src/share/vm/memory/genCollectedHeap.cpp

Tue, 15 Mar 2016 10:11:02 +0100

author
stefank
date
Tue, 15 Mar 2016 10:11:02 +0100
changeset 9665
a8441ccaff15
parent 9661
379a59bf685d
child 9703
2fdf635bcf28
child 9787
9f28a4cac6d9
child 9858
b985cbb00e68
permissions
-rw-r--r--

8151539: Remove duplicate AlwaysTrueClosures
Reviewed-by: tschatzl, mgerdin, kbarrett, drwhite

     1 /*
     2  * Copyright (c) 2000, 2016, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/symbolTable.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "classfile/vmSymbols.hpp"
    29 #include "code/codeCache.hpp"
    30 #include "code/icBuffer.hpp"
    31 #include "gc_implementation/shared/collectorCounters.hpp"
    32 #include "gc_implementation/shared/gcTrace.hpp"
    33 #include "gc_implementation/shared/gcTraceTime.hpp"
    34 #include "gc_implementation/shared/vmGCOperations.hpp"
    35 #include "gc_interface/collectedHeap.inline.hpp"
    36 #include "memory/filemap.hpp"
    37 #include "memory/gcLocker.inline.hpp"
    38 #include "memory/genCollectedHeap.hpp"
    39 #include "memory/genOopClosures.inline.hpp"
    40 #include "memory/generation.inline.hpp"
    41 #include "memory/generationSpec.hpp"
    42 #include "memory/resourceArea.hpp"
    43 #include "memory/sharedHeap.hpp"
    44 #include "memory/space.hpp"
    45 #include "oops/oop.inline.hpp"
    46 #include "oops/oop.inline2.hpp"
    47 #include "runtime/biasedLocking.hpp"
    48 #include "runtime/fprofiler.hpp"
    49 #include "runtime/handles.hpp"
    50 #include "runtime/handles.inline.hpp"
    51 #include "runtime/java.hpp"
    52 #include "runtime/vmThread.hpp"
    53 #include "services/management.hpp"
    54 #include "services/memoryService.hpp"
    55 #include "utilities/vmError.hpp"
    56 #include "utilities/workgroup.hpp"
    57 #include "utilities/macros.hpp"
    58 #if INCLUDE_ALL_GCS
    59 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
    60 #include "gc_implementation/concurrentMarkSweep/vmCMSOperations.hpp"
    61 #endif // INCLUDE_ALL_GCS
    63 GenCollectedHeap* GenCollectedHeap::_gch;
    64 NOT_PRODUCT(size_t GenCollectedHeap::_skip_header_HeapWords = 0;)
    66 // The set of potentially parallel tasks in root scanning.
    67 enum GCH_strong_roots_tasks {
    68   GCH_PS_Universe_oops_do,
    69   GCH_PS_JNIHandles_oops_do,
    70   GCH_PS_ObjectSynchronizer_oops_do,
    71   GCH_PS_FlatProfiler_oops_do,
    72   GCH_PS_Management_oops_do,
    73   GCH_PS_SystemDictionary_oops_do,
    74   GCH_PS_ClassLoaderDataGraph_oops_do,
    75   GCH_PS_jvmti_oops_do,
    76   GCH_PS_CodeCache_oops_do,
    77   GCH_PS_younger_gens,
    78   // Leave this one last.
    79   GCH_PS_NumElements
    80 };
    82 GenCollectedHeap::GenCollectedHeap(GenCollectorPolicy *policy) :
    83   SharedHeap(policy),
    84   _gen_policy(policy),
    85   _process_strong_tasks(new SubTasksDone(GCH_PS_NumElements)),
    86   _full_collections_completed(0)
    87 {
    88   assert(policy != NULL, "Sanity check");
    89 }
    91 jint GenCollectedHeap::initialize() {
    92   CollectedHeap::pre_initialize();
    94   int i;
    95   _n_gens = gen_policy()->number_of_generations();
    97   // While there are no constraints in the GC code that HeapWordSize
    98   // be any particular value, there are multiple other areas in the
    99   // system which believe this to be true (e.g. oop->object_size in some
   100   // cases incorrectly returns the size in wordSize units rather than
   101   // HeapWordSize).
   102   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
   104   // The heap must be at least as aligned as generations.
   105   size_t gen_alignment = Generation::GenGrain;
   107   _gen_specs = gen_policy()->generations();
   109   // Make sure the sizes are all aligned.
   110   for (i = 0; i < _n_gens; i++) {
   111     _gen_specs[i]->align(gen_alignment);
   112   }
   114   // Allocate space for the heap.
   116   char* heap_address;
   117   size_t total_reserved = 0;
   118   int n_covered_regions = 0;
   119   ReservedSpace heap_rs;
   121   size_t heap_alignment = collector_policy()->heap_alignment();
   123   heap_address = allocate(heap_alignment, &total_reserved,
   124                           &n_covered_regions, &heap_rs);
   126   if (!heap_rs.is_reserved()) {
   127     vm_shutdown_during_initialization(
   128       "Could not reserve enough space for object heap");
   129     return JNI_ENOMEM;
   130   }
   132   _reserved = MemRegion((HeapWord*)heap_rs.base(),
   133                         (HeapWord*)(heap_rs.base() + heap_rs.size()));
   135   // It is important to do this in a way such that concurrent readers can't
   136   // temporarily think somethings in the heap.  (Seen this happen in asserts.)
   137   _reserved.set_word_size(0);
   138   _reserved.set_start((HeapWord*)heap_rs.base());
   139   size_t actual_heap_size = heap_rs.size();
   140   _reserved.set_end((HeapWord*)(heap_rs.base() + actual_heap_size));
   142   _rem_set = collector_policy()->create_rem_set(_reserved, n_covered_regions);
   143   set_barrier_set(rem_set()->bs());
   145   _gch = this;
   147   for (i = 0; i < _n_gens; i++) {
   148     ReservedSpace this_rs = heap_rs.first_part(_gen_specs[i]->max_size(), false, false);
   149     _gens[i] = _gen_specs[i]->init(this_rs, i, rem_set());
   150     heap_rs = heap_rs.last_part(_gen_specs[i]->max_size());
   151   }
   152   clear_incremental_collection_failed();
   154 #if INCLUDE_ALL_GCS
   155   // If we are running CMS, create the collector responsible
   156   // for collecting the CMS generations.
   157   if (collector_policy()->is_concurrent_mark_sweep_policy()) {
   158     bool success = create_cms_collector();
   159     if (!success) return JNI_ENOMEM;
   160   }
   161 #endif // INCLUDE_ALL_GCS
   163   return JNI_OK;
   164 }
   167 char* GenCollectedHeap::allocate(size_t alignment,
   168                                  size_t* _total_reserved,
   169                                  int* _n_covered_regions,
   170                                  ReservedSpace* heap_rs){
   171   const char overflow_msg[] = "The size of the object heap + VM data exceeds "
   172     "the maximum representable size";
   174   // Now figure out the total size.
