src/share/vm/runtime/os.cpp

Thu, 13 Jun 2013 11:16:38 -0700

author
dcubed
date
Thu, 13 Jun 2013 11:16:38 -0700
changeset 5255
a837fa3d3f86
parent 5237
f2110083203d
child 5272
1f4355cee9a2
permissions
-rw-r--r--

8013057: assert(_needs_gc || SafepointSynchronize::is_at_safepoint()) failed: only read at safepoint
Summary: Detect mmap() commit failures in Linux and Solaris os::commit_memory() impls and call vm_exit_out_of_memory(). Add os::commit_memory_or_exit(). Also tidy up some NMT accounting and some mmap() return value checking.
Reviewed-by: zgu, stefank, dholmes, dsamersoff

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/classLoader.hpp"
    27 #include "classfile/javaClasses.hpp"
    28 #include "classfile/systemDictionary.hpp"
    29 #include "classfile/vmSymbols.hpp"
    30 #include "code/icBuffer.hpp"
    31 #include "code/vtableStubs.hpp"
    32 #include "gc_implementation/shared/vmGCOperations.hpp"
    33 #include "interpreter/interpreter.hpp"
    34 #include "memory/allocation.inline.hpp"
    35 #include "oops/oop.inline.hpp"
    36 #include "prims/jvm.h"
    37 #include "prims/jvm_misc.hpp"
    38 #include "prims/privilegedStack.hpp"
    39 #include "runtime/arguments.hpp"
    40 #include "runtime/frame.inline.hpp"
    41 #include "runtime/interfaceSupport.hpp"
    42 #include "runtime/java.hpp"
    43 #include "runtime/javaCalls.hpp"
    44 #include "runtime/mutexLocker.hpp"
    45 #include "runtime/os.hpp"
    46 #include "runtime/stubRoutines.hpp"
    47 #include "runtime/thread.inline.hpp"
    48 #include "services/attachListener.hpp"
    49 #include "services/memTracker.hpp"
    50 #include "services/threadService.hpp"
    51 #include "utilities/defaultStream.hpp"
    52 #include "utilities/events.hpp"
    53 #ifdef TARGET_OS_FAMILY_linux
    54 # include "os_linux.inline.hpp"
    55 #endif
    56 #ifdef TARGET_OS_FAMILY_solaris
    57 # include "os_solaris.inline.hpp"
    58 #endif
    59 #ifdef TARGET_OS_FAMILY_windows
    60 # include "os_windows.inline.hpp"
    61 #endif
    62 #ifdef TARGET_OS_FAMILY_bsd
    63 # include "os_bsd.inline.hpp"
    64 #endif
    66 # include <signal.h>
    68 OSThread*         os::_starting_thread    = NULL;
    69 address           os::_polling_page       = NULL;
    70 volatile int32_t* os::_mem_serialize_page = NULL;
    71 uintptr_t         os::_serialize_page_mask = 0;
    72 long              os::_rand_seed          = 1;
    73 int               os::_processor_count    = 0;
    74 size_t            os::_page_sizes[os::page_sizes_max];
    76 #ifndef PRODUCT
    77 julong os::num_mallocs = 0;         // # of calls to malloc/realloc
    78 julong os::alloc_bytes = 0;         // # of bytes allocated
    79 julong os::num_frees = 0;           // # of calls to free
    80 julong os::free_bytes = 0;          // # of bytes freed
    81 #endif
    83 static juint cur_malloc_words = 0;  // current size for MallocMaxTestWords
    85 void os_init_globals() {
    86   // Called from init_globals().
    87   // See Threads::create_vm() in thread.cpp, and init.cpp.
    88   os::init_globals();
    89 }
    91 // Fill in buffer with current local time as an ISO-8601 string.
    92 // E.g., yyyy-mm-ddThh:mm:ss-zzzz.
    93 // Returns buffer, or NULL if it failed.
    94 // This would mostly be a call to
    95 //     strftime(...., "%Y-%m-%d" "T" "%H:%M:%S" "%z", ....)
    96 // except that on Windows the %z behaves badly, so we do it ourselves.
    97 // Also, people wanted milliseconds on there,
    98 // and strftime doesn't do milliseconds.
    99 char* os::iso8601_time(char* buffer, size_t buffer_length) {
   100   // Output will be of the form "YYYY-MM-DDThh:mm:ss.mmm+zzzz\0"
   101   //                                      1         2
   102   //                             12345678901234567890123456789
   103   static const char* iso8601_format =
   104     "%04d-%02d-%02dT%02d:%02d:%02d.%03d%c%02d%02d";
   105   static const size_t needed_buffer = 29;
   107   // Sanity check the arguments
   108   if (buffer == NULL) {
   109     assert(false, "NULL buffer");
   110     return NULL;
   111   }
   112   if (buffer_length < needed_buffer) {
   113     assert(false, "buffer_length too small");
   114     return NULL;
   115   }
   116   // Get the current time
   117   jlong milliseconds_since_19700101 = javaTimeMillis();
   118   const int milliseconds_per_microsecond = 1000;
   119   const time_t seconds_since_19700101 =
   120     milliseconds_since_19700101 / milliseconds_per_microsecond;
   121   const int milliseconds_after_second =
   122     milliseconds_since_19700101 % milliseconds_per_microsecond;
   123   // Convert the time value to a tm and timezone variable
   124   struct tm time_struct;
   125   if (localtime_pd(&seconds_since_19700101, &time_struct) == NULL) {
   126     assert(false, "Failed localtime_pd");
   127     return NULL;
   128   }
   129 #if defined(_ALLBSD_SOURCE)
   130   const time_t zone = (time_t) time_struct.tm_gmtoff;
   131 #else
   132   const time_t zone = timezone;
   133 #endif
   135   // If daylight savings time is in effect,
   136   // we are 1 hour East of our time zone
   137   const time_t seconds_per_minute = 60;
   138   const time_t minutes_per_hour = 60;
   139   const time_t seconds_per_hour = seconds_per_minute * minutes_per_hour;
   140   time_t UTC_to_local = zone;
   141   if (time_struct.tm_isdst > 0) {
   142     UTC_to_local = UTC_to_local - seconds_per_hour;
   143   }
   144   // Compute the time zone offset.
   145   //    localtime_pd() sets timezone to the difference (in seconds)
   146   //    between UTC and and local time.
   147   //    ISO 8601 says we need the difference between local time and UTC,
   148   //    we change the sign of the localtime_pd() result.
   149   const time_t local_to_UTC = -(UTC_to_local);
   150   // Then we have to figure out if if we are ahead (+) or behind (-) UTC.
   151   char sign_local_to_UTC = '+';
   152   time_t abs_local_to_UTC = local_to_UTC;
   153   if (local_to_UTC < 0) {
   154     sign_local_to_UTC = '-';
   155     abs_local_to_UTC = -(abs_local_to_UTC);
   156   }
   157   // Convert time zone offset seconds to hours and minutes.
