src/share/vm/opto/output.cpp

Thu, 11 Apr 2013 13:57:44 +0200

author
neliasso
date
Thu, 11 Apr 2013 13:57:44 +0200
changeset 4952
a7fb14888912
parent 4874
0a8c2ea3902d
child 5001
e10e43e58e92
permissions
-rw-r--r--

8006952: Slow VM due to excessive code cache freelist iteration
Summary: Remove continous free block requirement
Reviewed-by: kvn

     1 /*
     2  * Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.inline.hpp"
    27 #include "code/debugInfo.hpp"
    28 #include "code/debugInfoRec.hpp"
    29 #include "compiler/compileBroker.hpp"
    30 #include "compiler/oopMap.hpp"
    31 #include "memory/allocation.inline.hpp"
    32 #include "opto/callnode.hpp"
    33 #include "opto/cfgnode.hpp"
    34 #include "opto/locknode.hpp"
    35 #include "opto/machnode.hpp"
    36 #include "opto/output.hpp"
    37 #include "opto/regalloc.hpp"
    38 #include "opto/runtime.hpp"
    39 #include "opto/subnode.hpp"
    40 #include "opto/type.hpp"
    41 #include "runtime/handles.inline.hpp"
    42 #include "utilities/xmlstream.hpp"
    44 extern uint size_java_to_interp();
    45 extern uint reloc_java_to_interp();
    46 extern uint size_exception_handler();
    47 extern uint size_deopt_handler();
    49 #ifndef PRODUCT
    50 #define DEBUG_ARG(x) , x
    51 #else
    52 #define DEBUG_ARG(x)
    53 #endif
    55 extern int emit_exception_handler(CodeBuffer &cbuf);
    56 extern int emit_deopt_handler(CodeBuffer &cbuf);
    58 //------------------------------Output-----------------------------------------
    59 // Convert Nodes to instruction bits and pass off to the VM
    60 void Compile::Output() {
    61   // RootNode goes
    62   assert( _cfg->_broot->_nodes.size() == 0, "" );
    64   // The number of new nodes (mostly MachNop) is proportional to
    65   // the number of java calls and inner loops which are aligned.
    66   if ( C->check_node_count((NodeLimitFudgeFactor + C->java_calls()*3 +
    67                             C->inner_loops()*(OptoLoopAlignment-1)),
    68                            "out of nodes before code generation" ) ) {
    69     return;
    70   }
    71   // Make sure I can find the Start Node
    72   Block_Array& bbs = _cfg->_bbs;
    73   Block *entry = _cfg->_blocks[1];
    74   Block *broot = _cfg->_broot;
    76   const StartNode *start = entry->_nodes[0]->as_Start();
    78   // Replace StartNode with prolog
    79   MachPrologNode *prolog = new (this) MachPrologNode();
    80   entry->_nodes.map( 0, prolog );
    81   bbs.map( prolog->_idx, entry );
    82   bbs.map( start->_idx, NULL ); // start is no longer in any block
    84   // Virtual methods need an unverified entry point
    86   if( is_osr_compilation() ) {
    87     if( PoisonOSREntry ) {
    88       // TODO: Should use a ShouldNotReachHereNode...
    89       _cfg->insert( broot, 0, new (this) MachBreakpointNode() );
    90     }
    91   } else {
    92     if( _method && !_method->flags().is_static() ) {
    93       // Insert unvalidated entry point
    94       _cfg->insert( broot, 0, new (this) MachUEPNode() );
    95     }
    97   }
   100   // Break before main entry point
   101   if( (_method && _method->break_at_execute())
   102 #ifndef PRODUCT
   103     ||(OptoBreakpoint && is_method_compilation())
   104     ||(OptoBreakpointOSR && is_osr_compilation())
   105     ||(OptoBreakpointC2R && !_method)
   106 #endif
   107     ) {
   108     // checking for _method means that OptoBreakpoint does not apply to
   109     // runtime stubs or frame converters
   110     _cfg->insert( entry, 1, new (this) MachBreakpointNode() );
   111   }
   113   // Insert epilogs before every return
   114   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
   115     Block *b = _cfg->_blocks[i];
   116     if( !b->is_connector() && b->non_connector_successor(0) == _cfg->_broot ) { // Found a program exit point?
   117       Node *m = b->end();
   118       if( m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt ) {
   119         MachEpilogNode *epilog = new (this) MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return);
   120         b->add_inst( epilog );
   121         bbs.map(epilog->_idx, b);
   122         //_regalloc->set_bad(epilog->_idx); // Already initialized this way.
   123       }
   124     }
   125   }
   127 # ifdef ENABLE_ZAP_DEAD_LOCALS
   128   if ( ZapDeadCompiledLocals )  Insert_zap_nodes();
   129 # endif
   131   uint* blk_starts = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks+1);
   132   blk_starts[0]    = 0;
   134   // Initialize code buffer and process short branches.
   135   CodeBuffer* cb = init_buffer(blk_starts);
   137   if (cb == NULL || failing())  return;
   139   ScheduleAndBundle();
   141 #ifndef PRODUCT
   142   if (trace_opto_output()) {
   143     tty->print("\n---- After ScheduleAndBundle ----\n");
   144     for (uint i = 0; i < _cfg->_num_blocks; i++) {
   145       tty->print("\nBB#%03d:\n", i);
   146       Block *bb = _cfg->_blocks[i];
   147       for (uint j = 0; j < bb->_nodes.size(); j++) {
   148         Node *n = bb->_nodes[j];
   149         OptoReg::Name reg = _regalloc->get_reg_first(n);
   150         tty->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : "");
   151         n->dump();
   152       }
   153     }
   154   }
   155 #endif
   157   if (failing())  return;
   159   BuildOopMaps();
   161   if (failing())  return;
   163   fill_buffer(cb, blk_starts);
   164 }
   166 bool Compile::need_stack_bang(int frame_size_in_bytes) const {
   167   // Determine if we need to generate a stack overflow check.
   168   // Do it if the method is not a stub function and
   169   // has java calls or has frame size > vm_page_size/8.
   170   return (UseStackBanging && stub_function() == NULL &&
   171           (has_java_calls() || frame_size_in_bytes > os::vm_page_size()>>3));
   172 }
   174 bool Compile::need_register_stack_bang() const {
   175   // Determine if we need to generate a register stack overflow check.
   176   // This is only used on architectures which have split register
   177   // and memory stacks (ie. IA64).
   178   // Bang if the method is not a stub function and has java calls
   179   return (stub_function() == NULL && has_java_calls());
   180 }
   182 # ifdef ENABLE_ZAP_DEAD_LOCALS
   185 // In order to catch compiler oop-map bugs, we have implemented
   186 // a debugging mode called ZapDeadCompilerLocals.
   187 // This mode causes the compiler to insert a call to a runtime routine,
   188 // "zap_dead_locals", right before each place in compiled code
   189 // that could potentially be a gc-point (i.e., a safepoint or oop map point).
   190 // The runtime routine checks that locations mapped as oops are really
   191 // oops, that locations mapped as values do not look like oops,
   192 // and that locations mapped as dead are not used later
   193 // (by zapping them to an invalid address).
   195 int Compile::_CompiledZap_count = 0;
   197 void Compile::Insert_zap_nodes() {
   198   bool skip = false;
   201   // Dink with static counts because code code without the extra
   202   // runtime calls is MUCH faster for debugging purposes
   204        if ( CompileZapFirst  ==  0  ) ; // nothing special
   205   else if ( CompileZapFirst  >  CompiledZap_count() )  skip = true;
   206   else if ( CompileZapFirst  == CompiledZap_count() )
   207     warning("starting zap compilation after skipping");
   209        if ( CompileZapLast  ==  -1  ) ; // nothing special
   210   else if ( CompileZapLast  <   CompiledZap_count() )  skip = true;
   211   else if ( CompileZapLast  ==  CompiledZap_count() )
   212     warning("about to compile last zap");
   214   ++_CompiledZap_count; // counts skipped zaps, too
   216   if ( skip )  return;
   219   if ( _method == NULL )
   220     return; // no safepoints/oopmaps emitted for calls in stubs,so we don't care
   222   // Insert call to zap runtime stub before every node with an oop map
   223   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
   224     Block *b = _cfg->_blocks[i];
   225     for ( uint j = 0;  j < b->_nodes.size();  ++j ) {
   226       Node *n = b->_nodes[j];
   228       // Determining if we should insert a zap-a-lot node in output.
   229       // We do that for all nodes that has oopmap info, except for calls
   230       // to allocation.  Calls to allocation passes in the old top-of-eden pointer
   231       // and expect the C code to reset it.  Hence, there can be no safepoints between
   232       // the inlined-allocation and the call to new_Java, etc.
   233       // We also cannot zap monitor calls, as they must hold the microlock
   234       // during the call to Zap, which also wants to grab the microlock.
   235       bool insert = n->is_MachSafePoint() && (n->as_MachSafePoint()->oop_map() != NULL);
   236       if ( insert ) { // it is MachSafePoint
   237         if ( !n->is_MachCall() ) {
   238           insert = false;
   239         } else if ( n->is_MachCall() ) {
   240           MachCallNode* call = n->as_MachCall();
   241           if (call->entry_point() == OptoRuntime::new_instance_Java() ||
   242               call->entry_point() == OptoRuntime::new_array_Java() ||
   243               call->entry_point() == OptoRuntime::multianewarray2_Java() ||
   244               call->entry_point() == OptoRuntime::multianewarray3_Java() ||
   245               call->entry_point() == OptoRuntime::multianewarray4_Java() ||
   246               call->entry_point() == OptoRuntime::multianewarray5_Java() ||
   247               call->entry_point() == OptoRuntime::slow_arraycopy_Java() ||
   248               call->entry_point() == OptoRuntime::complete_monitor_locking_Java()
   249               ) {
   250             insert = false;
   251           }
   252         }
   253         if (insert) {
   254           Node *zap = call_zap_node(n->as_MachSafePoint(), i);
   255           b->_nodes.insert( j, zap );
   256           _cfg->_bbs.map( zap->_idx, b );
   257           ++j;
   258         }
   259       }
   260     }
   261   }
   262 }
   265 Node* Compile::call_zap_node(MachSafePointNode* node_to_check, int block_no) {
   266   const TypeFunc *tf = OptoRuntime::zap_dead_locals_Type();
   267   CallStaticJavaNode* ideal_node =
   268     new (this) CallStaticJavaNode( tf,
   269          OptoRuntime::zap_dead_locals_stub(_method->flags().is_native()),
   270                        "call zap dead locals stub", 0, TypePtr::BOTTOM);
   271   // We need to copy the OopMap from the site we're zapping at.
   272   // We have to make a copy, because the zap site might not be
   273   // a call site, and zap_dead is a call site.
   274   OopMap* clone = node_to_check->oop_map()->deep_copy();
   276   // Add the cloned OopMap to the zap node
   277   ideal_node->set_oop_map(clone);
   278   return _matcher->match_sfpt(ideal_node);
   279 }
   281 //------------------------------is_node_getting_a_safepoint--------------------
   282 bool Compile::is_node_getting_a_safepoint( Node* n) {
   283   // This code duplicates the logic prior to the call of add_safepoint
   284   // below in this file.
   285   if( n->is_MachSafePoint() ) return true;
   286   return false;
   287 }
   289 # endif // ENABLE_ZAP_DEAD_LOCALS
   291 //------------------------------compute_loop_first_inst_sizes------------------
   292 // Compute the size of first NumberOfLoopInstrToAlign instructions at the top
   293 // of a loop. When aligning a loop we need to provide enough instructions
   294 // in cpu's fetch buffer to feed decoders. The loop alignment could be
   295 // avoided if we have enough instructions in fetch buffer at the head of a loop.
   296 // By default, the size is set to 999999 by Block's constructor so that
   297 // a loop will be aligned if the size is not reset here.
   298 //
   299 // Note: Mach instructions could contain several HW instructions
   300 // so the size is estimated only.
   301 //
   302 void Compile::compute_loop_first_inst_sizes() {
   303   // The next condition is used to gate the loop alignment optimization.
   304   // Don't aligned a loop if there are enough instructions at the head of a loop
   305   // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad
   306   // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is
   307   // equal to 11 bytes which is the largest address NOP instruction.
   308   if( MaxLoopPad < OptoLoopAlignment-1 ) {
   309     uint last_block = _cfg->_num_blocks-1;
   310     for( uint i=1; i <= last_block; i++ ) {
   311       Block *b = _cfg->_blocks[i];
   312       // Check the first loop's block which requires an alignment.
   313       if( b->loop_alignment() > (uint)relocInfo::addr_unit() ) {
   314         uint sum_size = 0;
   315         uint inst_cnt = NumberOfLoopInstrToAlign;
   316         inst_cnt = b->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
   318         // Check subsequent fallthrough blocks if the loop's first
   319         // block(s) does not have enough instructions.
   320         Block *nb = b;
   321         while( inst_cnt > 0 &&
   322                i < last_block &&
   323                !_cfg->_blocks[i+1]->has_loop_alignment() &&
   324                !nb->has_successor(b) ) {
   325           i++;
   326           nb = _cfg->_blocks[i];
   327           inst_cnt  = nb->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
   328         } // while( inst_cnt > 0 && i < last_block  )
   330         b->set_first_inst_size(sum_size);
   331       } // f( b->head()->is_Loop() )
   332     } // for( i <= last_block )
   333   } // if( MaxLoopPad < OptoLoopAlignment-1 )
   334 }
   336 //----------------------shorten_branches---------------------------------------
   337 // The architecture description provides short branch variants for some long
   338 // branch instructions. Replace eligible long branches with short branches.
   339 void Compile::shorten_branches(uint* blk_starts, int& code_size, int& reloc_size, int& stub_size) {
   341   // ------------------
   342   // Compute size of each block, method size, and relocation information size
   343   uint nblocks  = _cfg->_num_blocks;
   345   uint*      jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
   346   uint*      jmp_size   = NEW_RESOURCE_ARRAY(uint,nblocks);
   347   int*       jmp_nidx   = NEW_RESOURCE_ARRAY(int ,nblocks);
   348   DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks); )
   349   DEBUG_ONLY( uint *jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks); )
   351   bool has_short_branch_candidate = false;
   353   // Initialize the sizes to 0
   354   code_size  = 0;          // Size in bytes of generated code
   355   stub_size  = 0;          // Size in bytes of all stub entries
   356   // Size in bytes of all relocation entries, including those in local stubs.
   357   // Start with 2-bytes of reloc info for the unvalidated entry point
   358   reloc_size = 1;          // Number of relocation entries
   360   // Make three passes.  The first computes pessimistic blk_starts,
   361   // relative jmp_offset and reloc_size information.  The second performs
   362   // short branch substitution using the pessimistic sizing.  The
   363   // third inserts nops where needed.
