src/share/vm/opto/type.cpp

Mon, 28 Apr 2008 08:08:12 -0700

author
rasbold
date
Mon, 28 Apr 2008 08:08:12 -0700
changeset 563
a76240c8b133
parent 548
ba764ed4b6f2
child 598
885ed790ecf0
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // Portions of code courtesy of Clifford Click
    27 // Optimization - Graph Style
    29 #include "incls/_precompiled.incl"
    30 #include "incls/_type.cpp.incl"
    32 // Dictionary of types shared among compilations.
    33 Dict* Type::_shared_type_dict = NULL;
    35 // Array which maps compiler types to Basic Types
    36 const BasicType Type::_basic_type[Type::lastype] = {
    37   T_ILLEGAL,    // Bad
    38   T_ILLEGAL,    // Control
    39   T_VOID,       // Top
    40   T_INT,        // Int
    41   T_LONG,       // Long
    42   T_VOID,       // Half
    43   T_NARROWOOP,  // NarrowOop
    45   T_ILLEGAL,    // Tuple
    46   T_ARRAY,      // Array
    48   T_ADDRESS,    // AnyPtr   // shows up in factory methods for NULL_PTR
    49   T_ADDRESS,    // RawPtr
    50   T_OBJECT,     // OopPtr
    51   T_OBJECT,     // InstPtr
    52   T_OBJECT,     // AryPtr
    53   T_OBJECT,     // KlassPtr
    55   T_OBJECT,     // Function
    56   T_ILLEGAL,    // Abio
    57   T_ADDRESS,    // Return_Address
    58   T_ILLEGAL,    // Memory
    59   T_FLOAT,      // FloatTop
    60   T_FLOAT,      // FloatCon
    61   T_FLOAT,      // FloatBot
    62   T_DOUBLE,     // DoubleTop
    63   T_DOUBLE,     // DoubleCon
    64   T_DOUBLE,     // DoubleBot
    65   T_ILLEGAL,    // Bottom
    66 };
    68 // Map ideal registers (machine types) to ideal types
    69 const Type *Type::mreg2type[_last_machine_leaf];
    71 // Map basic types to canonical Type* pointers.
    72 const Type* Type::     _const_basic_type[T_CONFLICT+1];
    74 // Map basic types to constant-zero Types.
    75 const Type* Type::            _zero_type[T_CONFLICT+1];
    77 // Map basic types to array-body alias types.
    78 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
    80 //=============================================================================
    81 // Convenience common pre-built types.
    82 const Type *Type::ABIO;         // State-of-machine only
    83 const Type *Type::BOTTOM;       // All values
    84 const Type *Type::CONTROL;      // Control only
    85 const Type *Type::DOUBLE;       // All doubles
    86 const Type *Type::FLOAT;        // All floats
    87 const Type *Type::HALF;         // Placeholder half of doublewide type
    88 const Type *Type::MEMORY;       // Abstract store only
    89 const Type *Type::RETURN_ADDRESS;
    90 const Type *Type::TOP;          // No values in set
    92 //------------------------------get_const_type---------------------------
    93 const Type* Type::get_const_type(ciType* type) {
    94   if (type == NULL) {
    95     return NULL;
    96   } else if (type->is_primitive_type()) {
    97     return get_const_basic_type(type->basic_type());
    98   } else {
    99     return TypeOopPtr::make_from_klass(type->as_klass());
   100   }
   101 }
   103 //---------------------------array_element_basic_type---------------------------------
   104 // Mapping to the array element's basic type.
   105 BasicType Type::array_element_basic_type() const {
   106   BasicType bt = basic_type();
   107   if (bt == T_INT) {
   108     if (this == TypeInt::INT)   return T_INT;
   109     if (this == TypeInt::CHAR)  return T_CHAR;
   110     if (this == TypeInt::BYTE)  return T_BYTE;
   111     if (this == TypeInt::BOOL)  return T_BOOLEAN;
   112     if (this == TypeInt::SHORT) return T_SHORT;
   113     return T_VOID;
   114   }
   115   return bt;
   116 }
   118 //---------------------------get_typeflow_type---------------------------------
   119 // Import a type produced by ciTypeFlow.
   120 const Type* Type::get_typeflow_type(ciType* type) {
   121   switch (type->basic_type()) {
   123   case ciTypeFlow::StateVector::T_BOTTOM:
   124     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
   125     return Type::BOTTOM;
   127   case ciTypeFlow::StateVector::T_TOP:
   128     assert(type == ciTypeFlow::StateVector::top_type(), "");
   129     return Type::TOP;
   131   case ciTypeFlow::StateVector::T_NULL:
   132     assert(type == ciTypeFlow::StateVector::null_type(), "");
   133     return TypePtr::NULL_PTR;
   135   case ciTypeFlow::StateVector::T_LONG2:
   136     // The ciTypeFlow pass pushes a long, then the half.
   137     // We do the same.
   138     assert(type == ciTypeFlow::StateVector::long2_type(), "");
   139     return TypeInt::TOP;
   141   case ciTypeFlow::StateVector::T_DOUBLE2:
   142     // The ciTypeFlow pass pushes double, then the half.
   143     // Our convention is the same.
   144     assert(type == ciTypeFlow::StateVector::double2_type(), "");
   145     return Type::TOP;
   147   case T_ADDRESS:
   148     assert(type->is_return_address(), "");
   149     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
   151   default:
   152     // make sure we did not mix up the cases:
   153     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
   154     assert(type != ciTypeFlow::StateVector::top_type(), "");
   155     assert(type != ciTypeFlow::StateVector::null_type(), "");
   156     assert(type != ciTypeFlow::StateVector::long2_type(), "");
   157     assert(type != ciTypeFlow::StateVector::double2_type(), "");
   158     assert(!type->is_return_address(), "");
   160     return Type::get_const_type(type);
   161   }
   162 }
   165 //------------------------------make-------------------------------------------
   166 // Create a simple Type, with default empty symbol sets.  Then hashcons it
   167 // and look for an existing copy in the type dictionary.
   168 const Type *Type::make( enum TYPES t ) {
   169   return (new Type(t))->hashcons();
   170 }
   172 //------------------------------cmp--------------------------------------------
   173 int Type::cmp( const Type *const t1, const Type *const t2 ) {
   174   if( t1->_base != t2->_base )
   175     return 1;                   // Missed badly
   176   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
   177   return !t1->eq(t2);           // Return ZERO if equal
   178 }
   180 //------------------------------hash-------------------------------------------
   181 int Type::uhash( const Type *const t ) {
   182   return t->hash();
   183 }
   185 //--------------------------Initialize_shared----------------------------------
   186 void Type::Initialize_shared(Compile* current) {
   187   // This method does not need to be locked because the first system
   188   // compilations (stub compilations) occur serially.  If they are
   189   // changed to proceed in parallel, then this section will need
   190   // locking.
   192   Arena* save = current->type_arena();
   193   Arena* shared_type_arena = new Arena();
   195   current->set_type_arena(shared_type_arena);
   196   _shared_type_dict =
   197     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
   198                                   shared_type_arena, 128 );
   199   current->set_type_dict(_shared_type_dict);
   201   // Make shared pre-built types.
   202   CONTROL = make(Control);      // Control only
   203   TOP     = make(Top);          // No values in set
   204   MEMORY  = make(Memory);       // Abstract store only
   205   ABIO    = make(Abio);         // State-of-machine only
   206   RETURN_ADDRESS=make(Return_Address);
   207   FLOAT   = make(FloatBot);     // All floats
   208   DOUBLE  = make(DoubleBot);    // All doubles
   209   BOTTOM  = make(Bottom);       // Everything
   210   HALF    = make(Half);         // Placeholder half of doublewide type
   212   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
   213   TypeF::ONE  = TypeF::make(1.0); // Float 1
   215   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
   216   TypeD::ONE  = TypeD::make(1.0); // Double 1
   218   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
   219   TypeInt::ZERO    = TypeInt::make( 0);  //  0
   220   TypeInt::ONE     = TypeInt::make( 1);  //  1
   221   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
   222   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
   223   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
   224   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
   225   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
   226   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
   227   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
   228   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
   229   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
   230   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
   231   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
   232   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
   233   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
   234   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
   235   // CmpL is overloaded both as the bytecode computation returning
   236   // a trinary (-1,0,+1) integer result AND as an efficient long
   237   // compare returning optimizer ideal-type flags.
   238   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
   239   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
   240   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
   241   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
   243   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
   244   TypeLong::ZERO    = TypeLong::make( 0);        //  0
   245   TypeLong::ONE     = TypeLong::make( 1);        //  1
   246   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
   247   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
   248   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
   249   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
   251   const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   252   fboth[0] = Type::CONTROL;
   253   fboth[1] = Type::CONTROL;
   254   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
   256   const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   257   ffalse[0] = Type::CONTROL;
   258   ffalse[1] = Type::TOP;
   259   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
   261   const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   262   fneither[0] = Type::TOP;
   263   fneither[1] = Type::TOP;
   264   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
   266   const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   267   ftrue[0] = Type::TOP;
   268   ftrue[1] = Type::CONTROL;
   269   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
   271   const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   272   floop[0] = Type::CONTROL;
   273   floop[1] = TypeInt::INT;
   274   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
   276   TypePtr::NULL_PTR= TypePtr::make( AnyPtr, TypePtr::Null, 0 );
   277   TypePtr::NOTNULL = TypePtr::make( AnyPtr, TypePtr::NotNull, OffsetBot );
   278   TypePtr::BOTTOM  = TypePtr::make( AnyPtr, TypePtr::BotPTR, OffsetBot );
   280   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
   281   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
   283   const Type **fmembar = TypeTuple::fields(0);
   284   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
   286   const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   287   fsc[0] = TypeInt::CC;
   288   fsc[1] = Type::MEMORY;
   289   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
   291   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
   292   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
   293   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
   294   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
   295                                            false, 0, oopDesc::mark_offset_in_bytes());
   296   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
   297                                            false, 0, oopDesc::klass_offset_in_bytes());
   298   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot);
   300   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
   301   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
   303   mreg2type[Op_Node] = Type::BOTTOM;
   304   mreg2type[Op_Set ] = 0;
   305   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
   306   mreg2type[Op_RegI] = TypeInt::INT;
   307   mreg2type[Op_RegP] = TypePtr::BOTTOM;
   308   mreg2type[Op_RegF] = Type::FLOAT;
   309   mreg2type[Op_RegD] = Type::DOUBLE;
   310   mreg2type[Op_RegL] = TypeLong::LONG;
   311   mreg2type[Op_RegFlags] = TypeInt::CC;
   313   TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), current->env()->Object_klass(), false, arrayOopDesc::length_offset_in_bytes());
   314   // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
   315   TypeAryPtr::OOPS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
   316   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
   317   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
   318   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
   319   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
   320   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
   321   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
   322   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);
   324   TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL; // what should this be?
   325   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
   326   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS;   // arrays are stored in oop arrays
   327   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
   328   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
   329   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
   330   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
   331   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
   332   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
   333   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
   334   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
   336   TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
   337   TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
   339   const Type **fi2c = TypeTuple::fields(2);
   340   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // methodOop
   341   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
   342   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
   344   const Type **intpair = TypeTuple::fields(2);
   345   intpair[0] = TypeInt::INT;
   346   intpair[1] = TypeInt::INT;
   347   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
   349   const Type **longpair = TypeTuple::fields(2);
   350   longpair[0] = TypeLong::LONG;
   351   longpair[1] = TypeLong::LONG;
   352   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
   354   _const_basic_type[T_NARROWOOP] = TypeNarrowOop::BOTTOM;
   355   _const_basic_type[T_BOOLEAN] = TypeInt::BOOL;
   356   _const_basic_type[T_CHAR]    = TypeInt::CHAR;
   357   _const_basic_type[T_BYTE]    = TypeInt::BYTE;
   358   _const_basic_type[T_SHORT]   = TypeInt::SHORT;
   359   _const_basic_type[T_INT]     = TypeInt::INT;
   360   _const_basic_type[T_LONG]    = TypeLong::LONG;
   361   _const_basic_type[T_FLOAT]   = Type::FLOAT;
   362   _const_basic_type[T_DOUBLE]  = Type::DOUBLE;
   363   _const_basic_type[T_OBJECT]  = TypeInstPtr::BOTTOM;
   364   _const_basic_type[T_ARRAY]   = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
   365   _const_basic_type[T_VOID]    = TypePtr::NULL_PTR;   // reflection represents void this way
   366   _const_basic_type[T_ADDRESS] = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
   367   _const_basic_type[T_CONFLICT]= Type::BOTTOM;        // why not?
   369   _zero_type[T_NARROWOOP] = TypeNarrowOop::NULL_PTR;
   370   _zero_type[T_BOOLEAN] = TypeInt::ZERO;     // false == 0
   371   _zero_type[T_CHAR]    = TypeInt::ZERO;     // '\0' == 0
   372   _zero_type[T_BYTE]    = TypeInt::ZERO;     // 0x00 == 0
   373   _zero_type[T_SHORT]   = TypeInt::ZERO;     // 0x0000 == 0
   374   _zero_type[T_INT]     = TypeInt::ZERO;
   375   _zero_type[T_LONG]    = TypeLong::ZERO;
   376   _zero_type[T_FLOAT]   = TypeF::ZERO;
   377   _zero_type[T_DOUBLE]  = TypeD::ZERO;
   378   _zero_type[T_OBJECT]  = TypePtr::NULL_PTR;
   379   _zero_type[T_ARRAY]   = TypePtr::NULL_PTR; // null array is null oop
   380   _zero_type[T_ADDRESS] = TypePtr::NULL_PTR; // raw pointers use the same null
   381   _zero_type[T_VOID]    = Type::TOP;         // the only void value is no value at all
   383   // get_zero_type() should not happen for T_CONFLICT
   384   _zero_type[T_CONFLICT]= NULL;
   386   // Restore working type arena.
   387   current->set_type_arena(save);
   388   current->set_type_dict(NULL);
   389 }
   391 //------------------------------Initialize-------------------------------------
   392 void Type::Initialize(Compile* current) {
   393   assert(current->type_arena() != NULL, "must have created type arena");
   395   if (_shared_type_dict == NULL) {
   396     Initialize_shared(current);
   397   }
   399   Arena* type_arena = current->type_arena();
   401   // Create the hash-cons'ing dictionary with top-level storage allocation
   402   Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
   403   current->set_type_dict(tdic);
   405   // Transfer the shared types.
   406   DictI i(_shared_type_dict);
   407   for( ; i.test(); ++i ) {
   408     Type* t = (Type*)i._value;
   409     tdic->Insert(t,t);  // New Type, insert into Type table
   410   }
   412 #ifdef ASSERT
   413   verify_lastype();
   414 #endif
   415 }
   417 //------------------------------hashcons---------------------------------------
   418 // Do the hash-cons trick.  If the Type already exists in the type table,
   419 // delete the current Type and return the existing Type.  Otherwise stick the
   420 // current Type in the Type table.
   421 const Type *Type::hashcons(void) {
   422   debug_only(base());           // Check the assertion in Type::base().
   423   // Look up the Type in the Type dictionary
   424   Dict *tdic = type_dict();
   425   Type* old = (Type*)(tdic->Insert(this, this, false));
   426   if( old ) {                   // Pre-existing Type?
   427     if( old != this )           // Yes, this guy is not the pre-existing?
   428       delete this;              // Yes, Nuke this guy
   429     assert( old->_dual, "" );
   430     return old;                 // Return pre-existing
   431   }
   433   // Every type has a dual (to make my lattice symmetric).
   434   // Since we just discovered a new Type, compute its dual right now.
   435   assert( !_dual, "" );         // No dual yet
   436   _dual = xdual();              // Compute the dual
   437   if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
   438     _dual = this;
   439     return this;
   440   }
   441   assert( !_dual->_dual, "" );  // No reverse dual yet
   442   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
   443   // New Type, insert into Type table
   444   tdic->Insert((void*)_dual,(void*)_dual);
   445   ((Type*)_dual)->_dual = this; // Finish up being symmetric
   446 #ifdef ASSERT
   447   Type *dual_dual = (Type*)_dual->xdual();
   448   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
   449   delete dual_dual;
   450 #endif
   451   return this;                  // Return new Type
   452 }
   454 //------------------------------eq---------------------------------------------
   455 // Structural equality check for Type representations
   456 bool Type::eq( const Type * ) const {
   457   return true;                  // Nothing else can go wrong
   458 }
   460 //------------------------------hash-------------------------------------------
   461 // Type-specific hashing function.
   462 int Type::hash(void) const {
   463   return _base;
   464 }
   466 //------------------------------is_finite--------------------------------------
   467 // Has a finite value
   468 bool Type::is_finite() const {
   469   return false;
   470 }
   472 //------------------------------is_nan-----------------------------------------
   473 // Is not a number (NaN)
   474 bool Type::is_nan()    const {
   475   return false;
   476 }
   478 //------------------------------meet-------------------------------------------
   479 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
   480 // commutative and the lattice is symmetric.