   158   const time_t zone_hours = (abs_local_to_UTC / seconds_per_hour);
   159   const time_t zone_min =
   160     ((abs_local_to_UTC % seconds_per_hour) / seconds_per_minute);
   162   // Print an ISO 8601 date and time stamp into the buffer
   163   const int year = 1900 + time_struct.tm_year;
   164   const int month = 1 + time_struct.tm_mon;
   165   const int printed = jio_snprintf(buffer, buffer_length, iso8601_format,
   166                                    year,
   167                                    month,
   168                                    time_struct.tm_mday,
   169                                    time_struct.tm_hour,
   170                                    time_struct.tm_min,
   171                                    time_struct.tm_sec,
   172                                    milliseconds_after_second,
   173                                    sign_local_to_UTC,
   174                                    zone_hours,
   175                                    zone_min);
   176   if (printed == 0) {
   177     assert(false, "Failed jio_printf");
   178     return NULL;
   179   }
   180   return buffer;
   181 }
   183 OSReturn os::set_priority(Thread* thread, ThreadPriority p) {
   184 #ifdef ASSERT
   185   if (!(!thread->is_Java_thread() ||
   186          Thread::current() == thread  ||
   187          Threads_lock->owned_by_self()
   188          || thread->is_Compiler_thread()
   189         )) {
   190     assert(false, "possibility of dangling Thread pointer");
   191   }
   192 #endif
   194   if (p >= MinPriority && p <= MaxPriority) {
   195     int priority = java_to_os_priority[p];
   196     return set_native_priority(thread, priority);
   197   } else {
   198     assert(false, "Should not happen");
   199     return OS_ERR;
   200   }
   201 }
   203 // The mapping from OS priority back to Java priority may be inexact because
   204 // Java priorities can map M:1 with native priorities. If you want the definite
   205 // Java priority then use JavaThread::java_priority()
   206 OSReturn os::get_priority(const Thread* const thread, ThreadPriority& priority) {
   207   int p;
   208   int os_prio;
   209   OSReturn ret = get_native_priority(thread, &os_prio);
   210   if (ret != OS_OK) return ret;
   212   if (java_to_os_priority[MaxPriority] > java_to_os_priority[MinPriority]) {
   213     for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] > os_prio; p--) ;
   214   } else {
   215     // niceness values are in reverse order
   216     for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] < os_prio; p--) ;
   217   }
   218   priority = (ThreadPriority)p;
   219   return OS_OK;
   220 }
   223 // --------------------- sun.misc.Signal (optional) ---------------------
   226 // SIGBREAK is sent by the keyboard to query the VM state
   227 #ifndef SIGBREAK
   228 #define SIGBREAK SIGQUIT
   229 #endif
   231 // sigexitnum_pd is a platform-specific special signal used for terminating the Signal thread.
   234 static void signal_thread_entry(JavaThread* thread, TRAPS) {
   235   os::set_priority(thread, NearMaxPriority);
   236   while (true) {
   237     int sig;
   238     {
   239       // FIXME : Currently we have not decieded what should be the status
   240       //         for this java thread blocked here. Once we decide about
   241       //         that we should fix this.
   242       sig = os::signal_wait();
   243     }
   244     if (sig == os::sigexitnum_pd()) {
   245        // Terminate the signal thread
   246        return;
   247     }
   249     switch (sig) {
   250       case SIGBREAK: {
   251         // Check if the signal is a trigger to start the Attach Listener - in that
   252         // case don't print stack traces.
   253         if (!DisableAttachMechanism && AttachListener::is_init_trigger()) {
   254           continue;
   255         }
   256         // Print stack traces
   257         // Any SIGBREAK operations added here should make sure to flush
   258         // the output stream (e.g. tty->flush()) after output.  See 4803766.
   259         // Each module also prints an extra carriage return after its output.
   260         VM_PrintThreads op;
   261         VMThread::execute(&op);
   262         VM_PrintJNI jni_op;
   263         VMThread::execute(&jni_op);
   264         VM_FindDeadlocks op1(tty);
   265         VMThread::execute(&op1);
   266         Universe::print_heap_at_SIGBREAK();
   267         if (PrintClassHistogram) {
   268           VM_GC_HeapInspection op1(gclog_or_tty, true /* force full GC before heap inspection */);
   269           VMThread::execute(&op1);
   270         }
   271         if (JvmtiExport::should_post_data_dump()) {
   272           JvmtiExport::post_data_dump();
   273         }
   274         break;
   275       }
   276       default: {
   277         // Dispatch the signal to java
   278         HandleMark hm(THREAD);
   279         Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_Signal(), THREAD);
   280         KlassHandle klass (THREAD, k);
   281         if (klass.not_null()) {
   282           JavaValue result(T_VOID);
   283           JavaCallArguments args;
   284           args.push_int(sig);
   285           JavaCalls::call_static(
   286             &result,
   287             klass,
   288             vmSymbols::dispatch_name(),
   289             vmSymbols::int_void_signature(),
   290             &args,
   291             THREAD
   292           );
   293         }
   294         if (HAS_PENDING_EXCEPTION) {
   295           // tty is initialized early so we don't expect it to be null, but
   296           // if it is we can't risk doing an initialization that might
   297           // trigger additional out-of-memory conditions
   298           if (tty != NULL) {
   299             char klass_name[256];
   300             char tmp_sig_name[16];
   301             const char* sig_name = "UNKNOWN";
   302             InstanceKlass::cast(PENDING_EXCEPTION->klass())->
   303               name()->as_klass_external_name(klass_name, 256);
   304             if (os::exception_name(sig, tmp_sig_name, 16) != NULL)
   305               sig_name = tmp_sig_name;
   306             warning("Exception %s occurred dispatching signal %s to handler"
   307                     "- the VM may need to be forcibly terminated",
   308                     klass_name, sig_name );
   309           }
   310           CLEAR_PENDING_EXCEPTION;
   311         }
   312       }
   313     }
   314   }
   315 }
   318 void os::signal_init() {
   319   if (!ReduceSignalUsage) {
   320     // Setup JavaThread for processing signals
   321     EXCEPTION_MARK;
   322     Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
   323     instanceKlassHandle klass (THREAD, k);
   324     instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
   326     const char thread_name[] = "Signal Dispatcher";
   327     Handle string = java_lang_String::create_from_str(thread_name, CHECK);
   329     // Initialize thread_oop to put it into the system threadGroup
   330     Handle thread_group (THREAD, Universe::system_thread_group());
   331     JavaValue result(T_VOID);
   332     JavaCalls::call_special(&result, thread_oop,
   333                            klass,
   334                            vmSymbols::object_initializer_name(),
   335                            vmSymbols::threadgroup_string_void_signature(),
   336                            thread_group,
   337                            string,
   338                            CHECK);
   340     KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
   341     JavaCalls::call_special(&result,
   342                             thread_group,
   343                             group,
   344                             vmSymbols::add_method_name(),
   345                             vmSymbols::thread_void_signature(),
   346                             thread_oop,         // ARG 1
   347                             CHECK);
   349     os::signal_init_pd();
   351     { MutexLocker mu(Threads_lock);
   352       JavaThread* signal_thread = new JavaThread(&signal_thread_entry);
   354       // At this point it may be possible that no osthread was created for the
   355       // JavaThread due to lack of memory. We would have to throw an exception
   356       // in that case. However, since this must work and we do not allow
   357       // exceptions anyway, check and abort if this fails.
   358       if (signal_thread == NULL || signal_thread->osthread() == NULL) {
   359         vm_exit_during_initialization("java.lang.OutOfMemoryError",
   360                                       "unable to create new native thread");
   361       }
   363       java_lang_Thread::set_thread(thread_oop(), signal_thread);
   364       java_lang_Thread::set_priority(thread_oop(), NearMaxPriority);
   365       java_lang_Thread::set_daemon(thread_oop());
   367       signal_thread->set_threadObj(thread_oop());
   368       Threads::add(signal_thread);
   369       Thread::start(signal_thread);
   370     }
   371     // Handle ^BREAK
   372     os::signal(SIGBREAK, os::user_handler());
   373   }
   374 }
   377 void os::terminate_signal_thread() {
   378   if (!ReduceSignalUsage)
   379     signal_notify(sigexitnum_pd());
   380 }
   383 // --------------------- loading libraries ---------------------
   385 typedef jint (JNICALL *JNI_OnLoad_t)(JavaVM *, void *);
   386 extern struct JavaVM_ main_vm;
   388 static void* _native_java_library = NULL;
   390 void* os::native_java_library() {
   391   if (_native_java_library == NULL) {
   392     char buffer[JVM_MAXPATHLEN];
   393     char ebuf[1024];
   395     // Try to load verify dll first. In 1.3 java dll depends on it and is not
   396     // always able to find it when the loading executable is outside the JDK.
   397     // In order to keep working with 1.2 we ignore any loading errors.
