Register Rresult = reg_to_register_object($dst$$reg);
  2653     Register Rscratch = reg_to_register_object($scratch$$reg);
  2655     assert(Rdividend != Rscratch, "");
  2657     __ sra(Rdividend, 0, Rdividend);
  2658     __ sdivx(Rdividend, divisor, Rscratch);
  2659     __ mulx(Rscratch, divisor, Rscratch);
  2660     __ sub(Rdividend, Rscratch, Rresult);
  2661 %}
  2663 enc_class fabss (sflt_reg dst, sflt_reg src) %{
  2664     MacroAssembler _masm(&cbuf);
  2666     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2667     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2669     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
  2670 %}
  2672 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
  2673     MacroAssembler _masm(&cbuf);
  2675     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2676     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2678     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
  2679 %}
  2681 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
  2682     MacroAssembler _masm(&cbuf);
  2684     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2685     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2687     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
  2688 %}
  2690 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
  2691     MacroAssembler _masm(&cbuf);
  2693     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2694     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2696     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
  2697 %}
  2699 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
  2700     MacroAssembler _masm(&cbuf);
  2702     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2703     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2705     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
  2706 %}
  2708 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
  2709     MacroAssembler _masm(&cbuf);
  2711     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2712     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2714     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
  2715 %}
  2717 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
  2718     MacroAssembler _masm(&cbuf);
  2720     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2721     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2723     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
  2724 %}
  2726 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2727     MacroAssembler _masm(&cbuf);
  2729     Register Roop  = reg_to_register_object($oop$$reg);
  2730     Register Rbox  = reg_to_register_object($box$$reg);
  2731     Register Rscratch = reg_to_register_object($scratch$$reg);
  2732     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2734     assert(Roop  != Rscratch, "");
  2735     assert(Roop  != Rmark, "");
  2736     assert(Rbox  != Rscratch, "");
  2737     assert(Rbox  != Rmark, "");
  2739     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
  2740 %}
  2742 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2743     MacroAssembler _masm(&cbuf);
  2745     Register Roop  = reg_to_register_object($oop$$reg);
  2746     Register Rbox  = reg_to_register_object($box$$reg);
  2747     Register Rscratch = reg_to_register_object($scratch$$reg);
  2748     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2750     assert(Roop  != Rscratch, "");
  2751     assert(Roop  != Rmark, "");
  2752     assert(Rbox  != Rscratch, "");
  2753     assert(Rbox  != Rmark, "");
  2755     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
  2756   %}
  2758   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
  2759     MacroAssembler _masm(&cbuf);
  2760     Register Rmem = reg_to_register_object($mem$$reg);
  2761     Register Rold = reg_to_register_object($old$$reg);
  2762     Register Rnew = reg_to_register_object($new$$reg);
  2764     // casx_under_lock picks 1 of 3 encodings:
  2765     // For 32-bit pointers you get a 32-bit CAS
  2766     // For 64-bit pointers you get a 64-bit CASX
  2767     __ casn(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
  2768     __ cmp( Rold, Rnew );
  2769   %}
  2771   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
  2772     Register Rmem = reg_to_register_object($mem$$reg);
  2773     Register Rold = reg_to_register_object($old$$reg);
  2774     Register Rnew = reg_to_register_object($new$$reg);
  2776     MacroAssembler _masm(&cbuf);
  2777     __ mov(Rnew, O7);
  2778     __ casx(Rmem, Rold, O7);
  2779     __ cmp( Rold, O7 );
  2780   %}
  2782   // raw int cas, used for compareAndSwap
  2783   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
  2784     Register Rmem = reg_to_register_object($mem$$reg);
  2785     Register Rold = reg_to_register_object($old$$reg);
  2786     Register Rnew = reg_to_register_object($new$$reg);
  2788     MacroAssembler _masm(&cbuf);
  2789     __ mov(Rnew, O7);
  2790     __ cas(Rmem, Rold, O7);
  2791     __ cmp( Rold, O7 );
  2792   %}
  2794   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
  2795     Register Rres = reg_to_register_object($res$$reg);
  2797     MacroAssembler _masm(&cbuf);
  2798     __ mov(1, Rres);
  2799     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
  2800   %}
  2802   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
  2803     Register Rres = reg_to_register_object($res$$reg);
  2805     MacroAssembler _masm(&cbuf);
  2806     __ mov(1, Rres);
  2807     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
  2808   %}
  2810   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
  2811     MacroAssembler _masm(&cbuf);
  2812     Register Rdst = reg_to_register_object($dst$$reg);
  2813     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
  2814                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
  2815     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
  2816                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
  2818     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
  2819     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
  2820   %}
  2823   enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result) %{
  2824     Label Ldone, Lloop;
  2825     MacroAssembler _masm(&cbuf);
  2827     Register   str1_reg = reg_to_register_object($str1$$reg);
  2828     Register   str2_reg = reg_to_register_object($str2$$reg);
  2829     Register   cnt1_reg = reg_to_register_object($cnt1$$reg);
  2830     Register   cnt2_reg = reg_to_register_object($cnt2$$reg);
  2831     Register result_reg = reg_to_register_object($result$$reg);
  2833     assert(result_reg != str1_reg &&
  2834            result_reg != str2_reg &&
  2835            result_reg != cnt1_reg &&
  2836            result_reg != cnt2_reg ,
  2837            "need different registers");
  2839     // Compute the minimum of the string lengths(str1_reg) and the
  2840     // difference of the string lengths (stack)
  2842     // See if the lengths are different, and calculate min in str1_reg.
  2843     // Stash diff in O7 in case we need it for a tie-breaker.
  2844     Label Lskip;
  2845     __ subcc(cnt1_reg, cnt2_reg, O7);
  2846     __ sll(cnt1_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
  2847     __ br(Assembler::greater, true, Assembler::pt, Lskip);
  2848     // cnt2 is shorter, so use its count:
  2849     __ delayed()->sll(cnt2_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
  2850     __ bind(Lskip);
  2852     // reallocate cnt1_reg, cnt2_reg, result_reg
  2853     // Note:  limit_reg holds the string length pre-scaled by 2
  2854     Register limit_reg =   cnt1_reg;
  2855     Register  chr2_reg =   cnt2_reg;
  2856     Register  chr1_reg = result_reg;
  2857     // str{12} are the base pointers
  2859     // Is the minimum length zero?
  2860     __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
  2861     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2862     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2864     // Load first characters
  2865     __ lduh(str1_reg, 0, chr1_reg);
  2866     __ lduh(str2_reg, 0, chr2_reg);
  2868     // Compare first characters
  2869     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2870     __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
  2871     assert(chr1_reg == result_reg, "result must be pre-placed");
  2872     __ delayed()->nop();
  2875       // Check after comparing first character to see if strings are equivalent
  2876       Label LSkip2;
  2877       // Check if the strings start at same location
  2878       __ cmp(str1_reg, str2_reg);
  2879       __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
  2880       __ delayed()->nop();
  2882       // Check if the length difference is zero (in O7)
  2883       __ cmp(G0, O7);
  2884       __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2885       __ delayed()->mov(G0, result_reg);  // result is zero
  2887       // Strings might not be equal
  2888       __ bind(LSkip2);
  2891     __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
  2892     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2893     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2895     // Shift str1_reg and str2_reg to the end of the arrays, negate limit
  2896     __ add(str1_reg, limit_reg, str1_reg);
  2897     __ add(str2_reg, limit_reg, str2_reg);
  2898     __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
  2900     // Compare the rest of the characters
  2901     __ lduh(str1_reg, limit_reg, chr1_reg);
  2902     __ bind(Lloop);
  2903     // __ lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2904     __ lduh(str2_reg, limit_reg, chr2_reg);
  2905     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2906     __ br(Assembler::notZero, false, Assembler::pt, Ldone);
  2907     assert(chr1_reg == result_reg, "result must be pre-placed");
  2908     __ delayed()->inccc(limit_reg, sizeof(jchar));
  2909     // annul LDUH if branch is not taken to prevent access past end of string
  2910     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
  2911     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2913     // If strings are equal up to min length, return the length difference.
  2914     __ mov(O7, result_reg);
  2916     // Otherwise, return the difference between the first mismatched chars.
  2917     __ bind(Ldone);
  2918   %}
  2920 enc_class enc_String_Equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result) %{
  2921     Label Lword_loop, Lpost_word, Lchar, Lchar_loop, Ldone;
  2922     MacroAssembler _masm(&cbuf);
  2924     Register   str1_reg = reg_to_register_object($str1$$reg);
  2925     Register   str2_reg = reg_to_register_object($str2$$reg);
  2926     Register    cnt_reg = reg_to_register_object($cnt$$reg);
  2927     Register   tmp1_reg = O7;
  2928     Register result_reg = reg_to_register_object($result$$reg);
  2930     assert(result_reg != str1_reg &&
  2931            result_reg != str2_reg &&
  2932            result_reg !=  cnt_reg &&
  2933            result_reg != tmp1_reg ,
  2934            "need different registers");
  2936     __ cmp(str1_reg, str2_reg); //same char[] ?
  2937     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
  2938     __ delayed()->add(G0, 1, result_reg);
  2940     __ cmp_zero_and_br(Assembler::zero, cnt_reg, Ldone, true, Assembler::pn);
  2941     __ delayed()->add(G0, 1, result_reg); // count == 0
  2943     //rename registers
  2944     Register limit_reg =    cnt_reg;
  2945     Register  chr1_reg = result_reg;
  2946     Register  chr2_reg =   tmp1_reg;
  2948     //check for alignment and position the pointers to the ends
  2949     __ or3(str1_reg, str2_reg, chr1_reg);
  2950     __ andcc(chr1_reg, 0x3, chr1_reg);
  2951     // notZero means at least one not 4-byte aligned.
  2952     // We could optimize the case when both arrays are not aligned
  2953     // but it is not frequent case and it requires additional checks.
  2954     __ br(Assembler::notZero, false, Assembler::pn, Lchar); // char by char compare
  2955     __ delayed()->sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg); // set byte count
  2957     // Compare char[] arrays aligned to 4 bytes.
  2958     __ char_arrays_equals(str1_reg, str2_reg, limit_reg, result_reg,
  2959                           chr1_reg, chr2_reg, Ldone);
  2960     __ ba(Ldone);
  2961     __ delayed()->add(G0, 1, result_reg);
  2963     // char by char compare
  2964     __ bind(Lchar);
  2965     __ add(str1_reg, limit_reg, str1_reg);
  2966     __ add(str2_reg, limit_reg, str2_reg);
  2967     __ neg(limit_reg); //negate count
  2969     __ lduh(str1_reg, limit_reg, chr1_reg);
  2970     // Lchar_loop
  2971     __ bind(Lchar_loop);
  2972     __ lduh(str2_reg, limit_reg, chr2_reg);
  2973     __ cmp(chr1_reg, chr2_reg);
  2974     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
  2975     __ delayed()->mov(G0, result_reg); //not equal
  2976     __ inccc(limit_reg, sizeof(jchar));
  2977     // annul LDUH if branch is not taken to prevent access past end of string
  2978     __ br(Assembler::notZero, true, Assembler::pt, Lchar_loop);
  2979     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2981     __ add(G0, 1, result_reg);  //equal
  2983     __ bind(Ldone);
  2984   %}
  2986 enc_class enc_Array_Equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, notemp_iRegI result) %{
  2987     Label Lvector, Ldone, Lloop;
  2988     MacroAssembler _masm(&cbuf);
  2990     Register   ary1_reg = reg_to_register_object($ary1$$reg);
  2991     Register   ary2_reg = reg_to_register_object($ary2$$reg);
  2992     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
  2993     Register   tmp2_reg = O7;
  2994     Register result_reg = reg_to_register_object($result$$reg);
  2996     int length_offset  = arrayOopDesc::length_offset_in_bytes();
  2997     int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
  2999     // return true if the same array
  3000     __ cmp(ary1_reg, ary2_reg);
  3001     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
  3002     __ delayed()->add(G0, 1, result_reg); // equal
  3004     __ br_null(ary1_reg, true, Assembler::pn, Ldone);
  3005     __ delayed()->mov(G0, result_reg);    // not equal
  3007     __ br_null(ary2_reg, true, Assembler::pn, Ldone);
  3008     __ delayed()->mov(G0, result_reg);    // not equal
  3010     //load the lengths of arrays
  3011     __ ld(Address(ary1_reg, length_offset), tmp1_reg);
  3012     __ ld(Address(ary2_reg, length_offset), tmp2_reg);
  3014     // return false if the two arrays are not equal length
  3015     __ cmp(tmp1_reg, tmp2_reg);
  3016     __ br(Assembler::notEqual, true, Assembler::pn, Ldone);
  3017     __ delayed()->mov(G0, result_reg);     // not equal
  3019     __ cmp_zero_and_br(Assembler::zero, tmp1_reg, Ldone, true, Assembler::pn);
  3020     __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
  3022     // load array addresses
  3023     __ add(ary1_reg, base_offset, ary1_reg);
  3024     __ add(ary2_reg, base_offset, ary2_reg);
  3026     // renaming registers
  3027     Register chr1_reg  =  result_reg; // for characters in ary1
  3028     Register chr2_reg  =  tmp2_reg;   // for characters in ary2
  3029     Register limit_reg =  tmp1_reg;   // length
  3031     // set byte count
  3032     __ sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg);
  3034     // Compare char[] arrays aligned to 4 bytes.
  3035     __ char_arrays_equals(ary1_reg, ary2_reg, limit_reg, result_reg,
  3036                           chr1_reg, chr2_reg, Ldone);
  3037     __ add(G0, 1, result_reg); // equals
  3039     __ bind(Ldone);
  3040   %}
  3042   enc_class enc_rethrow() %{
  3043     cbuf.set_insts_mark();
  3044     Register temp_reg = G3;
  3045     AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
  3046     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
  3047     MacroAssembler _masm(&cbuf);
  3048 #ifdef ASSERT
  3049     __ save_frame(0);
  3050     AddressLiteral last_rethrow_addrlit(&last_rethrow);
  3051     __ sethi(last_rethrow_addrlit, L1);
  3052     Address addr(L1, last_rethrow_addrlit.low10());
  3053     __ get_pc(L2);
  3054     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
  3055     __ st_ptr(L2, addr);
  3056     __ restore();
  3057 #endif
  3058     __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
  3059     __ delayed()->nop();
  3060   %}
  3062   enc_class emit_mem_nop() %{
  3063     // Generates the instruction LDUXA [o6,g0],#0x82,g0
  3064     cbuf.insts()->emit_int32((unsigned int) 0xc0839040);
  3065   %}
  3067   enc_class emit_fadd_nop() %{
  3068     // Generates the instruction FMOVS f31,f31
  3069     cbuf.insts()->emit_int32((unsigned int) 0xbfa0003f);
  3070   %}
  3072   enc_class emit_br_nop() %{
  3073     // Generates the instruction BPN,PN .
  3074     cbuf.insts()->emit_int32((unsigned int) 0x00400000);
  3075   %}
  3077   enc_class enc_membar_acquire %{
  3078     MacroAssembler _masm(&cbuf);
  3079     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
  3080   %}
  3082   enc_class enc_membar_release %{
  3083     MacroAssembler _masm(&cbuf);
  3084     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
  3085   %}
  3087   enc_class enc_membar_volatile %{
  3088     MacroAssembler _masm(&cbuf);
  3089     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
  3090   %}
  3092   enc_class enc_repl8b( iRegI src, iRegL dst ) %{
  3093     MacroAssembler _masm(&cbuf);
  3094     Register src_reg = reg_to_register_object($src$$reg);
  3095     Register dst_reg = reg_to_register_object($dst$$reg);
  3096     __ sllx(src_reg, 56, dst_reg);
  3097     __ srlx(dst_reg,  8, O7);
  3098     __ or3 (dst_reg, O7, dst_reg);
  3099     __ srlx(dst_reg, 16, O7);
  3100     __ or3 (dst_reg, O7, dst_reg);
  3101     __ srlx(dst_reg, 32, O7);
  3102     __ or3 (dst_reg, O7, dst_reg);
  3103   %}
  3105   enc_class enc_repl4b( iRegI src, iRegL dst ) %{
  3106     MacroAssembler _masm(&cbuf);
  3107     Register src_reg = reg_to_register_object($src$$reg);
  3108     Register dst_reg = reg_to_register_object($dst$$reg);
  3109     __ sll(src_reg, 24, dst_reg);
  3110     __ srl(dst_reg,  8, O7);
  3111     __ or3(dst_reg, O7, dst_reg);
  3112     __ srl(dst_reg, 16, O7);
  3113     __ or3(dst_reg, O7, dst_reg);
  3114   %}
  3116   enc_class enc_repl4s( iRegI src, iRegL dst ) %{
  3117     MacroAssembler _masm(&cbuf);
  3118     Register src_reg = reg_to_register_object($src$$reg);
  3119     Register dst_reg = reg_to_register_object($dst$$reg);
  3120     __ sllx(src_reg, 48, dst_reg);
  3121     __ srlx(dst_reg, 16, O7);
  3122     __ or3 (dst_reg, O7, dst_reg);
  3123     __ srlx(dst_reg, 32, O7);
  3124     __ or3 (dst_reg, O7, dst_reg);
  3125   %}
  3127   enc_class enc_repl2i( iRegI src, iRegL dst ) %{
  3128     MacroAssembler _masm(&cbuf);
  3129     Register src_reg = reg_to_register_object($src$$reg);
  3130     Register dst_reg = reg_to_register_object($dst$$reg);
  3131     __ sllx(src_reg, 32, dst_reg);
  3132     __ srlx(dst_reg, 32, O7);
  3133     __ or3 (dst_reg, O7, dst_reg);
  3134   %}
  3136 %}
  3138 //----------FRAME--------------------------------------------------------------
  3139 // Definition of frame structure and management information.
  3140 //
  3141 //  S T A C K   L A Y O U T    Allocators stack-slot number
  3142 //                             |   (to get allocators register number
  3143 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
  3144 //  r   CALLER     |        |
  3145 //  o     |        +--------+      pad to even-align allocators stack-slot
  3146 //  w     V        |  pad0  |        numbers; owned by CALLER
  3147 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  3148 //  h     ^        |   in   |  5
  3149 //        |        |  args  |  4   Holes in incoming args owned by SELF
  3150 //  |     |        |        |  3
  3151 //  |     |        +--------+
  3152 //  V     |        | old out|      Empty on Intel, window on Sparc
  3153 //        |    old |preserve|      Must be even aligned.
  3154 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
  3155 //        |        |   in   |  3   area for Intel ret address
  3156 //     Owned by    |preserve|      Empty on Sparc.
  3157 //       SELF      +--------+
  3158 //        |        |  pad2  |  2   pad to align old SP
  3159 //        |        +--------+  1
  3160 //        |        | locks  |  0
  3161 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
  3162 //        |        |  pad1  | 11   pad to align new SP
  3163 //        |        +--------+
  3164 //        |        |        | 10
  3165 //        |        | spills |  9   spills
  3166 //        V        |        |  8   (pad0 slot for callee)
  3167 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  3168 //        ^        |  out   |  7
  3169 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  3170 //     Owned by    +--------+
  3171 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
  3172 //        |    new |preserve|      Must be even-aligned.
  3173 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
  3174 //        |        |        |
  3175 //
  3176 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
  3177 //         known from SELF's arguments and the Java calling convention.
  3178 //         Region 6-7 is determined per call site.
  3179 // Note 2: If the calling convention leaves holes in the incoming argument
  3180 //         area, those holes are owned by SELF.  Holes in the outgoing area
  3181 //         are owned by the CALLEE.  Holes should not be nessecary in the
  3182 //         incoming area, as the Java calling convention is completely under
  3183 //         the control of the AD file.  Doubles can be sorted and packed to
  3184 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  3185 //         varargs C calling conventions.
  3186 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
  3187 //         even aligned with pad0 as needed.
  3188 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  3189 //         region 6-11 is even aligned; it may be padded out more so that
  3190 //         the region from SP to FP meets the minimum stack alignment.
  3192 frame %{
  3193   // What direction does stack grow in (assumed to be same for native & Java)
  3194   stack_direction(TOWARDS_LOW);
  3196   // These two registers define part of the calling convention
  3197   // between compiled code and the interpreter.
  3198   inline_cache_reg(R_G5);                // Inline Cache Register or methodOop for I2C
  3199   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
  3201   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  3202   cisc_spilling_operand_name(indOffset);
  3204   // Number of stack slots consumed by a Monitor enter
  3205 #ifdef _LP64
  3206   sync_stack_slots(2);
  3207 #else
  3208   sync_stack_slots(1);
  3209 #endif
  3211   // Compiled code's Frame Pointer
  3212   frame_pointer(R_SP);
  3214   // Stack alignment requirement
  3215   stack_alignment(StackAlignmentInBytes);
  3216   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
  3217   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
  3219   // Number of stack slots between incoming argument block and the start of
  3220   // a new frame.  The PROLOG must add this many slots to the stack.  The
  3221   // EPILOG must remove this many slots.
  3222   in_preserve_stack_slots(0);
  3224   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  3225   // for calls to C.  Supports the var-args backing area for register parms.
  3226   // ADLC doesn't support parsing expressions, so I folded the math by hand.
  3227 #ifdef _LP64
  3228   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
  3229   varargs_C_out_slots_killed(12);
  3230 #else
  3231   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
  3232   varargs_C_out_slots_killed( 7);
  3233 #endif
  3235   // The after-PROLOG location of the return address.  Location of
  3236   // return address specifies a type (REG or STACK) and a number
  3237   // representing the register number (i.e. - use a register name) or
  3238   // stack slot.
  3239   return_addr(REG R_I7);          // Ret Addr is in register I7
  3241   // Body of function which returns an OptoRegs array locating
  3242   // arguments either in registers or in stack slots for calling
  3243   // java
  3244   calling_convention %{
  3245     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
  3247   %}
  3249   // Body of function which returns an OptoRegs array locating
  3250   // arguments either in registers or in stack slots for callin
  3251   // C.
  3252   c_calling_convention %{
  3253     // This is obviously always outgoing
  3254     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
  3255   %}
  3257   // Location of native (C/C++) and interpreter return values.  This is specified to
  3258   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
  3259   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
  3260   // to and from the register pairs is done by the appropriate call and epilog
  3261   // opcodes.  This simplifies the register allocator.
  3262   c_return_value %{
  3263     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3264 #ifdef     _LP64
  3265     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3266     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3267     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3268     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3269 #else  // !_LP64
  3270     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3271     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3272     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3273     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3274 #endif
  3275     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3276                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3277   %}
  3279   // Location of compiled Java return values.  Same as C
  3280   return_value %{
  3281     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3282 #ifdef     _LP64
  3283     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3284     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3285     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3286     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3287 #else  // !_LP64
  3288     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3289     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3290     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3291     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3292 #endif
  3293     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3294                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3295   %}
  3297 %}
  3300 //----------ATTRIBUTES---------------------------------------------------------
  3301 //----------Operand Attributes-------------------------------------------------
  3302 op_attrib op_cost(1);          // Required cost attribute
  3304 //----------Instruction Attributes---------------------------------------------
  3305 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
  3306 ins_attrib ins_size(32);           // Required size attribute (in bits)
  3307 ins_attrib ins_avoid_back_to_back(0); // instruction should not be generated back to back
  3308 ins_attrib ins_short_branch(0);    // Required flag: is this instruction a
  3309                                    // non-matching short branch variant of some
  3310                                                             // long branch?
  3312 //----------OPERANDS-----------------------------------------------------------
  3313 // Operand definitions must precede instruction definitions for correct parsing
  3314 // in the ADLC because operands constitute user defined types which are used in
  3315 // instruction definitions.
  3317 //----------Simple Operands----------------------------------------------------
  3318 // Immediate Operands
  3319 // Integer Immediate: 32-bit
  3320 operand immI() %{
  3321   match(ConI);
  3323   op_cost(0);
  3324   // formats are generated automatically for constants and base registers
  3325   format %{ %}
  3326   interface(CONST_INTER);
  3327 %}
  3329 // Integer Immediate: 8-bit
  3330 operand immI8() %{
  3331   predicate(Assembler::is_simm(n->get_int(), 8));
  3332   match(ConI);
  3333   op_cost(0);
  3334   format %{ %}
  3335   interface(CONST_INTER);
  3336 %}
  3338 // Integer Immediate: 13-bit
  3339 operand immI13() %{
  3340   predicate(Assembler::is_simm13(n->get_int()));
  3341   match(ConI);
  3342   op_cost(0);
  3344   format %{ %}
  3345   interface(CONST_INTER);
  3346 %}
  3348 // Integer Immediate: 13-bit minus 7
  3349 operand immI13m7() %{
  3350   predicate((-4096 < n->get_int()) && ((n->get_int() + 7) <= 4095));
  3351   match(ConI);
  3352   op_cost(0);
  3354   format %{ %}
  3355   interface(CONST_INTER);
  3356 %}
  3358 // Integer Immediate: 16-bit
  3359 operand immI16() %{
  3360   predicate(Assembler::is_simm(n->get_int(), 16));
  3361   match(ConI);
  3362   op_cost(0);
  3363   format %{ %}
  3364   interface(CONST_INTER);
  3365 %}
  3367 // Unsigned (positive) Integer Immediate: 13-bit
  3368 operand immU13() %{
  3369   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
  3370   match(ConI);
  3371   op_cost(0);
  3373   format %{ %}
  3374   interface(CONST_INTER);
  3375 %}
  3377 // Integer Immediate: 6-bit
  3378 operand immU6() %{
  3379   predicate(n->get_int() >= 0 && n->get_int() <= 63);
  3380   match(ConI);
  3381   op_cost(0);
  3382   format %{ %}
  3383   interface(CONST_INTER);
  3384 %}
  3386 // Integer Immediate: 11-bit
  3387 operand immI11() %{
  3388   predicate(Assembler::is_simm(n->get_int(),11));
  3389   match(ConI);
  3390   op_cost(0);
  3391   format %{ %}
  3392   interface(CONST_INTER);
  3393 %}
  3395 // Integer Immediate: 5-bit
  3396 operand immI5() %{
  3397   predicate(Assembler::is_simm(n->get_int(), 5));
  3398   match(ConI);
  3399   op_cost(0);
  3400   format %{ %}
  3401   interface(CONST_INTER);
  3402 %}
  3404 // Integer Immediate: 0-bit
  3405 operand immI0() %{
  3406   predicate(n->get_int() == 0);
  3407   match(ConI);
  3408   op_cost(0);
  3410   format %{ %}
  3411   interface(CONST_INTER);
  3412 %}
  3414 // Integer Immediate: the value 10
  3415 operand immI10() %{
  3416   predicate(n->get_int() == 10);
  3417   match(ConI);
  3418   op_cost(0);
  3420   format %{ %}
  3421   interface(CONST_INTER);
  3422 %}
  3424 // Integer Immediate: the values 0-31
  3425 operand immU5() %{
  3426   predicate(n->get_int() >= 0 && n->get_int() <= 31);
  3427   match(ConI);
  3428   op_cost(0);
  3430   format %{ %}
  3431   interface(CONST_INTER);
  3432 %}
  3434 // Integer Immediate: the values 1-31
  3435 operand immI_1_31() %{
  3436   predicate(n->get_int() >= 1 && n->get_int() <= 31);
  3437   match(ConI);
  3438   op_cost(0);
  3440   format %{ %}
  3441   interface(CONST_INTER);
  3442 %}
  3444 // Integer Immediate: the values 32-63
  3445 operand immI_32_63() %{
  3446   predicate(n->get_int() >= 32 && n->get_int() <= 63);
  3447   match(ConI);
  3448   op_cost(0);
  3450   format %{ %}
  3451   interface(CONST_INTER);
  3452 %}
  3454 // Immediates for special shifts (sign extend)
  3456 // Integer Immediate: the value 16
  3457 operand immI_16() %{
  3458   predicate(n->get_int() == 16);
  3459   match(ConI);
  3460   op_cost(0);
  3462   format %{ %}
  3463   interface(CONST_INTER);
  3464 %}
  3466 // Integer Immediate: the value 24
  3467 operand immI_24() %{
  3468   predicate(n->get_int() == 24);
  3469   match(ConI);
  3470   op_cost(0);
  3472   format %{ %}
  3473   interface(CONST_INTER);
  3474 %}
  3476 // Integer Immediate: the value 255
  3477 operand immI_255() %{
  3478   predicate( n->get_int() == 255 );
  3479   match(ConI);
  3480   op_cost(0);
  3482   format %{ %}
  3483   interface(CONST_INTER);
  3484 %}
  3486 // Integer Immediate: the value 65535
  3487 operand immI_65535() %{
  3488   predicate(n->get_int() == 65535);
  3489   match(ConI);
  3490   op_cost(0);
  3492   format %{ %}
  3493   interface(CONST_INTER);
  3494 %}
  3496 // Long Immediate: the value FF
  3497 operand immL_FF() %{
  3498   predicate( n->get_long() == 0xFFL );
  3499   match(ConL);
  3500   op_cost(0);
  3502   format %{ %}
  3503   interface(CONST_INTER);
  3504 %}
  3506 // Long Immediate: the value FFFF
  3507 operand immL_FFFF() %{
  3508   predicate( n->get_long() == 0xFFFFL );
  3509   match(ConL);
  3510   op_cost(0);
  3512   format %{ %}
  3513   interface(CONST_INTER);
  3514 %}
  3516 // Pointer Immediate: 32 or 64-bit
  3517 operand immP() %{
  3518   match(ConP);
  3520   op_cost(5);
  3521   // formats are generated automatically for constants and base registers
  3522   format %{ %}
  3523   interface(CONST_INTER);
  3524 %}
  3526 #ifdef _LP64
  3527 // Pointer Immediate: 64-bit
  3528 operand immP_set() %{
  3529   predicate(!VM_Version::is_niagara_plus());
  3530   match(ConP);
  3532   op_cost(5);
  3533   // formats are generated automatically for constants and base registers
  3534   format %{ %}
  3535   interface(CONST_INTER);
  3536 %}
  3538 // Pointer Immediate: 64-bit
  3539 // From Niagara2 processors on a load should be better than materializing.
