src/share/vm/gc_implementation/g1/concurrentMark.hpp

Tue, 26 Aug 2014 09:36:53 +0200

author
tschatzl
date
Tue, 26 Aug 2014 09:36:53 +0200
changeset 7091
a8ea2f110d87
parent 7051
1f1d373cd044
child 7094
9337d0e7ea4f
permissions
-rw-r--r--

8054819: Rename HeapRegionSeq to HeapRegionManager
Reviewed-by: jwilhelm, jmasa

     1 /*
     2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
    28 #include "classfile/javaClasses.hpp"
    29 #include "gc_implementation/g1/heapRegionSet.hpp"
    30 #include "gc_implementation/g1/g1RegionToSpaceMapper.hpp"
    31 #include "gc_implementation/shared/gcId.hpp"
    32 #include "utilities/taskqueue.hpp"
    34 class G1CollectedHeap;
    35 class CMBitMap;
    36 class CMTask;
    37 typedef GenericTaskQueue<oop, mtGC>            CMTaskQueue;
    38 typedef GenericTaskQueueSet<CMTaskQueue, mtGC> CMTaskQueueSet;
    40 // Closure used by CM during concurrent reference discovery
    41 // and reference processing (during remarking) to determine
    42 // if a particular object is alive. It is primarily used
    43 // to determine if referents of discovered reference objects
    44 // are alive. An instance is also embedded into the
    45 // reference processor as the _is_alive_non_header field
    46 class G1CMIsAliveClosure: public BoolObjectClosure {
    47   G1CollectedHeap* _g1;
    48  public:
    49   G1CMIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) { }
    51   bool do_object_b(oop obj);
    52 };
    54 // A generic CM bit map.  This is essentially a wrapper around the BitMap
    55 // class, with one bit per (1<<_shifter) HeapWords.
    57 class CMBitMapRO VALUE_OBJ_CLASS_SPEC {
    58  protected:
    59   HeapWord* _bmStartWord;      // base address of range covered by map
    60   size_t    _bmWordSize;       // map size (in #HeapWords covered)
    61   const int _shifter;          // map to char or bit
    62   BitMap    _bm;               // the bit map itself
    64  public:
    65   // constructor
    66   CMBitMapRO(int shifter);
    68   enum { do_yield = true };
    70   // inquiries
    71   HeapWord* startWord()   const { return _bmStartWord; }
    72   size_t    sizeInWords() const { return _bmWordSize;  }
    73   // the following is one past the last word in space
    74   HeapWord* endWord()     const { return _bmStartWord + _bmWordSize; }
    76   // read marks
    78   bool isMarked(HeapWord* addr) const {
    79     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
    80            "outside underlying space?");
    81     return _bm.at(heapWordToOffset(addr));
    82   }
    84   // iteration
    85   inline bool iterate(BitMapClosure* cl, MemRegion mr);
    86   inline bool iterate(BitMapClosure* cl);
    88   // Return the address corresponding to the next marked bit at or after
    89   // "addr", and before "limit", if "limit" is non-NULL.  If there is no
    90   // such bit, returns "limit" if that is non-NULL, or else "endWord()".
    91   HeapWord* getNextMarkedWordAddress(const HeapWord* addr,
    92                                      const HeapWord* limit = NULL) const;
    93   // Return the address corresponding to the next unmarked bit at or after
    94   // "addr", and before "limit", if "limit" is non-NULL.  If there is no
    95   // such bit, returns "limit" if that is non-NULL, or else "endWord()".
    96   HeapWord* getNextUnmarkedWordAddress(const HeapWord* addr,
    97                                        const HeapWord* limit = NULL) const;
    99   // conversion utilities
   100   HeapWord* offsetToHeapWord(size_t offset) const {
   101     return _bmStartWord + (offset << _shifter);
   102   }
   103   size_t heapWordToOffset(const HeapWord* addr) const {
   104     return pointer_delta(addr, _bmStartWord) >> _shifter;
   105   }
   106   int heapWordDiffToOffsetDiff(size_t diff) const;
   108   // The argument addr should be the start address of a valid object
   109   HeapWord* nextObject(HeapWord* addr) {
   110     oop obj = (oop) addr;
   111     HeapWord* res =  addr + obj->size();
   112     assert(offsetToHeapWord(heapWordToOffset(res)) == res, "sanity");
   113     return res;
   114   }
   116   void print_on_error(outputStream* st, const char* prefix) const;
   118   // debugging
   119   NOT_PRODUCT(bool covers(MemRegion rs) const;)
   120 };
   122 class CMBitMapMappingChangedListener : public G1MappingChangedListener {
   123  private:
   124   CMBitMap* _bm;
   125  public:
   126   CMBitMapMappingChangedListener() : _bm(NULL) {}
   128   void set_bitmap(CMBitMap* bm) { _bm = bm; }
   130   virtual void on_commit(uint start_idx, size_t num_regions);
   131 };
   133 class CMBitMap : public CMBitMapRO {
   134  private:
   135   CMBitMapMappingChangedListener _listener;
   137  public:
   138   static size_t compute_size(size_t heap_size);
   139   // Returns the amount of bytes on the heap between two marks in the bitmap.
   140   static size_t mark_distance();
   142   CMBitMap() : CMBitMapRO(LogMinObjAlignment), _listener() { _listener.set_bitmap(this); }
   144   // Initializes the underlying BitMap to cover the given area.
   145   void initialize(MemRegion heap, G1RegionToSpaceMapper* storage);
   147   // Write marks.
   148   inline void mark(HeapWord* addr);
   149   inline void clear(HeapWord* addr);
   150   inline bool parMark(HeapWord* addr);
   151   inline bool parClear(HeapWord* addr);
   153   void markRange(MemRegion mr);
   154   void clearRange(MemRegion mr);
   156   // Starting at the bit corresponding to "addr" (inclusive), find the next
   157   // "1" bit, if any.  This bit starts some run of consecutive "1"'s; find
   158   // the end of this run (stopping at "end_addr").  Return the MemRegion
   159   // covering from the start of the region corresponding to the first bit
   160   // of the run to the end of the region corresponding to the last bit of
   161   // the run.  If there is no "1" bit at or after "addr", return an empty
   162   // MemRegion.
   163   MemRegion getAndClearMarkedRegion(HeapWord* addr, HeapWord* end_addr);
   165   // Clear the whole mark bitmap.
   166   void clearAll();
   167 };
   169 // Represents a marking stack used by ConcurrentMarking in the G1 collector.