   481 const Type *Type::meet( const Type *t ) const {
   482   if (isa_narrowoop() && t->isa_narrowoop()) {
   483     const Type* result = is_narrowoop()->make_oopptr()->meet(t->is_narrowoop()->make_oopptr());
   484     if (result->isa_oopptr()) {
   485       return result->isa_oopptr()->make_narrowoop();
   486     } else if (result == TypePtr::NULL_PTR) {
   487       return TypeNarrowOop::NULL_PTR;
   488     } else {
   489       return result;
   490     }
   491   }
   493   const Type *mt = xmeet(t);
   494   if (isa_narrowoop() || t->isa_narrowoop()) return mt;
   495 #ifdef ASSERT
   496   assert( mt == t->xmeet(this), "meet not commutative" );
   497   const Type* dual_join = mt->_dual;
   498   const Type *t2t    = dual_join->xmeet(t->_dual);
   499   const Type *t2this = dual_join->xmeet(   _dual);
   501   // Interface meet Oop is Not Symmetric:
   502   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
   503   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
   504   const TypeInstPtr* this_inst = this->isa_instptr();
   505   const TypeInstPtr*    t_inst =    t->isa_instptr();
   506   bool interface_vs_oop = false;
   507   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
   508     bool this_interface = this_inst->klass()->is_interface();
   509     bool    t_interface =    t_inst->klass()->is_interface();
   510     interface_vs_oop = this_interface ^ t_interface;
   511   }
   512   const Type *tdual = t->_dual;
   513   const Type *thisdual = _dual;
   514   // strip out instances
   515   if (t2t->isa_oopptr() != NULL) {
   516     t2t = t2t->isa_oopptr()->cast_to_instance(TypeOopPtr::UNKNOWN_INSTANCE);
   517   }
   518   if (t2this->isa_oopptr() != NULL) {
   519     t2this = t2this->isa_oopptr()->cast_to_instance(TypeOopPtr::UNKNOWN_INSTANCE);
   520   }
   521   if (tdual->isa_oopptr() != NULL) {
   522     tdual = tdual->isa_oopptr()->cast_to_instance(TypeOopPtr::UNKNOWN_INSTANCE);
   523   }
   524   if (thisdual->isa_oopptr() != NULL) {
   525     thisdual = thisdual->isa_oopptr()->cast_to_instance(TypeOopPtr::UNKNOWN_INSTANCE);
   526   }
   528   if( !interface_vs_oop && (t2t != tdual || t2this != thisdual) ) {
   529     tty->print_cr("=== Meet Not Symmetric ===");
   530     tty->print("t   =                   ");         t->dump(); tty->cr();
   531     tty->print("this=                   ");            dump(); tty->cr();
   532     tty->print("mt=(t meet this)=       ");        mt->dump(); tty->cr();
   534     tty->print("t_dual=                 ");  t->_dual->dump(); tty->cr();
   535     tty->print("this_dual=              ");     _dual->dump(); tty->cr();
   536     tty->print("mt_dual=                "); mt->_dual->dump(); tty->cr();
   538     tty->print("mt_dual meet t_dual=    "); t2t      ->dump(); tty->cr();
   539     tty->print("mt_dual meet this_dual= "); t2this   ->dump(); tty->cr();
   541     fatal("meet not symmetric" );
   542   }
   543 #endif
   544   return mt;
   545 }
   547 //------------------------------xmeet------------------------------------------
   548 // Compute the MEET of two types.  It returns a new Type object.
   549 const Type *Type::xmeet( const Type *t ) const {
   550   // Perform a fast test for common case; meeting the same types together.
   551   if( this == t ) return this;  // Meeting same type-rep?
   553   // Meeting TOP with anything?
   554   if( _base == Top ) return t;
   556   // Meeting BOTTOM with anything?
   557   if( _base == Bottom ) return BOTTOM;
   559   // Current "this->_base" is one of: Bad, Multi, Control, Top,
   560   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
   561   switch (t->base()) {  // Switch on original type
   563   // Cut in half the number of cases I must handle.  Only need cases for when
   564   // the given enum "t->type" is less than or equal to the local enum "type".
   565   case FloatCon:
   566   case DoubleCon:
   567   case Int:
   568   case Long:
   569     return t->xmeet(this);
   571   case OopPtr:
   572     return t->xmeet(this);
   574   case InstPtr:
   575     return t->xmeet(this);
   577   case KlassPtr:
   578     return t->xmeet(this);
   580   case AryPtr:
   581     return t->xmeet(this);
   583   case NarrowOop:
   584     return t->xmeet(this);
   586   case Bad:                     // Type check
   587   default:                      // Bogus type not in lattice
   588     typerr(t);
   589     return Type::BOTTOM;
   591   case Bottom:                  // Ye Olde Default
   592     return t;
   594   case FloatTop:
   595     if( _base == FloatTop ) return this;
   596   case FloatBot:                // Float
   597     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
   598     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
   599     typerr(t);
   600     return Type::BOTTOM;
   602   case DoubleTop:
   603     if( _base == DoubleTop ) return this;
   604   case DoubleBot:               // Double
   605     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
   606     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
   607     typerr(t);
   608     return Type::BOTTOM;
   610   // These next few cases must match exactly or it is a compile-time error.
   611   case Control:                 // Control of code
   612   case Abio:                    // State of world outside of program
   613   case Memory:
   614     if( _base == t->_base )  return this;
   615     typerr(t);
   616     return Type::BOTTOM;
   618   case Top:                     // Top of the lattice
   619     return this;
   620   }
   622   // The type is unchanged
   623   return this;
   624 }
   626 //-----------------------------filter------------------------------------------
   627 const Type *Type::filter( const Type *kills ) const {
   628   const Type* ft = join(kills);
   629   if (ft->empty())
   630     return Type::TOP;           // Canonical empty value
   631   return ft;
   632 }
   634 //------------------------------xdual------------------------------------------
   635 // Compute dual right now.
   636 const Type::TYPES Type::dual_type[Type::lastype] = {
   637   Bad,          // Bad
   638   Control,      // Control
   639   Bottom,       // Top
   640   Bad,          // Int - handled in v-call
   641   Bad,          // Long - handled in v-call
   642   Half,         // Half
   643   Bad,          // NarrowOop - handled in v-call
   645   Bad,          // Tuple - handled in v-call
   646   Bad,          // Array - handled in v-call
   648   Bad,          // AnyPtr - handled in v-call
   649   Bad,          // RawPtr - handled in v-call
   650   Bad,          // OopPtr - handled in v-call
   651   Bad,          // InstPtr - handled in v-call
   652   Bad,          // AryPtr - handled in v-call
   653   Bad,          // KlassPtr - handled in v-call
   655   Bad,          // Function - handled in v-call
   656   Abio,         // Abio
   657   Return_Address,// Return_Address
   658   Memory,       // Memory
   659   FloatBot,     // FloatTop
   660   FloatCon,     // FloatCon
   661   FloatTop,     // FloatBot
   662   DoubleBot,    // DoubleTop
   663   DoubleCon,    // DoubleCon
   664   DoubleTop,    // DoubleBot
   665   Top           // Bottom
   666 };
   668 const Type *Type::xdual() const {
   669   // Note: the base() accessor asserts the sanity of _base.
   670   assert(dual_type[base()] != Bad, "implement with v-call");
   671   return new Type(dual_type[_base]);
   672 }
   674 //------------------------------has_memory-------------------------------------
   675 bool Type::has_memory() const {
   676   Type::TYPES tx = base();
   677   if (tx == Memory) return true;
   678   if (tx == Tuple) {
   679     const TypeTuple *t = is_tuple();
   680     for (uint i=0; i < t->cnt(); i++) {
   681       tx = t->field_at(i)->base();
   682       if (tx == Memory)  return true;
   683     }
   684   }
   685   return false;
   686 }
   688 #ifndef PRODUCT
   689 //------------------------------dump2------------------------------------------
   690 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
   691   st->print(msg[_base]);
   692 }
   694 //------------------------------dump-------------------------------------------
   695 void Type::dump_on(outputStream *st) const {
   696   ResourceMark rm;
   697   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
   698   dump2(d,1, st);
   699   if (isa_ptr() && is_ptr()->is_narrow()) {
   700     st->print(" [narrow]");
   701   }
   702 }
   704 //------------------------------data-------------------------------------------
   705 const char * const Type::msg[Type::lastype] = {
   706   "bad","control","top","int:","long:","half", "narrowoop:",
   707   "tuple:", "aryptr",
   708   "anyptr:", "rawptr:", "java:", "inst:", "ary:", "klass:",
   709   "func", "abIO", "return_address", "memory",
   710   "float_top", "ftcon:", "float",
   711   "double_top", "dblcon:", "double",
   712   "bottom"
   713 };
   714 #endif
   716 //------------------------------singleton--------------------------------------
   717 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
   718 // constants (Ldi nodes).  Singletons are integer, float or double constants.
   719 bool Type::singleton(void) const {
   720   return _base == Top || _base == Half;
   721 }
   723 //------------------------------empty------------------------------------------
   724 // TRUE if Type is a type with no values, FALSE otherwise.
   725 bool Type::empty(void) const {
   726   switch (_base) {
   727   case DoubleTop:
   728   case FloatTop:
   729   case Top:
   730     return true;
   732   case Half:
   733   case Abio:
   734   case Return_Address:
   735   case Memory:
   736   case Bottom:
   737   case FloatBot:
   738   case DoubleBot:
   739     return false;  // never a singleton, therefore never empty
   740   }
   742   ShouldNotReachHere();
   743   return false;
   744 }
   746 //------------------------------dump_stats-------------------------------------
   747 // Dump collected statistics to stderr
   748 #ifndef PRODUCT
   749 void Type::dump_stats() {
   750   tty->print("Types made: %d\n", type_dict()->Size());
   751 }
   752 #endif
   754 //------------------------------typerr-----------------------------------------
   755 void Type::typerr( const Type *t ) const {
   756 #ifndef PRODUCT
   757   tty->print("\nError mixing types: ");
   758   dump();
   759   tty->print(" and ");
   760   t->dump();
   761   tty->print("\n");
   762 #endif
   763   ShouldNotReachHere();
   764 }
   766 //------------------------------isa_oop_ptr------------------------------------
   767 // Return true if type is an oop pointer type.  False for raw pointers.
   768 static char isa_oop_ptr_tbl[Type::lastype] = {
   769   0,0,0,0,0,0,0/*narrowoop*/,0/*tuple*/, 0/*ary*/,
   770   0/*anyptr*/,0/*rawptr*/,1/*OopPtr*/,1/*InstPtr*/,1/*AryPtr*/,1/*KlassPtr*/,
   771   0/*func*/,0,0/*return_address*/,0,
   772   /*floats*/0,0,0, /*doubles*/0,0,0,
   773   0
   774 };
   775 bool Type::isa_oop_ptr() const {
   776   return isa_oop_ptr_tbl[_base] != 0;
   777 }
   779 //------------------------------dump_stats-------------------------------------
   780 // // Check that arrays match type enum
   781 #ifndef PRODUCT
   782 void Type::verify_lastype() {
   783   // Check that arrays match enumeration
   784   assert( Type::dual_type  [Type::lastype - 1] == Type::Top, "did not update array");
   785   assert( strcmp(Type::msg [Type::lastype - 1],"bottom") == 0, "did not update array");
   786   // assert( PhiNode::tbl     [Type::lastype - 1] == NULL,    "did not update array");
   787   assert( Matcher::base2reg[Type::lastype - 1] == 0,      "did not update array");
   788   assert( isa_oop_ptr_tbl  [Type::lastype - 1] == (char)0,  "did not update array");
   789 }
   790 #endif
   792 //=============================================================================
   793 // Convenience common pre-built types.
   794 const TypeF *TypeF::ZERO;       // Floating point zero
   795 const TypeF *TypeF::ONE;        // Floating point one
   797 //------------------------------make-------------------------------------------
   798 // Create a float constant
   799 const TypeF *TypeF::make(float f) {
   800   return (TypeF*)(new TypeF(f))->hashcons();
   801 }
   803 //------------------------------meet-------------------------------------------
   804 // Compute the MEET of two types.  It returns a new Type object.
   805 const Type *TypeF::xmeet( const Type *t ) const {
   806   // Perform a fast test for common case; meeting the same types together.
   807   if( this == t ) return this;  // Meeting same type-rep?
   809   // Current "this->_base" is FloatCon
   810   switch (t->base()) {          // Switch on original type
   811   case AnyPtr:                  // Mixing with oops happens when javac
   812   case RawPtr:                  // reuses local variables
   813   case OopPtr:
   814   case InstPtr:
   815   case KlassPtr:
   816   case AryPtr:
   817   case Int:
   818   case Long:
   819   case DoubleTop:
   820   case DoubleCon:
   821   case DoubleBot:
   822   case Bottom:                  // Ye Olde Default
   823     return Type::BOTTOM;
   825   case FloatBot:
   826     return t;
   828   default:                      // All else is a mistake
   829     typerr(t);
   831   case FloatCon:                // Float-constant vs Float-constant?
   832     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
   833                                 // must compare bitwise as positive zero, negative zero and NaN have
   834                                 // all the same representation in C++
   835       return FLOAT;             // Return generic float
   836                                 // Equal constants
   837   case Top:
   838   case FloatTop:
   839     break;                      // Return the float constant
   840   }
   841   return this;                  // Return the float constant
   842 }
   844 //------------------------------xdual------------------------------------------
   845 // Dual: symmetric
   846 const Type *TypeF::xdual() const {
   847   return this;
   848 }
   850 //------------------------------eq---------------------------------------------
   851 // Structural equality check for Type representations
   852 bool TypeF::eq( const Type *t ) const {
   853   if( g_isnan(_f) ||
   854       g_isnan(t->getf()) ) {
   855     // One or both are NANs.  If both are NANs return true, else false.
   856     return (g_isnan(_f) && g_isnan(t->getf()));
   857   }
   858   if (_f == t->getf()) {
   859     // (NaN is impossible at this point, since it is not equal even to itself)
   860     if (_f == 0.0) {
   861       // difference between positive and negative zero
   862       if (jint_cast(_f) != jint_cast(t->getf()))  return false;
   863     }
   864     return true;
   865   }
   866   return false;
   867 }
   869 //------------------------------hash-------------------------------------------
   870 // Type-specific hashing function.
   871 int TypeF::hash(void) const {
   872   return *(int*)(&_f);
   873 }
   875 //------------------------------is_finite--------------------------------------
   876 // Has a finite value
   877 bool TypeF::is_finite() const {
   878   return g_isfinite(getf()) != 0;
   879 }
   881 //------------------------------is_nan-----------------------------------------
   882 // Is not a number (NaN)
   883 bool TypeF::is_nan()    const {
   884   return g_isnan(getf()) != 0;
   885 }
   887 //------------------------------dump2------------------------------------------
   888 // Dump float constant Type
   889 #ifndef PRODUCT
   890 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
   891   Type::dump2(d,depth, st);
   892   st->print("%f", _f);
   893 }
   894 #endif
   896 //------------------------------singleton--------------------------------------
   897 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
   898 // constants (Ldi nodes).  Singletons are integer, float or double constants
   899 // or a single symbol.
   900 bool TypeF::singleton(void) const {
   901   return true;                  // Always a singleton
   902 }
   904 bool TypeF::empty(void) const {
   905   return false;                 // always exactly a singleton
   906 }
   908 //=============================================================================
   909 // Convenience common pre-built types.
   910 const TypeD *TypeD::ZERO;       // Floating point zero
   911 const TypeD *TypeD::ONE;        // Floating point one
   913 //------------------------------make-------------------------------------------
   914 const TypeD *TypeD::make(double d) {
   915   return (TypeD*)(new TypeD(d))->hashcons();
   916 }
   918 //------------------------------meet-------------------------------------------
   919 // Compute the MEET of two types.  It returns a new Type object.
   920 const Type *TypeD::xmeet( const Type *t ) const {
   921   // Perform a fast test for common case; meeting the same types together.
   922   if( this == t ) return this;  // Meeting same type-rep?
   924   // Current "this->_base" is DoubleCon
   925   switch (t->base()) {          // Switch on original type
   926   case AnyPtr:                  // Mixing with oops happens when javac
   927   case RawPtr:                  // reuses local variables
   928   case OopPtr:
   929   case InstPtr:
   930   case KlassPtr:
   931   case AryPtr:
   932   case Int:
   933   case Long:
   934   case FloatTop:
   935   case FloatCon:
   936   case FloatBot:
   937   case Bottom:                  // Ye Olde Default
   938     return Type::BOTTOM;
   940   case DoubleBot:
   941     return t;
   943   default:                      // All else is a mistake
   944     typerr(t);
   946   case DoubleCon:               // Double-constant vs Double-constant?
   947     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
   948       return DOUBLE;            // Return generic double
   949   case Top:
   950   case DoubleTop:
   951     break;
   952   }
   953   return this;                  // Return the double constant
   954 }
   956 //------------------------------xdual------------------------------------------
   957 // Dual: symmetric
   958 const Type *TypeD::xdual() const {
   959   return this;
   960 }
   962 //------------------------------eq---------------------------------------------
   963 // Structural equality check for Type representations
   964 bool TypeD::eq( const Type *t ) const {
   965   if( g_isnan(_d) ||
   966       g_isnan(t->getd()) ) {
   967     // One or both are NANs.  If both are NANs return true, else false.
   968     return (g_isnan(_d) && g_isnan(t->getd()));
   969   }
   970   if (_d == t->getd()) {
   971     // (NaN is impossible at this point, since it is not equal even to itself)
   972     if (_d == 0.0) {
   973       // difference between positive and negative zero
   974       if (jlong_cast(_d) != jlong_cast(t->getd()))  return false;
   975     }
   976     return true;
   977   }
   978   return false;
   979 }
   981 //------------------------------hash-------------------------------------------
   982 // Type-specific hashing function.
   983 int TypeD::hash(void) const {
   984   return *(int*)(&_d);
   985 }
   987 //------------------------------is_finite--------------------------------------
   988 // Has a finite value
   989 bool TypeD::is_finite() const {
   990   return g_isfinite(getd()) != 0;
   991 }
   993 //------------------------------is_nan-----------------------------------------
   994 // Is not a number (NaN)
   995 bool TypeD::is_nan()    const {
   996   return g_isnan(getd()) != 0;
   997 }
   999 //------------------------------dump2------------------------------------------
  1000 // Dump double constant Type
  1001 #ifndef PRODUCT
  1002 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
  1003   Type::dump2(d,depth,st);
  1004   st->print("%f", _d);
  1006 #endif
  1008 //------------------------------singleton--------------------------------------
  1009 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1010 // constants (Ldi nodes).  Singletons are integer, float or double constants
  1011 // or a single symbol.