   398     if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
   399                        "verify")) {
   400       dll_load(buffer, ebuf, sizeof(ebuf));
   401     }
   403     // Load java dll
   404     if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
   405                        "java")) {
   406       _native_java_library = dll_load(buffer, ebuf, sizeof(ebuf));
   407     }
   408     if (_native_java_library == NULL) {
   409       vm_exit_during_initialization("Unable to load native library", ebuf);
   410     }
   412 #if defined(__OpenBSD__)
   413     // Work-around OpenBSD's lack of $ORIGIN support by pre-loading libnet.so
   414     // ignore errors
   415     if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
   416                        "net")) {
   417       dll_load(buffer, ebuf, sizeof(ebuf));
   418     }
   419 #endif
   420   }
   421   static jboolean onLoaded = JNI_FALSE;
   422   if (onLoaded) {
   423     // We may have to wait to fire OnLoad until TLS is initialized.
   424     if (ThreadLocalStorage::is_initialized()) {
   425       // The JNI_OnLoad handling is normally done by method load in
   426       // java.lang.ClassLoader$NativeLibrary, but the VM loads the base library
   427       // explicitly so we have to check for JNI_OnLoad as well
   428       const char *onLoadSymbols[] = JNI_ONLOAD_SYMBOLS;
   429       JNI_OnLoad_t JNI_OnLoad = CAST_TO_FN_PTR(
   430           JNI_OnLoad_t, dll_lookup(_native_java_library, onLoadSymbols[0]));
   431       if (JNI_OnLoad != NULL) {
   432         JavaThread* thread = JavaThread::current();
   433         ThreadToNativeFromVM ttn(thread);
   434         HandleMark hm(thread);
   435         jint ver = (*JNI_OnLoad)(&main_vm, NULL);
   436         onLoaded = JNI_TRUE;
   437         if (!Threads::is_supported_jni_version_including_1_1(ver)) {
   438           vm_exit_during_initialization("Unsupported JNI version");
   439         }
   440       }
   441     }
   442   }
   443   return _native_java_library;
   444 }
   446 // --------------------- heap allocation utilities ---------------------
   448 char *os::strdup(const char *str, MEMFLAGS flags) {
   449   size_t size = strlen(str);
   450   char *dup_str = (char *)malloc(size + 1, flags);
   451   if (dup_str == NULL) return NULL;
   452   strcpy(dup_str, str);
   453   return dup_str;
   454 }
   458 #ifdef ASSERT
   459 #define space_before             (MallocCushion + sizeof(double))
   460 #define space_after              MallocCushion
   461 #define size_addr_from_base(p)   (size_t*)(p + space_before - sizeof(size_t))
   462 #define size_addr_from_obj(p)    ((size_t*)p - 1)
   463 // MallocCushion: size of extra cushion allocated around objects with +UseMallocOnly
   464 // NB: cannot be debug variable, because these aren't set from the command line until
   465 // *after* the first few allocs already happened
   466 #define MallocCushion            16
   467 #else
   468 #define space_before             0
   469 #define space_after              0
   470 #define size_addr_from_base(p)   should not use w/o ASSERT
   471 #define size_addr_from_obj(p)    should not use w/o ASSERT
   472 #define MallocCushion            0
   473 #endif
   474 #define paranoid                 0  /* only set to 1 if you suspect checking code has bug */
   476 #ifdef ASSERT
   477 inline size_t get_size(void* obj) {
   478   size_t size = *size_addr_from_obj(obj);
   479   if (size < 0) {
   480     fatal(err_msg("free: size field of object #" PTR_FORMAT " was overwritten ("
   481                   SIZE_FORMAT ")", obj, size));
   482   }
   483   return size;
   484 }
   486 u_char* find_cushion_backwards(u_char* start) {
   487   u_char* p = start;
   488   while (p[ 0] != badResourceValue || p[-1] != badResourceValue ||
   489          p[-2] != badResourceValue || p[-3] != badResourceValue) p--;
   490   // ok, we have four consecutive marker bytes; find start
   491   u_char* q = p - 4;
   492   while (*q == badResourceValue) q--;
   493   return q + 1;
   494 }
   496 u_char* find_cushion_forwards(u_char* start) {
   497   u_char* p = start;
   498   while (p[0] != badResourceValue || p[1] != badResourceValue ||
   499          p[2] != badResourceValue || p[3] != badResourceValue) p++;
   500   // ok, we have four consecutive marker bytes; find end of cushion
   501   u_char* q = p + 4;
   502   while (*q == badResourceValue) q++;
   503   return q - MallocCushion;
   504 }
   506 void print_neighbor_blocks(void* ptr) {
   507   // find block allocated before ptr (not entirely crash-proof)
   508   if (MallocCushion < 4) {
   509     tty->print_cr("### cannot find previous block (MallocCushion < 4)");
   510     return;
   511   }
   512   u_char* start_of_this_block = (u_char*)ptr - space_before;
   513   u_char* end_of_prev_block_data = start_of_this_block - space_after -1;
   514   // look for cushion in front of prev. block
   515   u_char* start_of_prev_block = find_cushion_backwards(end_of_prev_block_data);
   516   ptrdiff_t size = *size_addr_from_base(start_of_prev_block);
   517   u_char* obj = start_of_prev_block + space_before;
   518   if (size <= 0 ) {
   519     // start is bad; mayhave been confused by OS data inbetween objects
   520     // search one more backwards
   521     start_of_prev_block = find_cushion_backwards(start_of_prev_block);
   522     size = *size_addr_from_base(start_of_prev_block);
   523     obj = start_of_prev_block + space_before;
   524   }
   526   if (start_of_prev_block + space_before + size + space_after == start_of_this_block) {
   527     tty->print_cr("### previous object: " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", obj, size);
   528   } else {
   529     tty->print_cr("### previous object (not sure if correct): " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", obj, size);
   530   }
   532   // now find successor block
   533   u_char* start_of_next_block = (u_char*)ptr + *size_addr_from_obj(ptr) + space_after;
   534   start_of_next_block = find_cushion_forwards(start_of_next_block);
   535   u_char* next_obj = start_of_next_block + space_before;
   536   ptrdiff_t next_size = *size_addr_from_base(start_of_next_block);
   537   if (start_of_next_block[0] == badResourceValue &&
   538       start_of_next_block[1] == badResourceValue &&
   539       start_of_next_block[2] == badResourceValue &&
   540       start_of_next_block[3] == badResourceValue) {
   541     tty->print_cr("### next object: " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", next_obj, next_size);
   542   } else {
   543     tty->print_cr("### next object (not sure if correct): " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", next_obj, next_size);
   544   }
   545 }
   548 void report_heap_error(void* memblock, void* bad, const char* where) {
   549   tty->print_cr("## nof_mallocs = " UINT64_FORMAT ", nof_frees = " UINT64_FORMAT, os::num_mallocs, os::num_frees);
   550   tty->print_cr("## memory stomp: byte at " PTR_FORMAT " %s object " PTR_FORMAT, bad, where, memblock);
   551   print_neighbor_blocks(memblock);
   552   fatal("memory stomping error");
   553 }
   555 void verify_block(void* memblock) {
   556   size_t size = get_size(memblock);
   557   if (MallocCushion) {
   558     u_char* ptr = (u_char*)memblock - space_before;
   559     for (int i = 0; i < MallocCushion; i++) {
   560       if (ptr[i] != badResourceValue) {
   561         report_heap_error(memblock, ptr+i, "in front of");
   562       }
   563     }
   564     u_char* end = (u_char*)memblock + size + space_after;
   565     for (int j = -MallocCushion; j < 0; j++) {
   566       if (end[j] != badResourceValue) {
   567         report_heap_error(memblock, end+j, "after");
   568       }
   569     }
   570   }
   571 }
   572 #endif
   574 //
   575 // This function supports testing of the malloc out of memory
   576 // condition without really running the system out of memory.