   365   // Step one, perform a pessimistic sizing pass.
   366   uint last_call_adr = max_uint;
   367   uint last_avoid_back_to_back_adr = max_uint;
   368   uint nop_size = (new (this) MachNopNode())->size(_regalloc);
   369   for (uint i = 0; i < nblocks; i++) { // For all blocks
   370     Block *b = _cfg->_blocks[i];
   372     // During short branch replacement, we store the relative (to blk_starts)
   373     // offset of jump in jmp_offset, rather than the absolute offset of jump.
   374     // This is so that we do not need to recompute sizes of all nodes when
   375     // we compute correct blk_starts in our next sizing pass.
   376     jmp_offset[i] = 0;
   377     jmp_size[i]   = 0;
   378     jmp_nidx[i]   = -1;
   379     DEBUG_ONLY( jmp_target[i] = 0; )
   380     DEBUG_ONLY( jmp_rule[i]   = 0; )
   382     // Sum all instruction sizes to compute block size
   383     uint last_inst = b->_nodes.size();
   384     uint blk_size = 0;
   385     for (uint j = 0; j < last_inst; j++) {
   386       Node* nj = b->_nodes[j];
   387       // Handle machine instruction nodes
   388       if (nj->is_Mach()) {
   389         MachNode *mach = nj->as_Mach();
   390         blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding
   391         reloc_size += mach->reloc();
   392         if( mach->is_MachCall() ) {
   393           MachCallNode *mcall = mach->as_MachCall();
   394           // This destination address is NOT PC-relative
   396           mcall->method_set((intptr_t)mcall->entry_point());
   398           if( mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method ) {
   399             stub_size  += size_java_to_interp();
   400             reloc_size += reloc_java_to_interp();
   401           }
   402         } else if (mach->is_MachSafePoint()) {
   403           // If call/safepoint are adjacent, account for possible
   404           // nop to disambiguate the two safepoints.
   405           // ScheduleAndBundle() can rearrange nodes in a block,
   406           // check for all offsets inside this block.
   407           if (last_call_adr >= blk_starts[i]) {
   408             blk_size += nop_size;
   409           }
   410         }
   411         if (mach->avoid_back_to_back()) {
   412           // Nop is inserted between "avoid back to back" instructions.
   413           // ScheduleAndBundle() can rearrange nodes in a block,
   414           // check for all offsets inside this block.
   415           if (last_avoid_back_to_back_adr >= blk_starts[i]) {
   416             blk_size += nop_size;
   417           }
   418         }
   419         if (mach->may_be_short_branch()) {
   420           if (!nj->is_MachBranch()) {
   421 #ifndef PRODUCT
   422             nj->dump(3);
   423 #endif
   424             Unimplemented();
   425           }
   426           assert(jmp_nidx[i] == -1, "block should have only one branch");
   427           jmp_offset[i] = blk_size;
   428           jmp_size[i]   = nj->size(_regalloc);
   429           jmp_nidx[i]   = j;
   430           has_short_branch_candidate = true;
   431         }
   432       }
   433       blk_size += nj->size(_regalloc);
   434       // Remember end of call offset
   435       if (nj->is_MachCall() && !nj->is_MachCallLeaf()) {
   436         last_call_adr = blk_starts[i]+blk_size;
   437       }
   438       // Remember end of avoid_back_to_back offset
   439       if (nj->is_Mach() && nj->as_Mach()->avoid_back_to_back()) {
   440         last_avoid_back_to_back_adr = blk_starts[i]+blk_size;
   441       }
   442     }
   444     // When the next block starts a loop, we may insert pad NOP
   445     // instructions.  Since we cannot know our future alignment,
   446     // assume the worst.
   447     if (i< nblocks-1) {
   448       Block *nb = _cfg->_blocks[i+1];
   449       int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit();
   450       if (max_loop_pad > 0) {
   451         assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), "");
   452         // Adjust last_call_adr and/or last_avoid_back_to_back_adr.
   453         // If either is the last instruction in this block, bump by
   454         // max_loop_pad in lock-step with blk_size, so sizing
   455         // calculations in subsequent blocks still can conservatively
   456         // detect that it may the last instruction in this block.
   457         if (last_call_adr == blk_starts[i]+blk_size) {
   458           last_call_adr += max_loop_pad;
   459         }
   460         if (last_avoid_back_to_back_adr == blk_starts[i]+blk_size) {
   461           last_avoid_back_to_back_adr += max_loop_pad;
   462         }
   463         blk_size += max_loop_pad;
   464       }
   465     }
   467     // Save block size; update total method size
   468     blk_starts[i+1] = blk_starts[i]+blk_size;
   469   }
   471   // Step two, replace eligible long jumps.
   472   bool progress = true;
   473   uint last_may_be_short_branch_adr = max_uint;
   474   while (has_short_branch_candidate && progress) {
   475     progress = false;
   476     has_short_branch_candidate = false;
   477     int adjust_block_start = 0;
   478     for (uint i = 0; i < nblocks; i++) {
   479       Block *b = _cfg->_blocks[i];
   480       int idx = jmp_nidx[i];
   481       MachNode* mach = (idx == -1) ? NULL: b->_nodes[idx]->as_Mach();
   482       if (mach != NULL && mach->may_be_short_branch()) {
   483 #ifdef ASSERT
   484         assert(jmp_size[i] > 0 && mach->is_MachBranch(), "sanity");
   485         int j;
   486         // Find the branch; ignore trailing NOPs.
   487         for (j = b->_nodes.size()-1; j>=0; j--) {
   488           Node* n = b->_nodes[j];
   489           if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con)
   490             break;
   491         }
   492         assert(j >= 0 && j == idx && b->_nodes[j] == (Node*)mach, "sanity");
   493 #endif
   494         int br_size = jmp_size[i];
   495         int br_offs = blk_starts[i] + jmp_offset[i];
   497         // This requires the TRUE branch target be in succs[0]
   498         uint bnum = b->non_connector_successor(0)->_pre_order;
   499         int offset = blk_starts[bnum] - br_offs;
   500         if (bnum > i) { // adjust following block's offset
   501           offset -= adjust_block_start;
   502         }
   503         // In the following code a nop could be inserted before
   504         // the branch which will increase the backward distance.
   505         bool needs_padding = ((uint)br_offs == last_may_be_short_branch_adr);
   506         if (needs_padding && offset <= 0)
   507           offset -= nop_size;
   509         if (_matcher->is_short_branch_offset(mach->rule(), br_size, offset)) {
   510           // We've got a winner.  Replace this branch.
   511           MachNode* replacement = mach->as_MachBranch()->short_branch_version(this);
   513           // Update the jmp_size.
   514           int new_size = replacement->size(_regalloc);
   515           int diff     = br_size - new_size;
   516           assert(diff >= (int)nop_size, "short_branch size should be smaller");
   517           // Conservatively take into accound padding between
   518           // avoid_back_to_back branches. Previous branch could be
   519           // converted into avoid_back_to_back branch during next
   520           // rounds.
   521           if (needs_padding && replacement->avoid_back_to_back()) {
   522             jmp_offset[i] += nop_size;
   523             diff -= nop_size;
   524           }
   525           adjust_block_start += diff;
   526           b->_nodes.map(idx, replacement);
   527           mach->subsume_by(replacement, C);
   528           mach = replacement;
   529           progress = true;
   531           jmp_size[i] = new_size;
   532           DEBUG_ONLY( jmp_target[i] = bnum; );
   533           DEBUG_ONLY( jmp_rule[i] = mach->rule(); );
   534         } else {
   535           // The jump distance is not short, try again during next iteration.
   536           has_short_branch_candidate = true;
   537         }
   538       } // (mach->may_be_short_branch())
   539       if (mach != NULL && (mach->may_be_short_branch() ||
   540                            mach->avoid_back_to_back())) {
   541         last_may_be_short_branch_adr = blk_starts[i] + jmp_offset[i] + jmp_size[i];
   542       }
   543       blk_starts[i+1] -= adjust_block_start;
   544     }
   545   }
   547 #ifdef ASSERT
   548   for (uint i = 0; i < nblocks; i++) { // For all blocks
   549     if (jmp_target[i] != 0) {
   550       int br_size = jmp_size[i];
   551       int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
   552       if (!_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
   553         tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
   554       }
   555       assert(_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset), "Displacement too large for short jmp");
   556     }
   557   }
   558 #endif
   560   // Step 3, compute the offsets of all blocks, will be done in fill_buffer()
   561   // after ScheduleAndBundle().
   563   // ------------------
   564   // Compute size for code buffer
   565   code_size = blk_starts[nblocks];
   567   // Relocation records
   568   reloc_size += 1;              // Relo entry for exception handler
   570   // Adjust reloc_size to number of record of relocation info
   571   // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for
   572   // a relocation index.
   573   // The CodeBuffer will expand the locs array if this estimate is too low.
   574   reloc_size *= 10 / sizeof(relocInfo);
   575 }
   577 //------------------------------FillLocArray-----------------------------------
   578 // Create a bit of debug info and append it to the array.  The mapping is from
   579 // Java local or expression stack to constant, register or stack-slot.  For
   580 // doubles, insert 2 mappings and return 1 (to tell the caller that the next
   581 // entry has been taken care of and caller should skip it).
   582 static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) {
   583   // This should never have accepted Bad before
   584   assert(OptoReg::is_valid(regnum), "location must be valid");
   585   return (OptoReg::is_reg(regnum))
   586     ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) )
   587     : new LocationValue(Location::new_stk_loc(l_type,  ra->reg2offset(regnum)));
   588 }
   591 ObjectValue*
   592 Compile::sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id) {
   593   for (int i = 0; i < objs->length(); i++) {
   594     assert(objs->at(i)->is_object(), "corrupt object cache");
   595     ObjectValue* sv = (ObjectValue*) objs->at(i);
   596     if (sv->id() == id) {
   597       return sv;
   598     }
   599   }
   600   // Otherwise..
   601   return NULL;
   602 }
   604 void Compile::set_sv_for_object_node(GrowableArray<ScopeValue*> *objs,
   605                                      ObjectValue* sv ) {
   606   assert(sv_for_node_id(objs, sv->id()) == NULL, "Precondition");
   607   objs->append(sv);
   608 }
   611 void Compile::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local,
   612                             GrowableArray<ScopeValue*> *array,
   613                             GrowableArray<ScopeValue*> *objs ) {
   614   assert( local, "use _top instead of null" );
   615   if (array->length() != idx) {
   616     assert(array->length() == idx + 1, "Unexpected array count");
   617     // Old functionality:
   618     //   return
   619     // New functionality:
   620     //   Assert if the local is not top. In product mode let the new node
   621     //   override the old entry.
   622     assert(local == top(), "LocArray collision");
   623     if (local == top()) {
   624       return;
   625     }
   626     array->pop();
   627   }
   628   const Type *t = local->bottom_type();
   630   // Is it a safepoint scalar object node?
   631   if (local->is_SafePointScalarObject()) {
   632     SafePointScalarObjectNode* spobj = local->as_SafePointScalarObject();
   634     ObjectValue* sv = Compile::sv_for_node_id(objs, spobj->_idx);
   635     if (sv == NULL) {
   636       ciKlass* cik = t->is_oopptr()->klass();
   637       assert(cik->is_instance_klass() ||
   638              cik->is_array_klass(), "Not supported allocation.");
   639       sv = new ObjectValue(spobj->_idx,
   640                            new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()));
   641       Compile::set_sv_for_object_node(objs, sv);
   643       uint first_ind = spobj->first_index();
   644       for (uint i = 0; i < spobj->n_fields(); i++) {
   645         Node* fld_node = sfpt->in(first_ind+i);
   646         (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs);
   647       }
   648     }
   649     array->append(sv);
   650     return;
   651   }
   653   // Grab the register number for the local
   654   OptoReg::Name regnum = _regalloc->get_reg_first(local);
   655   if( OptoReg::is_valid(regnum) ) {// Got a register/stack?
   656     // Record the double as two float registers.
   657     // The register mask for such a value always specifies two adjacent
   658     // float registers, with the lower register number even.
   659     // Normally, the allocation of high and low words to these registers
   660     // is irrelevant, because nearly all operations on register pairs
   661     // (e.g., StoreD) treat them as a single unit.
   662     // Here, we assume in addition that the words in these two registers
   663     // stored "naturally" (by operations like StoreD and double stores
   664     // within the interpreter) such that the lower-numbered register
   665     // is written to the lower memory address.  This may seem like
   666     // a machine dependency, but it is not--it is a requirement on
   667     // the author of the <arch>.ad file to ensure that, for every
   668     // even/odd double-register pair to which a double may be allocated,
   669     // the word in the even single-register is stored to the first
   670     // memory word.  (Note that register numbers are completely
   671     // arbitrary, and are not tied to any machine-level encodings.)
   672 #ifdef _LP64
   673     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) {
   674       array->append(new ConstantIntValue(0));
   675       array->append(new_loc_value( _regalloc, regnum, Location::dbl ));
   676     } else if ( t->base() == Type::Long ) {
   677       array->append(new ConstantIntValue(0));
   678       array->append(new_loc_value( _regalloc, regnum, Location::lng ));
   679     } else if ( t->base() == Type::RawPtr ) {
   680       // jsr/ret return address which must be restored into a the full
   681       // width 64-bit stack slot.
   682       array->append(new_loc_value( _regalloc, regnum, Location::lng ));
   683     }
   684 #else //_LP64
   685 #ifdef SPARC
   686     if (t->base() == Type::Long && OptoReg::is_reg(regnum)) {
   687       // For SPARC we have to swap high and low words for
   688       // long values stored in a single-register (g0-g7).
   689       array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
   690       array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
   691     } else
   692 #endif //SPARC
   693     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) {
   694       // Repack the double/long as two jints.
   695       // The convention the interpreter uses is that the second local
   696       // holds the first raw word of the native double representation.
   697       // This is actually reasonable, since locals and stack arrays
   698       // grow downwards in all implementations.
   699       // (If, on some machine, the interpreter's Java locals or stack
   700       // were to grow upwards, the embedded doubles would be word-swapped.)
   701       array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
   702       array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
   703     }
   704 #endif //_LP64
   705     else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) &&
   706                OptoReg::is_reg(regnum) ) {
   707       array->append(new_loc_value( _regalloc, regnum, Matcher::float_in_double()
   708                                    ? Location::float_in_dbl : Location::normal ));
   709     } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) {
   710       array->append(new_loc_value( _regalloc, regnum, Matcher::int_in_long
   711                                    ? Location::int_in_long : Location::normal ));
   712     } else if( t->base() == Type::NarrowOop ) {
   713       array->append(new_loc_value( _regalloc, regnum, Location::narrowoop ));
   714     } else {
   715       array->append(new_loc_value( _regalloc, regnum, _regalloc->is_oop(local) ? Location::oop : Location::normal ));
   716     }
   717     return;
   718   }
   720   // No register.  It must be constant data.