  1012 bool TypeD::singleton(void) const {
  1013   return true;                  // Always a singleton
  1016 bool TypeD::empty(void) const {
  1017   return false;                 // always exactly a singleton
  1020 //=============================================================================
  1021 // Convience common pre-built types.
  1022 const TypeInt *TypeInt::MINUS_1;// -1
  1023 const TypeInt *TypeInt::ZERO;   // 0
  1024 const TypeInt *TypeInt::ONE;    // 1
  1025 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
  1026 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
  1027 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
  1028 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
  1029 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
  1030 const TypeInt *TypeInt::CC_LE;  // [-1,0]
  1031 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
  1032 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
  1033 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
  1034 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
  1035 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
  1036 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
  1037 const TypeInt *TypeInt::INT;    // 32-bit integers
  1038 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
  1040 //------------------------------TypeInt----------------------------------------
  1041 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
  1044 //------------------------------make-------------------------------------------
  1045 const TypeInt *TypeInt::make( jint lo ) {
  1046   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
  1049 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
  1051 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
  1052   // Certain normalizations keep us sane when comparing types.
  1053   // The 'SMALLINT' covers constants and also CC and its relatives.
  1054   assert(CC == NULL || (juint)(CC->_hi - CC->_lo) <= SMALLINT, "CC is truly small");
  1055   if (lo <= hi) {
  1056     if ((juint)(hi - lo) <= SMALLINT)   w = Type::WidenMin;
  1057     if ((juint)(hi - lo) >= max_juint)  w = Type::WidenMax; // plain int
  1059   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
  1062 //------------------------------meet-------------------------------------------
  1063 // Compute the MEET of two types.  It returns a new Type representation object
  1064 // with reference count equal to the number of Types pointing at it.
  1065 // Caller should wrap a Types around it.
  1066 const Type *TypeInt::xmeet( const Type *t ) const {
  1067   // Perform a fast test for common case; meeting the same types together.
  1068   if( this == t ) return this;  // Meeting same type?
  1070   // Currently "this->_base" is a TypeInt
  1071   switch (t->base()) {          // Switch on original type
  1072   case AnyPtr:                  // Mixing with oops happens when javac
  1073   case RawPtr:                  // reuses local variables
  1074   case OopPtr:
  1075   case InstPtr:
  1076   case KlassPtr:
  1077   case AryPtr:
  1078   case Long:
  1079   case FloatTop:
  1080   case FloatCon:
  1081   case FloatBot:
  1082   case DoubleTop:
  1083   case DoubleCon:
  1084   case DoubleBot:
  1085   case NarrowOop:
  1086   case Bottom:                  // Ye Olde Default
  1087     return Type::BOTTOM;
  1088   default:                      // All else is a mistake
  1089     typerr(t);
  1090   case Top:                     // No change
  1091     return this;
  1092   case Int:                     // Int vs Int?
  1093     break;
  1096   // Expand covered set
  1097   const TypeInt *r = t->is_int();
  1098   // (Avoid TypeInt::make, to avoid the argument normalizations it enforces.)
  1099   return (new TypeInt( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) ))->hashcons();
  1102 //------------------------------xdual------------------------------------------
  1103 // Dual: reverse hi & lo; flip widen
  1104 const Type *TypeInt::xdual() const {
  1105   return new TypeInt(_hi,_lo,WidenMax-_widen);
  1108 //------------------------------widen------------------------------------------
  1109 // Only happens for optimistic top-down optimizations.
  1110 const Type *TypeInt::widen( const Type *old ) const {
  1111   // Coming from TOP or such; no widening
  1112   if( old->base() != Int ) return this;
  1113   const TypeInt *ot = old->is_int();
  1115   // If new guy is equal to old guy, no widening
  1116   if( _lo == ot->_lo && _hi == ot->_hi )
  1117     return old;
  1119   // If new guy contains old, then we widened
  1120   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
  1121     // New contains old
  1122     // If new guy is already wider than old, no widening
  1123     if( _widen > ot->_widen ) return this;
  1124     // If old guy was a constant, do not bother
  1125     if (ot->_lo == ot->_hi)  return this;
  1126     // Now widen new guy.
  1127     // Check for widening too far
  1128     if (_widen == WidenMax) {
  1129       if (min_jint < _lo && _hi < max_jint) {
  1130         // If neither endpoint is extremal yet, push out the endpoint
  1131         // which is closer to its respective limit.
  1132         if (_lo >= 0 ||                 // easy common case
  1133             (juint)(_lo - min_jint) >= (juint)(max_jint - _hi)) {
  1134           // Try to widen to an unsigned range type of 31 bits:
  1135           return make(_lo, max_jint, WidenMax);
  1136         } else {
  1137           return make(min_jint, _hi, WidenMax);
  1140       return TypeInt::INT;
  1142     // Returned widened new guy
  1143     return make(_lo,_hi,_widen+1);
  1146   // If old guy contains new, then we probably widened too far & dropped to
  1147   // bottom.  Return the wider fellow.
  1148   if ( ot->_lo <= _lo && ot->_hi >= _hi )
  1149     return old;
  1151   //fatal("Integer value range is not subset");
  1152   //return this;
  1153   return TypeInt::INT;
  1156 //------------------------------narrow---------------------------------------
  1157 // Only happens for pessimistic optimizations.
  1158 const Type *TypeInt::narrow( const Type *old ) const {
  1159   if (_lo >= _hi)  return this;   // already narrow enough
  1160   if (old == NULL)  return this;
  1161   const TypeInt* ot = old->isa_int();
  1162   if (ot == NULL)  return this;
  1163   jint olo = ot->_lo;
  1164   jint ohi = ot->_hi;
  1166   // If new guy is equal to old guy, no narrowing
  1167   if (_lo == olo && _hi == ohi)  return old;
  1169   // If old guy was maximum range, allow the narrowing
  1170   if (olo == min_jint && ohi == max_jint)  return this;
  1172   if (_lo < olo || _hi > ohi)
  1173     return this;                // doesn't narrow; pretty wierd
  1175   // The new type narrows the old type, so look for a "death march".
  1176   // See comments on PhaseTransform::saturate.
  1177   juint nrange = _hi - _lo;
  1178   juint orange = ohi - olo;
  1179   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
  1180     // Use the new type only if the range shrinks a lot.
  1181     // We do not want the optimizer computing 2^31 point by point.
  1182     return old;
  1185   return this;
  1188 //-----------------------------filter------------------------------------------
  1189 const Type *TypeInt::filter( const Type *kills ) const {
  1190   const TypeInt* ft = join(kills)->isa_int();
  1191   if (ft == NULL || ft->_lo > ft->_hi)
  1192     return Type::TOP;           // Canonical empty value
  1193   if (ft->_widen < this->_widen) {
  1194     // Do not allow the value of kill->_widen to affect the outcome.
  1195     // The widen bits must be allowed to run freely through the graph.
  1196     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
  1198   return ft;
  1201 //------------------------------eq---------------------------------------------
  1202 // Structural equality check for Type representations
  1203 bool TypeInt::eq( const Type *t ) const {
  1204   const TypeInt *r = t->is_int(); // Handy access
  1205   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
  1208 //------------------------------hash-------------------------------------------
  1209 // Type-specific hashing function.
  1210 int TypeInt::hash(void) const {
  1211   return _lo+_hi+_widen+(int)Type::Int;
  1214 //------------------------------is_finite--------------------------------------
  1215 // Has a finite value
  1216 bool TypeInt::is_finite() const {
  1217   return true;
  1220 //------------------------------dump2------------------------------------------
  1221 // Dump TypeInt
  1222 #ifndef PRODUCT
  1223 static const char* intname(char* buf, jint n) {
  1224   if (n == min_jint)
  1225     return "min";
  1226   else if (n < min_jint + 10000)
  1227     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
  1228   else if (n == max_jint)
  1229     return "max";
  1230   else if (n > max_jint - 10000)
  1231     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
  1232   else
  1233     sprintf(buf, INT32_FORMAT, n);
  1234   return buf;
  1237 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
  1238   char buf[40], buf2[40];
  1239   if (_lo == min_jint && _hi == max_jint)
  1240     st->print("int");
  1241   else if (is_con())
  1242     st->print("int:%s", intname(buf, get_con()));
  1243   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
  1244     st->print("bool");
  1245   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
  1246     st->print("byte");
  1247   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
  1248     st->print("char");
  1249   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
  1250     st->print("short");
  1251   else if (_hi == max_jint)
  1252     st->print("int:>=%s", intname(buf, _lo));
  1253   else if (_lo == min_jint)
  1254     st->print("int:<=%s", intname(buf, _hi));
  1255   else
  1256     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
  1258   if (_widen != 0 && this != TypeInt::INT)
  1259     st->print(":%.*s", _widen, "wwww");
  1261 #endif
  1263 //------------------------------singleton--------------------------------------
  1264 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1265 // constants.
  1266 bool TypeInt::singleton(void) const {
  1267   return _lo >= _hi;
  1270 bool TypeInt::empty(void) const {
  1271   return _lo > _hi;
  1274 //=============================================================================
  1275 // Convenience common pre-built types.
  1276 const TypeLong *TypeLong::MINUS_1;// -1
  1277 const TypeLong *TypeLong::ZERO; // 0
  1278 const TypeLong *TypeLong::ONE;  // 1
  1279 const TypeLong *TypeLong::POS;  // >=0
  1280 const TypeLong *TypeLong::LONG; // 64-bit integers
  1281 const TypeLong *TypeLong::INT;  // 32-bit subrange
  1282 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
  1284 //------------------------------TypeLong---------------------------------------
  1285 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
  1288 //------------------------------make-------------------------------------------
  1289 const TypeLong *TypeLong::make( jlong lo ) {
  1290   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
  1293 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
  1294   // Certain normalizations keep us sane when comparing types.
  1295   // The '1' covers constants.
  1296   if (lo <= hi) {
  1297     if ((julong)(hi - lo) <= SMALLINT)    w = Type::WidenMin;
  1298     if ((julong)(hi - lo) >= max_julong)  w = Type::WidenMax; // plain long
  1300   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
  1304 //------------------------------meet-------------------------------------------
  1305 // Compute the MEET of two types.  It returns a new Type representation object
  1306 // with reference count equal to the number of Types pointing at it.
  1307 // Caller should wrap a Types around it.
  1308 const Type *TypeLong::xmeet( const Type *t ) const {
  1309   // Perform a fast test for common case; meeting the same types together.
  1310   if( this == t ) return this;  // Meeting same type?
  1312   // Currently "this->_base" is a TypeLong
  1313   switch (t->base()) {          // Switch on original type
  1314   case AnyPtr:                  // Mixing with oops happens when javac
  1315   case RawPtr:                  // reuses local variables
  1316   case OopPtr:
  1317   case InstPtr:
  1318   case KlassPtr:
  1319   case AryPtr:
  1320   case Int:
  1321   case FloatTop:
  1322   case FloatCon:
  1323   case FloatBot:
  1324   case DoubleTop:
  1325   case DoubleCon:
  1326   case DoubleBot:
  1327   case Bottom:                  // Ye Olde Default
  1328     return Type::BOTTOM;
  1329   default:                      // All else is a mistake
  1330     typerr(t);
  1331   case Top:                     // No change
  1332     return this;
  1333   case Long:                    // Long vs Long?
  1334     break;
  1337   // Expand covered set
  1338   const TypeLong *r = t->is_long(); // Turn into a TypeLong
  1339   // (Avoid TypeLong::make, to avoid the argument normalizations it enforces.)
  1340   return (new TypeLong( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) ))->hashcons();
  1343 //------------------------------xdual------------------------------------------
  1344 // Dual: reverse hi & lo; flip widen
  1345 const Type *TypeLong::xdual() const {
  1346   return new TypeLong(_hi,_lo,WidenMax-_widen);
  1349 //------------------------------widen------------------------------------------
  1350 // Only happens for optimistic top-down optimizations.
  1351 const Type *TypeLong::widen( const Type *old ) const {
  1352   // Coming from TOP or such; no widening
  1353   if( old->base() != Long ) return this;
  1354   const TypeLong *ot = old->is_long();
  1356   // If new guy is equal to old guy, no widening
  1357   if( _lo == ot->_lo && _hi == ot->_hi )
  1358     return old;
  1360   // If new guy contains old, then we widened
  1361   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
  1362     // New contains old
  1363     // If new guy is already wider than old, no widening
  1364     if( _widen > ot->_widen ) return this;
  1365     // If old guy was a constant, do not bother
  1366     if (ot->_lo == ot->_hi)  return this;
  1367     // Now widen new guy.
  1368     // Check for widening too far
  1369     if (_widen == WidenMax) {
  1370       if (min_jlong < _lo && _hi < max_jlong) {
  1371         // If neither endpoint is extremal yet, push out the endpoint
  1372         // which is closer to its respective limit.
  1373         if (_lo >= 0 ||                 // easy common case
  1374             (julong)(_lo - min_jlong) >= (julong)(max_jlong - _hi)) {
  1375           // Try to widen to an unsigned range type of 32/63 bits:
  1376           if (_hi < max_juint)
  1377             return make(_lo, max_juint, WidenMax);
  1378           else
  1379             return make(_lo, max_jlong, WidenMax);
  1380         } else {
  1381           return make(min_jlong, _hi, WidenMax);
  1384       return TypeLong::LONG;
  1386     // Returned widened new guy
  1387     return make(_lo,_hi,_widen+1);
  1390   // If old guy contains new, then we probably widened too far & dropped to
  1391   // bottom.  Return the wider fellow.
  1392   if ( ot->_lo <= _lo && ot->_hi >= _hi )
  1393     return old;
  1395   //  fatal("Long value range is not subset");
  1396   // return this;
  1397   return TypeLong::LONG;
  1400 //------------------------------narrow----------------------------------------
  1401 // Only happens for pessimistic optimizations.
  1402 const Type *TypeLong::narrow( const Type *old ) const {
  1403   if (_lo >= _hi)  return this;   // already narrow enough
  1404   if (old == NULL)  return this;
  1405   const TypeLong* ot = old->isa_long();
  1406   if (ot == NULL)  return this;
  1407   jlong olo = ot->_lo;
  1408   jlong ohi = ot->_hi;
  1410   // If new guy is equal to old guy, no narrowing
  1411   if (_lo == olo && _hi == ohi)  return old;
  1413   // If old guy was maximum range, allow the narrowing
  1414   if (olo == min_jlong && ohi == max_jlong)  return this;
  1416   if (_lo < olo || _hi > ohi)
  1417     return this;                // doesn't narrow; pretty wierd
  1419   // The new type narrows the old type, so look for a "death march".
  1420   // See comments on PhaseTransform::saturate.
  1421   julong nrange = _hi - _lo;
  1422   julong orange = ohi - olo;
  1423   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
  1424     // Use the new type only if the range shrinks a lot.
  1425     // We do not want the optimizer computing 2^31 point by point.
  1426     return old;
  1429   return this;
  1432 //-----------------------------filter------------------------------------------
  1433 const Type *TypeLong::filter( const Type *kills ) const {
  1434   const TypeLong* ft = join(kills)->isa_long();
  1435   if (ft == NULL || ft->_lo > ft->_hi)
  1436     return Type::TOP;           // Canonical empty value
  1437   if (ft->_widen < this->_widen) {
  1438     // Do not allow the value of kill->_widen to affect the outcome.
  1439     // The widen bits must be allowed to run freely through the graph.
  1440     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
  1442   return ft;
  1445 //------------------------------eq---------------------------------------------
  1446 // Structural equality check for Type representations
  1447 bool TypeLong::eq( const Type *t ) const {
  1448   const TypeLong *r = t->is_long(); // Handy access
  1449   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
  1452 //------------------------------hash-------------------------------------------
  1453 // Type-specific hashing function.
  1454 int TypeLong::hash(void) const {
  1455   return (int)(_lo+_hi+_widen+(int)Type::Long);
  1458 //------------------------------is_finite--------------------------------------
  1459 // Has a finite value
  1460 bool TypeLong::is_finite() const {
  1461   return true;
  1464 //------------------------------dump2------------------------------------------
  1465 // Dump TypeLong
  1466 #ifndef PRODUCT
  1467 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
  1468   if (n > x) {
  1469     if (n >= x + 10000)  return NULL;
  1470     sprintf(buf, "%s+" INT64_FORMAT, xname, n - x);
  1471   } else if (n < x) {
  1472     if (n <= x - 10000)  return NULL;
  1473     sprintf(buf, "%s-" INT64_FORMAT, xname, x - n);
  1474   } else {
  1475     return xname;
  1477   return buf;
  1480 static const char* longname(char* buf, jlong n) {
  1481   const char* str;
  1482   if (n == min_jlong)
  1483     return "min";
  1484   else if (n < min_jlong + 10000)
  1485     sprintf(buf, "min+" INT64_FORMAT, n - min_jlong);
  1486   else if (n == max_jlong)
  1487     return "max";
  1488   else if (n > max_jlong - 10000)
  1489     sprintf(buf, "max-" INT64_FORMAT, max_jlong - n);
  1490   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
  1491     return str;
  1492   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
  1493     return str;
  1494   else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
  1495     return str;
  1496   else
  1497     sprintf(buf, INT64_FORMAT, n);
  1498   return buf;
  1501 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
  1502   char buf[80], buf2[80];
  1503   if (_lo == min_jlong && _hi == max_jlong)
  1504     st->print("long");
  1505   else if (is_con())
  1506     st->print("long:%s", longname(buf, get_con()));
  1507   else if (_hi == max_jlong)
  1508     st->print("long:>=%s", longname(buf, _lo));
  1509   else if (_lo == min_jlong)
  1510     st->print("long:<=%s", longname(buf, _hi));
  1511   else
  1512     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
  1514   if (_widen != 0 && this != TypeLong::LONG)
  1515     st->print(":%.*s", _widen, "wwww");
  1517 #endif
  1519 //------------------------------singleton--------------------------------------
  1520 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1521 // constants
  1522 bool TypeLong::singleton(void) const {
  1523   return _lo >= _hi;
  1526 bool TypeLong::empty(void) const {
  1527   return _lo > _hi;
  1530 //=============================================================================
  1531 // Convenience common pre-built types.