   577 //
   578 static u_char* testMalloc(size_t alloc_size) {
   579   assert(MallocMaxTestWords > 0, "sanity check");
   581   if ((cur_malloc_words + (alloc_size / BytesPerWord)) > MallocMaxTestWords) {
   582     return NULL;
   583   }
   585   u_char* ptr = (u_char*)::malloc(alloc_size);
   587   if (ptr != NULL) {
   588     Atomic::add(((jint) (alloc_size / BytesPerWord)),
   589                 (volatile jint *) &cur_malloc_words);
   590   }
   591   return ptr;
   592 }
   594 void* os::malloc(size_t size, MEMFLAGS memflags, address caller) {
   595   NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
   596   NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
   598   if (size == 0) {
   599     // return a valid pointer if size is zero
   600     // if NULL is returned the calling functions assume out of memory.
   601     size = 1;
   602   }
   604   const size_t alloc_size = size + space_before + space_after;
   606   if (size > alloc_size) { // Check for rollover.
   607     return NULL;
   608   }
   610   NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
   612   u_char* ptr;
   614   if (MallocMaxTestWords > 0) {
   615     ptr = testMalloc(alloc_size);
   616   } else {
   617     ptr = (u_char*)::malloc(alloc_size);
   618   }
   620 #ifdef ASSERT
   621   if (ptr == NULL) return NULL;
   622   if (MallocCushion) {
   623     for (u_char* p = ptr; p < ptr + MallocCushion; p++) *p = (u_char)badResourceValue;
   624     u_char* end = ptr + space_before + size;
   625     for (u_char* pq = ptr+MallocCushion; pq < end; pq++) *pq = (u_char)uninitBlockPad;
   626     for (u_char* q = end; q < end + MallocCushion; q++) *q = (u_char)badResourceValue;
   627   }
   628   // put size just before data
   629   *size_addr_from_base(ptr) = size;
   630 #endif
   631   u_char* memblock = ptr + space_before;
   632   if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
   633     tty->print_cr("os::malloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, memblock);
   634     breakpoint();
   635   }
   636   debug_only(if (paranoid) verify_block(memblock));
   637   if (PrintMalloc && tty != NULL) tty->print_cr("os::malloc " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, memblock);
   639   // we do not track MallocCushion memory
   640     MemTracker::record_malloc((address)memblock, size, memflags, caller == 0 ? CALLER_PC : caller);
   642   return memblock;
   643 }
   646 void* os::realloc(void *memblock, size_t size, MEMFLAGS memflags, address caller) {
   647 #ifndef ASSERT
   648   NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
   649   NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
   650   void* ptr = ::realloc(memblock, size);
   651   if (ptr != NULL) {
   652     MemTracker::record_realloc((address)memblock, (address)ptr, size, memflags,
   653      caller == 0 ? CALLER_PC : caller);
   654   }
   655   return ptr;
   656 #else
   657   if (memblock == NULL) {
   658     return malloc(size, memflags, (caller == 0 ? CALLER_PC : caller));
   659   }
   660   if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
   661     tty->print_cr("os::realloc caught " PTR_FORMAT, memblock);
   662     breakpoint();
   663   }
   664   verify_block(memblock);
   665   NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
   666   if (size == 0) return NULL;
   667   // always move the block
   668   void* ptr = malloc(size, memflags, caller == 0 ? CALLER_PC : caller);
   669   if (PrintMalloc) tty->print_cr("os::remalloc " SIZE_FORMAT " bytes, " PTR_FORMAT " --> " PTR_FORMAT, size, memblock, ptr);
   670   // Copy to new memory if malloc didn't fail
   671   if ( ptr != NULL ) {
   672     memcpy(ptr, memblock, MIN2(size, get_size(memblock)));
   673     if (paranoid) verify_block(ptr);
   674     if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
   675       tty->print_cr("os::realloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, ptr);
   676       breakpoint();
   677     }
   678     free(memblock);
   679   }
   680   return ptr;
   681 #endif
   682 }
   685 void  os::free(void *memblock, MEMFLAGS memflags) {
   686   NOT_PRODUCT(inc_stat_counter(&num_frees, 1));
   687 #ifdef ASSERT
   688   if (memblock == NULL) return;
   689   if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
   690     if (tty != NULL) tty->print_cr("os::free caught " PTR_FORMAT, memblock);
   691     breakpoint();
   692   }
   693   verify_block(memblock);
   694   NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
   695   // Added by detlefs.
   696   if (MallocCushion) {
   697     u_char* ptr = (u_char*)memblock - space_before;
   698     for (u_char* p = ptr; p < ptr + MallocCushion; p++) {
   699       guarantee(*p == badResourceValue,
   700                 "Thing freed should be malloc result.");
   701       *p = (u_char)freeBlockPad;
   702     }
   703     size_t size = get_size(memblock);
   704     inc_stat_counter(&free_bytes, size);
   705     u_char* end = ptr + space_before + size;
   706     for (u_char* q = end; q < end + MallocCushion; q++) {
   707       guarantee(*q == badResourceValue,
   708                 "Thing freed should be malloc result.");
   709       *q = (u_char)freeBlockPad;
   710     }
   711     if (PrintMalloc && tty != NULL)
   712       fprintf(stderr, "os::free " SIZE_FORMAT " bytes --> " PTR_FORMAT "\n", size, (uintptr_t)memblock);
   713   } else if (PrintMalloc && tty != NULL) {
   714     // tty->print_cr("os::free %p", memblock);
   715     fprintf(stderr, "os::free " PTR_FORMAT "\n", (uintptr_t)memblock);
   716   }
   717 #endif
   718   MemTracker::record_free((address)memblock, memflags);
   720   ::free((char*)memblock - space_before);
   721 }
   723 void os::init_random(long initval) {
   724   _rand_seed = initval;
   725 }
   728 long os::random() {
   729   /* standard, well-known linear congruential random generator with
   730    * next_rand = (16807*seed) mod (2**31-1)
   731    * see
   732    * (1) "Random Number Generators: Good Ones Are Hard to Find",
   733    *      S.K. Park and K.W. Miller, Communications of the ACM 31:10 (Oct 1988),
   734    * (2) "Two Fast Implementations of the 'Minimal Standard' Random
   735    *     Number Generator", David G. Carta, Comm. ACM 33, 1 (Jan 1990), pp. 87-88.
   736   */
   737   const long a = 16807;
   738   const unsigned long m = 2147483647;
   739   const long q = m / a;        assert(q == 127773, "weird math");
   740   const long r = m % a;        assert(r == 2836, "weird math");
   742   // compute az=2^31p+q
   743   unsigned long lo = a * (long)(_rand_seed & 0xFFFF);
   744   unsigned long hi = a * (long)((unsigned long)_rand_seed >> 16);
   745   lo += (hi & 0x7FFF) << 16;
   747   // if q overflowed, ignore the overflow and increment q
   748   if (lo > m) {
   749     lo &= m;
   750     ++lo;
   751   }
   752   lo += hi >> 15;
   754   // if (p+q) overflowed, ignore the overflow and increment (p+q)
   755   if (lo > m) {
   756     lo &= m;
   757     ++lo;
   758   }
   759   return (_rand_seed = lo);
   760 }
   762 // The INITIALIZED state is distinguished from the SUSPENDED state because the
   763 // conditions in which a thread is first started are different from those in which
   764 // a suspension is resumed.  These differences make it hard for us to apply the
   765 // tougher checks when starting threads that we want to do when resuming them.
   766 // However, when start_thread is called as a result of Thread.start, on a Java
   767 // thread, the operation is synchronized on the Java Thread object.  So there
   768 // cannot be a race to start the thread and hence for the thread to exit while
   769 // we are working on it.  Non-Java threads that start Java threads either have
   770 // to do so in a context in which races are impossible, or should do appropriate
   771 // locking.