  3540 operand immP_load() %{
  3541   predicate(VM_Version::is_niagara_plus() && (n->bottom_type()->isa_oop_ptr() || (MacroAssembler::insts_for_set(n->get_ptr()) > 3)));
  3542   match(ConP);
  3544   op_cost(5);
  3545   // formats are generated automatically for constants and base registers
  3546   format %{ %}
  3547   interface(CONST_INTER);
  3548 %}
  3550 // Pointer Immediate: 64-bit
  3551 operand immP_no_oop_cheap() %{
  3552   predicate(VM_Version::is_niagara_plus() && !n->bottom_type()->isa_oop_ptr() && (MacroAssembler::insts_for_set(n->get_ptr()) <= 3));
  3553   match(ConP);
  3555   op_cost(5);
  3556   // formats are generated automatically for constants and base registers
  3557   format %{ %}
  3558   interface(CONST_INTER);
  3559 %}
  3560 #endif
  3562 operand immP13() %{
  3563   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
  3564   match(ConP);
  3565   op_cost(0);
  3567   format %{ %}
  3568   interface(CONST_INTER);
  3569 %}
  3571 operand immP0() %{
  3572   predicate(n->get_ptr() == 0);
  3573   match(ConP);
  3574   op_cost(0);
  3576   format %{ %}
  3577   interface(CONST_INTER);
  3578 %}
  3580 operand immP_poll() %{
  3581   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
  3582   match(ConP);
  3584   // formats are generated automatically for constants and base registers
  3585   format %{ %}
  3586   interface(CONST_INTER);
  3587 %}
  3589 // Pointer Immediate
  3590 operand immN()
  3591 %{
  3592   match(ConN);
  3594   op_cost(10);
  3595   format %{ %}
  3596   interface(CONST_INTER);
  3597 %}
  3599 // NULL Pointer Immediate
  3600 operand immN0()
  3601 %{
  3602   predicate(n->get_narrowcon() == 0);
  3603   match(ConN);
  3605   op_cost(0);
  3606   format %{ %}
  3607   interface(CONST_INTER);
  3608 %}
  3610 operand immL() %{
  3611   match(ConL);
  3612   op_cost(40);
  3613   // formats are generated automatically for constants and base registers
  3614   format %{ %}
  3615   interface(CONST_INTER);
  3616 %}
  3618 operand immL0() %{
  3619   predicate(n->get_long() == 0L);
  3620   match(ConL);
  3621   op_cost(0);
  3622   // formats are generated automatically for constants and base registers
  3623   format %{ %}
  3624   interface(CONST_INTER);
  3625 %}
  3627 // Integer Immediate: 5-bit
  3628 operand immL5() %{
  3629   predicate(n->get_long() == (int)n->get_long() && Assembler::is_simm((int)n->get_long(), 5));
  3630   match(ConL);
  3631   op_cost(0);
  3632   format %{ %}
  3633   interface(CONST_INTER);
  3634 %}
  3636 // Long Immediate: 13-bit
  3637 operand immL13() %{
  3638   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
  3639   match(ConL);
  3640   op_cost(0);
  3642   format %{ %}
  3643   interface(CONST_INTER);
  3644 %}
  3646 // Long Immediate: 13-bit minus 7
  3647 operand immL13m7() %{
  3648   predicate((-4096L < n->get_long()) && ((n->get_long() + 7L) <= 4095L));
  3649   match(ConL);
  3650   op_cost(0);
  3652   format %{ %}
  3653   interface(CONST_INTER);
  3654 %}
  3656 // Long Immediate: low 32-bit mask
  3657 operand immL_32bits() %{
  3658   predicate(n->get_long() == 0xFFFFFFFFL);
  3659   match(ConL);
  3660   op_cost(0);
  3662   format %{ %}
  3663   interface(CONST_INTER);
  3664 %}
  3666 // Long Immediate: cheap (materialize in <= 3 instructions)
  3667 operand immL_cheap() %{
  3668   predicate(!VM_Version::is_niagara_plus() || MacroAssembler::insts_for_set64(n->get_long()) <= 3);
  3669   match(ConL);
  3670   op_cost(0);
  3672   format %{ %}
  3673   interface(CONST_INTER);
  3674 %}
  3676 // Long Immediate: expensive (materialize in > 3 instructions)
  3677 operand immL_expensive() %{
  3678   predicate(VM_Version::is_niagara_plus() && MacroAssembler::insts_for_set64(n->get_long()) > 3);
  3679   match(ConL);
  3680   op_cost(0);
  3682   format %{ %}
  3683   interface(CONST_INTER);
  3684 %}
  3686 // Double Immediate
  3687 operand immD() %{
  3688   match(ConD);
  3690   op_cost(40);
  3691   format %{ %}
  3692   interface(CONST_INTER);
  3693 %}
  3695 operand immD0() %{
  3696 #ifdef _LP64
  3697   // on 64-bit architectures this comparision is faster
  3698   predicate(jlong_cast(n->getd()) == 0);
  3699 #else
  3700   predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
  3701 #endif
  3702   match(ConD);
  3704   op_cost(0);
  3705   format %{ %}
  3706   interface(CONST_INTER);
  3707 %}
  3709 // Float Immediate
  3710 operand immF() %{
  3711   match(ConF);
  3713   op_cost(20);
  3714   format %{ %}
  3715   interface(CONST_INTER);
  3716 %}
  3718 // Float Immediate: 0
  3719 operand immF0() %{
  3720   predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
  3721   match(ConF);
  3723   op_cost(0);
  3724   format %{ %}
  3725   interface(CONST_INTER);
  3726 %}
  3728 // Integer Register Operands
  3729 // Integer Register
  3730 operand iRegI() %{
  3731   constraint(ALLOC_IN_RC(int_reg));
  3732   match(RegI);
  3734   match(notemp_iRegI);
  3735   match(g1RegI);
  3736   match(o0RegI);
  3737   match(iRegIsafe);
  3739   format %{ %}
  3740   interface(REG_INTER);
  3741 %}
  3743 operand notemp_iRegI() %{
  3744   constraint(ALLOC_IN_RC(notemp_int_reg));
  3745   match(RegI);
  3747   match(o0RegI);
  3749   format %{ %}
  3750   interface(REG_INTER);
  3751 %}
  3753 operand o0RegI() %{
  3754   constraint(ALLOC_IN_RC(o0_regI));
  3755   match(iRegI);
  3757   format %{ %}
  3758   interface(REG_INTER);
  3759 %}
  3761 // Pointer Register
  3762 operand iRegP() %{
  3763   constraint(ALLOC_IN_RC(ptr_reg));
  3764   match(RegP);
  3766   match(lock_ptr_RegP);
  3767   match(g1RegP);
  3768   match(g2RegP);
  3769   match(g3RegP);
  3770   match(g4RegP);
  3771   match(i0RegP);
  3772   match(o0RegP);
  3773   match(o1RegP);
  3774   match(l7RegP);
  3776   format %{ %}
  3777   interface(REG_INTER);
  3778 %}
  3780 operand sp_ptr_RegP() %{
  3781   constraint(ALLOC_IN_RC(sp_ptr_reg));
  3782   match(RegP);
  3783   match(iRegP);
  3785   format %{ %}
  3786   interface(REG_INTER);
  3787 %}
  3789 operand lock_ptr_RegP() %{
  3790   constraint(ALLOC_IN_RC(lock_ptr_reg));
  3791   match(RegP);
  3792   match(i0RegP);
  3793   match(o0RegP);
  3794   match(o1RegP);
  3795   match(l7RegP);
  3797   format %{ %}
  3798   interface(REG_INTER);
  3799 %}
  3801 operand g1RegP() %{
  3802   constraint(ALLOC_IN_RC(g1_regP));
  3803   match(iRegP);
  3805   format %{ %}
  3806   interface(REG_INTER);
  3807 %}
  3809 operand g2RegP() %{
  3810   constraint(ALLOC_IN_RC(g2_regP));
  3811   match(iRegP);
  3813   format %{ %}
  3814   interface(REG_INTER);
  3815 %}
  3817 operand g3RegP() %{
  3818   constraint(ALLOC_IN_RC(g3_regP));
  3819   match(iRegP);
  3821   format %{ %}
  3822   interface(REG_INTER);
  3823 %}
  3825 operand g1RegI() %{
  3826   constraint(ALLOC_IN_RC(g1_regI));
  3827   match(iRegI);
  3829   format %{ %}
  3830   interface(REG_INTER);
  3831 %}
  3833 operand g3RegI() %{
  3834   constraint(ALLOC_IN_RC(g3_regI));
  3835   match(iRegI);
  3837   format %{ %}
  3838   interface(REG_INTER);
  3839 %}
  3841 operand g4RegI() %{
  3842   constraint(ALLOC_IN_RC(g4_regI));
  3843   match(iRegI);
  3845   format %{ %}
  3846   interface(REG_INTER);
  3847 %}
  3849 operand g4RegP() %{
  3850   constraint(ALLOC_IN_RC(g4_regP));
  3851   match(iRegP);
  3853   format %{ %}
  3854   interface(REG_INTER);
  3855 %}
  3857 operand i0RegP() %{
  3858   constraint(ALLOC_IN_RC(i0_regP));
  3859   match(iRegP);
  3861   format %{ %}
  3862   interface(REG_INTER);
  3863 %}
  3865 operand o0RegP() %{
  3866   constraint(ALLOC_IN_RC(o0_regP));
  3867   match(iRegP);
  3869   format %{ %}
  3870   interface(REG_INTER);
  3871 %}
  3873 operand o1RegP() %{
  3874   constraint(ALLOC_IN_RC(o1_regP));
  3875   match(iRegP);
  3877   format %{ %}
  3878   interface(REG_INTER);
  3879 %}
  3881 operand o2RegP() %{
  3882   constraint(ALLOC_IN_RC(o2_regP));
  3883   match(iRegP);
  3885   format %{ %}
  3886   interface(REG_INTER);
  3887 %}
  3889 operand o7RegP() %{
  3890   constraint(ALLOC_IN_RC(o7_regP));
  3891   match(iRegP);
  3893   format %{ %}
  3894   interface(REG_INTER);
  3895 %}
  3897 operand l7RegP() %{
  3898   constraint(ALLOC_IN_RC(l7_regP));
  3899   match(iRegP);
  3901   format %{ %}
  3902   interface(REG_INTER);
  3903 %}
  3905 operand o7RegI() %{
  3906   constraint(ALLOC_IN_RC(o7_regI));
  3907   match(iRegI);
  3909   format %{ %}
  3910   interface(REG_INTER);
  3911 %}
  3913 operand iRegN() %{
  3914   constraint(ALLOC_IN_RC(int_reg));
  3915   match(RegN);
  3917   format %{ %}
  3918   interface(REG_INTER);
  3919 %}
  3921 // Long Register
  3922 operand iRegL() %{
  3923   constraint(ALLOC_IN_RC(long_reg));
  3924   match(RegL);
  3926   format %{ %}
  3927   interface(REG_INTER);
  3928 %}
  3930 operand o2RegL() %{
  3931   constraint(ALLOC_IN_RC(o2_regL));
  3932   match(iRegL);
  3934   format %{ %}
  3935   interface(REG_INTER);
  3936 %}
  3938 operand o7RegL() %{
  3939   constraint(ALLOC_IN_RC(o7_regL));
  3940   match(iRegL);
  3942   format %{ %}
  3943   interface(REG_INTER);
  3944 %}
  3946 operand g1RegL() %{
  3947   constraint(ALLOC_IN_RC(g1_regL));
  3948   match(iRegL);
  3950   format %{ %}
  3951   interface(REG_INTER);
  3952 %}
  3954 operand g3RegL() %{
  3955   constraint(ALLOC_IN_RC(g3_regL));
  3956   match(iRegL);
  3958   format %{ %}
  3959   interface(REG_INTER);
  3960 %}
  3962 // Int Register safe
  3963 // This is 64bit safe
  3964 operand iRegIsafe() %{
  3965   constraint(ALLOC_IN_RC(long_reg));
  3967   match(iRegI);
  3969   format %{ %}
  3970   interface(REG_INTER);
  3971 %}
  3973 // Condition Code Flag Register
  3974 operand flagsReg() %{
  3975   constraint(ALLOC_IN_RC(int_flags));
  3976   match(RegFlags);
  3978   format %{ "ccr" %} // both ICC and XCC
  3979   interface(REG_INTER);
  3980 %}
  3982 // Condition Code Register, unsigned comparisons.
  3983 operand flagsRegU() %{
  3984   constraint(ALLOC_IN_RC(int_flags));
  3985   match(RegFlags);
  3987   format %{ "icc_U" %}
  3988   interface(REG_INTER);
  3989 %}
  3991 // Condition Code Register, pointer comparisons.
  3992 operand flagsRegP() %{
  3993   constraint(ALLOC_IN_RC(int_flags));
  3994   match(RegFlags);
  3996 #ifdef _LP64
  3997   format %{ "xcc_P" %}
  3998 #else
  3999   format %{ "icc_P" %}
  4000 #endif
  4001   interface(REG_INTER);
  4002 %}
  4004 // Condition Code Register, long comparisons.
  4005 operand flagsRegL() %{
  4006   constraint(ALLOC_IN_RC(int_flags));
  4007   match(RegFlags);
  4009   format %{ "xcc_L" %}
  4010   interface(REG_INTER);
  4011 %}
  4013 // Condition Code Register, floating comparisons, unordered same as "less".
  4014 operand flagsRegF() %{
  4015   constraint(ALLOC_IN_RC(float_flags));
  4016   match(RegFlags);
  4017   match(flagsRegF0);
  4019   format %{ %}
  4020   interface(REG_INTER);
  4021 %}
  4023 operand flagsRegF0() %{
  4024   constraint(ALLOC_IN_RC(float_flag0));
  4025   match(RegFlags);
  4027   format %{ %}
  4028   interface(REG_INTER);
  4029 %}
  4032 // Condition Code Flag Register used by long compare
  4033 operand flagsReg_long_LTGE() %{
  4034   constraint(ALLOC_IN_RC(int_flags));
  4035   match(RegFlags);
  4036   format %{ "icc_LTGE" %}
  4037   interface(REG_INTER);
  4038 %}
  4039 operand flagsReg_long_EQNE() %{
  4040   constraint(ALLOC_IN_RC(int_flags));
  4041   match(RegFlags);
  4042   format %{ "icc_EQNE" %}
  4043   interface(REG_INTER);
  4044 %}
  4045 operand flagsReg_long_LEGT() %{
  4046   constraint(ALLOC_IN_RC(int_flags));
  4047   match(RegFlags);
  4048   format %{ "icc_LEGT" %}
  4049   interface(REG_INTER);
  4050 %}
  4053 operand regD() %{
  4054   constraint(ALLOC_IN_RC(dflt_reg));
  4055   match(RegD);
  4057   match(regD_low);
  4059   format %{ %}
  4060   interface(REG_INTER);
  4061 %}
  4063 operand regF() %{
  4064   constraint(ALLOC_IN_RC(sflt_reg));
  4065   match(RegF);
  4067   format %{ %}
  4068   interface(REG_INTER);
  4069 %}
  4071 operand regD_low() %{
  4072   constraint(ALLOC_IN_RC(dflt_low_reg));
  4073   match(regD);
  4075   format %{ %}
  4076   interface(REG_INTER);
  4077 %}
  4079 // Special Registers
  4081 // Method Register
  4082 operand inline_cache_regP(iRegP reg) %{
  4083   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
  4084   match(reg);
  4085   format %{ %}
  4086   interface(REG_INTER);
  4087 %}
  4089 operand interpreter_method_oop_regP(iRegP reg) %{
  4090   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
  4091   match(reg);
  4092   format %{ %}
  4093   interface(REG_INTER);
  4094 %}
  4097 //----------Complex Operands---------------------------------------------------
  4098 // Indirect Memory Reference
  4099 operand indirect(sp_ptr_RegP reg) %{
  4100   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4101   match(reg);
  4103   op_cost(100);
  4104   format %{ "[$reg]" %}
  4105   interface(MEMORY_INTER) %{
  4106     base($reg);
  4107     index(0x0);
  4108     scale(0x0);
  4109     disp(0x0);
  4110   %}
  4111 %}
  4113 // Indirect with simm13 Offset
  4114 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
  4115   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4116   match(AddP reg offset);
  4118   op_cost(100);
  4119   format %{ "[$reg + $offset]" %}
  4120   interface(MEMORY_INTER) %{
  4121     base($reg);
  4122     index(0x0);
  4123     scale(0x0);
  4124     disp($offset);
  4125   %}
  4126 %}
  4128 // Indirect with simm13 Offset minus 7
  4129 operand indOffset13m7(sp_ptr_RegP reg, immX13m7 offset) %{
  4130   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4131   match(AddP reg offset);
  4133   op_cost(100);
  4134   format %{ "[$reg + $offset]" %}
  4135   interface(MEMORY_INTER) %{
  4136     base($reg);
  4137     index(0x0);
  4138     scale(0x0);
  4139     disp($offset);
  4140   %}
  4141 %}
  4143 // Note:  Intel has a swapped version also, like this:
  4144 //operand indOffsetX(iRegI reg, immP offset) %{
  4145 //  constraint(ALLOC_IN_RC(int_reg));
  4146 //  match(AddP offset reg);
  4147 //
  4148 //  op_cost(100);
  4149 //  format %{ "[$reg + $offset]" %}
  4150 //  interface(MEMORY_INTER) %{
  4151 //    base($reg);
  4152 //    index(0x0);
  4153 //    scale(0x0);
  4154 //    disp($offset);
  4155 //  %}
  4156 //%}
  4157 //// However, it doesn't make sense for SPARC, since
  4158 // we have no particularly good way to embed oops in
  4159 // single instructions.
  4161 // Indirect with Register Index
  4162 operand indIndex(iRegP addr, iRegX index) %{
  4163   constraint(ALLOC_IN_RC(ptr_reg));
  4164   match(AddP addr index);
  4166   op_cost(100);
  4167   format %{ "[$addr + $index]" %}
  4168   interface(MEMORY_INTER) %{
  4169     base($addr);
  4170     index($index);
  4171     scale(0x0);
  4172     disp(0x0);
  4173   %}
  4174 %}
  4176 //----------Special Memory Operands--------------------------------------------
  4177 // Stack Slot Operand - This operand is used for loading and storing temporary
  4178 //                      values on the stack where a match requires a value to
  4179 //                      flow through memory.
  4180 operand stackSlotI(sRegI reg) %{
  4181   constraint(ALLOC_IN_RC(stack_slots));
  4182   op_cost(100);
  4183   //match(RegI);
  4184   format %{ "[$reg]" %}
  4185   interface(MEMORY_INTER) %{
  4186     base(0xE);   // R_SP
  4187     index(0x0);
  4188     scale(0x0);
  4189     disp($reg);  // Stack Offset
  4190   %}
  4191 %}
  4193 operand stackSlotP(sRegP reg) %{
  4194   constraint(ALLOC_IN_RC(stack_slots));
  4195   op_cost(100);
  4196   //match(RegP);
  4197   format %{ "[$reg]" %}
  4198   interface(MEMORY_INTER) %{
  4199     base(0xE);   // R_SP
  4200     index(0x0);
  4201     scale(0x0);
  4202     disp($reg);  // Stack Offset
  4203   %}
  4204 %}
  4206 operand stackSlotF(sRegF reg) %{
  4207   constraint(ALLOC_IN_RC(stack_slots));
  4208   op_cost(100);
  4209   //match(RegF);
  4210   format %{ "[$reg]" %}
  4211   interface(MEMORY_INTER) %{
  4212     base(0xE);   // R_SP
  4213     index(0x0);
  4214     scale(0x0);
  4215     disp($reg);  // Stack Offset
  4216   %}
  4217 %}
  4218 operand stackSlotD(sRegD reg) %{
  4219   constraint(ALLOC_IN_RC(stack_slots));
  4220   op_cost(100);
  4221   //match(RegD);
  4222   format %{ "[$reg]" %}
  4223   interface(MEMORY_INTER) %{
  4224     base(0xE);   // R_SP
  4225     index(0x0);
  4226     scale(0x0);
  4227     disp($reg);  // Stack Offset
  4228   %}
  4229 %}
  4230 operand stackSlotL(sRegL reg) %{
  4231   constraint(ALLOC_IN_RC(stack_slots));
  4232   op_cost(100);
  4233   //match(RegL);
  4234   format %{ "[$reg]" %}
  4235   interface(MEMORY_INTER) %{
  4236     base(0xE);   // R_SP
  4237     index(0x0);
  4238     scale(0x0);
  4239     disp($reg);  // Stack Offset
  4240   %}
  4241 %}
  4243 // Operands for expressing Control Flow
  4244 // NOTE:  Label is a predefined operand which should not be redefined in
  4245 //        the AD file.  It is generically handled within the ADLC.
  4247 //----------Conditional Branch Operands----------------------------------------
  4248 // Comparison Op  - This is the operation of the comparison, and is limited to
  4249 //                  the following set of codes:
  4250 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  4251 //
  4252 // Other attributes of the comparison, such as unsignedness, are specified
  4253 // by the comparison instruction that sets a condition code flags register.
  4254 // That result is represented by a flags operand whose subtype is appropriate
  4255 // to the unsignedness (etc.) of the comparison.
  4256 //
  4257 // Later, the instruction which matches both the Comparison Op (a Bool) and
  4258 // the flags (produced by the Cmp) specifies the coding of the comparison op
  4259 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  4261 operand cmpOp() %{
  4262   match(Bool);
  4264   format %{ "" %}
  4265   interface(COND_INTER) %{
  4266     equal(0x1);
  4267     not_equal(0x9);
  4268     less(0x3);
  4269     greater_equal(0xB);
  4270     less_equal(0x2);
  4271     greater(0xA);
  4272   %}
  4273 %}
  4275 // Comparison Op, unsigned
  4276 operand cmpOpU() %{
  4277   match(Bool);
  4279   format %{ "u" %}
  4280   interface(COND_INTER) %{
  4281     equal(0x1);
  4282     not_equal(0x9);
  4283     less(0x5);
  4284     greater_equal(0xD);
  4285     less_equal(0x4);
  4286     greater(0xC);
  4287   %}
  4288 %}
  4290 // Comparison Op, pointer (same as unsigned)
  4291 operand cmpOpP() %{
  4292   match(Bool);
  4294   format %{ "p" %}
  4295   interface(COND_INTER) %{
  4296     equal(0x1);
  4297     not_equal(0x9);
  4298     less(0x5);
  4299     greater_equal(0xD);
  4300     less_equal(0x4);
  4301     greater(0xC);
  4302   %}
  4303 %}
  4305 // Comparison Op, branch-register encoding
  4306 operand cmpOp_reg() %{
  4307   match(Bool);
  4309   format %{ "" %}
  4310   interface(COND_INTER) %{
  4311     equal        (0x1);
  4312     not_equal    (0x5);
  4313     less         (0x3);
  4314     greater_equal(0x7);
  4315     less_equal   (0x2);
  4316     greater      (0x6);
  4317   %}
  4318 %}
  4320 // Comparison Code, floating, unordered same as less
  4321 operand cmpOpF() %{
  4322   match(Bool);
  4324   format %{ "fl" %}
  4325   interface(COND_INTER) %{
  4326     equal(0x9);
  4327     not_equal(0x1);
  4328     less(0x3);
  4329     greater_equal(0xB);
  4330     less_equal(0xE);
  4331     greater(0x6);
  4332   %}
  4333 %}
  4335 // Used by long compare
  4336 operand cmpOp_commute() %{
  4337   match(Bool);
  4339   format %{ "" %}
  4340   interface(COND_INTER) %{
  4341     equal(0x1);
  4342     not_equal(0x9);
  4343     less(0xA);
  4344     greater_equal(0x2);
  4345     less_equal(0xB);
  4346     greater(0x3);
  4347   %}
  4348 %}
  4350 //----------OPERAND CLASSES----------------------------------------------------
  4351 // Operand Classes are groups of operands that are used to simplify
  4352 // instruction definitions by not requiring the AD writer to specify separate
  4353 // instructions for every form of operand when the instruction accepts
  4354 // multiple operand types with the same basic encoding and format.  The classic
  4355 // case of this is memory operands.
  4356 opclass memory( indirect, indOffset13, indIndex );
  4357 opclass indIndexMemory( indIndex );
  4359 //----------PIPELINE-----------------------------------------------------------
  4360 pipeline %{
  4362 //----------ATTRIBUTES---------------------------------------------------------
  4363 attributes %{
  4364   fixed_size_instructions;           // Fixed size instructions
  4365   branch_has_delay_slot;             // Branch has delay slot following
  4366   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
  4367   instruction_unit_size = 4;         // An instruction is 4 bytes long
  4368   instruction_fetch_unit_size = 16;  // The processor fetches one line
  4369   instruction_fetch_units = 1;       // of 16 bytes
  4371   // List of nop instructions
  4372   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
  4373 %}
  4375 //----------RESOURCES----------------------------------------------------------
  4376 // Resources are the functional units available to the machine
  4377 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
  4379 //----------PIPELINE DESCRIPTION-----------------------------------------------
  4380 // Pipeline Description specifies the stages in the machine's pipeline
  4382 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
  4384 //----------PIPELINE CLASSES---------------------------------------------------
  4385 // Pipeline Classes describe the stages in which input and output are
  4386 // referenced by the hardware pipeline.
  4388 // Integer ALU reg-reg operation
  4389 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4390     single_instruction;
  4391     dst   : E(write);
  4392     src1  : R(read);
  4393     src2  : R(read);
  4394     IALU  : R;
  4395 %}
  4397 // Integer ALU reg-reg long operation
  4398 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  4399     instruction_count(2);
  4400     dst   : E(write);
  4401     src1  : R(read);
  4402     src2  : R(read);
  4403     IALU  : R;
  4404     IALU  : R;
  4405 %}
  4407 // Integer ALU reg-reg long dependent operation
  4408 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
  4409     instruction_count(1); multiple_bundles;
  4410     dst   : E(write);
  4411     src1  : R(read);
  4412     src2  : R(read);
  4413     cr    : E(write);
  4414     IALU  : R(2);
  4415 %}
  4417 // Integer ALU reg-imm operaion
  4418 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4419     single_instruction;
  4420     dst   : E(write);
  4421     src1  : R(read);
  4422     IALU  : R;
  4423 %}
  4425 // Integer ALU reg-reg operation with condition code
  4426 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
  4427     single_instruction;
  4428     dst   : E(write);
  4429     cr    : E(write);
  4430     src1  : R(read);
  4431     src2  : R(read);
  4432     IALU  : R;
  4433 %}
  4435 // Integer ALU reg-imm operation with condition code
  4436 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
  4437     single_instruction;
  4438     dst   : E(write);
  4439     cr    : E(write);
  4440     src1  : R(read);
  4441     IALU  : R;
  4442 %}
  4444 // Integer ALU zero-reg operation
  4445 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  4446     single_instruction;
  4447     dst   : E(write);
  4448     src2  : R(read);
  4449     IALU  : R;
  4450 %}
  4452 // Integer ALU zero-reg operation with condition code only
  4453 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
  4454     single_instruction;
  4455     cr    : E(write);
  4456     src   : R(read);
  4457     IALU  : R;
  4458 %}
  4460 // Integer ALU reg-reg operation with condition code only
  4461 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4462     single_instruction;
  4463     cr    : E(write);
  4464     src1  : R(read);
  4465     src2  : R(read);
  4466     IALU  : R;
  4467 %}
  4469 // Integer ALU reg-imm operation with condition code only
  4470 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4471     single_instruction;
  4472     cr    : E(write);
  4473     src1  : R(read);
  4474     IALU  : R;
  4475 %}
  4477 // Integer ALU reg-reg-zero operation with condition code only
  4478 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
  4479     single_instruction;
  4480     cr    : E(write);
  4481     src1  : R(read);
  4482     src2  : R(read);
  4483     IALU  : R;
  4484 %}
  4486 // Integer ALU reg-imm-zero operation with condition code only
  4487 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
  4488     single_instruction;
  4489     cr    : E(write);
  4490     src1  : R(read);
  4491     IALU  : R;
  4492 %}
  4494 // Integer ALU reg-reg operation with condition code, src1 modified
  4495 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4496     single_instruction;
  4497     cr    : E(write);
  4498     src1  : E(write);
  4499     src1  : R(read);
  4500     src2  : R(read);
  4501     IALU  : R;
  4502 %}
  4504 // Integer ALU reg-imm operation with condition code, src1 modified
  4505 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4506     single_instruction;
  4507     cr    : E(write);
  4508     src1  : E(write);
  4509     src1  : R(read);
  4510     IALU  : R;
  4511 %}
  4513 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
  4514     multiple_bundles;
  4515     dst   : E(write)+4;
  4516     cr    : E(write);
  4517     src1  : R(read);
  4518     src2  : R(read);
  4519     IALU  : R(3);
  4520     BR    : R(2);
  4521 %}
  4523 // Integer ALU operation
  4524 pipe_class ialu_none(iRegI dst) %{
  4525     single_instruction;
  4526     dst   : E(write);
  4527     IALU  : R;
  4528 %}
  4530 // Integer ALU reg operation
  4531 pipe_class ialu_reg(iRegI dst, iRegI src) %{
  4532     single_instruction; may_have_no_code;
  4533     dst   : E(write);
  4534     src   : R(read);
  4535     IALU  : R;
  4536 %}
  4538 // Integer ALU reg conditional operation
  4539 // This instruction has a 1 cycle stall, and cannot execute
  4540 // in the same cycle as the instruction setting the condition
  4541 // code. We kludge this by pretending to read the condition code
  4542 // 1 cycle earlier, and by marking the functional units as busy
  4543 // for 2 cycles with the result available 1 cycle later than
  4544 // is really the case.