   175   size_t total_reserved = 0;
   176   int n_covered_regions = 0;
   177   const size_t pageSize = UseLargePages ?
   178       os::large_page_size() : os::vm_page_size();
   180   assert(alignment % pageSize == 0, "Must be");
   182   for (int i = 0; i < _n_gens; i++) {
   183     total_reserved += _gen_specs[i]->max_size();
   184     if (total_reserved < _gen_specs[i]->max_size()) {
   185       vm_exit_during_initialization(overflow_msg);
   186     }
   187     n_covered_regions += _gen_specs[i]->n_covered_regions();
   188   }
   189   assert(total_reserved % alignment == 0,
   190          err_msg("Gen size; total_reserved=" SIZE_FORMAT ", alignment="
   191                  SIZE_FORMAT, total_reserved, alignment));
   193   // Needed until the cardtable is fixed to have the right number
   194   // of covered regions.
   195   n_covered_regions += 2;
   197   *_total_reserved = total_reserved;
   198   *_n_covered_regions = n_covered_regions;
   200   *heap_rs = Universe::reserve_heap(total_reserved, alignment);
   201   return heap_rs->base();
   202 }
   205 void GenCollectedHeap::post_initialize() {
   206   SharedHeap::post_initialize();
   207   TwoGenerationCollectorPolicy *policy =
   208     (TwoGenerationCollectorPolicy *)collector_policy();
   209   guarantee(policy->is_two_generation_policy(), "Illegal policy type");
   210   DefNewGeneration* def_new_gen = (DefNewGeneration*) get_gen(0);
   211   assert(def_new_gen->kind() == Generation::DefNew ||
   212          def_new_gen->kind() == Generation::ParNew ||
   213          def_new_gen->kind() == Generation::ASParNew,
   214          "Wrong generation kind");
   216   Generation* old_gen = get_gen(1);
   217   assert(old_gen->kind() == Generation::ConcurrentMarkSweep ||
   218          old_gen->kind() == Generation::ASConcurrentMarkSweep ||
   219          old_gen->kind() == Generation::MarkSweepCompact,
   220     "Wrong generation kind");
   222   policy->initialize_size_policy(def_new_gen->eden()->capacity(),
   223                                  old_gen->capacity(),
   224                                  def_new_gen->from()->capacity());
   225   policy->initialize_gc_policy_counters();
   226 }
   228 void GenCollectedHeap::ref_processing_init() {
   229   SharedHeap::ref_processing_init();
   230   for (int i = 0; i < _n_gens; i++) {
   231     _gens[i]->ref_processor_init();
   232   }
   233 }
   235 size_t GenCollectedHeap::capacity() const {
   236   size_t res = 0;
   237   for (int i = 0; i < _n_gens; i++) {
   238     res += _gens[i]->capacity();
   239   }
   240   return res;
   241 }
   243 size_t GenCollectedHeap::used() const {
   244   size_t res = 0;
   245   for (int i = 0; i < _n_gens; i++) {
   246     res += _gens[i]->used();
   247   }
   248   return res;
   249 }
   251 // Save the "used_region" for generations level and lower.
   252 void GenCollectedHeap::save_used_regions(int level) {
   253   assert(level < _n_gens, "Illegal level parameter");
   254   for (int i = level; i >= 0; i--) {
   255     _gens[i]->save_used_region();
   256   }
   257 }
   259 size_t GenCollectedHeap::max_capacity() const {
   260   size_t res = 0;
   261   for (int i = 0; i < _n_gens; i++) {
   262     res += _gens[i]->max_capacity();
   263   }
   264   return res;
   265 }
   267 // Update the _full_collections_completed counter
   268 // at the end of a stop-world full GC.
   269 unsigned int GenCollectedHeap::update_full_collections_completed() {
   270   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
   271   assert(_full_collections_completed <= _total_full_collections,
   272          "Can't complete more collections than were started");
   273   _full_collections_completed = _total_full_collections;
   274   ml.notify_all();
   275   return _full_collections_completed;
   276 }
   278 // Update the _full_collections_completed counter, as appropriate,
   279 // at the end of a concurrent GC cycle. Note the conditional update
   280 // below to allow this method to be called by a concurrent collector
   281 // without synchronizing in any manner with the VM thread (which
   282 // may already have initiated a STW full collection "concurrently").
   283 unsigned int GenCollectedHeap::update_full_collections_completed(unsigned int count) {
   284   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
   285   assert((_full_collections_completed <= _total_full_collections) &&
   286          (count <= _total_full_collections),
   287          "Can't complete more collections than were started");
   288   if (count > _full_collections_completed) {
   289     _full_collections_completed = count;
   290     ml.notify_all();
   291   }
   292   return _full_collections_completed;
   293 }
   296 #ifndef PRODUCT
   297 // Override of memory state checking method in CollectedHeap:
   298 // Some collectors (CMS for example) can't have badHeapWordVal written
   299 // in the first two words of an object. (For instance , in the case of
   300 // CMS these words hold state used to synchronize between certain
   301 // (concurrent) GC steps and direct allocating mutators.)
   302 // The skip_header_HeapWords() method below, allows us to skip
   303 // over the requisite number of HeapWord's. Note that (for
   304 // generational collectors) this means that those many words are
   305 // skipped in each object, irrespective of the generation in which
   306 // that object lives. The resultant loss of precision seems to be
   307 // harmless and the pain of avoiding that imprecision appears somewhat
   308 // higher than we are prepared to pay for such rudimentary debugging
   309 // support.
   310 void GenCollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr,
   311                                                          size_t size) {
   312   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
   313     // We are asked to check a size in HeapWords,
   314     // but the memory is mangled in juint words.
   315     juint* start = (juint*) (addr + skip_header_HeapWords());
   316     juint* end   = (juint*) (addr + size);
   317     for (juint* slot = start; slot < end; slot += 1) {
   318       assert(*slot == badHeapWordVal,
   319              "Found non badHeapWordValue in pre-allocation check");
   320     }
   321   }
   322 }
   323 #endif
   325 HeapWord* GenCollectedHeap::attempt_allocation(size_t size,
   326                                                bool is_tlab,
   327                                                bool first_only) {
   328   HeapWord* res;
   329   for (int i = 0; i < _n_gens; i++) {
   330     if (_gens[i]->should_allocate(size, is_tlab)) {
   331       res = _gens[i]->allocate(size, is_tlab);
   332       if (res != NULL) return res;
   333       else if (first_only) break;
   334     }
   335   }
   336   // Otherwise...