   773 void os::start_thread(Thread* thread) {
   774   // guard suspend/resume
   775   MutexLockerEx ml(thread->SR_lock(), Mutex::_no_safepoint_check_flag);
   776   OSThread* osthread = thread->osthread();
   777   osthread->set_state(RUNNABLE);
   778   pd_start_thread(thread);
   779 }
   781 //---------------------------------------------------------------------------
   782 // Helper functions for fatal error handler
   784 void os::print_hex_dump(outputStream* st, address start, address end, int unitsize) {
   785   assert(unitsize == 1 || unitsize == 2 || unitsize == 4 || unitsize == 8, "just checking");
   787   int cols = 0;
   788   int cols_per_line = 0;
   789   switch (unitsize) {
   790     case 1: cols_per_line = 16; break;
   791     case 2: cols_per_line = 8;  break;
   792     case 4: cols_per_line = 4;  break;
   793     case 8: cols_per_line = 2;  break;
   794     default: return;
   795   }
   797   address p = start;
   798   st->print(PTR_FORMAT ":   ", start);
   799   while (p < end) {
   800     switch (unitsize) {
   801       case 1: st->print("%02x", *(u1*)p); break;
   802       case 2: st->print("%04x", *(u2*)p); break;
   803       case 4: st->print("%08x", *(u4*)p); break;
   804       case 8: st->print("%016" FORMAT64_MODIFIER "x", *(u8*)p); break;
   805     }
   806     p += unitsize;
   807     cols++;
   808     if (cols >= cols_per_line && p < end) {
   809        cols = 0;
   810        st->cr();
   811        st->print(PTR_FORMAT ":   ", p);
   812     } else {
   813        st->print(" ");
   814     }
   815   }
   816   st->cr();
   817 }
   819 void os::print_environment_variables(outputStream* st, const char** env_list,
   820                                      char* buffer, int len) {
   821   if (env_list) {
   822     st->print_cr("Environment Variables:");
   824     for (int i = 0; env_list[i] != NULL; i++) {
   825       if (getenv(env_list[i], buffer, len)) {
   826         st->print(env_list[i]);
   827         st->print("=");
   828         st->print_cr(buffer);
   829       }
   830     }
   831   }
   832 }
   834 void os::print_cpu_info(outputStream* st) {
   835   // cpu
   836   st->print("CPU:");
   837   st->print("total %d", os::processor_count());
   838   // It's not safe to query number of active processors after crash
   839   // st->print("(active %d)", os::active_processor_count());
   840   st->print(" %s", VM_Version::cpu_features());
   841   st->cr();
   842   pd_print_cpu_info(st);
   843 }
   845 void os::print_date_and_time(outputStream *st) {
   846   time_t tloc;
   847   (void)time(&tloc);
   848   st->print("time: %s", ctime(&tloc));  // ctime adds newline.
   850   double t = os::elapsedTime();
   851   // NOTE: It tends to crash after a SEGV if we want to printf("%f",...) in
   852   //       Linux. Must be a bug in glibc ? Workaround is to round "t" to int
   853   //       before printf. We lost some precision, but who cares?
   854   st->print_cr("elapsed time: %d seconds", (int)t);
   855 }
   857 // moved from debug.cpp (used to be find()) but still called from there
   858 // The verbose parameter is only set by the debug code in one case
   859 void os::print_location(outputStream* st, intptr_t x, bool verbose) {
   860   address addr = (address)x;
   861   CodeBlob* b = CodeCache::find_blob_unsafe(addr);
   862   if (b != NULL) {
   863     if (b->is_buffer_blob()) {
   864       // the interpreter is generated into a buffer blob
   865       InterpreterCodelet* i = Interpreter::codelet_containing(addr);
   866       if (i != NULL) {
   867         st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an Interpreter codelet", addr, (int)(addr - i->code_begin()));
   868         i->print_on(st);
   869         return;
   870       }
   871       if (Interpreter::contains(addr)) {
   872         st->print_cr(INTPTR_FORMAT " is pointing into interpreter code"
   873                      " (not bytecode specific)", addr);
   874         return;
   875       }
   876       //
   877       if (AdapterHandlerLibrary::contains(b)) {
   878         st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an AdapterHandler", addr, (int)(addr - b->code_begin()));
   879         AdapterHandlerLibrary::print_handler_on(st, b);
   880       }
   881       // the stubroutines are generated into a buffer blob
   882       StubCodeDesc* d = StubCodeDesc::desc_for(addr);
   883       if (d != NULL) {
   884         st->print_cr(INTPTR_FORMAT " is at begin+%d in a stub", addr, (int)(addr - d->begin()));
   885         d->print_on(st);
   886         st->cr();
   887         return;
   888       }
   889       if (StubRoutines::contains(addr)) {
   890         st->print_cr(INTPTR_FORMAT " is pointing to an (unnamed) "
   891                      "stub routine", addr);
   892         return;
   893       }
   894       // the InlineCacheBuffer is using stubs generated into a buffer blob
   895       if (InlineCacheBuffer::contains(addr)) {
   896         st->print_cr(INTPTR_FORMAT " is pointing into InlineCacheBuffer", addr);
   897         return;
   898       }
   899       VtableStub* v = VtableStubs::stub_containing(addr);
   900       if (v != NULL) {
   901         st->print_cr(INTPTR_FORMAT " is at entry_point+%d in a vtable stub", addr, (int)(addr - v->entry_point()));
   902         v->print_on(st);
   903         st->cr();
   904         return;
   905       }
   906     }
   907     nmethod* nm = b->as_nmethod_or_null();
   908     if (nm != NULL) {
   909       ResourceMark rm;
   910       st->print(INTPTR_FORMAT " is at entry_point+%d in (nmethod*)" INTPTR_FORMAT,
   911                 addr, (int)(addr - nm->entry_point()), nm);
   912       if (verbose) {
   913         st->print(" for ");
   914         nm->method()->print_value_on(st);
   915       }
   916       st->cr();
   917       nm->print_nmethod(verbose);
   918       return;
   919     }
   920     st->print_cr(INTPTR_FORMAT " is at code_begin+%d in ", addr, (int)(addr - b->code_begin()));
   921     b->print_on(st);
   922     return;
   923   }
   925   if (Universe::heap()->is_in(addr)) {
   926     HeapWord* p = Universe::heap()->block_start(addr);
   927     bool print = false;
   928     // If we couldn't find it it just may mean that heap wasn't parseable
   929     // See if we were just given an oop directly
   930     if (p != NULL && Universe::heap()->block_is_obj(p)) {
   931       print = true;
   932     } else if (p == NULL && ((oopDesc*)addr)->is_oop()) {
   933       p = (HeapWord*) addr;
   934       print = true;
   935     }
   936     if (print) {
   937       if (p == (HeapWord*) addr) {
   938         st->print_cr(INTPTR_FORMAT " is an oop", addr);
   939       } else {
   940         st->print_cr(INTPTR_FORMAT " is pointing into object: " INTPTR_FORMAT, addr, p);
   941       }
   942       oop(p)->print_on(st);
   943       return;
   944     }
   945   } else {
   946     if (Universe::heap()->is_in_reserved(addr)) {
   947       st->print_cr(INTPTR_FORMAT " is an unallocated location "
   948                    "in the heap", addr);
   949       return;
   950     }
   951   }
   952   if (JNIHandles::is_global_handle((jobject) addr)) {
   953     st->print_cr(INTPTR_FORMAT " is a global jni handle", addr);
   954     return;
   955   }
   956   if (JNIHandles::is_weak_global_handle((jobject) addr)) {
   957     st->print_cr(INTPTR_FORMAT " is a weak global jni handle", addr);
   958     return;
   959   }
   960 #ifndef PRODUCT
   961   // we don't keep the block list in product mode
   962   if (JNIHandleBlock::any_contains((jobject) addr)) {
   963     st->print_cr(INTPTR_FORMAT " is a local jni handle", addr);
   964     return;
   965   }
   966 #endif
   968   for(JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
   969     // Check for privilege stack
   970     if (thread->privileged_stack_top() != NULL &&
   971         thread->privileged_stack_top()->contains(addr)) {
   972       st->print_cr(INTPTR_FORMAT " is pointing into the privilege stack "
   973                    "for thread: " INTPTR_FORMAT, addr, thread);
   974       if (verbose) thread->print_on(st);
   975       return;
   976     }
   977     // If the addr is a java thread print information about that.
