src/share/vm/gc_implementation/g1/heapRegion.cpp

Thu, 26 Jun 2014 10:00:00 +0200

author
mgerdin
date
Thu, 26 Jun 2014 10:00:00 +0200
changeset 6988
a8137787acfe
parent 6986
e635a728f9da
child 6990
1526a938e670
permissions
-rw-r--r--

8047821: G1 Does not use the save_marks functionality as intended
Summary: Rename save_marks to record_top_and_timestamp and remove som unused but related methods
Reviewed-by: stefank, ehelin

     1 /*
     2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "code/nmethod.hpp"
    27 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
    28 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    29 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
    30 #include "gc_implementation/g1/heapRegion.inline.hpp"
    31 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    32 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
    33 #include "memory/genOopClosures.inline.hpp"
    34 #include "memory/iterator.hpp"
    35 #include "memory/space.inline.hpp"
    36 #include "oops/oop.inline.hpp"
    37 #include "runtime/orderAccess.inline.hpp"
    39 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
    41 int    HeapRegion::LogOfHRGrainBytes = 0;
    42 int    HeapRegion::LogOfHRGrainWords = 0;
    43 size_t HeapRegion::GrainBytes        = 0;
    44 size_t HeapRegion::GrainWords        = 0;
    45 size_t HeapRegion::CardsPerRegion    = 0;
    47 HeapRegionDCTOC::HeapRegionDCTOC(G1CollectedHeap* g1,
    48                                  HeapRegion* hr, ExtendedOopClosure* cl,
    49                                  CardTableModRefBS::PrecisionStyle precision,
    50                                  FilterKind fk) :
    51   DirtyCardToOopClosure(hr, cl, precision, NULL),
    52   _hr(hr), _fk(fk), _g1(g1) { }
    54 FilterOutOfRegionClosure::FilterOutOfRegionClosure(HeapRegion* r,
    55                                                    OopClosure* oc) :
    56   _r_bottom(r->bottom()), _r_end(r->end()), _oc(oc) { }
    58 template<class ClosureType>
    59 HeapWord* walk_mem_region_loop(ClosureType* cl, G1CollectedHeap* g1h,
    60                                HeapRegion* hr,
    61                                HeapWord* cur, HeapWord* top) {
    62   oop cur_oop = oop(cur);
    63   int oop_size = cur_oop->size();
    64   HeapWord* next_obj = cur + oop_size;
    65   while (next_obj < top) {
    66     // Keep filtering the remembered set.
    67     if (!g1h->is_obj_dead(cur_oop, hr)) {
    68       // Bottom lies entirely below top, so we can call the
    69       // non-memRegion version of oop_iterate below.
    70       cur_oop->oop_iterate(cl);
    71     }
    72     cur = next_obj;
    73     cur_oop = oop(cur);
    74     oop_size = cur_oop->size();
    75     next_obj = cur + oop_size;
    76   }
    77   return cur;
    78 }
    80 void HeapRegionDCTOC::walk_mem_region(MemRegion mr,
    81                                       HeapWord* bottom,
    82                                       HeapWord* top) {
    83   G1CollectedHeap* g1h = _g1;
    84   int oop_size;
    85   ExtendedOopClosure* cl2 = NULL;
    87   FilterIntoCSClosure intoCSFilt(this, g1h, _cl);
    88   FilterOutOfRegionClosure outOfRegionFilt(_hr, _cl);
    90   switch (_fk) {
    91   case NoFilterKind:          cl2 = _cl; break;
    92   case IntoCSFilterKind:      cl2 = &intoCSFilt; break;
    93   case OutOfRegionFilterKind: cl2 = &outOfRegionFilt; break;
    94   default:                    ShouldNotReachHere();
    95   }
    97   // Start filtering what we add to the remembered set. If the object is
    98   // not considered dead, either because it is marked (in the mark bitmap)
    99   // or it was allocated after marking finished, then we add it. Otherwise
   100   // we can safely ignore the object.
   101   if (!g1h->is_obj_dead(oop(bottom), _hr)) {
   102     oop_size = oop(bottom)->oop_iterate(cl2, mr);
   103   } else {
   104     oop_size = oop(bottom)->size();
   105   }
   107   bottom += oop_size;
   109   if (bottom < top) {
   110     // We replicate the loop below for several kinds of possible filters.
   111     switch (_fk) {
   112     case NoFilterKind:
   113       bottom = walk_mem_region_loop(_cl, g1h, _hr, bottom, top);
   114       break;
   116     case IntoCSFilterKind: {
   117       FilterIntoCSClosure filt(this, g1h, _cl);
   118       bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
   119       break;
   120     }
   122     case OutOfRegionFilterKind: {
   123       FilterOutOfRegionClosure filt(_hr, _cl);
   124       bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
   125       break;
   126     }
   128     default:
   129       ShouldNotReachHere();
   130     }
   132     // Last object. Need to do dead-obj filtering here too.
   133     if (!g1h->is_obj_dead(oop(bottom), _hr)) {
   134       oop(bottom)->oop_iterate(cl2, mr);
   135     }
   136   }
   137 }
   139 // Minimum region size; we won't go lower than that.
   140 // We might want to decrease this in the future, to deal with small
   141 // heaps a bit more efficiently.
   142 #define MIN_REGION_SIZE  (      1024 * 1024 )
   144 // Maximum region size; we don't go higher than that. There's a good
   145 // reason for having an upper bound. We don't want regions to get too
   146 // large, otherwise cleanup's effectiveness would decrease as there
   147 // will be fewer opportunities to find totally empty regions after
   148 // marking.