   337   return NULL;
   338 }
   340 HeapWord* GenCollectedHeap::mem_allocate(size_t size,
   341                                          bool* gc_overhead_limit_was_exceeded) {
   342   return collector_policy()->mem_allocate_work(size,
   343                                                false /* is_tlab */,
   344                                                gc_overhead_limit_was_exceeded);
   345 }
   347 bool GenCollectedHeap::must_clear_all_soft_refs() {
   348   return _gc_cause == GCCause::_last_ditch_collection;
   349 }
   351 bool GenCollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
   352   return UseConcMarkSweepGC &&
   353          ((cause == GCCause::_gc_locker && GCLockerInvokesConcurrent) ||
   354           (cause == GCCause::_java_lang_system_gc && ExplicitGCInvokesConcurrent));
   355 }
   357 void GenCollectedHeap::do_collection(bool  full,
   358                                      bool   clear_all_soft_refs,
   359                                      size_t size,
   360                                      bool   is_tlab,
   361                                      int    max_level) {
   362   bool prepared_for_verification = false;
   363   ResourceMark rm;
   364   DEBUG_ONLY(Thread* my_thread = Thread::current();)
   366   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
   367   assert(my_thread->is_VM_thread() ||
   368          my_thread->is_ConcurrentGC_thread(),
   369          "incorrect thread type capability");
   370   assert(Heap_lock->is_locked(),
   371          "the requesting thread should have the Heap_lock");
   372   guarantee(!is_gc_active(), "collection is not reentrant");
   373   assert(max_level < n_gens(), "sanity check");
   375   if (GC_locker::check_active_before_gc()) {
   376     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
   377   }
   379   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
   380                           collector_policy()->should_clear_all_soft_refs();
   382   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
   384   const size_t metadata_prev_used = MetaspaceAux::used_bytes();
   386   print_heap_before_gc();
   388   {
   389     FlagSetting fl(_is_gc_active, true);
   391     bool complete = full && (max_level == (n_gens()-1));
   392     const char* gc_cause_prefix = complete ? "Full GC" : "GC";
   393     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
   394     // The PrintGCDetails logging starts before we have incremented the GC id. We will do that later
   395     // so we can assume here that the next GC id is what we want.
   396     GCTraceTime t(GCCauseString(gc_cause_prefix, gc_cause()), PrintGCDetails, false, NULL, GCId::peek());
   398     gc_prologue(complete);
   399     increment_total_collections(complete);
   401     size_t gch_prev_used = used();
   403     int starting_level = 0;
   404     if (full) {
   405       // Search for the oldest generation which will collect all younger
   406       // generations, and start collection loop there.
   407       for (int i = max_level; i >= 0; i--) {
   408         if (_gens[i]->full_collects_younger_generations()) {
   409           starting_level = i;
   410           break;
   411         }
   412       }
   413     }
   415     bool must_restore_marks_for_biased_locking = false;
   417     int max_level_collected = starting_level;
   418     for (int i = starting_level; i <= max_level; i++) {
   419       if (_gens[i]->should_collect(full, size, is_tlab)) {
   420         if (i == n_gens() - 1) {  // a major collection is to happen
   421           if (!complete) {
   422             // The full_collections increment was missed above.
   423             increment_total_full_collections();
   424           }
   425           pre_full_gc_dump(NULL);    // do any pre full gc dumps
   426         }
   427         // Timer for individual generations. Last argument is false: no CR
   428         // FIXME: We should try to start the timing earlier to cover more of the GC pause
   429         // The PrintGCDetails logging starts before we have incremented the GC id. We will do that later
   430         // so we can assume here that the next GC id is what we want.
   431         GCTraceTime t1(_gens[i]->short_name(), PrintGCDetails, false, NULL, GCId::peek());
   432         TraceCollectorStats tcs(_gens[i]->counters());
   433         TraceMemoryManagerStats tmms(_gens[i]->kind(),gc_cause());
   435         size_t prev_used = _gens[i]->used();
   436         _gens[i]->stat_record()->invocations++;
   437         _gens[i]->stat_record()->accumulated_time.start();
   439         // Must be done anew before each collection because
   440         // a previous collection will do mangling and will
   441         // change top of some spaces.
   442         record_gen_tops_before_GC();
   444         if (PrintGC && Verbose) {
   445           gclog_or_tty->print("level=%d invoke=%d size=" SIZE_FORMAT,
   446                      i,
   447                      _gens[i]->stat_record()->invocations,
   448                      size*HeapWordSize);
   449         }
   451         if (VerifyBeforeGC && i >= VerifyGCLevel &&
   452             total_collections() >= VerifyGCStartAt) {
   453           HandleMark hm;  // Discard invalid handles created during verification
   454           if (!prepared_for_verification) {
   455             prepare_for_verify();
   456             prepared_for_verification = true;
   457           }
   458           Universe::verify(" VerifyBeforeGC:");
   459         }
   460         COMPILER2_PRESENT(DerivedPointerTable::clear());
   462         if (!must_restore_marks_for_biased_locking &&
   463             _gens[i]->performs_in_place_marking()) {
   464           // We perform this mark word preservation work lazily
   465           // because it's only at this point that we know whether we
   466           // absolutely have to do it; we want to avoid doing it for
   467           // scavenge-only collections where it's unnecessary
   468           must_restore_marks_for_biased_locking = true;
   469           BiasedLocking::preserve_marks();
   470         }
   472         // Do collection work
   473         {
   474           // Note on ref discovery: For what appear to be historical reasons,
   475           // GCH enables and disabled (by enqueing) refs discovery.
   476           // In the future this should be moved into the generation's
   477           // collect method so that ref discovery and enqueueing concerns
   478           // are local to a generation. The collect method could return
   479           // an appropriate indication in the case that notification on
   480           // the ref lock was needed. This will make the treatment of
   481           // weak refs more uniform (and indeed remove such concerns
   482           // from GCH). XXX
   484           HandleMark hm;  // Discard invalid handles created during gc
   485           save_marks();   // save marks for all gens
   486           // We want to discover references, but not process them yet.
   487           // This mode is disabled in process_discovered_references if the
   488           // generation does some collection work, or in
   489           // enqueue_discovered_references if the generation returns
   490           // without doing any work.
   491           ReferenceProcessor* rp = _gens[i]->ref_processor();
   492           // If the discovery of ("weak") refs in this generation is
   493           // atomic wrt other collectors in this configuration, we
   494           // are guaranteed to have empty discovered ref lists.
   495           if (rp->discovery_is_atomic()) {
   496             rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
   497             rp->setup_policy(do_clear_all_soft_refs);
   498           } else {
   499             // collect() below will enable discovery as appropriate
   500           }
   501           _gens[i]->collect(full, do_clear_all_soft_refs, size, is_tlab);
   502           if (!rp->enqueuing_is_done()) {
   503             rp->enqueue_discovered_references();
   504           } else {
   505             rp->set_enqueuing_is_done(false);
   506           }
   507           rp->verify_no_references_recorded();
   508         }
   509         max_level_collected = i;
   511         // Determine if allocation request was met.