   170 class CMMarkStack VALUE_OBJ_CLASS_SPEC {
   171   VirtualSpace _virtual_space;   // Underlying backing store for actual stack
   172   ConcurrentMark* _cm;
   173   oop* _base;        // bottom of stack
   174   jint _index;       // one more than last occupied index
   175   jint _capacity;    // max #elements
   176   jint _saved_index; // value of _index saved at start of GC
   177   NOT_PRODUCT(jint _max_depth;)   // max depth plumbed during run
   179   bool  _overflow;
   180   bool  _should_expand;
   181   DEBUG_ONLY(bool _drain_in_progress;)
   182   DEBUG_ONLY(bool _drain_in_progress_yields;)
   184  public:
   185   CMMarkStack(ConcurrentMark* cm);
   186   ~CMMarkStack();
   188 #ifndef PRODUCT
   189   jint max_depth() const {
   190     return _max_depth;
   191   }
   192 #endif
   194   bool allocate(size_t capacity);
   196   oop pop() {
   197     if (!isEmpty()) {
   198       return _base[--_index] ;
   199     }
   200     return NULL;
   201   }
   203   // If overflow happens, don't do the push, and record the overflow.
   204   // *Requires* that "ptr" is already marked.
   205   void push(oop ptr) {
   206     if (isFull()) {
   207       // Record overflow.
   208       _overflow = true;
   209       return;
   210     } else {
   211       _base[_index++] = ptr;
   212       NOT_PRODUCT(_max_depth = MAX2(_max_depth, _index));
   213     }
   214   }
   215   // Non-block impl.  Note: concurrency is allowed only with other
   216   // "par_push" operations, not with "pop" or "drain".  We would need
   217   // parallel versions of them if such concurrency was desired.
   218   void par_push(oop ptr);
   220   // Pushes the first "n" elements of "ptr_arr" on the stack.
   221   // Non-block impl.  Note: concurrency is allowed only with other
   222   // "par_adjoin_arr" or "push" operations, not with "pop" or "drain".
   223   void par_adjoin_arr(oop* ptr_arr, int n);
   225   // Pushes the first "n" elements of "ptr_arr" on the stack.
   226   // Locking impl: concurrency is allowed only with
   227   // "par_push_arr" and/or "par_pop_arr" operations, which use the same
   228   // locking strategy.
   229   void par_push_arr(oop* ptr_arr, int n);
   231   // If returns false, the array was empty.  Otherwise, removes up to "max"
   232   // elements from the stack, and transfers them to "ptr_arr" in an
   233   // unspecified order.  The actual number transferred is given in "n" ("n
   234   // == 0" is deliberately redundant with the return value.)  Locking impl:
   235   // concurrency is allowed only with "par_push_arr" and/or "par_pop_arr"
   236   // operations, which use the same locking strategy.
   237   bool par_pop_arr(oop* ptr_arr, int max, int* n);
   239   // Drain the mark stack, applying the given closure to all fields of
   240   // objects on the stack.  (That is, continue until the stack is empty,
   241   // even if closure applications add entries to the stack.)  The "bm"
   242   // argument, if non-null, may be used to verify that only marked objects
   243   // are on the mark stack.  If "yield_after" is "true", then the
   244   // concurrent marker performing the drain offers to yield after
   245   // processing each object.  If a yield occurs, stops the drain operation
   246   // and returns false.  Otherwise, returns true.
   247   template<class OopClosureClass>
   248   bool drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after = false);
   250   bool isEmpty()    { return _index == 0; }
   251   bool isFull()     { return _index == _capacity; }
   252   int  maxElems()   { return _capacity; }
   254   bool overflow() { return _overflow; }
   255   void clear_overflow() { _overflow = false; }
   257   bool should_expand() const { return _should_expand; }
   258   void set_should_expand();
   260   // Expand the stack, typically in response to an overflow condition
   261   void expand();
   263   int  size() { return _index; }
   265   void setEmpty()   { _index = 0; clear_overflow(); }
   267   // Record the current index.
   268   void note_start_of_gc();
   270   // Make sure that we have not added any entries to the stack during GC.
   271   void note_end_of_gc();
   273   // iterate over the oops in the mark stack, up to the bound recorded via
   274   // the call above.
   275   void oops_do(OopClosure* f);
   276 };
   278 class ForceOverflowSettings VALUE_OBJ_CLASS_SPEC {
   279 private:
   280 #ifndef PRODUCT
   281   uintx _num_remaining;
   282   bool _force;
   283 #endif // !defined(PRODUCT)
   285 public:
   286   void init() PRODUCT_RETURN;
   287   void update() PRODUCT_RETURN;
   288   bool should_force() PRODUCT_RETURN_( return false; );
   289 };
   291 // this will enable a variety of different statistics per GC task
   292 #define _MARKING_STATS_       0
   293 // this will enable the higher verbose levels
   294 #define _MARKING_VERBOSE_     0
   296 #if _MARKING_STATS_
   297 #define statsOnly(statement)  \
   298 do {                          \
   299   statement ;                 \
   300 } while (0)
   301 #else // _MARKING_STATS_
   302 #define statsOnly(statement)  \
   303 do {                          \
   304 } while (0)
   305 #endif // _MARKING_STATS_
   307 typedef enum {
   308   no_verbose  = 0,   // verbose turned off
   309   stats_verbose,     // only prints stats at the end of marking
   310   low_verbose,       // low verbose, mostly per region and per major event
   311   medium_verbose,    // a bit more detailed than low
   312   high_verbose       // per object verbose
   313 } CMVerboseLevel;
   315 class YoungList;
   317 // Root Regions are regions that are not empty at the beginning of a
   318 // marking cycle and which we might collect during an evacuation pause
   319 // while the cycle is active. Given that, during evacuation pauses, we
   320 // do not copy objects that are explicitly marked, what we have to do
   321 // for the root regions is to scan them and mark all objects reachable
   322 // from them. According to the SATB assumptions, we only need to visit
   323 // each object once during marking. So, as long as we finish this scan
   324 // before the next evacuation pause, we can copy the objects from the
   325 // root regions without having to mark them or do anything else to them.
   326 //
   327 // Currently, we only support root region scanning once (at the start
   328 // of the marking cycle) and the root regions are all the survivor
   329 // regions populated during the initial-mark pause.