   149 #define MAX_REGION_SIZE  ( 32 * 1024 * 1024 )
   151 // The automatic region size calculation will try to have around this
   152 // many regions in the heap (based on the min heap size).
   153 #define TARGET_REGION_NUMBER          2048
   155 size_t HeapRegion::max_region_size() {
   156   return (size_t)MAX_REGION_SIZE;
   157 }
   159 void HeapRegion::setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size) {
   160   uintx region_size = G1HeapRegionSize;
   161   if (FLAG_IS_DEFAULT(G1HeapRegionSize)) {
   162     size_t average_heap_size = (initial_heap_size + max_heap_size) / 2;
   163     region_size = MAX2(average_heap_size / TARGET_REGION_NUMBER,
   164                        (uintx) MIN_REGION_SIZE);
   165   }
   167   int region_size_log = log2_long((jlong) region_size);
   168   // Recalculate the region size to make sure it's a power of
   169   // 2. This means that region_size is the largest power of 2 that's
   170   // <= what we've calculated so far.
   171   region_size = ((uintx)1 << region_size_log);
   173   // Now make sure that we don't go over or under our limits.
   174   if (region_size < MIN_REGION_SIZE) {
   175     region_size = MIN_REGION_SIZE;
   176   } else if (region_size > MAX_REGION_SIZE) {
   177     region_size = MAX_REGION_SIZE;
   178   }
   180   // And recalculate the log.
   181   region_size_log = log2_long((jlong) region_size);
   183   // Now, set up the globals.
   184   guarantee(LogOfHRGrainBytes == 0, "we should only set it once");
   185   LogOfHRGrainBytes = region_size_log;
   187   guarantee(LogOfHRGrainWords == 0, "we should only set it once");
   188   LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize;
   190   guarantee(GrainBytes == 0, "we should only set it once");
   191   // The cast to int is safe, given that we've bounded region_size by
   192   // MIN_REGION_SIZE and MAX_REGION_SIZE.
   193   GrainBytes = (size_t)region_size;
   195   guarantee(GrainWords == 0, "we should only set it once");
   196   GrainWords = GrainBytes >> LogHeapWordSize;
   197   guarantee((size_t) 1 << LogOfHRGrainWords == GrainWords, "sanity");
   199   guarantee(CardsPerRegion == 0, "we should only set it once");
   200   CardsPerRegion = GrainBytes >> CardTableModRefBS::card_shift;
   201 }
   203 void HeapRegion::reset_after_compaction() {
   204   G1OffsetTableContigSpace::reset_after_compaction();
   205   // After a compaction the mark bitmap is invalid, so we must
   206   // treat all objects as being inside the unmarked area.
   207   zero_marked_bytes();
   208   init_top_at_mark_start();
   209 }
   211 void HeapRegion::hr_clear(bool par, bool clear_space, bool locked) {
   212   assert(_humongous_type == NotHumongous,
   213          "we should have already filtered out humongous regions");
   214   assert(_humongous_start_region == NULL,
   215          "we should have already filtered out humongous regions");
   216   assert(_end == _orig_end,
   217          "we should have already filtered out humongous regions");
   219   _in_collection_set = false;
   221   set_young_index_in_cset(-1);
   222   uninstall_surv_rate_group();
   223   set_young_type(NotYoung);
   224   reset_pre_dummy_top();
   226   if (!par) {
   227     // If this is parallel, this will be done later.
   228     HeapRegionRemSet* hrrs = rem_set();
   229     if (locked) {
   230       hrrs->clear_locked();
   231     } else {
   232       hrrs->clear();
   233     }
   234     _claimed = InitialClaimValue;
   235   }
   236   zero_marked_bytes();
   238   _offsets.resize(HeapRegion::GrainWords);
   239   init_top_at_mark_start();
   240   if (clear_space) clear(SpaceDecorator::Mangle);
   241 }
   243 void HeapRegion::par_clear() {
   244   assert(used() == 0, "the region should have been already cleared");
   245   assert(capacity() == HeapRegion::GrainBytes, "should be back to normal");
   246   HeapRegionRemSet* hrrs = rem_set();
   247   hrrs->clear();
   248   CardTableModRefBS* ct_bs =
   249                    (CardTableModRefBS*)G1CollectedHeap::heap()->barrier_set();
   250   ct_bs->clear(MemRegion(bottom(), end()));
   251 }
   253 void HeapRegion::calc_gc_efficiency() {
   254   // GC efficiency is the ratio of how much space would be
   255   // reclaimed over how long we predict it would take to reclaim it.
   256   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   257   G1CollectorPolicy* g1p = g1h->g1_policy();
   259   // Retrieve a prediction of the elapsed time for this region for
   260   // a mixed gc because the region will only be evacuated during a
   261   // mixed gc.