  4545 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
  4546     single_instruction;
  4547     op2_out : C(write);
  4548     op1     : R(read);
  4549     cr      : R(read);       // This is really E, with a 1 cycle stall
  4550     BR      : R(2);
  4551     MS      : R(2);
  4552 %}
  4554 #ifdef _LP64
  4555 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
  4556     instruction_count(1); multiple_bundles;
  4557     dst     : C(write)+1;
  4558     src     : R(read)+1;
  4559     IALU    : R(1);
  4560     BR      : E(2);
  4561     MS      : E(2);
  4562 %}
  4563 #endif
  4565 // Integer ALU reg operation
  4566 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
  4567     single_instruction; may_have_no_code;
  4568     dst   : E(write);
  4569     src   : R(read);
  4570     IALU  : R;
  4571 %}
  4572 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
  4573     single_instruction; may_have_no_code;
  4574     dst   : E(write);
  4575     src   : R(read);
  4576     IALU  : R;
  4577 %}
  4579 // Two integer ALU reg operations
  4580 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
  4581     instruction_count(2);
  4582     dst   : E(write);
  4583     src   : R(read);
  4584     A0    : R;
  4585     A1    : R;
  4586 %}
  4588 // Two integer ALU reg operations
  4589 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
  4590     instruction_count(2); may_have_no_code;
  4591     dst   : E(write);
  4592     src   : R(read);
  4593     A0    : R;
  4594     A1    : R;
  4595 %}
  4597 // Integer ALU imm operation
  4598 pipe_class ialu_imm(iRegI dst, immI13 src) %{
  4599     single_instruction;
  4600     dst   : E(write);
  4601     IALU  : R;
  4602 %}
  4604 // Integer ALU reg-reg with carry operation
  4605 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
  4606     single_instruction;
  4607     dst   : E(write);
  4608     src1  : R(read);
  4609     src2  : R(read);
  4610     IALU  : R;
  4611 %}
  4613 // Integer ALU cc operation
  4614 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
  4615     single_instruction;
  4616     dst   : E(write);
  4617     cc    : R(read);
  4618     IALU  : R;
  4619 %}
  4621 // Integer ALU cc / second IALU operation
  4622 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
  4623     instruction_count(1); multiple_bundles;
  4624     dst   : E(write)+1;
  4625     src   : R(read);
  4626     IALU  : R;
  4627 %}
  4629 // Integer ALU cc / second IALU operation
  4630 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
  4631     instruction_count(1); multiple_bundles;
  4632     dst   : E(write)+1;
  4633     p     : R(read);
  4634     q     : R(read);
  4635     IALU  : R;
  4636 %}
  4638 // Integer ALU hi-lo-reg operation
  4639 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
  4640     instruction_count(1); multiple_bundles;
  4641     dst   : E(write)+1;
  4642     IALU  : R(2);
  4643 %}
  4645 // Float ALU hi-lo-reg operation (with temp)
  4646 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
  4647     instruction_count(1); multiple_bundles;
  4648     dst   : E(write)+1;
  4649     IALU  : R(2);
  4650 %}
  4652 // Long Constant
  4653 pipe_class loadConL( iRegL dst, immL src ) %{
  4654     instruction_count(2); multiple_bundles;
  4655     dst   : E(write)+1;
  4656     IALU  : R(2);
  4657     IALU  : R(2);
  4658 %}
  4660 // Pointer Constant
  4661 pipe_class loadConP( iRegP dst, immP src ) %{
  4662     instruction_count(0); multiple_bundles;
  4663     fixed_latency(6);
  4664 %}
  4666 // Polling Address
  4667 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
  4668 #ifdef _LP64
  4669     instruction_count(0); multiple_bundles;
  4670     fixed_latency(6);
  4671 #else
  4672     dst   : E(write);
  4673     IALU  : R;
  4674 #endif
  4675 %}
  4677 // Long Constant small
  4678 pipe_class loadConLlo( iRegL dst, immL src ) %{
  4679     instruction_count(2);
  4680     dst   : E(write);
  4681     IALU  : R;
  4682     IALU  : R;
  4683 %}
  4685 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
  4686 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
  4687     instruction_count(1); multiple_bundles;
  4688     src   : R(read);
  4689     dst   : M(write)+1;
  4690     IALU  : R;
  4691     MS    : E;
  4692 %}
  4694 // Integer ALU nop operation
  4695 pipe_class ialu_nop() %{
  4696     single_instruction;
  4697     IALU  : R;
  4698 %}
  4700 // Integer ALU nop operation
  4701 pipe_class ialu_nop_A0() %{
  4702     single_instruction;
  4703     A0    : R;
  4704 %}
  4706 // Integer ALU nop operation
  4707 pipe_class ialu_nop_A1() %{
  4708     single_instruction;
  4709     A1    : R;
  4710 %}
  4712 // Integer Multiply reg-reg operation
  4713 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4714     single_instruction;
  4715     dst   : E(write);
  4716     src1  : R(read);
  4717     src2  : R(read);
  4718     MS    : R(5);
  4719 %}
  4721 // Integer Multiply reg-imm operation
  4722 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4723     single_instruction;
  4724     dst   : E(write);
  4725     src1  : R(read);
  4726     MS    : R(5);
  4727 %}
  4729 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4730     single_instruction;
  4731     dst   : E(write)+4;
  4732     src1  : R(read);
  4733     src2  : R(read);
  4734     MS    : R(6);
  4735 %}
  4737 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4738     single_instruction;
  4739     dst   : E(write)+4;
  4740     src1  : R(read);
  4741     MS    : R(6);
  4742 %}
  4744 // Integer Divide reg-reg
  4745 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
  4746     instruction_count(1); multiple_bundles;
  4747     dst   : E(write);
  4748     temp  : E(write);
  4749     src1  : R(read);
  4750     src2  : R(read);
  4751     temp  : R(read);
  4752     MS    : R(38);
  4753 %}
  4755 // Integer Divide reg-imm
  4756 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
  4757     instruction_count(1); multiple_bundles;
  4758     dst   : E(write);
  4759     temp  : E(write);
  4760     src1  : R(read);
  4761     temp  : R(read);
  4762     MS    : R(38);
  4763 %}
  4765 // Long Divide
  4766 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4767     dst  : E(write)+71;
  4768     src1 : R(read);
  4769     src2 : R(read)+1;
  4770     MS   : R(70);
  4771 %}
  4773 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4774     dst  : E(write)+71;
  4775     src1 : R(read);
  4776     MS   : R(70);
  4777 %}
  4779 // Floating Point Add Float
  4780 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
  4781     single_instruction;
  4782     dst   : X(write);
  4783     src1  : E(read);
  4784     src2  : E(read);
  4785     FA    : R;
  4786 %}
  4788 // Floating Point Add Double
  4789 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
  4790     single_instruction;
  4791     dst   : X(write);
  4792     src1  : E(read);
  4793     src2  : E(read);
  4794     FA    : R;
  4795 %}
  4797 // Floating Point Conditional Move based on integer flags
  4798 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
  4799     single_instruction;
  4800     dst   : X(write);
  4801     src   : E(read);
  4802     cr    : R(read);
  4803     FA    : R(2);
  4804     BR    : R(2);
  4805 %}
  4807 // Floating Point Conditional Move based on integer flags
  4808 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
  4809     single_instruction;
  4810     dst   : X(write);
  4811     src   : E(read);
  4812     cr    : R(read);
  4813     FA    : R(2);
  4814     BR    : R(2);
  4815 %}
  4817 // Floating Point Multiply Float
  4818 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
  4819     single_instruction;
  4820     dst   : X(write);
  4821     src1  : E(read);
  4822     src2  : E(read);
  4823     FM    : R;
  4824 %}
  4826 // Floating Point Multiply Double
  4827 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
  4828     single_instruction;
  4829     dst   : X(write);
  4830     src1  : E(read);
  4831     src2  : E(read);
  4832     FM    : R;
  4833 %}
  4835 // Floating Point Divide Float
  4836 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
  4837     single_instruction;
  4838     dst   : X(write);
  4839     src1  : E(read);
  4840     src2  : E(read);
  4841     FM    : R;
  4842     FDIV  : C(14);
  4843 %}
  4845 // Floating Point Divide Double
  4846 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
  4847     single_instruction;
  4848     dst   : X(write);
  4849     src1  : E(read);
  4850     src2  : E(read);
  4851     FM    : R;
  4852     FDIV  : C(17);
  4853 %}
  4855 // Floating Point Move/Negate/Abs Float
  4856 pipe_class faddF_reg(regF dst, regF src) %{
  4857     single_instruction;
  4858     dst   : W(write);
  4859     src   : E(read);
  4860     FA    : R(1);
  4861 %}
  4863 // Floating Point Move/Negate/Abs Double
  4864 pipe_class faddD_reg(regD dst, regD src) %{
  4865     single_instruction;
  4866     dst   : W(write);
  4867     src   : E(read);
  4868     FA    : R;
  4869 %}
  4871 // Floating Point Convert F->D
  4872 pipe_class fcvtF2D(regD dst, regF src) %{
  4873     single_instruction;
  4874     dst   : X(write);
  4875     src   : E(read);
  4876     FA    : R;
  4877 %}
  4879 // Floating Point Convert I->D
  4880 pipe_class fcvtI2D(regD dst, regF src) %{
  4881     single_instruction;
  4882     dst   : X(write);
  4883     src   : E(read);
  4884     FA    : R;
  4885 %}
  4887 // Floating Point Convert LHi->D
  4888 pipe_class fcvtLHi2D(regD dst, regD src) %{
  4889     single_instruction;
  4890     dst   : X(write);
  4891     src   : E(read);
  4892     FA    : R;
  4893 %}
  4895 // Floating Point Convert L->D
  4896 pipe_class fcvtL2D(regD dst, regF src) %{
  4897     single_instruction;
  4898     dst   : X(write);
  4899     src   : E(read);
  4900     FA    : R;
  4901 %}
  4903 // Floating Point Convert L->F
  4904 pipe_class fcvtL2F(regD dst, regF src) %{
  4905     single_instruction;
  4906     dst   : X(write);
  4907     src   : E(read);
  4908     FA    : R;
  4909 %}
  4911 // Floating Point Convert D->F
  4912 pipe_class fcvtD2F(regD dst, regF src) %{
  4913     single_instruction;
  4914     dst   : X(write);
  4915     src   : E(read);
  4916     FA    : R;
  4917 %}
  4919 // Floating Point Convert I->L
  4920 pipe_class fcvtI2L(regD dst, regF src) %{
  4921     single_instruction;
  4922     dst   : X(write);
  4923     src   : E(read);
  4924     FA    : R;
  4925 %}
  4927 // Floating Point Convert D->F
  4928 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
  4929     instruction_count(1); multiple_bundles;
  4930     dst   : X(write)+6;
  4931     src   : E(read);
  4932     FA    : R;
  4933 %}
  4935 // Floating Point Convert D->L
  4936 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
  4937     instruction_count(1); multiple_bundles;
  4938     dst   : X(write)+6;
  4939     src   : E(read);
  4940     FA    : R;
  4941 %}
  4943 // Floating Point Convert F->I
  4944 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
  4945     instruction_count(1); multiple_bundles;
  4946     dst   : X(write)+6;
  4947     src   : E(read);
  4948     FA    : R;
  4949 %}
  4951 // Floating Point Convert F->L
  4952 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
  4953     instruction_count(1); multiple_bundles;
  4954     dst   : X(write)+6;
  4955     src   : E(read);
  4956     FA    : R;
  4957 %}
  4959 // Floating Point Convert I->F
  4960 pipe_class fcvtI2F(regF dst, regF src) %{
  4961     single_instruction;
  4962     dst   : X(write);
  4963     src   : E(read);
  4964     FA    : R;
  4965 %}
  4967 // Floating Point Compare
  4968 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
  4969     single_instruction;
  4970     cr    : X(write);
  4971     src1  : E(read);
  4972     src2  : E(read);
  4973     FA    : R;
  4974 %}
  4976 // Floating Point Compare
  4977 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
  4978     single_instruction;
  4979     cr    : X(write);
  4980     src1  : E(read);
  4981     src2  : E(read);
  4982     FA    : R;
  4983 %}
  4985 // Floating Add Nop
  4986 pipe_class fadd_nop() %{
  4987     single_instruction;
  4988     FA  : R;
  4989 %}
  4991 // Integer Store to Memory
  4992 pipe_class istore_mem_reg(memory mem, iRegI src) %{
  4993     single_instruction;
  4994     mem   : R(read);
  4995     src   : C(read);
  4996     MS    : R;
  4997 %}
  4999 // Integer Store to Memory
  5000 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
  5001     single_instruction;
  5002     mem   : R(read);
  5003     src   : C(read);
  5004     MS    : R;
  5005 %}
  5007 // Integer Store Zero to Memory
  5008 pipe_class istore_mem_zero(memory mem, immI0 src) %{
  5009     single_instruction;
  5010     mem   : R(read);
  5011     MS    : R;
  5012 %}
  5014 // Special Stack Slot Store
  5015 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
  5016     single_instruction;
  5017     stkSlot : R(read);
  5018     src     : C(read);
  5019     MS      : R;
  5020 %}
  5022 // Special Stack Slot Store
  5023 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
  5024     instruction_count(2); multiple_bundles;
  5025     stkSlot : R(read);
  5026     src     : C(read);
  5027     MS      : R(2);
  5028 %}
  5030 // Float Store
  5031 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
  5032     single_instruction;
  5033     mem : R(read);
  5034     src : C(read);
  5035     MS  : R;
  5036 %}
  5038 // Float Store
  5039 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
  5040     single_instruction;
  5041     mem : R(read);
  5042     MS  : R;
  5043 %}
  5045 // Double Store
  5046 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
  5047     instruction_count(1);
  5048     mem : R(read);
  5049     src : C(read);
  5050     MS  : R;
  5051 %}
  5053 // Double Store
  5054 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
  5055     single_instruction;
  5056     mem : R(read);
  5057     MS  : R;
  5058 %}
  5060 // Special Stack Slot Float Store
  5061 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
  5062     single_instruction;
  5063     stkSlot : R(read);
  5064     src     : C(read);
  5065     MS      : R;
  5066 %}
  5068 // Special Stack Slot Double Store
  5069 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
  5070     single_instruction;
  5071     stkSlot : R(read);
  5072     src     : C(read);
  5073     MS      : R;
  5074 %}
  5076 // Integer Load (when sign bit propagation not needed)
  5077 pipe_class iload_mem(iRegI dst, memory mem) %{
  5078     single_instruction;
  5079     mem : R(read);
  5080     dst : C(write);
  5081     MS  : R;
  5082 %}
  5084 // Integer Load from stack operand
  5085 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
  5086     single_instruction;
  5087     mem : R(read);
  5088     dst : C(write);
  5089     MS  : R;
  5090 %}
  5092 // Integer Load (when sign bit propagation or masking is needed)
  5093 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
  5094     single_instruction;
  5095     mem : R(read);
  5096     dst : M(write);
  5097     MS  : R;
  5098 %}
  5100 // Float Load
  5101 pipe_class floadF_mem(regF dst, memory mem) %{
  5102     single_instruction;
  5103     mem : R(read);
  5104     dst : M(write);
  5105     MS  : R;
  5106 %}
  5108 // Float Load
  5109 pipe_class floadD_mem(regD dst, memory mem) %{
  5110     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
  5111     mem : R(read);
  5112     dst : M(write);
  5113     MS  : R;
  5114 %}
  5116 // Float Load
  5117 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
  5118     single_instruction;
  5119     stkSlot : R(read);
  5120     dst : M(write);
  5121     MS  : R;
  5122 %}
  5124 // Float Load
  5125 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
  5126     single_instruction;
  5127     stkSlot : R(read);
  5128     dst : M(write);
  5129     MS  : R;
  5130 %}
  5132 // Memory Nop
  5133 pipe_class mem_nop() %{
  5134     single_instruction;
  5135     MS  : R;
  5136 %}
  5138 pipe_class sethi(iRegP dst, immI src) %{
  5139     single_instruction;
  5140     dst  : E(write);
  5141     IALU : R;
  5142 %}
  5144 pipe_class loadPollP(iRegP poll) %{
  5145     single_instruction;
  5146     poll : R(read);
  5147     MS   : R;
  5148 %}
  5150 pipe_class br(Universe br, label labl) %{
  5151     single_instruction_with_delay_slot;
  5152     BR  : R;
  5153 %}
  5155 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
  5156     single_instruction_with_delay_slot;
  5157     cr    : E(read);
  5158     BR    : R;
  5159 %}
  5161 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
  5162     single_instruction_with_delay_slot;
  5163     op1 : E(read);
  5164     BR  : R;
  5165     MS  : R;
  5166 %}
  5168 // Compare and branch
  5169 pipe_class cmp_br_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl, flagsReg cr) %{
  5170     instruction_count(2); has_delay_slot;
  5171     cr    : E(write);
  5172     src1  : R(read);
  5173     src2  : R(read);
  5174     IALU  : R;
  5175     BR    : R;
  5176 %}
  5178 // Compare and branch
  5179 pipe_class cmp_br_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI13 src2, label labl, flagsReg cr) %{
  5180     instruction_count(2); has_delay_slot;
  5181     cr    : E(write);
  5182     src1  : R(read);
  5183     IALU  : R;
  5184     BR    : R;
  5185 %}
  5187 // Compare and branch using cbcond
  5188 pipe_class cbcond_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl) %{
  5189     single_instruction;
  5190     src1  : E(read);
  5191     src2  : E(read);
  5192     IALU  : R;
  5193     BR    : R;
  5194 %}
  5196 // Compare and branch using cbcond
  5197 pipe_class cbcond_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI5 src2, label labl) %{
  5198     single_instruction;
  5199     src1  : E(read);
  5200     IALU  : R;
  5201     BR    : R;
  5202 %}
  5204 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
  5205     single_instruction_with_delay_slot;
  5206     cr    : E(read);
  5207     BR    : R;
  5208 %}
  5210 pipe_class br_nop() %{
  5211     single_instruction;
  5212     BR  : R;
  5213 %}
  5215 pipe_class simple_call(method meth) %{
  5216     instruction_count(2); multiple_bundles; force_serialization;
  5217     fixed_latency(100);
  5218     BR  : R(1);
  5219     MS  : R(1);
  5220     A0  : R(1);
  5221 %}
  5223 pipe_class compiled_call(method meth) %{
  5224     instruction_count(1); multiple_bundles; force_serialization;
  5225     fixed_latency(100);
  5226     MS  : R(1);
  5227 %}
  5229 pipe_class call(method meth) %{
  5230     instruction_count(0); multiple_bundles; force_serialization;
  5231     fixed_latency(100);
  5232 %}
  5234 pipe_class tail_call(Universe ignore, label labl) %{
  5235     single_instruction; has_delay_slot;
  5236     fixed_latency(100);
  5237     BR  : R(1);
  5238     MS  : R(1);
  5239 %}
  5241 pipe_class ret(Universe ignore) %{
  5242     single_instruction; has_delay_slot;
  5243     BR  : R(1);
  5244     MS  : R(1);
  5245 %}
  5247 pipe_class ret_poll(g3RegP poll) %{
  5248     instruction_count(3); has_delay_slot;
  5249     poll : E(read);
  5250     MS   : R;
  5251 %}
  5253 // The real do-nothing guy
  5254 pipe_class empty( ) %{
  5255     instruction_count(0);
  5256 %}
  5258 pipe_class long_memory_op() %{
  5259     instruction_count(0); multiple_bundles; force_serialization;
  5260     fixed_latency(25);
  5261     MS  : R(1);
  5262 %}
  5264 // Check-cast
  5265 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
  5266     array : R(read);
  5267     match  : R(read);
  5268     IALU   : R(2);
  5269     BR     : R(2);
  5270     MS     : R;
  5271 %}
  5273 // Convert FPU flags into +1,0,-1
  5274 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
  5275     src1  : E(read);
  5276     src2  : E(read);
  5277     dst   : E(write);
  5278     FA    : R;
  5279     MS    : R(2);
  5280     BR    : R(2);
  5281 %}
  5283 // Compare for p < q, and conditionally add y
  5284 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
  5285     p     : E(read);
  5286     q     : E(read);
  5287     y     : E(read);
  5288     IALU  : R(3)
  5289 %}
  5291 // Perform a compare, then move conditionally in a branch delay slot.
  5292 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
  5293     src2   : E(read);
  5294     srcdst : E(read);
  5295     IALU   : R;
  5296     BR     : R;
  5297 %}
  5299 // Define the class for the Nop node
  5300 define %{
  5301    MachNop = ialu_nop;
  5302 %}
  5304 %}
  5306 //----------INSTRUCTIONS-------------------------------------------------------
  5308 //------------Special Stack Slot instructions - no match rules-----------------
  5309 instruct stkI_to_regF(regF dst, stackSlotI src) %{
  5310   // No match rule to avoid chain rule match.
  5311   effect(DEF dst, USE src);
  5312   ins_cost(MEMORY_REF_COST);
  5313   size(4);
  5314   format %{ "LDF    $src,$dst\t! stkI to regF" %}
  5315   opcode(Assembler::ldf_op3);
  5316   ins_encode(simple_form3_mem_reg(src, dst));
  5317   ins_pipe(floadF_stk);
  5318 %}
  5320 instruct stkL_to_regD(regD dst, stackSlotL src) %{
  5321   // No match rule to avoid chain rule match.
  5322   effect(DEF dst, USE src);
  5323   ins_cost(MEMORY_REF_COST);
  5324   size(4);
  5325   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
  5326   opcode(Assembler::lddf_op3);
  5327   ins_encode(simple_form3_mem_reg(src, dst));
  5328   ins_pipe(floadD_stk);
  5329 %}
  5331 instruct regF_to_stkI(stackSlotI dst, regF src) %{
  5332   // No match rule to avoid chain rule match.
  5333   effect(DEF dst, USE src);
  5334   ins_cost(MEMORY_REF_COST);
  5335   size(4);
  5336   format %{ "STF    $src,$dst\t! regF to stkI" %}
  5337   opcode(Assembler::stf_op3);
  5338   ins_encode(simple_form3_mem_reg(dst, src));
  5339   ins_pipe(fstoreF_stk_reg);
  5340 %}
  5342 instruct regD_to_stkL(stackSlotL dst, regD src) %{
  5343   // No match rule to avoid chain rule match.
  5344   effect(DEF dst, USE src);
  5345   ins_cost(MEMORY_REF_COST);
  5346   size(4);
  5347   format %{ "STDF   $src,$dst\t! regD to stkL" %}
  5348   opcode(Assembler::stdf_op3);
  5349   ins_encode(simple_form3_mem_reg(dst, src));
  5350   ins_pipe(fstoreD_stk_reg);
  5351 %}
  5353 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
  5354   effect(DEF dst, USE src);
  5355   ins_cost(MEMORY_REF_COST*2);
  5356   size(8);
  5357   format %{ "STW    $src,$dst.hi\t! long\n\t"
  5358             "STW    R_G0,$dst.lo" %}
  5359   opcode(Assembler::stw_op3);
  5360   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
  5361   ins_pipe(lstoreI_stk_reg);
  5362 %}
  5364 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
  5365   // No match rule to avoid chain rule match.
  5366   effect(DEF dst, USE src);
  5367   ins_cost(MEMORY_REF_COST);
  5368   size(4);
  5369   format %{ "STX    $src,$dst\t! regL to stkD" %}
  5370   opcode(Assembler::stx_op3);
  5371   ins_encode(simple_form3_mem_reg( dst, src ) );
  5372   ins_pipe(istore_stk_reg);
  5373 %}
  5375 //---------- Chain stack slots between similar types --------
  5377 // Load integer from stack slot
  5378 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
  5379   match(Set dst src);
  5380   ins_cost(MEMORY_REF_COST);
  5382   size(4);
  5383   format %{ "LDUW   $src,$dst\t!stk" %}
  5384   opcode(Assembler::lduw_op3);
  5385   ins_encode(simple_form3_mem_reg( src, dst ) );
  5386   ins_pipe(iload_mem);
  5387 %}
  5389 // Store integer to stack slot
  5390 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
  5391   match(Set dst src);
  5392   ins_cost(MEMORY_REF_COST);
  5394   size(4);
  5395   format %{ "STW    $src,$dst\t!stk" %}
  5396   opcode(Assembler::stw_op3);
  5397   ins_encode(simple_form3_mem_reg( dst, src ) );
  5398   ins_pipe(istore_mem_reg);
  5399 %}
  5401 // Load long from stack slot
  5402 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
  5403   match(Set dst src);
  5405   ins_cost(MEMORY_REF_COST);
  5406   size(4);
  5407   format %{ "LDX    $src,$dst\t! long" %}
  5408   opcode(Assembler::ldx_op3);
  5409   ins_encode(simple_form3_mem_reg( src, dst ) );
  5410   ins_pipe(iload_mem);
  5411 %}
  5413 // Store long to stack slot
  5414 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
  5415   match(Set dst src);
  5417   ins_cost(MEMORY_REF_COST);
  5418   size(4);
  5419   format %{ "STX    $src,$dst\t! long" %}
  5420   opcode(Assembler::stx_op3);
  5421   ins_encode(simple_form3_mem_reg( dst, src ) );
  5422   ins_pipe(istore_mem_reg);
  5423 %}
  5425 #ifdef _LP64
  5426 // Load pointer from stack slot, 64-bit encoding
  5427 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5428   match(Set dst src);
  5429   ins_cost(MEMORY_REF_COST);
  5430   size(4);
  5431   format %{ "LDX    $src,$dst\t!ptr" %}
  5432   opcode(Assembler::ldx_op3);
  5433   ins_encode(simple_form3_mem_reg( src, dst ) );
  5434   ins_pipe(iload_mem);
  5435 %}
  5437 // Store pointer to stack slot
  5438 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5439   match(Set dst src);
  5440   ins_cost(MEMORY_REF_COST);
  5441   size(4);
  5442   format %{ "STX    $src,$dst\t!ptr" %}
  5443   opcode(Assembler::stx_op3);
  5444   ins_encode(simple_form3_mem_reg( dst, src ) );
  5445   ins_pipe(istore_mem_reg);
  5446 %}
  5447 #else // _LP64
  5448 // Load pointer from stack slot, 32-bit encoding
  5449 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5450   match(Set dst src);
  5451   ins_cost(MEMORY_REF_COST);
  5452   format %{ "LDUW   $src,$dst\t!ptr" %}
  5453   opcode(Assembler::lduw_op3, Assembler::ldst_op);
  5454   ins_encode(simple_form3_mem_reg( src, dst ) );
  5455   ins_pipe(iload_mem);
  5456 %}
  5458 // Store pointer to stack slot
  5459 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5460   match(Set dst src);
  5461   ins_cost(MEMORY_REF_COST);
  5462   format %{ "STW    $src,$dst\t!ptr" %}
  5463   opcode(Assembler::stw_op3, Assembler::ldst_op);
  5464   ins_encode(simple_form3_mem_reg( dst, src ) );
  5465   ins_pipe(istore_mem_reg);
  5466 %}
  5467 #endif // _LP64
  5469 //------------Special Nop instructions for bundling - no match rules-----------
  5470 // Nop using the A0 functional unit
  5471 instruct Nop_A0() %{
  5472   ins_cost(0);
  5474   format %{ "NOP    ! Alu Pipeline" %}
  5475   opcode(Assembler::or_op3, Assembler::arith_op);
  5476   ins_encode( form2_nop() );
  5477   ins_pipe(ialu_nop_A0);
  5478 %}
  5480 // Nop using the A1 functional unit
  5481 instruct Nop_A1( ) %{
  5482   ins_cost(0);
  5484   format %{ "NOP    ! Alu Pipeline" %}
  5485   opcode(Assembler::or_op3, Assembler::arith_op);
  5486   ins_encode( form2_nop() );
  5487   ins_pipe(ialu_nop_A1);
  5488 %}
  5490 // Nop using the memory functional unit
  5491 instruct Nop_MS( ) %{
  5492   ins_cost(0);
  5494   format %{ "NOP    ! Memory Pipeline" %}
  5495   ins_encode( emit_mem_nop );
  5496   ins_pipe(mem_nop);
  5497 %}
  5499 // Nop using the floating add functional unit
  5500 instruct Nop_FA( ) %{
  5501   ins_cost(0);
  5503   format %{ "NOP    ! Floating Add Pipeline" %}
  5504   ins_encode( emit_fadd_nop );
  5505   ins_pipe(fadd_nop);
  5506 %}
  5508 // Nop using the branch functional unit
  5509 instruct Nop_BR( ) %{
  5510   ins_cost(0);
  5512   format %{ "NOP    ! Branch Pipeline" %}
  5513   ins_encode( emit_br_nop );
  5514   ins_pipe(br_nop);
  5515 %}
  5517 //----------Load/Store/Move Instructions---------------------------------------
  5518 //----------Load Instructions--------------------------------------------------
  5519 // Load Byte (8bit signed)
  5520 instruct loadB(iRegI dst, memory mem) %{
  5521   match(Set dst (LoadB mem));
  5522   ins_cost(MEMORY_REF_COST);
  5524   size(4);
  5525   format %{ "LDSB   $mem,$dst\t! byte" %}
  5526   ins_encode %{
  5527     __ ldsb($mem$$Address, $dst$$Register);
  5528   %}
  5529   ins_pipe(iload_mask_mem);
  5530 %}
  5532 // Load Byte (8bit signed) into a Long Register
  5533 instruct loadB2L(iRegL dst, memory mem) %{
  5534   match(Set dst (ConvI2L (LoadB mem)));
  5535   ins_cost(MEMORY_REF_COST);
  5537   size(4);
  5538   format %{ "LDSB   $mem,$dst\t! byte -> long" %}
  5539   ins_encode %{
  5540     __ ldsb($mem$$Address, $dst$$Register);
  5541   %}
  5542   ins_pipe(iload_mask_mem);
  5543 %}
  5545 // Load Unsigned Byte (8bit UNsigned) into an int reg
  5546 instruct loadUB(iRegI dst, memory mem) %{
  5547   match(Set dst (LoadUB mem));
  5548   ins_cost(MEMORY_REF_COST);
  5550   size(4);
  5551   format %{ "LDUB   $mem,$dst\t! ubyte" %}
  5552   ins_encode %{
  5553     __ ldub($mem$$Address, $dst$$Register);
  5554   %}
  5555   ins_pipe(iload_mem);
  5556 %}
  5558 // Load Unsigned Byte (8bit UNsigned) into a Long Register
  5559 instruct loadUB2L(iRegL dst, memory mem) %{
  5560   match(Set dst (ConvI2L (LoadUB mem)));
  5561   ins_cost(MEMORY_REF_COST);
  5563   size(4);
  5564   format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
  5565   ins_encode %{
  5566     __ ldub($mem$$Address, $dst$$Register);
  5567   %}
  5568   ins_pipe(iload_mem);
  5569 %}
  5571 // Load Unsigned Byte (8 bit UNsigned) with 8-bit mask into Long Register
  5572 instruct loadUB2L_immI8(iRegL dst, memory mem, immI8 mask) %{
  5573   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
  5574   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5576   size(2*4);
  5577   format %{ "LDUB   $mem,$dst\t# ubyte & 8-bit mask -> long\n\t"
  5578             "AND    $dst,$mask,$dst" %}
  5579   ins_encode %{
  5580     __ ldub($mem$$Address, $dst$$Register);
  5581     __ and3($dst$$Register, $mask$$constant, $dst$$Register);
  5582   %}
  5583   ins_pipe(iload_mem);
  5584 %}
  5586 // Load Short (16bit signed)
  5587 instruct loadS(iRegI dst, memory mem) %{
  5588   match(Set dst (LoadS mem));
  5589   ins_cost(MEMORY_REF_COST);
  5591   size(4);
  5592   format %{ "LDSH   $mem,$dst\t! short" %}
  5593   ins_encode %{
  5594     __ ldsh($mem$$Address, $dst$$Register);
  5595   %}
  5596   ins_pipe(iload_mask_mem);
  5597 %}
  5599 // Load Short (16 bit signed) to Byte (8 bit signed)
  5600 instruct loadS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5601   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
  5602   ins_cost(MEMORY_REF_COST);
  5604   size(4);
  5606   format %{ "LDSB   $mem+1,$dst\t! short -> byte" %}
  5607   ins_encode %{
  5608     __ ldsb($mem$$Address, $dst$$Register, 1);
  5609   %}
  5610   ins_pipe(iload_mask_mem);
  5611 %}
  5613 // Load Short (16bit signed) into a Long Register
  5614 instruct loadS2L(iRegL dst, memory mem) %{
  5615   match(Set dst (ConvI2L (LoadS mem)));
  5616   ins_cost(MEMORY_REF_COST);
  5618   size(4);
  5619   format %{ "LDSH   $mem,$dst\t! short -> long" %}
  5620   ins_encode %{
  5621     __ ldsh($mem$$Address, $dst$$Register);
  5622   %}
  5623   ins_pipe(iload_mask_mem);
  5624 %}
  5626 // Load Unsigned Short/Char (16bit UNsigned)
  5627 instruct loadUS(iRegI dst, memory mem) %{
  5628   match(Set dst (LoadUS mem));
  5629   ins_cost(MEMORY_REF_COST);
  5631   size(4);
  5632   format %{ "LDUH   $mem,$dst\t! ushort/char" %}
  5633   ins_encode %{
  5634     __ lduh($mem$$Address, $dst$$Register);
  5635   %}
  5636   ins_pipe(iload_mem);
  5637 %}
  5639 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
  5640 instruct loadUS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5641   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
  5642   ins_cost(MEMORY_REF_COST);
  5644   size(4);
  5645   format %{ "LDSB   $mem+1,$dst\t! ushort -> byte" %}
  5646   ins_encode %{
  5647     __ ldsb($mem$$Address, $dst$$Register, 1);
  5648   %}
  5649   ins_pipe(iload_mask_mem);
  5650 %}
  5652 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
  5653 instruct loadUS2L(iRegL dst, memory mem) %{
  5654   match(Set dst (ConvI2L (LoadUS mem)));
  5655   ins_cost(MEMORY_REF_COST);
  5657   size(4);
  5658   format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
  5659   ins_encode %{
  5660     __ lduh($mem$$Address, $dst$$Register);
  5661   %}
  5662   ins_pipe(iload_mem);
  5663 %}
  5665 // Load Unsigned Short/Char (16bit UNsigned) with mask 0xFF into a Long Register
  5666 instruct loadUS2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
  5667   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5668   ins_cost(MEMORY_REF_COST);
  5670   size(4);
  5671   format %{ "LDUB   $mem+1,$dst\t! ushort/char & 0xFF -> long" %}
  5672   ins_encode %{
  5673     __ ldub($mem$$Address, $dst$$Register, 1);  // LSB is index+1 on BE
  5674   %}
  5675   ins_pipe(iload_mem);
  5676 %}
  5678 // Load Unsigned Short/Char (16bit UNsigned) with a 13-bit mask into a Long Register
  5679 instruct loadUS2L_immI13(iRegL dst, memory mem, immI13 mask) %{
  5680   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5681   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5683   size(2*4);
  5684   format %{ "LDUH   $mem,$dst\t! ushort/char & 13-bit mask -> long\n\t"
  5685             "AND    $dst,$mask,$dst" %}
  5686   ins_encode %{
  5687     Register Rdst = $dst$$Register;
  5688     __ lduh($mem$$Address, Rdst);
  5689     __ and3(Rdst, $mask$$constant, Rdst);
  5690   %}
  5691   ins_pipe(iload_mem);
  5692 %}
  5694 // Load Unsigned Short/Char (16bit UNsigned) with a 16-bit mask into a Long Register
  5695 instruct loadUS2L_immI16(iRegL dst, memory mem, immI16 mask, iRegL tmp) %{
  5696   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5697   effect(TEMP dst, TEMP tmp);
  5698   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
  5700   size((3+1)*4);  // set may use two instructions.
  5701   format %{ "LDUH   $mem,$dst\t! ushort/char & 16-bit mask -> long\n\t"
  5702             "SET    $mask,$tmp\n\t"
  5703             "AND    $dst,$tmp,$dst" %}
  5704   ins_encode %{
  5705     Register Rdst = $dst$$Register;
  5706     Register Rtmp = $tmp$$Register;
  5707     __ lduh($mem$$Address, Rdst);
  5708     __ set($mask$$constant, Rtmp);
  5709     __ and3(Rdst, Rtmp, Rdst);
  5710   %}
  5711   ins_pipe(iload_mem);
  5712 %}
  5714 // Load Integer
  5715 instruct loadI(iRegI dst, memory mem) %{
  5716   match(Set dst (LoadI mem));
  5717   ins_cost(MEMORY_REF_COST);
  5719   size(4);
  5720   format %{ "LDUW   $mem,$dst\t! int" %}
  5721   ins_encode %{
  5722     __ lduw($mem$$Address, $dst$$Register);
  5723   %}
  5724   ins_pipe(iload_mem);
  5725 %}
  5727 // Load Integer to Byte (8 bit signed)
  5728 instruct loadI2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5729   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
  5730   ins_cost(MEMORY_REF_COST);
  5732   size(4);
  5734   format %{ "LDSB   $mem+3,$dst\t! int -> byte" %}
  5735   ins_encode %{
  5736     __ ldsb($mem$$Address, $dst$$Register, 3);
  5737   %}
  5738   ins_pipe(iload_mask_mem);
  5739 %}
  5741 // Load Integer to Unsigned Byte (8 bit UNsigned)
  5742 instruct loadI2UB(iRegI dst, indOffset13m7 mem, immI_255 mask) %{
  5743   match(Set dst (AndI (LoadI mem) mask));
  5744   ins_cost(MEMORY_REF_COST);
  5746   size(4);
  5748   format %{ "LDUB   $mem+3,$dst\t! int -> ubyte" %}
  5749   ins_encode %{
  5750     __ ldub($mem$$Address, $dst$$Register, 3);
  5751   %}
  5752   ins_pipe(iload_mask_mem);
  5753 %}
  5755 // Load Integer to Short (16 bit signed)
  5756 instruct loadI2S(iRegI dst, indOffset13m7 mem, immI_16 sixteen) %{
  5757   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
  5758   ins_cost(MEMORY_REF_COST);
  5760   size(4);
  5762   format %{ "LDSH   $mem+2,$dst\t! int -> short" %}
  5763   ins_encode %{
  5764     __ ldsh($mem$$Address, $dst$$Register, 2);
  5765   %}
  5766   ins_pipe(iload_mask_mem);
  5767 %}
  5769 // Load Integer to Unsigned Short (16 bit UNsigned)
  5770 instruct loadI2US(iRegI dst, indOffset13m7 mem, immI_65535 mask) %{
  5771   match(Set dst (AndI (LoadI mem) mask));
  5772   ins_cost(MEMORY_REF_COST);
  5774   size(4);
  5776   format %{ "LDUH   $mem+2,$dst\t! int -> ushort/char" %}
  5777   ins_encode %{
  5778     __ lduh($mem$$Address, $dst$$Register, 2);
  5779   %}
  5780   ins_pipe(iload_mask_mem);
  5781 %}
  5783 // Load Integer into a Long Register
  5784 instruct loadI2L(iRegL dst, memory mem) %{
  5785   match(Set dst (ConvI2L (LoadI mem)));
  5786   ins_cost(MEMORY_REF_COST);
  5788   size(4);
  5789   format %{ "LDSW   $mem,$dst\t! int -> long" %}
  5790   ins_encode %{
  5791     __ ldsw($mem$$Address, $dst$$Register);
  5792   %}
  5793   ins_pipe(iload_mask_mem);
  5794 %}
  5796 // Load Integer with mask 0xFF into a Long Register
  5797 instruct loadI2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
  5798   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5799   ins_cost(MEMORY_REF_COST);
  5801   size(4);
  5802   format %{ "LDUB   $mem+3,$dst\t! int & 0xFF -> long" %}
  5803   ins_encode %{
  5804     __ ldub($mem$$Address, $dst$$Register, 3);  // LSB is index+3 on BE
  5805   %}
  5806   ins_pipe(iload_mem);
  5807 %}
  5809 // Load Integer with mask 0xFFFF into a Long Register
  5810 instruct loadI2L_immI_65535(iRegL dst, indOffset13m7 mem, immI_65535 mask) %{
  5811   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5812   ins_cost(MEMORY_REF_COST);
  5814   size(4);
  5815   format %{ "LDUH   $mem+2,$dst\t! int & 0xFFFF -> long" %}
  5816   ins_encode %{
  5817     __ lduh($mem$$Address, $dst$$Register, 2);  // LSW is index+2 on BE
  5818   %}
  5819   ins_pipe(iload_mem);
  5820 %}
  5822 // Load Integer with a 13-bit mask into a Long Register
  5823 instruct loadI2L_immI13(iRegL dst, memory mem, immI13 mask) %{
  5824   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5825   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5827   size(2*4);
  5828   format %{ "LDUW   $mem,$dst\t! int & 13-bit mask -> long\n\t"
  5829             "AND    $dst,$mask,$dst" %}
  5830   ins_encode %{
  5831     Register Rdst = $dst$$Register;
  5832     __ lduw($mem$$Address, Rdst);
  5833     __ and3(Rdst, $mask$$constant, Rdst);
  5834   %}
  5835   ins_pipe(iload_mem);
  5836 %}
  5838 // Load Integer with a 32-bit mask into a Long Register
  5839 instruct loadI2L_immI(iRegL dst, memory mem, immI mask, iRegL tmp) %{
  5840   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5841   effect(TEMP dst, TEMP tmp);
  5842   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
  5844   size((3+1)*4);  // set may use two instructions.