   512         if (size > 0) {
   513           if (!is_tlab || _gens[i]->supports_tlab_allocation()) {
   514             if (size*HeapWordSize <= _gens[i]->unsafe_max_alloc_nogc()) {
   515               size = 0;
   516             }
   517           }
   518         }
   520         COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
   522         _gens[i]->stat_record()->accumulated_time.stop();
   524         update_gc_stats(i, full);
   526         if (VerifyAfterGC && i >= VerifyGCLevel &&
   527             total_collections() >= VerifyGCStartAt) {
   528           HandleMark hm;  // Discard invalid handles created during verification
   529           Universe::verify(" VerifyAfterGC:");
   530         }
   532         if (PrintGCDetails) {
   533           gclog_or_tty->print(":");
   534           _gens[i]->print_heap_change(prev_used);
   535         }
   536       }
   537     }
   539     // Update "complete" boolean wrt what actually transpired --
   540     // for instance, a promotion failure could have led to
   541     // a whole heap collection.
   542     complete = complete || (max_level_collected == n_gens() - 1);
   544     if (complete) { // We did a "major" collection
   545       // FIXME: See comment at pre_full_gc_dump call
   546       post_full_gc_dump(NULL);   // do any post full gc dumps
   547     }
   549     if (PrintGCDetails) {
   550       print_heap_change(gch_prev_used);
   552       // Print metaspace info for full GC with PrintGCDetails flag.
   553       if (complete) {
   554         MetaspaceAux::print_metaspace_change(metadata_prev_used);
   555       }
   556     }
   558     for (int j = max_level_collected; j >= 0; j -= 1) {
   559       // Adjust generation sizes.
   560       _gens[j]->compute_new_size();
   561     }
   563     if (complete) {
   564       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
   565       ClassLoaderDataGraph::purge();
   566       MetaspaceAux::verify_metrics();
   567       // Resize the metaspace capacity after full collections
   568       MetaspaceGC::compute_new_size();
   569       update_full_collections_completed();
   570     }
   572     // Track memory usage and detect low memory after GC finishes
   573     MemoryService::track_memory_usage();
   575     gc_epilogue(complete);
   577     if (must_restore_marks_for_biased_locking) {
   578       BiasedLocking::restore_marks();
   579     }
   580   }
   582   AdaptiveSizePolicy* sp = gen_policy()->size_policy();
   583   AdaptiveSizePolicyOutput(sp, total_collections());
   585   print_heap_after_gc();
   587 #ifdef TRACESPINNING
   588   ParallelTaskTerminator::print_termination_counts();
   589 #endif
   590 }
   592 HeapWord* GenCollectedHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
   593   return collector_policy()->satisfy_failed_allocation(size, is_tlab);
   594 }
   596 void GenCollectedHeap::set_par_threads(uint t) {
   597   SharedHeap::set_par_threads(t);
   598   set_n_termination(t);
   599 }
   601 void GenCollectedHeap::set_n_termination(uint t) {
   602   _process_strong_tasks->set_n_threads(t);
   603 }
   605 #ifdef ASSERT
   606 class AssertNonScavengableClosure: public OopClosure {
   607 public:
   608   virtual void do_oop(oop* p) {
   609     assert(!Universe::heap()->is_in_partial_collection(*p),
   610       "Referent should not be scavengable.");  }
   611   virtual void do_oop(narrowOop* p) { ShouldNotReachHere(); }
   612 };
   613 static AssertNonScavengableClosure assert_is_non_scavengable_closure;
   614 #endif
   616 void GenCollectedHeap::process_roots(bool activate_scope,
   617                                      ScanningOption so,
   618                                      OopClosure* strong_roots,
   619                                      OopClosure* weak_roots,
   620                                      CLDClosure* strong_cld_closure,
   621                                      CLDClosure* weak_cld_closure,
   622                                      CodeBlobToOopClosure* code_roots) {
   623   StrongRootsScope srs(this, activate_scope);
   625   // General roots.
   626   assert(_strong_roots_parity != 0, "must have called prologue code");
   627   assert(code_roots != NULL, "code root closure should always be set");
   628   // _n_termination for _process_strong_tasks should be set up stream
   629   // in a method not running in a GC worker.  Otherwise the GC worker
   630   // could be trying to change the termination condition while the task
   631   // is executing in another GC worker.
   633   if (!_process_strong_tasks->is_task_claimed(GCH_PS_ClassLoaderDataGraph_oops_do)) {
   634     ClassLoaderDataGraph::roots_cld_do(strong_cld_closure, weak_cld_closure);
   635   }
   637   // Some CLDs contained in the thread frames should be considered strong.
   638   // Don't process them if they will be processed during the ClassLoaderDataGraph phase.
   639   CLDClosure* roots_from_clds_p = (strong_cld_closure != weak_cld_closure) ? strong_cld_closure : NULL;
   640   // Only process code roots from thread stacks if we aren't visiting the entire CodeCache anyway
   641   CodeBlobToOopClosure* roots_from_code_p = (so & SO_AllCodeCache) ? NULL : code_roots;
   643   Threads::possibly_parallel_oops_do(strong_roots, roots_from_clds_p, roots_from_code_p);
   645   if (!_process_strong_tasks->is_task_claimed(GCH_PS_Universe_oops_do)) {
   646     Universe::oops_do(strong_roots);
   647   }
   648   // Global (strong) JNI handles
   649   if (!_process_strong_tasks->is_task_claimed(GCH_PS_JNIHandles_oops_do)) {
   650     JNIHandles::oops_do(strong_roots);
   651   }
   653   if (!_process_strong_tasks->is_task_claimed(GCH_PS_ObjectSynchronizer_oops_do)) {
   654     ObjectSynchronizer::oops_do(strong_roots);
   655   }
   656   if (!_process_strong_tasks->is_task_claimed(GCH_PS_FlatProfiler_oops_do)) {
   657     FlatProfiler::oops_do(strong_roots);
   658   }
   659   if (!_process_strong_tasks->is_task_claimed(GCH_PS_Management_oops_do)) {
   660     Management::oops_do(strong_roots);
   661   }
   662   if (!_process_strong_tasks->is_task_claimed(GCH_PS_jvmti_oops_do)) {
   663     JvmtiExport::oops_do(strong_roots);
   664   }
   666   if (!_process_strong_tasks->is_task_claimed(GCH_PS_SystemDictionary_oops_do)) {
   667     SystemDictionary::roots_oops_do(strong_roots, weak_roots);
   668   }
   670   // All threads execute the following. A specific chunk of buckets
   671   // from the StringTable are the individual tasks.
   672   if (weak_roots != NULL) {
   673     if (CollectedHeap::use_parallel_gc_threads()) {
   674       StringTable::possibly_parallel_oops_do(weak_roots);
   675     } else {
   676       StringTable::oops_do(weak_roots);
   677     }
   678   }
   680   if (!_process_strong_tasks->is_task_claimed(GCH_PS_CodeCache_oops_do)) {
   681     if (so & SO_ScavengeCodeCache) {
   682       assert(code_roots != NULL, "must supply closure for code cache");
   684       // We only visit parts of the CodeCache when scavenging.