   262   double region_elapsed_time_ms =
   263     g1p->predict_region_elapsed_time_ms(this, false /* for_young_gc */);
   264   _gc_efficiency = (double) reclaimable_bytes() / region_elapsed_time_ms;
   265 }
   267 void HeapRegion::set_startsHumongous(HeapWord* new_top, HeapWord* new_end) {
   268   assert(!isHumongous(), "sanity / pre-condition");
   269   assert(end() == _orig_end,
   270          "Should be normal before the humongous object allocation");
   271   assert(top() == bottom(), "should be empty");
   272   assert(bottom() <= new_top && new_top <= new_end, "pre-condition");
   274   _humongous_type = StartsHumongous;
   275   _humongous_start_region = this;
   277   set_end(new_end);
   278   _offsets.set_for_starts_humongous(new_top);
   279 }
   281 void HeapRegion::set_continuesHumongous(HeapRegion* first_hr) {
   282   assert(!isHumongous(), "sanity / pre-condition");
   283   assert(end() == _orig_end,
   284          "Should be normal before the humongous object allocation");
   285   assert(top() == bottom(), "should be empty");
   286   assert(first_hr->startsHumongous(), "pre-condition");
   288   _humongous_type = ContinuesHumongous;
   289   _humongous_start_region = first_hr;
   290 }
   292 void HeapRegion::set_notHumongous() {
   293   assert(isHumongous(), "pre-condition");
   295   if (startsHumongous()) {
   296     assert(top() <= end(), "pre-condition");
   297     set_end(_orig_end);
   298     if (top() > end()) {
   299       // at least one "continues humongous" region after it
   300       set_top(end());
   301     }
   302   } else {
   303     // continues humongous
   304     assert(end() == _orig_end, "sanity");
   305   }
   307   assert(capacity() == HeapRegion::GrainBytes, "pre-condition");
   308   _humongous_type = NotHumongous;
   309   _humongous_start_region = NULL;
   310 }
   312 bool HeapRegion::claimHeapRegion(jint claimValue) {
   313   jint current = _claimed;
   314   if (current != claimValue) {
   315     jint res = Atomic::cmpxchg(claimValue, &_claimed, current);
   316     if (res == current) {
   317       return true;
   318     }
   319   }
   320   return false;
   321 }
   323 HeapWord* HeapRegion::next_block_start_careful(HeapWord* addr) {
   324   HeapWord* low = addr;
   325   HeapWord* high = end();
   326   while (low < high) {
   327     size_t diff = pointer_delta(high, low);
   328     // Must add one below to bias toward the high amount.  Otherwise, if
   329   // "high" were at the desired value, and "low" were one less, we
   330     // would not converge on "high".  This is not symmetric, because
   331     // we set "high" to a block start, which might be the right one,
   332     // which we don't do for "low".
   333     HeapWord* middle = low + (diff+1)/2;
   334     if (middle == high) return high;
   335     HeapWord* mid_bs = block_start_careful(middle);
   336     if (mid_bs < addr) {
   337       low = middle;
   338     } else {
   339       high = mid_bs;
   340     }
   341   }
   342   assert(low == high && low >= addr, "Didn't work.");
   343   return low;
   344 }
   346 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
   347 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
   348 #endif // _MSC_VER
   351 HeapRegion::HeapRegion(uint hrs_index,
   352                        G1BlockOffsetSharedArray* sharedOffsetArray,
   353                        MemRegion mr) :
   354     G1OffsetTableContigSpace(sharedOffsetArray, mr),
   355     _hrs_index(hrs_index),
   356     _humongous_type(NotHumongous), _humongous_start_region(NULL),
   357     _in_collection_set(false),
   358     _next_in_special_set(NULL), _orig_end(NULL),
   359     _claimed(InitialClaimValue), _evacuation_failed(false),
   360     _prev_marked_bytes(0), _next_marked_bytes(0), _gc_efficiency(0.0),
   361     _young_type(NotYoung), _next_young_region(NULL),
   362     _next_dirty_cards_region(NULL), _next(NULL), _prev(NULL), _pending_removal(false),
   363 #ifdef ASSERT
   364     _containing_set(NULL),
   365 #endif // ASSERT
   366      _young_index_in_cset(-1), _surv_rate_group(NULL), _age_index(-1),
   367     _rem_set(NULL), _recorded_rs_length(0), _predicted_elapsed_time_ms(0),
   368     _predicted_bytes_to_copy(0)
   369 {
   370   _rem_set = new HeapRegionRemSet(sharedOffsetArray, this);
   371   _orig_end = mr.end();
   372   // Note that initialize() will set the start of the unmarked area of the
   373   // region.
   374   hr_clear(false /*par*/, false /*clear_space*/);
   375   set_top(bottom());
   376   record_top_and_timestamp();
   378   assert(HeapRegionRemSet::num_par_rem_sets() > 0, "Invariant.");
   379 }
   381 CompactibleSpace* HeapRegion::next_compaction_space() const {
   382   // We're not using an iterator given that it will wrap around when
   383   // it reaches the last region and this is not what we want here.
   384   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   385   uint index = hrs_index() + 1;
   386   while (index < g1h->n_regions()) {
   387     HeapRegion* hr = g1h->region_at(index);
   388     if (!hr->isHumongous()) {
   389       return hr;
   390     }
   391     index += 1;
   392   }
   393   return NULL;
   394 }
   396 void HeapRegion::note_self_forwarding_removal_start(bool during_initial_mark,
   397                                                     bool during_conc_mark) {
   398   // We always recreate the prev marking info and we'll explicitly
   399   // mark all objects we find to be self-forwarded on the prev
   400   // bitmap. So all objects need to be below PTAMS.
   401   _prev_top_at_mark_start = top();
   402   _prev_marked_bytes = 0;
   404   if (during_initial_mark) {
   405     // During initial-mark, we'll also explicitly mark all objects
   406     // we find to be self-forwarded on the next bitmap. So all
   407     // objects need to be below NTAMS.
   408     _next_top_at_mark_start = top();
   409     _next_marked_bytes = 0;
   410   } else if (during_conc_mark) {
   411     // During concurrent mark, all objects in the CSet (including
   412     // the ones we find to be self-forwarded) are implicitly live.