   721   switch (t->base()) {
   722   case Type::Half:              // Second half of a double
   723     ShouldNotReachHere();       // Caller should skip 2nd halves
   724     break;
   725   case Type::AnyPtr:
   726     array->append(new ConstantOopWriteValue(NULL));
   727     break;
   728   case Type::AryPtr:
   729   case Type::InstPtr:          // fall through
   730     array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->constant_encoding()));
   731     break;
   732   case Type::NarrowOop:
   733     if (t == TypeNarrowOop::NULL_PTR) {
   734       array->append(new ConstantOopWriteValue(NULL));
   735     } else {
   736       array->append(new ConstantOopWriteValue(t->make_ptr()->isa_oopptr()->const_oop()->constant_encoding()));
   737     }
   738     break;
   739   case Type::Int:
   740     array->append(new ConstantIntValue(t->is_int()->get_con()));
   741     break;
   742   case Type::RawPtr:
   743     // A return address (T_ADDRESS).
   744     assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI");
   745 #ifdef _LP64
   746     // Must be restored to the full-width 64-bit stack slot.
   747     array->append(new ConstantLongValue(t->is_ptr()->get_con()));
   748 #else
   749     array->append(new ConstantIntValue(t->is_ptr()->get_con()));
   750 #endif
   751     break;
   752   case Type::FloatCon: {
   753     float f = t->is_float_constant()->getf();
   754     array->append(new ConstantIntValue(jint_cast(f)));
   755     break;
   756   }
   757   case Type::DoubleCon: {
   758     jdouble d = t->is_double_constant()->getd();
   759 #ifdef _LP64
   760     array->append(new ConstantIntValue(0));
   761     array->append(new ConstantDoubleValue(d));
   762 #else
   763     // Repack the double as two jints.
   764     // The convention the interpreter uses is that the second local
   765     // holds the first raw word of the native double representation.
   766     // This is actually reasonable, since locals and stack arrays
   767     // grow downwards in all implementations.
   768     // (If, on some machine, the interpreter's Java locals or stack
   769     // were to grow upwards, the embedded doubles would be word-swapped.)
   770     jint   *dp = (jint*)&d;
   771     array->append(new ConstantIntValue(dp[1]));
   772     array->append(new ConstantIntValue(dp[0]));
   773 #endif
   774     break;
   775   }
   776   case Type::Long: {
   777     jlong d = t->is_long()->get_con();
   778 #ifdef _LP64
   779     array->append(new ConstantIntValue(0));
   780     array->append(new ConstantLongValue(d));
   781 #else
   782     // Repack the long as two jints.
   783     // The convention the interpreter uses is that the second local
   784     // holds the first raw word of the native double representation.
   785     // This is actually reasonable, since locals and stack arrays
   786     // grow downwards in all implementations.
   787     // (If, on some machine, the interpreter's Java locals or stack
   788     // were to grow upwards, the embedded doubles would be word-swapped.)
   789     jint *dp = (jint*)&d;
   790     array->append(new ConstantIntValue(dp[1]));
   791     array->append(new ConstantIntValue(dp[0]));
   792 #endif
   793     break;
   794   }
   795   case Type::Top:               // Add an illegal value here
   796     array->append(new LocationValue(Location()));
   797     break;
   798   default:
   799     ShouldNotReachHere();
   800     break;
   801   }
   802 }
   804 // Determine if this node starts a bundle
   805 bool Compile::starts_bundle(const Node *n) const {
   806   return (_node_bundling_limit > n->_idx &&
   807           _node_bundling_base[n->_idx].starts_bundle());
   808 }
   810 //--------------------------Process_OopMap_Node--------------------------------
   811 void Compile::Process_OopMap_Node(MachNode *mach, int current_offset) {
   813   // Handle special safepoint nodes for synchronization
   814   MachSafePointNode *sfn   = mach->as_MachSafePoint();
   815   MachCallNode      *mcall;
   817 #ifdef ENABLE_ZAP_DEAD_LOCALS
   818   assert( is_node_getting_a_safepoint(mach),  "logic does not match; false negative");
   819 #endif
   821   int safepoint_pc_offset = current_offset;
   822   bool is_method_handle_invoke = false;
   823   bool return_oop = false;
   825   // Add the safepoint in the DebugInfoRecorder
   826   if( !mach->is_MachCall() ) {
   827     mcall = NULL;
   828     debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map);
   829   } else {
   830     mcall = mach->as_MachCall();
   832     // Is the call a MethodHandle call?
   833     if (mcall->is_MachCallJava()) {
   834       if (mcall->as_MachCallJava()->_method_handle_invoke) {
   835         assert(has_method_handle_invokes(), "must have been set during call generation");
   836         is_method_handle_invoke = true;
   837       }
   838     }
   840     // Check if a call returns an object.
   841     if (mcall->return_value_is_used() &&
   842         mcall->tf()->range()->field_at(TypeFunc::Parms)->isa_ptr()) {
   843       return_oop = true;
   844     }
   845     safepoint_pc_offset += mcall->ret_addr_offset();
   846     debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map);
   847   }
   849   // Loop over the JVMState list to add scope information
   850   // Do not skip safepoints with a NULL method, they need monitor info
   851   JVMState* youngest_jvms = sfn->jvms();
   852   int max_depth = youngest_jvms->depth();
   854   // Allocate the object pool for scalar-replaced objects -- the map from
   855   // small-integer keys (which can be recorded in the local and ostack
   856   // arrays) to descriptions of the object state.
   857   GrowableArray<ScopeValue*> *objs = new GrowableArray<ScopeValue*>();
   859   // Visit scopes from oldest to youngest.
   860   for (int depth = 1; depth <= max_depth; depth++) {
   861     JVMState* jvms = youngest_jvms->of_depth(depth);
   862     int idx;
   863     ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
   864     // Safepoints that do not have method() set only provide oop-map and monitor info
   865     // to support GC; these do not support deoptimization.
   866     int num_locs = (method == NULL) ? 0 : jvms->loc_size();
   867     int num_exps = (method == NULL) ? 0 : jvms->stk_size();
   868     int num_mon  = jvms->nof_monitors();
   869     assert(method == NULL || jvms->bci() < 0 || num_locs == method->max_locals(),
   870            "JVMS local count must match that of the method");
   872     // Add Local and Expression Stack Information
   874     // Insert locals into the locarray
   875     GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs);
   876     for( idx = 0; idx < num_locs; idx++ ) {
   877       FillLocArray( idx, sfn, sfn->local(jvms, idx), locarray, objs );
   878     }
   880     // Insert expression stack entries into the exparray
   881     GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps);
   882     for( idx = 0; idx < num_exps; idx++ ) {
   883       FillLocArray( idx,  sfn, sfn->stack(jvms, idx), exparray, objs );
   884     }
   886     // Add in mappings of the monitors
   887     assert( !method ||
   888             !method->is_synchronized() ||
   889             method->is_native() ||
   890             num_mon > 0 ||
   891             !GenerateSynchronizationCode,
   892             "monitors must always exist for synchronized methods");
   894     // Build the growable array of ScopeValues for exp stack
   895     GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon);
   897     // Loop over monitors and insert into array
   898     for(idx = 0; idx < num_mon; idx++) {
   899       // Grab the node that defines this monitor
   900       Node* box_node = sfn->monitor_box(jvms, idx);
   901       Node* obj_node = sfn->monitor_obj(jvms, idx);
   903       // Create ScopeValue for object
   904       ScopeValue *scval = NULL;
   906       if( obj_node->is_SafePointScalarObject() ) {
   907         SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject();
   908         scval = Compile::sv_for_node_id(objs, spobj->_idx);
   909         if (scval == NULL) {
   910           const Type *t = obj_node->bottom_type();
   911           ciKlass* cik = t->is_oopptr()->klass();
   912           assert(cik->is_instance_klass() ||
   913                  cik->is_array_klass(), "Not supported allocation.");
   914           ObjectValue* sv = new ObjectValue(spobj->_idx,
   915                                             new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()));
   916           Compile::set_sv_for_object_node(objs, sv);
   918           uint first_ind = spobj->first_index();
   919           for (uint i = 0; i < spobj->n_fields(); i++) {
   920             Node* fld_node = sfn->in(first_ind+i);
   921             (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs);
   922           }
   923           scval = sv;
   924         }
   925       } else if( !obj_node->is_Con() ) {
   926         OptoReg::Name obj_reg = _regalloc->get_reg_first(obj_node);
   927         if( obj_node->bottom_type()->base() == Type::NarrowOop ) {
   928           scval = new_loc_value( _regalloc, obj_reg, Location::narrowoop );
   929         } else {
   930           scval = new_loc_value( _regalloc, obj_reg, Location::oop );
   931         }
   932       } else {
   933         const TypePtr *tp = obj_node->bottom_type()->make_ptr();
   934         scval = new ConstantOopWriteValue(tp->is_oopptr()->const_oop()->constant_encoding());
   935       }
   937       OptoReg::Name box_reg = BoxLockNode::reg(box_node);
   938       Location basic_lock = Location::new_stk_loc(Location::normal,_regalloc->reg2offset(box_reg));
   939       bool eliminated = (box_node->is_BoxLock() && box_node->as_BoxLock()->is_eliminated());
   940       monarray->append(new MonitorValue(scval, basic_lock, eliminated));
   941     }
   943     // We dump the object pool first, since deoptimization reads it in first.
   944     debug_info()->dump_object_pool(objs);
   946     // Build first class objects to pass to scope
   947     DebugToken *locvals = debug_info()->create_scope_values(locarray);
   948     DebugToken *expvals = debug_info()->create_scope_values(exparray);
   949     DebugToken *monvals = debug_info()->create_monitor_values(monarray);
   951     // Make method available for all Safepoints
   952     ciMethod* scope_method = method ? method : _method;
   953     // Describe the scope here
   954     assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI");
   955     assert(!jvms->should_reexecute() || depth == max_depth, "reexecute allowed only for the youngest");
   956     // Now we can describe the scope.
   957     debug_info()->describe_scope(safepoint_pc_offset, scope_method, jvms->bci(), jvms->should_reexecute(), is_method_handle_invoke, return_oop, locvals, expvals, monvals);
   958   } // End jvms loop
   960   // Mark the end of the scope set.
   961   debug_info()->end_safepoint(safepoint_pc_offset);
   962 }
   966 // A simplified version of Process_OopMap_Node, to handle non-safepoints.
   967 class NonSafepointEmitter {
   968   Compile*  C;
   969   JVMState* _pending_jvms;
   970   int       _pending_offset;
   972   void emit_non_safepoint();
   974  public:
   975   NonSafepointEmitter(Compile* compile) {
   976     this->C = compile;
   977     _pending_jvms = NULL;
   978     _pending_offset = 0;
   979   }
   981   void observe_instruction(Node* n, int pc_offset) {
   982     if (!C->debug_info()->recording_non_safepoints())  return;
   984     Node_Notes* nn = C->node_notes_at(n->_idx);
   985     if (nn == NULL || nn->jvms() == NULL)  return;
   986     if (_pending_jvms != NULL &&
   987         _pending_jvms->same_calls_as(nn->jvms())) {
   988       // Repeated JVMS?  Stretch it up here.
   989       _pending_offset = pc_offset;
   990     } else {
   991       if (_pending_jvms != NULL &&
   992           _pending_offset < pc_offset) {
   993         emit_non_safepoint();
   994       }
   995       _pending_jvms = NULL;
   996       if (pc_offset > C->debug_info()->last_pc_offset()) {
   997         // This is the only way _pending_jvms can become non-NULL:
   998         _pending_jvms = nn->jvms();
   999         _pending_offset = pc_offset;
  1004   // Stay out of the way of real safepoints:
  1005   void observe_safepoint(JVMState* jvms, int pc_offset) {
  1006     if (_pending_jvms != NULL &&
  1007         !_pending_jvms->same_calls_as(jvms) &&
  1008         _pending_offset < pc_offset) {
  1009       emit_non_safepoint();
  1011     _pending_jvms = NULL;
  1014   void flush_at_end() {
  1015     if (_pending_jvms != NULL) {
  1016       emit_non_safepoint();
  1018     _pending_jvms = NULL;
  1020 };
  1022 void NonSafepointEmitter::emit_non_safepoint() {
  1023   JVMState* youngest_jvms = _pending_jvms;
  1024   int       pc_offset     = _pending_offset;
  1026   // Clear it now:
  1027   _pending_jvms = NULL;
  1029   DebugInformationRecorder* debug_info = C->debug_info();
  1030   assert(debug_info->recording_non_safepoints(), "sanity");
  1032   debug_info->add_non_safepoint(pc_offset);
  1033   int max_depth = youngest_jvms->depth();
  1035   // Visit scopes from oldest to youngest.
  1036   for (int depth = 1; depth <= max_depth; depth++) {
  1037     JVMState* jvms = youngest_jvms->of_depth(depth);
  1038     ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
  1039     assert(!jvms->should_reexecute() || depth==max_depth, "reexecute allowed only for the youngest");
  1040     debug_info->describe_scope(pc_offset, method, jvms->bci(), jvms->should_reexecute());
  1043   // Mark the end of the scope set.
  1044   debug_info->end_non_safepoint(pc_offset);
  1047 //------------------------------init_buffer------------------------------------
  1048 CodeBuffer* Compile::init_buffer(uint* blk_starts) {
  1050   // Set the initially allocated size
  1051   int  code_req   = initial_code_capacity;
  1052   int  locs_req   = initial_locs_capacity;
  1053   int  stub_req   = TraceJumps ? initial_stub_capacity * 10 : initial_stub_capacity;
  1054   int  const_req  = initial_const_capacity;
  1056   int  pad_req    = NativeCall::instruction_size;
  1057   // The extra spacing after the code is necessary on some platforms.
  1058   // Sometimes we need to patch in a jump after the last instruction,
  1059   // if the nmethod has been deoptimized.  (See 4932387, 4894843.)
  1061   // Compute the byte offset where we can store the deopt pc.
  1062   if (fixed_slots() != 0) {
  1063     _orig_pc_slot_offset_in_bytes = _regalloc->reg2offset(OptoReg::stack2reg(_orig_pc_slot));
  1066   // Compute prolog code size
  1067   _method_size = 0;
  1068   _frame_slots = OptoReg::reg2stack(_matcher->_old_SP)+_regalloc->_framesize;
  1069 #ifdef IA64
  1070   if (save_argument_registers()) {
  1071     // 4815101: this is a stub with implicit and unknown precision fp args.