  1532 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
  1533 const TypeTuple *TypeTuple::IFFALSE;
  1534 const TypeTuple *TypeTuple::IFTRUE;
  1535 const TypeTuple *TypeTuple::IFNEITHER;
  1536 const TypeTuple *TypeTuple::LOOPBODY;
  1537 const TypeTuple *TypeTuple::MEMBAR;
  1538 const TypeTuple *TypeTuple::STORECONDITIONAL;
  1539 const TypeTuple *TypeTuple::START_I2C;
  1540 const TypeTuple *TypeTuple::INT_PAIR;
  1541 const TypeTuple *TypeTuple::LONG_PAIR;
  1544 //------------------------------make-------------------------------------------
  1545 // Make a TypeTuple from the range of a method signature
  1546 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
  1547   ciType* return_type = sig->return_type();
  1548   uint total_fields = TypeFunc::Parms + return_type->size();
  1549   const Type **field_array = fields(total_fields);
  1550   switch (return_type->basic_type()) {
  1551   case T_LONG:
  1552     field_array[TypeFunc::Parms]   = TypeLong::LONG;
  1553     field_array[TypeFunc::Parms+1] = Type::HALF;
  1554     break;
  1555   case T_DOUBLE:
  1556     field_array[TypeFunc::Parms]   = Type::DOUBLE;
  1557     field_array[TypeFunc::Parms+1] = Type::HALF;
  1558     break;
  1559   case T_OBJECT:
  1560   case T_ARRAY:
  1561   case T_BOOLEAN:
  1562   case T_CHAR:
  1563   case T_FLOAT:
  1564   case T_BYTE:
  1565   case T_SHORT:
  1566   case T_INT:
  1567     field_array[TypeFunc::Parms] = get_const_type(return_type);
  1568     break;
  1569   case T_VOID:
  1570     break;
  1571   default:
  1572     ShouldNotReachHere();
  1574   return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
  1577 // Make a TypeTuple from the domain of a method signature
  1578 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
  1579   uint total_fields = TypeFunc::Parms + sig->size();
  1581   uint pos = TypeFunc::Parms;
  1582   const Type **field_array;
  1583   if (recv != NULL) {
  1584     total_fields++;
  1585     field_array = fields(total_fields);
  1586     // Use get_const_type here because it respects UseUniqueSubclasses:
  1587     field_array[pos++] = get_const_type(recv)->join(TypePtr::NOTNULL);
  1588   } else {
  1589     field_array = fields(total_fields);
  1592   int i = 0;
  1593   while (pos < total_fields) {
  1594     ciType* type = sig->type_at(i);
  1596     switch (type->basic_type()) {
  1597     case T_LONG:
  1598       field_array[pos++] = TypeLong::LONG;
  1599       field_array[pos++] = Type::HALF;
  1600       break;
  1601     case T_DOUBLE:
  1602       field_array[pos++] = Type::DOUBLE;
  1603       field_array[pos++] = Type::HALF;
  1604       break;
  1605     case T_OBJECT:
  1606     case T_ARRAY:
  1607     case T_BOOLEAN:
  1608     case T_CHAR:
  1609     case T_FLOAT:
  1610     case T_BYTE:
  1611     case T_SHORT:
  1612     case T_INT:
  1613       field_array[pos++] = get_const_type(type);
  1614       break;
  1615     default:
  1616       ShouldNotReachHere();
  1618     i++;
  1620   return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
  1623 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
  1624   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
  1627 //------------------------------fields-----------------------------------------
  1628 // Subroutine call type with space allocated for argument types
  1629 const Type **TypeTuple::fields( uint arg_cnt ) {
  1630   const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
  1631   flds[TypeFunc::Control  ] = Type::CONTROL;
  1632   flds[TypeFunc::I_O      ] = Type::ABIO;
  1633   flds[TypeFunc::Memory   ] = Type::MEMORY;
  1634   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
  1635   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
  1637   return flds;
  1640 //------------------------------meet-------------------------------------------
  1641 // Compute the MEET of two types.  It returns a new Type object.
  1642 const Type *TypeTuple::xmeet( const Type *t ) const {
  1643   // Perform a fast test for common case; meeting the same types together.
  1644   if( this == t ) return this;  // Meeting same type-rep?
  1646   // Current "this->_base" is Tuple
  1647   switch (t->base()) {          // switch on original type
  1649   case Bottom:                  // Ye Olde Default
  1650     return t;
  1652   default:                      // All else is a mistake
  1653     typerr(t);
  1655   case Tuple: {                 // Meeting 2 signatures?
  1656     const TypeTuple *x = t->is_tuple();
  1657     assert( _cnt == x->_cnt, "" );
  1658     const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
  1659     for( uint i=0; i<_cnt; i++ )
  1660       fields[i] = field_at(i)->xmeet( x->field_at(i) );
  1661     return TypeTuple::make(_cnt,fields);
  1663   case Top:
  1664     break;
  1666   return this;                  // Return the double constant
  1669 //------------------------------xdual------------------------------------------
  1670 // Dual: compute field-by-field dual
  1671 const Type *TypeTuple::xdual() const {
  1672   const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
  1673   for( uint i=0; i<_cnt; i++ )
  1674     fields[i] = _fields[i]->dual();
  1675   return new TypeTuple(_cnt,fields);
  1678 //------------------------------eq---------------------------------------------
  1679 // Structural equality check for Type representations
  1680 bool TypeTuple::eq( const Type *t ) const {
  1681   const TypeTuple *s = (const TypeTuple *)t;
  1682   if (_cnt != s->_cnt)  return false;  // Unequal field counts
  1683   for (uint i = 0; i < _cnt; i++)
  1684     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
  1685       return false;             // Missed
  1686   return true;
  1689 //------------------------------hash-------------------------------------------
  1690 // Type-specific hashing function.
  1691 int TypeTuple::hash(void) const {
  1692   intptr_t sum = _cnt;
  1693   for( uint i=0; i<_cnt; i++ )
  1694     sum += (intptr_t)_fields[i];     // Hash on pointers directly
  1695   return sum;
  1698 //------------------------------dump2------------------------------------------
  1699 // Dump signature Type
  1700 #ifndef PRODUCT
  1701 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
  1702   st->print("{");
  1703   if( !depth || d[this] ) {     // Check for recursive print
  1704     st->print("...}");
  1705     return;
  1707   d.Insert((void*)this, (void*)this);   // Stop recursion
  1708   if( _cnt ) {
  1709     uint i;
  1710     for( i=0; i<_cnt-1; i++ ) {
  1711       st->print("%d:", i);
  1712       _fields[i]->dump2(d, depth-1, st);
  1713       st->print(", ");
  1715     st->print("%d:", i);
  1716     _fields[i]->dump2(d, depth-1, st);
  1718   st->print("}");
  1720 #endif
  1722 //------------------------------singleton--------------------------------------
  1723 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1724 // constants (Ldi nodes).  Singletons are integer, float or double constants
  1725 // or a single symbol.
  1726 bool TypeTuple::singleton(void) const {
  1727   return false;                 // Never a singleton
  1730 bool TypeTuple::empty(void) const {
  1731   for( uint i=0; i<_cnt; i++ ) {
  1732     if (_fields[i]->empty())  return true;
  1734   return false;
  1737 //=============================================================================
  1738 // Convenience common pre-built types.
  1740 inline const TypeInt* normalize_array_size(const TypeInt* size) {
  1741   // Certain normalizations keep us sane when comparing types.
  1742   // We do not want arrayOop variables to differ only by the wideness
  1743   // of their index types.  Pick minimum wideness, since that is the
  1744   // forced wideness of small ranges anyway.
  1745   if (size->_widen != Type::WidenMin)
  1746     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
  1747   else
  1748     return size;
  1751 //------------------------------make-------------------------------------------
  1752 const TypeAry *TypeAry::make( const Type *elem, const TypeInt *size) {
  1753   if (UseCompressedOops && elem->isa_oopptr()) {
  1754     elem = elem->is_oopptr()->make_narrowoop();
  1756   size = normalize_array_size(size);
  1757   return (TypeAry*)(new TypeAry(elem,size))->hashcons();
  1760 //------------------------------meet-------------------------------------------
  1761 // Compute the MEET of two types.  It returns a new Type object.
  1762 const Type *TypeAry::xmeet( const Type *t ) const {
  1763   // Perform a fast test for common case; meeting the same types together.
  1764   if( this == t ) return this;  // Meeting same type-rep?
  1766   // Current "this->_base" is Ary
  1767   switch (t->base()) {          // switch on original type
  1769   case Bottom:                  // Ye Olde Default
  1770     return t;
  1772   default:                      // All else is a mistake
  1773     typerr(t);
  1775   case Array: {                 // Meeting 2 arrays?
  1776     const TypeAry *a = t->is_ary();
  1777     return TypeAry::make(_elem->meet(a->_elem),
  1778                          _size->xmeet(a->_size)->is_int());
  1780   case Top:
  1781     break;
  1783   return this;                  // Return the double constant
  1786 //------------------------------xdual------------------------------------------
  1787 // Dual: compute field-by-field dual
  1788 const Type *TypeAry::xdual() const {
  1789   const TypeInt* size_dual = _size->dual()->is_int();
  1790   size_dual = normalize_array_size(size_dual);
  1791   return new TypeAry( _elem->dual(), size_dual);
  1794 //------------------------------eq---------------------------------------------
  1795 // Structural equality check for Type representations
  1796 bool TypeAry::eq( const Type *t ) const {
  1797   const TypeAry *a = (const TypeAry*)t;
  1798   return _elem == a->_elem &&
  1799     _size == a->_size;
  1802 //------------------------------hash-------------------------------------------
  1803 // Type-specific hashing function.
  1804 int TypeAry::hash(void) const {
  1805   return (intptr_t)_elem + (intptr_t)_size;
  1808 //------------------------------dump2------------------------------------------
  1809 #ifndef PRODUCT
  1810 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
  1811   _elem->dump2(d, depth, st);
  1812   st->print("[");
  1813   _size->dump2(d, depth, st);
  1814   st->print("]");
  1816 #endif
  1818 //------------------------------singleton--------------------------------------
  1819 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1820 // constants (Ldi nodes).  Singletons are integer, float or double constants
  1821 // or a single symbol.
  1822 bool TypeAry::singleton(void) const {
  1823   return false;                 // Never a singleton
  1826 bool TypeAry::empty(void) const {
  1827   return _elem->empty() || _size->empty();
  1830 //--------------------------ary_must_be_exact----------------------------------
  1831 bool TypeAry::ary_must_be_exact() const {
  1832   if (!UseExactTypes)       return false;
  1833   // This logic looks at the element type of an array, and returns true
  1834   // if the element type is either a primitive or a final instance class.
  1835   // In such cases, an array built on this ary must have no subclasses.
  1836   if (_elem == BOTTOM)      return false;  // general array not exact
  1837   if (_elem == TOP   )      return false;  // inverted general array not exact
  1838   const TypeOopPtr*  toop = NULL;
  1839   if (UseCompressedOops) {
  1840     const TypeNarrowOop* noop = _elem->isa_narrowoop();
  1841     if (noop) toop = noop->make_oopptr()->isa_oopptr();
  1842   } else {
  1843     toop = _elem->isa_oopptr();
  1845   if (!toop)                return true;   // a primitive type, like int
  1846   ciKlass* tklass = toop->klass();
  1847   if (tklass == NULL)       return false;  // unloaded class
  1848   if (!tklass->is_loaded()) return false;  // unloaded class
  1849   const TypeInstPtr* tinst;
  1850   if (_elem->isa_narrowoop())
  1851     tinst = _elem->is_narrowoop()->make_oopptr()->isa_instptr();
  1852   else
  1853     tinst = _elem->isa_instptr();
  1854   if (tinst)                return tklass->as_instance_klass()->is_final();
  1855   const TypeAryPtr*  tap;
  1856   if (_elem->isa_narrowoop())
  1857     tap = _elem->is_narrowoop()->make_oopptr()->isa_aryptr();
  1858   else
  1859     tap = _elem->isa_aryptr();
  1860   if (tap)                  return tap->ary()->ary_must_be_exact();
  1861   return false;
  1864 //=============================================================================
  1865 // Convenience common pre-built types.
  1866 const TypePtr *TypePtr::NULL_PTR;
  1867 const TypePtr *TypePtr::NOTNULL;
  1868 const TypePtr *TypePtr::BOTTOM;
  1870 //------------------------------meet-------------------------------------------
  1871 // Meet over the PTR enum
  1872 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
  1873   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
  1874   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
  1875   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
  1876   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
  1877   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
  1878   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
  1879   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
  1880 };
  1882 //------------------------------make-------------------------------------------
  1883 const TypePtr *TypePtr::make( TYPES t, enum PTR ptr, int offset ) {
  1884   return (TypePtr*)(new TypePtr(t,ptr,offset))->hashcons();
  1887 //------------------------------cast_to_ptr_type-------------------------------
  1888 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
  1889   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
  1890   if( ptr == _ptr ) return this;
  1891   return make(_base, ptr, _offset);
  1894 //------------------------------get_con----------------------------------------
  1895 intptr_t TypePtr::get_con() const {
  1896   assert( _ptr == Null, "" );
  1897   return _offset;
  1900 //------------------------------meet-------------------------------------------
  1901 // Compute the MEET of two types.  It returns a new Type object.
  1902 const Type *TypePtr::xmeet( const Type *t ) const {
  1903   // Perform a fast test for common case; meeting the same types together.
  1904   if( this == t ) return this;  // Meeting same type-rep?
  1906   // Current "this->_base" is AnyPtr
  1907   switch (t->base()) {          // switch on original type
  1908   case Int:                     // Mixing ints & oops happens when javac
  1909   case Long:                    // reuses local variables
  1910   case FloatTop:
  1911   case FloatCon:
  1912   case FloatBot:
  1913   case DoubleTop:
  1914   case DoubleCon:
  1915   case DoubleBot:
  1916   case NarrowOop:
  1917   case Bottom:                  // Ye Olde Default
  1918     return Type::BOTTOM;
  1919   case Top:
  1920     return this;
  1922   case AnyPtr: {                // Meeting to AnyPtrs
  1923     const TypePtr *tp = t->is_ptr();
  1924     return make( AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
  1926   case RawPtr:                  // For these, flip the call around to cut down
  1927   case OopPtr:
  1928   case InstPtr:                 // on the cases I have to handle.
  1929   case KlassPtr:
  1930   case AryPtr:
  1931     return t->xmeet(this);      // Call in reverse direction
  1932   default:                      // All else is a mistake
  1933     typerr(t);
  1936   return this;
  1939 //------------------------------meet_offset------------------------------------
  1940 int TypePtr::meet_offset( int offset ) const {
  1941   // Either is 'TOP' offset?  Return the other offset!
  1942   if( _offset == OffsetTop ) return offset;
  1943   if( offset == OffsetTop ) return _offset;
  1944   // If either is different, return 'BOTTOM' offset
  1945   if( _offset != offset ) return OffsetBot;
  1946   return _offset;
  1949 //------------------------------dual_offset------------------------------------
  1950 int TypePtr::dual_offset( ) const {
  1951   if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
  1952   if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
  1953   return _offset;               // Map everything else into self
  1956 //------------------------------xdual------------------------------------------
  1957 // Dual: compute field-by-field dual
  1958 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
  1959   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
  1960 };
  1961 const Type *TypePtr::xdual() const {
  1962   return new TypePtr( AnyPtr, dual_ptr(), dual_offset() );
  1965 //------------------------------add_offset-------------------------------------
  1966 const TypePtr *TypePtr::add_offset( int offset ) const {
  1967   if( offset == 0 ) return this; // No change
  1968   if( _offset == OffsetBot ) return this;
  1969   if(  offset == OffsetBot ) offset = OffsetBot;
  1970   else if( _offset == OffsetTop || offset == OffsetTop ) offset = OffsetTop;
  1971   else offset += _offset;
  1972   return make( AnyPtr, _ptr, offset );
  1975 //------------------------------eq---------------------------------------------
  1976 // Structural equality check for Type representations
  1977 bool TypePtr::eq( const Type *t ) const {
  1978   const TypePtr *a = (const TypePtr*)t;
  1979   return _ptr == a->ptr() && _offset == a->offset();
  1982 //------------------------------hash-------------------------------------------
  1983 // Type-specific hashing function.
  1984 int TypePtr::hash(void) const {
  1985   return _ptr + _offset;
  1988 //------------------------------dump2------------------------------------------
  1989 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
  1990   "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
  1991 };
  1993 #ifndef PRODUCT
  1994 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  1995   if( _ptr == Null ) st->print("NULL");
  1996   else st->print("%s *", ptr_msg[_ptr]);
  1997   if( _offset == OffsetTop ) st->print("+top");
  1998   else if( _offset == OffsetBot ) st->print("+bot");
  1999   else if( _offset ) st->print("+%d", _offset);
  2001 #endif
  2003 //------------------------------singleton--------------------------------------
  2004 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  2005 // constants
  2006 bool TypePtr::singleton(void) const {
  2007   // TopPTR, Null, AnyNull, Constant are all singletons
  2008   return (_offset != OffsetBot) && !below_centerline(_ptr);
  2011 bool TypePtr::empty(void) const {
  2012   return (_offset == OffsetTop) || above_centerline(_ptr);
  2015 //=============================================================================
  2016 // Convenience common pre-built types.