   413     // So all objects need to be above NTAMS.
   414     _next_top_at_mark_start = bottom();
   415     _next_marked_bytes = 0;
   416   }
   417 }
   419 void HeapRegion::note_self_forwarding_removal_end(bool during_initial_mark,
   420                                                   bool during_conc_mark,
   421                                                   size_t marked_bytes) {
   422   assert(0 <= marked_bytes && marked_bytes <= used(),
   423          err_msg("marked: "SIZE_FORMAT" used: "SIZE_FORMAT,
   424                  marked_bytes, used()));
   425   _prev_marked_bytes = marked_bytes;
   426 }
   428 HeapWord*
   429 HeapRegion::object_iterate_mem_careful(MemRegion mr,
   430                                                  ObjectClosure* cl) {
   431   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   432   // We used to use "block_start_careful" here.  But we're actually happy
   433   // to update the BOT while we do this...
   434   HeapWord* cur = block_start(mr.start());
   435   mr = mr.intersection(used_region());
   436   if (mr.is_empty()) return NULL;
   437   // Otherwise, find the obj that extends onto mr.start().
   439   assert(cur <= mr.start()
   440          && (oop(cur)->klass_or_null() == NULL ||
   441              cur + oop(cur)->size() > mr.start()),
   442          "postcondition of block_start");
   443   oop obj;
   444   while (cur < mr.end()) {
   445     obj = oop(cur);
   446     if (obj->klass_or_null() == NULL) {
   447       // Ran into an unparseable point.
   448       return cur;
   449     } else if (!g1h->is_obj_dead(obj)) {
   450       cl->do_object(obj);
   451     }
   452     if (cl->abort()) return cur;
   453     // The check above must occur before the operation below, since an
   454     // abort might invalidate the "size" operation.
   455     cur += obj->size();
   456   }
   457   return NULL;
   458 }
   460 HeapWord*
   461 HeapRegion::
   462 oops_on_card_seq_iterate_careful(MemRegion mr,
   463                                  FilterOutOfRegionClosure* cl,
   464                                  bool filter_young,
   465                                  jbyte* card_ptr) {
   466   // Currently, we should only have to clean the card if filter_young
   467   // is true and vice versa.
   468   if (filter_young) {
   469     assert(card_ptr != NULL, "pre-condition");
   470   } else {
   471     assert(card_ptr == NULL, "pre-condition");
   472   }
   473   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   475   // If we're within a stop-world GC, then we might look at a card in a
   476   // GC alloc region that extends onto a GC LAB, which may not be
   477   // parseable.  Stop such at the "saved_mark" of the region.
   478   if (g1h->is_gc_active()) {
   479     mr = mr.intersection(used_region_at_save_marks());
   480   } else {
   481     mr = mr.intersection(used_region());
   482   }
   483   if (mr.is_empty()) return NULL;
   484   // Otherwise, find the obj that extends onto mr.start().
   486   // The intersection of the incoming mr (for the card) and the
   487   // allocated part of the region is non-empty. This implies that
   488   // we have actually allocated into this region. The code in
   489   // G1CollectedHeap.cpp that allocates a new region sets the
   490   // is_young tag on the region before allocating. Thus we
   491   // safely know if this region is young.
   492   if (is_young() && filter_young) {
   493     return NULL;
   494   }
   496   assert(!is_young(), "check value of filter_young");
   498   // We can only clean the card here, after we make the decision that
   499   // the card is not young. And we only clean the card if we have been
   500   // asked to (i.e., card_ptr != NULL).
   501   if (card_ptr != NULL) {
   502     *card_ptr = CardTableModRefBS::clean_card_val();
   503     // We must complete this write before we do any of the reads below.
   504     OrderAccess::storeload();
   505   }
   507   // Cache the boundaries of the memory region in some const locals
   508   HeapWord* const start = mr.start();
   509   HeapWord* const end = mr.end();
   511   // We used to use "block_start_careful" here.  But we're actually happy
   512   // to update the BOT while we do this...
   513   HeapWord* cur = block_start(start);
   514   assert(cur <= start, "Postcondition");
   516   oop obj;
   518   HeapWord* next = cur;
   519   while (next <= start) {
   520     cur = next;
   521     obj = oop(cur);
   522     if (obj->klass_or_null() == NULL) {
   523       // Ran into an unparseable point.
   524       return cur;
   525     }
   526     // Otherwise...
   527     next = (cur + obj->size());
   528   }
   530   // If we finish the above loop...We have a parseable object that
   531   // begins on or before the start of the memory region, and ends
   532   // inside or spans the entire region.
   534   assert(obj == oop(cur), "sanity");
   535   assert(cur <= start &&
   536          obj->klass_or_null() != NULL &&
   537          (cur + obj->size()) > start,
   538          "Loop postcondition");
   540   if (!g1h->is_obj_dead(obj)) {
   541     obj->oop_iterate(cl, mr);
   542   }
   544   while (cur < end) {
   545     obj = oop(cur);
   546     if (obj->klass_or_null() == NULL) {
   547       // Ran into an unparseable point.
   548       return cur;
   549     };
   551     // Otherwise:
   552     next = (cur + obj->size());
   554     if (!g1h->is_obj_dead(obj)) {
   555       if (next < end || !obj->is_objArray()) {
   556         // This object either does not span the MemRegion
   557         // boundary, or if it does it's not an array.
   558         // Apply closure to whole object.