   685       CodeCache::scavenge_root_nmethods_do(code_roots);
   686     }
   687     if (so & SO_AllCodeCache) {
   688       assert(code_roots != NULL, "must supply closure for code cache");
   690       // CMSCollector uses this to do intermediate-strength collections.
   691       // We scan the entire code cache, since CodeCache::do_unloading is not called.
   692       CodeCache::blobs_do(code_roots);
   693     }
   694     // Verify that the code cache contents are not subject to
   695     // movement by a scavenging collection.
   696     DEBUG_ONLY(CodeBlobToOopClosure assert_code_is_non_scavengable(&assert_is_non_scavengable_closure, !CodeBlobToOopClosure::FixRelocations));
   697     DEBUG_ONLY(CodeCache::asserted_non_scavengable_nmethods_do(&assert_code_is_non_scavengable));
   698   }
   700 }
   702 void GenCollectedHeap::gen_process_roots(int level,
   703                                          bool younger_gens_as_roots,
   704                                          bool activate_scope,
   705                                          ScanningOption so,
   706                                          bool only_strong_roots,
   707                                          OopsInGenClosure* not_older_gens,
   708                                          OopsInGenClosure* older_gens,
   709                                          CLDClosure* cld_closure) {
   710   const bool is_adjust_phase = !only_strong_roots && !younger_gens_as_roots;
   712   bool is_moving_collection = false;
   713   if (level == 0 || is_adjust_phase) {
   714     // young collections are always moving
   715     is_moving_collection = true;
   716   }
   718   MarkingCodeBlobClosure mark_code_closure(not_older_gens, is_moving_collection);
   719   OopsInGenClosure* weak_roots = only_strong_roots ? NULL : not_older_gens;
   720   CLDClosure* weak_cld_closure = only_strong_roots ? NULL : cld_closure;
   722   process_roots(activate_scope, so,
   723                 not_older_gens, weak_roots,
   724                 cld_closure, weak_cld_closure,
   725                 &mark_code_closure);
   727   if (younger_gens_as_roots) {
   728     if (!_process_strong_tasks->is_task_claimed(GCH_PS_younger_gens)) {
   729       for (int i = 0; i < level; i++) {
   730         not_older_gens->set_generation(_gens[i]);
   731         _gens[i]->oop_iterate(not_older_gens);
   732       }
   733       not_older_gens->reset_generation();
   734     }
   735   }
   736   // When collection is parallel, all threads get to cooperate to do
   737   // older-gen scanning.
   738   for (int i = level+1; i < _n_gens; i++) {
   739     older_gens->set_generation(_gens[i]);
   740     rem_set()->younger_refs_iterate(_gens[i], older_gens);
   741     older_gens->reset_generation();
   742   }
   744   _process_strong_tasks->all_tasks_completed();
   745 }
   748 void GenCollectedHeap::gen_process_weak_roots(OopClosure* root_closure) {
   749   JNIHandles::weak_oops_do(root_closure);
   750   for (int i = 0; i < _n_gens; i++) {
   751     _gens[i]->ref_processor()->weak_oops_do(root_closure);
   752   }
   753 }
   755 #define GCH_SINCE_SAVE_MARKS_ITERATE_DEFN(OopClosureType, nv_suffix)    \
   756 void GenCollectedHeap::                                                 \
   757 oop_since_save_marks_iterate(int level,                                 \
   758                              OopClosureType* cur,                       \
   759                              OopClosureType* older) {                   \
   760   _gens[level]->oop_since_save_marks_iterate##nv_suffix(cur);           \
   761   for (int i = level+1; i < n_gens(); i++) {                            \
   762     _gens[i]->oop_since_save_marks_iterate##nv_suffix(older);           \
   763   }                                                                     \
   764 }
   766 ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DEFN)
   768 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DEFN
   770 bool GenCollectedHeap::no_allocs_since_save_marks(int level) {
   771   for (int i = level; i < _n_gens; i++) {
   772     if (!_gens[i]->no_allocs_since_save_marks()) return false;
   773   }
   774   return true;
   775 }
   777 bool GenCollectedHeap::supports_inline_contig_alloc() const {
   778   return _gens[0]->supports_inline_contig_alloc();
   779 }
   781 HeapWord** GenCollectedHeap::top_addr() const {
   782   return _gens[0]->top_addr();
   783 }
   785 HeapWord** GenCollectedHeap::end_addr() const {
   786   return _gens[0]->end_addr();
   787 }
   789 // public collection interfaces
   791 void GenCollectedHeap::collect(GCCause::Cause cause) {
   792   if (should_do_concurrent_full_gc(cause)) {
   793 #if INCLUDE_ALL_GCS
   794     // mostly concurrent full collection
   795     collect_mostly_concurrent(cause);
   796 #else  // INCLUDE_ALL_GCS
   797     ShouldNotReachHere();
   798 #endif // INCLUDE_ALL_GCS
   799   } else if (cause == GCCause::_wb_young_gc) {
   800     // minor collection for WhiteBox API
   801     collect(cause, 0);
   802   } else {
   803 #ifdef ASSERT
   804   if (cause == GCCause::_scavenge_alot) {
   805     // minor collection only
   806     collect(cause, 0);
   807   } else {
   808     // Stop-the-world full collection
   809     collect(cause, n_gens() - 1);
   810   }
   811 #else
   812     // Stop-the-world full collection
   813     collect(cause, n_gens() - 1);
   814 #endif
   815   }
   816 }
   818 void GenCollectedHeap::collect(GCCause::Cause cause, int max_level) {
   819   // The caller doesn't have the Heap_lock
   820   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
   821   MutexLocker ml(Heap_lock);
   822   collect_locked(cause, max_level);
   823 }
   825 void GenCollectedHeap::collect_locked(GCCause::Cause cause) {
   826   // The caller has the Heap_lock
   827   assert(Heap_lock->owned_by_self(), "this thread should own the Heap_lock");
   828   collect_locked(cause, n_gens() - 1);
   829 }
   831 // this is the private collection interface
   832 // The Heap_lock is expected to be held on entry.