  2017 const TypeRawPtr *TypeRawPtr::BOTTOM;
  2018 const TypeRawPtr *TypeRawPtr::NOTNULL;
  2020 //------------------------------make-------------------------------------------
  2021 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
  2022   assert( ptr != Constant, "what is the constant?" );
  2023   assert( ptr != Null, "Use TypePtr for NULL" );
  2024   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
  2027 const TypeRawPtr *TypeRawPtr::make( address bits ) {
  2028   assert( bits, "Use TypePtr for NULL" );
  2029   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
  2032 //------------------------------cast_to_ptr_type-------------------------------
  2033 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
  2034   assert( ptr != Constant, "what is the constant?" );
  2035   assert( ptr != Null, "Use TypePtr for NULL" );
  2036   assert( _bits==0, "Why cast a constant address?");
  2037   if( ptr == _ptr ) return this;
  2038   return make(ptr);
  2041 //------------------------------get_con----------------------------------------
  2042 intptr_t TypeRawPtr::get_con() const {
  2043   assert( _ptr == Null || _ptr == Constant, "" );
  2044   return (intptr_t)_bits;
  2047 //------------------------------meet-------------------------------------------
  2048 // Compute the MEET of two types.  It returns a new Type object.
  2049 const Type *TypeRawPtr::xmeet( const Type *t ) const {
  2050   // Perform a fast test for common case; meeting the same types together.
  2051   if( this == t ) return this;  // Meeting same type-rep?
  2053   // Current "this->_base" is RawPtr
  2054   switch( t->base() ) {         // switch on original type
  2055   case Bottom:                  // Ye Olde Default
  2056     return t;
  2057   case Top:
  2058     return this;
  2059   case AnyPtr:                  // Meeting to AnyPtrs
  2060     break;
  2061   case RawPtr: {                // might be top, bot, any/not or constant
  2062     enum PTR tptr = t->is_ptr()->ptr();
  2063     enum PTR ptr = meet_ptr( tptr );
  2064     if( ptr == Constant ) {     // Cannot be equal constants, so...
  2065       if( tptr == Constant && _ptr != Constant)  return t;
  2066       if( _ptr == Constant && tptr != Constant)  return this;
  2067       ptr = NotNull;            // Fall down in lattice
  2069     return make( ptr );
  2072   case OopPtr:
  2073   case InstPtr:
  2074   case KlassPtr:
  2075   case AryPtr:
  2076     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
  2077   default:                      // All else is a mistake
  2078     typerr(t);
  2081   // Found an AnyPtr type vs self-RawPtr type
  2082   const TypePtr *tp = t->is_ptr();
  2083   switch (tp->ptr()) {
  2084   case TypePtr::TopPTR:  return this;
  2085   case TypePtr::BotPTR:  return t;
  2086   case TypePtr::Null:
  2087     if( _ptr == TypePtr::TopPTR ) return t;
  2088     return TypeRawPtr::BOTTOM;
  2089   case TypePtr::NotNull: return TypePtr::make( AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0) );
  2090   case TypePtr::AnyNull:
  2091     if( _ptr == TypePtr::Constant) return this;
  2092     return make( meet_ptr(TypePtr::AnyNull) );
  2093   default: ShouldNotReachHere();
  2095   return this;
  2098 //------------------------------xdual------------------------------------------
  2099 // Dual: compute field-by-field dual
  2100 const Type *TypeRawPtr::xdual() const {
  2101   return new TypeRawPtr( dual_ptr(), _bits );
  2104 //------------------------------add_offset-------------------------------------
  2105 const TypePtr *TypeRawPtr::add_offset( int offset ) const {
  2106   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
  2107   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
  2108   if( offset == 0 ) return this; // No change
  2109   switch (_ptr) {
  2110   case TypePtr::TopPTR:
  2111   case TypePtr::BotPTR:
  2112   case TypePtr::NotNull:
  2113     return this;
  2114   case TypePtr::Null:
  2115   case TypePtr::Constant:
  2116     return make( _bits+offset );
  2117   default:  ShouldNotReachHere();
  2119   return NULL;                  // Lint noise
  2122 //------------------------------eq---------------------------------------------
  2123 // Structural equality check for Type representations
  2124 bool TypeRawPtr::eq( const Type *t ) const {
  2125   const TypeRawPtr *a = (const TypeRawPtr*)t;
  2126   return _bits == a->_bits && TypePtr::eq(t);
  2129 //------------------------------hash-------------------------------------------
  2130 // Type-specific hashing function.
  2131 int TypeRawPtr::hash(void) const {
  2132   return (intptr_t)_bits + TypePtr::hash();
  2135 //------------------------------dump2------------------------------------------
  2136 #ifndef PRODUCT
  2137 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  2138   if( _ptr == Constant )
  2139     st->print(INTPTR_FORMAT, _bits);
  2140   else
  2141     st->print("rawptr:%s", ptr_msg[_ptr]);
  2143 #endif
  2145 //=============================================================================
  2146 // Convenience common pre-built type.
  2147 const TypeOopPtr *TypeOopPtr::BOTTOM;
  2149 //------------------------------make-------------------------------------------
  2150 const TypeOopPtr *TypeOopPtr::make(PTR ptr,
  2151                                    int offset) {
  2152   assert(ptr != Constant, "no constant generic pointers");
  2153   ciKlass*  k = ciKlassKlass::make();
  2154   bool      xk = false;
  2155   ciObject* o = NULL;
  2156   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, UNKNOWN_INSTANCE))->hashcons();
  2160 //------------------------------cast_to_ptr_type-------------------------------
  2161 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
  2162   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
  2163   if( ptr == _ptr ) return this;
  2164   return make(ptr, _offset);
  2167 //-----------------------------cast_to_instance-------------------------------
  2168 const TypeOopPtr *TypeOopPtr::cast_to_instance(int instance_id) const {
  2169   // There are no instances of a general oop.
  2170   // Return self unchanged.
  2171   return this;
  2174 //-----------------------------cast_to_exactness-------------------------------
  2175 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
  2176   // There is no such thing as an exact general oop.
  2177   // Return self unchanged.
  2178   return this;
  2182 //------------------------------as_klass_type----------------------------------
  2183 // Return the klass type corresponding to this instance or array type.
  2184 // It is the type that is loaded from an object of this type.
  2185 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
  2186   ciKlass* k = klass();
  2187   bool    xk = klass_is_exact();
  2188   if (k == NULL || !k->is_java_klass())
  2189     return TypeKlassPtr::OBJECT;
  2190   else
  2191     return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
  2195 //------------------------------meet-------------------------------------------
  2196 // Compute the MEET of two types.  It returns a new Type object.
  2197 const Type *TypeOopPtr::xmeet( const Type *t ) const {
  2198   // Perform a fast test for common case; meeting the same types together.
  2199   if( this == t ) return this;  // Meeting same type-rep?
  2201   // Current "this->_base" is OopPtr
  2202   switch (t->base()) {          // switch on original type
  2204   case Int:                     // Mixing ints & oops happens when javac
  2205   case Long:                    // reuses local variables
  2206   case FloatTop:
  2207   case FloatCon:
  2208   case FloatBot:
  2209   case DoubleTop:
  2210   case DoubleCon:
  2211   case DoubleBot:
  2212   case Bottom:                  // Ye Olde Default
  2213     return Type::BOTTOM;
  2214   case Top:
  2215     return this;
  2217   default:                      // All else is a mistake
  2218     typerr(t);
  2220   case RawPtr:
  2221     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
  2223   case AnyPtr: {
  2224     // Found an AnyPtr type vs self-OopPtr type
  2225     const TypePtr *tp = t->is_ptr();
  2226     int offset = meet_offset(tp->offset());
  2227     PTR ptr = meet_ptr(tp->ptr());
  2228     switch (tp->ptr()) {
  2229     case Null:
  2230       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset);
  2231       // else fall through:
  2232     case TopPTR:
  2233     case AnyNull:
  2234       return make(ptr, offset);
  2235     case BotPTR:
  2236     case NotNull:
  2237       return TypePtr::make(AnyPtr, ptr, offset);
  2238     default: typerr(t);
  2242   case OopPtr: {                 // Meeting to other OopPtrs
  2243     const TypeOopPtr *tp = t->is_oopptr();
  2244     return make( meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
  2247   case InstPtr:                  // For these, flip the call around to cut down
  2248   case KlassPtr:                 // on the cases I have to handle.
  2249   case AryPtr:
  2250     return t->xmeet(this);      // Call in reverse direction
  2252   } // End of switch
  2253   return this;                  // Return the double constant
  2257 //------------------------------xdual------------------------------------------
  2258 // Dual of a pure heap pointer.  No relevant klass or oop information.
  2259 const Type *TypeOopPtr::xdual() const {
  2260   assert(klass() == ciKlassKlass::make(), "no klasses here");
  2261   assert(const_oop() == NULL,             "no constants here");
  2262   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance()  );
  2265 //--------------------------make_from_klass_common-----------------------------
  2266 // Computes the element-type given a klass.
  2267 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
  2268   assert(klass->is_java_klass(), "must be java language klass");
  2269   if (klass->is_instance_klass()) {
  2270     Compile* C = Compile::current();
  2271     Dependencies* deps = C->dependencies();
  2272     assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
  2273     // Element is an instance
  2274     bool klass_is_exact = false;
  2275     if (klass->is_loaded()) {
  2276       // Try to set klass_is_exact.
  2277       ciInstanceKlass* ik = klass->as_instance_klass();
  2278       klass_is_exact = ik->is_final();
  2279       if (!klass_is_exact && klass_change
  2280           && deps != NULL && UseUniqueSubclasses) {
  2281         ciInstanceKlass* sub = ik->unique_concrete_subklass();
  2282         if (sub != NULL) {
  2283           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
  2284           klass = ik = sub;
  2285           klass_is_exact = sub->is_final();
  2288       if (!klass_is_exact && try_for_exact
  2289           && deps != NULL && UseExactTypes) {
  2290         if (!ik->is_interface() && !ik->has_subklass()) {
  2291           // Add a dependence; if concrete subclass added we need to recompile
  2292           deps->assert_leaf_type(ik);
  2293           klass_is_exact = true;
  2297     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
  2298   } else if (klass->is_obj_array_klass()) {
  2299     // Element is an object array. Recursively call ourself.
  2300     const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
  2301     bool xk = etype->klass_is_exact();
  2302     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
  2303     // We used to pass NotNull in here, asserting that the sub-arrays
  2304     // are all not-null.  This is not true in generally, as code can
  2305     // slam NULLs down in the subarrays.
  2306     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
  2307     return arr;
  2308   } else if (klass->is_type_array_klass()) {
  2309     // Element is an typeArray
  2310     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
  2311     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
  2312     // We used to pass NotNull in here, asserting that the array pointer
  2313     // is not-null. That was not true in general.
  2314     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
  2315     return arr;
  2316   } else {
  2317     ShouldNotReachHere();
  2318     return NULL;
  2322 //------------------------------make_from_constant-----------------------------
  2323 // Make a java pointer from an oop constant
  2324 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o) {
  2325   if (o->is_method_data() || o->is_method()) {
  2326     // Treat much like a typeArray of bytes, like below, but fake the type...
  2327     assert(o->has_encoding(), "must be a perm space object");
  2328     const Type* etype = (Type*)get_const_basic_type(T_BYTE);
  2329     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
  2330     ciKlass *klass = ciTypeArrayKlass::make((BasicType) T_BYTE);
  2331     assert(o->has_encoding(), "method data oops should be tenured");
  2332     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
  2333     return arr;
  2334   } else {
  2335     assert(o->is_java_object(), "must be java language object");
  2336     assert(!o->is_null_object(), "null object not yet handled here.");
  2337     ciKlass *klass = o->klass();
  2338     if (klass->is_instance_klass()) {
  2339       // Element is an instance
  2340       if (!o->has_encoding()) {  // not a perm-space constant
  2341         // %%% remove this restriction by rewriting non-perm ConPNodes in a later phase
  2342         return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
  2344       return TypeInstPtr::make(o);
  2345     } else if (klass->is_obj_array_klass()) {
  2346       // Element is an object array. Recursively call ourself.
  2347       const Type *etype =
  2348         TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
  2349       const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
  2350       // We used to pass NotNull in here, asserting that the sub-arrays
  2351       // are all not-null.  This is not true in generally, as code can
  2352       // slam NULLs down in the subarrays.
  2353       if (!o->has_encoding()) {  // not a perm-space constant
  2354         // %%% remove this restriction by rewriting non-perm ConPNodes in a later phase
  2355         return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
  2357       const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
  2358       return arr;
  2359     } else if (klass->is_type_array_klass()) {
  2360       // Element is an typeArray
  2361       const Type* etype =
  2362         (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
  2363       const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
  2364       // We used to pass NotNull in here, asserting that the array pointer
  2365       // is not-null. That was not true in general.
  2366       if (!o->has_encoding()) {  // not a perm-space constant
  2367         // %%% remove this restriction by rewriting non-perm ConPNodes in a later phase
  2368         return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
  2370       const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
  2371       return arr;
  2375   ShouldNotReachHere();
  2376   return NULL;
  2379 //------------------------------get_con----------------------------------------
  2380 intptr_t TypeOopPtr::get_con() const {
  2381   assert( _ptr == Null || _ptr == Constant, "" );
  2382   assert( _offset >= 0, "" );
  2384   if (_offset != 0) {
  2385     // After being ported to the compiler interface, the compiler no longer
  2386     // directly manipulates the addresses of oops.  Rather, it only has a pointer
  2387     // to a handle at compile time.  This handle is embedded in the generated
  2388     // code and dereferenced at the time the nmethod is made.  Until that time,
  2389     // it is not reasonable to do arithmetic with the addresses of oops (we don't
  2390     // have access to the addresses!).  This does not seem to currently happen,
  2391     // but this assertion here is to help prevent its occurrance.
  2392     tty->print_cr("Found oop constant with non-zero offset");
  2393     ShouldNotReachHere();
  2396   return (intptr_t)const_oop()->encoding();
  2400 //-----------------------------filter------------------------------------------
  2401 // Do not allow interface-vs.-noninterface joins to collapse to top.
  2402 const Type *TypeOopPtr::filter( const Type *kills ) const {
  2404   const Type* ft = join(kills);
  2405   const TypeInstPtr* ftip = ft->isa_instptr();
  2406   const TypeInstPtr* ktip = kills->isa_instptr();
  2408   if (ft->empty()) {
  2409     // Check for evil case of 'this' being a class and 'kills' expecting an
  2410     // interface.  This can happen because the bytecodes do not contain
  2411     // enough type info to distinguish a Java-level interface variable
  2412     // from a Java-level object variable.  If we meet 2 classes which
  2413     // both implement interface I, but their meet is at 'j/l/O' which
  2414     // doesn't implement I, we have no way to tell if the result should
  2415     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
  2416     // into a Phi which "knows" it's an Interface type we'll have to
  2417     // uplift the type.
  2418     if (!empty() && ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface())
  2419       return kills;             // Uplift to interface
  2421     return Type::TOP;           // Canonical empty value
  2424   // If we have an interface-typed Phi or cast and we narrow to a class type,
  2425   // the join should report back the class.  However, if we have a J/L/Object
  2426   // class-typed Phi and an interface flows in, it's possible that the meet &
  2427   // join report an interface back out.  This isn't possible but happens
  2428   // because the type system doesn't interact well with interfaces.
  2429   if (ftip != NULL && ktip != NULL &&
  2430       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
  2431       ktip->is_loaded() && !ktip->klass()->is_interface()) {
  2432     // Happens in a CTW of rt.jar, 320-341, no extra flags
  2433     return ktip->cast_to_ptr_type(ftip->ptr());
  2436   return ft;
  2439 //------------------------------eq---------------------------------------------
  2440 // Structural equality check for Type representations
  2441 bool TypeOopPtr::eq( const Type *t ) const {
  2442   const TypeOopPtr *a = (const TypeOopPtr*)t;
  2443   if (_klass_is_exact != a->_klass_is_exact ||
  2444       _instance_id != a->_instance_id)  return false;
  2445   ciObject* one = const_oop();
  2446   ciObject* two = a->const_oop();
  2447   if (one == NULL || two == NULL) {
  2448     return (one == two) && TypePtr::eq(t);
  2449   } else {
  2450     return one->equals(two) && TypePtr::eq(t);
  2454 //------------------------------hash-------------------------------------------
  2455 // Type-specific hashing function.
  2456 int TypeOopPtr::hash(void) const {
  2457   return
  2458     (const_oop() ? const_oop()->hash() : 0) +
  2459     _klass_is_exact +
  2460     _instance_id +
  2461     TypePtr::hash();
  2464 //------------------------------dump2------------------------------------------
  2465 #ifndef PRODUCT
  2466 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  2467   st->print("oopptr:%s", ptr_msg[_ptr]);
  2468   if( _klass_is_exact ) st->print(":exact");
  2469   if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
  2470   switch( _offset ) {
  2471   case OffsetTop: st->print("+top"); break;
  2472   case OffsetBot: st->print("+any"); break;
  2473   case         0: break;
  2474   default:        st->print("+%d",_offset); break;
  2476   if (_instance_id != UNKNOWN_INSTANCE)
  2477     st->print(",iid=%d",_instance_id);
  2479 #endif
  2481 //------------------------------singleton--------------------------------------
  2482 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  2483 // constants
  2484 bool TypeOopPtr::singleton(void) const {
  2485   // detune optimizer to not generate constant oop + constant offset as a constant!
  2486   // TopPTR, Null, AnyNull, Constant are all singletons
  2487   return (_offset == 0) && !below_centerline(_ptr);
  2490 //------------------------------xadd_offset------------------------------------
  2491 int TypeOopPtr::xadd_offset( int offset ) const {
  2492   // Adding to 'TOP' offset?  Return 'TOP'!