  1072     // The usual spill mechanism can only generate stfd's in this case, which
  1073     // doesn't work if the fp reg to spill contains a single-precision denorm.
  1074     // Instead, we hack around the normal spill mechanism using stfspill's and
  1075     // ldffill's in the MachProlog and MachEpilog emit methods.  We allocate
  1076     // space here for the fp arg regs (f8-f15) we're going to thusly spill.
  1077     //
  1078     // If we ever implement 16-byte 'registers' == stack slots, we can
  1079     // get rid of this hack and have SpillCopy generate stfspill/ldffill
  1080     // instead of stfd/stfs/ldfd/ldfs.
  1081     _frame_slots += 8*(16/BytesPerInt);
  1083 #endif
  1084   assert(_frame_slots >= 0 && _frame_slots < 1000000, "sanity check");
  1086   if (has_mach_constant_base_node()) {
  1087     // Fill the constant table.
  1088     // Note:  This must happen before shorten_branches.
  1089     for (uint i = 0; i < _cfg->_num_blocks; i++) {
  1090       Block* b = _cfg->_blocks[i];
  1092       for (uint j = 0; j < b->_nodes.size(); j++) {
  1093         Node* n = b->_nodes[j];
  1095         // If the node is a MachConstantNode evaluate the constant
  1096         // value section.
  1097         if (n->is_MachConstant()) {
  1098           MachConstantNode* machcon = n->as_MachConstant();
  1099           machcon->eval_constant(C);
  1104     // Calculate the offsets of the constants and the size of the
  1105     // constant table (including the padding to the next section).
  1106     constant_table().calculate_offsets_and_size();
  1107     const_req = constant_table().size();
  1110   // Initialize the space for the BufferBlob used to find and verify
  1111   // instruction size in MachNode::emit_size()
  1112   init_scratch_buffer_blob(const_req);
  1113   if (failing())  return NULL; // Out of memory
  1115   // Pre-compute the length of blocks and replace
  1116   // long branches with short if machine supports it.
  1117   shorten_branches(blk_starts, code_req, locs_req, stub_req);
  1119   // nmethod and CodeBuffer count stubs & constants as part of method's code.
  1120   int exception_handler_req = size_exception_handler();
  1121   int deopt_handler_req = size_deopt_handler();
  1122   exception_handler_req += MAX_stubs_size; // add marginal slop for handler
  1123   deopt_handler_req += MAX_stubs_size; // add marginal slop for handler
  1124   stub_req += MAX_stubs_size;   // ensure per-stub margin
  1125   code_req += MAX_inst_size;    // ensure per-instruction margin
  1127   if (StressCodeBuffers)
  1128     code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10;  // force expansion
  1130   int total_req =
  1131     const_req +
  1132     code_req +
  1133     pad_req +
  1134     stub_req +
  1135     exception_handler_req +
  1136     deopt_handler_req;               // deopt handler
  1138   if (has_method_handle_invokes())
  1139     total_req += deopt_handler_req;  // deopt MH handler
  1141   CodeBuffer* cb = code_buffer();
  1142   cb->initialize(total_req, locs_req);
  1144   // Have we run out of code space?
  1145   if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
  1146     C->record_failure("CodeCache is full");
  1147     return NULL;
  1149   // Configure the code buffer.
  1150   cb->initialize_consts_size(const_req);
  1151   cb->initialize_stubs_size(stub_req);
  1152   cb->initialize_oop_recorder(env()->oop_recorder());
  1154   // fill in the nop array for bundling computations
  1155   MachNode *_nop_list[Bundle::_nop_count];
  1156   Bundle::initialize_nops(_nop_list, this);
  1158   return cb;
  1161 //------------------------------fill_buffer------------------------------------
  1162 void Compile::fill_buffer(CodeBuffer* cb, uint* blk_starts) {
  1163   // blk_starts[] contains offsets calculated during short branches processing,
  1164   // offsets should not be increased during following steps.
  1166   // Compute the size of first NumberOfLoopInstrToAlign instructions at head
  1167   // of a loop. It is used to determine the padding for loop alignment.
  1168   compute_loop_first_inst_sizes();
  1170   // Create oopmap set.
  1171   _oop_map_set = new OopMapSet();
  1173   // !!!!! This preserves old handling of oopmaps for now
  1174   debug_info()->set_oopmaps(_oop_map_set);
  1176   uint nblocks  = _cfg->_num_blocks;
  1177   // Count and start of implicit null check instructions
  1178   uint inct_cnt = 0;
  1179   uint *inct_starts = NEW_RESOURCE_ARRAY(uint, nblocks+1);
  1181   // Count and start of calls
  1182   uint *call_returns = NEW_RESOURCE_ARRAY(uint, nblocks+1);
  1184   uint  return_offset = 0;
  1185   int nop_size = (new (this) MachNopNode())->size(_regalloc);
  1187   int previous_offset = 0;
  1188   int current_offset  = 0;
  1189   int last_call_offset = -1;
  1190   int last_avoid_back_to_back_offset = -1;
  1191 #ifdef ASSERT
  1192   uint* jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks);
  1193   uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
  1194   uint* jmp_size   = NEW_RESOURCE_ARRAY(uint,nblocks);
  1195   uint* jmp_rule   = NEW_RESOURCE_ARRAY(uint,nblocks);
  1196 #endif
  1198   // Create an array of unused labels, one for each basic block, if printing is enabled
  1199 #ifndef PRODUCT
  1200   int *node_offsets      = NULL;
  1201   uint node_offset_limit = unique();
  1203   if (print_assembly())
  1204     node_offsets         = NEW_RESOURCE_ARRAY(int, node_offset_limit);
  1205 #endif
  1207   NonSafepointEmitter non_safepoints(this);  // emit non-safepoints lazily
  1209   // Emit the constant table.
  1210   if (has_mach_constant_base_node()) {
  1211     constant_table().emit(*cb);
  1214   // Create an array of labels, one for each basic block
  1215   Label *blk_labels = NEW_RESOURCE_ARRAY(Label, nblocks+1);
  1216   for (uint i=0; i <= nblocks; i++) {
  1217     blk_labels[i].init();
  1220   // ------------------
  1221   // Now fill in the code buffer
  1222   Node *delay_slot = NULL;
  1224   for (uint i=0; i < nblocks; i++) {
  1225     Block *b = _cfg->_blocks[i];
  1227     Node *head = b->head();
  1229     // If this block needs to start aligned (i.e, can be reached other
  1230     // than by falling-thru from the previous block), then force the
  1231     // start of a new bundle.
  1232     if (Pipeline::requires_bundling() && starts_bundle(head))
  1233       cb->flush_bundle(true);
  1235 #ifdef ASSERT
  1236     if (!b->is_connector()) {
  1237       stringStream st;
  1238       b->dump_head(&_cfg->_bbs, &st);
  1239       MacroAssembler(cb).block_comment(st.as_string());
  1241     jmp_target[i] = 0;
  1242     jmp_offset[i] = 0;
  1243     jmp_size[i]   = 0;
  1244     jmp_rule[i]   = 0;
  1245 #endif
  1246     int blk_offset = current_offset;
  1248     // Define the label at the beginning of the basic block
  1249     MacroAssembler(cb).bind(blk_labels[b->_pre_order]);
  1251     uint last_inst = b->_nodes.size();
  1253     // Emit block normally, except for last instruction.
  1254     // Emit means "dump code bits into code buffer".
  1255     for (uint j = 0; j<last_inst; j++) {
  1257       // Get the node
  1258       Node* n = b->_nodes[j];
  1260       // See if delay slots are supported
  1261       if (valid_bundle_info(n) &&
  1262           node_bundling(n)->used_in_unconditional_delay()) {
  1263         assert(delay_slot == NULL, "no use of delay slot node");
  1264         assert(n->size(_regalloc) == Pipeline::instr_unit_size(), "delay slot instruction wrong size");
  1266         delay_slot = n;
  1267         continue;
  1270       // If this starts a new instruction group, then flush the current one
  1271       // (but allow split bundles)
  1272       if (Pipeline::requires_bundling() && starts_bundle(n))
  1273         cb->flush_bundle(false);
  1275       // The following logic is duplicated in the code ifdeffed for
  1276       // ENABLE_ZAP_DEAD_LOCALS which appears above in this file.  It
  1277       // should be factored out.  Or maybe dispersed to the nodes?
  1279       // Special handling for SafePoint/Call Nodes
  1280       bool is_mcall = false;
  1281       if (n->is_Mach()) {
  1282         MachNode *mach = n->as_Mach();
  1283         is_mcall = n->is_MachCall();
  1284         bool is_sfn = n->is_MachSafePoint();
  1286         // If this requires all previous instructions be flushed, then do so
  1287         if (is_sfn || is_mcall || mach->alignment_required() != 1) {
  1288           cb->flush_bundle(true);
  1289           current_offset = cb->insts_size();
  1292         // A padding may be needed again since a previous instruction
  1293         // could be moved to delay slot.
  1295         // align the instruction if necessary
  1296         int padding = mach->compute_padding(current_offset);
  1297         // Make sure safepoint node for polling is distinct from a call's
  1298         // return by adding a nop if needed.
  1299         if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset) {
  1300           padding = nop_size;
  1302         if (padding == 0 && mach->avoid_back_to_back() &&
  1303             current_offset == last_avoid_back_to_back_offset) {
  1304           // Avoid back to back some instructions.
  1305           padding = nop_size;
  1308         if(padding > 0) {
  1309           assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
  1310           int nops_cnt = padding / nop_size;
  1311           MachNode *nop = new (this) MachNopNode(nops_cnt);
  1312           b->_nodes.insert(j++, nop);
  1313           last_inst++;
  1314           _cfg->_bbs.map( nop->_idx, b );
  1315           nop->emit(*cb, _regalloc);
  1316           cb->flush_bundle(true);
  1317           current_offset = cb->insts_size();
  1320         // Remember the start of the last call in a basic block
  1321         if (is_mcall) {
  1322           MachCallNode *mcall = mach->as_MachCall();
  1324           // This destination address is NOT PC-relative
  1325           mcall->method_set((intptr_t)mcall->entry_point());
  1327           // Save the return address
  1328           call_returns[b->_pre_order] = current_offset + mcall->ret_addr_offset();
  1330           if (mcall->is_MachCallLeaf()) {
  1331             is_mcall = false;
  1332             is_sfn = false;
  1336         // sfn will be valid whenever mcall is valid now because of inheritance
  1337         if (is_sfn || is_mcall) {
  1339           // Handle special safepoint nodes for synchronization
  1340           if (!is_mcall) {
  1341             MachSafePointNode *sfn = mach->as_MachSafePoint();
  1342             // !!!!! Stubs only need an oopmap right now, so bail out
  1343             if (sfn->jvms()->method() == NULL) {
  1344               // Write the oopmap directly to the code blob??!!
  1345 #             ifdef ENABLE_ZAP_DEAD_LOCALS
  1346               assert( !is_node_getting_a_safepoint(sfn),  "logic does not match; false positive");
  1347 #             endif
  1348               continue;
  1350           } // End synchronization
  1352           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
  1353                                            current_offset);
  1354           Process_OopMap_Node(mach, current_offset);
  1355         } // End if safepoint
  1357         // If this is a null check, then add the start of the previous instruction to the list
  1358         else if( mach->is_MachNullCheck() ) {
  1359           inct_starts[inct_cnt++] = previous_offset;
  1362         // If this is a branch, then fill in the label with the target BB's label
  1363         else if (mach->is_MachBranch()) {
  1364           // This requires the TRUE branch target be in succs[0]
  1365           uint block_num = b->non_connector_successor(0)->_pre_order;
  1367           // Try to replace long branch if delay slot is not used,
  1368           // it is mostly for back branches since forward branch's
  1369           // distance is not updated yet.
  1370           bool delay_slot_is_used = valid_bundle_info(n) &&
  1371                                     node_bundling(n)->use_unconditional_delay();
  1372           if (!delay_slot_is_used && mach->may_be_short_branch()) {
  1373            assert(delay_slot == NULL, "not expecting delay slot node");
  1374            int br_size = n->size(_regalloc);
  1375             int offset = blk_starts[block_num] - current_offset;
  1376             if (block_num >= i) {
  1377               // Current and following block's offset are not
  1378               // finilized yet, adjust distance by the difference
  1379               // between calculated and final offsets of current block.
  1380               offset -= (blk_starts[i] - blk_offset);
  1382             // In the following code a nop could be inserted before
  1383             // the branch which will increase the backward distance.
  1384             bool needs_padding = (current_offset == last_avoid_back_to_back_offset);
  1385             if (needs_padding && offset <= 0)
  1386               offset -= nop_size;
  1388             if (_matcher->is_short_branch_offset(mach->rule(), br_size, offset)) {
  1389               // We've got a winner.  Replace this branch.
  1390               MachNode* replacement = mach->as_MachBranch()->short_branch_version(this);
  1392               // Update the jmp_size.
  1393               int new_size = replacement->size(_regalloc);
  1394               assert((br_size - new_size) >= (int)nop_size, "short_branch size should be smaller");
  1395               // Insert padding between avoid_back_to_back branches.
  1396               if (needs_padding && replacement->avoid_back_to_back()) {
  1397                 MachNode *nop = new (this) MachNopNode();
  1398                 b->_nodes.insert(j++, nop);
  1399                 _cfg->_bbs.map(nop->_idx, b);
  1400                 last_inst++;
  1401                 nop->emit(*cb, _regalloc);
  1402                 cb->flush_bundle(true);
  1403                 current_offset = cb->insts_size();
  1405 #ifdef ASSERT
  1406               jmp_target[i] = block_num;
  1407               jmp_offset[i] = current_offset - blk_offset;
  1408               jmp_size[i]   = new_size;
  1409               jmp_rule[i]   = mach->rule();
  1410 #endif
  1411               b->_nodes.map(j, replacement);
  1412               mach->subsume_by(replacement, C);
  1413               n    = replacement;
  1414               mach = replacement;
  1417           mach->as_MachBranch()->label_set( &blk_labels[block_num], block_num );
  1418         } else if (mach->ideal_Opcode() == Op_Jump) {
  1419           for (uint h = 0; h < b->_num_succs; h++) {
  1420             Block* succs_block = b->_succs[h];
  1421             for (uint j = 1; j < succs_block->num_preds(); j++) {
  1422               Node* jpn = succs_block->pred(j);
  1423               if (jpn->is_JumpProj() && jpn->in(0) == mach) {
  1424                 uint block_num = succs_block->non_connector()->_pre_order;
  1425                 Label *blkLabel = &blk_labels[block_num];
  1426                 mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel);
  1432 #ifdef ASSERT
  1433         // Check that oop-store precedes the card-mark
  1434         else if (mach->ideal_Opcode() == Op_StoreCM) {
  1435           uint storeCM_idx = j;
  1436           int count = 0;
  1437           for (uint prec = mach->req(); prec < mach->len(); prec++) {
  1438             Node *oop_store = mach->in(prec);  // Precedence edge
  1439             if (oop_store == NULL) continue;
  1440             count++;
  1441             uint i4;
  1442             for( i4 = 0; i4 < last_inst; ++i4 ) {
  1443               if( b->_nodes[i4] == oop_store ) break;
  1445             // Note: This test can provide a false failure if other precedence
  1446             // edges have been added to the storeCMNode.