   330 class CMRootRegions VALUE_OBJ_CLASS_SPEC {
   331 private:
   332   YoungList*           _young_list;
   333   ConcurrentMark*      _cm;
   335   volatile bool        _scan_in_progress;
   336   volatile bool        _should_abort;
   337   HeapRegion* volatile _next_survivor;
   339 public:
   340   CMRootRegions();
   341   // We actually do most of the initialization in this method.
   342   void init(G1CollectedHeap* g1h, ConcurrentMark* cm);
   344   // Reset the claiming / scanning of the root regions.
   345   void prepare_for_scan();
   347   // Forces get_next() to return NULL so that the iteration aborts early.
   348   void abort() { _should_abort = true; }
   350   // Return true if the CM thread are actively scanning root regions,
   351   // false otherwise.
   352   bool scan_in_progress() { return _scan_in_progress; }
   354   // Claim the next root region to scan atomically, or return NULL if
   355   // all have been claimed.
   356   HeapRegion* claim_next();
   358   // Flag that we're done with root region scanning and notify anyone
   359   // who's waiting on it. If aborted is false, assume that all regions
   360   // have been claimed.
   361   void scan_finished();
   363   // If CM threads are still scanning root regions, wait until they
   364   // are done. Return true if we had to wait, false otherwise.
   365   bool wait_until_scan_finished();
   366 };
   368 class ConcurrentMarkThread;
   370 class ConcurrentMark: public CHeapObj<mtGC> {
   371   friend class CMMarkStack;
   372   friend class ConcurrentMarkThread;
   373   friend class CMTask;
   374   friend class CMBitMapClosure;
   375   friend class CMGlobalObjectClosure;
   376   friend class CMRemarkTask;
   377   friend class CMConcurrentMarkingTask;
   378   friend class G1ParNoteEndTask;
   379   friend class CalcLiveObjectsClosure;
   380   friend class G1CMRefProcTaskProxy;
   381   friend class G1CMRefProcTaskExecutor;
   382   friend class G1CMKeepAliveAndDrainClosure;
   383   friend class G1CMDrainMarkingStackClosure;
   385 protected:
   386   ConcurrentMarkThread* _cmThread;   // the thread doing the work
   387   G1CollectedHeap*      _g1h;        // the heap.
   388   uint                  _parallel_marking_threads; // the number of marking
   389                                                    // threads we're use
   390   uint                  _max_parallel_marking_threads; // max number of marking
   391                                                    // threads we'll ever use
   392   double                _sleep_factor; // how much we have to sleep, with
   393                                        // respect to the work we just did, to
   394                                        // meet the marking overhead goal
   395   double                _marking_task_overhead; // marking target overhead for
   396                                                 // a single task
   398   // same as the two above, but for the cleanup task
   399   double                _cleanup_sleep_factor;
   400   double                _cleanup_task_overhead;
   402   FreeRegionList        _cleanup_list;
   404   // Concurrent marking support structures
   405   CMBitMap                _markBitMap1;
   406   CMBitMap                _markBitMap2;
   407   CMBitMapRO*             _prevMarkBitMap; // completed mark bitmap
   408   CMBitMap*               _nextMarkBitMap; // under-construction mark bitmap
   410   BitMap                  _region_bm;
   411   BitMap                  _card_bm;
   413   // Heap bounds
   414   HeapWord*               _heap_start;
   415   HeapWord*               _heap_end;
   417   // Root region tracking and claiming.
   418   CMRootRegions           _root_regions;
   420   // For gray objects
   421   CMMarkStack             _markStack; // Grey objects behind global finger.
   422   HeapWord* volatile      _finger;  // the global finger, region aligned,
   423                                     // always points to the end of the
   424                                     // last claimed region
   426   // marking tasks
   427   uint                    _max_worker_id;// maximum worker id
   428   uint                    _active_tasks; // task num currently active
   429   CMTask**                _tasks;        // task queue array (max_worker_id len)
   430   CMTaskQueueSet*         _task_queues;  // task queue set
   431   ParallelTaskTerminator  _terminator;   // for termination
   433   // Two sync barriers that are used to synchronise tasks when an
   434   // overflow occurs. The algorithm is the following. All tasks enter
   435   // the first one to ensure that they have all stopped manipulating
   436   // the global data structures. After they exit it, they re-initialise
   437   // their data structures and task 0 re-initialises the global data
   438   // structures. Then, they enter the second sync barrier. This
   439   // ensure, that no task starts doing work before all data
   440   // structures (local and global) have been re-initialised. When they
   441   // exit it, they are free to start working again.
   442   WorkGangBarrierSync     _first_overflow_barrier_sync;
   443   WorkGangBarrierSync     _second_overflow_barrier_sync;
   445   // this is set by any task, when an overflow on the global data
   446   // structures is detected.
   447   volatile bool           _has_overflown;
   448   // true: marking is concurrent, false: we're in remark
   449   volatile bool           _concurrent;
   450   // set at the end of a Full GC so that marking aborts
   451   volatile bool           _has_aborted;
   452   GCId                    _aborted_gc_id;
   454   // used when remark aborts due to an overflow to indicate that
   455   // another concurrent marking phase should start
   456   volatile bool           _restart_for_overflow;
   458   // This is true from the very start of concurrent marking until the
   459   // point when all the tasks complete their work. It is really used
   460   // to determine the points between the end of concurrent marking and
   461   // time of remark.
   462   volatile bool           _concurrent_marking_in_progress;
   464   // verbose level
   465   CMVerboseLevel          _verbose_level;
   467   // All of these times are in ms.
   468   NumberSeq _init_times;
   469   NumberSeq _remark_times;
   470   NumberSeq   _remark_mark_times;
   471   NumberSeq   _remark_weak_ref_times;
   472   NumberSeq _cleanup_times;
   473   double    _total_counting_time;
   474   double    _total_rs_scrub_time;
   476   double*   _accum_task_vtime;   // accumulated task vtime
   478   FlexibleWorkGang* _parallel_workers;
   480   ForceOverflowSettings _force_overflow_conc;
   481   ForceOverflowSettings _force_overflow_stw;
   483   void weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool purged_classes);
   484   void weakRefsWork(bool clear_all_soft_refs);
   486   void swapMarkBitMaps();
   488   // It resets the global marking data structures, as well as the
   489   // task local ones; should be called during initial mark.
   490   void reset();
   492   // Resets all the marking data structures. Called when we have to restart
   493   // marking or when marking completes (via set_non_marking_state below).