   978     if (addr == (address)thread) {
   979       if (verbose) {
   980         thread->print_on(st);
   981       } else {
   982         st->print_cr(INTPTR_FORMAT " is a thread", addr);
   983       }
   984       return;
   985     }
   986     // If the addr is in the stack region for this thread then report that
   987     // and print thread info
   988     if (thread->stack_base() >= addr &&
   989         addr > (thread->stack_base() - thread->stack_size())) {
   990       st->print_cr(INTPTR_FORMAT " is pointing into the stack for thread: "
   991                    INTPTR_FORMAT, addr, thread);
   992       if (verbose) thread->print_on(st);
   993       return;
   994     }
   996   }
   998 #ifndef PRODUCT
   999   // Check if in metaspace.
  1000   if (ClassLoaderDataGraph::contains((address)addr)) {
  1001     // Use addr->print() from the debugger instead (not here)
  1002     st->print_cr(INTPTR_FORMAT
  1003                  " is pointing into metadata", addr);
  1004     return;
  1006 #endif
  1008   // Try an OS specific find
  1009   if (os::find(addr, st)) {
  1010     return;
  1013   st->print_cr(INTPTR_FORMAT " is an unknown value", addr);
  1016 // Looks like all platforms except IA64 can use the same function to check
  1017 // if C stack is walkable beyond current frame. The check for fp() is not
  1018 // necessary on Sparc, but it's harmless.
  1019 bool os::is_first_C_frame(frame* fr) {
  1020 #if defined(IA64) && !defined(_WIN32)
  1021   // On IA64 we have to check if the callers bsp is still valid
  1022   // (i.e. within the register stack bounds).
  1023   // Notice: this only works for threads created by the VM and only if
  1024   // we walk the current stack!!! If we want to be able to walk
  1025   // arbitrary other threads, we'll have to somehow store the thread
  1026   // object in the frame.
  1027   Thread *thread = Thread::current();
  1028   if ((address)fr->fp() <=
  1029       thread->register_stack_base() HPUX_ONLY(+ 0x0) LINUX_ONLY(+ 0x50)) {
  1030     // This check is a little hacky, because on Linux the first C
  1031     // frame's ('start_thread') register stack frame starts at
  1032     // "register_stack_base + 0x48" while on HPUX, the first C frame's
  1033     // ('__pthread_bound_body') register stack frame seems to really
  1034     // start at "register_stack_base".
  1035     return true;
  1036   } else {
  1037     return false;
  1039 #elif defined(IA64) && defined(_WIN32)
  1040   return true;
  1041 #else
  1042   // Load up sp, fp, sender sp and sender fp, check for reasonable values.
  1043   // Check usp first, because if that's bad the other accessors may fault
  1044   // on some architectures.  Ditto ufp second, etc.
  1045   uintptr_t fp_align_mask = (uintptr_t)(sizeof(address)-1);
  1046   // sp on amd can be 32 bit aligned.
  1047   uintptr_t sp_align_mask = (uintptr_t)(sizeof(int)-1);
  1049   uintptr_t usp    = (uintptr_t)fr->sp();
  1050   if ((usp & sp_align_mask) != 0) return true;
  1052   uintptr_t ufp    = (uintptr_t)fr->fp();
  1053   if ((ufp & fp_align_mask) != 0) return true;
  1055   uintptr_t old_sp = (uintptr_t)fr->sender_sp();
  1056   if ((old_sp & sp_align_mask) != 0) return true;
  1057   if (old_sp == 0 || old_sp == (uintptr_t)-1) return true;
  1059   uintptr_t old_fp = (uintptr_t)fr->link();
  1060   if ((old_fp & fp_align_mask) != 0) return true;
  1061   if (old_fp == 0 || old_fp == (uintptr_t)-1 || old_fp == ufp) return true;
  1063   // stack grows downwards; if old_fp is below current fp or if the stack
  1064   // frame is too large, either the stack is corrupted or fp is not saved
  1065   // on stack (i.e. on x86, ebp may be used as general register). The stack
  1066   // is not walkable beyond current frame.
  1067   if (old_fp < ufp) return true;
  1068   if (old_fp - ufp > 64 * K) return true;
  1070   return false;
  1071 #endif
  1074 #ifdef ASSERT
  1075 extern "C" void test_random() {
  1076   const double m = 2147483647;
  1077   double mean = 0.0, variance = 0.0, t;
  1078   long reps = 10000;
  1079   unsigned long seed = 1;
  1081   tty->print_cr("seed %ld for %ld repeats...", seed, reps);
  1082   os::init_random(seed);
  1083   long num;
  1084   for (int k = 0; k < reps; k++) {
  1085     num = os::random();
  1086     double u = (double)num / m;
  1087     assert(u >= 0.0 && u <= 1.0, "bad random number!");
  1089     // calculate mean and variance of the random sequence
  1090     mean += u;
  1091     variance += (u*u);
  1093   mean /= reps;
  1094   variance /= (reps - 1);
  1096   assert(num == 1043618065, "bad seed");
  1097   tty->print_cr("mean of the 1st 10000 numbers: %f", mean);
  1098   tty->print_cr("variance of the 1st 10000 numbers: %f", variance);
  1099   const double eps = 0.0001;
  1100   t = fabsd(mean - 0.5018);
  1101   assert(t < eps, "bad mean");
  1102   t = (variance - 0.3355) < 0.0 ? -(variance - 0.3355) : variance - 0.3355;
  1103   assert(t < eps, "bad variance");
  1105 #endif
  1108 // Set up the boot classpath.
  1110 char* os::format_boot_path(const char* format_string,
  1111                            const char* home,
  1112                            int home_len,
  1113                            char fileSep,
  1114                            char pathSep) {
  1115     assert((fileSep == '/' && pathSep == ':') ||
  1116            (fileSep == '\\' && pathSep == ';'), "unexpected seperator chars");
  1118     // Scan the format string to determine the length of the actual
  1119     // boot classpath, and handle platform dependencies as well.
  1120     int formatted_path_len = 0;
  1121     const char* p;
  1122     for (p = format_string; *p != 0; ++p) {
  1123         if (*p == '%') formatted_path_len += home_len - 1;
  1124         ++formatted_path_len;
  1127     char* formatted_path = NEW_C_HEAP_ARRAY(char, formatted_path_len + 1, mtInternal);
  1128     if (formatted_path == NULL) {
  1129         return NULL;
  1132     // Create boot classpath from format, substituting separator chars and
  1133     // java home directory.
  1134     char* q = formatted_path;
  1135     for (p = format_string; *p != 0; ++p) {
  1136         switch (*p) {
  1137         case '%':
  1138             strcpy(q, home);
  1139             q += home_len;
  1140             break;
  1141         case '/':
  1142             *q++ = fileSep;
  1143             break;
  1144         case ':':
  1145             *q++ = pathSep;
  1146             break;
  1147         default:
  1148             *q++ = *p;
  1151     *q = '\0';
  1153     assert((q - formatted_path) == formatted_path_len, "formatted_path size botched");
  1154     return formatted_path;
  1158 bool os::set_boot_path(char fileSep, char pathSep) {
  1159     const char* home = Arguments::get_java_home();
  1160     int home_len = (int)strlen(home);
  1162     static const char* meta_index_dir_format = "%/lib/";
  1163     static const char* meta_index_format = "%/lib/meta-index";
  1164     char* meta_index = format_boot_path(meta_index_format, home, home_len, fileSep, pathSep);
  1165     if (meta_index == NULL) return false;
  1166     char* meta_index_dir = format_boot_path(meta_index_dir_format, home, home_len, fileSep, pathSep);
  1167     if (meta_index_dir == NULL) return false;
  1168     Arguments::set_meta_index_path(meta_index, meta_index_dir);
  1170     // Any modification to the JAR-file list, for the boot classpath must be
  1171     // aligned with install/install/make/common/Pack.gmk. Note: boot class
  1172     // path class JARs, are stripped for StackMapTable to reduce download size.