  1447             assert( i4 == last_inst || i4 < storeCM_idx, "CM card-mark executes before oop-store");
  1449           assert(count > 0, "storeCM expects at least one precedence edge");
  1451 #endif
  1453         else if (!n->is_Proj()) {
  1454           // Remember the beginning of the previous instruction, in case
  1455           // it's followed by a flag-kill and a null-check.  Happens on
  1456           // Intel all the time, with add-to-memory kind of opcodes.
  1457           previous_offset = current_offset;
  1461       // Verify that there is sufficient space remaining
  1462       cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
  1463       if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
  1464         C->record_failure("CodeCache is full");
  1465         return;
  1468       // Save the offset for the listing
  1469 #ifndef PRODUCT
  1470       if (node_offsets && n->_idx < node_offset_limit)
  1471         node_offsets[n->_idx] = cb->insts_size();
  1472 #endif
  1474       // "Normal" instruction case
  1475       DEBUG_ONLY( uint instr_offset = cb->insts_size(); )
  1476       n->emit(*cb, _regalloc);
  1477       current_offset  = cb->insts_size();
  1479 #ifdef ASSERT
  1480       if (n->size(_regalloc) < (current_offset-instr_offset)) {
  1481         n->dump();
  1482         assert(false, "wrong size of mach node");
  1484 #endif
  1485       non_safepoints.observe_instruction(n, current_offset);
  1487       // mcall is last "call" that can be a safepoint
  1488       // record it so we can see if a poll will directly follow it
  1489       // in which case we'll need a pad to make the PcDesc sites unique
  1490       // see  5010568. This can be slightly inaccurate but conservative
  1491       // in the case that return address is not actually at current_offset.
  1492       // This is a small price to pay.
  1494       if (is_mcall) {
  1495         last_call_offset = current_offset;
  1498       if (n->is_Mach() && n->as_Mach()->avoid_back_to_back()) {
  1499         // Avoid back to back some instructions.
  1500         last_avoid_back_to_back_offset = current_offset;
  1503       // See if this instruction has a delay slot
  1504       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
  1505         assert(delay_slot != NULL, "expecting delay slot node");
  1507         // Back up 1 instruction
  1508         cb->set_insts_end(cb->insts_end() - Pipeline::instr_unit_size());
  1510         // Save the offset for the listing
  1511 #ifndef PRODUCT
  1512         if (node_offsets && delay_slot->_idx < node_offset_limit)
  1513           node_offsets[delay_slot->_idx] = cb->insts_size();
  1514 #endif
  1516         // Support a SafePoint in the delay slot
  1517         if (delay_slot->is_MachSafePoint()) {
  1518           MachNode *mach = delay_slot->as_Mach();
  1519           // !!!!! Stubs only need an oopmap right now, so bail out
  1520           if (!mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == NULL) {
  1521             // Write the oopmap directly to the code blob??!!
  1522 #           ifdef ENABLE_ZAP_DEAD_LOCALS
  1523             assert( !is_node_getting_a_safepoint(mach),  "logic does not match; false positive");
  1524 #           endif
  1525             delay_slot = NULL;
  1526             continue;
  1529           int adjusted_offset = current_offset - Pipeline::instr_unit_size();
  1530           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
  1531                                            adjusted_offset);
  1532           // Generate an OopMap entry
  1533           Process_OopMap_Node(mach, adjusted_offset);
  1536         // Insert the delay slot instruction
  1537         delay_slot->emit(*cb, _regalloc);
  1539         // Don't reuse it
  1540         delay_slot = NULL;
  1543     } // End for all instructions in block
  1545     // If the next block is the top of a loop, pad this block out to align
  1546     // the loop top a little. Helps prevent pipe stalls at loop back branches.
  1547     if (i < nblocks-1) {
  1548       Block *nb = _cfg->_blocks[i+1];
  1549       int padding = nb->alignment_padding(current_offset);
  1550       if( padding > 0 ) {
  1551         MachNode *nop = new (this) MachNopNode(padding / nop_size);
  1552         b->_nodes.insert( b->_nodes.size(), nop );
  1553         _cfg->_bbs.map( nop->_idx, b );
  1554         nop->emit(*cb, _regalloc);
  1555         current_offset = cb->insts_size();
  1558     // Verify that the distance for generated before forward
  1559     // short branches is still valid.
  1560     guarantee((int)(blk_starts[i+1] - blk_starts[i]) >= (current_offset - blk_offset), "shouldn't increase block size");
  1562     // Save new block start offset
  1563     blk_starts[i] = blk_offset;
  1564   } // End of for all blocks
  1565   blk_starts[nblocks] = current_offset;
  1567   non_safepoints.flush_at_end();
  1569   // Offset too large?
  1570   if (failing())  return;
  1572   // Define a pseudo-label at the end of the code
  1573   MacroAssembler(cb).bind( blk_labels[nblocks] );
  1575   // Compute the size of the first block
  1576   _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos();
  1578   assert(cb->insts_size() < 500000, "method is unreasonably large");
  1580 #ifdef ASSERT
  1581   for (uint i = 0; i < nblocks; i++) { // For all blocks
  1582     if (jmp_target[i] != 0) {
  1583       int br_size = jmp_size[i];
  1584       int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
  1585       if (!_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
  1586         tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
  1587         assert(false, "Displacement too large for short jmp");
  1591 #endif
  1593   // ------------------
  1595 #ifndef PRODUCT
  1596   // Information on the size of the method, without the extraneous code
  1597   Scheduling::increment_method_size(cb->insts_size());
  1598 #endif
  1600   // ------------------
  1601   // Fill in exception table entries.
  1602   FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels);
  1604   // Only java methods have exception handlers and deopt handlers
  1605   if (_method) {
  1606     // Emit the exception handler code.
  1607     _code_offsets.set_value(CodeOffsets::Exceptions, emit_exception_handler(*cb));
  1608     // Emit the deopt handler code.
  1609     _code_offsets.set_value(CodeOffsets::Deopt, emit_deopt_handler(*cb));
  1611     // Emit the MethodHandle deopt handler code (if required).
  1612     if (has_method_handle_invokes()) {
  1613       // We can use the same code as for the normal deopt handler, we
  1614       // just need a different entry point address.
  1615       _code_offsets.set_value(CodeOffsets::DeoptMH, emit_deopt_handler(*cb));
  1619   // One last check for failed CodeBuffer::expand:
  1620   if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
  1621     C->record_failure("CodeCache is full");
  1622     return;
  1625 #ifndef PRODUCT
  1626   // Dump the assembly code, including basic-block numbers
  1627   if (print_assembly()) {
  1628     ttyLocker ttyl;  // keep the following output all in one block
  1629     if (!VMThread::should_terminate()) {  // test this under the tty lock
  1630       // This output goes directly to the tty, not the compiler log.
  1631       // To enable tools to match it up with the compilation activity,
  1632       // be sure to tag this tty output with the compile ID.
  1633       if (xtty != NULL) {
  1634         xtty->head("opto_assembly compile_id='%d'%s", compile_id(),
  1635                    is_osr_compilation()    ? " compile_kind='osr'" :
  1636                    "");
  1638       if (method() != NULL) {
  1639         method()->print_metadata();
  1641       dump_asm(node_offsets, node_offset_limit);
  1642       if (xtty != NULL) {
  1643         xtty->tail("opto_assembly");
  1647 #endif
  1651 void Compile::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) {
  1652   _inc_table.set_size(cnt);
  1654   uint inct_cnt = 0;
  1655   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
  1656     Block *b = _cfg->_blocks[i];
  1657     Node *n = NULL;
  1658     int j;
  1660     // Find the branch; ignore trailing NOPs.
  1661     for( j = b->_nodes.size()-1; j>=0; j-- ) {
  1662       n = b->_nodes[j];
  1663       if( !n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con )
  1664         break;
  1667     // If we didn't find anything, continue
  1668     if( j < 0 ) continue;
  1670     // Compute ExceptionHandlerTable subtable entry and add it
  1671     // (skip empty blocks)
  1672     if( n->is_Catch() ) {
  1674       // Get the offset of the return from the call
  1675       uint call_return = call_returns[b->_pre_order];
  1676 #ifdef ASSERT
  1677       assert( call_return > 0, "no call seen for this basic block" );
  1678       while( b->_nodes[--j]->is_MachProj() ) ;
  1679       assert( b->_nodes[j]->is_MachCall(), "CatchProj must follow call" );
  1680 #endif
  1681       // last instruction is a CatchNode, find it's CatchProjNodes
  1682       int nof_succs = b->_num_succs;
  1683       // allocate space
  1684       GrowableArray<intptr_t> handler_bcis(nof_succs);
  1685       GrowableArray<intptr_t> handler_pcos(nof_succs);
  1686       // iterate through all successors
  1687       for (int j = 0; j < nof_succs; j++) {
  1688         Block* s = b->_succs[j];
  1689         bool found_p = false;
  1690         for( uint k = 1; k < s->num_preds(); k++ ) {
  1691           Node *pk = s->pred(k);
  1692           if( pk->is_CatchProj() && pk->in(0) == n ) {
  1693             const CatchProjNode* p = pk->as_CatchProj();
  1694             found_p = true;
  1695             // add the corresponding handler bci & pco information
  1696             if( p->_con != CatchProjNode::fall_through_index ) {
  1697               // p leads to an exception handler (and is not fall through)
  1698               assert(s == _cfg->_blocks[s->_pre_order],"bad numbering");
  1699               // no duplicates, please
  1700               if( !handler_bcis.contains(p->handler_bci()) ) {
  1701                 uint block_num = s->non_connector()->_pre_order;
  1702                 handler_bcis.append(p->handler_bci());
  1703                 handler_pcos.append(blk_labels[block_num].loc_pos());
  1708         assert(found_p, "no matching predecessor found");
  1709         // Note:  Due to empty block removal, one block may have
  1710         // several CatchProj inputs, from the same Catch.
  1713       // Set the offset of the return from the call
  1714       _handler_table.add_subtable(call_return, &handler_bcis, NULL, &handler_pcos);
  1715       continue;
  1718     // Handle implicit null exception table updates
  1719     if( n->is_MachNullCheck() ) {
  1720       uint block_num = b->non_connector_successor(0)->_pre_order;
  1721       _inc_table.append( inct_starts[inct_cnt++], blk_labels[block_num].loc_pos() );
  1722       continue;
  1724   } // End of for all blocks fill in exception table entries
  1727 // Static Variables
  1728 #ifndef PRODUCT
  1729 uint Scheduling::_total_nop_size = 0;
  1730 uint Scheduling::_total_method_size = 0;
  1731 uint Scheduling::_total_branches = 0;
  1732 uint Scheduling::_total_unconditional_delays = 0;
  1733 uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1];
  1734 #endif
  1736 // Initializer for class Scheduling
  1738 Scheduling::Scheduling(Arena *arena, Compile &compile)
  1739   : _arena(arena),
  1740     _cfg(compile.cfg()),
  1741     _bbs(compile.cfg()->_bbs),
  1742     _regalloc(compile.regalloc()),
  1743     _reg_node(arena),
  1744     _bundle_instr_count(0),
  1745     _bundle_cycle_number(0),
  1746     _scheduled(arena),
  1747     _available(arena),
  1748     _next_node(NULL),
  1749     _bundle_use(0, 0, resource_count, &_bundle_use_elements[0]),
  1750     _pinch_free_list(arena)
  1751 #ifndef PRODUCT
  1752   , _branches(0)
  1753   , _unconditional_delays(0)
  1754 #endif
  1756   // Create a MachNopNode
  1757   _nop = new (&compile) MachNopNode();
  1759   // Now that the nops are in the array, save the count
  1760   // (but allow entries for the nops)
  1761   _node_bundling_limit = compile.unique();
  1762   uint node_max = _regalloc->node_regs_max_index();
  1764   compile.set_node_bundling_limit(_node_bundling_limit);
  1766   // This one is persistent within the Compile class
  1767   _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max);
  1769   // Allocate space for fixed-size arrays
  1770   _node_latency    = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
  1771   _uses            = NEW_ARENA_ARRAY(arena, short,          node_max);
  1772   _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
  1774   // Clear the arrays
  1775   memset(_node_bundling_base, 0, node_max * sizeof(Bundle));
  1776   memset(_node_latency,       0, node_max * sizeof(unsigned short));
  1777   memset(_uses,               0, node_max * sizeof(short));
  1778   memset(_current_latency,    0, node_max * sizeof(unsigned short));
  1780   // Clear the bundling information
  1781   memcpy(_bundle_use_elements,
  1782     Pipeline_Use::elaborated_elements,
  1783     sizeof(Pipeline_Use::elaborated_elements));
  1785   // Get the last node
  1786   Block *bb = _cfg->_blocks[_cfg->_blocks.size()-1];
  1788   _next_node = bb->_nodes[bb->_nodes.size()-1];
  1791 #ifndef PRODUCT
  1792 // Scheduling destructor
  1793 Scheduling::~Scheduling() {
  1794   _total_branches             += _branches;
  1795   _total_unconditional_delays += _unconditional_delays;
  1797 #endif
  1799 // Step ahead "i" cycles
  1800 void Scheduling::step(uint i) {
  1802   Bundle *bundle = node_bundling(_next_node);
  1803   bundle->set_starts_bundle();
  1805   // Update the bundle record, but leave the flags information alone
  1806   if (_bundle_instr_count > 0) {
  1807     bundle->set_instr_count(_bundle_instr_count);
  1808     bundle->set_resources_used(_bundle_use.resourcesUsed());
  1811   // Update the state information
  1812   _bundle_instr_count = 0;
  1813   _bundle_cycle_number += i;
  1814   _bundle_use.step(i);
  1817 void Scheduling::step_and_clear() {
  1818   Bundle *bundle = node_bundling(_next_node);
  1819   bundle->set_starts_bundle();
  1821   // Update the bundle record
  1822   if (_bundle_instr_count > 0) {
  1823     bundle->set_instr_count(_bundle_instr_count);
  1824     bundle->set_resources_used(_bundle_use.resourcesUsed());
  1826     _bundle_cycle_number += 1;
  1829   // Clear the bundling information
  1830   _bundle_instr_count = 0;
  1831   _bundle_use.reset();
  1833   memcpy(_bundle_use_elements,
  1834     Pipeline_Use::elaborated_elements,
  1835     sizeof(Pipeline_Use::elaborated_elements));
  1838 //------------------------------ScheduleAndBundle------------------------------
  1839 // Perform instruction scheduling and bundling over the sequence of
  1840 // instructions in backwards order.