   559         obj->oop_iterate(cl);
   560       } else {
   561         // This obj is an array that spans the boundary.
   562         // Stop at the boundary.
   563         obj->oop_iterate(cl, mr);
   564       }
   565     }
   566     cur = next;
   567   }
   568   return NULL;
   569 }
   571 // Code roots support
   573 void HeapRegion::add_strong_code_root(nmethod* nm) {
   574   HeapRegionRemSet* hrrs = rem_set();
   575   hrrs->add_strong_code_root(nm);
   576 }
   578 void HeapRegion::remove_strong_code_root(nmethod* nm) {
   579   HeapRegionRemSet* hrrs = rem_set();
   580   hrrs->remove_strong_code_root(nm);
   581 }
   583 void HeapRegion::migrate_strong_code_roots() {
   584   assert(in_collection_set(), "only collection set regions");
   585   assert(!isHumongous(),
   586           err_msg("humongous region "HR_FORMAT" should not have been added to collection set",
   587                   HR_FORMAT_PARAMS(this)));
   589   HeapRegionRemSet* hrrs = rem_set();
   590   hrrs->migrate_strong_code_roots();
   591 }
   593 void HeapRegion::strong_code_roots_do(CodeBlobClosure* blk) const {
   594   HeapRegionRemSet* hrrs = rem_set();
   595   hrrs->strong_code_roots_do(blk);
   596 }
   598 class VerifyStrongCodeRootOopClosure: public OopClosure {
   599   const HeapRegion* _hr;
   600   nmethod* _nm;
   601   bool _failures;
   602   bool _has_oops_in_region;
   604   template <class T> void do_oop_work(T* p) {
   605     T heap_oop = oopDesc::load_heap_oop(p);
   606     if (!oopDesc::is_null(heap_oop)) {
   607       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
   609       // Note: not all the oops embedded in the nmethod are in the
   610       // current region. We only look at those which are.
   611       if (_hr->is_in(obj)) {
   612         // Object is in the region. Check that its less than top
   613         if (_hr->top() <= (HeapWord*)obj) {
   614           // Object is above top
   615           gclog_or_tty->print_cr("Object "PTR_FORMAT" in region "
   616                                  "["PTR_FORMAT", "PTR_FORMAT") is above "
   617                                  "top "PTR_FORMAT,
   618                                  (void *)obj, _hr->bottom(), _hr->end(), _hr->top());
   619           _failures = true;
   620           return;
   621         }
   622         // Nmethod has at least one oop in the current region
   623         _has_oops_in_region = true;
   624       }
   625     }
   626   }
   628 public:
   629   VerifyStrongCodeRootOopClosure(const HeapRegion* hr, nmethod* nm):
   630     _hr(hr), _failures(false), _has_oops_in_region(false) {}
   632   void do_oop(narrowOop* p) { do_oop_work(p); }
   633   void do_oop(oop* p)       { do_oop_work(p); }
   635   bool failures()           { return _failures; }
   636   bool has_oops_in_region() { return _has_oops_in_region; }
   637 };
   639 class VerifyStrongCodeRootCodeBlobClosure: public CodeBlobClosure {
   640   const HeapRegion* _hr;
   641   bool _failures;
   642 public:
   643   VerifyStrongCodeRootCodeBlobClosure(const HeapRegion* hr) :
   644     _hr(hr), _failures(false) {}
   646   void do_code_blob(CodeBlob* cb) {
   647     nmethod* nm = (cb == NULL) ? NULL : cb->as_nmethod_or_null();
   648     if (nm != NULL) {
   649       // Verify that the nemthod is live
   650       if (!nm->is_alive()) {
   651         gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has dead nmethod "
   652                                PTR_FORMAT" in its strong code roots",
   653                                _hr->bottom(), _hr->end(), nm);
   654         _failures = true;
   655       } else {
   656         VerifyStrongCodeRootOopClosure oop_cl(_hr, nm);
   657         nm->oops_do(&oop_cl);
   658         if (!oop_cl.has_oops_in_region()) {
   659           gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has nmethod "
   660                                  PTR_FORMAT" in its strong code roots "
   661                                  "with no pointers into region",
   662                                  _hr->bottom(), _hr->end(), nm);
   663           _failures = true;
   664         } else if (oop_cl.failures()) {
   665           gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has other "
   666                                  "failures for nmethod "PTR_FORMAT,
   667                                  _hr->bottom(), _hr->end(), nm);
   668           _failures = true;
   669         }
   670       }
   671     }
   672   }
   674   bool failures()       { return _failures; }
   675 };
   677 void HeapRegion::verify_strong_code_roots(VerifyOption vo, bool* failures) const {
   678   if (!G1VerifyHeapRegionCodeRoots) {
   679     // We're not verifying code roots.
   680     return;
   681   }
   682   if (vo == VerifyOption_G1UseMarkWord) {
   683     // Marking verification during a full GC is performed after class
   684     // unloading, code cache unloading, etc so the strong code roots
   685     // attached to each heap region are in an inconsistent state. They won't
   686     // be consistent until the strong code roots are rebuilt after the
   687     // actual GC. Skip verifying the strong code roots in this particular
   688     // time.