   494   void reset_marking_state(bool clear_overflow = true);
   496   // We do this after we're done with marking so that the marking data
   497   // structures are initialised to a sensible and predictable state.
   498   void set_non_marking_state();
   500   // Called to indicate how many threads are currently active.
   501   void set_concurrency(uint active_tasks);
   503   // It should be called to indicate which phase we're in (concurrent
   504   // mark or remark) and how many threads are currently active.
   505   void set_concurrency_and_phase(uint active_tasks, bool concurrent);
   507   // prints all gathered CM-related statistics
   508   void print_stats();
   510   bool cleanup_list_is_empty() {
   511     return _cleanup_list.is_empty();
   512   }
   514   // accessor methods
   515   uint parallel_marking_threads() const     { return _parallel_marking_threads; }
   516   uint max_parallel_marking_threads() const { return _max_parallel_marking_threads;}
   517   double sleep_factor()                     { return _sleep_factor; }
   518   double marking_task_overhead()            { return _marking_task_overhead;}
   519   double cleanup_sleep_factor()             { return _cleanup_sleep_factor; }
   520   double cleanup_task_overhead()            { return _cleanup_task_overhead;}
   522   bool use_parallel_marking_threads() const {
   523     assert(parallel_marking_threads() <=
   524            max_parallel_marking_threads(), "sanity");
   525     assert((_parallel_workers == NULL && parallel_marking_threads() == 0) ||
   526            parallel_marking_threads() > 0,
   527            "parallel workers not set up correctly");
   528     return _parallel_workers != NULL;
   529   }
   531   HeapWord*               finger()          { return _finger;   }
   532   bool                    concurrent()      { return _concurrent; }
   533   uint                    active_tasks()    { return _active_tasks; }
   534   ParallelTaskTerminator* terminator()      { return &_terminator; }
   536   // It claims the next available region to be scanned by a marking
   537   // task/thread. It might return NULL if the next region is empty or
   538   // we have run out of regions. In the latter case, out_of_regions()
   539   // determines whether we've really run out of regions or the task
   540   // should call claim_region() again. This might seem a bit
   541   // awkward. Originally, the code was written so that claim_region()
   542   // either successfully returned with a non-empty region or there
   543   // were no more regions to be claimed. The problem with this was
   544   // that, in certain circumstances, it iterated over large chunks of
   545   // the heap finding only empty regions and, while it was working, it
   546   // was preventing the calling task to call its regular clock
   547   // method. So, this way, each task will spend very little time in
   548   // claim_region() and is allowed to call the regular clock method
   549   // frequently.
   550   HeapRegion* claim_region(uint worker_id);
   552   // It determines whether we've run out of regions to scan. Note that
   553   // the finger can point past the heap end in case the heap was expanded
   554   // to satisfy an allocation without doing a GC. This is fine, because all
   555   // objects in those regions will be considered live anyway because of
   556   // SATB guarantees (i.e. their TAMS will be equal to bottom).
   557   bool        out_of_regions() { return _finger >= _heap_end; }
   559   // Returns the task with the given id
   560   CMTask* task(int id) {
   561     assert(0 <= id && id < (int) _active_tasks,
   562            "task id not within active bounds");
   563     return _tasks[id];
   564   }
   566   // Returns the task queue with the given id
   567   CMTaskQueue* task_queue(int id) {
   568     assert(0 <= id && id < (int) _active_tasks,
   569            "task queue id not within active bounds");
   570     return (CMTaskQueue*) _task_queues->queue(id);
   571   }
   573   // Returns the task queue set
   574   CMTaskQueueSet* task_queues()  { return _task_queues; }
   576   // Access / manipulation of the overflow flag which is set to
   577   // indicate that the global stack has overflown
   578   bool has_overflown()           { return _has_overflown; }
   579   void set_has_overflown()       { _has_overflown = true; }
   580   void clear_has_overflown()     { _has_overflown = false; }
   581   bool restart_for_overflow()    { return _restart_for_overflow; }
   583   // Methods to enter the two overflow sync barriers
   584   void enter_first_sync_barrier(uint worker_id);
   585   void enter_second_sync_barrier(uint worker_id);
   587   ForceOverflowSettings* force_overflow_conc() {
   588     return &_force_overflow_conc;
   589   }
   591   ForceOverflowSettings* force_overflow_stw() {
   592     return &_force_overflow_stw;
   593   }
   595   ForceOverflowSettings* force_overflow() {
   596     if (concurrent()) {
   597       return force_overflow_conc();
   598     } else {
   599       return force_overflow_stw();
   600     }
   601   }
   603   // Live Data Counting data structures...
   604   // These data structures are initialized at the start of
   605   // marking. They are written to while marking is active.
   606   // They are aggregated during remark; the aggregated values
   607   // are then used to populate the _region_bm, _card_bm, and
   608   // the total live bytes, which are then subsequently updated
   609   // during cleanup.
   611   // An array of bitmaps (one bit map per task). Each bitmap
   612   // is used to record the cards spanned by the live objects
   613   // marked by that task/worker.
   614   BitMap*  _count_card_bitmaps;
   616   // Used to record the number of marked live bytes
   617   // (for each region, by worker thread).
   618   size_t** _count_marked_bytes;
   620   // Card index of the bottom of the G1 heap. Used for biasing indices into
   621   // the card bitmaps.
   622   intptr_t _heap_bottom_card_num;
   624   // Set to true when initialization is complete
   625   bool _completed_initialization;
   627 public:
   628   // Manipulation of the global mark stack.
   629   // Notice that the first mark_stack_push is CAS-based, whereas the
   630   // two below are Mutex-based. This is OK since the first one is only
   631   // called during evacuation pauses and doesn't compete with the
   632   // other two (which are called by the marking tasks during
   633   // concurrent marking or remark).