  2493   if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
  2494   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
  2495   if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
  2497   // assert( _offset >= 0 && _offset+offset >= 0, "" );
  2498   // It is possible to construct a negative offset during PhaseCCP
  2500   return _offset+offset;        // Sum valid offsets
  2503 //------------------------------add_offset-------------------------------------
  2504 const TypePtr *TypeOopPtr::add_offset( int offset ) const {
  2505   return make( _ptr, xadd_offset(offset) );
  2508 const TypeNarrowOop* TypeOopPtr::make_narrowoop() const {
  2509   return TypeNarrowOop::make(this);
  2512 int TypeOopPtr::meet_instance(int iid) const {
  2513   if (iid == 0) {
  2514     return (_instance_id < 0)  ? _instance_id : UNKNOWN_INSTANCE;
  2515   } else if (_instance_id == UNKNOWN_INSTANCE) {
  2516     return (iid < 0)  ? iid : UNKNOWN_INSTANCE;
  2517   } else {
  2518     return (_instance_id == iid) ? iid : UNKNOWN_INSTANCE;
  2522 //=============================================================================
  2523 // Convenience common pre-built types.
  2524 const TypeInstPtr *TypeInstPtr::NOTNULL;
  2525 const TypeInstPtr *TypeInstPtr::BOTTOM;
  2526 const TypeInstPtr *TypeInstPtr::MIRROR;
  2527 const TypeInstPtr *TypeInstPtr::MARK;
  2528 const TypeInstPtr *TypeInstPtr::KLASS;
  2530 //------------------------------TypeInstPtr-------------------------------------
  2531 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, int instance_id)
  2532  : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id), _name(k->name()) {
  2533    assert(k != NULL &&
  2534           (k->is_loaded() || o == NULL),
  2535           "cannot have constants with non-loaded klass");
  2536 };
  2538 //------------------------------make-------------------------------------------
  2539 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
  2540                                      ciKlass* k,
  2541                                      bool xk,
  2542                                      ciObject* o,
  2543                                      int offset,
  2544                                      int instance_id) {
  2545   assert( !k->is_loaded() || k->is_instance_klass() ||
  2546           k->is_method_klass(), "Must be for instance or method");
  2547   // Either const_oop() is NULL or else ptr is Constant
  2548   assert( (!o && ptr != Constant) || (o && ptr == Constant),
  2549           "constant pointers must have a value supplied" );
  2550   // Ptr is never Null
  2551   assert( ptr != Null, "NULL pointers are not typed" );
  2553   if (instance_id != UNKNOWN_INSTANCE)
  2554     xk = true;  // instances are always exactly typed
  2555   if (!UseExactTypes)  xk = false;
  2556   if (ptr == Constant) {
  2557     // Note:  This case includes meta-object constants, such as methods.
  2558     xk = true;
  2559   } else if (k->is_loaded()) {
  2560     ciInstanceKlass* ik = k->as_instance_klass();
  2561     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
  2562     if (xk && ik->is_interface())  xk = false;  // no exact interface
  2565   // Now hash this baby
  2566   TypeInstPtr *result =
  2567     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id))->hashcons();
  2569   return result;
  2573 //------------------------------cast_to_ptr_type-------------------------------
  2574 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
  2575   if( ptr == _ptr ) return this;
  2576   // Reconstruct _sig info here since not a problem with later lazy
  2577   // construction, _sig will show up on demand.
  2578   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset);
  2582 //-----------------------------cast_to_exactness-------------------------------
  2583 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
  2584   if( klass_is_exact == _klass_is_exact ) return this;
  2585   if (!UseExactTypes)  return this;
  2586   if (!_klass->is_loaded())  return this;
  2587   ciInstanceKlass* ik = _klass->as_instance_klass();
  2588   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
  2589   if( ik->is_interface() )              return this;  // cannot set xk
  2590   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id);
  2593 //-----------------------------cast_to_instance-------------------------------
  2594 const TypeOopPtr *TypeInstPtr::cast_to_instance(int instance_id) const {
  2595   if( instance_id == _instance_id) return this;
  2596   bool exact = (instance_id == UNKNOWN_INSTANCE) ? _klass_is_exact : true;
  2598   return make(ptr(), klass(), exact, const_oop(), _offset, instance_id);
  2601 //------------------------------xmeet_unloaded---------------------------------
  2602 // Compute the MEET of two InstPtrs when at least one is unloaded.
  2603 // Assume classes are different since called after check for same name/class-loader
  2604 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
  2605     int off = meet_offset(tinst->offset());
  2606     PTR ptr = meet_ptr(tinst->ptr());
  2608     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
  2609     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
  2610     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
  2611       //
  2612       // Meet unloaded class with java/lang/Object
  2613       //
  2614       // Meet
  2615       //          |                     Unloaded Class
  2616       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
  2617       //  ===================================================================
  2618       //   TOP    | ..........................Unloaded......................|
  2619       //  AnyNull |  U-AN    |................Unloaded......................|
  2620       // Constant | ... O-NN .................................. |   O-BOT   |
  2621       //  NotNull | ... O-NN .................................. |   O-BOT   |
  2622       //  BOTTOM  | ........................Object-BOTTOM ..................|
  2623       //
  2624       assert(loaded->ptr() != TypePtr::Null, "insanity check");
  2625       //
  2626       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
  2627       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make( ptr, unloaded->klass() ); }
  2628       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
  2629       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
  2630         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
  2631         else                                      { return TypeInstPtr::NOTNULL; }
  2633       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
  2635       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
  2638     // Both are unloaded, not the same class, not Object
  2639     // Or meet unloaded with a different loaded class, not java/lang/Object
  2640     if( ptr != TypePtr::BotPTR ) {
  2641       return TypeInstPtr::NOTNULL;
  2643     return TypeInstPtr::BOTTOM;
  2647 //------------------------------meet-------------------------------------------
  2648 // Compute the MEET of two types.  It returns a new Type object.
  2649 const Type *TypeInstPtr::xmeet( const Type *t ) const {
  2650   // Perform a fast test for common case; meeting the same types together.
  2651   if( this == t ) return this;  // Meeting same type-rep?
  2653   // Current "this->_base" is Pointer
  2654   switch (t->base()) {          // switch on original type
  2656   case Int:                     // Mixing ints & oops happens when javac
  2657   case Long:                    // reuses local variables
  2658   case FloatTop:
  2659   case FloatCon:
  2660   case FloatBot:
  2661   case DoubleTop:
  2662   case DoubleCon:
  2663   case DoubleBot:
  2664   case NarrowOop:
  2665   case Bottom:                  // Ye Olde Default
  2666     return Type::BOTTOM;
  2667   case Top:
  2668     return this;
  2670   default:                      // All else is a mistake
  2671     typerr(t);
  2673   case RawPtr: return TypePtr::BOTTOM;
  2675   case AryPtr: {                // All arrays inherit from Object class
  2676     const TypeAryPtr *tp = t->is_aryptr();
  2677     int offset = meet_offset(tp->offset());
  2678     PTR ptr = meet_ptr(tp->ptr());
  2679     int iid = meet_instance(tp->instance_id());
  2680     switch (ptr) {
  2681     case TopPTR:
  2682     case AnyNull:                // Fall 'down' to dual of object klass
  2683       if (klass()->equals(ciEnv::current()->Object_klass())) {
  2684         return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, iid);
  2685       } else {
  2686         // cannot subclass, so the meet has to fall badly below the centerline
  2687         ptr = NotNull;
  2688         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, iid);
  2690     case Constant:
  2691     case NotNull:
  2692     case BotPTR:                // Fall down to object klass
  2693       // LCA is object_klass, but if we subclass from the top we can do better
  2694       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
  2695         // If 'this' (InstPtr) is above the centerline and it is Object class
  2696         // then we can subclass in the Java class heirarchy.
  2697         if (klass()->equals(ciEnv::current()->Object_klass())) {
  2698           // that is, tp's array type is a subtype of my klass
  2699           return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, iid);
  2702       // The other case cannot happen, since I cannot be a subtype of an array.
  2703       // The meet falls down to Object class below centerline.
  2704       if( ptr == Constant )
  2705          ptr = NotNull;
  2706       return make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, iid );
  2707     default: typerr(t);
  2711   case OopPtr: {                // Meeting to OopPtrs
  2712     // Found a OopPtr type vs self-InstPtr type
  2713     const TypePtr *tp = t->is_oopptr();
  2714     int offset = meet_offset(tp->offset());
  2715     PTR ptr = meet_ptr(tp->ptr());
  2716     switch (tp->ptr()) {
  2717     case TopPTR:
  2718     case AnyNull:
  2719       return make(ptr, klass(), klass_is_exact(),
  2720                   (ptr == Constant ? const_oop() : NULL), offset);
  2721     case NotNull:
  2722     case BotPTR:
  2723       return TypeOopPtr::make(ptr, offset);
  2724     default: typerr(t);
  2728   case AnyPtr: {                // Meeting to AnyPtrs
  2729     // Found an AnyPtr type vs self-InstPtr type
  2730     const TypePtr *tp = t->is_ptr();
  2731     int offset = meet_offset(tp->offset());
  2732     PTR ptr = meet_ptr(tp->ptr());
  2733     switch (tp->ptr()) {
  2734     case Null:
  2735       if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
  2736     case TopPTR:
  2737     case AnyNull:
  2738       return make( ptr, klass(), klass_is_exact(),
  2739                    (ptr == Constant ? const_oop() : NULL), offset );
  2740     case NotNull:
  2741     case BotPTR:
  2742       return TypePtr::make( AnyPtr, ptr, offset );
  2743     default: typerr(t);
  2747   /*
  2748                  A-top         }
  2749                /   |   \       }  Tops
  2750            B-top A-any C-top   }
  2751               | /  |  \ |      }  Any-nulls
  2752            B-any   |   C-any   }
  2753               |    |    |
  2754            B-con A-con C-con   } constants; not comparable across classes
  2755               |    |    |
  2756            B-not   |   C-not   }
  2757               | \  |  / |      }  not-nulls
  2758            B-bot A-not C-bot   }
  2759                \   |   /       }  Bottoms
  2760                  A-bot         }
  2761   */
  2763   case InstPtr: {                // Meeting 2 Oops?
  2764     // Found an InstPtr sub-type vs self-InstPtr type
  2765     const TypeInstPtr *tinst = t->is_instptr();
  2766     int off = meet_offset( tinst->offset() );
  2767     PTR ptr = meet_ptr( tinst->ptr() );
  2768     int instance_id = meet_instance(tinst->instance_id());
  2770     // Check for easy case; klasses are equal (and perhaps not loaded!)
  2771     // If we have constants, then we created oops so classes are loaded
  2772     // and we can handle the constants further down.  This case handles
  2773     // both-not-loaded or both-loaded classes
  2774     if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
  2775       return make( ptr, klass(), klass_is_exact(), NULL, off, instance_id );
  2778     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
  2779     ciKlass* tinst_klass = tinst->klass();
  2780     ciKlass* this_klass  = this->klass();
  2781     bool tinst_xk = tinst->klass_is_exact();
  2782     bool this_xk  = this->klass_is_exact();
  2783     if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
  2784       // One of these classes has not been loaded
  2785       const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
  2786 #ifndef PRODUCT
  2787       if( PrintOpto && Verbose ) {
  2788         tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
  2789         tty->print("  this == "); this->dump(); tty->cr();
  2790         tty->print(" tinst == "); tinst->dump(); tty->cr();
  2792 #endif
  2793       return unloaded_meet;
  2796     // Handle mixing oops and interfaces first.
  2797     if( this_klass->is_interface() && !tinst_klass->is_interface() ) {
  2798       ciKlass *tmp = tinst_klass; // Swap interface around
  2799       tinst_klass = this_klass;
  2800       this_klass = tmp;
  2801       bool tmp2 = tinst_xk;
  2802       tinst_xk = this_xk;
  2803       this_xk = tmp2;
  2805     if (tinst_klass->is_interface() &&
  2806         !(this_klass->is_interface() ||
  2807           // Treat java/lang/Object as an honorary interface,
  2808           // because we need a bottom for the interface hierarchy.
  2809           this_klass == ciEnv::current()->Object_klass())) {
  2810       // Oop meets interface!
  2812       // See if the oop subtypes (implements) interface.
  2813       ciKlass *k;
  2814       bool xk;
  2815       if( this_klass->is_subtype_of( tinst_klass ) ) {
  2816         // Oop indeed subtypes.  Now keep oop or interface depending
  2817         // on whether we are both above the centerline or either is
  2818         // below the centerline.  If we are on the centerline
  2819         // (e.g., Constant vs. AnyNull interface), use the constant.
  2820         k  = below_centerline(ptr) ? tinst_klass : this_klass;
  2821         // If we are keeping this_klass, keep its exactness too.
  2822         xk = below_centerline(ptr) ? tinst_xk    : this_xk;
  2823       } else {                  // Does not implement, fall to Object
  2824         // Oop does not implement interface, so mixing falls to Object
  2825         // just like the verifier does (if both are above the
  2826         // centerline fall to interface)
  2827         k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
  2828         xk = above_centerline(ptr) ? tinst_xk : false;
  2829         // Watch out for Constant vs. AnyNull interface.
  2830         if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
  2832       ciObject* o = NULL;  // the Constant value, if any
  2833       if (ptr == Constant) {
  2834         // Find out which constant.
  2835         o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
  2837       return make( ptr, k, xk, o, off );
  2840     // Either oop vs oop or interface vs interface or interface vs Object
  2842     // !!! Here's how the symmetry requirement breaks down into invariants:
  2843     // If we split one up & one down AND they subtype, take the down man.
  2844     // If we split one up & one down AND they do NOT subtype, "fall hard".
  2845     // If both are up and they subtype, take the subtype class.
  2846     // If both are up and they do NOT subtype, "fall hard".
  2847     // If both are down and they subtype, take the supertype class.
  2848     // If both are down and they do NOT subtype, "fall hard".
  2849     // Constants treated as down.
  2851     // Now, reorder the above list; observe that both-down+subtype is also
  2852     // "fall hard"; "fall hard" becomes the default case:
  2853     // If we split one up & one down AND they subtype, take the down man.
  2854     // If both are up and they subtype, take the subtype class.
  2856     // If both are down and they subtype, "fall hard".
  2857     // If both are down and they do NOT subtype, "fall hard".
  2858     // If both are up and they do NOT subtype, "fall hard".
  2859     // If we split one up & one down AND they do NOT subtype, "fall hard".
  2861     // If a proper subtype is exact, and we return it, we return it exactly.
  2862     // If a proper supertype is exact, there can be no subtyping relationship!
  2863     // If both types are equal to the subtype, exactness is and-ed below the
  2864     // centerline and or-ed above it.  (N.B. Constants are always exact.)
  2866     // Check for subtyping:
  2867     ciKlass *subtype = NULL;
  2868     bool subtype_exact = false;
  2869     if( tinst_klass->equals(this_klass) ) {
  2870       subtype = this_klass;
  2871       subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
  2872     } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
  2873       subtype = this_klass;     // Pick subtyping class
  2874       subtype_exact = this_xk;
  2875     } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
  2876       subtype = tinst_klass;    // Pick subtyping class
  2877       subtype_exact = tinst_xk;
  2880     if( subtype ) {
  2881       if( above_centerline(ptr) ) { // both are up?
  2882         this_klass = tinst_klass = subtype;
  2883         this_xk = tinst_xk = subtype_exact;
  2884       } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
  2885         this_klass = tinst_klass; // tinst is down; keep down man
  2886         this_xk = tinst_xk;
  2887       } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
  2888         tinst_klass = this_klass; // this is down; keep down man
  2889         tinst_xk = this_xk;
  2890       } else {
  2891         this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
  2895     // Check for classes now being equal
  2896     if (tinst_klass->equals(this_klass)) {
  2897       // If the klasses are equal, the constants may still differ.  Fall to
  2898       // NotNull if they do (neither constant is NULL; that is a special case
  2899       // handled elsewhere).
  2900       ciObject* o = NULL;             // Assume not constant when done
  2901       ciObject* this_oop  = const_oop();
  2902       ciObject* tinst_oop = tinst->const_oop();
  2903       if( ptr == Constant ) {
  2904         if (this_oop != NULL && tinst_oop != NULL &&
  2905             this_oop->equals(tinst_oop) )
  2906           o = this_oop;
  2907         else if (above_centerline(this ->_ptr))
  2908           o = tinst_oop;
  2909         else if (above_centerline(tinst ->_ptr))
  2910           o = this_oop;
  2911         else
  2912           ptr = NotNull;
  2914       return make( ptr, this_klass, this_xk, o, off, instance_id );
  2915     } // Else classes are not equal
  2917     // Since klasses are different, we require a LCA in the Java
  2918     // class hierarchy - which means we have to fall to at least NotNull.
  2919     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
  2920       ptr = NotNull;
  2922     // Now we find the LCA of Java classes
  2923     ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
  2924     return make( ptr, k, false, NULL, off );
  2925   } // End of case InstPtr
  2927   case KlassPtr:
  2928     return TypeInstPtr::BOTTOM;
  2930   } // End of switch
  2931   return this;                  // Return the double constant
  2935 //------------------------java_mirror_type--------------------------------------
  2936 ciType* TypeInstPtr::java_mirror_type() const {
  2937   // must be a singleton type
  2938   if( const_oop() == NULL )  return NULL;
  2940   // must be of type java.lang.Class
  2941   if( klass() != ciEnv::current()->Class_klass() )  return NULL;
  2943   return const_oop()->as_instance()->java_mirror_type();
  2947 //------------------------------xdual------------------------------------------
  2948 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
  2949 // inheritence mechanism.
  2950 const Type *TypeInstPtr::xdual() const {
  2951   return new TypeInstPtr( dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance()  );
  2954 //------------------------------eq---------------------------------------------
  2955 // Structural equality check for Type representations
  2956 bool TypeInstPtr::eq( const Type *t ) const {
  2957   const TypeInstPtr *p = t->is_instptr();
  2958   return
  2959     klass()->equals(p->klass()) &&
  2960     TypeOopPtr::eq(p);          // Check sub-type stuff
  2963 //------------------------------hash-------------------------------------------
  2964 // Type-specific hashing function.