  5845   format %{ "LDUW   $mem,$dst\t! int & 32-bit mask -> long\n\t"
  5846             "SET    $mask,$tmp\n\t"
  5847             "AND    $dst,$tmp,$dst" %}
  5848   ins_encode %{
  5849     Register Rdst = $dst$$Register;
  5850     Register Rtmp = $tmp$$Register;
  5851     __ lduw($mem$$Address, Rdst);
  5852     __ set($mask$$constant, Rtmp);
  5853     __ and3(Rdst, Rtmp, Rdst);
  5854   %}
  5855   ins_pipe(iload_mem);
  5856 %}
  5858 // Load Unsigned Integer into a Long Register
  5859 instruct loadUI2L(iRegL dst, memory mem) %{
  5860   match(Set dst (LoadUI2L mem));
  5861   ins_cost(MEMORY_REF_COST);
  5863   size(4);
  5864   format %{ "LDUW   $mem,$dst\t! uint -> long" %}
  5865   ins_encode %{
  5866     __ lduw($mem$$Address, $dst$$Register);
  5867   %}
  5868   ins_pipe(iload_mem);
  5869 %}
  5871 // Load Long - aligned
  5872 instruct loadL(iRegL dst, memory mem ) %{
  5873   match(Set dst (LoadL mem));
  5874   ins_cost(MEMORY_REF_COST);
  5876   size(4);
  5877   format %{ "LDX    $mem,$dst\t! long" %}
  5878   ins_encode %{
  5879     __ ldx($mem$$Address, $dst$$Register);
  5880   %}
  5881   ins_pipe(iload_mem);
  5882 %}
  5884 // Load Long - UNaligned
  5885 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
  5886   match(Set dst (LoadL_unaligned mem));
  5887   effect(KILL tmp);
  5888   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  5889   size(16);
  5890   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
  5891           "\tLDUW   $mem  ,$dst\n"
  5892           "\tSLLX   #32, $dst, $dst\n"
  5893           "\tOR     $dst, R_O7, $dst" %}
  5894   opcode(Assembler::lduw_op3);
  5895   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
  5896   ins_pipe(iload_mem);
  5897 %}
  5899 // Load Aligned Packed Byte into a Double Register
  5900 instruct loadA8B(regD dst, memory mem) %{
  5901   match(Set dst (Load8B mem));
  5902   ins_cost(MEMORY_REF_COST);
  5903   size(4);
  5904   format %{ "LDDF   $mem,$dst\t! packed8B" %}
  5905   opcode(Assembler::lddf_op3);
  5906   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5907   ins_pipe(floadD_mem);
  5908 %}
  5910 // Load Aligned Packed Char into a Double Register
  5911 instruct loadA4C(regD dst, memory mem) %{
  5912   match(Set dst (Load4C mem));
  5913   ins_cost(MEMORY_REF_COST);
  5914   size(4);
  5915   format %{ "LDDF   $mem,$dst\t! packed4C" %}
  5916   opcode(Assembler::lddf_op3);
  5917   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5918   ins_pipe(floadD_mem);
  5919 %}
  5921 // Load Aligned Packed Short into a Double Register
  5922 instruct loadA4S(regD dst, memory mem) %{
  5923   match(Set dst (Load4S mem));
  5924   ins_cost(MEMORY_REF_COST);
  5925   size(4);
  5926   format %{ "LDDF   $mem,$dst\t! packed4S" %}
  5927   opcode(Assembler::lddf_op3);
  5928   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5929   ins_pipe(floadD_mem);
  5930 %}
  5932 // Load Aligned Packed Int into a Double Register
  5933 instruct loadA2I(regD dst, memory mem) %{
  5934   match(Set dst (Load2I mem));
  5935   ins_cost(MEMORY_REF_COST);
  5936   size(4);
  5937   format %{ "LDDF   $mem,$dst\t! packed2I" %}
  5938   opcode(Assembler::lddf_op3);
  5939   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5940   ins_pipe(floadD_mem);
  5941 %}
  5943 // Load Range
  5944 instruct loadRange(iRegI dst, memory mem) %{
  5945   match(Set dst (LoadRange mem));
  5946   ins_cost(MEMORY_REF_COST);
  5948   size(4);
  5949   format %{ "LDUW   $mem,$dst\t! range" %}
  5950   opcode(Assembler::lduw_op3);
  5951   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5952   ins_pipe(iload_mem);
  5953 %}
  5955 // Load Integer into %f register (for fitos/fitod)
  5956 instruct loadI_freg(regF dst, memory mem) %{
  5957   match(Set dst (LoadI mem));
  5958   ins_cost(MEMORY_REF_COST);
  5959   size(4);
  5961   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
  5962   opcode(Assembler::ldf_op3);
  5963   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5964   ins_pipe(floadF_mem);
  5965 %}
  5967 // Load Pointer
  5968 instruct loadP(iRegP dst, memory mem) %{
  5969   match(Set dst (LoadP mem));
  5970   ins_cost(MEMORY_REF_COST);
  5971   size(4);
  5973 #ifndef _LP64
  5974   format %{ "LDUW   $mem,$dst\t! ptr" %}
  5975   ins_encode %{
  5976     __ lduw($mem$$Address, $dst$$Register);
  5977   %}
  5978 #else
  5979   format %{ "LDX    $mem,$dst\t! ptr" %}
  5980   ins_encode %{
  5981     __ ldx($mem$$Address, $dst$$Register);
  5982   %}
  5983 #endif
  5984   ins_pipe(iload_mem);
  5985 %}
  5987 // Load Compressed Pointer
  5988 instruct loadN(iRegN dst, memory mem) %{
  5989   match(Set dst (LoadN mem));
  5990   ins_cost(MEMORY_REF_COST);
  5991   size(4);
  5993   format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
  5994   ins_encode %{
  5995     __ lduw($mem$$Address, $dst$$Register);
  5996   %}
  5997   ins_pipe(iload_mem);
  5998 %}
  6000 // Load Klass Pointer
  6001 instruct loadKlass(iRegP dst, memory mem) %{
  6002   match(Set dst (LoadKlass mem));
  6003   ins_cost(MEMORY_REF_COST);
  6004   size(4);
  6006 #ifndef _LP64
  6007   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
  6008   ins_encode %{
  6009     __ lduw($mem$$Address, $dst$$Register);
  6010   %}
  6011 #else
  6012   format %{ "LDX    $mem,$dst\t! klass ptr" %}
  6013   ins_encode %{
  6014     __ ldx($mem$$Address, $dst$$Register);
  6015   %}
  6016 #endif
  6017   ins_pipe(iload_mem);
  6018 %}
  6020 // Load narrow Klass Pointer
  6021 instruct loadNKlass(iRegN dst, memory mem) %{
  6022   match(Set dst (LoadNKlass mem));
  6023   ins_cost(MEMORY_REF_COST);
  6024   size(4);
  6026   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
  6027   ins_encode %{
  6028     __ lduw($mem$$Address, $dst$$Register);
  6029   %}
  6030   ins_pipe(iload_mem);
  6031 %}
  6033 // Load Double
  6034 instruct loadD(regD dst, memory mem) %{
  6035   match(Set dst (LoadD mem));
  6036   ins_cost(MEMORY_REF_COST);
  6038   size(4);
  6039   format %{ "LDDF   $mem,$dst" %}
  6040   opcode(Assembler::lddf_op3);
  6041   ins_encode(simple_form3_mem_reg( mem, dst ) );
  6042   ins_pipe(floadD_mem);
  6043 %}
  6045 // Load Double - UNaligned
  6046 instruct loadD_unaligned(regD_low dst, memory mem ) %{
  6047   match(Set dst (LoadD_unaligned mem));
  6048   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  6049   size(8);
  6050   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
  6051           "\tLDF    $mem+4,$dst.lo\t!" %}
  6052   opcode(Assembler::ldf_op3);
  6053   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
  6054   ins_pipe(iload_mem);
  6055 %}
  6057 // Load Float
  6058 instruct loadF(regF dst, memory mem) %{
  6059   match(Set dst (LoadF mem));
  6060   ins_cost(MEMORY_REF_COST);
  6062   size(4);
  6063   format %{ "LDF    $mem,$dst" %}
  6064   opcode(Assembler::ldf_op3);
  6065   ins_encode(simple_form3_mem_reg( mem, dst ) );
  6066   ins_pipe(floadF_mem);
  6067 %}
  6069 // Load Constant
  6070 instruct loadConI( iRegI dst, immI src ) %{
  6071   match(Set dst src);
  6072   ins_cost(DEFAULT_COST * 3/2);
  6073   format %{ "SET    $src,$dst" %}
  6074   ins_encode( Set32(src, dst) );
  6075   ins_pipe(ialu_hi_lo_reg);
  6076 %}
  6078 instruct loadConI13( iRegI dst, immI13 src ) %{
  6079   match(Set dst src);
  6081   size(4);
  6082   format %{ "MOV    $src,$dst" %}
  6083   ins_encode( Set13( src, dst ) );
  6084   ins_pipe(ialu_imm);
  6085 %}
  6087 #ifndef _LP64
  6088 instruct loadConP(iRegP dst, immP con) %{
  6089   match(Set dst con);
  6090   ins_cost(DEFAULT_COST * 3/2);
  6091   format %{ "SET    $con,$dst\t!ptr" %}
  6092   ins_encode %{
  6093     // [RGV] This next line should be generated from ADLC
  6094     if (_opnds[1]->constant_is_oop()) {
  6095       intptr_t val = $con$$constant;
  6096       __ set_oop_constant((jobject) val, $dst$$Register);
  6097     } else {          // non-oop pointers, e.g. card mark base, heap top
  6098       __ set($con$$constant, $dst$$Register);
  6100   %}
  6101   ins_pipe(loadConP);
  6102 %}
  6103 #else
  6104 instruct loadConP_set(iRegP dst, immP_set con) %{
  6105   match(Set dst con);
  6106   ins_cost(DEFAULT_COST * 3/2);
  6107   format %{ "SET    $con,$dst\t! ptr" %}
  6108   ins_encode %{
  6109     // [RGV] This next line should be generated from ADLC
  6110     if (_opnds[1]->constant_is_oop()) {
  6111       intptr_t val = $con$$constant;
  6112       __ set_oop_constant((jobject) val, $dst$$Register);
  6113     } else {          // non-oop pointers, e.g. card mark base, heap top
  6114       __ set($con$$constant, $dst$$Register);
  6116   %}
  6117   ins_pipe(loadConP);
  6118 %}
  6120 instruct loadConP_load(iRegP dst, immP_load con) %{
  6121   match(Set dst con);
  6122   ins_cost(MEMORY_REF_COST);
  6123   format %{ "LD     [$constanttablebase + $constantoffset],$dst\t! load from constant table: ptr=$con" %}
  6124   ins_encode %{
  6125     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
  6126     __ ld_ptr($constanttablebase, con_offset, $dst$$Register);
  6127   %}
  6128   ins_pipe(loadConP);
  6129 %}
  6131 instruct loadConP_no_oop_cheap(iRegP dst, immP_no_oop_cheap con) %{
  6132   match(Set dst con);
  6133   ins_cost(DEFAULT_COST * 3/2);
  6134   format %{ "SET    $con,$dst\t! non-oop ptr" %}
  6135   ins_encode %{
  6136     __ set($con$$constant, $dst$$Register);
  6137   %}
  6138   ins_pipe(loadConP);
  6139 %}
  6140 #endif // _LP64
  6142 instruct loadConP0(iRegP dst, immP0 src) %{
  6143   match(Set dst src);
  6145   size(4);
  6146   format %{ "CLR    $dst\t!ptr" %}
  6147   ins_encode %{
  6148     __ clr($dst$$Register);
  6149   %}
  6150   ins_pipe(ialu_imm);
  6151 %}
  6153 instruct loadConP_poll(iRegP dst, immP_poll src) %{
  6154   match(Set dst src);
  6155   ins_cost(DEFAULT_COST);
  6156   format %{ "SET    $src,$dst\t!ptr" %}
  6157   ins_encode %{
  6158     AddressLiteral polling_page(os::get_polling_page());
  6159     __ sethi(polling_page, reg_to_register_object($dst$$reg));
  6160   %}
  6161   ins_pipe(loadConP_poll);
  6162 %}
  6164 instruct loadConN0(iRegN dst, immN0 src) %{
  6165   match(Set dst src);
  6167   size(4);
  6168   format %{ "CLR    $dst\t! compressed NULL ptr" %}
  6169   ins_encode %{
  6170     __ clr($dst$$Register);
  6171   %}
  6172   ins_pipe(ialu_imm);
  6173 %}
  6175 instruct loadConN(iRegN dst, immN src) %{
  6176   match(Set dst src);
  6177   ins_cost(DEFAULT_COST * 3/2);
  6178   format %{ "SET    $src,$dst\t! compressed ptr" %}
  6179   ins_encode %{
  6180     Register dst = $dst$$Register;
  6181     __ set_narrow_oop((jobject)$src$$constant, dst);
  6182   %}
  6183   ins_pipe(ialu_hi_lo_reg);
  6184 %}
  6186 // Materialize long value (predicated by immL_cheap).
  6187 instruct loadConL_set64(iRegL dst, immL_cheap con, o7RegL tmp) %{
  6188   match(Set dst con);
  6189   effect(KILL tmp);
  6190   ins_cost(DEFAULT_COST * 3);
  6191   format %{ "SET64   $con,$dst KILL $tmp\t! cheap long" %}
  6192   ins_encode %{
  6193     __ set64($con$$constant, $dst$$Register, $tmp$$Register);
  6194   %}
  6195   ins_pipe(loadConL);
  6196 %}
  6198 // Load long value from constant table (predicated by immL_expensive).
  6199 instruct loadConL_ldx(iRegL dst, immL_expensive con) %{
  6200   match(Set dst con);
  6201   ins_cost(MEMORY_REF_COST);
  6202   format %{ "LDX     [$constanttablebase + $constantoffset],$dst\t! load from constant table: long=$con" %}
  6203   ins_encode %{
  6204       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
  6205     __ ldx($constanttablebase, con_offset, $dst$$Register);
  6206   %}
  6207   ins_pipe(loadConL);
  6208 %}
  6210 instruct loadConL0( iRegL dst, immL0 src ) %{
  6211   match(Set dst src);
  6212   ins_cost(DEFAULT_COST);
  6213   size(4);
  6214   format %{ "CLR    $dst\t! long" %}
  6215   ins_encode( Set13( src, dst ) );
  6216   ins_pipe(ialu_imm);
  6217 %}
  6219 instruct loadConL13( iRegL dst, immL13 src ) %{
  6220   match(Set dst src);
  6221   ins_cost(DEFAULT_COST * 2);
  6223   size(4);
  6224   format %{ "MOV    $src,$dst\t! long" %}
  6225   ins_encode( Set13( src, dst ) );
  6226   ins_pipe(ialu_imm);
  6227 %}
  6229 instruct loadConF(regF dst, immF con, o7RegI tmp) %{
  6230   match(Set dst con);
  6231   effect(KILL tmp);
  6232   format %{ "LDF    [$constanttablebase + $constantoffset],$dst\t! load from constant table: float=$con" %}
  6233   ins_encode %{
  6234       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
  6235     __ ldf(FloatRegisterImpl::S, $constanttablebase, con_offset, $dst$$FloatRegister);
  6236   %}
  6237   ins_pipe(loadConFD);
  6238 %}
  6240 instruct loadConD(regD dst, immD con, o7RegI tmp) %{
  6241   match(Set dst con);
  6242   effect(KILL tmp);
  6243   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: double=$con" %}
  6244   ins_encode %{
  6245     // XXX This is a quick fix for 6833573.
  6246     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset($con), $dst$$FloatRegister);
  6247     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
  6248     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  6249   %}
  6250   ins_pipe(loadConFD);
  6251 %}
  6253 // Prefetch instructions.
  6254 // Must be safe to execute with invalid address (cannot fault).
  6256 instruct prefetchr( memory mem ) %{
  6257   match( PrefetchRead mem );
  6258   ins_cost(MEMORY_REF_COST);
  6259   size(4);
  6261   format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
  6262   opcode(Assembler::prefetch_op3);
  6263   ins_encode( form3_mem_prefetch_read( mem ) );
  6264   ins_pipe(iload_mem);
  6265 %}
  6267 instruct prefetchw( memory mem ) %{
  6268   match( PrefetchWrite mem );
  6269   ins_cost(MEMORY_REF_COST);
  6270   size(4);
  6272   format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
  6273   opcode(Assembler::prefetch_op3);
  6274   ins_encode( form3_mem_prefetch_write( mem ) );
  6275   ins_pipe(iload_mem);
  6276 %}
  6278 // Prefetch instructions for allocation.
  6280 instruct prefetchAlloc( memory mem ) %{
  6281   predicate(AllocatePrefetchInstr == 0);
  6282   match( PrefetchAllocation mem );
  6283   ins_cost(MEMORY_REF_COST);
  6284   size(4);
  6286   format %{ "PREFETCH $mem,2\t! Prefetch allocation" %}
  6287   opcode(Assembler::prefetch_op3);
  6288   ins_encode( form3_mem_prefetch_write( mem ) );
  6289   ins_pipe(iload_mem);
  6290 %}
  6292 // Use BIS instruction to prefetch for allocation.
  6293 // Could fault, need space at the end of TLAB.
  6294 instruct prefetchAlloc_bis( iRegP dst ) %{
  6295   predicate(AllocatePrefetchInstr == 1);
  6296   match( PrefetchAllocation dst );
  6297   ins_cost(MEMORY_REF_COST);
  6298   size(4);
  6300   format %{ "STXA   [$dst]\t! // Prefetch allocation using BIS" %}
  6301   ins_encode %{
  6302     __ stxa(G0, $dst$$Register, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
  6303   %}
  6304   ins_pipe(istore_mem_reg);
  6305 %}
  6307 // Next code is used for finding next cache line address to prefetch.
  6308 #ifndef _LP64
  6309 instruct cacheLineAdr( iRegP dst, iRegP src, immI13 mask ) %{
  6310   match(Set dst (CastX2P (AndI (CastP2X src) mask)));
  6311   ins_cost(DEFAULT_COST);
  6312   size(4);
  6314   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
  6315   ins_encode %{
  6316     __ and3($src$$Register, $mask$$constant, $dst$$Register);
  6317   %}
  6318   ins_pipe(ialu_reg_imm);
  6319 %}
  6320 #else
  6321 instruct cacheLineAdr( iRegP dst, iRegP src, immL13 mask ) %{
  6322   match(Set dst (CastX2P (AndL (CastP2X src) mask)));
  6323   ins_cost(DEFAULT_COST);
  6324   size(4);
  6326   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
  6327   ins_encode %{
  6328     __ and3($src$$Register, $mask$$constant, $dst$$Register);
  6329   %}
  6330   ins_pipe(ialu_reg_imm);
  6331 %}
  6332 #endif
  6334 //----------Store Instructions-------------------------------------------------
  6335 // Store Byte
  6336 instruct storeB(memory mem, iRegI src) %{
  6337   match(Set mem (StoreB mem src));
  6338   ins_cost(MEMORY_REF_COST);
  6340   size(4);
  6341   format %{ "STB    $src,$mem\t! byte" %}
  6342   opcode(Assembler::stb_op3);
  6343   ins_encode(simple_form3_mem_reg( mem, src ) );
  6344   ins_pipe(istore_mem_reg);
  6345 %}
  6347 instruct storeB0(memory mem, immI0 src) %{
  6348   match(Set mem (StoreB mem src));
  6349   ins_cost(MEMORY_REF_COST);
  6351   size(4);
  6352   format %{ "STB    $src,$mem\t! byte" %}
  6353   opcode(Assembler::stb_op3);
  6354   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6355   ins_pipe(istore_mem_zero);
  6356 %}
  6358 instruct storeCM0(memory mem, immI0 src) %{
  6359   match(Set mem (StoreCM mem src));
  6360   ins_cost(MEMORY_REF_COST);
  6362   size(4);
  6363   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
  6364   opcode(Assembler::stb_op3);
  6365   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6366   ins_pipe(istore_mem_zero);
  6367 %}
  6369 // Store Char/Short
  6370 instruct storeC(memory mem, iRegI src) %{
  6371   match(Set mem (StoreC mem src));
  6372   ins_cost(MEMORY_REF_COST);
  6374   size(4);
  6375   format %{ "STH    $src,$mem\t! short" %}
  6376   opcode(Assembler::sth_op3);
  6377   ins_encode(simple_form3_mem_reg( mem, src ) );
  6378   ins_pipe(istore_mem_reg);
  6379 %}
  6381 instruct storeC0(memory mem, immI0 src) %{
  6382   match(Set mem (StoreC mem src));
  6383   ins_cost(MEMORY_REF_COST);
  6385   size(4);
  6386   format %{ "STH    $src,$mem\t! short" %}
  6387   opcode(Assembler::sth_op3);
  6388   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6389   ins_pipe(istore_mem_zero);
  6390 %}
  6392 // Store Integer
  6393 instruct storeI(memory mem, iRegI src) %{
  6394   match(Set mem (StoreI mem src));
  6395   ins_cost(MEMORY_REF_COST);
  6397   size(4);
  6398   format %{ "STW    $src,$mem" %}
  6399   opcode(Assembler::stw_op3);
  6400   ins_encode(simple_form3_mem_reg( mem, src ) );
  6401   ins_pipe(istore_mem_reg);
  6402 %}
  6404 // Store Long
  6405 instruct storeL(memory mem, iRegL src) %{
  6406   match(Set mem (StoreL mem src));
  6407   ins_cost(MEMORY_REF_COST);
  6408   size(4);
  6409   format %{ "STX    $src,$mem\t! long" %}
  6410   opcode(Assembler::stx_op3);
  6411   ins_encode(simple_form3_mem_reg( mem, src ) );
  6412   ins_pipe(istore_mem_reg);
  6413 %}
  6415 instruct storeI0(memory mem, immI0 src) %{
  6416   match(Set mem (StoreI mem src));
  6417   ins_cost(MEMORY_REF_COST);
  6419   size(4);
  6420   format %{ "STW    $src,$mem" %}
  6421   opcode(Assembler::stw_op3);
  6422   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6423   ins_pipe(istore_mem_zero);
  6424 %}
  6426 instruct storeL0(memory mem, immL0 src) %{
  6427   match(Set mem (StoreL mem src));
  6428   ins_cost(MEMORY_REF_COST);
  6430   size(4);
  6431   format %{ "STX    $src,$mem" %}
  6432   opcode(Assembler::stx_op3);
  6433   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6434   ins_pipe(istore_mem_zero);
  6435 %}
  6437 // Store Integer from float register (used after fstoi)
  6438 instruct storeI_Freg(memory mem, regF src) %{
  6439   match(Set mem (StoreI mem src));
  6440   ins_cost(MEMORY_REF_COST);
  6442   size(4);
  6443   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
  6444   opcode(Assembler::stf_op3);
  6445   ins_encode(simple_form3_mem_reg( mem, src ) );
  6446   ins_pipe(fstoreF_mem_reg);
  6447 %}
  6449 // Store Pointer
  6450 instruct storeP(memory dst, sp_ptr_RegP src) %{
  6451   match(Set dst (StoreP dst src));
  6452   ins_cost(MEMORY_REF_COST);
  6453   size(4);
  6455 #ifndef _LP64
  6456   format %{ "STW    $src,$dst\t! ptr" %}
  6457   opcode(Assembler::stw_op3, 0, REGP_OP);
  6458 #else
  6459   format %{ "STX    $src,$dst\t! ptr" %}
  6460   opcode(Assembler::stx_op3, 0, REGP_OP);
  6461 #endif
  6462   ins_encode( form3_mem_reg( dst, src ) );
  6463   ins_pipe(istore_mem_spORreg);
  6464 %}
  6466 instruct storeP0(memory dst, immP0 src) %{
  6467   match(Set dst (StoreP dst src));
  6468   ins_cost(MEMORY_REF_COST);
  6469   size(4);
  6471 #ifndef _LP64
  6472   format %{ "STW    $src,$dst\t! ptr" %}
  6473   opcode(Assembler::stw_op3, 0, REGP_OP);
  6474 #else
  6475   format %{ "STX    $src,$dst\t! ptr" %}
  6476   opcode(Assembler::stx_op3, 0, REGP_OP);
  6477 #endif
  6478   ins_encode( form3_mem_reg( dst, R_G0 ) );
  6479   ins_pipe(istore_mem_zero);
  6480 %}
  6482 // Store Compressed Pointer
  6483 instruct storeN(memory dst, iRegN src) %{
  6484    match(Set dst (StoreN dst src));
  6485    ins_cost(MEMORY_REF_COST);
  6486    size(4);
  6488    format %{ "STW    $src,$dst\t! compressed ptr" %}
  6489    ins_encode %{
  6490      Register base = as_Register($dst$$base);
  6491      Register index = as_Register($dst$$index);
  6492      Register src = $src$$Register;
  6493      if (index != G0) {
  6494        __ stw(src, base, index);
  6495      } else {
  6496        __ stw(src, base, $dst$$disp);
  6498    %}
  6499    ins_pipe(istore_mem_spORreg);
  6500 %}
  6502 instruct storeN0(memory dst, immN0 src) %{
  6503    match(Set dst (StoreN dst src));
  6504    ins_cost(MEMORY_REF_COST);
  6505    size(4);
  6507    format %{ "STW    $src,$dst\t! compressed ptr" %}
  6508    ins_encode %{
  6509      Register base = as_Register($dst$$base);
  6510      Register index = as_Register($dst$$index);
  6511      if (index != G0) {
  6512        __ stw(0, base, index);
  6513      } else {
  6514        __ stw(0, base, $dst$$disp);
  6516    %}
  6517    ins_pipe(istore_mem_zero);
  6518 %}
  6520 // Store Double
  6521 instruct storeD( memory mem, regD src) %{
  6522   match(Set mem (StoreD mem src));
  6523   ins_cost(MEMORY_REF_COST);
  6525   size(4);
  6526   format %{ "STDF   $src,$mem" %}
  6527   opcode(Assembler::stdf_op3);
  6528   ins_encode(simple_form3_mem_reg( mem, src ) );
  6529   ins_pipe(fstoreD_mem_reg);
  6530 %}
  6532 instruct storeD0( memory mem, immD0 src) %{
  6533   match(Set mem (StoreD mem src));
  6534   ins_cost(MEMORY_REF_COST);
  6536   size(4);
  6537   format %{ "STX    $src,$mem" %}
  6538   opcode(Assembler::stx_op3);
  6539   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6540   ins_pipe(fstoreD_mem_zero);
  6541 %}
  6543 // Store Float
  6544 instruct storeF( memory mem, regF src) %{
  6545   match(Set mem (StoreF mem src));
  6546   ins_cost(MEMORY_REF_COST);
  6548   size(4);
  6549   format %{ "STF    $src,$mem" %}
  6550   opcode(Assembler::stf_op3);
  6551   ins_encode(simple_form3_mem_reg( mem, src ) );
  6552   ins_pipe(fstoreF_mem_reg);
  6553 %}
  6555 instruct storeF0( memory mem, immF0 src) %{
  6556   match(Set mem (StoreF mem src));
  6557   ins_cost(MEMORY_REF_COST);
  6559   size(4);
  6560   format %{ "STW    $src,$mem\t! storeF0" %}
  6561   opcode(Assembler::stw_op3);
  6562   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6563   ins_pipe(fstoreF_mem_zero);
  6564 %}
  6566 // Store Aligned Packed Bytes in Double register to memory
  6567 instruct storeA8B(memory mem, regD src) %{
  6568   match(Set mem (Store8B mem src));
  6569   ins_cost(MEMORY_REF_COST);
  6570   size(4);
  6571   format %{ "STDF   $src,$mem\t! packed8B" %}
  6572   opcode(Assembler::stdf_op3);
  6573   ins_encode(simple_form3_mem_reg( mem, src ) );
  6574   ins_pipe(fstoreD_mem_reg);
  6575 %}
  6577 // Convert oop pointer into compressed form
  6578 instruct encodeHeapOop(iRegN dst, iRegP src) %{
  6579   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
  6580   match(Set dst (EncodeP src));
  6581   format %{ "encode_heap_oop $src, $dst" %}
  6582   ins_encode %{
  6583     __ encode_heap_oop($src$$Register, $dst$$Register);
  6584   %}
  6585   ins_pipe(ialu_reg);
  6586 %}
  6588 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
  6589   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
  6590   match(Set dst (EncodeP src));
  6591   format %{ "encode_heap_oop_not_null $src, $dst" %}
  6592   ins_encode %{
  6593     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
  6594   %}
  6595   ins_pipe(ialu_reg);
  6596 %}
  6598 instruct decodeHeapOop(iRegP dst, iRegN src) %{
  6599   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
  6600             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
  6601   match(Set dst (DecodeN src));
  6602   format %{ "decode_heap_oop $src, $dst" %}
  6603   ins_encode %{
  6604     __ decode_heap_oop($src$$Register, $dst$$Register);
  6605   %}
  6606   ins_pipe(ialu_reg);
  6607 %}
  6609 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
  6610   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
  6611             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
  6612   match(Set dst (DecodeN src));
  6613   format %{ "decode_heap_oop_not_null $src, $dst" %}
  6614   ins_encode %{
  6615     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
  6616   %}
  6617   ins_pipe(ialu_reg);
  6618 %}
  6621 // Store Zero into Aligned Packed Bytes
  6622 instruct storeA8B0(memory mem, immI0 zero) %{
  6623   match(Set mem (Store8B mem zero));
  6624   ins_cost(MEMORY_REF_COST);
  6625   size(4);
  6626   format %{ "STX    $zero,$mem\t! packed8B" %}
  6627   opcode(Assembler::stx_op3);
  6628   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6629   ins_pipe(fstoreD_mem_zero);
  6630 %}
  6632 // Store Aligned Packed Chars/Shorts in Double register to memory
  6633 instruct storeA4C(memory mem, regD src) %{
  6634   match(Set mem (Store4C mem src));
  6635   ins_cost(MEMORY_REF_COST);
  6636   size(4);
  6637   format %{ "STDF   $src,$mem\t! packed4C" %}
  6638   opcode(Assembler::stdf_op3);
  6639   ins_encode(simple_form3_mem_reg( mem, src ) );
  6640   ins_pipe(fstoreD_mem_reg);
  6641 %}
  6643 // Store Zero into Aligned Packed Chars/Shorts
  6644 instruct storeA4C0(memory mem, immI0 zero) %{
  6645   match(Set mem (Store4C mem (Replicate4C zero)));
  6646   ins_cost(MEMORY_REF_COST);
  6647   size(4);
  6648   format %{ "STX    $zero,$mem\t! packed4C" %}
  6649   opcode(Assembler::stx_op3);
  6650   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6651   ins_pipe(fstoreD_mem_zero);
  6652 %}
  6654 // Store Aligned Packed Ints in Double register to memory
  6655 instruct storeA2I(memory mem, regD src) %{
  6656   match(Set mem (Store2I mem src));
  6657   ins_cost(MEMORY_REF_COST);
  6658   size(4);
  6659   format %{ "STDF   $src,$mem\t! packed2I" %}
  6660   opcode(Assembler::stdf_op3);
  6661   ins_encode(simple_form3_mem_reg( mem, src ) );
  6662   ins_pipe(fstoreD_mem_reg);
  6663 %}
  6665 // Store Zero into Aligned Packed Ints
  6666 instruct storeA2I0(memory mem, immI0 zero) %{
  6667   match(Set mem (Store2I mem zero));
  6668   ins_cost(MEMORY_REF_COST);
  6669   size(4);
  6670   format %{ "STX    $zero,$mem\t! packed2I" %}
  6671   opcode(Assembler::stx_op3);
  6672   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6673   ins_pipe(fstoreD_mem_zero);
  6674 %}
  6677 //----------MemBar Instructions-----------------------------------------------
  6678 // Memory barrier flavors
  6680 instruct membar_acquire() %{
  6681   match(MemBarAcquire);
  6682   ins_cost(4*MEMORY_REF_COST);
  6684   size(0);
  6685   format %{ "MEMBAR-acquire" %}
  6686   ins_encode( enc_membar_acquire );
  6687   ins_pipe(long_memory_op);
  6688 %}
  6690 instruct membar_acquire_lock() %{
  6691   match(MemBarAcquireLock);
  6692   ins_cost(0);
  6694   size(0);
  6695   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
  6696   ins_encode( );
  6697   ins_pipe(empty);
  6698 %}
  6700 instruct membar_release() %{
  6701   match(MemBarRelease);
  6702   ins_cost(4*MEMORY_REF_COST);
  6704   size(0);
  6705   format %{ "MEMBAR-release" %}
  6706   ins_encode( enc_membar_release );
  6707   ins_pipe(long_memory_op);
  6708 %}
  6710 instruct membar_release_lock() %{
  6711   match(MemBarReleaseLock);
  6712   ins_cost(0);
  6714   size(0);
  6715   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
  6716   ins_encode( );
  6717   ins_pipe(empty);
  6718 %}
  6720 instruct membar_volatile() %{
  6721   match(MemBarVolatile);
  6722   ins_cost(4*MEMORY_REF_COST);
  6724   size(4);
  6725   format %{ "MEMBAR-volatile" %}
  6726   ins_encode( enc_membar_volatile );
  6727   ins_pipe(long_memory_op);
  6728 %}
  6730 instruct unnecessary_membar_volatile() %{
  6731   match(MemBarVolatile);
  6732   predicate(Matcher::post_store_load_barrier(n));
  6733   ins_cost(0);
  6735   size(0);
  6736   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
  6737   ins_encode( );
  6738   ins_pipe(empty);
  6739 %}
  6741 //----------Register Move Instructions-----------------------------------------
  6742 instruct roundDouble_nop(regD dst) %{
  6743   match(Set dst (RoundDouble dst));
  6744   ins_cost(0);
  6745   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6746   ins_encode( );
  6747   ins_pipe(empty);
  6748 %}
  6751 instruct roundFloat_nop(regF dst) %{
  6752   match(Set dst (RoundFloat dst));
  6753   ins_cost(0);
  6754   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6755   ins_encode( );
  6756   ins_pipe(empty);
  6757 %}
  6760 // Cast Index to Pointer for unsafe natives
  6761 instruct castX2P(iRegX src, iRegP dst) %{
  6762   match(Set dst (CastX2P src));
  6764   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
  6765   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6766   ins_pipe(ialu_reg);
  6767 %}
  6769 // Cast Pointer to Index for unsafe natives
  6770 instruct castP2X(iRegP src, iRegX dst) %{
  6771   match(Set dst (CastP2X src));
  6773   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
  6774   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6775   ins_pipe(ialu_reg);
  6776 %}
  6778 instruct stfSSD(stackSlotD stkSlot, regD src) %{
  6779   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6780   match(Set stkSlot src);   // chain rule
  6781   ins_cost(MEMORY_REF_COST);
  6782   format %{ "STDF   $src,$stkSlot\t!stk" %}
  6783   opcode(Assembler::stdf_op3);
  6784   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6785   ins_pipe(fstoreD_stk_reg);
  6786 %}
  6788 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
  6789   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6790   match(Set dst stkSlot);   // chain rule
  6791   ins_cost(MEMORY_REF_COST);
  6792   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
  6793   opcode(Assembler::lddf_op3);
  6794   ins_encode(simple_form3_mem_reg(stkSlot, dst));
  6795   ins_pipe(floadD_stk);
  6796 %}
  6798 instruct stfSSF(stackSlotF stkSlot, regF src) %{
  6799   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6800   match(Set stkSlot src);   // chain rule
  6801   ins_cost(MEMORY_REF_COST);
  6802   format %{ "STF   $src,$stkSlot\t!stk" %}
  6803   opcode(Assembler::stf_op3);
  6804   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6805   ins_pipe(fstoreF_stk_reg);
  6806 %}
  6808 //----------Conditional Move---------------------------------------------------
  6809 // Conditional move
  6810 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
  6811   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6812   ins_cost(150);
  6813   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6814   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6815   ins_pipe(ialu_reg);
  6816 %}
  6818 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
  6819   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6820   ins_cost(140);
  6821   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6822   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6823   ins_pipe(ialu_imm);
  6824 %}
  6826 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
  6827   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6828   ins_cost(150);
  6829   size(4);
  6830   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6831   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6832   ins_pipe(ialu_reg);
  6833 %}
  6835 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
  6836   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6837   ins_cost(140);
  6838   size(4);
  6839   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6840   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6841   ins_pipe(ialu_imm);
  6842 %}
  6844 instruct cmovIIu_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
  6845   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6846   ins_cost(150);
  6847   size(4);
  6848   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6849   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6850   ins_pipe(ialu_reg);
  6851 %}
  6853 instruct cmovIIu_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
  6854   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6855   ins_cost(140);
  6856   size(4);
  6857   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6858   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6859   ins_pipe(ialu_imm);
  6860 %}
  6862 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
  6863   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6864   ins_cost(150);
  6865   size(4);
  6866   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6867   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6868   ins_pipe(ialu_reg);
  6869 %}
  6871 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
  6872   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6873   ins_cost(140);
  6874   size(4);
  6875   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6876   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  6877   ins_pipe(ialu_imm);
  6878 %}
  6880 // Conditional move for RegN. Only cmov(reg,reg).