   634   bool mark_stack_push(oop p) {
   635     _markStack.par_push(p);
   636     if (_markStack.overflow()) {
   637       set_has_overflown();
   638       return false;
   639     }
   640     return true;
   641   }
   642   bool mark_stack_push(oop* arr, int n) {
   643     _markStack.par_push_arr(arr, n);
   644     if (_markStack.overflow()) {
   645       set_has_overflown();
   646       return false;
   647     }
   648     return true;
   649   }
   650   void mark_stack_pop(oop* arr, int max, int* n) {
   651     _markStack.par_pop_arr(arr, max, n);
   652   }
   653   size_t mark_stack_size()                { return _markStack.size(); }
   654   size_t partial_mark_stack_size_target() { return _markStack.maxElems()/3; }
   655   bool mark_stack_overflow()              { return _markStack.overflow(); }
   656   bool mark_stack_empty()                 { return _markStack.isEmpty(); }
   658   CMRootRegions* root_regions() { return &_root_regions; }
   660   bool concurrent_marking_in_progress() {
   661     return _concurrent_marking_in_progress;
   662   }
   663   void set_concurrent_marking_in_progress() {
   664     _concurrent_marking_in_progress = true;
   665   }
   666   void clear_concurrent_marking_in_progress() {
   667     _concurrent_marking_in_progress = false;
   668   }
   670   void update_accum_task_vtime(int i, double vtime) {
   671     _accum_task_vtime[i] += vtime;
   672   }
   674   double all_task_accum_vtime() {
   675     double ret = 0.0;
   676     for (uint i = 0; i < _max_worker_id; ++i)
   677       ret += _accum_task_vtime[i];
   678     return ret;
   679   }
   681   // Attempts to steal an object from the task queues of other tasks
   682   bool try_stealing(uint worker_id, int* hash_seed, oop& obj) {
   683     return _task_queues->steal(worker_id, hash_seed, obj);
   684   }
   686   ConcurrentMark(G1CollectedHeap* g1h, G1RegionToSpaceMapper* prev_bitmap_storage, G1RegionToSpaceMapper* next_bitmap_storage);
   687   ~ConcurrentMark();
   689   ConcurrentMarkThread* cmThread() { return _cmThread; }
   691   CMBitMapRO* prevMarkBitMap() const { return _prevMarkBitMap; }
   692   CMBitMap*   nextMarkBitMap() const { return _nextMarkBitMap; }
   694   // Returns the number of GC threads to be used in a concurrent
   695   // phase based on the number of GC threads being used in a STW
   696   // phase.
   697   uint scale_parallel_threads(uint n_par_threads);
   699   // Calculates the number of GC threads to be used in a concurrent phase.
   700   uint calc_parallel_marking_threads();
   702   // The following three are interaction between CM and
   703   // G1CollectedHeap
   705   // This notifies CM that a root during initial-mark needs to be
   706   // grayed. It is MT-safe. word_size is the size of the object in
   707   // words. It is passed explicitly as sometimes we cannot calculate
   708   // it from the given object because it might be in an inconsistent
   709   // state (e.g., in to-space and being copied). So the caller is
   710   // responsible for dealing with this issue (e.g., get the size from
   711   // the from-space image when the to-space image might be
   712   // inconsistent) and always passing the size. hr is the region that
   713   // contains the object and it's passed optionally from callers who
   714   // might already have it (no point in recalculating it).
   715   inline void grayRoot(oop obj, size_t word_size,
   716                        uint worker_id, HeapRegion* hr = NULL);
   718   // It iterates over the heap and for each object it comes across it
   719   // will dump the contents of its reference fields, as well as
   720   // liveness information for the object and its referents. The dump
   721   // will be written to a file with the following name:
   722   // G1PrintReachableBaseFile + "." + str.
   723   // vo decides whether the prev (vo == UsePrevMarking), the next
   724   // (vo == UseNextMarking) marking information, or the mark word
   725   // (vo == UseMarkWord) will be used to determine the liveness of
   726   // each object / referent.
   727   // If all is true, all objects in the heap will be dumped, otherwise
   728   // only the live ones. In the dump the following symbols / breviations
   729   // are used:
   730   //   M : an explicitly live object (its bitmap bit is set)
   731   //   > : an implicitly live object (over tams)
   732   //   O : an object outside the G1 heap (typically: in the perm gen)
   733   //   NOT : a reference field whose referent is not live
   734   //   AND MARKED : indicates that an object is both explicitly and
   735   //   implicitly live (it should be one or the other, not both)
   736   void print_reachable(const char* str,
   737                        VerifyOption vo, bool all) PRODUCT_RETURN;
   739   // Clear the next marking bitmap (will be called concurrently).
   740   void clearNextBitmap();
   742   // Return whether the next mark bitmap has no marks set. To be used for assertions
   743   // only. Will not yield to pause requests.
   744   bool nextMarkBitmapIsClear();
   746   // These two do the work that needs to be done before and after the
   747   // initial root checkpoint. Since this checkpoint can be done at two
   748   // different points (i.e. an explicit pause or piggy-backed on a
   749   // young collection), then it's nice to be able to easily share the
   750   // pre/post code. It might be the case that we can put everything in
   751   // the post method. TP
   752   void checkpointRootsInitialPre();
   753   void checkpointRootsInitialPost();
   755   // Scan all the root regions and mark everything reachable from
   756   // them.
   757   void scanRootRegions();
   759   // Scan a single root region and mark everything reachable from it.
   760   void scanRootRegion(HeapRegion* hr, uint worker_id);
   762   // Do concurrent phase of marking, to a tentative transitive closure.
   763   void markFromRoots();
   765   void checkpointRootsFinal(bool clear_all_soft_refs);
   766   void checkpointRootsFinalWork();
   767   void cleanup();
   768   void completeCleanup();
   770   // Mark in the previous bitmap.  NB: this is usually read-only, so use
   771   // this carefully!
   772   inline void markPrev(oop p);
   774   // Clears marks for all objects in the given range, for the prev,
   775   // next, or both bitmaps.  NB: the previous bitmap is usually
   776   // read-only, so use this carefully!
   777   void clearRangePrevBitmap(MemRegion mr);
   778   void clearRangeNextBitmap(MemRegion mr);
   779   void clearRangeBothBitmaps(MemRegion mr);
   781   // Notify data structures that a GC has started.
   782   void note_start_of_gc() {
   783     _markStack.note_start_of_gc();
   784   }
   786   // Notify data structures that a GC is finished.
   787   void note_end_of_gc() {
   788     _markStack.note_end_of_gc();
   789   }
   791   // Verify that there are no CSet oops on the stacks (taskqueues /
   792   // global mark stack), enqueued SATB buffers, per-thread SATB
   793   // buffers, and fingers (global / per-task). The boolean parameters
   794   // decide which of the above data structures to verify. If marking
   795   // is not in progress, it's a no-op.