   689     assert(VerifyDuringGC, "only way to get here");
   690     return;
   691   }
   693   HeapRegionRemSet* hrrs = rem_set();
   694   size_t strong_code_roots_length = hrrs->strong_code_roots_list_length();
   696   // if this region is empty then there should be no entries
   697   // on its strong code root list
   698   if (is_empty()) {
   699     if (strong_code_roots_length > 0) {
   700       gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is empty "
   701                              "but has "SIZE_FORMAT" code root entries",
   702                              bottom(), end(), strong_code_roots_length);
   703       *failures = true;
   704     }
   705     return;
   706   }
   708   if (continuesHumongous()) {
   709     if (strong_code_roots_length > 0) {
   710       gclog_or_tty->print_cr("region "HR_FORMAT" is a continuation of a humongous "
   711                              "region but has "SIZE_FORMAT" code root entries",
   712                              HR_FORMAT_PARAMS(this), strong_code_roots_length);
   713       *failures = true;
   714     }
   715     return;
   716   }
   718   VerifyStrongCodeRootCodeBlobClosure cb_cl(this);
   719   strong_code_roots_do(&cb_cl);
   721   if (cb_cl.failures()) {
   722     *failures = true;
   723   }
   724 }
   726 void HeapRegion::print() const { print_on(gclog_or_tty); }
   727 void HeapRegion::print_on(outputStream* st) const {
   728   if (isHumongous()) {
   729     if (startsHumongous())
   730       st->print(" HS");
   731     else
   732       st->print(" HC");
   733   } else {
   734     st->print("   ");
   735   }
   736   if (in_collection_set())
   737     st->print(" CS");
   738   else
   739     st->print("   ");
   740   if (is_young())
   741     st->print(is_survivor() ? " SU" : " Y ");
   742   else
   743     st->print("   ");
   744   if (is_empty())
   745     st->print(" F");
   746   else
   747     st->print("  ");
   748   st->print(" TS %5d", _gc_time_stamp);
   749   st->print(" PTAMS "PTR_FORMAT" NTAMS "PTR_FORMAT,
   750             prev_top_at_mark_start(), next_top_at_mark_start());
   751   G1OffsetTableContigSpace::print_on(st);
   752 }
   754 class VerifyLiveClosure: public OopClosure {
   755 private:
   756   G1CollectedHeap* _g1h;
   757   CardTableModRefBS* _bs;
   758   oop _containing_obj;
   759   bool _failures;
   760   int _n_failures;
   761   VerifyOption _vo;
   762 public:
   763   // _vo == UsePrevMarking -> use "prev" marking information,
   764   // _vo == UseNextMarking -> use "next" marking information,
   765   // _vo == UseMarkWord    -> use mark word from object header.
   766   VerifyLiveClosure(G1CollectedHeap* g1h, VerifyOption vo) :
   767     _g1h(g1h), _bs(NULL), _containing_obj(NULL),
   768     _failures(false), _n_failures(0), _vo(vo)
   769   {
   770     BarrierSet* bs = _g1h->barrier_set();
   771     if (bs->is_a(BarrierSet::CardTableModRef))
   772       _bs = (CardTableModRefBS*)bs;
   773   }
   775   void set_containing_obj(oop obj) {
   776     _containing_obj = obj;
   777   }
   779   bool failures() { return _failures; }
   780   int n_failures() { return _n_failures; }
   782   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
   783   virtual void do_oop(      oop* p) { do_oop_work(p); }
   785   void print_object(outputStream* out, oop obj) {
   786 #ifdef PRODUCT
   787     Klass* k = obj->klass();
   788     const char* class_name = InstanceKlass::cast(k)->external_name();
   789     out->print_cr("class name %s", class_name);
   790 #else // PRODUCT
   791     obj->print_on(out);
   792 #endif // PRODUCT
   793   }
   795   template <class T>
   796   void do_oop_work(T* p) {
   797     assert(_containing_obj != NULL, "Precondition");
   798     assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
   799            "Precondition");
   800     T heap_oop = oopDesc::load_heap_oop(p);
   801     if (!oopDesc::is_null(heap_oop)) {
   802       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
   803       bool failed = false;
   804       if (!_g1h->is_in_closed_subset(obj) || _g1h->is_obj_dead_cond(obj, _vo)) {
   805         MutexLockerEx x(ParGCRareEvent_lock,
   806                         Mutex::_no_safepoint_check_flag);
   808         if (!_failures) {
   809           gclog_or_tty->cr();
   810           gclog_or_tty->print_cr("----------");
   811         }
   812         if (!_g1h->is_in_closed_subset(obj)) {
   813           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
   814           gclog_or_tty->print_cr("Field "PTR_FORMAT
   815                                  " of live obj "PTR_FORMAT" in region "
   816                                  "["PTR_FORMAT", "PTR_FORMAT")",
   817                                  p, (void*) _containing_obj,
   818                                  from->bottom(), from->end());
   819           print_object(gclog_or_tty, _containing_obj);
   820           gclog_or_tty->print_cr("points to obj "PTR_FORMAT" not in the heap",
   821                                  (void*) obj);
   822         } else {
   823           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
   824           HeapRegion* to   = _g1h->heap_region_containing((HeapWord*)obj);
   825           gclog_or_tty->print_cr("Field "PTR_FORMAT
   826                                  " of live obj "PTR_FORMAT" in region "
   827                                  "["PTR_FORMAT", "PTR_FORMAT")",
   828                                  p, (void*) _containing_obj,
   829                                  from->bottom(), from->end());
   830           print_object(gclog_or_tty, _containing_obj);
   831           gclog_or_tty->print_cr("points to dead obj "PTR_FORMAT" in region "
   832                                  "["PTR_FORMAT", "PTR_FORMAT")",
   833                                  (void*) obj, to->bottom(), to->end());
   834           print_object(gclog_or_tty, obj);
   835         }
   836         gclog_or_tty->print_cr("----------");
   837         gclog_or_tty->flush();
   838         _failures = true;
   839         failed = true;
   840         _n_failures++;
   841       }
   843       if (!_g1h->full_collection() || G1VerifyRSetsDuringFullGC) {
   844         HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
   845         HeapRegion* to   = _g1h->heap_region_containing(obj);
   846         if (from != NULL && to != NULL &&
   847             from != to &&
   848             !to->isHumongous()) {
   849           jbyte cv_obj = *_bs->byte_for_const(_containing_obj);
   850           jbyte cv_field = *_bs->byte_for_const(p);
   851           const jbyte dirty = CardTableModRefBS::dirty_card_val();
   853           bool is_bad = !(from->is_young()
   854                           || to->rem_set()->contains_reference(p)
   855                           || !G1HRRSFlushLogBuffersOnVerify && // buffers were not flushed
   856                               (_containing_obj->is_objArray() ?