   834 void GenCollectedHeap::collect_locked(GCCause::Cause cause, int max_level) {
   835   // Read the GC count while holding the Heap_lock
   836   unsigned int gc_count_before      = total_collections();
   837   unsigned int full_gc_count_before = total_full_collections();
   838   {
   839     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
   840     VM_GenCollectFull op(gc_count_before, full_gc_count_before,
   841                          cause, max_level);
   842     VMThread::execute(&op);
   843   }
   844 }
   846 #if INCLUDE_ALL_GCS
   847 bool GenCollectedHeap::create_cms_collector() {
   849   assert(((_gens[1]->kind() == Generation::ConcurrentMarkSweep) ||
   850          (_gens[1]->kind() == Generation::ASConcurrentMarkSweep)),
   851          "Unexpected generation kinds");
   852   // Skip two header words in the block content verification
   853   NOT_PRODUCT(_skip_header_HeapWords = CMSCollector::skip_header_HeapWords();)
   854   CMSCollector* collector = new CMSCollector(
   855     (ConcurrentMarkSweepGeneration*)_gens[1],
   856     _rem_set->as_CardTableRS(),
   857     (ConcurrentMarkSweepPolicy*) collector_policy());
   859   if (collector == NULL || !collector->completed_initialization()) {
   860     if (collector) {
   861       delete collector;  // Be nice in embedded situation
   862     }
   863     vm_shutdown_during_initialization("Could not create CMS collector");
   864     return false;
   865   }
   866   return true;  // success
   867 }
   869 void GenCollectedHeap::collect_mostly_concurrent(GCCause::Cause cause) {
   870   assert(!Heap_lock->owned_by_self(), "Should not own Heap_lock");
   872   MutexLocker ml(Heap_lock);
   873   // Read the GC counts while holding the Heap_lock
   874   unsigned int full_gc_count_before = total_full_collections();
   875   unsigned int gc_count_before      = total_collections();
   876   {
   877     MutexUnlocker mu(Heap_lock);
   878     VM_GenCollectFullConcurrent op(gc_count_before, full_gc_count_before, cause);
   879     VMThread::execute(&op);
   880   }
   881 }
   882 #endif // INCLUDE_ALL_GCS
   884 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs) {
   885    do_full_collection(clear_all_soft_refs, _n_gens - 1);
   886 }
   888 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs,
   889                                           int max_level) {
   890   int local_max_level;
   891   if (!incremental_collection_will_fail(false /* don't consult_young */) &&
   892       gc_cause() == GCCause::_gc_locker) {
   893     local_max_level = 0;
   894   } else {
   895     local_max_level = max_level;
   896   }
   898   do_collection(true                 /* full */,
   899                 clear_all_soft_refs  /* clear_all_soft_refs */,
   900                 0                    /* size */,
   901                 false                /* is_tlab */,
   902                 local_max_level      /* max_level */);
   903   // Hack XXX FIX ME !!!
   904   // A scavenge may not have been attempted, or may have
   905   // been attempted and failed, because the old gen was too full
   906   if (local_max_level == 0 && gc_cause() == GCCause::_gc_locker &&
   907       incremental_collection_will_fail(false /* don't consult_young */)) {
   908     if (PrintGCDetails) {
   909       gclog_or_tty->print_cr("GC locker: Trying a full collection "
   910                              "because scavenge failed");
   911     }
   912     // This time allow the old gen to be collected as well
   913     do_collection(true                 /* full */,
   914                   clear_all_soft_refs  /* clear_all_soft_refs */,
   915                   0                    /* size */,
   916                   false                /* is_tlab */,
   917                   n_gens() - 1         /* max_level */);
   918   }
   919 }
   921 bool GenCollectedHeap::is_in_young(oop p) {
   922   bool result = ((HeapWord*)p) < _gens[_n_gens - 1]->reserved().start();
   923   assert(result == _gens[0]->is_in_reserved(p),
   924          err_msg("incorrect test - result=%d, p=" PTR_FORMAT, result, p2i((void*)p)));
   925   return result;
   926 }
   928 // Returns "TRUE" iff "p" points into the committed areas of the heap.
   929 bool GenCollectedHeap::is_in(const void* p) const {
   930   #ifndef ASSERT
   931   guarantee(VerifyBeforeGC      ||
   932             VerifyDuringGC      ||
   933             VerifyBeforeExit    ||
   934             VerifyDuringStartup ||
   935             PrintAssembly       ||
   936             tty->count() != 0   ||   // already printing
   937             VerifyAfterGC       ||
   938     VMError::fatal_error_in_progress(), "too expensive");
   940   #endif
   941   // This might be sped up with a cache of the last generation that
   942   // answered yes.
   943   for (int i = 0; i < _n_gens; i++) {
   944     if (_gens[i]->is_in(p)) return true;
   945   }
   946   // Otherwise...
   947   return false;
   948 }
   950 #ifdef ASSERT
   951 // Don't implement this by using is_in_young().  This method is used
   952 // in some cases to check that is_in_young() is correct.
   953 bool GenCollectedHeap::is_in_partial_collection(const void* p) {
   954   assert(is_in_reserved(p) || p == NULL,
   955     "Does not work if address is non-null and outside of the heap");
   956   return p < _gens[_n_gens - 2]->reserved().end() && p != NULL;
   957 }
   958 #endif
   960 void GenCollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
   961   for (int i = 0; i < _n_gens; i++) {
   962     _gens[i]->oop_iterate(cl);
   963   }
   964 }
   966 void GenCollectedHeap::object_iterate(ObjectClosure* cl) {
   967   for (int i = 0; i < _n_gens; i++) {
   968     _gens[i]->object_iterate(cl);
   969   }
   970 }
   972 void GenCollectedHeap::safe_object_iterate(ObjectClosure* cl) {
   973   for (int i = 0; i < _n_gens; i++) {
   974     _gens[i]->safe_object_iterate(cl);
   975   }
   976 }
   978 Space* GenCollectedHeap::space_containing(const void* addr) const {
   979   for (int i = 0; i < _n_gens; i++) {
   980     Space* res = _gens[i]->space_containing(addr);
   981     if (res != NULL) return res;
   982   }
   983   // Otherwise...