   796   void verify_no_cset_oops(bool verify_stacks,
   797                            bool verify_enqueued_buffers,
   798                            bool verify_thread_buffers,
   799                            bool verify_fingers) PRODUCT_RETURN;
   801   bool isMarked(oop p) const {
   802     assert(p != NULL && p->is_oop(), "expected an oop");
   803     HeapWord* addr = (HeapWord*)p;
   804     assert(addr >= _nextMarkBitMap->startWord() ||
   805            addr < _nextMarkBitMap->endWord(), "in a region");
   807     return _nextMarkBitMap->isMarked(addr);
   808   }
   810   inline bool not_yet_marked(oop p) const;
   812   // XXX Debug code
   813   bool containing_card_is_marked(void* p);
   814   bool containing_cards_are_marked(void* start, void* last);
   816   bool isPrevMarked(oop p) const {
   817     assert(p != NULL && p->is_oop(), "expected an oop");
   818     HeapWord* addr = (HeapWord*)p;
   819     assert(addr >= _prevMarkBitMap->startWord() ||
   820            addr < _prevMarkBitMap->endWord(), "in a region");
   822     return _prevMarkBitMap->isMarked(addr);
   823   }
   825   inline bool do_yield_check(uint worker_i = 0);
   827   // Called to abort the marking cycle after a Full GC takes palce.
   828   void abort();
   830   bool has_aborted()      { return _has_aborted; }
   832   const GCId& concurrent_gc_id();
   834   // This prints the global/local fingers. It is used for debugging.
   835   NOT_PRODUCT(void print_finger();)
   837   void print_summary_info();
   839   void print_worker_threads_on(outputStream* st) const;
   841   void print_on_error(outputStream* st) const;
   843   // The following indicate whether a given verbose level has been
   844   // set. Notice that anything above stats is conditional to
   845   // _MARKING_VERBOSE_ having been set to 1
   846   bool verbose_stats() {
   847     return _verbose_level >= stats_verbose;
   848   }
   849   bool verbose_low() {
   850     return _MARKING_VERBOSE_ && _verbose_level >= low_verbose;
   851   }
   852   bool verbose_medium() {
   853     return _MARKING_VERBOSE_ && _verbose_level >= medium_verbose;
   854   }
   855   bool verbose_high() {
   856     return _MARKING_VERBOSE_ && _verbose_level >= high_verbose;
   857   }
   859   // Liveness counting
   861   // Utility routine to set an exclusive range of cards on the given
   862   // card liveness bitmap
   863   inline void set_card_bitmap_range(BitMap* card_bm,
   864                                     BitMap::idx_t start_idx,
   865                                     BitMap::idx_t end_idx,
   866                                     bool is_par);
   868   // Returns the card number of the bottom of the G1 heap.
   869   // Used in biasing indices into accounting card bitmaps.
   870   intptr_t heap_bottom_card_num() const {
   871     return _heap_bottom_card_num;
   872   }
   874   // Returns the card bitmap for a given task or worker id.
   875   BitMap* count_card_bitmap_for(uint worker_id) {
   876     assert(0 <= worker_id && worker_id < _max_worker_id, "oob");
   877     assert(_count_card_bitmaps != NULL, "uninitialized");
   878     BitMap* task_card_bm = &_count_card_bitmaps[worker_id];
   879     assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
   880     return task_card_bm;
   881   }
   883   // Returns the array containing the marked bytes for each region,
   884   // for the given worker or task id.
   885   size_t* count_marked_bytes_array_for(uint worker_id) {
   886     assert(0 <= worker_id && worker_id < _max_worker_id, "oob");
   887     assert(_count_marked_bytes != NULL, "uninitialized");
   888     size_t* marked_bytes_array = _count_marked_bytes[worker_id];
   889     assert(marked_bytes_array != NULL, "uninitialized");
   890     return marked_bytes_array;
   891   }
   893   // Returns the index in the liveness accounting card table bitmap
   894   // for the given address
   895   inline BitMap::idx_t card_bitmap_index_for(HeapWord* addr);
   897   // Counts the size of the given memory region in the the given
   898   // marked_bytes array slot for the given HeapRegion.
   899   // Sets the bits in the given card bitmap that are associated with the
   900   // cards that are spanned by the memory region.
   901   inline void count_region(MemRegion mr, HeapRegion* hr,
   902                            size_t* marked_bytes_array,
   903                            BitMap* task_card_bm);
   905   // Counts the given memory region in the task/worker counting
   906   // data structures for the given worker id.
   907   inline void count_region(MemRegion mr, HeapRegion* hr, uint worker_id);
   909   // Counts the given memory region in the task/worker counting
   910   // data structures for the given worker id.
   911   inline void count_region(MemRegion mr, uint worker_id);
   913   // Counts the given object in the given task/worker counting
   914   // data structures.
   915   inline void count_object(oop obj, HeapRegion* hr,
   916                            size_t* marked_bytes_array,
   917                            BitMap* task_card_bm);
   919   // Counts the given object in the task/worker counting data
   920   // structures for the given worker id.
   921   inline void count_object(oop obj, HeapRegion* hr, uint worker_id);
   923   // Attempts to mark the given object and, if successful, counts
   924   // the object in the given task/worker counting structures.
   925   inline bool par_mark_and_count(oop obj, HeapRegion* hr,
   926                                  size_t* marked_bytes_array,
   927                                  BitMap* task_card_bm);
   929   // Attempts to mark the given object and, if successful, counts
   930   // the object in the task/worker counting structures for the
   931   // given worker id.
   932   inline bool par_mark_and_count(oop obj, size_t word_size,
   933                                  HeapRegion* hr, uint worker_id);
   935   // Attempts to mark the given object and, if successful, counts
   936   // the object in the task/worker counting structures for the
   937   // given worker id.
   938   inline bool par_mark_and_count(oop obj, HeapRegion* hr, uint worker_id);
   940   // Similar to the above routine but we don't know the heap region that
   941   // contains the object to be marked/counted, which this routine looks up.
   942   inline bool par_mark_and_count(oop obj, uint worker_id);
   944   // Similar to the above routine but there are times when we cannot
   945   // safely calculate the size of obj due to races and we, therefore,
   946   // pass the size in as a parameter. It is the caller's reponsibility
   947   // to ensure that the size passed in for obj is valid.
   948   inline bool par_mark_and_count(oop obj, size_t word_size, uint worker_id);
   950   // Unconditionally mark the given object, and unconditinally count
   951   // the object in the counting structures for worker id 0.
   952   // Should *not* be called from parallel code.
   953   inline bool mark_and_count(oop obj, HeapRegion* hr);
   955   // Similar to the above routine but we don't know the heap region that
   956   // contains the object to be marked/counted, which this routine looks up.