   857                                   cv_field == dirty
   858                                : cv_obj == dirty || cv_field == dirty));
   859           if (is_bad) {
   860             MutexLockerEx x(ParGCRareEvent_lock,
   861                             Mutex::_no_safepoint_check_flag);
   863             if (!_failures) {
   864               gclog_or_tty->cr();
   865               gclog_or_tty->print_cr("----------");
   866             }
   867             gclog_or_tty->print_cr("Missing rem set entry:");
   868             gclog_or_tty->print_cr("Field "PTR_FORMAT" "
   869                                    "of obj "PTR_FORMAT", "
   870                                    "in region "HR_FORMAT,
   871                                    p, (void*) _containing_obj,
   872                                    HR_FORMAT_PARAMS(from));
   873             _containing_obj->print_on(gclog_or_tty);
   874             gclog_or_tty->print_cr("points to obj "PTR_FORMAT" "
   875                                    "in region "HR_FORMAT,
   876                                    (void*) obj,
   877                                    HR_FORMAT_PARAMS(to));
   878             obj->print_on(gclog_or_tty);
   879             gclog_or_tty->print_cr("Obj head CTE = %d, field CTE = %d.",
   880                           cv_obj, cv_field);
   881             gclog_or_tty->print_cr("----------");
   882             gclog_or_tty->flush();
   883             _failures = true;
   884             if (!failed) _n_failures++;
   885           }
   886         }
   887       }
   888     }
   889   }
   890 };
   892 // This really ought to be commoned up into OffsetTableContigSpace somehow.
   893 // We would need a mechanism to make that code skip dead objects.
   895 void HeapRegion::verify(VerifyOption vo,
   896                         bool* failures) const {
   897   G1CollectedHeap* g1 = G1CollectedHeap::heap();
   898   *failures = false;
   899   HeapWord* p = bottom();
   900   HeapWord* prev_p = NULL;
   901   VerifyLiveClosure vl_cl(g1, vo);
   902   bool is_humongous = isHumongous();
   903   bool do_bot_verify = !is_young();
   904   size_t object_num = 0;
   905   while (p < top()) {
   906     oop obj = oop(p);
   907     size_t obj_size = obj->size();
   908     object_num += 1;
   910     if (is_humongous != g1->isHumongous(obj_size)) {
   911       gclog_or_tty->print_cr("obj "PTR_FORMAT" is of %shumongous size ("
   912                              SIZE_FORMAT" words) in a %shumongous region",
   913                              p, g1->isHumongous(obj_size) ? "" : "non-",
   914                              obj_size, is_humongous ? "" : "non-");
   915        *failures = true;
   916        return;
   917     }
   919     // If it returns false, verify_for_object() will output the
   920     // appropriate messasge.
   921     if (do_bot_verify && !_offsets.verify_for_object(p, obj_size)) {
   922       *failures = true;
   923       return;
   924     }
   926     if (!g1->is_obj_dead_cond(obj, this, vo)) {
   927       if (obj->is_oop()) {
   928         Klass* klass = obj->klass();
   929         if (!klass->is_metaspace_object()) {
   930           gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
   931                                  "not metadata", klass, (void *)obj);
   932           *failures = true;
   933           return;
   934         } else if (!klass->is_klass()) {
   935           gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
   936                                  "not a klass", klass, (void *)obj);
   937           *failures = true;
   938           return;
   939         } else {
   940           vl_cl.set_containing_obj(obj);
   941           obj->oop_iterate_no_header(&vl_cl);
   942           if (vl_cl.failures()) {
   943             *failures = true;
   944           }
   945           if (G1MaxVerifyFailures >= 0 &&
   946               vl_cl.n_failures() >= G1MaxVerifyFailures) {
   947             return;
   948           }
   949         }
   950       } else {
   951         gclog_or_tty->print_cr(PTR_FORMAT" no an oop", (void *)obj);
   952         *failures = true;
   953         return;
   954       }
   955     }
   956     prev_p = p;
   957     p += obj_size;
   958   }
   960   if (p != top()) {
   961     gclog_or_tty->print_cr("end of last object "PTR_FORMAT" "
   962                            "does not match top "PTR_FORMAT, p, top());
   963     *failures = true;
   964     return;
   965   }
   967   HeapWord* the_end = end();
   968   assert(p == top(), "it should still hold");
   969   // Do some extra BOT consistency checking for addresses in the
   970   // range [top, end). BOT look-ups in this range should yield
   971   // top. No point in doing that if top == end (there's nothing there).