  2965 int TypeInstPtr::hash(void) const {
  2966   int hash = klass()->hash() + TypeOopPtr::hash();
  2967   return hash;
  2970 //------------------------------dump2------------------------------------------
  2971 // Dump oop Type
  2972 #ifndef PRODUCT
  2973 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  2974   // Print the name of the klass.
  2975   klass()->print_name_on(st);
  2977   switch( _ptr ) {
  2978   case Constant:
  2979     // TO DO: Make CI print the hex address of the underlying oop.
  2980     if (WizardMode || Verbose) {
  2981       const_oop()->print_oop(st);
  2983   case BotPTR:
  2984     if (!WizardMode && !Verbose) {
  2985       if( _klass_is_exact ) st->print(":exact");
  2986       break;
  2988   case TopPTR:
  2989   case AnyNull:
  2990   case NotNull:
  2991     st->print(":%s", ptr_msg[_ptr]);
  2992     if( _klass_is_exact ) st->print(":exact");
  2993     break;
  2996   if( _offset ) {               // Dump offset, if any
  2997     if( _offset == OffsetBot )      st->print("+any");
  2998     else if( _offset == OffsetTop ) st->print("+unknown");
  2999     else st->print("+%d", _offset);
  3002   st->print(" *");
  3003   if (_instance_id != UNKNOWN_INSTANCE)
  3004     st->print(",iid=%d",_instance_id);
  3006 #endif
  3008 //------------------------------add_offset-------------------------------------
  3009 const TypePtr *TypeInstPtr::add_offset( int offset ) const {
  3010   return make( _ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), _instance_id );
  3013 //=============================================================================
  3014 // Convenience common pre-built types.
  3015 const TypeAryPtr *TypeAryPtr::RANGE;
  3016 const TypeAryPtr *TypeAryPtr::OOPS;
  3017 const TypeAryPtr *TypeAryPtr::BYTES;
  3018 const TypeAryPtr *TypeAryPtr::SHORTS;
  3019 const TypeAryPtr *TypeAryPtr::CHARS;
  3020 const TypeAryPtr *TypeAryPtr::INTS;
  3021 const TypeAryPtr *TypeAryPtr::LONGS;
  3022 const TypeAryPtr *TypeAryPtr::FLOATS;
  3023 const TypeAryPtr *TypeAryPtr::DOUBLES;
  3025 //------------------------------make-------------------------------------------
  3026 const TypeAryPtr *TypeAryPtr::make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) {
  3027   assert(!(k == NULL && ary->_elem->isa_int()),
  3028          "integral arrays must be pre-equipped with a class");
  3029   if (!xk)  xk = ary->ary_must_be_exact();
  3030   if (instance_id != UNKNOWN_INSTANCE)
  3031     xk = true;  // instances are always exactly typed
  3032   if (!UseExactTypes)  xk = (ptr == Constant);
  3033   return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id))->hashcons();
  3036 //------------------------------make-------------------------------------------
  3037 const TypeAryPtr *TypeAryPtr::make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) {
  3038   assert(!(k == NULL && ary->_elem->isa_int()),
  3039          "integral arrays must be pre-equipped with a class");
  3040   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
  3041   if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
  3042   if (instance_id != UNKNOWN_INSTANCE)
  3043     xk = true;  // instances are always exactly typed
  3044   if (!UseExactTypes)  xk = (ptr == Constant);
  3045   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id))->hashcons();
  3048 //------------------------------cast_to_ptr_type-------------------------------
  3049 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
  3050   if( ptr == _ptr ) return this;
  3051   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset);
  3055 //-----------------------------cast_to_exactness-------------------------------
  3056 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
  3057   if( klass_is_exact == _klass_is_exact ) return this;
  3058   if (!UseExactTypes)  return this;
  3059   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
  3060   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id);
  3063 //-----------------------------cast_to_instance-------------------------------
  3064 const TypeOopPtr *TypeAryPtr::cast_to_instance(int instance_id) const {
  3065   if( instance_id == _instance_id) return this;
  3066   bool exact = (instance_id == UNKNOWN_INSTANCE) ? _klass_is_exact : true;
  3067   return make(ptr(), const_oop(), _ary, klass(), exact, _offset, instance_id);
  3070 //-----------------------------narrow_size_type-------------------------------
  3071 // Local cache for arrayOopDesc::max_array_length(etype),
  3072 // which is kind of slow (and cached elsewhere by other users).
  3073 static jint max_array_length_cache[T_CONFLICT+1];
  3074 static jint max_array_length(BasicType etype) {
  3075   jint& cache = max_array_length_cache[etype];
  3076   jint res = cache;
  3077   if (res == 0) {
  3078     switch (etype) {
  3079     case T_NARROWOOP:
  3080       etype = T_OBJECT;
  3081       break;
  3082     case T_CONFLICT:
  3083     case T_ILLEGAL:
  3084     case T_VOID:
  3085       etype = T_BYTE;           // will produce conservatively high value
  3087     cache = res = arrayOopDesc::max_array_length(etype);
  3089   return res;
  3092 // Narrow the given size type to the index range for the given array base type.
  3093 // Return NULL if the resulting int type becomes empty.
  3094 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size, BasicType elem) {
  3095   jint hi = size->_hi;
  3096   jint lo = size->_lo;
  3097   jint min_lo = 0;
  3098   jint max_hi = max_array_length(elem);
  3099   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
  3100   bool chg = false;
  3101   if (lo < min_lo) { lo = min_lo; chg = true; }
  3102   if (hi > max_hi) { hi = max_hi; chg = true; }
  3103   if (lo > hi)
  3104     return NULL;
  3105   if (!chg)
  3106     return size;
  3107   return TypeInt::make(lo, hi, Type::WidenMin);
  3110 //-------------------------------cast_to_size----------------------------------
  3111 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
  3112   assert(new_size != NULL, "");
  3113   new_size = narrow_size_type(new_size, elem()->basic_type());
  3114   if (new_size == NULL)       // Negative length arrays will produce weird
  3115     new_size = TypeInt::ZERO; // intermediate dead fast-path goo
  3116   if (new_size == size())  return this;
  3117   const TypeAry* new_ary = TypeAry::make(elem(), new_size);
  3118   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset);
  3122 //------------------------------eq---------------------------------------------
  3123 // Structural equality check for Type representations
  3124 bool TypeAryPtr::eq( const Type *t ) const {
  3125   const TypeAryPtr *p = t->is_aryptr();
  3126   return
  3127     _ary == p->_ary &&  // Check array
  3128     TypeOopPtr::eq(p);  // Check sub-parts
  3131 //------------------------------hash-------------------------------------------
  3132 // Type-specific hashing function.
  3133 int TypeAryPtr::hash(void) const {
  3134   return (intptr_t)_ary + TypeOopPtr::hash();
  3137 //------------------------------meet-------------------------------------------
  3138 // Compute the MEET of two types.  It returns a new Type object.
  3139 const Type *TypeAryPtr::xmeet( const Type *t ) const {
  3140   // Perform a fast test for common case; meeting the same types together.
  3141   if( this == t ) return this;  // Meeting same type-rep?
  3142   // Current "this->_base" is Pointer
  3143   switch (t->base()) {          // switch on original type
  3145   // Mixing ints & oops happens when javac reuses local variables
  3146   case Int:
  3147   case Long:
  3148   case FloatTop:
  3149   case FloatCon:
  3150   case FloatBot:
  3151   case DoubleTop:
  3152   case DoubleCon:
  3153   case DoubleBot:
  3154   case NarrowOop:
  3155   case Bottom:                  // Ye Olde Default
  3156     return Type::BOTTOM;
  3157   case Top:
  3158     return this;
  3160   default:                      // All else is a mistake
  3161     typerr(t);
  3163   case OopPtr: {                // Meeting to OopPtrs
  3164     // Found a OopPtr type vs self-AryPtr type
  3165     const TypePtr *tp = t->is_oopptr();
  3166     int offset = meet_offset(tp->offset());
  3167     PTR ptr = meet_ptr(tp->ptr());
  3168     switch (tp->ptr()) {
  3169     case TopPTR:
  3170     case AnyNull:
  3171       return make(ptr, (ptr == Constant ? const_oop() : NULL), _ary, _klass, _klass_is_exact, offset);
  3172     case BotPTR:
  3173     case NotNull:
  3174       return TypeOopPtr::make(ptr, offset);
  3175     default: ShouldNotReachHere();
  3179   case AnyPtr: {                // Meeting two AnyPtrs
  3180     // Found an AnyPtr type vs self-AryPtr type
  3181     const TypePtr *tp = t->is_ptr();
  3182     int offset = meet_offset(tp->offset());
  3183     PTR ptr = meet_ptr(tp->ptr());
  3184     switch (tp->ptr()) {
  3185     case TopPTR:
  3186       return this;
  3187     case BotPTR:
  3188     case NotNull:
  3189       return TypePtr::make(AnyPtr, ptr, offset);
  3190     case Null:
  3191       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
  3192     case AnyNull:
  3193       return make( ptr, (ptr == Constant ? const_oop() : NULL), _ary, _klass, _klass_is_exact, offset );
  3194     default: ShouldNotReachHere();
  3198   case RawPtr: return TypePtr::BOTTOM;
  3200   case AryPtr: {                // Meeting 2 references?
  3201     const TypeAryPtr *tap = t->is_aryptr();
  3202     int off = meet_offset(tap->offset());
  3203     const TypeAry *tary = _ary->meet(tap->_ary)->is_ary();
  3204     PTR ptr = meet_ptr(tap->ptr());
  3205     int iid = meet_instance(tap->instance_id());
  3206     ciKlass* lazy_klass = NULL;
  3207     if (tary->_elem->isa_int()) {
  3208       // Integral array element types have irrelevant lattice relations.
  3209       // It is the klass that determines array layout, not the element type.
  3210       if (_klass == NULL)
  3211         lazy_klass = tap->_klass;
  3212       else if (tap->_klass == NULL || tap->_klass == _klass) {
  3213         lazy_klass = _klass;
  3214       } else {
  3215         // Something like byte[int+] meets char[int+].
  3216         // This must fall to bottom, not (int[-128..65535])[int+].
  3217         tary = TypeAry::make(Type::BOTTOM, tary->_size);
  3220     bool xk;
  3221     switch (tap->ptr()) {
  3222     case AnyNull:
  3223     case TopPTR:
  3224       // Compute new klass on demand, do not use tap->_klass
  3225       xk = (tap->_klass_is_exact | this->_klass_is_exact);
  3226       return make( ptr, const_oop(), tary, lazy_klass, xk, off, iid );
  3227     case Constant: {
  3228       ciObject* o = const_oop();
  3229       if( _ptr == Constant ) {
  3230         if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
  3231           ptr = NotNull;
  3232           o = NULL;
  3234       } else if( above_centerline(_ptr) ) {
  3235         o = tap->const_oop();
  3237       xk = true;
  3238       return TypeAryPtr::make( ptr, o, tary, tap->_klass, xk, off, iid );
  3240     case NotNull:
  3241     case BotPTR:
  3242       // Compute new klass on demand, do not use tap->_klass
  3243       if (above_centerline(this->_ptr))
  3244             xk = tap->_klass_is_exact;
  3245       else if (above_centerline(tap->_ptr))
  3246             xk = this->_klass_is_exact;
  3247       else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
  3248               (klass() == tap->klass()); // Only precise for identical arrays
  3249       return TypeAryPtr::make( ptr, NULL, tary, lazy_klass, xk, off, iid );
  3250     default: ShouldNotReachHere();
  3254   // All arrays inherit from Object class
  3255   case InstPtr: {
  3256     const TypeInstPtr *tp = t->is_instptr();
  3257     int offset = meet_offset(tp->offset());
  3258     PTR ptr = meet_ptr(tp->ptr());
  3259     int iid = meet_instance(tp->instance_id());
  3260     switch (ptr) {
  3261     case TopPTR:
  3262     case AnyNull:                // Fall 'down' to dual of object klass
  3263       if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
  3264         return TypeAryPtr::make( ptr, _ary, _klass, _klass_is_exact, offset, iid );
  3265       } else {
  3266         // cannot subclass, so the meet has to fall badly below the centerline
  3267         ptr = NotNull;
  3268         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, iid);
  3270     case Constant:
  3271     case NotNull:
  3272     case BotPTR:                // Fall down to object klass
  3273       // LCA is object_klass, but if we subclass from the top we can do better
  3274       if (above_centerline(tp->ptr())) {
  3275         // If 'tp'  is above the centerline and it is Object class
  3276         // then we can subclass in the Java class heirarchy.
  3277         if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
  3278           // that is, my array type is a subtype of 'tp' klass
  3279           return make( ptr, _ary, _klass, _klass_is_exact, offset, iid );
  3282       // The other case cannot happen, since t cannot be a subtype of an array.
  3283       // The meet falls down to Object class below centerline.
  3284       if( ptr == Constant )
  3285          ptr = NotNull;
  3286       return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, iid);
  3287     default: typerr(t);
  3291   case KlassPtr:
  3292     return TypeInstPtr::BOTTOM;
  3295   return this;                  // Lint noise
  3298 //------------------------------xdual------------------------------------------
  3299 // Dual: compute field-by-field dual
  3300 const Type *TypeAryPtr::xdual() const {
  3301   return new TypeAryPtr( dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance() );
  3304 //------------------------------dump2------------------------------------------
  3305 #ifndef PRODUCT
  3306 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  3307   _ary->dump2(d,depth,st);
  3308   switch( _ptr ) {
  3309   case Constant:
  3310     const_oop()->print(st);
  3311     break;
  3312   case BotPTR:
  3313     if (!WizardMode && !Verbose) {
  3314       if( _klass_is_exact ) st->print(":exact");
  3315       break;
  3317   case TopPTR:
  3318   case AnyNull:
  3319   case NotNull:
  3320     st->print(":%s", ptr_msg[_ptr]);
  3321     if( _klass_is_exact ) st->print(":exact");
  3322     break;
  3325   if( _offset != 0 ) {
  3326     int header_size = objArrayOopDesc::header_size() * wordSize;
  3327     if( _offset == OffsetTop )       st->print("+undefined");
  3328     else if( _offset == OffsetBot )  st->print("+any");
  3329     else if( _offset < header_size ) st->print("+%d", _offset);
  3330     else {
  3331       BasicType basic_elem_type = elem()->basic_type();
  3332       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  3333       int elem_size = type2aelembytes(basic_elem_type);
  3334       st->print("[%d]", (_offset - array_base)/elem_size);
  3337   st->print(" *");
  3338   if (_instance_id != UNKNOWN_INSTANCE)
  3339     st->print(",iid=%d",_instance_id);
  3341 #endif
  3343 bool TypeAryPtr::empty(void) const {
  3344   if (_ary->empty())       return true;
  3345   return TypeOopPtr::empty();
  3348 //------------------------------add_offset-------------------------------------
  3349 const TypePtr *TypeAryPtr::add_offset( int offset ) const {
  3350   return make( _ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id );
  3354 //=============================================================================
  3355 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
  3356 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
  3359 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
  3360   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
  3363 //------------------------------hash-------------------------------------------
  3364 // Type-specific hashing function.
  3365 int TypeNarrowOop::hash(void) const {
  3366   return _ooptype->hash() + 7;
  3370 bool TypeNarrowOop::eq( const Type *t ) const {
  3371   const TypeNarrowOop* tc = t->isa_narrowoop();
  3372   if (tc != NULL) {
  3373     if (_ooptype->base() != tc->_ooptype->base()) {
  3374       return false;
  3376     return tc->_ooptype->eq(_ooptype);
  3378   return false;
  3381 bool TypeNarrowOop::singleton(void) const {    // TRUE if type is a singleton
  3382   return _ooptype->singleton();
  3385 bool TypeNarrowOop::empty(void) const {
  3386   return _ooptype->empty();
  3389 //------------------------------meet-------------------------------------------
  3390 // Compute the MEET of two types.  It returns a new Type object.
  3391 const Type *TypeNarrowOop::xmeet( const Type *t ) const {
  3392   // Perform a fast test for common case; meeting the same types together.
  3393   if( this == t ) return this;  // Meeting same type-rep?
  3396   // Current "this->_base" is OopPtr
  3397   switch (t->base()) {          // switch on original type
  3399   case Int:                     // Mixing ints & oops happens when javac
  3400   case Long:                    // reuses local variables
  3401   case FloatTop:
  3402   case FloatCon:
  3403   case FloatBot:
  3404   case DoubleTop:
  3405   case DoubleCon:
  3406   case DoubleBot:
  3407   case Bottom:                  // Ye Olde Default
  3408     return Type::BOTTOM;
  3409   case Top:
  3410     return this;
  3412   case NarrowOop: {
  3413     const Type* result = _ooptype->xmeet(t->is_narrowoop()->make_oopptr());
  3414     if (result->isa_ptr()) {
  3415       return TypeNarrowOop::make(result->is_ptr());
  3417     return result;
  3420   default:                      // All else is a mistake
  3421     typerr(t);
  3423   case RawPtr:
  3424   case AnyPtr:
  3425   case OopPtr:
  3426   case InstPtr:
  3427   case KlassPtr:
  3428   case AryPtr:
  3429     typerr(t);
  3430     return Type::BOTTOM;
  3432   } // End of switch
  3435 const Type *TypeNarrowOop::xdual() const {    // Compute dual right now.