   957   // Should *not* be called from parallel code.
   958   inline bool mark_and_count(oop obj);
   960   // Returns true if initialization was successfully completed.
   961   bool completed_initialization() const {
   962     return _completed_initialization;
   963   }
   965 protected:
   966   // Clear all the per-task bitmaps and arrays used to store the
   967   // counting data.
   968   void clear_all_count_data();
   970   // Aggregates the counting data for each worker/task
   971   // that was constructed while marking. Also sets
   972   // the amount of marked bytes for each region and
   973   // the top at concurrent mark count.
   974   void aggregate_count_data();
   976   // Verification routine
   977   void verify_count_data();
   978 };
   980 // A class representing a marking task.
   981 class CMTask : public TerminatorTerminator {
   982 private:
   983   enum PrivateConstants {
   984     // the regular clock call is called once the scanned words reaches
   985     // this limit
   986     words_scanned_period          = 12*1024,
   987     // the regular clock call is called once the number of visited
   988     // references reaches this limit
   989     refs_reached_period           = 384,
   990     // initial value for the hash seed, used in the work stealing code
   991     init_hash_seed                = 17,
   992     // how many entries will be transferred between global stack and
   993     // local queues
   994     global_stack_transfer_size    = 16
   995   };
   997   uint                        _worker_id;
   998   G1CollectedHeap*            _g1h;
   999   ConcurrentMark*             _cm;
  1000   CMBitMap*                   _nextMarkBitMap;
  1001   // the task queue of this task
  1002   CMTaskQueue*                _task_queue;
  1003 private:
  1004   // the task queue set---needed for stealing
  1005   CMTaskQueueSet*             _task_queues;
  1006   // indicates whether the task has been claimed---this is only  for
  1007   // debugging purposes
  1008   bool                        _claimed;
  1010   // number of calls to this task
  1011   int                         _calls;
  1013   // when the virtual timer reaches this time, the marking step should
  1014   // exit
  1015   double                      _time_target_ms;
  1016   // the start time of the current marking step
  1017   double                      _start_time_ms;
  1019   // the oop closure used for iterations over oops
  1020   G1CMOopClosure*             _cm_oop_closure;
  1022   // the region this task is scanning, NULL if we're not scanning any
  1023   HeapRegion*                 _curr_region;
  1024   // the local finger of this task, NULL if we're not scanning a region
  1025   HeapWord*                   _finger;
  1026   // limit of the region this task is scanning, NULL if we're not scanning one
  1027   HeapWord*                   _region_limit;
  1029   // the number of words this task has scanned
  1030   size_t                      _words_scanned;
  1031   // When _words_scanned reaches this limit, the regular clock is
  1032   // called. Notice that this might be decreased under certain
  1033   // circumstances (i.e. when we believe that we did an expensive
  1034   // operation).
  1035   size_t                      _words_scanned_limit;
  1036   // the initial value of _words_scanned_limit (i.e. what it was
  1037   // before it was decreased).
  1038   size_t                      _real_words_scanned_limit;
  1040   // the number of references this task has visited
  1041   size_t                      _refs_reached;
  1042   // When _refs_reached reaches this limit, the regular clock is
  1043   // called. Notice this this might be decreased under certain
  1044   // circumstances (i.e. when we believe that we did an expensive
  1045   // operation).
  1046   size_t                      _refs_reached_limit;
  1047   // the initial value of _refs_reached_limit (i.e. what it was before
  1048   // it was decreased).
  1049   size_t                      _real_refs_reached_limit;
  1051   // used by the work stealing stuff
  1052   int                         _hash_seed;
  1053   // if this is true, then the task has aborted for some reason
  1054   bool                        _has_aborted;
  1055   // set when the task aborts because it has met its time quota
  1056   bool                        _has_timed_out;
  1057   // true when we're draining SATB buffers; this avoids the task
  1058   // aborting due to SATB buffers being available (as we're already
  1059   // dealing with them)
  1060   bool                        _draining_satb_buffers;
  1062   // number sequence of past step times
  1063   NumberSeq                   _step_times_ms;
  1064   // elapsed time of this task
  1065   double                      _elapsed_time_ms;
  1066   // termination time of this task
  1067   double                      _termination_time_ms;
  1068   // when this task got into the termination protocol
  1069   double                      _termination_start_time_ms;
  1071   // true when the task is during a concurrent phase, false when it is
  1072   // in the remark phase (so, in the latter case, we do not have to
  1073   // check all the things that we have to check during the concurrent
  1074   // phase, i.e. SATB buffer availability...)
  1075   bool                        _concurrent;
  1077   TruncatedSeq                _marking_step_diffs_ms;
  1079   // Counting data structures. Embedding the task's marked_bytes_array
  1080   // and card bitmap into the actual task saves having to go through
  1081   // the ConcurrentMark object.
  1082   size_t*                     _marked_bytes_array;
  1083   BitMap*                     _card_bm;
  1085   // LOTS of statistics related with this task
  1086 #if _MARKING_STATS_
  1087   NumberSeq                   _all_clock_intervals_ms;
  1088   double                      _interval_start_time_ms;
  1090   int                         _aborted;
  1091   int                         _aborted_overflow;
  1092   int                         _aborted_cm_aborted;
  1093   int                         _aborted_yield;
  1094   int                         _aborted_timed_out;
  1095   int                         _aborted_satb;
  1096   int                         _aborted_termination;
  1098   int                         _steal_attempts;
  1099   int                         _steals;
  1101   int                         _clock_due_to_marking;
  1102   int                         _clock_due_to_scanning;
  1104   int                         _local_pushes;
  1105   int                         _local_pops;
  1106   int                         _local_max_size;
  1107   int                         _objs_scanned;
  1109   int                         _global_pushes;
  1110   int                         _global_pops;
  1111   int                         _global_max_size;
  1113   int                         _global_transfers_to;
  1114   int                         _global_transfers_from;
  1116   int                         _regions_claimed;
  1117   int                         _objs_found_on_bitmap;
  1119   int                         _satb_buffers_processed;
  1120 #endif // _MARKING_STATS_
  1122   // it updates the local fields after this task has claimed
  1123   // a new region to scan
  1124   void setup_for_region(HeapRegion* hr);
  1125   // it brings up-to-date the limit of the region
  1126   void update_region_limit();
  1128   // called when either the words scanned or the refs visited limit
  1129   // has been reached
  1130   void reached_limit();
  1131   // recalculates the words scanned and refs visited limits
  1132   void recalculate_limits();
  1133   // decreases the words scanned and refs visited limits when we reach
  1134   // an expensive operation
  1135   void decrease_limits();
  1136   // it checks whether the words scanned or refs visited reached their
  1137   // respective limit and calls reached_limit() if they have
  1138   void check_limits() {
  1139     if (_words_scanned >= _words_scanned_limit ||
  1140         _refs_reached >= _refs_reached_limit) {
  1141       reached_limit();
  1144   // this is supposed to be called regularly during a marking step as
  1145   // it checks a bunch of conditions that might cause the marking step
  1146   // to abort
  1147   void regular_clock_call();
  1148   bool concurrent() { return _concurrent; }
  1150 public:
  1151   // It resets the task; it should be called right at the beginning of
  1152   // a marking phase.