   984   assert(false, "Could not find containing space");
   985   return NULL;
   986 }
   989 HeapWord* GenCollectedHeap::block_start(const void* addr) const {
   990   assert(is_in_reserved(addr), "block_start of address outside of heap");
   991   for (int i = 0; i < _n_gens; i++) {
   992     if (_gens[i]->is_in_reserved(addr)) {
   993       assert(_gens[i]->is_in(addr),
   994              "addr should be in allocated part of generation");
   995       return _gens[i]->block_start(addr);
   996     }
   997   }
   998   assert(false, "Some generation should contain the address");
   999   return NULL;
  1002 size_t GenCollectedHeap::block_size(const HeapWord* addr) const {
  1003   assert(is_in_reserved(addr), "block_size of address outside of heap");
  1004   for (int i = 0; i < _n_gens; i++) {
  1005     if (_gens[i]->is_in_reserved(addr)) {
  1006       assert(_gens[i]->is_in(addr),
  1007              "addr should be in allocated part of generation");
  1008       return _gens[i]->block_size(addr);
  1011   assert(false, "Some generation should contain the address");
  1012   return 0;
  1015 bool GenCollectedHeap::block_is_obj(const HeapWord* addr) const {
  1016   assert(is_in_reserved(addr), "block_is_obj of address outside of heap");
  1017   assert(block_start(addr) == addr, "addr must be a block start");
  1018   for (int i = 0; i < _n_gens; i++) {
  1019     if (_gens[i]->is_in_reserved(addr)) {
  1020       return _gens[i]->block_is_obj(addr);
  1023   assert(false, "Some generation should contain the address");
  1024   return false;
  1027 bool GenCollectedHeap::supports_tlab_allocation() const {
  1028   for (int i = 0; i < _n_gens; i += 1) {
  1029     if (_gens[i]->supports_tlab_allocation()) {
  1030       return true;
  1033   return false;
  1036 size_t GenCollectedHeap::tlab_capacity(Thread* thr) const {
  1037   size_t result = 0;
  1038   for (int i = 0; i < _n_gens; i += 1) {
  1039     if (_gens[i]->supports_tlab_allocation()) {
  1040       result += _gens[i]->tlab_capacity();
  1043   return result;
  1046 size_t GenCollectedHeap::tlab_used(Thread* thr) const {
  1047   size_t result = 0;
  1048   for (int i = 0; i < _n_gens; i += 1) {
  1049     if (_gens[i]->supports_tlab_allocation()) {
  1050       result += _gens[i]->tlab_used();
  1053   return result;
  1056 size_t GenCollectedHeap::unsafe_max_tlab_alloc(Thread* thr) const {
  1057   size_t result = 0;
  1058   for (int i = 0; i < _n_gens; i += 1) {
  1059     if (_gens[i]->supports_tlab_allocation()) {
  1060       result += _gens[i]->unsafe_max_tlab_alloc();
  1063   return result;
  1066 HeapWord* GenCollectedHeap::allocate_new_tlab(size_t size) {
  1067   bool gc_overhead_limit_was_exceeded;
  1068   return collector_policy()->mem_allocate_work(size /* size */,
  1069                                                true /* is_tlab */,
  1070                                                &gc_overhead_limit_was_exceeded);
  1073 // Requires "*prev_ptr" to be non-NULL.  Deletes and a block of minimal size
  1074 // from the list headed by "*prev_ptr".
  1075 static ScratchBlock *removeSmallestScratch(ScratchBlock **prev_ptr) {
  1076   bool first = true;
  1077   size_t min_size = 0;   // "first" makes this conceptually infinite.
  1078   ScratchBlock **smallest_ptr, *smallest;
  1079   ScratchBlock  *cur = *prev_ptr;
  1080   while (cur) {
  1081     assert(*prev_ptr == cur, "just checking");
  1082     if (first || cur->num_words < min_size) {
  1083       smallest_ptr = prev_ptr;
  1084       smallest     = cur;
  1085       min_size     = smallest->num_words;
  1086       first        = false;
  1088     prev_ptr = &cur->next;
  1089     cur     =  cur->next;
  1091   smallest      = *smallest_ptr;
  1092   *smallest_ptr = smallest->next;
  1093   return smallest;
  1096 // Sort the scratch block list headed by res into decreasing size order,
  1097 // and set "res" to the result.
  1098 static void sort_scratch_list(ScratchBlock*& list) {
  1099   ScratchBlock* sorted = NULL;
  1100   ScratchBlock* unsorted = list;
  1101   while (unsorted) {
  1102     ScratchBlock *smallest = removeSmallestScratch(&unsorted);
  1103     smallest->next  = sorted;
  1104     sorted          = smallest;
  1106   list = sorted;
  1109 ScratchBlock* GenCollectedHeap::gather_scratch(Generation* requestor,
  1110                                                size_t max_alloc_words) {
  1111   ScratchBlock* res = NULL;
  1112   for (int i = 0; i < _n_gens; i++) {
  1113     _gens[i]->contribute_scratch(res, requestor, max_alloc_words);
  1115   sort_scratch_list(res);
  1116   return res;
  1119 void GenCollectedHeap::release_scratch() {
  1120   for (int i = 0; i < _n_gens; i++) {
  1121     _gens[i]->reset_scratch();
  1125 class GenPrepareForVerifyClosure: public GenCollectedHeap::GenClosure {
  1126   void do_generation(Generation* gen) {
  1127     gen->prepare_for_verify();
  1129 };
  1131 void GenCollectedHeap::prepare_for_verify() {
  1132   ensure_parsability(false);        // no need to retire TLABs
  1133   GenPrepareForVerifyClosure blk;
  1134   generation_iterate(&blk, false);
  1138 void GenCollectedHeap::generation_iterate(GenClosure* cl,
  1139                                           bool old_to_young) {
  1140   if (old_to_young) {
  1141     for (int i = _n_gens-1; i >= 0; i--) {
  1142       cl->do_generation(_gens[i]);
  1144   } else {
  1145     for (int i = 0; i < _n_gens; i++) {
  1146       cl->do_generation(_gens[i]);
  1151 void GenCollectedHeap::space_iterate(SpaceClosure* cl) {
  1152   for (int i = 0; i < _n_gens; i++) {
  1153     _gens[i]->space_iterate(cl, true);
  1157 bool GenCollectedHeap::is_maximal_no_gc() const {
  1158   for (int i = 0; i < _n_gens; i++) {
  1159     if (!_gens[i]->is_maximal_no_gc()) {
  1160       return false;
  1163   return true;
  1166 void GenCollectedHeap::save_marks() {
  1167   for (int i = 0; i < _n_gens; i++) {
  1168     _gens[i]->save_marks();
  1172 GenCollectedHeap* GenCollectedHeap::heap() {
  1173   assert(_gch != NULL, "Uninitialized access to GenCollectedHeap::heap()");
  1174   assert(_gch->kind() == CollectedHeap::GenCollectedHeap, "not a generational heap");
  1175   return _gch;
  1179 void GenCollectedHeap::prepare_for_compaction() {
  1180   guarantee(_n_gens = 2, "Wrong number of generations");
  1181   Generation* old_gen = _gens[1];
  1182   // Start by compacting into same gen.