  1173     static const char classpath_format[] =
  1174         "%/lib/resources.jar:"
  1175         "%/lib/rt.jar:"
  1176         "%/lib/sunrsasign.jar:"
  1177         "%/lib/jsse.jar:"
  1178         "%/lib/jce.jar:"
  1179         "%/lib/charsets.jar:"
  1180         "%/lib/jfr.jar:"
  1181 #ifdef __APPLE__
  1182         "%/lib/JObjC.jar:"
  1183 #endif
  1184         "%/classes";
  1185     char* sysclasspath = format_boot_path(classpath_format, home, home_len, fileSep, pathSep);
  1186     if (sysclasspath == NULL) return false;
  1187     Arguments::set_sysclasspath(sysclasspath);
  1189     return true;
  1192 /*
  1193  * Splits a path, based on its separator, the number of
  1194  * elements is returned back in n.
  1195  * It is the callers responsibility to:
  1196  *   a> check the value of n, and n may be 0.
  1197  *   b> ignore any empty path elements
  1198  *   c> free up the data.
  1199  */
  1200 char** os::split_path(const char* path, int* n) {
  1201   *n = 0;
  1202   if (path == NULL || strlen(path) == 0) {
  1203     return NULL;
  1205   const char psepchar = *os::path_separator();
  1206   char* inpath = (char*)NEW_C_HEAP_ARRAY(char, strlen(path) + 1, mtInternal);
  1207   if (inpath == NULL) {
  1208     return NULL;
  1210   strcpy(inpath, path);
  1211   int count = 1;
  1212   char* p = strchr(inpath, psepchar);
  1213   // Get a count of elements to allocate memory
  1214   while (p != NULL) {
  1215     count++;
  1216     p++;
  1217     p = strchr(p, psepchar);
  1219   char** opath = (char**) NEW_C_HEAP_ARRAY(char*, count, mtInternal);
  1220   if (opath == NULL) {
  1221     return NULL;
  1224   // do the actual splitting
  1225   p = inpath;
  1226   for (int i = 0 ; i < count ; i++) {
  1227     size_t len = strcspn(p, os::path_separator());
  1228     if (len > JVM_MAXPATHLEN) {
  1229       return NULL;
  1231     // allocate the string and add terminator storage
  1232     char* s  = (char*)NEW_C_HEAP_ARRAY(char, len + 1, mtInternal);
  1233     if (s == NULL) {
  1234       return NULL;
  1236     strncpy(s, p, len);
  1237     s[len] = '\0';
  1238     opath[i] = s;
  1239     p += len + 1;
  1241   FREE_C_HEAP_ARRAY(char, inpath, mtInternal);
  1242   *n = count;
  1243   return opath;
  1246 void os::set_memory_serialize_page(address page) {
  1247   int count = log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
  1248   _mem_serialize_page = (volatile int32_t *)page;
  1249   // We initialize the serialization page shift count here
  1250   // We assume a cache line size of 64 bytes
  1251   assert(SerializePageShiftCount == count,
  1252          "thread size changed, fix SerializePageShiftCount constant");
  1253   set_serialize_page_mask((uintptr_t)(vm_page_size() - sizeof(int32_t)));
  1256 static volatile intptr_t SerializePageLock = 0;
  1258 // This method is called from signal handler when SIGSEGV occurs while the current
  1259 // thread tries to store to the "read-only" memory serialize page during state
  1260 // transition.
  1261 void os::block_on_serialize_page_trap() {
  1262   if (TraceSafepoint) {
  1263     tty->print_cr("Block until the serialize page permission restored");
  1265   // When VMThread is holding the SerializePageLock during modifying the
  1266   // access permission of the memory serialize page, the following call
  1267   // will block until the permission of that page is restored to rw.
  1268   // Generally, it is unsafe to manipulate locks in signal handlers, but in
  1269   // this case, it's OK as the signal is synchronous and we know precisely when
  1270   // it can occur.
  1271   Thread::muxAcquire(&SerializePageLock, "set_memory_serialize_page");
  1272   Thread::muxRelease(&SerializePageLock);
  1275 // Serialize all thread state variables
  1276 void os::serialize_thread_states() {
  1277   // On some platforms such as Solaris & Linux, the time duration of the page
  1278   // permission restoration is observed to be much longer than expected  due to
  1279   // scheduler starvation problem etc. To avoid the long synchronization
  1280   // time and expensive page trap spinning, 'SerializePageLock' is used to block
  1281   // the mutator thread if such case is encountered. See bug 6546278 for details.
  1282   Thread::muxAcquire(&SerializePageLock, "serialize_thread_states");
  1283   os::protect_memory((char *)os::get_memory_serialize_page(),
  1284                      os::vm_page_size(), MEM_PROT_READ);
  1285   os::protect_memory((char *)os::get_memory_serialize_page(),
  1286                      os::vm_page_size(), MEM_PROT_RW);
  1287   Thread::muxRelease(&SerializePageLock);
  1290 // Returns true if the current stack pointer is above the stack shadow
  1291 // pages, false otherwise.
  1293 bool os::stack_shadow_pages_available(Thread *thread, methodHandle method) {
  1294   assert(StackRedPages > 0 && StackYellowPages > 0,"Sanity check");
  1295   address sp = current_stack_pointer();
  1296   // Check if we have StackShadowPages above the yellow zone.  This parameter
  1297   // is dependent on the depth of the maximum VM call stack possible from
  1298   // the handler for stack overflow.  'instanceof' in the stack overflow
  1299   // handler or a println uses at least 8k stack of VM and native code
  1300   // respectively.
  1301   const int framesize_in_bytes =
  1302     Interpreter::size_top_interpreter_activation(method()) * wordSize;
  1303   int reserved_area = ((StackShadowPages + StackRedPages + StackYellowPages)
  1304                       * vm_page_size()) + framesize_in_bytes;
  1305   // The very lower end of the stack
  1306   address stack_limit = thread->stack_base() - thread->stack_size();
  1307   return (sp > (stack_limit + reserved_area));
  1310 size_t os::page_size_for_region(size_t region_min_size, size_t region_max_size,
  1311                                 uint min_pages)
  1313   assert(min_pages > 0, "sanity");
  1314   if (UseLargePages) {
  1315     const size_t max_page_size = region_max_size / min_pages;
  1317     for (unsigned int i = 0; _page_sizes[i] != 0; ++i) {
  1318       const size_t sz = _page_sizes[i];
  1319       const size_t mask = sz - 1;
  1320       if ((region_min_size & mask) == 0 && (region_max_size & mask) == 0) {
  1321         // The largest page size with no fragmentation.
  1322         return sz;
  1325       if (sz <= max_page_size) {
  1326         // The largest page size that satisfies the min_pages requirement.
  1327         return sz;
  1332   return vm_page_size();
  1335 #ifndef PRODUCT
  1336 void os::trace_page_sizes(const char* str, const size_t* page_sizes, int count)
  1338   if (TracePageSizes) {
  1339     tty->print("%s: ", str);
  1340     for (int i = 0; i < count; ++i) {
  1341       tty->print(" " SIZE_FORMAT, page_sizes[i]);
  1343     tty->cr();
  1347 void os::trace_page_sizes(const char* str, const size_t region_min_size,
  1348                           const size_t region_max_size, const size_t page_size,
  1349                           const char* base, const size_t size)
  1351   if (TracePageSizes) {
  1352     tty->print_cr("%s:  min=" SIZE_FORMAT " max=" SIZE_FORMAT
  1353                   " pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT
  1354                   " size=" SIZE_FORMAT,
  1355                   str, region_min_size, region_max_size,
  1356                   page_size, base, size);
  1359 #endif  // #ifndef PRODUCT
  1361 // This is the working definition of a server class machine:
  1362 // >= 2 physical CPU's and >=2GB of memory, with some fuzz
  1363 // because the graphics memory (?) sometimes masks physical memory.