  1841 void Compile::ScheduleAndBundle() {
  1843   // Don't optimize this if it isn't a method
  1844   if (!_method)
  1845     return;
  1847   // Don't optimize this if scheduling is disabled
  1848   if (!do_scheduling())
  1849     return;
  1851   // Scheduling code works only with pairs (8 bytes) maximum.
  1852   if (max_vector_size() > 8)
  1853     return;
  1855   NOT_PRODUCT( TracePhase t2("isched", &_t_instrSched, TimeCompiler); )
  1857   // Create a data structure for all the scheduling information
  1858   Scheduling scheduling(Thread::current()->resource_area(), *this);
  1860   // Walk backwards over each basic block, computing the needed alignment
  1861   // Walk over all the basic blocks
  1862   scheduling.DoScheduling();
  1865 //------------------------------ComputeLocalLatenciesForward-------------------
  1866 // Compute the latency of all the instructions.  This is fairly simple,
  1867 // because we already have a legal ordering.  Walk over the instructions
  1868 // from first to last, and compute the latency of the instruction based
  1869 // on the latency of the preceding instruction(s).
  1870 void Scheduling::ComputeLocalLatenciesForward(const Block *bb) {
  1871 #ifndef PRODUCT
  1872   if (_cfg->C->trace_opto_output())
  1873     tty->print("# -> ComputeLocalLatenciesForward\n");
  1874 #endif
  1876   // Walk over all the schedulable instructions
  1877   for( uint j=_bb_start; j < _bb_end; j++ ) {
  1879     // This is a kludge, forcing all latency calculations to start at 1.
  1880     // Used to allow latency 0 to force an instruction to the beginning
  1881     // of the bb
  1882     uint latency = 1;
  1883     Node *use = bb->_nodes[j];
  1884     uint nlen = use->len();
  1886     // Walk over all the inputs
  1887     for ( uint k=0; k < nlen; k++ ) {
  1888       Node *def = use->in(k);
  1889       if (!def)
  1890         continue;
  1892       uint l = _node_latency[def->_idx] + use->latency(k);
  1893       if (latency < l)
  1894         latency = l;
  1897     _node_latency[use->_idx] = latency;
  1899 #ifndef PRODUCT
  1900     if (_cfg->C->trace_opto_output()) {
  1901       tty->print("# latency %4d: ", latency);
  1902       use->dump();
  1904 #endif
  1907 #ifndef PRODUCT
  1908   if (_cfg->C->trace_opto_output())
  1909     tty->print("# <- ComputeLocalLatenciesForward\n");
  1910 #endif
  1912 } // end ComputeLocalLatenciesForward
  1914 // See if this node fits into the present instruction bundle
  1915 bool Scheduling::NodeFitsInBundle(Node *n) {
  1916   uint n_idx = n->_idx;
  1918   // If this is the unconditional delay instruction, then it fits
  1919   if (n == _unconditional_delay_slot) {
  1920 #ifndef PRODUCT
  1921     if (_cfg->C->trace_opto_output())
  1922       tty->print("#     NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx);
  1923 #endif
  1924     return (true);
  1927   // If the node cannot be scheduled this cycle, skip it
  1928   if (_current_latency[n_idx] > _bundle_cycle_number) {
  1929 #ifndef PRODUCT
  1930     if (_cfg->C->trace_opto_output())
  1931       tty->print("#     NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n",
  1932         n->_idx, _current_latency[n_idx], _bundle_cycle_number);
  1933 #endif
  1934     return (false);
  1937   const Pipeline *node_pipeline = n->pipeline();
  1939   uint instruction_count = node_pipeline->instructionCount();
  1940   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
  1941     instruction_count = 0;
  1942   else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
  1943     instruction_count++;
  1945   if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) {
  1946 #ifndef PRODUCT
  1947     if (_cfg->C->trace_opto_output())
  1948       tty->print("#     NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n",
  1949         n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle);
  1950 #endif
  1951     return (false);
  1954   // Don't allow non-machine nodes to be handled this way
  1955   if (!n->is_Mach() && instruction_count == 0)
  1956     return (false);
  1958   // See if there is any overlap
  1959   uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse());
  1961   if (delay > 0) {
  1962 #ifndef PRODUCT
  1963     if (_cfg->C->trace_opto_output())
  1964       tty->print("#     NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx);
  1965 #endif
  1966     return false;
  1969 #ifndef PRODUCT
  1970   if (_cfg->C->trace_opto_output())
  1971     tty->print("#     NodeFitsInBundle [%4d]:  TRUE\n", n_idx);
  1972 #endif
  1974   return true;
  1977 Node * Scheduling::ChooseNodeToBundle() {
  1978   uint siz = _available.size();
  1980   if (siz == 0) {
  1982 #ifndef PRODUCT
  1983     if (_cfg->C->trace_opto_output())
  1984       tty->print("#   ChooseNodeToBundle: NULL\n");
  1985 #endif
  1986     return (NULL);
  1989   // Fast path, if only 1 instruction in the bundle
  1990   if (siz == 1) {
  1991 #ifndef PRODUCT
  1992     if (_cfg->C->trace_opto_output()) {
  1993       tty->print("#   ChooseNodeToBundle (only 1): ");
  1994       _available[0]->dump();
  1996 #endif
  1997     return (_available[0]);
  2000   // Don't bother, if the bundle is already full
  2001   if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) {
  2002     for ( uint i = 0; i < siz; i++ ) {
  2003       Node *n = _available[i];
  2005       // Skip projections, we'll handle them another way
  2006       if (n->is_Proj())
  2007         continue;
  2009       // This presupposed that instructions are inserted into the
  2010       // available list in a legality order; i.e. instructions that
  2011       // must be inserted first are at the head of the list
  2012       if (NodeFitsInBundle(n)) {
  2013 #ifndef PRODUCT
  2014         if (_cfg->C->trace_opto_output()) {
  2015           tty->print("#   ChooseNodeToBundle: ");
  2016           n->dump();
  2018 #endif
  2019         return (n);
  2024   // Nothing fits in this bundle, choose the highest priority
  2025 #ifndef PRODUCT
  2026   if (_cfg->C->trace_opto_output()) {
  2027     tty->print("#   ChooseNodeToBundle: ");
  2028     _available[0]->dump();
  2030 #endif
  2032   return _available[0];
  2035 //------------------------------AddNodeToAvailableList-------------------------
  2036 void Scheduling::AddNodeToAvailableList(Node *n) {
  2037   assert( !n->is_Proj(), "projections never directly made available" );
  2038 #ifndef PRODUCT
  2039   if (_cfg->C->trace_opto_output()) {
  2040     tty->print("#   AddNodeToAvailableList: ");
  2041     n->dump();
  2043 #endif
  2045   int latency = _current_latency[n->_idx];
  2047   // Insert in latency order (insertion sort)
  2048   uint i;
  2049   for ( i=0; i < _available.size(); i++ )
  2050     if (_current_latency[_available[i]->_idx] > latency)
  2051       break;
  2053   // Special Check for compares following branches
  2054   if( n->is_Mach() && _scheduled.size() > 0 ) {
  2055     int op = n->as_Mach()->ideal_Opcode();
  2056     Node *last = _scheduled[0];
  2057     if( last->is_MachIf() && last->in(1) == n &&
  2058         ( op == Op_CmpI ||
  2059           op == Op_CmpU ||
  2060           op == Op_CmpP ||
  2061           op == Op_CmpF ||
  2062           op == Op_CmpD ||
  2063           op == Op_CmpL ) ) {
  2065       // Recalculate position, moving to front of same latency
  2066       for ( i=0 ; i < _available.size(); i++ )
  2067         if (_current_latency[_available[i]->_idx] >= latency)
  2068           break;
  2072   // Insert the node in the available list
  2073   _available.insert(i, n);
  2075 #ifndef PRODUCT
  2076   if (_cfg->C->trace_opto_output())
  2077     dump_available();
  2078 #endif
  2081 //------------------------------DecrementUseCounts-----------------------------
  2082 void Scheduling::DecrementUseCounts(Node *n, const Block *bb) {
  2083   for ( uint i=0; i < n->len(); i++ ) {
  2084     Node *def = n->in(i);
  2085     if (!def) continue;
  2086     if( def->is_Proj() )        // If this is a machine projection, then
  2087       def = def->in(0);         // propagate usage thru to the base instruction
  2089     if( _bbs[def->_idx] != bb ) // Ignore if not block-local
  2090       continue;
  2092     // Compute the latency
  2093     uint l = _bundle_cycle_number + n->latency(i);
  2094     if (_current_latency[def->_idx] < l)
  2095       _current_latency[def->_idx] = l;
  2097     // If this does not have uses then schedule it
  2098     if ((--_uses[def->_idx]) == 0)
  2099       AddNodeToAvailableList(def);
  2103 //------------------------------AddNodeToBundle--------------------------------
  2104 void Scheduling::AddNodeToBundle(Node *n, const Block *bb) {
  2105 #ifndef PRODUCT
  2106   if (_cfg->C->trace_opto_output()) {
  2107     tty->print("#   AddNodeToBundle: ");
  2108     n->dump();
  2110 #endif
  2112   // Remove this from the available list
  2113   uint i;
  2114   for (i = 0; i < _available.size(); i++)
  2115     if (_available[i] == n)
  2116       break;
  2117   assert(i < _available.size(), "entry in _available list not found");
  2118   _available.remove(i);
  2120   // See if this fits in the current bundle
  2121   const Pipeline *node_pipeline = n->pipeline();
  2122   const Pipeline_Use& node_usage = node_pipeline->resourceUse();
  2124   // Check for instructions to be placed in the delay slot. We
  2125   // do this before we actually schedule the current instruction,
  2126   // because the delay slot follows the current instruction.
  2127   if (Pipeline::_branch_has_delay_slot &&
  2128       node_pipeline->hasBranchDelay() &&
  2129       !_unconditional_delay_slot) {
  2131     uint siz = _available.size();
  2133     // Conditional branches can support an instruction that
  2134     // is unconditionally executed and not dependent by the
  2135     // branch, OR a conditionally executed instruction if
  2136     // the branch is taken.  In practice, this means that
  2137     // the first instruction at the branch target is
  2138     // copied to the delay slot, and the branch goes to
  2139     // the instruction after that at the branch target
  2140     if ( n->is_MachBranch() ) {
  2142       assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" );
  2143       assert( !n->is_Catch(),         "should not look for delay slot for Catch" );
  2145 #ifndef PRODUCT
  2146       _branches++;
  2147 #endif
  2149       // At least 1 instruction is on the available list
  2150       // that is not dependent on the branch
  2151       for (uint i = 0; i < siz; i++) {
  2152         Node *d = _available[i];
  2153         const Pipeline *avail_pipeline = d->pipeline();
  2155         // Don't allow safepoints in the branch shadow, that will
  2156         // cause a number of difficulties
  2157         if ( avail_pipeline->instructionCount() == 1 &&
  2158             !avail_pipeline->hasMultipleBundles() &&
  2159             !avail_pipeline->hasBranchDelay() &&
  2160             Pipeline::instr_has_unit_size() &&
  2161             d->size(_regalloc) == Pipeline::instr_unit_size() &&
  2162             NodeFitsInBundle(d) &&
  2163             !node_bundling(d)->used_in_delay()) {
  2165           if (d->is_Mach() && !d->is_MachSafePoint()) {
  2166             // A node that fits in the delay slot was found, so we need to
  2167             // set the appropriate bits in the bundle pipeline information so
  2168             // that it correctly indicates resource usage.  Later, when we
  2169             // attempt to add this instruction to the bundle, we will skip
  2170             // setting the resource usage.
  2171             _unconditional_delay_slot = d;
  2172             node_bundling(n)->set_use_unconditional_delay();
  2173             node_bundling(d)->set_used_in_unconditional_delay();
  2174             _bundle_use.add_usage(avail_pipeline->resourceUse());
  2175             _current_latency[d->_idx] = _bundle_cycle_number;
  2176             _next_node = d;
  2177             ++_bundle_instr_count;
  2178 #ifndef PRODUCT
  2179             _unconditional_delays++;
  2180 #endif
  2181             break;
  2187     // No delay slot, add a nop to the usage
  2188     if (!_unconditional_delay_slot) {
  2189       // See if adding an instruction in the delay slot will overflow
  2190       // the bundle.
  2191       if (!NodeFitsInBundle(_nop)) {
  2192 #ifndef PRODUCT
  2193         if (_cfg->C->trace_opto_output())
  2194           tty->print("#  *** STEP(1 instruction for delay slot) ***\n");
  2195 #endif
  2196         step(1);
  2199       _bundle_use.add_usage(_nop->pipeline()->resourceUse());
  2200       _next_node = _nop;
  2201       ++_bundle_instr_count;
  2204     // See if the instruction in the delay slot requires a
  2205     // step of the bundles
  2206     if (!NodeFitsInBundle(n)) {
  2207 #ifndef PRODUCT
  2208         if (_cfg->C->trace_opto_output())
  2209           tty->print("#  *** STEP(branch won't fit) ***\n");
  2210 #endif
  2211         // Update the state information
  2212         _bundle_instr_count = 0;
  2213         _bundle_cycle_number += 1;
  2214         _bundle_use.step(1);
  2218   // Get the number of instructions
  2219   uint instruction_count = node_pipeline->instructionCount();
  2220   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
  2221     instruction_count = 0;
  2223   // Compute the latency information
  2224   uint delay = 0;
  2226   if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) {
  2227     int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number;
  2228     if (relative_latency < 0)
  2229       relative_latency = 0;
  2231     delay = _bundle_use.full_latency(relative_latency, node_usage);
  2233     // Does not fit in this bundle, start a new one
  2234     if (delay > 0) {
  2235       step(delay);
  2237 #ifndef PRODUCT
  2238       if (_cfg->C->trace_opto_output())
  2239         tty->print("#  *** STEP(%d) ***\n", delay);
  2240 #endif
  2244   // If this was placed in the delay slot, ignore it
  2245   if (n != _unconditional_delay_slot) {
  2247     if (delay == 0) {
  2248       if (node_pipeline->hasMultipleBundles()) {
  2249 #ifndef PRODUCT
  2250         if (_cfg->C->trace_opto_output())
  2251           tty->print("#  *** STEP(multiple instructions) ***\n");
  2252 #endif
  2253         step(1);
  2256       else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) {
  2257 #ifndef PRODUCT
  2258         if (_cfg->C->trace_opto_output())
  2259           tty->print("#  *** STEP(%d >= %d instructions) ***\n",
  2260             instruction_count + _bundle_instr_count,
  2261             Pipeline::_max_instrs_per_cycle);
  2262 #endif
  2263         step(1);
  2267     if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
  2268       _bundle_instr_count++;
  2270     // Set the node's latency
  2271     _current_latency[n->_idx] = _bundle_cycle_number;
  2273     // Now merge the functional unit information
  2274     if (instruction_count > 0 || !node_pipeline->mayHaveNoCode())
  2275       _bundle_use.add_usage(node_usage);
  2277     // Increment the number of instructions in this bundle
  2278     _bundle_instr_count += instruction_count;
  2280     // Remember this node for later
  2281     if (n->is_Mach())
  2282       _next_node = n;
  2285   // It's possible to have a BoxLock in the graph and in the _bbs mapping but
  2286   // not in the bb->_nodes array.  This happens for debug-info-only BoxLocks.