  6881 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
  6882   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
  6883   ins_cost(150);
  6884   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6885   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6886   ins_pipe(ialu_reg);
  6887 %}
  6889 // This instruction also works with CmpN so we don't need cmovNN_reg.
  6890 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
  6891   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
  6892   ins_cost(150);
  6893   size(4);
  6894   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6895   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6896   ins_pipe(ialu_reg);
  6897 %}
  6899 // This instruction also works with CmpN so we don't need cmovNN_reg.
  6900 instruct cmovNIu_reg(cmpOpU cmp, flagsRegU icc, iRegN dst, iRegN src) %{
  6901   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
  6902   ins_cost(150);
  6903   size(4);
  6904   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6905   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6906   ins_pipe(ialu_reg);
  6907 %}
  6909 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
  6910   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
  6911   ins_cost(150);
  6912   size(4);
  6913   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6914   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6915   ins_pipe(ialu_reg);
  6916 %}
  6918 // Conditional move
  6919 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
  6920   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6921   ins_cost(150);
  6922   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6923   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6924   ins_pipe(ialu_reg);
  6925 %}
  6927 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
  6928   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6929   ins_cost(140);
  6930   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6931   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6932   ins_pipe(ialu_imm);
  6933 %}
  6935 // This instruction also works with CmpN so we don't need cmovPN_reg.
  6936 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
  6937   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6938   ins_cost(150);
  6940   size(4);
  6941   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6942   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6943   ins_pipe(ialu_reg);
  6944 %}
  6946 instruct cmovPIu_reg(cmpOpU cmp, flagsRegU icc, iRegP dst, iRegP src) %{
  6947   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6948   ins_cost(150);
  6950   size(4);
  6951   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6952   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6953   ins_pipe(ialu_reg);
  6954 %}
  6956 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
  6957   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6958   ins_cost(140);
  6960   size(4);
  6961   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6962   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6963   ins_pipe(ialu_imm);
  6964 %}
  6966 instruct cmovPIu_imm(cmpOpU cmp, flagsRegU icc, iRegP dst, immP0 src) %{
  6967   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6968   ins_cost(140);
  6970   size(4);
  6971   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6972   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6973   ins_pipe(ialu_imm);
  6974 %}
  6976 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
  6977   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  6978   ins_cost(150);
  6979   size(4);
  6980   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6981   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6982   ins_pipe(ialu_imm);
  6983 %}
  6985 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
  6986   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  6987   ins_cost(140);
  6988   size(4);
  6989   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6990   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  6991   ins_pipe(ialu_imm);
  6992 %}
  6994 // Conditional move
  6995 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
  6996   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
  6997   ins_cost(150);
  6998   opcode(0x101);
  6999   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  7000   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  7001   ins_pipe(int_conditional_float_move);
  7002 %}
  7004 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
  7005   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  7006   ins_cost(150);
  7008   size(4);
  7009   format %{ "FMOVS$cmp $icc,$src,$dst" %}
  7010   opcode(0x101);
  7011   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  7012   ins_pipe(int_conditional_float_move);
  7013 %}
  7015 instruct cmovFIu_reg(cmpOpU cmp, flagsRegU icc, regF dst, regF src) %{
  7016   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  7017   ins_cost(150);
  7019   size(4);
  7020   format %{ "FMOVS$cmp $icc,$src,$dst" %}
  7021   opcode(0x101);
  7022   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  7023   ins_pipe(int_conditional_float_move);
  7024 %}
  7026 // Conditional move,
  7027 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
  7028   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
  7029   ins_cost(150);
  7030   size(4);
  7031   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
  7032   opcode(0x1);
  7033   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  7034   ins_pipe(int_conditional_double_move);
  7035 %}
  7037 // Conditional move
  7038 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
  7039   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
  7040   ins_cost(150);
  7041   size(4);
  7042   opcode(0x102);
  7043   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  7044   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  7045   ins_pipe(int_conditional_double_move);
  7046 %}
  7048 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
  7049   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  7050   ins_cost(150);
  7052   size(4);
  7053   format %{ "FMOVD$cmp $icc,$src,$dst" %}
  7054   opcode(0x102);
  7055   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  7056   ins_pipe(int_conditional_double_move);
  7057 %}
  7059 instruct cmovDIu_reg(cmpOpU cmp, flagsRegU icc, regD dst, regD src) %{
  7060   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  7061   ins_cost(150);
  7063   size(4);
  7064   format %{ "FMOVD$cmp $icc,$src,$dst" %}
  7065   opcode(0x102);
  7066   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  7067   ins_pipe(int_conditional_double_move);
  7068 %}
  7070 // Conditional move,
  7071 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
  7072   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
  7073   ins_cost(150);
  7074   size(4);
  7075   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
  7076   opcode(0x2);
  7077   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  7078   ins_pipe(int_conditional_double_move);
  7079 %}
  7081 // Conditional move
  7082 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
  7083   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  7084   ins_cost(150);
  7085   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  7086   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  7087   ins_pipe(ialu_reg);
  7088 %}
  7090 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
  7091   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  7092   ins_cost(140);
  7093   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  7094   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  7095   ins_pipe(ialu_imm);
  7096 %}
  7098 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
  7099   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  7100   ins_cost(150);
  7102   size(4);
  7103   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  7104   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  7105   ins_pipe(ialu_reg);
  7106 %}
  7109 instruct cmovLIu_reg(cmpOpU cmp, flagsRegU icc, iRegL dst, iRegL src) %{
  7110   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  7111   ins_cost(150);
  7113   size(4);
  7114   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  7115   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  7116   ins_pipe(ialu_reg);
  7117 %}
  7120 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
  7121   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
  7122   ins_cost(150);
  7124   size(4);
  7125   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
  7126   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  7127   ins_pipe(ialu_reg);
  7128 %}
  7132 //----------OS and Locking Instructions----------------------------------------
  7134 // This name is KNOWN by the ADLC and cannot be changed.
  7135 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
  7136 // for this guy.
  7137 instruct tlsLoadP(g2RegP dst) %{
  7138   match(Set dst (ThreadLocal));
  7140   size(0);
  7141   ins_cost(0);
  7142   format %{ "# TLS is in G2" %}
  7143   ins_encode( /*empty encoding*/ );
  7144   ins_pipe(ialu_none);
  7145 %}
  7147 instruct checkCastPP( iRegP dst ) %{
  7148   match(Set dst (CheckCastPP dst));
  7150   size(0);
  7151   format %{ "# checkcastPP of $dst" %}
  7152   ins_encode( /*empty encoding*/ );
  7153   ins_pipe(empty);
  7154 %}
  7157 instruct castPP( iRegP dst ) %{
  7158   match(Set dst (CastPP dst));
  7159   format %{ "# castPP of $dst" %}
  7160   ins_encode( /*empty encoding*/ );
  7161   ins_pipe(empty);
  7162 %}
  7164 instruct castII( iRegI dst ) %{
  7165   match(Set dst (CastII dst));
  7166   format %{ "# castII of $dst" %}
  7167   ins_encode( /*empty encoding*/ );
  7168   ins_cost(0);
  7169   ins_pipe(empty);
  7170 %}
  7172 //----------Arithmetic Instructions--------------------------------------------
  7173 // Addition Instructions
  7174 // Register Addition
  7175 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7176   match(Set dst (AddI src1 src2));
  7178   size(4);
  7179   format %{ "ADD    $src1,$src2,$dst" %}
  7180   ins_encode %{
  7181     __ add($src1$$Register, $src2$$Register, $dst$$Register);
  7182   %}
  7183   ins_pipe(ialu_reg_reg);
  7184 %}
  7186 // Immediate Addition
  7187 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7188   match(Set dst (AddI src1 src2));
  7190   size(4);
  7191   format %{ "ADD    $src1,$src2,$dst" %}
  7192   opcode(Assembler::add_op3, Assembler::arith_op);
  7193   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7194   ins_pipe(ialu_reg_imm);
  7195 %}
  7197 // Pointer Register Addition
  7198 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
  7199   match(Set dst (AddP src1 src2));
  7201   size(4);
  7202   format %{ "ADD    $src1,$src2,$dst" %}
  7203   opcode(Assembler::add_op3, Assembler::arith_op);
  7204   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7205   ins_pipe(ialu_reg_reg);
  7206 %}
  7208 // Pointer Immediate Addition
  7209 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
  7210   match(Set dst (AddP src1 src2));
  7212   size(4);
  7213   format %{ "ADD    $src1,$src2,$dst" %}
  7214   opcode(Assembler::add_op3, Assembler::arith_op);
  7215   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7216   ins_pipe(ialu_reg_imm);
  7217 %}
  7219 // Long Addition
  7220 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7221   match(Set dst (AddL src1 src2));
  7223   size(4);
  7224   format %{ "ADD    $src1,$src2,$dst\t! long" %}
  7225   opcode(Assembler::add_op3, Assembler::arith_op);
  7226   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7227   ins_pipe(ialu_reg_reg);
  7228 %}
  7230 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7231   match(Set dst (AddL src1 con));
  7233   size(4);
  7234   format %{ "ADD    $src1,$con,$dst" %}
  7235   opcode(Assembler::add_op3, Assembler::arith_op);
  7236   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7237   ins_pipe(ialu_reg_imm);
  7238 %}
  7240 //----------Conditional_store--------------------------------------------------
  7241 // Conditional-store of the updated heap-top.
  7242 // Used during allocation of the shared heap.
  7243 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
  7245 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
  7246 instruct loadPLocked(iRegP dst, memory mem) %{
  7247   match(Set dst (LoadPLocked mem));
  7248   ins_cost(MEMORY_REF_COST);
  7250 #ifndef _LP64
  7251   size(4);
  7252   format %{ "LDUW   $mem,$dst\t! ptr" %}
  7253   opcode(Assembler::lduw_op3, 0, REGP_OP);
  7254 #else
  7255   format %{ "LDX    $mem,$dst\t! ptr" %}
  7256   opcode(Assembler::ldx_op3, 0, REGP_OP);
  7257 #endif
  7258   ins_encode( form3_mem_reg( mem, dst ) );
  7259   ins_pipe(iload_mem);
  7260 %}
  7262 // LoadL-locked.  Same as a regular long load when used with a compare-swap
  7263 instruct loadLLocked(iRegL dst, memory mem) %{
  7264   match(Set dst (LoadLLocked mem));
  7265   ins_cost(MEMORY_REF_COST);
  7266   size(4);
  7267   format %{ "LDX    $mem,$dst\t! long" %}
  7268   opcode(Assembler::ldx_op3);
  7269   ins_encode(simple_form3_mem_reg( mem, dst ) );
  7270   ins_pipe(iload_mem);
  7271 %}
  7273 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
  7274   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
  7275   effect( KILL newval );
  7276   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
  7277             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
  7278   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
  7279   ins_pipe( long_memory_op );
  7280 %}
  7282 // Conditional-store of an int value.
  7283 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
  7284   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
  7285   effect( KILL newval );
  7286   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
  7287             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  7288   ins_encode( enc_cas(mem_ptr,oldval,newval) );
  7289   ins_pipe( long_memory_op );
  7290 %}
  7292 // Conditional-store of a long value.
  7293 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
  7294   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
  7295   effect( KILL newval );
  7296   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
  7297             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  7298   ins_encode( enc_cas(mem_ptr,oldval,newval) );
  7299   ins_pipe( long_memory_op );
  7300 %}
  7302 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
  7304 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7305   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
  7306   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7307   format %{
  7308             "MOV    $newval,O7\n\t"
  7309             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7310             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7311             "MOV    1,$res\n\t"
  7312             "MOVne  xcc,R_G0,$res"
  7313   %}
  7314   ins_encode( enc_casx(mem_ptr, oldval, newval),
  7315               enc_lflags_ne_to_boolean(res) );
  7316   ins_pipe( long_memory_op );
  7317 %}
  7320 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7321   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
  7322   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7323   format %{
  7324             "MOV    $newval,O7\n\t"
  7325             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7326             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7327             "MOV    1,$res\n\t"
  7328             "MOVne  icc,R_G0,$res"
  7329   %}
  7330   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7331               enc_iflags_ne_to_boolean(res) );
  7332   ins_pipe( long_memory_op );
  7333 %}
  7335 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7336   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
  7337   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7338   format %{
  7339             "MOV    $newval,O7\n\t"
  7340             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7341             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7342             "MOV    1,$res\n\t"
  7343             "MOVne  xcc,R_G0,$res"
  7344   %}
  7345 #ifdef _LP64
  7346   ins_encode( enc_casx(mem_ptr, oldval, newval),
  7347               enc_lflags_ne_to_boolean(res) );
  7348 #else
  7349   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7350               enc_iflags_ne_to_boolean(res) );
  7351 #endif
  7352   ins_pipe( long_memory_op );
  7353 %}
  7355 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7356   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
  7357   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7358   format %{
  7359             "MOV    $newval,O7\n\t"
  7360             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7361             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7362             "MOV    1,$res\n\t"
  7363             "MOVne  icc,R_G0,$res"
  7364   %}
  7365   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7366               enc_iflags_ne_to_boolean(res) );
  7367   ins_pipe( long_memory_op );
  7368 %}
  7370 //---------------------
  7371 // Subtraction Instructions
  7372 // Register Subtraction
  7373 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7374   match(Set dst (SubI src1 src2));
  7376   size(4);
  7377   format %{ "SUB    $src1,$src2,$dst" %}
  7378   opcode(Assembler::sub_op3, Assembler::arith_op);
  7379   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7380   ins_pipe(ialu_reg_reg);
  7381 %}
  7383 // Immediate Subtraction
  7384 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7385   match(Set dst (SubI src1 src2));
  7387   size(4);
  7388   format %{ "SUB    $src1,$src2,$dst" %}
  7389   opcode(Assembler::sub_op3, Assembler::arith_op);
  7390   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7391   ins_pipe(ialu_reg_imm);
  7392 %}
  7394 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  7395   match(Set dst (SubI zero src2));
  7397   size(4);
  7398   format %{ "NEG    $src2,$dst" %}
  7399   opcode(Assembler::sub_op3, Assembler::arith_op);
  7400   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  7401   ins_pipe(ialu_zero_reg);
  7402 %}
  7404 // Long subtraction
  7405 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7406   match(Set dst (SubL src1 src2));
  7408   size(4);
  7409   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7410   opcode(Assembler::sub_op3, Assembler::arith_op);
  7411   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7412   ins_pipe(ialu_reg_reg);
  7413 %}
  7415 // Immediate Subtraction
  7416 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7417   match(Set dst (SubL src1 con));
  7419   size(4);
  7420   format %{ "SUB    $src1,$con,$dst\t! long" %}
  7421   opcode(Assembler::sub_op3, Assembler::arith_op);
  7422   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7423   ins_pipe(ialu_reg_imm);
  7424 %}
  7426 // Long negation
  7427 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
  7428   match(Set dst (SubL zero src2));
  7430   size(4);
  7431   format %{ "NEG    $src2,$dst\t! long" %}
  7432   opcode(Assembler::sub_op3, Assembler::arith_op);
  7433   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  7434   ins_pipe(ialu_zero_reg);
  7435 %}
  7437 // Multiplication Instructions
  7438 // Integer Multiplication
  7439 // Register Multiplication
  7440 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7441   match(Set dst (MulI src1 src2));
  7443   size(4);
  7444   format %{ "MULX   $src1,$src2,$dst" %}
  7445   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7446   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7447   ins_pipe(imul_reg_reg);
  7448 %}
  7450 // Immediate Multiplication
  7451 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7452   match(Set dst (MulI src1 src2));
  7454   size(4);
  7455   format %{ "MULX   $src1,$src2,$dst" %}
  7456   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7457   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7458   ins_pipe(imul_reg_imm);
  7459 %}
  7461 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7462   match(Set dst (MulL src1 src2));
  7463   ins_cost(DEFAULT_COST * 5);
  7464   size(4);
  7465   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  7466   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7467   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7468   ins_pipe(mulL_reg_reg);
  7469 %}
  7471 // Immediate Multiplication
  7472 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7473   match(Set dst (MulL src1 src2));
  7474   ins_cost(DEFAULT_COST * 5);
  7475   size(4);
  7476   format %{ "MULX   $src1,$src2,$dst" %}
  7477   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7478   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7479   ins_pipe(mulL_reg_imm);
  7480 %}
  7482 // Integer Division
  7483 // Register Division
  7484 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
  7485   match(Set dst (DivI src1 src2));
  7486   ins_cost((2+71)*DEFAULT_COST);
  7488   format %{ "SRA     $src2,0,$src2\n\t"
  7489             "SRA     $src1,0,$src1\n\t"
  7490             "SDIVX   $src1,$src2,$dst" %}
  7491   ins_encode( idiv_reg( src1, src2, dst ) );
  7492   ins_pipe(sdiv_reg_reg);
  7493 %}
  7495 // Immediate Division
  7496 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
  7497   match(Set dst (DivI src1 src2));
  7498   ins_cost((2+71)*DEFAULT_COST);
  7500   format %{ "SRA     $src1,0,$src1\n\t"
  7501             "SDIVX   $src1,$src2,$dst" %}
  7502   ins_encode( idiv_imm( src1, src2, dst ) );
  7503   ins_pipe(sdiv_reg_imm);
  7504 %}
  7506 //----------Div-By-10-Expansion------------------------------------------------
  7507 // Extract hi bits of a 32x32->64 bit multiply.
  7508 // Expand rule only, not matched
  7509 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
  7510   effect( DEF dst, USE src1, USE src2 );
  7511   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
  7512             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
  7513   ins_encode( enc_mul_hi(dst,src1,src2));
  7514   ins_pipe(sdiv_reg_reg);
  7515 %}
  7517 // Magic constant, reciprocal of 10
  7518 instruct loadConI_x66666667(iRegIsafe dst) %{
  7519   effect( DEF dst );
  7521   size(8);
  7522   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
  7523   ins_encode( Set32(0x66666667, dst) );
  7524   ins_pipe(ialu_hi_lo_reg);
  7525 %}
  7527 // Register Shift Right Arithmetic Long by 32-63
  7528 instruct sra_31( iRegI dst, iRegI src ) %{
  7529   effect( DEF dst, USE src );
  7530   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
  7531   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
  7532   ins_pipe(ialu_reg_reg);
  7533 %}
  7535 // Arithmetic Shift Right by 8-bit immediate
  7536 instruct sra_reg_2( iRegI dst, iRegI src ) %{
  7537   effect( DEF dst, USE src );
  7538   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
  7539   opcode(Assembler::sra_op3, Assembler::arith_op);
  7540   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
  7541   ins_pipe(ialu_reg_imm);
  7542 %}
  7544 // Integer DIV with 10
  7545 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
  7546   match(Set dst (DivI src div));
  7547   ins_cost((6+6)*DEFAULT_COST);
  7548   expand %{
  7549     iRegIsafe tmp1;               // Killed temps;
  7550     iRegIsafe tmp2;               // Killed temps;
  7551     iRegI tmp3;                   // Killed temps;
  7552     iRegI tmp4;                   // Killed temps;
  7553     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
  7554     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
  7555     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
  7556     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
  7557     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
  7558   %}
  7559 %}
  7561 // Register Long Division
  7562 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7563   match(Set dst (DivL src1 src2));
  7564   ins_cost(DEFAULT_COST*71);
  7565   size(4);
  7566   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7567   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7568   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7569   ins_pipe(divL_reg_reg);
  7570 %}
  7572 // Register Long Division
  7573 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7574   match(Set dst (DivL src1 src2));
  7575   ins_cost(DEFAULT_COST*71);
  7576   size(4);
  7577   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7578   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7579   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7580   ins_pipe(divL_reg_imm);
  7581 %}
  7583 // Integer Remainder
  7584 // Register Remainder
  7585 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
  7586   match(Set dst (ModI src1 src2));
  7587   effect( KILL ccr, KILL temp);
  7589   format %{ "SREM   $src1,$src2,$dst" %}
  7590   ins_encode( irem_reg(src1, src2, dst, temp) );
  7591   ins_pipe(sdiv_reg_reg);
  7592 %}
  7594 // Immediate Remainder
  7595 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
  7596   match(Set dst (ModI src1 src2));
  7597   effect( KILL ccr, KILL temp);
  7599   format %{ "SREM   $src1,$src2,$dst" %}
  7600   ins_encode( irem_imm(src1, src2, dst, temp) );
  7601   ins_pipe(sdiv_reg_imm);
  7602 %}
  7604 // Register Long Remainder
  7605 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7606   effect(DEF dst, USE src1, USE src2);
  7607   size(4);
  7608   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7609   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7610   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7611   ins_pipe(divL_reg_reg);
  7612 %}
  7614 // Register Long Division
  7615 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  7616   effect(DEF dst, USE src1, USE src2);
  7617   size(4);
  7618   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7619   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7620   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7621   ins_pipe(divL_reg_imm);
  7622 %}
  7624 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7625   effect(DEF dst, USE src1, USE src2);
  7626   size(4);
  7627   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  7628   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7629   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7630   ins_pipe(mulL_reg_reg);
  7631 %}
  7633 // Immediate Multiplication
  7634 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  7635   effect(DEF dst, USE src1, USE src2);
  7636   size(4);
  7637   format %{ "MULX   $src1,$src2,$dst" %}
  7638   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7639   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7640   ins_pipe(mulL_reg_imm);
  7641 %}
  7643 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7644   effect(DEF dst, USE src1, USE src2);
  7645   size(4);
  7646   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7647   opcode(Assembler::sub_op3, Assembler::arith_op);
  7648   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7649   ins_pipe(ialu_reg_reg);
  7650 %}
  7652 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  7653   effect(DEF dst, USE src1, USE src2);
  7654   size(4);
  7655   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7656   opcode(Assembler::sub_op3, Assembler::arith_op);
  7657   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7658   ins_pipe(ialu_reg_reg);
  7659 %}
  7661 // Register Long Remainder
  7662 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7663   match(Set dst (ModL src1 src2));
  7664   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  7665   expand %{
  7666     iRegL tmp1;
  7667     iRegL tmp2;
  7668     divL_reg_reg_1(tmp1, src1, src2);
  7669     mulL_reg_reg_1(tmp2, tmp1, src2);
  7670     subL_reg_reg_1(dst,  src1, tmp2);
  7671   %}
  7672 %}
  7674 // Register Long Remainder
  7675 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7676   match(Set dst (ModL src1 src2));
  7677   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  7678   expand %{
  7679     iRegL tmp1;
  7680     iRegL tmp2;
  7681     divL_reg_imm13_1(tmp1, src1, src2);
  7682     mulL_reg_imm13_1(tmp2, tmp1, src2);
  7683     subL_reg_reg_2  (dst,  src1, tmp2);
  7684   %}
  7685 %}
  7687 // Integer Shift Instructions
  7688 // Register Shift Left
  7689 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7690   match(Set dst (LShiftI src1 src2));
  7692   size(4);
  7693   format %{ "SLL    $src1,$src2,$dst" %}
  7694   opcode(Assembler::sll_op3, Assembler::arith_op);
  7695   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7696   ins_pipe(ialu_reg_reg);
  7697 %}
  7699 // Register Shift Left Immediate
  7700 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7701   match(Set dst (LShiftI src1 src2));
  7703   size(4);
  7704   format %{ "SLL    $src1,$src2,$dst" %}
  7705   opcode(Assembler::sll_op3, Assembler::arith_op);
  7706   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7707   ins_pipe(ialu_reg_imm);
  7708 %}
  7710 // Register Shift Left
  7711 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7712   match(Set dst (LShiftL src1 src2));
  7714   size(4);
  7715   format %{ "SLLX   $src1,$src2,$dst" %}
  7716   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7717   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7718   ins_pipe(ialu_reg_reg);
  7719 %}
  7721 // Register Shift Left Immediate
  7722 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7723   match(Set dst (LShiftL src1 src2));
  7725   size(4);
  7726   format %{ "SLLX   $src1,$src2,$dst" %}
  7727   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7728   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7729   ins_pipe(ialu_reg_imm);
  7730 %}
  7732 // Register Arithmetic Shift Right
  7733 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7734   match(Set dst (RShiftI src1 src2));
  7735   size(4);
  7736   format %{ "SRA    $src1,$src2,$dst" %}
  7737   opcode(Assembler::sra_op3, Assembler::arith_op);
  7738   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7739   ins_pipe(ialu_reg_reg);
  7740 %}
  7742 // Register Arithmetic Shift Right Immediate
  7743 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7744   match(Set dst (RShiftI src1 src2));
  7746   size(4);
  7747   format %{ "SRA    $src1,$src2,$dst" %}
  7748   opcode(Assembler::sra_op3, Assembler::arith_op);
  7749   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7750   ins_pipe(ialu_reg_imm);
  7751 %}
  7753 // Register Shift Right Arithmatic Long
  7754 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7755   match(Set dst (RShiftL src1 src2));
  7757   size(4);
  7758   format %{ "SRAX   $src1,$src2,$dst" %}
  7759   opcode(Assembler::srax_op3, Assembler::arith_op);
  7760   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7761   ins_pipe(ialu_reg_reg);
  7762 %}
  7764 // Register Shift Left Immediate
  7765 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7766   match(Set dst (RShiftL src1 src2));
  7768   size(4);
  7769   format %{ "SRAX   $src1,$src2,$dst" %}
  7770   opcode(Assembler::srax_op3, Assembler::arith_op);
  7771   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7772   ins_pipe(ialu_reg_imm);
  7773 %}
  7775 // Register Shift Right
  7776 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7777   match(Set dst (URShiftI src1 src2));
  7779   size(4);
  7780   format %{ "SRL    $src1,$src2,$dst" %}
  7781   opcode(Assembler::srl_op3, Assembler::arith_op);
  7782   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7783   ins_pipe(ialu_reg_reg);
  7784 %}
  7786 // Register Shift Right Immediate
  7787 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7788   match(Set dst (URShiftI src1 src2));
  7790   size(4);
  7791   format %{ "SRL    $src1,$src2,$dst" %}
  7792   opcode(Assembler::srl_op3, Assembler::arith_op);
  7793   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7794   ins_pipe(ialu_reg_imm);
  7795 %}
  7797 // Register Shift Right
  7798 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7799   match(Set dst (URShiftL src1 src2));
  7801   size(4);
  7802   format %{ "SRLX   $src1,$src2,$dst" %}
  7803   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7804   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7805   ins_pipe(ialu_reg_reg);
  7806 %}
  7808 // Register Shift Right Immediate
  7809 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7810   match(Set dst (URShiftL src1 src2));
  7812   size(4);
  7813   format %{ "SRLX   $src1,$src2,$dst" %}
  7814   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7815   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7816   ins_pipe(ialu_reg_imm);
  7817 %}
  7819 // Register Shift Right Immediate with a CastP2X
  7820 #ifdef _LP64
  7821 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
  7822   match(Set dst (URShiftL (CastP2X src1) src2));
  7823   size(4);
  7824   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
  7825   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7826   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7827   ins_pipe(ialu_reg_imm);
  7828 %}
  7829 #else
  7830 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
  7831   match(Set dst (URShiftI (CastP2X src1) src2));
  7832   size(4);
  7833   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
  7834   opcode(Assembler::srl_op3, Assembler::arith_op);
  7835   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7836   ins_pipe(ialu_reg_imm);
  7837 %}
  7838 #endif
  7841 //----------Floating Point Arithmetic Instructions-----------------------------
  7843 //  Add float single precision
  7844 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
  7845   match(Set dst (AddF src1 src2));
  7847   size(4);
  7848   format %{ "FADDS  $src1,$src2,$dst" %}
  7849   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
  7850   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7851   ins_pipe(faddF_reg_reg);
  7852 %}
  7854 //  Add float double precision
  7855 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
  7856   match(Set dst (AddD src1 src2));
  7858   size(4);
  7859   format %{ "FADDD  $src1,$src2,$dst" %}
  7860   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  7861   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7862   ins_pipe(faddD_reg_reg);
  7863 %}
  7865 //  Sub float single precision
  7866 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
  7867   match(Set dst (SubF src1 src2));
  7869   size(4);
  7870   format %{ "FSUBS  $src1,$src2,$dst" %}
  7871   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
  7872   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7873   ins_pipe(faddF_reg_reg);
  7874 %}
  7876 //  Sub float double precision
  7877 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
  7878   match(Set dst (SubD src1 src2));
  7880   size(4);
  7881   format %{ "FSUBD  $src1,$src2,$dst" %}
  7882   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  7883   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7884   ins_pipe(faddD_reg_reg);
  7885 %}
  7887 //  Mul float single precision
  7888 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
  7889   match(Set dst (MulF src1 src2));
  7891   size(4);
  7892   format %{ "FMULS  $src1,$src2,$dst" %}
  7893   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
  7894   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7895   ins_pipe(fmulF_reg_reg);
  7896 %}
  7898 //  Mul float double precision
  7899 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
  7900   match(Set dst (MulD src1 src2));
  7902   size(4);
  7903   format %{ "FMULD  $src1,$src2,$dst" %}
  7904   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  7905   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7906   ins_pipe(fmulD_reg_reg);
  7907 %}
  7909 //  Div float single precision
  7910 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
  7911   match(Set dst (DivF src1 src2));
  7913   size(4);
  7914   format %{ "FDIVS  $src1,$src2,$dst" %}
  7915   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
  7916   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7917   ins_pipe(fdivF_reg_reg);
  7918 %}
  7920 //  Div float double precision
  7921 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
  7922   match(Set dst (DivD src1 src2));
  7924   size(4);
  7925   format %{ "FDIVD  $src1,$src2,$dst" %}
  7926   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
  7927   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7928   ins_pipe(fdivD_reg_reg);
  7929 %}
  7931 //  Absolute float double precision
  7932 instruct absD_reg(regD dst, regD src) %{
  7933   match(Set dst (AbsD src));
  7935   format %{ "FABSd  $src,$dst" %}
  7936   ins_encode(fabsd(dst, src));
  7937   ins_pipe(faddD_reg);
  7938 %}
  7940 //  Absolute float single precision
  7941 instruct absF_reg(regF dst, regF src) %{
  7942   match(Set dst (AbsF src));
  7944   format %{ "FABSs  $src,$dst" %}
  7945   ins_encode(fabss(dst, src));
  7946   ins_pipe(faddF_reg);
  7947 %}
  7949 instruct negF_reg(regF dst, regF src) %{
  7950   match(Set dst (NegF src));
  7952   size(4);
  7953   format %{ "FNEGs  $src,$dst" %}
  7954   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
  7955   ins_encode(form3_opf_rs2F_rdF(src, dst));
  7956   ins_pipe(faddF_reg);
  7957 %}
  7959 instruct negD_reg(regD dst, regD src) %{
  7960   match(Set dst (NegD src));
  7962   format %{ "FNEGd  $src,$dst" %}
  7963   ins_encode(fnegd(dst, src));
  7964   ins_pipe(faddD_reg);
  7965 %}
  7967 //  Sqrt float double precision
  7968 instruct sqrtF_reg_reg(regF dst, regF src) %{
  7969   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
  7971   size(4);
  7972   format %{ "FSQRTS $src,$dst" %}
  7973   ins_encode(fsqrts(dst, src));
  7974   ins_pipe(fdivF_reg_reg);
  7975 %}
  7977 //  Sqrt float double precision
  7978 instruct sqrtD_reg_reg(regD dst, regD src) %{
  7979   match(Set dst (SqrtD src));
  7981   size(4);
  7982   format %{ "FSQRTD $src,$dst" %}
  7983   ins_encode(fsqrtd(dst, src));
  7984   ins_pipe(fdivD_reg_reg);
  7985 %}
  7987 //----------Logical Instructions-----------------------------------------------
  7988 // And Instructions
  7989 // Register And
  7990 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7991   match(Set dst (AndI src1 src2));
  7993   size(4);
  7994   format %{ "AND    $src1,$src2,$dst" %}
  7995   opcode(Assembler::and_op3, Assembler::arith_op);
  7996   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7997   ins_pipe(ialu_reg_reg);
  7998 %}
  8000 // Immediate And
  8001 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  8002   match(Set dst (AndI src1 src2));
  8004   size(4);
  8005   format %{ "AND    $src1,$src2,$dst" %}
  8006   opcode(Assembler::and_op3, Assembler::arith_op);
  8007   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  8008   ins_pipe(ialu_reg_imm);
  8009 %}
  8011 // Register And Long
  8012 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  8013   match(Set dst (AndL src1 src2));
  8015   ins_cost(DEFAULT_COST);
  8016   size(4);
  8017   format %{ "AND    $src1,$src2,$dst\t! long" %}
  8018   opcode(Assembler::and_op3, Assembler::arith_op);
  8019   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8020   ins_pipe(ialu_reg_reg);
  8021 %}
  8023 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  8024   match(Set dst (AndL src1 con));
  8026   ins_cost(DEFAULT_COST);
  8027   size(4);
  8028   format %{ "AND    $src1,$con,$dst\t! long" %}
  8029   opcode(Assembler::and_op3, Assembler::arith_op);
  8030   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  8031   ins_pipe(ialu_reg_imm);
  8032 %}
  8034 // Or Instructions
  8035 // Register Or
  8036 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  8037   match(Set dst (OrI src1 src2));
  8039   size(4);
  8040   format %{ "OR     $src1,$src2,$dst" %}
  8041   opcode(Assembler::or_op3, Assembler::arith_op);
  8042   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8043   ins_pipe(ialu_reg_reg);
  8044 %}
  8046 // Immediate Or
  8047 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  8048   match(Set dst (OrI src1 src2));
  8050   size(4);
  8051   format %{ "OR     $src1,$src2,$dst" %}
  8052   opcode(Assembler::or_op3, Assembler::arith_op);
  8053   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  8054   ins_pipe(ialu_reg_imm);
  8055 %}
  8057 // Register Or Long
  8058 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  8059   match(Set dst (OrL src1 src2));
  8061   ins_cost(DEFAULT_COST);
  8062   size(4);
  8063   format %{ "OR     $src1,$src2,$dst\t! long" %}
  8064   opcode(Assembler::or_op3, Assembler::arith_op);
  8065   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8066   ins_pipe(ialu_reg_reg);
  8067 %}
  8069 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  8070   match(Set dst (OrL src1 con));
  8071   ins_cost(DEFAULT_COST*2);
  8073   ins_cost(DEFAULT_COST);
  8074   size(4);
  8075   format %{ "OR     $src1,$con,$dst\t! long" %}
  8076   opcode(Assembler::or_op3, Assembler::arith_op);
  8077   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  8078   ins_pipe(ialu_reg_imm);
  8079 %}
  8081 #ifndef _LP64
  8083 // Use sp_ptr_RegP to match G2 (TLS register) without spilling.