  1183   CompactPoint cp(old_gen);
  1184   old_gen->prepare_for_compaction(&cp);
  1185   Generation* young_gen = _gens[0];
  1186   young_gen->prepare_for_compaction(&cp);
  1189 GCStats* GenCollectedHeap::gc_stats(int level) const {
  1190   return _gens[level]->gc_stats();
  1193 void GenCollectedHeap::verify(bool silent, VerifyOption option /* ignored */) {
  1194   for (int i = _n_gens-1; i >= 0; i--) {
  1195     Generation* g = _gens[i];
  1196     if (!silent) {
  1197       gclog_or_tty->print("%s", g->name());
  1198       gclog_or_tty->print(" ");
  1200     g->verify();
  1202   if (!silent) {
  1203     gclog_or_tty->print("remset ");
  1205   rem_set()->verify();
  1208 void GenCollectedHeap::print_on(outputStream* st) const {
  1209   for (int i = 0; i < _n_gens; i++) {
  1210     _gens[i]->print_on(st);
  1212   MetaspaceAux::print_on(st);
  1215 void GenCollectedHeap::gc_threads_do(ThreadClosure* tc) const {
  1216   if (workers() != NULL) {
  1217     workers()->threads_do(tc);
  1219 #if INCLUDE_ALL_GCS
  1220   if (UseConcMarkSweepGC) {
  1221     ConcurrentMarkSweepThread::threads_do(tc);
  1223 #endif // INCLUDE_ALL_GCS
  1226 void GenCollectedHeap::print_gc_threads_on(outputStream* st) const {
  1227 #if INCLUDE_ALL_GCS
  1228   if (UseParNewGC) {
  1229     workers()->print_worker_threads_on(st);
  1231   if (UseConcMarkSweepGC) {
  1232     ConcurrentMarkSweepThread::print_all_on(st);
  1234 #endif // INCLUDE_ALL_GCS
  1237 void GenCollectedHeap::print_on_error(outputStream* st) const {
  1238   this->CollectedHeap::print_on_error(st);
  1240 #if INCLUDE_ALL_GCS
  1241   if (UseConcMarkSweepGC) {
  1242     st->cr();
  1243     CMSCollector::print_on_error(st);
  1245 #endif // INCLUDE_ALL_GCS
  1248 void GenCollectedHeap::print_tracing_info() const {
  1249   if (TraceGen0Time) {
  1250     get_gen(0)->print_summary_info();
  1252   if (TraceGen1Time) {
  1253     get_gen(1)->print_summary_info();
  1257 void GenCollectedHeap::print_heap_change(size_t prev_used) const {
  1258   if (PrintGCDetails && Verbose) {
  1259     gclog_or_tty->print(" "  SIZE_FORMAT
  1260                         "->" SIZE_FORMAT
  1261                         "("  SIZE_FORMAT ")",
  1262                         prev_used, used(), capacity());
  1263   } else {
  1264     gclog_or_tty->print(" "  SIZE_FORMAT "K"
  1265                         "->" SIZE_FORMAT "K"
  1266                         "("  SIZE_FORMAT "K)",
  1267                         prev_used / K, used() / K, capacity() / K);
  1271 class GenGCPrologueClosure: public GenCollectedHeap::GenClosure {
  1272  private:
  1273   bool _full;
  1274  public:
  1275   void do_generation(Generation* gen) {
  1276     gen->gc_prologue(_full);
  1278   GenGCPrologueClosure(bool full) : _full(full) {};
  1279 };
  1281 void GenCollectedHeap::gc_prologue(bool full) {
  1282   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  1284   always_do_update_barrier = false;
  1285   // Fill TLAB's and such
  1286   CollectedHeap::accumulate_statistics_all_tlabs();
  1287   ensure_parsability(true);   // retire TLABs
  1289   // Walk generations
  1290   GenGCPrologueClosure blk(full);
  1291   generation_iterate(&blk, false);  // not old-to-young.
  1292 };
  1294 class GenGCEpilogueClosure: public GenCollectedHeap::GenClosure {
  1295  private:
  1296   bool _full;
  1297  public:
  1298   void do_generation(Generation* gen) {
  1299     gen->gc_epilogue(_full);
  1301   GenGCEpilogueClosure(bool full) : _full(full) {};
  1302 };
  1304 void GenCollectedHeap::gc_epilogue(bool full) {
  1305 #ifdef COMPILER2
  1306   assert(DerivedPointerTable::is_empty(), "derived pointer present");
  1307   size_t actual_gap = pointer_delta((HeapWord*) (max_uintx-3), *(end_addr()));
  1308   guarantee(actual_gap > (size_t)FastAllocateSizeLimit, "inline allocation wraps");
  1309 #endif /* COMPILER2 */
  1311   resize_all_tlabs();
  1313   GenGCEpilogueClosure blk(full);
  1314   generation_iterate(&blk, false);  // not old-to-young.
  1316   if (!CleanChunkPoolAsync) {
  1317     Chunk::clean_chunk_pool();
  1320   MetaspaceCounters::update_performance_counters();
  1321   CompressedClassSpaceCounters::update_performance_counters();
  1323   always_do_update_barrier = UseConcMarkSweepGC;
  1324 };
  1326 #ifndef PRODUCT
  1327 class GenGCSaveTopsBeforeGCClosure: public GenCollectedHeap::GenClosure {
  1328  private:
  1329  public:
  1330   void do_generation(Generation* gen) {
  1331     gen->record_spaces_top();
  1333 };
  1335 void GenCollectedHeap::record_gen_tops_before_GC() {
  1336   if (ZapUnusedHeapArea) {
  1337     GenGCSaveTopsBeforeGCClosure blk;
  1338     generation_iterate(&blk, false);  // not old-to-young.
  1341 #endif  // not PRODUCT
  1343 class GenEnsureParsabilityClosure: public GenCollectedHeap::GenClosure {
  1344  public:
  1345   void do_generation(Generation* gen) {
  1346     gen->ensure_parsability();
  1348 };
  1350 void GenCollectedHeap::ensure_parsability(bool retire_tlabs) {
  1351   CollectedHeap::ensure_parsability(retire_tlabs);
  1352   GenEnsureParsabilityClosure ep_cl;
  1353   generation_iterate(&ep_cl, false);
  1356 oop GenCollectedHeap::handle_failed_promotion(Generation* old_gen,
  1357                                               oop obj,
  1358                                               size_t obj_size) {
  1359   guarantee(old_gen->level() == 1, "We only get here with an old generation");
  1360   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
  1361   HeapWord* result = NULL;
  1363   result = old_gen->expand_and_allocate(obj_size, false);
  1365   if (result != NULL) {
  1366     Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
  1368   return oop(result);
  1371 class GenTimeOfLastGCClosure: public GenCollectedHeap::GenClosure {
  1372   jlong _time;   // in ms
  1373   jlong _now;    // in ms
  1375  public:
  1376   GenTimeOfLastGCClosure(jlong now) : _time(now), _now(now) { }
  1378   jlong time() { return _time; }
  1380   void do_generation(Generation* gen) {
  1381     _time = MIN2(_time, gen->time_of_last_gc(_now));
  1383 };
  1385 jlong GenCollectedHeap::millis_since_last_gc() {
  1386   // We need a monotonically non-deccreasing time in ms but
  1387   // os::javaTimeMillis() does not guarantee monotonicity.
  1388   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
  1389   GenTimeOfLastGCClosure tolgc_cl(now);
  1390   // iterate over generations getting the oldest
  1391   // time that a generation was collected
  1392   generation_iterate(&tolgc_cl, false);
  1394   // javaTimeNanos() is guaranteed to be monotonically non-decreasing
  1395   // provided the underlying platform provides such a time source
  1396   // (and it is bug free). So we still have to guard against getting
  1397   // back a time later than 'now'.
  1398   jlong retVal = now - tolgc_cl.time();
  1399   if (retVal < 0) {
  1400     NOT_PRODUCT(warning("time warp: "INT64_FORMAT, (int64_t) retVal);)
  1401     return 0;
  1403   return retVal;

mercurial