  1364 // If you want to change the definition of a server class machine
  1365 // on some OS or platform, e.g., >=4GB on Windohs platforms,
  1366 // then you'll have to parameterize this method based on that state,
  1367 // as was done for logical processors here, or replicate and
  1368 // specialize this method for each platform.  (Or fix os to have
  1369 // some inheritance structure and use subclassing.  Sigh.)
  1370 // If you want some platform to always or never behave as a server
  1371 // class machine, change the setting of AlwaysActAsServerClassMachine
  1372 // and NeverActAsServerClassMachine in globals*.hpp.
  1373 bool os::is_server_class_machine() {
  1374   // First check for the early returns
  1375   if (NeverActAsServerClassMachine) {
  1376     return false;
  1378   if (AlwaysActAsServerClassMachine) {
  1379     return true;
  1381   // Then actually look at the machine
  1382   bool         result            = false;
  1383   const unsigned int    server_processors = 2;
  1384   const julong server_memory     = 2UL * G;
  1385   // We seem not to get our full complement of memory.
  1386   //     We allow some part (1/8?) of the memory to be "missing",
  1387   //     based on the sizes of DIMMs, and maybe graphics cards.
  1388   const julong missing_memory   = 256UL * M;
  1390   /* Is this a server class machine? */
  1391   if ((os::active_processor_count() >= (int)server_processors) &&
  1392       (os::physical_memory() >= (server_memory - missing_memory))) {
  1393     const unsigned int logical_processors =
  1394       VM_Version::logical_processors_per_package();
  1395     if (logical_processors > 1) {
  1396       const unsigned int physical_packages =
  1397         os::active_processor_count() / logical_processors;
  1398       if (physical_packages > server_processors) {
  1399         result = true;
  1401     } else {
  1402       result = true;
  1405   return result;
  1408 // Read file line by line, if line is longer than bsize,
  1409 // skip rest of line.
  1410 int os::get_line_chars(int fd, char* buf, const size_t bsize){
  1411   size_t sz, i = 0;
  1413   // read until EOF, EOL or buf is full
  1414   while ((sz = (int) read(fd, &buf[i], 1)) == 1 && i < (bsize-2) && buf[i] != '\n') {
  1415      ++i;
  1418   if (buf[i] == '\n') {
  1419     // EOL reached so ignore EOL character and return
  1421     buf[i] = 0;
  1422     return (int) i;
  1425   buf[i+1] = 0;
  1427   if (sz != 1) {
  1428     // EOF reached. if we read chars before EOF return them and
  1429     // return EOF on next call otherwise return EOF
  1431     return (i == 0) ? -1 : (int) i;
  1434   // line is longer than size of buf, skip to EOL
  1435   char ch;
  1436   while (read(fd, &ch, 1) == 1 && ch != '\n') {
  1437     // Do nothing
  1440   // return initial part of line that fits in buf.
  1441   // If we reached EOF, it will be returned on next call.
  1443   return (int) i;
  1446 void os::SuspendedThreadTask::run() {
  1447   assert(Threads_lock->owned_by_self() || (_thread == VMThread::vm_thread()), "must have threads lock to call this");
  1448   internal_do_task();
  1449   _done = true;
  1452 bool os::create_stack_guard_pages(char* addr, size_t bytes) {
  1453   return os::pd_create_stack_guard_pages(addr, bytes);
  1456 char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
  1457   char* result = pd_reserve_memory(bytes, addr, alignment_hint);
  1458   if (result != NULL) {
  1459     MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
  1462   return result;
  1465 char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint,
  1466    MEMFLAGS flags) {
  1467   char* result = pd_reserve_memory(bytes, addr, alignment_hint);
  1468   if (result != NULL) {
  1469     MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
  1470     MemTracker::record_virtual_memory_type((address)result, flags);
  1473   return result;
  1476 char* os::attempt_reserve_memory_at(size_t bytes, char* addr) {
  1477   char* result = pd_attempt_reserve_memory_at(bytes, addr);
  1478   if (result != NULL) {
  1479     MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
  1481   return result;
  1484 void os::split_reserved_memory(char *base, size_t size,
  1485                                  size_t split, bool realloc) {
  1486   pd_split_reserved_memory(base, size, split, realloc);
  1489 bool os::commit_memory(char* addr, size_t bytes, bool executable) {
  1490   bool res = pd_commit_memory(addr, bytes, executable);
  1491   if (res) {
  1492     MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
  1494   return res;
  1497 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
  1498                               bool executable) {
  1499   bool res = os::pd_commit_memory(addr, size, alignment_hint, executable);
  1500   if (res) {
  1501     MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
  1503   return res;
  1506 void os::commit_memory_or_exit(char* addr, size_t bytes, bool executable,
  1507                                const char* mesg) {
  1508   pd_commit_memory_or_exit(addr, bytes, executable, mesg);
  1509   MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
  1512 void os::commit_memory_or_exit(char* addr, size_t size, size_t alignment_hint,
  1513                                bool executable, const char* mesg) {
  1514   os::pd_commit_memory_or_exit(addr, size, alignment_hint, executable, mesg);
  1515   MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
  1518 bool os::uncommit_memory(char* addr, size_t bytes) {
  1519   bool res = pd_uncommit_memory(addr, bytes);
  1520   if (res) {
  1521     MemTracker::record_virtual_memory_uncommit((address)addr, bytes);
  1523   return res;
  1526 bool os::release_memory(char* addr, size_t bytes) {
  1527   bool res = pd_release_memory(addr, bytes);
  1528   if (res) {
  1529     MemTracker::record_virtual_memory_release((address)addr, bytes);
  1531   return res;
  1535 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
  1536                            char *addr, size_t bytes, bool read_only,
  1537                            bool allow_exec) {
  1538   char* result = pd_map_memory(fd, file_name, file_offset, addr, bytes, read_only, allow_exec);
  1539   if (result != NULL) {
  1540     MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
  1541     MemTracker::record_virtual_memory_commit((address)result, bytes, CALLER_PC);
  1543   return result;
  1546 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
  1547                              char *addr, size_t bytes, bool read_only,
  1548                              bool allow_exec) {
  1549   return pd_remap_memory(fd, file_name, file_offset, addr, bytes,
  1550                     read_only, allow_exec);
  1553 bool os::unmap_memory(char *addr, size_t bytes) {
  1554   bool result = pd_unmap_memory(addr, bytes);
  1555   if (result) {
  1556     MemTracker::record_virtual_memory_uncommit((address)addr, bytes);
  1557     MemTracker::record_virtual_memory_release((address)addr, bytes);
  1559   return result;
  1562 void os::free_memory(char *addr, size_t bytes, size_t alignment_hint) {
  1563   pd_free_memory(addr, bytes, alignment_hint);
  1566 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
  1567   pd_realign_memory(addr, bytes, alignment_hint);
  1570 #ifndef TARGET_OS_FAMILY_windows
  1571 /* try to switch state from state "from" to state "to"
  1572  * returns the state set after the method is complete
  1573  */
  1574 os::SuspendResume::State os::SuspendResume::switch_state(os::SuspendResume::State from,
  1575                                                          os::SuspendResume::State to)
  1577   os::SuspendResume::State result =
  1578     (os::SuspendResume::State) Atomic::cmpxchg((jint) to, (jint *) &_state, (jint) from);
  1579   if (result == from) {
  1580     // success
  1581     return to;
  1583   return result;
  1585 #endif

mercurial