  2287   // 'Schedule' them (basically ignore in the schedule) but do not insert them
  2288   // into the block.  All other scheduled nodes get put in the schedule here.
  2289   int op = n->Opcode();
  2290   if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR
  2291       (op != Op_Node &&         // Not an unused antidepedence node and
  2292        // not an unallocated boxlock
  2293        (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) {
  2295     // Push any trailing projections
  2296     if( bb->_nodes[bb->_nodes.size()-1] != n ) {
  2297       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  2298         Node *foi = n->fast_out(i);
  2299         if( foi->is_Proj() )
  2300           _scheduled.push(foi);
  2304     // Put the instruction in the schedule list
  2305     _scheduled.push(n);
  2308 #ifndef PRODUCT
  2309   if (_cfg->C->trace_opto_output())
  2310     dump_available();
  2311 #endif
  2313   // Walk all the definitions, decrementing use counts, and
  2314   // if a definition has a 0 use count, place it in the available list.
  2315   DecrementUseCounts(n,bb);
  2318 //------------------------------ComputeUseCount--------------------------------
  2319 // This method sets the use count within a basic block.  We will ignore all
  2320 // uses outside the current basic block.  As we are doing a backwards walk,
  2321 // any node we reach that has a use count of 0 may be scheduled.  This also
  2322 // avoids the problem of cyclic references from phi nodes, as long as phi
  2323 // nodes are at the front of the basic block.  This method also initializes
  2324 // the available list to the set of instructions that have no uses within this
  2325 // basic block.
  2326 void Scheduling::ComputeUseCount(const Block *bb) {
  2327 #ifndef PRODUCT
  2328   if (_cfg->C->trace_opto_output())
  2329     tty->print("# -> ComputeUseCount\n");
  2330 #endif
  2332   // Clear the list of available and scheduled instructions, just in case
  2333   _available.clear();
  2334   _scheduled.clear();
  2336   // No delay slot specified
  2337   _unconditional_delay_slot = NULL;
  2339 #ifdef ASSERT
  2340   for( uint i=0; i < bb->_nodes.size(); i++ )
  2341     assert( _uses[bb->_nodes[i]->_idx] == 0, "_use array not clean" );
  2342 #endif
  2344   // Force the _uses count to never go to zero for unscheduable pieces
  2345   // of the block
  2346   for( uint k = 0; k < _bb_start; k++ )
  2347     _uses[bb->_nodes[k]->_idx] = 1;
  2348   for( uint l = _bb_end; l < bb->_nodes.size(); l++ )
  2349     _uses[bb->_nodes[l]->_idx] = 1;
  2351   // Iterate backwards over the instructions in the block.  Don't count the
  2352   // branch projections at end or the block header instructions.
  2353   for( uint j = _bb_end-1; j >= _bb_start; j-- ) {
  2354     Node *n = bb->_nodes[j];
  2355     if( n->is_Proj() ) continue; // Projections handled another way
  2357     // Account for all uses
  2358     for ( uint k = 0; k < n->len(); k++ ) {
  2359       Node *inp = n->in(k);
  2360       if (!inp) continue;
  2361       assert(inp != n, "no cycles allowed" );
  2362       if( _bbs[inp->_idx] == bb ) { // Block-local use?
  2363         if( inp->is_Proj() )    // Skip through Proj's
  2364           inp = inp->in(0);
  2365         ++_uses[inp->_idx];     // Count 1 block-local use
  2369     // If this instruction has a 0 use count, then it is available
  2370     if (!_uses[n->_idx]) {
  2371       _current_latency[n->_idx] = _bundle_cycle_number;
  2372       AddNodeToAvailableList(n);
  2375 #ifndef PRODUCT
  2376     if (_cfg->C->trace_opto_output()) {
  2377       tty->print("#   uses: %3d: ", _uses[n->_idx]);
  2378       n->dump();
  2380 #endif
  2383 #ifndef PRODUCT
  2384   if (_cfg->C->trace_opto_output())
  2385     tty->print("# <- ComputeUseCount\n");
  2386 #endif
  2389 // This routine performs scheduling on each basic block in reverse order,
  2390 // using instruction latencies and taking into account function unit
  2391 // availability.
  2392 void Scheduling::DoScheduling() {
  2393 #ifndef PRODUCT
  2394   if (_cfg->C->trace_opto_output())
  2395     tty->print("# -> DoScheduling\n");
  2396 #endif
  2398   Block *succ_bb = NULL;
  2399   Block *bb;
  2401   // Walk over all the basic blocks in reverse order
  2402   for( int i=_cfg->_num_blocks-1; i >= 0; succ_bb = bb, i-- ) {
  2403     bb = _cfg->_blocks[i];
  2405 #ifndef PRODUCT
  2406     if (_cfg->C->trace_opto_output()) {
  2407       tty->print("#  Schedule BB#%03d (initial)\n", i);
  2408       for (uint j = 0; j < bb->_nodes.size(); j++)
  2409         bb->_nodes[j]->dump();
  2411 #endif
  2413     // On the head node, skip processing
  2414     if( bb == _cfg->_broot )
  2415       continue;
  2417     // Skip empty, connector blocks
  2418     if (bb->is_connector())
  2419       continue;
  2421     // If the following block is not the sole successor of
  2422     // this one, then reset the pipeline information
  2423     if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) {
  2424 #ifndef PRODUCT
  2425       if (_cfg->C->trace_opto_output()) {
  2426         tty->print("*** bundle start of next BB, node %d, for %d instructions\n",
  2427                    _next_node->_idx, _bundle_instr_count);
  2429 #endif
  2430       step_and_clear();
  2433     // Leave untouched the starting instruction, any Phis, a CreateEx node
  2434     // or Top.  bb->_nodes[_bb_start] is the first schedulable instruction.
  2435     _bb_end = bb->_nodes.size()-1;
  2436     for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) {
  2437       Node *n = bb->_nodes[_bb_start];
  2438       // Things not matched, like Phinodes and ProjNodes don't get scheduled.
  2439       // Also, MachIdealNodes do not get scheduled
  2440       if( !n->is_Mach() ) continue;     // Skip non-machine nodes
  2441       MachNode *mach = n->as_Mach();
  2442       int iop = mach->ideal_Opcode();
  2443       if( iop == Op_CreateEx ) continue; // CreateEx is pinned
  2444       if( iop == Op_Con ) continue;      // Do not schedule Top
  2445       if( iop == Op_Node &&     // Do not schedule PhiNodes, ProjNodes
  2446           mach->pipeline() == MachNode::pipeline_class() &&
  2447           !n->is_SpillCopy() )  // Breakpoints, Prolog, etc
  2448         continue;
  2449       break;                    // Funny loop structure to be sure...
  2451     // Compute last "interesting" instruction in block - last instruction we
  2452     // might schedule.  _bb_end points just after last schedulable inst.  We
  2453     // normally schedule conditional branches (despite them being forced last
  2454     // in the block), because they have delay slots we can fill.  Calls all
  2455     // have their delay slots filled in the template expansions, so we don't
  2456     // bother scheduling them.
  2457     Node *last = bb->_nodes[_bb_end];
  2458     // Ignore trailing NOPs.
  2459     while (_bb_end > 0 && last->is_Mach() &&
  2460            last->as_Mach()->ideal_Opcode() == Op_Con) {
  2461       last = bb->_nodes[--_bb_end];
  2463     assert(!last->is_Mach() || last->as_Mach()->ideal_Opcode() != Op_Con, "");
  2464     if( last->is_Catch() ||
  2465        // Exclude unreachable path case when Halt node is in a separate block.
  2466        (_bb_end > 1 && last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) {
  2467       // There must be a prior call.  Skip it.
  2468       while( !bb->_nodes[--_bb_end]->is_MachCall() ) {
  2469         assert( bb->_nodes[_bb_end]->is_MachProj(), "skipping projections after expected call" );
  2471     } else if( last->is_MachNullCheck() ) {
  2472       // Backup so the last null-checked memory instruction is
  2473       // outside the schedulable range. Skip over the nullcheck,
  2474       // projection, and the memory nodes.
  2475       Node *mem = last->in(1);
  2476       do {
  2477         _bb_end--;
  2478       } while (mem != bb->_nodes[_bb_end]);
  2479     } else {
  2480       // Set _bb_end to point after last schedulable inst.
  2481       _bb_end++;
  2484     assert( _bb_start <= _bb_end, "inverted block ends" );
  2486     // Compute the register antidependencies for the basic block
  2487     ComputeRegisterAntidependencies(bb);
  2488     if (_cfg->C->failing())  return;  // too many D-U pinch points
  2490     // Compute intra-bb latencies for the nodes
  2491     ComputeLocalLatenciesForward(bb);
  2493     // Compute the usage within the block, and set the list of all nodes
  2494     // in the block that have no uses within the block.
  2495     ComputeUseCount(bb);
  2497     // Schedule the remaining instructions in the block
  2498     while ( _available.size() > 0 ) {
  2499       Node *n = ChooseNodeToBundle();
  2500       guarantee(n != NULL, "no nodes available");
  2501       AddNodeToBundle(n,bb);
  2504     assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" );
  2505 #ifdef ASSERT
  2506     for( uint l = _bb_start; l < _bb_end; l++ ) {
  2507       Node *n = bb->_nodes[l];
  2508       uint m;
  2509       for( m = 0; m < _bb_end-_bb_start; m++ )
  2510         if( _scheduled[m] == n )
  2511           break;
  2512       assert( m < _bb_end-_bb_start, "instruction missing in schedule" );
  2514 #endif
  2516     // Now copy the instructions (in reverse order) back to the block
  2517     for ( uint k = _bb_start; k < _bb_end; k++ )
  2518       bb->_nodes.map(k, _scheduled[_bb_end-k-1]);
  2520 #ifndef PRODUCT
  2521     if (_cfg->C->trace_opto_output()) {
  2522       tty->print("#  Schedule BB#%03d (final)\n", i);
  2523       uint current = 0;
  2524       for (uint j = 0; j < bb->_nodes.size(); j++) {
  2525         Node *n = bb->_nodes[j];
  2526         if( valid_bundle_info(n) ) {
  2527           Bundle *bundle = node_bundling(n);
  2528           if (bundle->instr_count() > 0 || bundle->flags() > 0) {
  2529             tty->print("*** Bundle: ");
  2530             bundle->dump();
  2532           n->dump();
  2536 #endif
  2537 #ifdef ASSERT
  2538   verify_good_schedule(bb,"after block local scheduling");
  2539 #endif
  2542 #ifndef PRODUCT
  2543   if (_cfg->C->trace_opto_output())
  2544     tty->print("# <- DoScheduling\n");
  2545 #endif
  2547   // Record final node-bundling array location
  2548   _regalloc->C->set_node_bundling_base(_node_bundling_base);
  2550 } // end DoScheduling
  2552 //------------------------------verify_good_schedule---------------------------
  2553 // Verify that no live-range used in the block is killed in the block by a
  2554 // wrong DEF.  This doesn't verify live-ranges that span blocks.
  2556 // Check for edge existence.  Used to avoid adding redundant precedence edges.
  2557 static bool edge_from_to( Node *from, Node *to ) {
  2558   for( uint i=0; i<from->len(); i++ )
  2559     if( from->in(i) == to )
  2560       return true;
  2561   return false;
  2564 #ifdef ASSERT
  2565 //------------------------------verify_do_def----------------------------------
  2566 void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) {
  2567   // Check for bad kills
  2568   if( OptoReg::is_valid(def) ) { // Ignore stores & control flow
  2569     Node *prior_use = _reg_node[def];
  2570     if( prior_use && !edge_from_to(prior_use,n) ) {
  2571       tty->print("%s = ",OptoReg::as_VMReg(def)->name());
  2572       n->dump();
  2573       tty->print_cr("...");
  2574       prior_use->dump();
  2575       assert(edge_from_to(prior_use,n),msg);
  2577     _reg_node.map(def,NULL); // Kill live USEs
  2581 //------------------------------verify_good_schedule---------------------------
  2582 void Scheduling::verify_good_schedule( Block *b, const char *msg ) {
  2584   // Zap to something reasonable for the verify code
  2585   _reg_node.clear();
  2587   // Walk over the block backwards.  Check to make sure each DEF doesn't
  2588   // kill a live value (other than the one it's supposed to).  Add each
  2589   // USE to the live set.
  2590   for( uint i = b->_nodes.size()-1; i >= _bb_start; i-- ) {
  2591     Node *n = b->_nodes[i];
  2592     int n_op = n->Opcode();
  2593     if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
  2594       // Fat-proj kills a slew of registers
  2595       RegMask rm = n->out_RegMask();// Make local copy
  2596       while( rm.is_NotEmpty() ) {
  2597         OptoReg::Name kill = rm.find_first_elem();
  2598         rm.Remove(kill);
  2599         verify_do_def( n, kill, msg );
  2601     } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes
  2602       // Get DEF'd registers the normal way
  2603       verify_do_def( n, _regalloc->get_reg_first(n), msg );
  2604       verify_do_def( n, _regalloc->get_reg_second(n), msg );
  2607     // Now make all USEs live
  2608     for( uint i=1; i<n->req(); i++ ) {
  2609       Node *def = n->in(i);
  2610       assert(def != 0, "input edge required");
  2611       OptoReg::Name reg_lo = _regalloc->get_reg_first(def);
  2612       OptoReg::Name reg_hi = _regalloc->get_reg_second(def);
  2613       if( OptoReg::is_valid(reg_lo) ) {
  2614         assert(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), msg);
  2615         _reg_node.map(reg_lo,n);
  2617       if( OptoReg::is_valid(reg_hi) ) {
  2618         assert(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), msg);
  2619         _reg_node.map(reg_hi,n);
  2625   // Zap to something reasonable for the Antidependence code
  2626   _reg_node.clear();
  2628 #endif
  2630 // Conditionally add precedence edges.  Avoid putting edges on Projs.