   972   if (p < the_end) {
   973     // Look up top
   974     HeapWord* addr_1 = p;
   975     HeapWord* b_start_1 = _offsets.block_start_const(addr_1);
   976     if (b_start_1 != p) {
   977       gclog_or_tty->print_cr("BOT look up for top: "PTR_FORMAT" "
   978                              " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
   979                              addr_1, b_start_1, p);
   980       *failures = true;
   981       return;
   982     }
   984     // Look up top + 1
   985     HeapWord* addr_2 = p + 1;
   986     if (addr_2 < the_end) {
   987       HeapWord* b_start_2 = _offsets.block_start_const(addr_2);
   988       if (b_start_2 != p) {
   989         gclog_or_tty->print_cr("BOT look up for top + 1: "PTR_FORMAT" "
   990                                " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
   991                                addr_2, b_start_2, p);
   992         *failures = true;
   993         return;
   994       }
   995     }
   997     // Look up an address between top and end
   998     size_t diff = pointer_delta(the_end, p) / 2;
   999     HeapWord* addr_3 = p + diff;
  1000     if (addr_3 < the_end) {
  1001       HeapWord* b_start_3 = _offsets.block_start_const(addr_3);
  1002       if (b_start_3 != p) {
  1003         gclog_or_tty->print_cr("BOT look up for top + diff: "PTR_FORMAT" "
  1004                                " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
  1005                                addr_3, b_start_3, p);
  1006         *failures = true;
  1007         return;
  1011     // Loook up end - 1
  1012     HeapWord* addr_4 = the_end - 1;
  1013     HeapWord* b_start_4 = _offsets.block_start_const(addr_4);
  1014     if (b_start_4 != p) {
  1015       gclog_or_tty->print_cr("BOT look up for end - 1: "PTR_FORMAT" "
  1016                              " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
  1017                              addr_4, b_start_4, p);
  1018       *failures = true;
  1019       return;
  1023   if (is_humongous && object_num > 1) {
  1024     gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is humongous "
  1025                            "but has "SIZE_FORMAT", objects",
  1026                            bottom(), end(), object_num);
  1027     *failures = true;
  1028     return;
  1031   verify_strong_code_roots(vo, failures);
  1034 void HeapRegion::verify() const {
  1035   bool dummy = false;
  1036   verify(VerifyOption_G1UsePrevMarking, /* failures */ &dummy);
  1039 // G1OffsetTableContigSpace code; copied from space.cpp.  Hope this can go
  1040 // away eventually.
  1042 void G1OffsetTableContigSpace::clear(bool mangle_space) {
  1043   ContiguousSpace::clear(mangle_space);
  1044   _offsets.zero_bottom_entry();
  1045   _offsets.initialize_threshold();
  1048 void G1OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
  1049   Space::set_bottom(new_bottom);
  1050   _offsets.set_bottom(new_bottom);
  1053 void G1OffsetTableContigSpace::set_end(HeapWord* new_end) {
  1054   Space::set_end(new_end);
  1055   _offsets.resize(new_end - bottom());
  1058 void G1OffsetTableContigSpace::print() const {
  1059   print_short();
  1060   gclog_or_tty->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
  1061                 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
  1062                 bottom(), top(), _offsets.threshold(), end());
  1065 HeapWord* G1OffsetTableContigSpace::initialize_threshold() {
  1066   return _offsets.initialize_threshold();
  1069 HeapWord* G1OffsetTableContigSpace::cross_threshold(HeapWord* start,
  1070                                                     HeapWord* end) {
  1071   _offsets.alloc_block(start, end);
  1072   return _offsets.threshold();
  1075 HeapWord* G1OffsetTableContigSpace::saved_mark_word() const {
  1076   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1077   assert( _gc_time_stamp <= g1h->get_gc_time_stamp(), "invariant" );
  1078   if (_gc_time_stamp < g1h->get_gc_time_stamp())
  1079     return top();
  1080   else
  1081     return ContiguousSpace::saved_mark_word();
  1084 void G1OffsetTableContigSpace::record_top_and_timestamp() {
  1085   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1086   unsigned curr_gc_time_stamp = g1h->get_gc_time_stamp();
  1088   if (_gc_time_stamp < curr_gc_time_stamp) {
  1089     // The order of these is important, as another thread might be
  1090     // about to start scanning this region. If it does so after
  1091     // set_saved_mark and before _gc_time_stamp = ..., then the latter
  1092     // will be false, and it will pick up top() as the high water mark
  1093     // of region. If it does so after _gc_time_stamp = ..., then it
  1094     // will pick up the right saved_mark_word() as the high water mark
  1095     // of the region. Either way, the behaviour will be correct.
  1096     ContiguousSpace::set_saved_mark();
  1097     OrderAccess::storestore();
  1098     _gc_time_stamp = curr_gc_time_stamp;
  1099     // No need to do another barrier to flush the writes above. If
  1100     // this is called in parallel with other threads trying to
  1101     // allocate into the region, the caller should call this while
  1102     // holding a lock and when the lock is released the writes will be
  1103     // flushed.
  1107 G1OffsetTableContigSpace::
  1108 G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
  1109                          MemRegion mr) :
  1110   _offsets(sharedOffsetArray, mr),
  1111   _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true),
  1112   _gc_time_stamp(0)
  1114   _offsets.set_space(this);
  1115   // false ==> we'll do the clearing if there's clearing to be done.
  1116   ContiguousSpace::initialize(mr, false, SpaceDecorator::Mangle);
  1117   _offsets.zero_bottom_entry();
  1118   _offsets.initialize_threshold();

mercurial