  8084 instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
  8085   match(Set dst (OrI src1 (CastP2X src2)));
  8087   size(4);
  8088   format %{ "OR     $src1,$src2,$dst" %}
  8089   opcode(Assembler::or_op3, Assembler::arith_op);
  8090   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8091   ins_pipe(ialu_reg_reg);
  8092 %}
  8094 #else
  8096 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
  8097   match(Set dst (OrL src1 (CastP2X src2)));
  8099   ins_cost(DEFAULT_COST);
  8100   size(4);
  8101   format %{ "OR     $src1,$src2,$dst\t! long" %}
  8102   opcode(Assembler::or_op3, Assembler::arith_op);
  8103   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8104   ins_pipe(ialu_reg_reg);
  8105 %}
  8107 #endif
  8109 // Xor Instructions
  8110 // Register Xor
  8111 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  8112   match(Set dst (XorI src1 src2));
  8114   size(4);
  8115   format %{ "XOR    $src1,$src2,$dst" %}
  8116   opcode(Assembler::xor_op3, Assembler::arith_op);
  8117   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8118   ins_pipe(ialu_reg_reg);
  8119 %}
  8121 // Immediate Xor
  8122 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  8123   match(Set dst (XorI src1 src2));
  8125   size(4);
  8126   format %{ "XOR    $src1,$src2,$dst" %}
  8127   opcode(Assembler::xor_op3, Assembler::arith_op);
  8128   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  8129   ins_pipe(ialu_reg_imm);
  8130 %}
  8132 // Register Xor Long
  8133 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  8134   match(Set dst (XorL src1 src2));
  8136   ins_cost(DEFAULT_COST);
  8137   size(4);
  8138   format %{ "XOR    $src1,$src2,$dst\t! long" %}
  8139   opcode(Assembler::xor_op3, Assembler::arith_op);
  8140   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8141   ins_pipe(ialu_reg_reg);
  8142 %}
  8144 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  8145   match(Set dst (XorL src1 con));
  8147   ins_cost(DEFAULT_COST);
  8148   size(4);
  8149   format %{ "XOR    $src1,$con,$dst\t! long" %}
  8150   opcode(Assembler::xor_op3, Assembler::arith_op);
  8151   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  8152   ins_pipe(ialu_reg_imm);
  8153 %}
  8155 //----------Convert to Boolean-------------------------------------------------
  8156 // Nice hack for 32-bit tests but doesn't work for
  8157 // 64-bit pointers.
  8158 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
  8159   match(Set dst (Conv2B src));
  8160   effect( KILL ccr );
  8161   ins_cost(DEFAULT_COST*2);
  8162   format %{ "CMP    R_G0,$src\n\t"
  8163             "ADDX   R_G0,0,$dst" %}
  8164   ins_encode( enc_to_bool( src, dst ) );
  8165   ins_pipe(ialu_reg_ialu);
  8166 %}
  8168 #ifndef _LP64
  8169 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
  8170   match(Set dst (Conv2B src));
  8171   effect( KILL ccr );
  8172   ins_cost(DEFAULT_COST*2);
  8173   format %{ "CMP    R_G0,$src\n\t"
  8174             "ADDX   R_G0,0,$dst" %}
  8175   ins_encode( enc_to_bool( src, dst ) );
  8176   ins_pipe(ialu_reg_ialu);
  8177 %}
  8178 #else
  8179 instruct convP2B( iRegI dst, iRegP src ) %{
  8180   match(Set dst (Conv2B src));
  8181   ins_cost(DEFAULT_COST*2);
  8182   format %{ "MOV    $src,$dst\n\t"
  8183             "MOVRNZ $src,1,$dst" %}
  8184   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
  8185   ins_pipe(ialu_clr_and_mover);
  8186 %}
  8187 #endif
  8189 instruct cmpLTMask0( iRegI dst, iRegI src, immI0 zero, flagsReg ccr ) %{
  8190   match(Set dst (CmpLTMask src zero));
  8191   effect(KILL ccr);
  8192   size(4);
  8193   format %{ "SRA    $src,#31,$dst\t# cmpLTMask0" %}
  8194   ins_encode %{
  8195     __ sra($src$$Register, 31, $dst$$Register);
  8196   %}
  8197   ins_pipe(ialu_reg_imm);
  8198 %}
  8200 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
  8201   match(Set dst (CmpLTMask p q));
  8202   effect( KILL ccr );
  8203   ins_cost(DEFAULT_COST*4);
  8204   format %{ "CMP    $p,$q\n\t"
  8205             "MOV    #0,$dst\n\t"
  8206             "BLT,a  .+8\n\t"
  8207             "MOV    #-1,$dst" %}
  8208   ins_encode( enc_ltmask(p,q,dst) );
  8209   ins_pipe(ialu_reg_reg_ialu);
  8210 %}
  8212 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
  8213   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
  8214   effect(KILL ccr, TEMP tmp);
  8215   ins_cost(DEFAULT_COST*3);
  8217   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
  8218             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
  8219             "MOVlt  $tmp,$p\t! p' < 0 ? p'+y : p'" %}
  8220   ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
  8221   ins_pipe( cadd_cmpltmask );
  8222 %}
  8225 //-----------------------------------------------------------------
  8226 // Direct raw moves between float and general registers using VIS3.
  8228 //  ins_pipe(faddF_reg);
  8229 instruct MoveF2I_reg_reg(iRegI dst, regF src) %{
  8230   predicate(UseVIS >= 3);
  8231   match(Set dst (MoveF2I src));
  8233   format %{ "MOVSTOUW $src,$dst\t! MoveF2I" %}
  8234   ins_encode %{
  8235     __ movstouw($src$$FloatRegister, $dst$$Register);
  8236   %}
  8237   ins_pipe(ialu_reg_reg);
  8238 %}
  8240 instruct MoveI2F_reg_reg(regF dst, iRegI src) %{
  8241   predicate(UseVIS >= 3);
  8242   match(Set dst (MoveI2F src));
  8244   format %{ "MOVWTOS $src,$dst\t! MoveI2F" %}
  8245   ins_encode %{
  8246     __ movwtos($src$$Register, $dst$$FloatRegister);
  8247   %}
  8248   ins_pipe(ialu_reg_reg);
  8249 %}
  8251 instruct MoveD2L_reg_reg(iRegL dst, regD src) %{
  8252   predicate(UseVIS >= 3);
  8253   match(Set dst (MoveD2L src));
  8255   format %{ "MOVDTOX $src,$dst\t! MoveD2L" %}
  8256   ins_encode %{
  8257     __ movdtox(as_DoubleFloatRegister($src$$reg), $dst$$Register);
  8258   %}
  8259   ins_pipe(ialu_reg_reg);
  8260 %}
  8262 instruct MoveL2D_reg_reg(regD dst, iRegL src) %{
  8263   predicate(UseVIS >= 3);
  8264   match(Set dst (MoveL2D src));
  8266   format %{ "MOVXTOD $src,$dst\t! MoveL2D" %}
  8267   ins_encode %{
  8268     __ movxtod($src$$Register, as_DoubleFloatRegister($dst$$reg));
  8269   %}
  8270   ins_pipe(ialu_reg_reg);
  8271 %}
  8274 // Raw moves between float and general registers using stack.
  8276 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
  8277   match(Set dst (MoveF2I src));
  8278   effect(DEF dst, USE src);
  8279   ins_cost(MEMORY_REF_COST);
  8281   size(4);
  8282   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
  8283   opcode(Assembler::lduw_op3);
  8284   ins_encode(simple_form3_mem_reg( src, dst ) );
  8285   ins_pipe(iload_mem);
  8286 %}
  8288 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
  8289   match(Set dst (MoveI2F src));
  8290   effect(DEF dst, USE src);
  8291   ins_cost(MEMORY_REF_COST);
  8293   size(4);
  8294   format %{ "LDF    $src,$dst\t! MoveI2F" %}
  8295   opcode(Assembler::ldf_op3);
  8296   ins_encode(simple_form3_mem_reg(src, dst));
  8297   ins_pipe(floadF_stk);
  8298 %}
  8300 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
  8301   match(Set dst (MoveD2L src));
  8302   effect(DEF dst, USE src);
  8303   ins_cost(MEMORY_REF_COST);
  8305   size(4);
  8306   format %{ "LDX    $src,$dst\t! MoveD2L" %}
  8307   opcode(Assembler::ldx_op3);
  8308   ins_encode(simple_form3_mem_reg( src, dst ) );
  8309   ins_pipe(iload_mem);
  8310 %}
  8312 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
  8313   match(Set dst (MoveL2D src));
  8314   effect(DEF dst, USE src);
  8315   ins_cost(MEMORY_REF_COST);
  8317   size(4);
  8318   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
  8319   opcode(Assembler::lddf_op3);
  8320   ins_encode(simple_form3_mem_reg(src, dst));
  8321   ins_pipe(floadD_stk);
  8322 %}
  8324 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
  8325   match(Set dst (MoveF2I src));
  8326   effect(DEF dst, USE src);
  8327   ins_cost(MEMORY_REF_COST);
  8329   size(4);
  8330   format %{ "STF   $src,$dst\t! MoveF2I" %}
  8331   opcode(Assembler::stf_op3);
  8332   ins_encode(simple_form3_mem_reg(dst, src));
  8333   ins_pipe(fstoreF_stk_reg);
  8334 %}
  8336 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
  8337   match(Set dst (MoveI2F src));
  8338   effect(DEF dst, USE src);
  8339   ins_cost(MEMORY_REF_COST);
  8341   size(4);
  8342   format %{ "STW    $src,$dst\t! MoveI2F" %}
  8343   opcode(Assembler::stw_op3);
  8344   ins_encode(simple_form3_mem_reg( dst, src ) );
  8345   ins_pipe(istore_mem_reg);
  8346 %}
  8348 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
  8349   match(Set dst (MoveD2L src));
  8350   effect(DEF dst, USE src);
  8351   ins_cost(MEMORY_REF_COST);
  8353   size(4);
  8354   format %{ "STDF   $src,$dst\t! MoveD2L" %}
  8355   opcode(Assembler::stdf_op3);
  8356   ins_encode(simple_form3_mem_reg(dst, src));
  8357   ins_pipe(fstoreD_stk_reg);
  8358 %}
  8360 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
  8361   match(Set dst (MoveL2D src));
  8362   effect(DEF dst, USE src);
  8363   ins_cost(MEMORY_REF_COST);
  8365   size(4);
  8366   format %{ "STX    $src,$dst\t! MoveL2D" %}
  8367   opcode(Assembler::stx_op3);
  8368   ins_encode(simple_form3_mem_reg( dst, src ) );
  8369   ins_pipe(istore_mem_reg);
  8370 %}
  8373 //----------Arithmetic Conversion Instructions---------------------------------
  8374 // The conversions operations are all Alpha sorted.  Please keep it that way!
  8376 instruct convD2F_reg(regF dst, regD src) %{
  8377   match(Set dst (ConvD2F src));
  8378   size(4);
  8379   format %{ "FDTOS  $src,$dst" %}
  8380   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
  8381   ins_encode(form3_opf_rs2D_rdF(src, dst));
  8382   ins_pipe(fcvtD2F);
  8383 %}
  8386 // Convert a double to an int in a float register.
  8387 // If the double is a NAN, stuff a zero in instead.
  8388 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
  8389   effect(DEF dst, USE src, KILL fcc0);
  8390   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  8391             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8392             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
  8393             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  8394             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  8395       "skip:" %}
  8396   ins_encode(form_d2i_helper(src,dst));
  8397   ins_pipe(fcvtD2I);
  8398 %}
  8400 instruct convD2I_stk(stackSlotI dst, regD src) %{
  8401   match(Set dst (ConvD2I src));
  8402   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8403   expand %{
  8404     regF tmp;
  8405     convD2I_helper(tmp, src);
  8406     regF_to_stkI(dst, tmp);
  8407   %}
  8408 %}
  8410 instruct convD2I_reg(iRegI dst, regD src) %{
  8411   predicate(UseVIS >= 3);
  8412   match(Set dst (ConvD2I src));
  8413   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8414   expand %{
  8415     regF tmp;
  8416     convD2I_helper(tmp, src);
  8417     MoveF2I_reg_reg(dst, tmp);
  8418   %}
  8419 %}
  8422 // Convert a double to a long in a double register.
  8423 // If the double is a NAN, stuff a zero in instead.
  8424 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
  8425   effect(DEF dst, USE src, KILL fcc0);
  8426   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  8427             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8428             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
  8429             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  8430             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  8431       "skip:" %}
  8432   ins_encode(form_d2l_helper(src,dst));
  8433   ins_pipe(fcvtD2L);
  8434 %}
  8436 instruct convD2L_stk(stackSlotL dst, regD src) %{
  8437   match(Set dst (ConvD2L src));
  8438   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8439   expand %{
  8440     regD tmp;
  8441     convD2L_helper(tmp, src);
  8442     regD_to_stkL(dst, tmp);
  8443   %}
  8444 %}
  8446 instruct convD2L_reg(iRegL dst, regD src) %{
  8447   predicate(UseVIS >= 3);
  8448   match(Set dst (ConvD2L src));
  8449   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8450   expand %{
  8451     regD tmp;
  8452     convD2L_helper(tmp, src);
  8453     MoveD2L_reg_reg(dst, tmp);
  8454   %}
  8455 %}
  8458 instruct convF2D_reg(regD dst, regF src) %{
  8459   match(Set dst (ConvF2D src));
  8460   format %{ "FSTOD  $src,$dst" %}
  8461   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
  8462   ins_encode(form3_opf_rs2F_rdD(src, dst));
  8463   ins_pipe(fcvtF2D);
  8464 %}
  8467 // Convert a float to an int in a float register.
  8468 // If the float is a NAN, stuff a zero in instead.
  8469 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
  8470   effect(DEF dst, USE src, KILL fcc0);
  8471   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  8472             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8473             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
  8474             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  8475             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  8476       "skip:" %}
  8477   ins_encode(form_f2i_helper(src,dst));
  8478   ins_pipe(fcvtF2I);
  8479 %}
  8481 instruct convF2I_stk(stackSlotI dst, regF src) %{
  8482   match(Set dst (ConvF2I src));
  8483   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8484   expand %{
  8485     regF tmp;
  8486     convF2I_helper(tmp, src);
  8487     regF_to_stkI(dst, tmp);
  8488   %}
  8489 %}
  8491 instruct convF2I_reg(iRegI dst, regF src) %{
  8492   predicate(UseVIS >= 3);
  8493   match(Set dst (ConvF2I src));
  8494   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8495   expand %{
  8496     regF tmp;
  8497     convF2I_helper(tmp, src);
  8498     MoveF2I_reg_reg(dst, tmp);
  8499   %}
  8500 %}
  8503 // Convert a float to a long in a float register.
  8504 // If the float is a NAN, stuff a zero in instead.
  8505 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
  8506   effect(DEF dst, USE src, KILL fcc0);
  8507   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  8508             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8509             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
  8510             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  8511             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  8512       "skip:" %}
  8513   ins_encode(form_f2l_helper(src,dst));
  8514   ins_pipe(fcvtF2L);
  8515 %}
  8517 instruct convF2L_stk(stackSlotL dst, regF src) %{
  8518   match(Set dst (ConvF2L src));
  8519   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8520   expand %{
  8521     regD tmp;
  8522     convF2L_helper(tmp, src);
  8523     regD_to_stkL(dst, tmp);
  8524   %}
  8525 %}
  8527 instruct convF2L_reg(iRegL dst, regF src) %{
  8528   predicate(UseVIS >= 3);
  8529   match(Set dst (ConvF2L src));
  8530   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8531   expand %{
  8532     regD tmp;
  8533     convF2L_helper(tmp, src);
  8534     MoveD2L_reg_reg(dst, tmp);
  8535   %}
  8536 %}
  8539 instruct convI2D_helper(regD dst, regF tmp) %{
  8540   effect(USE tmp, DEF dst);
  8541   format %{ "FITOD  $tmp,$dst" %}
  8542   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  8543   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
  8544   ins_pipe(fcvtI2D);
  8545 %}
  8547 instruct convI2D_stk(stackSlotI src, regD dst) %{
  8548   match(Set dst (ConvI2D src));
  8549   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8550   expand %{
  8551     regF tmp;
  8552     stkI_to_regF(tmp, src);
  8553     convI2D_helper(dst, tmp);
  8554   %}
  8555 %}
  8557 instruct convI2D_reg(regD_low dst, iRegI src) %{
  8558   predicate(UseVIS >= 3);
  8559   match(Set dst (ConvI2D src));
  8560   expand %{
  8561     regF tmp;
  8562     MoveI2F_reg_reg(tmp, src);
  8563     convI2D_helper(dst, tmp);
  8564   %}
  8565 %}
  8567 instruct convI2D_mem(regD_low dst, memory mem) %{
  8568   match(Set dst (ConvI2D (LoadI mem)));
  8569   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8570   size(8);
  8571   format %{ "LDF    $mem,$dst\n\t"
  8572             "FITOD  $dst,$dst" %}
  8573   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
  8574   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  8575   ins_pipe(floadF_mem);
  8576 %}
  8579 instruct convI2F_helper(regF dst, regF tmp) %{
  8580   effect(DEF dst, USE tmp);
  8581   format %{ "FITOS  $tmp,$dst" %}
  8582   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
  8583   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
  8584   ins_pipe(fcvtI2F);
  8585 %}
  8587 instruct convI2F_stk(regF dst, stackSlotI src) %{
  8588   match(Set dst (ConvI2F src));
  8589   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8590   expand %{
  8591     regF tmp;
  8592     stkI_to_regF(tmp,src);
  8593     convI2F_helper(dst, tmp);
  8594   %}
  8595 %}
  8597 instruct convI2F_reg(regF dst, iRegI src) %{
  8598   predicate(UseVIS >= 3);
  8599   match(Set dst (ConvI2F src));
  8600   ins_cost(DEFAULT_COST);
  8601   expand %{
  8602     regF tmp;
  8603     MoveI2F_reg_reg(tmp, src);
  8604     convI2F_helper(dst, tmp);
  8605   %}
  8606 %}
  8608 instruct convI2F_mem( regF dst, memory mem ) %{
  8609   match(Set dst (ConvI2F (LoadI mem)));
  8610   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8611   size(8);
  8612   format %{ "LDF    $mem,$dst\n\t"
  8613             "FITOS  $dst,$dst" %}
  8614   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
  8615   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  8616   ins_pipe(floadF_mem);
  8617 %}
  8620 instruct convI2L_reg(iRegL dst, iRegI src) %{
  8621   match(Set dst (ConvI2L src));
  8622   size(4);
  8623   format %{ "SRA    $src,0,$dst\t! int->long" %}
  8624   opcode(Assembler::sra_op3, Assembler::arith_op);
  8625   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8626   ins_pipe(ialu_reg_reg);
  8627 %}
  8629 // Zero-extend convert int to long
  8630 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
  8631   match(Set dst (AndL (ConvI2L src) mask) );
  8632   size(4);
  8633   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
  8634   opcode(Assembler::srl_op3, Assembler::arith_op);
  8635   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8636   ins_pipe(ialu_reg_reg);
  8637 %}
  8639 // Zero-extend long
  8640 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
  8641   match(Set dst (AndL src mask) );
  8642   size(4);
  8643   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
  8644   opcode(Assembler::srl_op3, Assembler::arith_op);
  8645   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8646   ins_pipe(ialu_reg_reg);
  8647 %}
  8650 //-----------
  8651 // Long to Double conversion using V8 opcodes.
  8652 // Still useful because cheetah traps and becomes
  8653 // amazingly slow for some common numbers.
  8655 // Magic constant, 0x43300000
  8656 instruct loadConI_x43300000(iRegI dst) %{
  8657   effect(DEF dst);
  8658   size(4);
  8659   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
  8660   ins_encode(SetHi22(0x43300000, dst));
  8661   ins_pipe(ialu_none);
  8662 %}
  8664 // Magic constant, 0x41f00000
  8665 instruct loadConI_x41f00000(iRegI dst) %{
  8666   effect(DEF dst);
  8667   size(4);
  8668   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
  8669   ins_encode(SetHi22(0x41f00000, dst));
  8670   ins_pipe(ialu_none);
  8671 %}
  8673 // Construct a double from two float halves
  8674 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
  8675   effect(DEF dst, USE src1, USE src2);
  8676   size(8);
  8677   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
  8678             "FMOVS  $src2.lo,$dst.lo" %}
  8679   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
  8680   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
  8681   ins_pipe(faddD_reg_reg);
  8682 %}
  8684 // Convert integer in high half of a double register (in the lower half of
  8685 // the double register file) to double
  8686 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
  8687   effect(DEF dst, USE src);
  8688   size(4);
  8689   format %{ "FITOD  $src,$dst" %}
  8690   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  8691   ins_encode(form3_opf_rs2D_rdD(src, dst));
  8692   ins_pipe(fcvtLHi2D);
  8693 %}
  8695 // Add float double precision
  8696 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
  8697   effect(DEF dst, USE src1, USE src2);
  8698   size(4);
  8699   format %{ "FADDD  $src1,$src2,$dst" %}
  8700   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  8701   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8702   ins_pipe(faddD_reg_reg);
  8703 %}
  8705 // Sub float double precision
  8706 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
  8707   effect(DEF dst, USE src1, USE src2);
  8708   size(4);
  8709   format %{ "FSUBD  $src1,$src2,$dst" %}
  8710   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  8711   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8712   ins_pipe(faddD_reg_reg);
  8713 %}
  8715 // Mul float double precision
  8716 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
  8717   effect(DEF dst, USE src1, USE src2);
  8718   size(4);
  8719   format %{ "FMULD  $src1,$src2,$dst" %}
  8720   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  8721   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8722   ins_pipe(fmulD_reg_reg);
  8723 %}
  8725 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
  8726   match(Set dst (ConvL2D src));
  8727   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
  8729   expand %{
  8730     regD_low   tmpsrc;
  8731     iRegI      ix43300000;
  8732     iRegI      ix41f00000;
  8733     stackSlotL lx43300000;
  8734     stackSlotL lx41f00000;
  8735     regD_low   dx43300000;
  8736     regD       dx41f00000;
  8737     regD       tmp1;
  8738     regD_low   tmp2;
  8739     regD       tmp3;
  8740     regD       tmp4;
  8742     stkL_to_regD(tmpsrc, src);
  8744     loadConI_x43300000(ix43300000);
  8745     loadConI_x41f00000(ix41f00000);
  8746     regI_to_stkLHi(lx43300000, ix43300000);
  8747     regI_to_stkLHi(lx41f00000, ix41f00000);
  8748     stkL_to_regD(dx43300000, lx43300000);
  8749     stkL_to_regD(dx41f00000, lx41f00000);
  8751     convI2D_regDHi_regD(tmp1, tmpsrc);
  8752     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
  8753     subD_regD_regD(tmp3, tmp2, dx43300000);
  8754     mulD_regD_regD(tmp4, tmp1, dx41f00000);
  8755     addD_regD_regD(dst, tmp3, tmp4);
  8756   %}
  8757 %}
  8759 // Long to Double conversion using fast fxtof
  8760 instruct convL2D_helper(regD dst, regD tmp) %{
  8761   effect(DEF dst, USE tmp);
  8762   size(4);
  8763   format %{ "FXTOD  $tmp,$dst" %}
  8764   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
  8765   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
  8766   ins_pipe(fcvtL2D);
  8767 %}
  8769 instruct convL2D_stk_fast_fxtof(regD dst, stackSlotL src) %{
  8770   predicate(VM_Version::has_fast_fxtof());
  8771   match(Set dst (ConvL2D src));
  8772   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
  8773   expand %{
  8774     regD tmp;
  8775     stkL_to_regD(tmp, src);
  8776     convL2D_helper(dst, tmp);
  8777   %}
  8778 %}
  8780 instruct convL2D_reg(regD dst, iRegL src) %{
  8781   predicate(UseVIS >= 3);
  8782   match(Set dst (ConvL2D src));
  8783   expand %{
  8784     regD tmp;
  8785     MoveL2D_reg_reg(tmp, src);
  8786     convL2D_helper(dst, tmp);
  8787   %}
  8788 %}
  8790 // Long to Float conversion using fast fxtof
  8791 instruct convL2F_helper(regF dst, regD tmp) %{
  8792   effect(DEF dst, USE tmp);
  8793   size(4);
  8794   format %{ "FXTOS  $tmp,$dst" %}
  8795   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
  8796   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
  8797   ins_pipe(fcvtL2F);
  8798 %}
  8800 instruct convL2F_stk_fast_fxtof(regF dst, stackSlotL src) %{
  8801   match(Set dst (ConvL2F src));
  8802   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8803   expand %{
  8804     regD tmp;
  8805     stkL_to_regD(tmp, src);
  8806     convL2F_helper(dst, tmp);
  8807   %}
  8808 %}
  8810 instruct convL2F_reg(regF dst, iRegL src) %{
  8811   predicate(UseVIS >= 3);
  8812   match(Set dst (ConvL2F src));
  8813   ins_cost(DEFAULT_COST);
  8814   expand %{
  8815     regD tmp;
  8816     MoveL2D_reg_reg(tmp, src);
  8817     convL2F_helper(dst, tmp);
  8818   %}
  8819 %}
  8821 //-----------
  8823 instruct convL2I_reg(iRegI dst, iRegL src) %{
  8824   match(Set dst (ConvL2I src));
  8825 #ifndef _LP64
  8826   format %{ "MOV    $src.lo,$dst\t! long->int" %}
  8827   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
  8828   ins_pipe(ialu_move_reg_I_to_L);
  8829 #else
  8830   size(4);
  8831   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
  8832   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
  8833   ins_pipe(ialu_reg);
  8834 #endif
  8835 %}
  8837 // Register Shift Right Immediate
  8838 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
  8839   match(Set dst (ConvL2I (RShiftL src cnt)));
  8841   size(4);
  8842   format %{ "SRAX   $src,$cnt,$dst" %}
  8843   opcode(Assembler::srax_op3, Assembler::arith_op);
  8844   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
  8845   ins_pipe(ialu_reg_imm);
  8846 %}
  8848 // Replicate scalar to packed byte values in Double register
  8849 instruct Repl8B_reg_helper(iRegL dst, iRegI src) %{
  8850   effect(DEF dst, USE src);
  8851   format %{ "SLLX  $src,56,$dst\n\t"
  8852             "SRLX  $dst, 8,O7\n\t"
  8853             "OR    $dst,O7,$dst\n\t"
  8854             "SRLX  $dst,16,O7\n\t"
  8855             "OR    $dst,O7,$dst\n\t"
  8856             "SRLX  $dst,32,O7\n\t"
  8857             "OR    $dst,O7,$dst\t! replicate8B" %}
  8858   ins_encode( enc_repl8b(src, dst));
  8859   ins_pipe(ialu_reg);
  8860 %}
  8862 // Replicate scalar to packed byte values in Double register
  8863 instruct Repl8B_reg(stackSlotD dst, iRegI src) %{
  8864   match(Set dst (Replicate8B src));
  8865   expand %{
  8866     iRegL tmp;
  8867     Repl8B_reg_helper(tmp, src);
  8868     regL_to_stkD(dst, tmp);
  8869   %}
  8870 %}
  8872 // Replicate scalar constant to packed byte values in Double register
  8873 instruct Repl8B_immI(regD dst, immI13 con, o7RegI tmp) %{
  8874   match(Set dst (Replicate8B con));
  8875   effect(KILL tmp);
  8876   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl8B($con)" %}
  8877   ins_encode %{
  8878     // XXX This is a quick fix for 6833573.