  1153   void reset(CMBitMap* _nextMarkBitMap);
  1154   // it clears all the fields that correspond to a claimed region.
  1155   void clear_region_fields();
  1157   void set_concurrent(bool concurrent) { _concurrent = concurrent; }
  1159   // The main method of this class which performs a marking step
  1160   // trying not to exceed the given duration. However, it might exit
  1161   // prematurely, according to some conditions (i.e. SATB buffers are
  1162   // available for processing).
  1163   void do_marking_step(double target_ms,
  1164                        bool do_termination,
  1165                        bool is_serial);
  1167   // These two calls start and stop the timer
  1168   void record_start_time() {
  1169     _elapsed_time_ms = os::elapsedTime() * 1000.0;
  1171   void record_end_time() {
  1172     _elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms;
  1175   // returns the worker ID associated with this task.
  1176   uint worker_id() { return _worker_id; }
  1178   // From TerminatorTerminator. It determines whether this task should
  1179   // exit the termination protocol after it's entered it.
  1180   virtual bool should_exit_termination();
  1182   // Resets the local region fields after a task has finished scanning a
  1183   // region; or when they have become stale as a result of the region
  1184   // being evacuated.
  1185   void giveup_current_region();
  1187   HeapWord* finger()            { return _finger; }
  1189   bool has_aborted()            { return _has_aborted; }
  1190   void set_has_aborted()        { _has_aborted = true; }
  1191   void clear_has_aborted()      { _has_aborted = false; }
  1192   bool has_timed_out()          { return _has_timed_out; }
  1193   bool claimed()                { return _claimed; }
  1195   void set_cm_oop_closure(G1CMOopClosure* cm_oop_closure);
  1197   // It grays the object by marking it and, if necessary, pushing it
  1198   // on the local queue
  1199   inline void deal_with_reference(oop obj);
  1201   // It scans an object and visits its children.
  1202   void scan_object(oop obj);
  1204   // It pushes an object on the local queue.
  1205   inline void push(oop obj);
  1207   // These two move entries to/from the global stack.
  1208   void move_entries_to_global_stack();
  1209   void get_entries_from_global_stack();
  1211   // It pops and scans objects from the local queue. If partially is
  1212   // true, then it stops when the queue size is of a given limit. If
  1213   // partially is false, then it stops when the queue is empty.
  1214   void drain_local_queue(bool partially);
  1215   // It moves entries from the global stack to the local queue and
  1216   // drains the local queue. If partially is true, then it stops when
  1217   // both the global stack and the local queue reach a given size. If
  1218   // partially if false, it tries to empty them totally.
  1219   void drain_global_stack(bool partially);
  1220   // It keeps picking SATB buffers and processing them until no SATB
  1221   // buffers are available.
  1222   void drain_satb_buffers();
  1224   // moves the local finger to a new location
  1225   inline void move_finger_to(HeapWord* new_finger) {
  1226     assert(new_finger >= _finger && new_finger < _region_limit, "invariant");
  1227     _finger = new_finger;
  1230   CMTask(uint worker_id, ConcurrentMark *cm,
  1231          size_t* marked_bytes, BitMap* card_bm,
  1232          CMTaskQueue* task_queue, CMTaskQueueSet* task_queues);
  1234   // it prints statistics associated with this task
  1235   void print_stats();
  1237 #if _MARKING_STATS_
  1238   void increase_objs_found_on_bitmap() { ++_objs_found_on_bitmap; }
  1239 #endif // _MARKING_STATS_
  1240 };
  1242 // Class that's used to to print out per-region liveness
  1243 // information. It's currently used at the end of marking and also
  1244 // after we sort the old regions at the end of the cleanup operation.
  1245 class G1PrintRegionLivenessInfoClosure: public HeapRegionClosure {
  1246 private:
  1247   outputStream* _out;
  1249   // Accumulators for these values.
  1250   size_t _total_used_bytes;
  1251   size_t _total_capacity_bytes;
  1252   size_t _total_prev_live_bytes;
  1253   size_t _total_next_live_bytes;
  1255   // These are set up when we come across a "stars humongous" region
  1256   // (as this is where most of this information is stored, not in the
  1257   // subsequent "continues humongous" regions). After that, for every
  1258   // region in a given humongous region series we deduce the right
  1259   // values for it by simply subtracting the appropriate amount from
  1260   // these fields. All these values should reach 0 after we've visited
  1261   // the last region in the series.
  1262   size_t _hum_used_bytes;
  1263   size_t _hum_capacity_bytes;
  1264   size_t _hum_prev_live_bytes;
  1265   size_t _hum_next_live_bytes;
  1267   // Accumulator for the remembered set size
  1268   size_t _total_remset_bytes;
  1270   // Accumulator for strong code roots memory size
  1271   size_t _total_strong_code_roots_bytes;
  1273   static double perc(size_t val, size_t total) {
  1274     if (total == 0) {
  1275       return 0.0;
  1276     } else {
  1277       return 100.0 * ((double) val / (double) total);
  1281   static double bytes_to_mb(size_t val) {
  1282     return (double) val / (double) M;
  1285   // See the .cpp file.
  1286   size_t get_hum_bytes(size_t* hum_bytes);
  1287   void get_hum_bytes(size_t* used_bytes, size_t* capacity_bytes,
  1288                      size_t* prev_live_bytes, size_t* next_live_bytes);
  1290 public:
  1291   // The header and footer are printed in the constructor and
  1292   // destructor respectively.
  1293   G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name);
  1294   virtual bool doHeapRegion(HeapRegion* r);
  1295   ~G1PrintRegionLivenessInfoClosure();
  1296 };
  1298 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP

mercurial