  2631 static void add_prec_edge_from_to( Node *from, Node *to ) {
  2632   if( from->is_Proj() ) {       // Put precedence edge on Proj's input
  2633     assert( from->req() == 1 && (from->len() == 1 || from->in(1)==0), "no precedence edges on projections" );
  2634     from = from->in(0);
  2636   if( from != to &&             // No cycles (for things like LD L0,[L0+4] )
  2637       !edge_from_to( from, to ) ) // Avoid duplicate edge
  2638     from->add_prec(to);
  2641 //------------------------------anti_do_def------------------------------------
  2642 void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) {
  2643   if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow
  2644     return;
  2646   Node *pinch = _reg_node[def_reg]; // Get pinch point
  2647   if( !pinch || _bbs[pinch->_idx] != b || // No pinch-point yet?
  2648       is_def ) {    // Check for a true def (not a kill)
  2649     _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point
  2650     return;
  2653   Node *kill = def;             // Rename 'def' to more descriptive 'kill'
  2654   debug_only( def = (Node*)0xdeadbeef; )
  2656   // After some number of kills there _may_ be a later def
  2657   Node *later_def = NULL;
  2659   // Finding a kill requires a real pinch-point.
  2660   // Check for not already having a pinch-point.
  2661   // Pinch points are Op_Node's.
  2662   if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point?
  2663     later_def = pinch;            // Must be def/kill as optimistic pinch-point
  2664     if ( _pinch_free_list.size() > 0) {
  2665       pinch = _pinch_free_list.pop();
  2666     } else {
  2667       pinch = new (_cfg->C) Node(1); // Pinch point to-be
  2669     if (pinch->_idx >= _regalloc->node_regs_max_index()) {
  2670       _cfg->C->record_method_not_compilable("too many D-U pinch points");
  2671       return;
  2673     _bbs.map(pinch->_idx,b);      // Pretend it's valid in this block (lazy init)
  2674     _reg_node.map(def_reg,pinch); // Record pinch-point
  2675     //_regalloc->set_bad(pinch->_idx); // Already initialized this way.
  2676     if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill
  2677       pinch->init_req(0, _cfg->C->top());     // set not NULL for the next call
  2678       add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch
  2679       later_def = NULL;           // and no later def
  2681     pinch->set_req(0,later_def);  // Hook later def so we can find it
  2682   } else {                        // Else have valid pinch point
  2683     if( pinch->in(0) )            // If there is a later-def
  2684       later_def = pinch->in(0);   // Get it
  2687   // Add output-dependence edge from later def to kill
  2688   if( later_def )               // If there is some original def
  2689     add_prec_edge_from_to(later_def,kill); // Add edge from def to kill
  2691   // See if current kill is also a use, and so is forced to be the pinch-point.
  2692   if( pinch->Opcode() == Op_Node ) {
  2693     Node *uses = kill->is_Proj() ? kill->in(0) : kill;
  2694     for( uint i=1; i<uses->req(); i++ ) {
  2695       if( _regalloc->get_reg_first(uses->in(i)) == def_reg ||
  2696           _regalloc->get_reg_second(uses->in(i)) == def_reg ) {
  2697         // Yes, found a use/kill pinch-point
  2698         pinch->set_req(0,NULL);  //
  2699         pinch->replace_by(kill); // Move anti-dep edges up
  2700         pinch = kill;
  2701         _reg_node.map(def_reg,pinch);
  2702         return;
  2707   // Add edge from kill to pinch-point
  2708   add_prec_edge_from_to(kill,pinch);
  2711 //------------------------------anti_do_use------------------------------------
  2712 void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) {
  2713   if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow
  2714     return;
  2715   Node *pinch = _reg_node[use_reg]; // Get pinch point
  2716   // Check for no later def_reg/kill in block
  2717   if( pinch && _bbs[pinch->_idx] == b &&
  2718       // Use has to be block-local as well
  2719       _bbs[use->_idx] == b ) {
  2720     if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?)
  2721         pinch->req() == 1 ) {   // pinch not yet in block?
  2722       pinch->del_req(0);        // yank pointer to later-def, also set flag
  2723       // Insert the pinch-point in the block just after the last use
  2724       b->_nodes.insert(b->find_node(use)+1,pinch);
  2725       _bb_end++;                // Increase size scheduled region in block
  2728     add_prec_edge_from_to(pinch,use);
  2732 //------------------------------ComputeRegisterAntidependences-----------------
  2733 // We insert antidependences between the reads and following write of
  2734 // allocated registers to prevent illegal code motion. Hopefully, the
  2735 // number of added references should be fairly small, especially as we
  2736 // are only adding references within the current basic block.
  2737 void Scheduling::ComputeRegisterAntidependencies(Block *b) {
  2739 #ifdef ASSERT
  2740   verify_good_schedule(b,"before block local scheduling");
  2741 #endif
  2743   // A valid schedule, for each register independently, is an endless cycle
  2744   // of: a def, then some uses (connected to the def by true dependencies),
  2745   // then some kills (defs with no uses), finally the cycle repeats with a new
  2746   // def.  The uses are allowed to float relative to each other, as are the
  2747   // kills.  No use is allowed to slide past a kill (or def).  This requires
  2748   // antidependencies between all uses of a single def and all kills that
  2749   // follow, up to the next def.  More edges are redundant, because later defs
  2750   // & kills are already serialized with true or antidependencies.  To keep
  2751   // the edge count down, we add a 'pinch point' node if there's more than
  2752   // one use or more than one kill/def.
  2754   // We add dependencies in one bottom-up pass.
  2756   // For each instruction we handle it's DEFs/KILLs, then it's USEs.
  2758   // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this
  2759   // register.  If not, we record the DEF/KILL in _reg_node, the
  2760   // register-to-def mapping.  If there is a prior DEF/KILL, we insert a
  2761   // "pinch point", a new Node that's in the graph but not in the block.
  2762   // We put edges from the prior and current DEF/KILLs to the pinch point.
  2763   // We put the pinch point in _reg_node.  If there's already a pinch point
  2764   // we merely add an edge from the current DEF/KILL to the pinch point.
  2766   // After doing the DEF/KILLs, we handle USEs.  For each used register, we
  2767   // put an edge from the pinch point to the USE.
  2769   // To be expedient, the _reg_node array is pre-allocated for the whole
  2770   // compilation.  _reg_node is lazily initialized; it either contains a NULL,
  2771   // or a valid def/kill/pinch-point, or a leftover node from some prior
  2772   // block.  Leftover node from some prior block is treated like a NULL (no
  2773   // prior def, so no anti-dependence needed).  Valid def is distinguished by
  2774   // it being in the current block.
  2775   bool fat_proj_seen = false;
  2776   uint last_safept = _bb_end-1;
  2777   Node* end_node         = (_bb_end-1 >= _bb_start) ? b->_nodes[last_safept] : NULL;
  2778   Node* last_safept_node = end_node;
  2779   for( uint i = _bb_end-1; i >= _bb_start; i-- ) {
  2780     Node *n = b->_nodes[i];
  2781     int is_def = n->outcnt();   // def if some uses prior to adding precedence edges
  2782     if( n->is_MachProj() && n->ideal_reg() == MachProjNode::fat_proj ) {
  2783       // Fat-proj kills a slew of registers
  2784       // This can add edges to 'n' and obscure whether or not it was a def,
  2785       // hence the is_def flag.
  2786       fat_proj_seen = true;
  2787       RegMask rm = n->out_RegMask();// Make local copy
  2788       while( rm.is_NotEmpty() ) {
  2789         OptoReg::Name kill = rm.find_first_elem();
  2790         rm.Remove(kill);
  2791         anti_do_def( b, n, kill, is_def );
  2793     } else {
  2794       // Get DEF'd registers the normal way
  2795       anti_do_def( b, n, _regalloc->get_reg_first(n), is_def );
  2796       anti_do_def( b, n, _regalloc->get_reg_second(n), is_def );
  2799     // Kill projections on a branch should appear to occur on the
  2800     // branch, not afterwards, so grab the masks from the projections
  2801     // and process them.
  2802     if (n->is_MachBranch() || n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_Jump) {
  2803       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  2804         Node* use = n->fast_out(i);
  2805         if (use->is_Proj()) {
  2806           RegMask rm = use->out_RegMask();// Make local copy
  2807           while( rm.is_NotEmpty() ) {
  2808             OptoReg::Name kill = rm.find_first_elem();
  2809             rm.Remove(kill);
  2810             anti_do_def( b, n, kill, false );
  2816     // Check each register used by this instruction for a following DEF/KILL
  2817     // that must occur afterward and requires an anti-dependence edge.
  2818     for( uint j=0; j<n->req(); j++ ) {
  2819       Node *def = n->in(j);
  2820       if( def ) {
  2821         assert( !def->is_MachProj() || def->ideal_reg() != MachProjNode::fat_proj, "" );
  2822         anti_do_use( b, n, _regalloc->get_reg_first(def) );
  2823         anti_do_use( b, n, _regalloc->get_reg_second(def) );
  2826     // Do not allow defs of new derived values to float above GC
  2827     // points unless the base is definitely available at the GC point.
  2829     Node *m = b->_nodes[i];
  2831     // Add precedence edge from following safepoint to use of derived pointer
  2832     if( last_safept_node != end_node &&
  2833         m != last_safept_node) {
  2834       for (uint k = 1; k < m->req(); k++) {
  2835         const Type *t = m->in(k)->bottom_type();
  2836         if( t->isa_oop_ptr() &&
  2837             t->is_ptr()->offset() != 0 ) {
  2838           last_safept_node->add_prec( m );
  2839           break;
  2844     if( n->jvms() ) {           // Precedence edge from derived to safept
  2845       // Check if last_safept_node was moved by pinch-point insertion in anti_do_use()
  2846       if( b->_nodes[last_safept] != last_safept_node ) {
  2847         last_safept = b->find_node(last_safept_node);
  2849       for( uint j=last_safept; j > i; j-- ) {
  2850         Node *mach = b->_nodes[j];
  2851         if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP )
  2852           mach->add_prec( n );
  2854       last_safept = i;
  2855       last_safept_node = m;
  2859   if (fat_proj_seen) {
  2860     // Garbage collect pinch nodes that were not consumed.
  2861     // They are usually created by a fat kill MachProj for a call.
  2862     garbage_collect_pinch_nodes();
  2866 //------------------------------garbage_collect_pinch_nodes-------------------------------
  2868 // Garbage collect pinch nodes for reuse by other blocks.
  2869 //
  2870 // The block scheduler's insertion of anti-dependence
  2871 // edges creates many pinch nodes when the block contains
  2872 // 2 or more Calls.  A pinch node is used to prevent a
  2873 // combinatorial explosion of edges.  If a set of kills for a
  2874 // register is anti-dependent on a set of uses (or defs), rather
  2875 // than adding an edge in the graph between each pair of kill
  2876 // and use (or def), a pinch is inserted between them:
  2877 //
  2878 //            use1   use2  use3
  2879 //                \   |   /
  2880 //                 \  |  /
  2881 //                  pinch
  2882 //                 /  |  \
  2883 //                /   |   \
  2884 //            kill1 kill2 kill3
  2885 //
  2886 // One pinch node is created per register killed when
  2887 // the second call is encountered during a backwards pass
  2888 // over the block.  Most of these pinch nodes are never
  2889 // wired into the graph because the register is never
  2890 // used or def'ed in the block.
  2891 //
  2892 void Scheduling::garbage_collect_pinch_nodes() {
  2893 #ifndef PRODUCT
  2894     if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:");
  2895 #endif
  2896     int trace_cnt = 0;
  2897     for (uint k = 0; k < _reg_node.Size(); k++) {
  2898       Node* pinch = _reg_node[k];
  2899       if (pinch != NULL && pinch->Opcode() == Op_Node &&
  2900           // no predecence input edges
  2901           (pinch->req() == pinch->len() || pinch->in(pinch->req()) == NULL) ) {
  2902         cleanup_pinch(pinch);
  2903         _pinch_free_list.push(pinch);
  2904         _reg_node.map(k, NULL);
  2905 #ifndef PRODUCT
  2906         if (_cfg->C->trace_opto_output()) {
  2907           trace_cnt++;
  2908           if (trace_cnt > 40) {
  2909             tty->print("\n");
  2910             trace_cnt = 0;
  2912           tty->print(" %d", pinch->_idx);
  2914 #endif
  2917 #ifndef PRODUCT
  2918     if (_cfg->C->trace_opto_output()) tty->print("\n");
  2919 #endif
  2922 // Clean up a pinch node for reuse.
  2923 void Scheduling::cleanup_pinch( Node *pinch ) {
  2924   assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking");
  2926   for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) {
  2927     Node* use = pinch->last_out(i);
  2928     uint uses_found = 0;
  2929     for (uint j = use->req(); j < use->len(); j++) {
  2930       if (use->in(j) == pinch) {
  2931         use->rm_prec(j);
  2932         uses_found++;
  2935     assert(uses_found > 0, "must be a precedence edge");
  2936     i -= uses_found;    // we deleted 1 or more copies of this edge
  2938   // May have a later_def entry
  2939   pinch->set_req(0, NULL);
  2942 //------------------------------print_statistics-------------------------------
  2943 #ifndef PRODUCT
  2945 void Scheduling::dump_available() const {
  2946   tty->print("#Availist  ");
  2947   for (uint i = 0; i < _available.size(); i++)
  2948     tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]);
  2949   tty->cr();
  2952 // Print Scheduling Statistics
  2953 void Scheduling::print_statistics() {
  2954   // Print the size added by nops for bundling
  2955   tty->print("Nops added %d bytes to total of %d bytes",
  2956     _total_nop_size, _total_method_size);
  2957   if (_total_method_size > 0)
  2958     tty->print(", for %.2f%%",
  2959       ((double)_total_nop_size) / ((double) _total_method_size) * 100.0);
  2960   tty->print("\n");
  2962   // Print the number of branch shadows filled
  2963   if (Pipeline::_branch_has_delay_slot) {
  2964     tty->print("Of %d branches, %d had unconditional delay slots filled",
  2965       _total_branches, _total_unconditional_delays);
  2966     if (_total_branches > 0)
  2967       tty->print(", for %.2f%%",
  2968         ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0);
  2969     tty->print("\n");
  2972   uint total_instructions = 0, total_bundles = 0;
  2974   for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) {
  2975     uint bundle_count   = _total_instructions_per_bundle[i];
  2976     total_instructions += bundle_count * i;
  2977     total_bundles      += bundle_count;
  2980   if (total_bundles > 0)
  2981     tty->print("Average ILP (excluding nops) is %.2f\n",
  2982       ((double)total_instructions) / ((double)total_bundles));
  2984 #endif

mercurial