  8879     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 8, 1)), $dst$$FloatRegister);
  8880     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 8, 1)), $tmp$$Register);
  8881     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  8882   %}
  8883   ins_pipe(loadConFD);
  8884 %}
  8886 // Replicate scalar to packed char values into stack slot
  8887 instruct Repl4C_reg_helper(iRegL dst, iRegI src) %{
  8888   effect(DEF dst, USE src);
  8889   format %{ "SLLX  $src,48,$dst\n\t"
  8890             "SRLX  $dst,16,O7\n\t"
  8891             "OR    $dst,O7,$dst\n\t"
  8892             "SRLX  $dst,32,O7\n\t"
  8893             "OR    $dst,O7,$dst\t! replicate4C" %}
  8894   ins_encode( enc_repl4s(src, dst) );
  8895   ins_pipe(ialu_reg);
  8896 %}
  8898 // Replicate scalar to packed char values into stack slot
  8899 instruct Repl4C_reg(stackSlotD dst, iRegI src) %{
  8900   match(Set dst (Replicate4C src));
  8901   expand %{
  8902     iRegL tmp;
  8903     Repl4C_reg_helper(tmp, src);
  8904     regL_to_stkD(dst, tmp);
  8905   %}
  8906 %}
  8908 // Replicate scalar constant to packed char values in Double register
  8909 instruct Repl4C_immI(regD dst, immI con, o7RegI tmp) %{
  8910   match(Set dst (Replicate4C con));
  8911   effect(KILL tmp);
  8912   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4C($con)" %}
  8913   ins_encode %{
  8914     // XXX This is a quick fix for 6833573.
  8915     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
  8916     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
  8917     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  8918   %}
  8919   ins_pipe(loadConFD);
  8920 %}
  8922 // Replicate scalar to packed short values into stack slot
  8923 instruct Repl4S_reg_helper(iRegL dst, iRegI src) %{
  8924   effect(DEF dst, USE src);
  8925   format %{ "SLLX  $src,48,$dst\n\t"
  8926             "SRLX  $dst,16,O7\n\t"
  8927             "OR    $dst,O7,$dst\n\t"
  8928             "SRLX  $dst,32,O7\n\t"
  8929             "OR    $dst,O7,$dst\t! replicate4S" %}
  8930   ins_encode( enc_repl4s(src, dst) );
  8931   ins_pipe(ialu_reg);
  8932 %}
  8934 // Replicate scalar to packed short values into stack slot
  8935 instruct Repl4S_reg(stackSlotD dst, iRegI src) %{
  8936   match(Set dst (Replicate4S src));
  8937   expand %{
  8938     iRegL tmp;
  8939     Repl4S_reg_helper(tmp, src);
  8940     regL_to_stkD(dst, tmp);
  8941   %}
  8942 %}
  8944 // Replicate scalar constant to packed short values in Double register
  8945 instruct Repl4S_immI(regD dst, immI con, o7RegI tmp) %{
  8946   match(Set dst (Replicate4S con));
  8947   effect(KILL tmp);
  8948   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4S($con)" %}
  8949   ins_encode %{
  8950     // XXX This is a quick fix for 6833573.
  8951     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
  8952     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
  8953     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  8954   %}
  8955   ins_pipe(loadConFD);
  8956 %}
  8958 // Replicate scalar to packed int values in Double register
  8959 instruct Repl2I_reg_helper(iRegL dst, iRegI src) %{
  8960   effect(DEF dst, USE src);
  8961   format %{ "SLLX  $src,32,$dst\n\t"
  8962             "SRLX  $dst,32,O7\n\t"
  8963             "OR    $dst,O7,$dst\t! replicate2I" %}
  8964   ins_encode( enc_repl2i(src, dst));
  8965   ins_pipe(ialu_reg);
  8966 %}
  8968 // Replicate scalar to packed int values in Double register
  8969 instruct Repl2I_reg(stackSlotD dst, iRegI src) %{
  8970   match(Set dst (Replicate2I src));
  8971   expand %{
  8972     iRegL tmp;
  8973     Repl2I_reg_helper(tmp, src);
  8974     regL_to_stkD(dst, tmp);
  8975   %}
  8976 %}
  8978 // Replicate scalar zero constant to packed int values in Double register
  8979 instruct Repl2I_immI(regD dst, immI con, o7RegI tmp) %{
  8980   match(Set dst (Replicate2I con));
  8981   effect(KILL tmp);
  8982   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2I($con)" %}
  8983   ins_encode %{
  8984     // XXX This is a quick fix for 6833573.
  8985     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 2, 4)), $dst$$FloatRegister);
  8986     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 2, 4)), $tmp$$Register);
  8987     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  8988   %}
  8989   ins_pipe(loadConFD);
  8990 %}
  8992 //----------Control Flow Instructions------------------------------------------
  8993 // Compare Instructions
  8994 // Compare Integers
  8995 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
  8996   match(Set icc (CmpI op1 op2));
  8997   effect( DEF icc, USE op1, USE op2 );
  8999   size(4);
  9000   format %{ "CMP    $op1,$op2" %}
  9001   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9002   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  9003   ins_pipe(ialu_cconly_reg_reg);
  9004 %}
  9006 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
  9007   match(Set icc (CmpU op1 op2));
  9009   size(4);
  9010   format %{ "CMP    $op1,$op2\t! unsigned" %}
  9011   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9012   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  9013   ins_pipe(ialu_cconly_reg_reg);
  9014 %}
  9016 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
  9017   match(Set icc (CmpI op1 op2));
  9018   effect( DEF icc, USE op1 );
  9020   size(4);
  9021   format %{ "CMP    $op1,$op2" %}
  9022   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9023   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  9024   ins_pipe(ialu_cconly_reg_imm);
  9025 %}
  9027 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
  9028   match(Set icc (CmpI (AndI op1 op2) zero));
  9030   size(4);
  9031   format %{ "BTST   $op2,$op1" %}
  9032   opcode(Assembler::andcc_op3, Assembler::arith_op);
  9033   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  9034   ins_pipe(ialu_cconly_reg_reg_zero);
  9035 %}
  9037 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
  9038   match(Set icc (CmpI (AndI op1 op2) zero));
  9040   size(4);
  9041   format %{ "BTST   $op2,$op1" %}
  9042   opcode(Assembler::andcc_op3, Assembler::arith_op);
  9043   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  9044   ins_pipe(ialu_cconly_reg_imm_zero);
  9045 %}
  9047 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
  9048   match(Set xcc (CmpL op1 op2));
  9049   effect( DEF xcc, USE op1, USE op2 );
  9051   size(4);
  9052   format %{ "CMP    $op1,$op2\t\t! long" %}
  9053   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9054   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  9055   ins_pipe(ialu_cconly_reg_reg);
  9056 %}
  9058 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
  9059   match(Set xcc (CmpL op1 con));
  9060   effect( DEF xcc, USE op1, USE con );
  9062   size(4);
  9063   format %{ "CMP    $op1,$con\t\t! long" %}
  9064   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9065   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  9066   ins_pipe(ialu_cconly_reg_reg);
  9067 %}
  9069 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
  9070   match(Set xcc (CmpL (AndL op1 op2) zero));
  9071   effect( DEF xcc, USE op1, USE op2 );
  9073   size(4);
  9074   format %{ "BTST   $op1,$op2\t\t! long" %}
  9075   opcode(Assembler::andcc_op3, Assembler::arith_op);
  9076   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  9077   ins_pipe(ialu_cconly_reg_reg);
  9078 %}
  9080 // useful for checking the alignment of a pointer:
  9081 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
  9082   match(Set xcc (CmpL (AndL op1 con) zero));
  9083   effect( DEF xcc, USE op1, USE con );
  9085   size(4);
  9086   format %{ "BTST   $op1,$con\t\t! long" %}
  9087   opcode(Assembler::andcc_op3, Assembler::arith_op);
  9088   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  9089   ins_pipe(ialu_cconly_reg_reg);
  9090 %}
  9092 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU13 op2 ) %{
  9093   match(Set icc (CmpU op1 op2));
  9095   size(4);
  9096   format %{ "CMP    $op1,$op2\t! unsigned" %}
  9097   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9098   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  9099   ins_pipe(ialu_cconly_reg_imm);
  9100 %}
  9102 // Compare Pointers
  9103 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
  9104   match(Set pcc (CmpP op1 op2));
  9106   size(4);
  9107   format %{ "CMP    $op1,$op2\t! ptr" %}
  9108   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9109   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  9110   ins_pipe(ialu_cconly_reg_reg);
  9111 %}
  9113 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
  9114   match(Set pcc (CmpP op1 op2));
  9116   size(4);
  9117   format %{ "CMP    $op1,$op2\t! ptr" %}
  9118   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9119   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  9120   ins_pipe(ialu_cconly_reg_imm);
  9121 %}
  9123 // Compare Narrow oops
  9124 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
  9125   match(Set icc (CmpN op1 op2));
  9127   size(4);
  9128   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  9129   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9130   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  9131   ins_pipe(ialu_cconly_reg_reg);
  9132 %}
  9134 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
  9135   match(Set icc (CmpN op1 op2));
  9137   size(4);
  9138   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  9139   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9140   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  9141   ins_pipe(ialu_cconly_reg_imm);
  9142 %}
  9144 //----------Max and Min--------------------------------------------------------
  9145 // Min Instructions
  9146 // Conditional move for min
  9147 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
  9148   effect( USE_DEF op2, USE op1, USE icc );
  9150   size(4);
  9151   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
  9152   opcode(Assembler::less);
  9153   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  9154   ins_pipe(ialu_reg_flags);
  9155 %}
  9157 // Min Register with Register.
  9158 instruct minI_eReg(iRegI op1, iRegI op2) %{
  9159   match(Set op2 (MinI op1 op2));
  9160   ins_cost(DEFAULT_COST*2);
  9161   expand %{
  9162     flagsReg icc;
  9163     compI_iReg(icc,op1,op2);
  9164     cmovI_reg_lt(op2,op1,icc);
  9165   %}
  9166 %}
  9168 // Max Instructions
  9169 // Conditional move for max
  9170 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
  9171   effect( USE_DEF op2, USE op1, USE icc );
  9172   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
  9173   opcode(Assembler::greater);
  9174   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  9175   ins_pipe(ialu_reg_flags);
  9176 %}
  9178 // Max Register with Register
  9179 instruct maxI_eReg(iRegI op1, iRegI op2) %{
  9180   match(Set op2 (MaxI op1 op2));
  9181   ins_cost(DEFAULT_COST*2);
  9182   expand %{
  9183     flagsReg icc;
  9184     compI_iReg(icc,op1,op2);
  9185     cmovI_reg_gt(op2,op1,icc);
  9186   %}
  9187 %}
  9190 //----------Float Compares----------------------------------------------------
  9191 // Compare floating, generate condition code
  9192 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
  9193   match(Set fcc (CmpF src1 src2));
  9195   size(4);
  9196   format %{ "FCMPs  $fcc,$src1,$src2" %}
  9197   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
  9198   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
  9199   ins_pipe(faddF_fcc_reg_reg_zero);
  9200 %}
  9202 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
  9203   match(Set fcc (CmpD src1 src2));
  9205   size(4);
  9206   format %{ "FCMPd  $fcc,$src1,$src2" %}
  9207   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
  9208   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
  9209   ins_pipe(faddD_fcc_reg_reg_zero);
  9210 %}
  9213 // Compare floating, generate -1,0,1
  9214 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
  9215   match(Set dst (CmpF3 src1 src2));
  9216   effect(KILL fcc0);
  9217   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  9218   format %{ "fcmpl  $dst,$src1,$src2" %}
  9219   // Primary = float
  9220   opcode( true );
  9221   ins_encode( floating_cmp( dst, src1, src2 ) );
  9222   ins_pipe( floating_cmp );
  9223 %}
  9225 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
  9226   match(Set dst (CmpD3 src1 src2));
  9227   effect(KILL fcc0);
  9228   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  9229   format %{ "dcmpl  $dst,$src1,$src2" %}
  9230   // Primary = double (not float)
  9231   opcode( false );
  9232   ins_encode( floating_cmp( dst, src1, src2 ) );
  9233   ins_pipe( floating_cmp );
  9234 %}
  9236 //----------Branches---------------------------------------------------------
  9237 // Jump
  9238 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
  9239 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
  9240   match(Jump switch_val);
  9242   ins_cost(350);
  9244   format %{  "ADD    $constanttablebase, $constantoffset, O7\n\t"
  9245              "LD     [O7 + $switch_val], O7\n\t"
  9246              "JUMP   O7"
  9247          %}
  9248   ins_encode %{
  9249     // Calculate table address into a register.
  9250     Register table_reg;
  9251     Register label_reg = O7;
  9252     if (constant_offset() == 0) {
  9253       table_reg = $constanttablebase;
  9254     } else {
  9255       table_reg = O7;
  9256       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset, O7);
  9257       __ add($constanttablebase, con_offset, table_reg);
  9260     // Jump to base address + switch value
  9261     __ ld_ptr(table_reg, $switch_val$$Register, label_reg);
  9262     __ jmp(label_reg, G0);
  9263     __ delayed()->nop();
  9264   %}
  9265   ins_pipe(ialu_reg_reg);
  9266 %}
  9268 // Direct Branch.  Use V8 version with longer range.
  9269 instruct branch(label labl) %{
  9270   match(Goto);
  9271   effect(USE labl);
  9273   size(8);
  9274   ins_cost(BRANCH_COST);
  9275   format %{ "BA     $labl" %}
  9276   ins_encode %{
  9277     Label* L = $labl$$label;
  9278     __ ba(*L);
  9279     __ delayed()->nop();
  9280   %}
  9281   ins_pipe(br);
  9282 %}
  9284 // Direct Branch, short with no delay slot
  9285 instruct branch_short(label labl) %{
  9286   match(Goto);
  9287   predicate(UseCBCond);
  9288   effect(USE labl);
  9290   size(4);
  9291   ins_cost(BRANCH_COST);
  9292   format %{ "BA     $labl\t! short branch" %}
  9293   ins_encode %{ 
  9294     Label* L = $labl$$label;
  9295     assert(__ use_cbcond(*L), "back to back cbcond");
  9296     __ ba_short(*L);
  9297   %}
  9298   ins_short_branch(1);
  9299   ins_avoid_back_to_back(1);
  9300   ins_pipe(cbcond_reg_imm);
  9301 %}
  9303 // Conditional Direct Branch
  9304 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
  9305   match(If cmp icc);
  9306   effect(USE labl);
  9308   size(8);
  9309   ins_cost(BRANCH_COST);
  9310   format %{ "BP$cmp   $icc,$labl" %}
  9311   // Prim = bits 24-22, Secnd = bits 31-30
  9312   ins_encode( enc_bp( labl, cmp, icc ) );
  9313   ins_pipe(br_cc);
  9314 %}
  9316 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
  9317   match(If cmp icc);
  9318   effect(USE labl);
  9320   ins_cost(BRANCH_COST);
  9321   format %{ "BP$cmp  $icc,$labl" %}
  9322   // Prim = bits 24-22, Secnd = bits 31-30
  9323   ins_encode( enc_bp( labl, cmp, icc ) );
  9324   ins_pipe(br_cc);
  9325 %}
  9327 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
  9328   match(If cmp pcc);
  9329   effect(USE labl);
  9331   size(8);
  9332   ins_cost(BRANCH_COST);
  9333   format %{ "BP$cmp  $pcc,$labl" %}
  9334   ins_encode %{
  9335     Label* L = $labl$$label;
  9336     Assembler::Predict predict_taken =
  9337       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9339     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
  9340     __ delayed()->nop();
  9341   %}
  9342   ins_pipe(br_cc);
  9343 %}
  9345 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
  9346   match(If cmp fcc);
  9347   effect(USE labl);
  9349   size(8);
  9350   ins_cost(BRANCH_COST);
  9351   format %{ "FBP$cmp $fcc,$labl" %}
  9352   ins_encode %{
  9353     Label* L = $labl$$label;
  9354     Assembler::Predict predict_taken =
  9355       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9357     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($fcc$$reg), predict_taken, *L);
  9358     __ delayed()->nop();
  9359   %}
  9360   ins_pipe(br_fcc);
  9361 %}
  9363 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
  9364   match(CountedLoopEnd cmp icc);
  9365   effect(USE labl);
  9367   size(8);
  9368   ins_cost(BRANCH_COST);
  9369   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
  9370   // Prim = bits 24-22, Secnd = bits 31-30
  9371   ins_encode( enc_bp( labl, cmp, icc ) );
  9372   ins_pipe(br_cc);
  9373 %}
  9375 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
  9376   match(CountedLoopEnd cmp icc);
  9377   effect(USE labl);
  9379   size(8);
  9380   ins_cost(BRANCH_COST);
  9381   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
  9382   // Prim = bits 24-22, Secnd = bits 31-30
  9383   ins_encode( enc_bp( labl, cmp, icc ) );
  9384   ins_pipe(br_cc);
  9385 %}
  9387 // Compare and branch instructions
  9388 instruct cmpI_reg_branch(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9389   match(If cmp (CmpI op1 op2));
  9390   effect(USE labl, KILL icc);
  9392   size(12);
  9393   ins_cost(BRANCH_COST);
  9394   format %{ "CMP    $op1,$op2\t! int\n\t"
  9395             "BP$cmp   $labl" %}
  9396   ins_encode %{
  9397     Label* L = $labl$$label;
  9398     Assembler::Predict predict_taken =
  9399       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9400     __ cmp($op1$$Register, $op2$$Register);
  9401     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9402     __ delayed()->nop();
  9403   %}
  9404   ins_pipe(cmp_br_reg_reg);
  9405 %}
  9407 instruct cmpI_imm_branch(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9408   match(If cmp (CmpI op1 op2));
  9409   effect(USE labl, KILL icc);
  9411   size(12);
  9412   ins_cost(BRANCH_COST);
  9413   format %{ "CMP    $op1,$op2\t! int\n\t"
  9414             "BP$cmp   $labl" %}
  9415   ins_encode %{
  9416     Label* L = $labl$$label;
  9417     Assembler::Predict predict_taken =
  9418       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9419     __ cmp($op1$$Register, $op2$$constant);
  9420     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9421     __ delayed()->nop();
  9422   %}
  9423   ins_pipe(cmp_br_reg_imm);
  9424 %}
  9426 instruct cmpU_reg_branch(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
  9427   match(If cmp (CmpU op1 op2));
  9428   effect(USE labl, KILL icc);
  9430   size(12);
  9431   ins_cost(BRANCH_COST);
  9432   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
  9433             "BP$cmp  $labl" %}
  9434   ins_encode %{
  9435     Label* L = $labl$$label;
  9436     Assembler::Predict predict_taken =
  9437       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9438     __ cmp($op1$$Register, $op2$$Register);
  9439     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9440     __ delayed()->nop();
  9441   %}
  9442   ins_pipe(cmp_br_reg_reg);
  9443 %}
  9445 instruct cmpU_imm_branch(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
  9446   match(If cmp (CmpU op1 op2));
  9447   effect(USE labl, KILL icc);
  9449   size(12);
  9450   ins_cost(BRANCH_COST);
  9451   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
  9452             "BP$cmp  $labl" %}
  9453   ins_encode %{
  9454     Label* L = $labl$$label;
  9455     Assembler::Predict predict_taken =
  9456       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9457     __ cmp($op1$$Register, $op2$$constant);
  9458     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9459     __ delayed()->nop();
  9460   %}
  9461   ins_pipe(cmp_br_reg_imm);
  9462 %}
  9464 instruct cmpL_reg_branch(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
  9465   match(If cmp (CmpL op1 op2));
  9466   effect(USE labl, KILL xcc);
  9468   size(12);
  9469   ins_cost(BRANCH_COST);
  9470   format %{ "CMP    $op1,$op2\t! long\n\t"
  9471             "BP$cmp   $labl" %}
  9472   ins_encode %{
  9473     Label* L = $labl$$label;
  9474     Assembler::Predict predict_taken =
  9475       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9476     __ cmp($op1$$Register, $op2$$Register);
  9477     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
  9478     __ delayed()->nop();
  9479   %}
  9480   ins_pipe(cmp_br_reg_reg);
  9481 %}
  9483 instruct cmpL_imm_branch(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
  9484   match(If cmp (CmpL op1 op2));
  9485   effect(USE labl, KILL xcc);
  9487   size(12);
  9488   ins_cost(BRANCH_COST);
  9489   format %{ "CMP    $op1,$op2\t! long\n\t"
  9490             "BP$cmp   $labl" %}
  9491   ins_encode %{
  9492     Label* L = $labl$$label;
  9493     Assembler::Predict predict_taken =
  9494       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9495     __ cmp($op1$$Register, $op2$$constant);
  9496     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
  9497     __ delayed()->nop();
  9498   %}
  9499   ins_pipe(cmp_br_reg_imm);
  9500 %}
  9502 // Compare Pointers and branch
  9503 instruct cmpP_reg_branch(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
  9504   match(If cmp (CmpP op1 op2));
  9505   effect(USE labl, KILL pcc);
  9507   size(12);
  9508   ins_cost(BRANCH_COST);
  9509   format %{ "CMP    $op1,$op2\t! ptr\n\t"
  9510             "B$cmp   $labl" %}
  9511   ins_encode %{
  9512     Label* L = $labl$$label;
  9513     Assembler::Predict predict_taken =
  9514       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9515     __ cmp($op1$$Register, $op2$$Register);
  9516     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
  9517     __ delayed()->nop();
  9518   %}
  9519   ins_pipe(cmp_br_reg_reg);
  9520 %}
  9522 instruct cmpP_null_branch(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
  9523   match(If cmp (CmpP op1 null));
  9524   effect(USE labl, KILL pcc);
  9526   size(12);
  9527   ins_cost(BRANCH_COST);
  9528   format %{ "CMP    $op1,0\t! ptr\n\t"
  9529             "B$cmp   $labl" %}
  9530   ins_encode %{
  9531     Label* L = $labl$$label;
  9532     Assembler::Predict predict_taken =
  9533       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9534     __ cmp($op1$$Register, G0);
  9535     // bpr() is not used here since it has shorter distance.
  9536     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
  9537     __ delayed()->nop();
  9538   %}
  9539   ins_pipe(cmp_br_reg_reg);
  9540 %}
  9542 instruct cmpN_reg_branch(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
  9543   match(If cmp (CmpN op1 op2));
  9544   effect(USE labl, KILL icc);
  9546   size(12);
  9547   ins_cost(BRANCH_COST);
  9548   format %{ "CMP    $op1,$op2\t! compressed ptr\n\t"
  9549             "BP$cmp   $labl" %}
  9550   ins_encode %{
  9551     Label* L = $labl$$label;
  9552     Assembler::Predict predict_taken =
  9553       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9554     __ cmp($op1$$Register, $op2$$Register);
  9555     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9556     __ delayed()->nop();
  9557   %}
  9558   ins_pipe(cmp_br_reg_reg);
  9559 %}
  9561 instruct cmpN_null_branch(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
  9562   match(If cmp (CmpN op1 null));
  9563   effect(USE labl, KILL icc);
  9565   size(12);
  9566   ins_cost(BRANCH_COST);
  9567   format %{ "CMP    $op1,0\t! compressed ptr\n\t"
  9568             "BP$cmp   $labl" %}
  9569   ins_encode %{
  9570     Label* L = $labl$$label;
  9571     Assembler::Predict predict_taken =
  9572       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9573     __ cmp($op1$$Register, G0);
  9574     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9575     __ delayed()->nop();
  9576   %}
  9577   ins_pipe(cmp_br_reg_reg);
  9578 %}
  9580 // Loop back branch
  9581 instruct cmpI_reg_branchLoopEnd(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9582   match(CountedLoopEnd cmp (CmpI op1 op2));
  9583   effect(USE labl, KILL icc);
  9585   size(12);
  9586   ins_cost(BRANCH_COST);
  9587   format %{ "CMP    $op1,$op2\t! int\n\t"
  9588             "BP$cmp   $labl\t! Loop end" %}
  9589   ins_encode %{
  9590     Label* L = $labl$$label;
  9591     Assembler::Predict predict_taken =
  9592       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9593     __ cmp($op1$$Register, $op2$$Register);
  9594     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9595     __ delayed()->nop();
  9596   %}
  9597   ins_pipe(cmp_br_reg_reg);
  9598 %}
  9600 instruct cmpI_imm_branchLoopEnd(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9601   match(CountedLoopEnd cmp (CmpI op1 op2));
  9602   effect(USE labl, KILL icc);
  9604   size(12);
  9605   ins_cost(BRANCH_COST);
  9606   format %{ "CMP    $op1,$op2\t! int\n\t"
  9607             "BP$cmp   $labl\t! Loop end" %}
  9608   ins_encode %{
  9609     Label* L = $labl$$label;
  9610     Assembler::Predict predict_taken =
  9611       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9612     __ cmp($op1$$Register, $op2$$constant);
  9613     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9614     __ delayed()->nop();
  9615   %}
  9616   ins_pipe(cmp_br_reg_imm);
  9617 %}
  9619 // Short compare and branch instructions
  9620 instruct cmpI_reg_branch_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9621   match(If cmp (CmpI op1 op2));
  9622   predicate(UseCBCond);
  9623   effect(USE labl, KILL icc);
  9625   size(4);
  9626   ins_cost(BRANCH_COST);
  9627   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
  9628   ins_encode %{
  9629     Label* L = $labl$$label;
  9630     assert(__ use_cbcond(*L), "back to back cbcond");
  9631     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9632   %}
  9633   ins_short_branch(1);
  9634   ins_avoid_back_to_back(1);
  9635   ins_pipe(cbcond_reg_reg);
  9636 %}
  9638 instruct cmpI_imm_branch_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9639   match(If cmp (CmpI op1 op2));
  9640   predicate(UseCBCond);
  9641   effect(USE labl, KILL icc);
  9643   size(4);
  9644   ins_cost(BRANCH_COST);
  9645   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
  9646   ins_encode %{
  9647     Label* L = $labl$$label;
  9648     assert(__ use_cbcond(*L), "back to back cbcond");
  9649     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  9650   %}
  9651   ins_short_branch(1);
  9652   ins_avoid_back_to_back(1);
  9653   ins_pipe(cbcond_reg_imm);
  9654 %}
  9656 instruct cmpU_reg_branch_short(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
  9657   match(If cmp (CmpU op1 op2));
  9658   predicate(UseCBCond);
  9659   effect(USE labl, KILL icc);
  9661   size(4);
  9662   ins_cost(BRANCH_COST);
  9663   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
  9664   ins_encode %{
  9665     Label* L = $labl$$label;
  9666     assert(__ use_cbcond(*L), "back to back cbcond");
  9667     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9668   %}
  9669   ins_short_branch(1);
  9670   ins_avoid_back_to_back(1);
  9671   ins_pipe(cbcond_reg_reg);
  9672 %}
  9674 instruct cmpU_imm_branch_short(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
  9675   match(If cmp (CmpU op1 op2));
  9676   predicate(UseCBCond);
  9677   effect(USE labl, KILL icc);
  9679   size(4);
  9680   ins_cost(BRANCH_COST);
  9681   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
  9682   ins_encode %{
  9683     Label* L = $labl$$label;
  9684     assert(__ use_cbcond(*L), "back to back cbcond");
  9685     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  9686   %}
  9687   ins_short_branch(1);
  9688   ins_avoid_back_to_back(1);
  9689   ins_pipe(cbcond_reg_imm);
  9690 %}
  9692 instruct cmpL_reg_branch_short(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
  9693   match(If cmp (CmpL op1 op2));
  9694   predicate(UseCBCond);
  9695   effect(USE labl, KILL xcc);
  9697   size(4);
  9698   ins_cost(BRANCH_COST);
  9699   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
  9700   ins_encode %{
  9701     Label* L = $labl$$label;
  9702     assert(__ use_cbcond(*L), "back to back cbcond");
  9703     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$Register, *L);
  9704   %}
  9705   ins_short_branch(1);
  9706   ins_avoid_back_to_back(1);
  9707   ins_pipe(cbcond_reg_reg);
  9708 %}
  9710 instruct cmpL_imm_branch_short(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
  9711   match(If cmp (CmpL op1 op2));
  9712   predicate(UseCBCond);
  9713   effect(USE labl, KILL xcc);
  9715   size(4);
  9716   ins_cost(BRANCH_COST);
  9717   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
  9718   ins_encode %{
  9719     Label* L = $labl$$label;
  9720     assert(__ use_cbcond(*L), "back to back cbcond");
  9721     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$constant, *L);
  9722   %}
  9723   ins_short_branch(1);
  9724   ins_avoid_back_to_back(1);
  9725   ins_pipe(cbcond_reg_imm);
  9726 %}
  9728 // Compare Pointers and branch
  9729 instruct cmpP_reg_branch_short(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
  9730   match(If cmp (CmpP op1 op2));
  9731   predicate(UseCBCond);
  9732   effect(USE labl, KILL pcc);
  9734   size(4);
  9735   ins_cost(BRANCH_COST);
  9736 #ifdef _LP64
  9737   format %{ "CXB$cmp $op1,$op2,$labl\t! ptr" %}
  9738 #else
  9739   format %{ "CWB$cmp $op1,$op2,$labl\t! ptr" %}
  9740 #endif
  9741   ins_encode %{
  9742     Label* L = $labl$$label;
  9743     assert(__ use_cbcond(*L), "back to back cbcond");
  9744     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, $op2$$Register, *L);
  9745   %}
  9746   ins_short_branch(1);
  9747   ins_avoid_back_to_back(1);
  9748   ins_pipe(cbcond_reg_reg);
  9749 %}
  9751 instruct cmpP_null_branch_short(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
  9752   match(If cmp (CmpP op1 null));
  9753   predicate(UseCBCond);
  9754   effect(USE labl, KILL pcc);
  9756   size(4);
  9757   ins_cost(BRANCH_COST);
  9758 #ifdef _LP64
  9759   format %{ "CXB$cmp $op1,0,$labl\t! ptr" %}
  9760 #else
  9761   format %{ "CWB$cmp $op1,0,$labl\t! ptr" %}
  9762 #endif
  9763   ins_encode %{
  9764     Label* L = $labl$$label;
  9765     assert(__ use_cbcond(*L), "back to back cbcond");
  9766     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, G0, *L);
  9767   %}
  9768   ins_short_branch(1);
  9769   ins_avoid_back_to_back(1);
  9770   ins_pipe(cbcond_reg_reg);
  9771 %}
  9773 instruct cmpN_reg_branch_short(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
  9774   match(If cmp (CmpN op1 op2));
  9775   predicate(UseCBCond);
  9776   effect(USE labl, KILL icc);
  9778   size(4);
  9779   ins_cost(BRANCH_COST);
  9780   format %{ "CWB$cmp  $op1,op2,$labl\t! compressed ptr" %}
  9781   ins_encode %{
  9782     Label* L = $labl$$label;
  9783     assert(__ use_cbcond(*L), "back to back cbcond");
  9784     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9785   %}
  9786   ins_short_branch(1);
  9787   ins_avoid_back_to_back(1);
  9788   ins_pipe(cbcond_reg_reg);
  9789 %}
  9791 instruct cmpN_null_branch_short(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
  9792   match(If cmp (CmpN op1 null));
  9793   predicate(UseCBCond);
  9794   effect(USE labl, KILL icc);
  9796   size(4);
  9797   ins_cost(BRANCH_COST);
  9798   format %{ "CWB$cmp  $op1,0,$labl\t! compressed ptr" %}
  9799   ins_encode %{
  9800     Label* L = $labl$$label;
  9801     assert(__ use_cbcond(*L), "back to back cbcond");
  9802     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, G0, *L);
  9803   %}
  9804   ins_short_branch(1);
  9805   ins_avoid_back_to_back(1);
  9806   ins_pipe(cbcond_reg_reg);
  9807 %}
  9809 // Loop back branch
  9810 instruct cmpI_reg_branchLoopEnd_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9811   match(CountedLoopEnd cmp (CmpI op1 op2));
  9812   predicate(UseCBCond);
  9813   effect(USE labl, KILL icc);
  9815   size(4);
  9816   ins_cost(BRANCH_COST);
  9817   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
  9818   ins_encode %{
  9819     Label* L = $labl$$label;
  9820     assert(__ use_cbcond(*L), "back to back cbcond");
  9821     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9822   %}
  9823   ins_short_branch(1);
  9824   ins_avoid_back_to_back(1);
  9825   ins_pipe(cbcond_reg_reg);
  9826 %}
  9828 instruct cmpI_imm_branchLoopEnd_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9829   match(CountedLoopEnd cmp (CmpI op1 op2));
  9830   predicate(UseCBCond);
  9831   effect(USE labl, KILL icc);
  9833   size(4);
  9834   ins_cost(BRANCH_COST);
  9835   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
  9836   ins_encode %{
  9837     Label* L = $labl$$label;
  9838     assert(__ use_cbcond(*L), "back to back cbcond");
  9839     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  9840   %}
  9841   ins_short_branch(1);
  9842   ins_avoid_back_to_back(1);
  9843   ins_pipe(cbcond_reg_imm);
  9844 %}
  9846 // Branch-on-register tests all 64 bits.  We assume that values
  9847 // in 64-bit registers always remains zero or sign extended
  9848 // unless our code munges the high bits.  Interrupts can chop
  9849 // the high order bits to zero or sign at any time.