  3436   const TypePtr* odual = _ooptype->dual()->is_ptr();
  3437   return new TypeNarrowOop(odual);
  3440 const Type *TypeNarrowOop::filter( const Type *kills ) const {
  3441   if (kills->isa_narrowoop()) {
  3442     const Type* ft =_ooptype->filter(kills->is_narrowoop()->_ooptype);
  3443     if (ft->empty())
  3444       return Type::TOP;           // Canonical empty value
  3445     if (ft->isa_ptr()) {
  3446       return make(ft->isa_ptr());
  3448     return ft;
  3449   } else if (kills->isa_ptr()) {
  3450     const Type* ft = _ooptype->join(kills);
  3451     if (ft->empty())
  3452       return Type::TOP;           // Canonical empty value
  3453     return ft;
  3454   } else {
  3455     return Type::TOP;
  3460 intptr_t TypeNarrowOop::get_con() const {
  3461   return _ooptype->get_con();
  3464 #ifndef PRODUCT
  3465 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
  3466   tty->print("narrowoop: ");
  3467   _ooptype->dump2(d, depth, st);
  3469 #endif
  3472 //=============================================================================
  3473 // Convenience common pre-built types.
  3475 // Not-null object klass or below
  3476 const TypeKlassPtr *TypeKlassPtr::OBJECT;
  3477 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
  3479 //------------------------------TypeKlasPtr------------------------------------
  3480 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
  3481   : TypeOopPtr(KlassPtr, ptr, klass, (ptr==Constant), (ptr==Constant ? klass : NULL), offset, 0) {
  3484 //------------------------------make-------------------------------------------
  3485 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
  3486 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
  3487   assert( k != NULL, "Expect a non-NULL klass");
  3488   assert(k->is_instance_klass() || k->is_array_klass() ||
  3489          k->is_method_klass(), "Incorrect type of klass oop");
  3490   TypeKlassPtr *r =
  3491     (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
  3493   return r;
  3496 //------------------------------eq---------------------------------------------
  3497 // Structural equality check for Type representations
  3498 bool TypeKlassPtr::eq( const Type *t ) const {
  3499   const TypeKlassPtr *p = t->is_klassptr();
  3500   return
  3501     klass()->equals(p->klass()) &&
  3502     TypeOopPtr::eq(p);
  3505 //------------------------------hash-------------------------------------------
  3506 // Type-specific hashing function.
  3507 int TypeKlassPtr::hash(void) const {
  3508   return klass()->hash() + TypeOopPtr::hash();
  3512 //------------------------------klass------------------------------------------
  3513 // Return the defining klass for this class
  3514 ciKlass* TypeAryPtr::klass() const {
  3515   if( _klass ) return _klass;   // Return cached value, if possible
  3517   // Oops, need to compute _klass and cache it
  3518   ciKlass* k_ary = NULL;
  3519   const TypeInstPtr *tinst;
  3520   const TypeAryPtr *tary;
  3521   const Type* el = elem();
  3522   if (el->isa_narrowoop()) {
  3523     el = el->is_narrowoop()->make_oopptr();
  3526   // Get element klass
  3527   if ((tinst = el->isa_instptr()) != NULL) {
  3528     // Compute array klass from element klass
  3529     k_ary = ciObjArrayKlass::make(tinst->klass());
  3530   } else if ((tary = el->isa_aryptr()) != NULL) {
  3531     // Compute array klass from element klass
  3532     ciKlass* k_elem = tary->klass();
  3533     // If element type is something like bottom[], k_elem will be null.
  3534     if (k_elem != NULL)
  3535       k_ary = ciObjArrayKlass::make(k_elem);
  3536   } else if ((el->base() == Type::Top) ||
  3537              (el->base() == Type::Bottom)) {
  3538     // element type of Bottom occurs from meet of basic type
  3539     // and object; Top occurs when doing join on Bottom.
  3540     // Leave k_ary at NULL.
  3541   } else {
  3542     // Cannot compute array klass directly from basic type,
  3543     // since subtypes of TypeInt all have basic type T_INT.
  3544     assert(!el->isa_int(),
  3545            "integral arrays must be pre-equipped with a class");
  3546     // Compute array klass directly from basic type
  3547     k_ary = ciTypeArrayKlass::make(el->basic_type());
  3550   if( this != TypeAryPtr::OOPS )
  3551     // The _klass field acts as a cache of the underlying
  3552     // ciKlass for this array type.  In order to set the field,
  3553     // we need to cast away const-ness.
  3554     //
  3555     // IMPORTANT NOTE: we *never* set the _klass field for the
  3556     // type TypeAryPtr::OOPS.  This Type is shared between all
  3557     // active compilations.  However, the ciKlass which represents
  3558     // this Type is *not* shared between compilations, so caching
  3559     // this value would result in fetching a dangling pointer.
  3560     //
  3561     // Recomputing the underlying ciKlass for each request is
  3562     // a bit less efficient than caching, but calls to
  3563     // TypeAryPtr::OOPS->klass() are not common enough to matter.
  3564     ((TypeAryPtr*)this)->_klass = k_ary;
  3565   return k_ary;
  3569 //------------------------------add_offset-------------------------------------
  3570 // Access internals of klass object
  3571 const TypePtr *TypeKlassPtr::add_offset( int offset ) const {
  3572   return make( _ptr, klass(), xadd_offset(offset) );
  3575 //------------------------------cast_to_ptr_type-------------------------------
  3576 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
  3577   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
  3578   if( ptr == _ptr ) return this;
  3579   return make(ptr, _klass, _offset);
  3583 //-----------------------------cast_to_exactness-------------------------------
  3584 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
  3585   if( klass_is_exact == _klass_is_exact ) return this;
  3586   if (!UseExactTypes)  return this;
  3587   return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
  3591 //-----------------------------as_instance_type--------------------------------
  3592 // Corresponding type for an instance of the given class.
  3593 // It will be NotNull, and exact if and only if the klass type is exact.
  3594 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
  3595   ciKlass* k = klass();
  3596   bool    xk = klass_is_exact();
  3597   //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
  3598   const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
  3599   toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
  3600   return toop->cast_to_exactness(xk)->is_oopptr();
  3604 //------------------------------xmeet------------------------------------------
  3605 // Compute the MEET of two types, return a new Type object.
  3606 const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
  3607   // Perform a fast test for common case; meeting the same types together.
  3608   if( this == t ) return this;  // Meeting same type-rep?
  3610   // Current "this->_base" is Pointer
  3611   switch (t->base()) {          // switch on original type
  3613   case Int:                     // Mixing ints & oops happens when javac
  3614   case Long:                    // reuses local variables
  3615   case FloatTop:
  3616   case FloatCon:
  3617   case FloatBot:
  3618   case DoubleTop:
  3619   case DoubleCon:
  3620   case DoubleBot:
  3621   case Bottom:                  // Ye Olde Default
  3622     return Type::BOTTOM;
  3623   case Top:
  3624     return this;
  3626   default:                      // All else is a mistake
  3627     typerr(t);
  3629   case RawPtr: return TypePtr::BOTTOM;
  3631   case OopPtr: {                // Meeting to OopPtrs
  3632     // Found a OopPtr type vs self-KlassPtr type
  3633     const TypePtr *tp = t->is_oopptr();
  3634     int offset = meet_offset(tp->offset());
  3635     PTR ptr = meet_ptr(tp->ptr());
  3636     switch (tp->ptr()) {
  3637     case TopPTR:
  3638     case AnyNull:
  3639       return make(ptr, klass(), offset);
  3640     case BotPTR:
  3641     case NotNull:
  3642       return TypePtr::make(AnyPtr, ptr, offset);
  3643     default: typerr(t);
  3647   case AnyPtr: {                // Meeting to AnyPtrs
  3648     // Found an AnyPtr type vs self-KlassPtr type
  3649     const TypePtr *tp = t->is_ptr();
  3650     int offset = meet_offset(tp->offset());
  3651     PTR ptr = meet_ptr(tp->ptr());
  3652     switch (tp->ptr()) {
  3653     case TopPTR:
  3654       return this;
  3655     case Null:
  3656       if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
  3657     case AnyNull:
  3658       return make( ptr, klass(), offset );
  3659     case BotPTR:
  3660     case NotNull:
  3661       return TypePtr::make(AnyPtr, ptr, offset);
  3662     default: typerr(t);
  3666   case AryPtr:                  // Meet with AryPtr
  3667   case InstPtr:                 // Meet with InstPtr
  3668     return TypeInstPtr::BOTTOM;
  3670   //
  3671   //             A-top         }
  3672   //           /   |   \       }  Tops
  3673   //       B-top A-any C-top   }
  3674   //          | /  |  \ |      }  Any-nulls
  3675   //       B-any   |   C-any   }
  3676   //          |    |    |
  3677   //       B-con A-con C-con   } constants; not comparable across classes
  3678   //          |    |    |
  3679   //       B-not   |   C-not   }
  3680   //          | \  |  / |      }  not-nulls
  3681   //       B-bot A-not C-bot   }
  3682   //           \   |   /       }  Bottoms
  3683   //             A-bot         }
  3684   //
  3686   case KlassPtr: {  // Meet two KlassPtr types
  3687     const TypeKlassPtr *tkls = t->is_klassptr();
  3688     int  off     = meet_offset(tkls->offset());
  3689     PTR  ptr     = meet_ptr(tkls->ptr());
  3691     // Check for easy case; klasses are equal (and perhaps not loaded!)
  3692     // If we have constants, then we created oops so classes are loaded
  3693     // and we can handle the constants further down.  This case handles
  3694     // not-loaded classes
  3695     if( ptr != Constant && tkls->klass()->equals(klass()) ) {
  3696       return make( ptr, klass(), off );
  3699     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
  3700     ciKlass* tkls_klass = tkls->klass();
  3701     ciKlass* this_klass = this->klass();
  3702     assert( tkls_klass->is_loaded(), "This class should have been loaded.");
  3703     assert( this_klass->is_loaded(), "This class should have been loaded.");
  3705     // If 'this' type is above the centerline and is a superclass of the
  3706     // other, we can treat 'this' as having the same type as the other.
  3707     if ((above_centerline(this->ptr())) &&
  3708         tkls_klass->is_subtype_of(this_klass)) {
  3709       this_klass = tkls_klass;
  3711     // If 'tinst' type is above the centerline and is a superclass of the
  3712     // other, we can treat 'tinst' as having the same type as the other.
  3713     if ((above_centerline(tkls->ptr())) &&
  3714         this_klass->is_subtype_of(tkls_klass)) {
  3715       tkls_klass = this_klass;
  3718     // Check for classes now being equal
  3719     if (tkls_klass->equals(this_klass)) {
  3720       // If the klasses are equal, the constants may still differ.  Fall to
  3721       // NotNull if they do (neither constant is NULL; that is a special case
  3722       // handled elsewhere).
  3723       ciObject* o = NULL;             // Assume not constant when done
  3724       ciObject* this_oop = const_oop();
  3725       ciObject* tkls_oop = tkls->const_oop();
  3726       if( ptr == Constant ) {
  3727         if (this_oop != NULL && tkls_oop != NULL &&
  3728             this_oop->equals(tkls_oop) )
  3729           o = this_oop;
  3730         else if (above_centerline(this->ptr()))
  3731           o = tkls_oop;
  3732         else if (above_centerline(tkls->ptr()))
  3733           o = this_oop;
  3734         else
  3735           ptr = NotNull;
  3737       return make( ptr, this_klass, off );
  3738     } // Else classes are not equal
  3740     // Since klasses are different, we require the LCA in the Java
  3741     // class hierarchy - which means we have to fall to at least NotNull.
  3742     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
  3743       ptr = NotNull;
  3744     // Now we find the LCA of Java classes
  3745     ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
  3746     return   make( ptr, k, off );
  3747   } // End of case KlassPtr
  3749   } // End of switch
  3750   return this;                  // Return the double constant
  3753 //------------------------------xdual------------------------------------------
  3754 // Dual: compute field-by-field dual
  3755 const Type    *TypeKlassPtr::xdual() const {
  3756   return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
  3759 //------------------------------dump2------------------------------------------
  3760 // Dump Klass Type
  3761 #ifndef PRODUCT
  3762 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
  3763   switch( _ptr ) {
  3764   case Constant:
  3765     st->print("precise ");
  3766   case NotNull:
  3768       const char *name = klass()->name()->as_utf8();
  3769       if( name ) {
  3770         st->print("klass %s: " INTPTR_FORMAT, name, klass());
  3771       } else {
  3772         ShouldNotReachHere();
  3775   case BotPTR:
  3776     if( !WizardMode && !Verbose && !_klass_is_exact ) break;
  3777   case TopPTR:
  3778   case AnyNull:
  3779     st->print(":%s", ptr_msg[_ptr]);
  3780     if( _klass_is_exact ) st->print(":exact");
  3781     break;
  3784   if( _offset ) {               // Dump offset, if any
  3785     if( _offset == OffsetBot )      { st->print("+any"); }
  3786     else if( _offset == OffsetTop ) { st->print("+unknown"); }
  3787     else                            { st->print("+%d", _offset); }
  3790   st->print(" *");
  3792 #endif
  3796 //=============================================================================
  3797 // Convenience common pre-built types.
  3799 //------------------------------make-------------------------------------------
  3800 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
  3801   return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
  3804 //------------------------------make-------------------------------------------
  3805 const TypeFunc *TypeFunc::make(ciMethod* method) {
  3806   Compile* C = Compile::current();
  3807   const TypeFunc* tf = C->last_tf(method); // check cache
  3808   if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
  3809   const TypeTuple *domain;
  3810   if (method->flags().is_static()) {
  3811     domain = TypeTuple::make_domain(NULL, method->signature());
  3812   } else {
  3813     domain = TypeTuple::make_domain(method->holder(), method->signature());
  3815   const TypeTuple *range  = TypeTuple::make_range(method->signature());
  3816   tf = TypeFunc::make(domain, range);
  3817   C->set_last_tf(method, tf);  // fill cache
  3818   return tf;
  3821 //------------------------------meet-------------------------------------------
  3822 // Compute the MEET of two types.  It returns a new Type object.
  3823 const Type *TypeFunc::xmeet( const Type *t ) const {
  3824   // Perform a fast test for common case; meeting the same types together.
  3825   if( this == t ) return this;  // Meeting same type-rep?
  3827   // Current "this->_base" is Func
  3828   switch (t->base()) {          // switch on original type
  3830   case Bottom:                  // Ye Olde Default
  3831     return t;
  3833   default:                      // All else is a mistake
  3834     typerr(t);
  3836   case Top:
  3837     break;
  3839   return this;                  // Return the double constant
  3842 //------------------------------xdual------------------------------------------
  3843 // Dual: compute field-by-field dual
  3844 const Type *TypeFunc::xdual() const {
  3845   return this;
  3848 //------------------------------eq---------------------------------------------
  3849 // Structural equality check for Type representations
  3850 bool TypeFunc::eq( const Type *t ) const {
  3851   const TypeFunc *a = (const TypeFunc*)t;
  3852   return _domain == a->_domain &&
  3853     _range == a->_range;
  3856 //------------------------------hash-------------------------------------------
  3857 // Type-specific hashing function.
  3858 int TypeFunc::hash(void) const {
  3859   return (intptr_t)_domain + (intptr_t)_range;
  3862 //------------------------------dump2------------------------------------------
  3863 // Dump Function Type
  3864 #ifndef PRODUCT
  3865 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
  3866   if( _range->_cnt <= Parms )
  3867     st->print("void");
  3868   else {
  3869     uint i;
  3870     for (i = Parms; i < _range->_cnt-1; i++) {
  3871       _range->field_at(i)->dump2(d,depth,st);
  3872       st->print("/");
  3874     _range->field_at(i)->dump2(d,depth,st);
  3876   st->print(" ");
  3877   st->print("( ");
  3878   if( !depth || d[this] ) {     // Check for recursive dump
  3879     st->print("...)");
  3880     return;
  3882   d.Insert((void*)this,(void*)this);    // Stop recursion
  3883   if (Parms < _domain->_cnt)
  3884     _domain->field_at(Parms)->dump2(d,depth-1,st);
  3885   for (uint i = Parms+1; i < _domain->_cnt; i++) {
  3886     st->print(", ");
  3887     _domain->field_at(i)->dump2(d,depth-1,st);
  3889   st->print(" )");
  3892 //------------------------------print_flattened--------------------------------
  3893 // Print a 'flattened' signature
  3894 static const char * const flat_type_msg[Type::lastype] = {
  3895   "bad","control","top","int","long","_", "narrowoop",
  3896   "tuple:", "array:",
  3897   "ptr", "rawptr", "ptr", "ptr", "ptr", "ptr",
  3898   "func", "abIO", "return_address", "mem",
  3899   "float_top", "ftcon:", "flt",
  3900   "double_top", "dblcon:", "dbl",
  3901   "bottom"
  3902 };
  3904 void TypeFunc::print_flattened() const {
  3905   if( _range->_cnt <= Parms )
  3906     tty->print("void");
  3907   else {
  3908     uint i;
  3909     for (i = Parms; i < _range->_cnt-1; i++)
  3910       tty->print("%s/",flat_type_msg[_range->field_at(i)->base()]);
  3911     tty->print("%s",flat_type_msg[_range->field_at(i)->base()]);
  3913   tty->print(" ( ");
  3914   if (Parms < _domain->_cnt)
  3915     tty->print("%s",flat_type_msg[_domain->field_at(Parms)->base()]);
  3916   for (uint i = Parms+1; i < _domain->_cnt; i++)
  3917     tty->print(", %s",flat_type_msg[_domain->field_at(i)->base()]);
  3918   tty->print(" )");
  3920 #endif
  3922 //------------------------------singleton--------------------------------------
  3923 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  3924 // constants (Ldi nodes).  Singletons are integer, float or double constants
  3925 // or a single symbol.
  3926 bool TypeFunc::singleton(void) const {
  3927   return false;                 // Never a singleton
  3930 bool TypeFunc::empty(void) const {
  3931   return false;                 // Never empty
  3935 BasicType TypeFunc::return_type() const{
  3936   if (range()->cnt() == TypeFunc::Parms) {
  3937     return T_VOID;
  3939   return range()->field_at(TypeFunc::Parms)->basic_type();

mercurial