  9850 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
  9851   match(If cmp (CmpI op1 zero));
  9852   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9853   effect(USE labl);
  9855   size(8);
  9856   ins_cost(BRANCH_COST);
  9857   format %{ "BR$cmp   $op1,$labl" %}
  9858   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9859   ins_pipe(br_reg);
  9860 %}
  9862 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
  9863   match(If cmp (CmpP op1 null));
  9864   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9865   effect(USE labl);
  9867   size(8);
  9868   ins_cost(BRANCH_COST);
  9869   format %{ "BR$cmp   $op1,$labl" %}
  9870   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9871   ins_pipe(br_reg);
  9872 %}
  9874 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
  9875   match(If cmp (CmpL op1 zero));
  9876   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9877   effect(USE labl);
  9879   size(8);
  9880   ins_cost(BRANCH_COST);
  9881   format %{ "BR$cmp   $op1,$labl" %}
  9882   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9883   ins_pipe(br_reg);
  9884 %}
  9887 // ============================================================================
  9888 // Long Compare
  9889 //
  9890 // Currently we hold longs in 2 registers.  Comparing such values efficiently
  9891 // is tricky.  The flavor of compare used depends on whether we are testing
  9892 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
  9893 // The GE test is the negated LT test.  The LE test can be had by commuting
  9894 // the operands (yielding a GE test) and then negating; negate again for the
  9895 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
  9896 // NE test is negated from that.
  9898 // Due to a shortcoming in the ADLC, it mixes up expressions like:
  9899 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
  9900 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
  9901 // are collapsed internally in the ADLC's dfa-gen code.  The match for
  9902 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
  9903 // foo match ends up with the wrong leaf.  One fix is to not match both
  9904 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
  9905 // both forms beat the trinary form of long-compare and both are very useful
  9906 // on Intel which has so few registers.
  9908 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
  9909   match(If cmp xcc);
  9910   effect(USE labl);
  9912   size(8);
  9913   ins_cost(BRANCH_COST);
  9914   format %{ "BP$cmp   $xcc,$labl" %}
  9915   ins_encode %{
  9916     Label* L = $labl$$label;
  9917     Assembler::Predict predict_taken =
  9918       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9920     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
  9921     __ delayed()->nop();
  9922   %}
  9923   ins_pipe(br_cc);
  9924 %}
  9926 // Manifest a CmpL3 result in an integer register.  Very painful.
  9927 // This is the test to avoid.
  9928 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
  9929   match(Set dst (CmpL3 src1 src2) );
  9930   effect( KILL ccr );
  9931   ins_cost(6*DEFAULT_COST);
  9932   size(24);
  9933   format %{ "CMP    $src1,$src2\t\t! long\n"
  9934           "\tBLT,a,pn done\n"
  9935           "\tMOV    -1,$dst\t! delay slot\n"
  9936           "\tBGT,a,pn done\n"
  9937           "\tMOV    1,$dst\t! delay slot\n"
  9938           "\tCLR    $dst\n"
  9939     "done:"     %}
  9940   ins_encode( cmpl_flag(src1,src2,dst) );
  9941   ins_pipe(cmpL_reg);
  9942 %}
  9944 // Conditional move
  9945 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
  9946   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  9947   ins_cost(150);
  9948   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  9949   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9950   ins_pipe(ialu_reg);
  9951 %}
  9953 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
  9954   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  9955   ins_cost(140);
  9956   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  9957   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9958   ins_pipe(ialu_imm);
  9959 %}
  9961 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
  9962   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  9963   ins_cost(150);
  9964   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9965   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9966   ins_pipe(ialu_reg);
  9967 %}
  9969 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
  9970   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  9971   ins_cost(140);
  9972   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9973   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9974   ins_pipe(ialu_imm);
  9975 %}
  9977 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
  9978   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
  9979   ins_cost(150);
  9980   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9981   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9982   ins_pipe(ialu_reg);
  9983 %}
  9985 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
  9986   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  9987   ins_cost(150);
  9988   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9989   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9990   ins_pipe(ialu_reg);
  9991 %}
  9993 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
  9994   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  9995   ins_cost(140);
  9996   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9997   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9998   ins_pipe(ialu_imm);
  9999 %}
 10001 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
 10002   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
 10003   ins_cost(150);
 10004   opcode(0x101);
 10005   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
 10006   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
 10007   ins_pipe(int_conditional_float_move);
 10008 %}
 10010 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
 10011   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
 10012   ins_cost(150);
 10013   opcode(0x102);
 10014   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
 10015   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
 10016   ins_pipe(int_conditional_float_move);
 10017 %}
 10019 // ============================================================================
 10020 // Safepoint Instruction
 10021 instruct safePoint_poll(iRegP poll) %{
 10022   match(SafePoint poll);
 10023   effect(USE poll);
 10025   size(4);
 10026 #ifdef _LP64
 10027   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
 10028 #else
 10029   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
 10030 #endif
 10031   ins_encode %{
 10032     __ relocate(relocInfo::poll_type);
 10033     __ ld_ptr($poll$$Register, 0, G0);
 10034   %}
 10035   ins_pipe(loadPollP);
 10036 %}
 10038 // ============================================================================
 10039 // Call Instructions
 10040 // Call Java Static Instruction
 10041 instruct CallStaticJavaDirect( method meth ) %{
 10042   match(CallStaticJava);
 10043   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
 10044   effect(USE meth);
 10046   size(8);
 10047   ins_cost(CALL_COST);
 10048   format %{ "CALL,static  ; NOP ==> " %}
 10049   ins_encode( Java_Static_Call( meth ), call_epilog );
 10050   ins_pipe(simple_call);
 10051 %}
 10053 // Call Java Static Instruction (method handle version)
 10054 instruct CallStaticJavaHandle(method meth, l7RegP l7_mh_SP_save) %{
 10055   match(CallStaticJava);
 10056   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
 10057   effect(USE meth, KILL l7_mh_SP_save);
 10059   size(16);
 10060   ins_cost(CALL_COST);
 10061   format %{ "CALL,static/MethodHandle" %}
 10062   ins_encode(preserve_SP, Java_Static_Call(meth), restore_SP, call_epilog);
 10063   ins_pipe(simple_call);
 10064 %}
 10066 // Call Java Dynamic Instruction
 10067 instruct CallDynamicJavaDirect( method meth ) %{
 10068   match(CallDynamicJava);
 10069   effect(USE meth);
 10071   ins_cost(CALL_COST);
 10072   format %{ "SET    (empty),R_G5\n\t"
 10073             "CALL,dynamic  ; NOP ==> " %}
 10074   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
 10075   ins_pipe(call);
 10076 %}
 10078 // Call Runtime Instruction
 10079 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
 10080   match(CallRuntime);
 10081   effect(USE meth, KILL l7);
 10082   ins_cost(CALL_COST);
 10083   format %{ "CALL,runtime" %}
 10084   ins_encode( Java_To_Runtime( meth ),
 10085               call_epilog, adjust_long_from_native_call );
 10086   ins_pipe(simple_call);
 10087 %}
 10089 // Call runtime without safepoint - same as CallRuntime
 10090 instruct CallLeafDirect(method meth, l7RegP l7) %{
 10091   match(CallLeaf);
 10092   effect(USE meth, KILL l7);
 10093   ins_cost(CALL_COST);
 10094   format %{ "CALL,runtime leaf" %}
 10095   ins_encode( Java_To_Runtime( meth ),
 10096               call_epilog,
 10097               adjust_long_from_native_call );
 10098   ins_pipe(simple_call);
 10099 %}
 10101 // Call runtime without safepoint - same as CallLeaf
 10102 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
 10103   match(CallLeafNoFP);
 10104   effect(USE meth, KILL l7);
 10105   ins_cost(CALL_COST);
 10106   format %{ "CALL,runtime leaf nofp" %}
 10107   ins_encode( Java_To_Runtime( meth ),
 10108               call_epilog,
 10109               adjust_long_from_native_call );
 10110   ins_pipe(simple_call);
 10111 %}
 10113 // Tail Call; Jump from runtime stub to Java code.
 10114 // Also known as an 'interprocedural jump'.
 10115 // Target of jump will eventually return to caller.
 10116 // TailJump below removes the return address.
 10117 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
 10118   match(TailCall jump_target method_oop );
 10120   ins_cost(CALL_COST);
 10121   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
 10122   ins_encode(form_jmpl(jump_target));
 10123   ins_pipe(tail_call);
 10124 %}
 10127 // Return Instruction
 10128 instruct Ret() %{
 10129   match(Return);
 10131   // The epilogue node did the ret already.
 10132   size(0);
 10133   format %{ "! return" %}
 10134   ins_encode();
 10135   ins_pipe(empty);
 10136 %}
 10139 // Tail Jump; remove the return address; jump to target.
 10140 // TailCall above leaves the return address around.
 10141 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
 10142 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
 10143 // "restore" before this instruction (in Epilogue), we need to materialize it
 10144 // in %i0.
 10145 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
 10146   match( TailJump jump_target ex_oop );
 10147   ins_cost(CALL_COST);
 10148   format %{ "! discard R_O7\n\t"
 10149             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
 10150   ins_encode(form_jmpl_set_exception_pc(jump_target));
 10151   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
 10152   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
 10153   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
 10154   ins_pipe(tail_call);
 10155 %}
 10157 // Create exception oop: created by stack-crawling runtime code.
 10158 // Created exception is now available to this handler, and is setup
 10159 // just prior to jumping to this handler.  No code emitted.
 10160 instruct CreateException( o0RegP ex_oop )
 10161 %{
 10162   match(Set ex_oop (CreateEx));
 10163   ins_cost(0);
 10165   size(0);
 10166   // use the following format syntax
 10167   format %{ "! exception oop is in R_O0; no code emitted" %}
 10168   ins_encode();
 10169   ins_pipe(empty);
 10170 %}
 10173 // Rethrow exception:
 10174 // The exception oop will come in the first argument position.
 10175 // Then JUMP (not call) to the rethrow stub code.
 10176 instruct RethrowException()
 10177 %{
 10178   match(Rethrow);
 10179   ins_cost(CALL_COST);
 10181   // use the following format syntax
 10182   format %{ "Jmp    rethrow_stub" %}
 10183   ins_encode(enc_rethrow);
 10184   ins_pipe(tail_call);
 10185 %}
 10188 // Die now
 10189 instruct ShouldNotReachHere( )
 10190 %{
 10191   match(Halt);
 10192   ins_cost(CALL_COST);
 10194   size(4);
 10195   // Use the following format syntax
 10196   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
 10197   ins_encode( form2_illtrap() );
 10198   ins_pipe(tail_call);
 10199 %}
 10201 // ============================================================================
 10202 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
 10203 // array for an instance of the superklass.  Set a hidden internal cache on a
 10204 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
 10205 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
 10206 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
 10207   match(Set index (PartialSubtypeCheck sub super));
 10208   effect( KILL pcc, KILL o7 );
 10209   ins_cost(DEFAULT_COST*10);
 10210   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
 10211   ins_encode( enc_PartialSubtypeCheck() );
 10212   ins_pipe(partial_subtype_check_pipe);
 10213 %}
 10215 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
 10216   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
 10217   effect( KILL idx, KILL o7 );
 10218   ins_cost(DEFAULT_COST*10);
 10219   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
 10220   ins_encode( enc_PartialSubtypeCheck() );
 10221   ins_pipe(partial_subtype_check_pipe);
 10222 %}
 10225 // ============================================================================
 10226 // inlined locking and unlocking
 10228 instruct cmpFastLock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
 10229   match(Set pcc (FastLock object box));
 10231   effect(KILL scratch, TEMP scratch2);
 10232   ins_cost(100);
 10234   format %{ "FASTLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
 10235   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
 10236   ins_pipe(long_memory_op);
 10237 %}
 10240 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
 10241   match(Set pcc (FastUnlock object box));
 10242   effect(KILL scratch, TEMP scratch2);
 10243   ins_cost(100);
 10245   format %{ "FASTUNLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
 10246   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
 10247   ins_pipe(long_memory_op);
 10248 %}
 10250 // The encodings are generic.
 10251 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
 10252   predicate(!use_block_zeroing(n->in(2)) );
 10253   match(Set dummy (ClearArray cnt base));
 10254   effect(TEMP temp, KILL ccr);
 10255   ins_cost(300);
 10256   format %{ "MOV    $cnt,$temp\n"
 10257     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
 10258     "        BRge   loop\t\t! Clearing loop\n"
 10259     "        STX    G0,[$base+$temp]\t! delay slot" %}
 10261   ins_encode %{
 10262     // Compiler ensures base is doubleword aligned and cnt is count of doublewords
 10263     Register nof_bytes_arg    = $cnt$$Register;
 10264     Register nof_bytes_tmp    = $temp$$Register;
 10265     Register base_pointer_arg = $base$$Register;
 10267     Label loop;
 10268     __ mov(nof_bytes_arg, nof_bytes_tmp);
 10270     // Loop and clear, walking backwards through the array.
 10271     // nof_bytes_tmp (if >0) is always the number of bytes to zero
 10272     __ bind(loop);
 10273     __ deccc(nof_bytes_tmp, 8);
 10274     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
 10275     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
 10276     // %%%% this mini-loop must not cross a cache boundary!
 10277   %}
 10278   ins_pipe(long_memory_op);
 10279 %}
 10281 instruct clear_array_bis(g1RegX cnt, o0RegP base, Universe dummy, flagsReg ccr) %{
 10282   predicate(use_block_zeroing(n->in(2)));
 10283   match(Set dummy (ClearArray cnt base));
 10284   effect(USE_KILL cnt, USE_KILL base, KILL ccr);
 10285   ins_cost(300);
 10286   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
 10288   ins_encode %{
 10290     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
 10291     Register to    = $base$$Register;
 10292     Register count = $cnt$$Register;
 10294     Label Ldone;
 10295     __ nop(); // Separate short branches
 10296     // Use BIS for zeroing (temp is not used).
 10297     __ bis_zeroing(to, count, G0, Ldone);
 10298     __ bind(Ldone);
 10300   %}
 10301   ins_pipe(long_memory_op);
 10302 %}
 10304 instruct clear_array_bis_2(g1RegX cnt, o0RegP base, iRegX tmp, Universe dummy, flagsReg ccr) %{
 10305   predicate(use_block_zeroing(n->in(2)) && !Assembler::is_simm13((int)BlockZeroingLowLimit));
 10306   match(Set dummy (ClearArray cnt base));
 10307   effect(TEMP tmp, USE_KILL cnt, USE_KILL base, KILL ccr);
 10308   ins_cost(300);
 10309   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
 10311   ins_encode %{
 10313     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
 10314     Register to    = $base$$Register;
 10315     Register count = $cnt$$Register;
 10316     Register temp  = $tmp$$Register;
 10318     Label Ldone;
 10319     __ nop(); // Separate short branches
 10320     // Use BIS for zeroing
 10321     __ bis_zeroing(to, count, temp, Ldone);
 10322     __ bind(Ldone);
 10324   %}
 10325   ins_pipe(long_memory_op);
 10326 %}
 10328 instruct string_compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
 10329                         o7RegI tmp, flagsReg ccr) %{
 10330   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
 10331   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
 10332   ins_cost(300);
 10333   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
 10334   ins_encode( enc_String_Compare(str1, str2, cnt1, cnt2, result) );
 10335   ins_pipe(long_memory_op);
 10336 %}
 10338 instruct string_equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
 10339                        o7RegI tmp, flagsReg ccr) %{
 10340   match(Set result (StrEquals (Binary str1 str2) cnt));
 10341   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
 10342   ins_cost(300);
 10343   format %{ "String Equals $str1,$str2,$cnt -> $result   // KILL $tmp" %}
 10344   ins_encode( enc_String_Equals(str1, str2, cnt, result) );
 10345   ins_pipe(long_memory_op);
 10346 %}
 10348 instruct array_equals(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
 10349                       o7RegI tmp2, flagsReg ccr) %{
 10350   match(Set result (AryEq ary1 ary2));
 10351   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
 10352   ins_cost(300);
 10353   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
 10354   ins_encode( enc_Array_Equals(ary1, ary2, tmp1, result));
 10355   ins_pipe(long_memory_op);
 10356 %}
 10359 //---------- Zeros Count Instructions ------------------------------------------
 10361 instruct countLeadingZerosI(iRegI dst, iRegI src, iRegI tmp, flagsReg cr) %{
 10362   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10363   match(Set dst (CountLeadingZerosI src));
 10364   effect(TEMP dst, TEMP tmp, KILL cr);
 10366   // x |= (x >> 1);
 10367   // x |= (x >> 2);
 10368   // x |= (x >> 4);
 10369   // x |= (x >> 8);
 10370   // x |= (x >> 16);
 10371   // return (WORDBITS - popc(x));
 10372   format %{ "SRL     $src,1,$tmp\t! count leading zeros (int)\n\t"
 10373             "SRL     $src,0,$dst\t! 32-bit zero extend\n\t"
 10374             "OR      $dst,$tmp,$dst\n\t"
 10375             "SRL     $dst,2,$tmp\n\t"
 10376             "OR      $dst,$tmp,$dst\n\t"
 10377             "SRL     $dst,4,$tmp\n\t"
 10378             "OR      $dst,$tmp,$dst\n\t"
 10379             "SRL     $dst,8,$tmp\n\t"
 10380             "OR      $dst,$tmp,$dst\n\t"
 10381             "SRL     $dst,16,$tmp\n\t"
 10382             "OR      $dst,$tmp,$dst\n\t"
 10383             "POPC    $dst,$dst\n\t"
 10384             "MOV     32,$tmp\n\t"
 10385             "SUB     $tmp,$dst,$dst" %}
 10386   ins_encode %{
 10387     Register Rdst = $dst$$Register;
 10388     Register Rsrc = $src$$Register;
 10389     Register Rtmp = $tmp$$Register;
 10390     __ srl(Rsrc, 1,    Rtmp);
 10391     __ srl(Rsrc, 0,    Rdst);
 10392     __ or3(Rdst, Rtmp, Rdst);
 10393     __ srl(Rdst, 2,    Rtmp);
 10394     __ or3(Rdst, Rtmp, Rdst);
 10395     __ srl(Rdst, 4,    Rtmp);
 10396     __ or3(Rdst, Rtmp, Rdst);
 10397     __ srl(Rdst, 8,    Rtmp);
 10398     __ or3(Rdst, Rtmp, Rdst);
 10399     __ srl(Rdst, 16,   Rtmp);
 10400     __ or3(Rdst, Rtmp, Rdst);
 10401     __ popc(Rdst, Rdst);
 10402     __ mov(BitsPerInt, Rtmp);
 10403     __ sub(Rtmp, Rdst, Rdst);
 10404   %}
 10405   ins_pipe(ialu_reg);
 10406 %}
 10408 instruct countLeadingZerosL(iRegIsafe dst, iRegL src, iRegL tmp, flagsReg cr) %{
 10409   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10410   match(Set dst (CountLeadingZerosL src));
 10411   effect(TEMP dst, TEMP tmp, KILL cr);
 10413   // x |= (x >> 1);
 10414   // x |= (x >> 2);
 10415   // x |= (x >> 4);
 10416   // x |= (x >> 8);
 10417   // x |= (x >> 16);
 10418   // x |= (x >> 32);
 10419   // return (WORDBITS - popc(x));
 10420   format %{ "SRLX    $src,1,$tmp\t! count leading zeros (long)\n\t"
 10421             "OR      $src,$tmp,$dst\n\t"
 10422             "SRLX    $dst,2,$tmp\n\t"
 10423             "OR      $dst,$tmp,$dst\n\t"
 10424             "SRLX    $dst,4,$tmp\n\t"
 10425             "OR      $dst,$tmp,$dst\n\t"
 10426             "SRLX    $dst,8,$tmp\n\t"
 10427             "OR      $dst,$tmp,$dst\n\t"
 10428             "SRLX    $dst,16,$tmp\n\t"
 10429             "OR      $dst,$tmp,$dst\n\t"
 10430             "SRLX    $dst,32,$tmp\n\t"
 10431             "OR      $dst,$tmp,$dst\n\t"
 10432             "POPC    $dst,$dst\n\t"
 10433             "MOV     64,$tmp\n\t"
 10434             "SUB     $tmp,$dst,$dst" %}
 10435   ins_encode %{
 10436     Register Rdst = $dst$$Register;
 10437     Register Rsrc = $src$$Register;
 10438     Register Rtmp = $tmp$$Register;
 10439     __ srlx(Rsrc, 1,    Rtmp);
 10440     __ or3( Rsrc, Rtmp, Rdst);
 10441     __ srlx(Rdst, 2,    Rtmp);
 10442     __ or3( Rdst, Rtmp, Rdst);
 10443     __ srlx(Rdst, 4,    Rtmp);
 10444     __ or3( Rdst, Rtmp, Rdst);
 10445     __ srlx(Rdst, 8,    Rtmp);
 10446     __ or3( Rdst, Rtmp, Rdst);
 10447     __ srlx(Rdst, 16,   Rtmp);
 10448     __ or3( Rdst, Rtmp, Rdst);
 10449     __ srlx(Rdst, 32,   Rtmp);
 10450     __ or3( Rdst, Rtmp, Rdst);
 10451     __ popc(Rdst, Rdst);
 10452     __ mov(BitsPerLong, Rtmp);
 10453     __ sub(Rtmp, Rdst, Rdst);
 10454   %}
 10455   ins_pipe(ialu_reg);
 10456 %}
 10458 instruct countTrailingZerosI(iRegI dst, iRegI src, flagsReg cr) %{
 10459   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10460   match(Set dst (CountTrailingZerosI src));
 10461   effect(TEMP dst, KILL cr);
 10463   // return popc(~x & (x - 1));
 10464   format %{ "SUB     $src,1,$dst\t! count trailing zeros (int)\n\t"
 10465             "ANDN    $dst,$src,$dst\n\t"
 10466             "SRL     $dst,R_G0,$dst\n\t"
 10467             "POPC    $dst,$dst" %}
 10468   ins_encode %{
 10469     Register Rdst = $dst$$Register;
 10470     Register Rsrc = $src$$Register;
 10471     __ sub(Rsrc, 1, Rdst);
 10472     __ andn(Rdst, Rsrc, Rdst);
 10473     __ srl(Rdst, G0, Rdst);
 10474     __ popc(Rdst, Rdst);
 10475   %}
 10476   ins_pipe(ialu_reg);
 10477 %}
 10479 instruct countTrailingZerosL(iRegI dst, iRegL src, flagsReg cr) %{
 10480   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10481   match(Set dst (CountTrailingZerosL src));
 10482   effect(TEMP dst, KILL cr);
 10484   // return popc(~x & (x - 1));
 10485   format %{ "SUB     $src,1,$dst\t! count trailing zeros (long)\n\t"
 10486             "ANDN    $dst,$src,$dst\n\t"
 10487             "POPC    $dst,$dst" %}
 10488   ins_encode %{
 10489     Register Rdst = $dst$$Register;
 10490     Register Rsrc = $src$$Register;
 10491     __ sub(Rsrc, 1, Rdst);
 10492     __ andn(Rdst, Rsrc, Rdst);
 10493     __ popc(Rdst, Rdst);
 10494   %}
 10495   ins_pipe(ialu_reg);
 10496 %}
 10499 //---------- Population Count Instructions -------------------------------------
 10501 instruct popCountI(iRegI dst, iRegI src) %{
 10502   predicate(UsePopCountInstruction);
 10503   match(Set dst (PopCountI src));
 10505   format %{ "POPC   $src, $dst" %}
 10506   ins_encode %{
 10507     __ popc($src$$Register, $dst$$Register);
 10508   %}
 10509   ins_pipe(ialu_reg);
 10510 %}
 10512 // Note: Long.bitCount(long) returns an int.
 10513 instruct popCountL(iRegI dst, iRegL src) %{
 10514   predicate(UsePopCountInstruction);
 10515   match(Set dst (PopCountL src));
 10517   format %{ "POPC   $src, $dst" %}
 10518   ins_encode %{
 10519     __ popc($src$$Register, $dst$$Register);
 10520   %}
 10521   ins_pipe(ialu_reg);
 10522 %}
 10525 // ============================================================================
 10526 //------------Bytes reverse--------------------------------------------------
 10528 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
 10529   match(Set dst (ReverseBytesI src));
 10531   // Op cost is artificially doubled to make sure that load or store
 10532   // instructions are preferred over this one which requires a spill
 10533   // onto a stack slot.
 10534   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10535   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
 10537   ins_encode %{
 10538     __ set($src$$disp + STACK_BIAS, O7);
 10539     __ lduwa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10540   %}
 10541   ins_pipe( iload_mem );
 10542 %}
 10544 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
 10545   match(Set dst (ReverseBytesL src));
 10547   // Op cost is artificially doubled to make sure that load or store
 10548   // instructions are preferred over this one which requires a spill
 10549   // onto a stack slot.
 10550   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10551   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
 10553   ins_encode %{
 10554     __ set($src$$disp + STACK_BIAS, O7);
 10555     __ ldxa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10556   %}
 10557   ins_pipe( iload_mem );
 10558 %}
 10560 instruct bytes_reverse_unsigned_short(iRegI dst, stackSlotI src) %{
 10561   match(Set dst (ReverseBytesUS src));
 10563   // Op cost is artificially doubled to make sure that load or store
 10564   // instructions are preferred over this one which requires a spill
 10565   // onto a stack slot.
 10566   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10567   format %{ "LDUHA  $src, $dst\t!asi=primary_little\n\t" %}
 10569   ins_encode %{
 10570     // the value was spilled as an int so bias the load
 10571     __ set($src$$disp + STACK_BIAS + 2, O7);
 10572     __ lduha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10573   %}
 10574   ins_pipe( iload_mem );
 10575 %}
 10577 instruct bytes_reverse_short(iRegI dst, stackSlotI src) %{
 10578   match(Set dst (ReverseBytesS src));
 10580   // Op cost is artificially doubled to make sure that load or store
 10581   // instructions are preferred over this one which requires a spill
 10582   // onto a stack slot.
 10583   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10584   format %{ "LDSHA  $src, $dst\t!asi=primary_little\n\t" %}
 10586   ins_encode %{
 10587     // the value was spilled as an int so bias the load
 10588     __ set($src$$disp + STACK_BIAS + 2, O7);
 10589     __ ldsha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10590   %}
 10591   ins_pipe( iload_mem );
 10592 %}
 10594 // Load Integer reversed byte order
 10595 instruct loadI_reversed(iRegI dst, indIndexMemory src) %{
 10596   match(Set dst (ReverseBytesI (LoadI src)));
 10598   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
 10599   size(4);
 10600   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
 10602   ins_encode %{
 10603     __ lduwa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10604   %}
 10605   ins_pipe(iload_mem);
 10606 %}
 10608 // Load Long - aligned and reversed
 10609 instruct loadL_reversed(iRegL dst, indIndexMemory src) %{
 10610   match(Set dst (ReverseBytesL (LoadL src)));
 10612   ins_cost(MEMORY_REF_COST);
 10613   size(4);
 10614   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
 10616   ins_encode %{
 10617     __ ldxa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10618   %}
 10619   ins_pipe(iload_mem);
 10620 %}
 10622 // Load unsigned short / char reversed byte order
 10623 instruct loadUS_reversed(iRegI dst, indIndexMemory src) %{
 10624   match(Set dst (ReverseBytesUS (LoadUS src)));
 10626   ins_cost(MEMORY_REF_COST);
 10627   size(4);
 10628   format %{ "LDUHA  $src, $dst\t!asi=primary_little" %}
 10630   ins_encode %{
 10631     __ lduha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10632   %}
 10633   ins_pipe(iload_mem);
 10634 %}
 10636 // Load short reversed byte order
 10637 instruct loadS_reversed(iRegI dst, indIndexMemory src) %{
 10638   match(Set dst (ReverseBytesS (LoadS src)));
 10640   ins_cost(MEMORY_REF_COST);
 10641   size(4);
 10642   format %{ "LDSHA  $src, $dst\t!asi=primary_little" %}
 10644   ins_encode %{
 10645     __ ldsha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10646   %}
 10647   ins_pipe(iload_mem);
 10648 %}
 10650 // Store Integer reversed byte order
 10651 instruct storeI_reversed(indIndexMemory dst, iRegI src) %{
 10652   match(Set dst (StoreI dst (ReverseBytesI src)));
 10654   ins_cost(MEMORY_REF_COST);
 10655   size(4);
 10656   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
 10658   ins_encode %{
 10659     __ stwa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10660   %}
 10661   ins_pipe(istore_mem_reg);
 10662 %}
 10664 // Store Long reversed byte order
 10665 instruct storeL_reversed(indIndexMemory dst, iRegL src) %{
 10666   match(Set dst (StoreL dst (ReverseBytesL src)));
 10668   ins_cost(MEMORY_REF_COST);
 10669   size(4);
 10670   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
 10672   ins_encode %{
 10673     __ stxa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10674   %}
 10675   ins_pipe(istore_mem_reg);
 10676 %}
 10678 // Store unsighed short/char reversed byte order
 10679 instruct storeUS_reversed(indIndexMemory dst, iRegI src) %{
 10680   match(Set dst (StoreC dst (ReverseBytesUS src)));
 10682   ins_cost(MEMORY_REF_COST);
 10683   size(4);
 10684   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
 10686   ins_encode %{
 10687     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10688   %}
 10689   ins_pipe(istore_mem_reg);
 10690 %}
 10692 // Store short reversed byte order
 10693 instruct storeS_reversed(indIndexMemory dst, iRegI src) %{
 10694   match(Set dst (StoreC dst (ReverseBytesS src)));
 10696   ins_cost(MEMORY_REF_COST);
 10697   size(4);
 10698   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
 10700   ins_encode %{
 10701     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10702   %}
 10703   ins_pipe(istore_mem_reg);
 10704 %}
 10706 //----------PEEPHOLE RULES-----------------------------------------------------
 10707 // These must follow all instruction definitions as they use the names
 10708 // defined in the instructions definitions.
 10709 //
 10710 // peepmatch ( root_instr_name [preceding_instruction]* );
 10711 //
 10712 // peepconstraint %{
 10713 // (instruction_number.operand_name relational_op instruction_number.operand_name
 10714 //  [, ...] );
 10715 // // instruction numbers are zero-based using left to right order in peepmatch
 10716 //
 10717 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
 10718 // // provide an instruction_number.operand_name for each operand that appears
 10719 // // in the replacement instruction's match rule
 10720 //
 10721 // ---------VM FLAGS---------------------------------------------------------
 10722 //
 10723 // All peephole optimizations can be turned off using -XX:-OptoPeephole
 10724 //
 10725 // Each peephole rule is given an identifying number starting with zero and
 10726 // increasing by one in the order seen by the parser.  An individual peephole
 10727 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
 10728 // on the command-line.
 10729 //
 10730 // ---------CURRENT LIMITATIONS----------------------------------------------
 10731 //
 10732 // Only match adjacent instructions in same basic block
 10733 // Only equality constraints
 10734 // Only constraints between operands, not (0.dest_reg == EAX_enc)
 10735 // Only one replacement instruction
 10736 //
 10737 // ---------EXAMPLE----------------------------------------------------------
 10738 //
 10739 // // pertinent parts of existing instructions in architecture description
 10740 // instruct movI(eRegI dst, eRegI src) %{
 10741 //   match(Set dst (CopyI src));
 10742 // %}
 10743 //
 10744 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
 10745 //   match(Set dst (AddI dst src));
 10746 //   effect(KILL cr);
 10747 // %}
 10748 //
 10749 // // Change (inc mov) to lea
 10750 // peephole %{
 10751 //   // increment preceeded by register-register move
 10752 //   peepmatch ( incI_eReg movI );
 10753 //   // require that the destination register of the increment
 10754 //   // match the destination register of the move
 10755 //   peepconstraint ( 0.dst == 1.dst );
 10756 //   // construct a replacement instruction that sets
 10757 //   // the destination to ( move's source register + one )
 10758 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
 10759 // %}
 10760 //
 10762 // // Change load of spilled value to only a spill
 10763 // instruct storeI(memory mem, eRegI src) %{
 10764 //   match(Set mem (StoreI mem src));
 10765 // %}
 10766 //
 10767 // instruct loadI(eRegI dst, memory mem) %{
 10768 //   match(Set dst (LoadI mem));
 10769 // %}
 10770 //
 10771 // peephole %{
 10772 //   peepmatch ( loadI storeI );
 10773 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 10774 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
 10775 // %}
 10777 //----------SMARTSPILL RULES---------------------------------------------------
 10778 // These must follow all instruction definitions as they use the names
 10779 // defined in the instructions definitions.
 10780 //
 10781 // SPARC will probably not have any of these rules due to RISC instruction set.
 10783 //----------PIPELINE-----------------------------------------------------------
 10784 // Rules which define the behavior of the target architectures pipeline.

mercurial