src/share/vm/opto/callnode.hpp

Mon, 28 Apr 2008 08:08:12 -0700

author
rasbold
date
Mon, 28 Apr 2008 08:08:12 -0700
changeset 563
a76240c8b133
parent 548
ba764ed4b6f2
child 603
7793bd37a336
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright 1997-2006 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // Portions of code courtesy of Clifford Click
    27 // Optimization - Graph Style
    29 class Chaitin;
    30 class NamedCounter;
    31 class MultiNode;
    32 class  SafePointNode;
    33 class   CallNode;
    34 class     CallJavaNode;
    35 class       CallStaticJavaNode;
    36 class       CallDynamicJavaNode;
    37 class     CallRuntimeNode;
    38 class       CallLeafNode;
    39 class         CallLeafNoFPNode;
    40 class     AllocateNode;
    41 class       AllocateArrayNode;
    42 class     LockNode;
    43 class     UnlockNode;
    44 class JVMState;
    45 class OopMap;
    46 class State;
    47 class StartNode;
    48 class MachCallNode;
    49 class FastLockNode;
    51 //------------------------------StartNode--------------------------------------
    52 // The method start node
    53 class StartNode : public MultiNode {
    54   virtual uint cmp( const Node &n ) const;
    55   virtual uint size_of() const; // Size is bigger
    56 public:
    57   const TypeTuple *_domain;
    58   StartNode( Node *root, const TypeTuple *domain ) : MultiNode(2), _domain(domain) {
    59     init_class_id(Class_Start);
    60     init_flags(Flag_is_block_start);
    61     init_req(0,this);
    62     init_req(1,root);
    63   }
    64   virtual int Opcode() const;
    65   virtual bool pinned() const { return true; };
    66   virtual const Type *bottom_type() const;
    67   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
    68   virtual const Type *Value( PhaseTransform *phase ) const;
    69   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
    70   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_reg, uint length ) const;
    71   virtual const RegMask &in_RegMask(uint) const;
    72   virtual Node *match( const ProjNode *proj, const Matcher *m );
    73   virtual uint ideal_reg() const { return 0; }
    74 #ifndef PRODUCT
    75   virtual void  dump_spec(outputStream *st) const;
    76 #endif
    77 };
    79 //------------------------------StartOSRNode-----------------------------------
    80 // The method start node for on stack replacement code
    81 class StartOSRNode : public StartNode {
    82 public:
    83   StartOSRNode( Node *root, const TypeTuple *domain ) : StartNode(root, domain) {}
    84   virtual int   Opcode() const;
    85   static  const TypeTuple *osr_domain();
    86 };
    89 //------------------------------ParmNode---------------------------------------
    90 // Incoming parameters
    91 class ParmNode : public ProjNode {
    92   static const char * const names[TypeFunc::Parms+1];
    93 public:
    94   ParmNode( StartNode *src, uint con ) : ProjNode(src,con) {
    95     init_class_id(Class_Parm);
    96   }
    97   virtual int Opcode() const;
    98   virtual bool  is_CFG() const { return (_con == TypeFunc::Control); }
    99   virtual uint ideal_reg() const;
   100 #ifndef PRODUCT
   101   virtual void dump_spec(outputStream *st) const;
   102 #endif
   103 };
   106 //------------------------------ReturnNode-------------------------------------
   107 // Return from subroutine node
   108 class ReturnNode : public Node {
   109 public:
   110   ReturnNode( uint edges, Node *cntrl, Node *i_o, Node *memory, Node *retadr, Node *frameptr );
   111   virtual int Opcode() const;
   112   virtual bool  is_CFG() const { return true; }
   113   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
   114   virtual bool depends_only_on_test() const { return false; }
   115   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   116   virtual const Type *Value( PhaseTransform *phase ) const;
   117   virtual uint ideal_reg() const { return NotAMachineReg; }
   118   virtual uint match_edge(uint idx) const;
   119 #ifndef PRODUCT
   120   virtual void dump_req() const;
   121 #endif
   122 };
   125 //------------------------------RethrowNode------------------------------------
   126 // Rethrow of exception at call site.  Ends a procedure before rethrowing;
   127 // ends the current basic block like a ReturnNode.  Restores registers and
   128 // unwinds stack.  Rethrow happens in the caller's method.
   129 class RethrowNode : public Node {
   130  public:
   131   RethrowNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *ret_adr, Node *exception );
   132   virtual int Opcode() const;
   133   virtual bool  is_CFG() const { return true; }
   134   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
   135   virtual bool depends_only_on_test() const { return false; }
   136   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   137   virtual const Type *Value( PhaseTransform *phase ) const;
   138   virtual uint match_edge(uint idx) const;
   139   virtual uint ideal_reg() const { return NotAMachineReg; }
   140 #ifndef PRODUCT
   141   virtual void dump_req() const;
   142 #endif
   143 };
   146 //------------------------------TailCallNode-----------------------------------
   147 // Pop stack frame and jump indirect
   148 class TailCallNode : public ReturnNode {
   149 public:
   150   TailCallNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr, Node *target, Node *moop )
   151     : ReturnNode( TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, retadr ) {
   152     init_req(TypeFunc::Parms, target);
   153     init_req(TypeFunc::Parms+1, moop);
   154   }
   156   virtual int Opcode() const;
   157   virtual uint match_edge(uint idx) const;
   158 };
   160 //------------------------------TailJumpNode-----------------------------------
   161 // Pop stack frame and jump indirect
   162 class TailJumpNode : public ReturnNode {
   163 public:
   164   TailJumpNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *target, Node *ex_oop)
   165     : ReturnNode(TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, Compile::current()->top()) {
   166     init_req(TypeFunc::Parms, target);
   167     init_req(TypeFunc::Parms+1, ex_oop);
   168   }
   170   virtual int Opcode() const;
   171   virtual uint match_edge(uint idx) const;
   172 };
   174 //-------------------------------JVMState-------------------------------------
   175 // A linked list of JVMState nodes captures the whole interpreter state,
   176 // plus GC roots, for all active calls at some call site in this compilation
   177 // unit.  (If there is no inlining, then the list has exactly one link.)
   178 // This provides a way to map the optimized program back into the interpreter,
   179 // or to let the GC mark the stack.
   180 class JVMState : public ResourceObj {
   181 private:
   182   JVMState*         _caller;    // List pointer for forming scope chains
   183   uint              _depth;     // One mroe than caller depth, or one.
   184   uint              _locoff;    // Offset to locals in input edge mapping
   185   uint              _stkoff;    // Offset to stack in input edge mapping
   186   uint              _monoff;    // Offset to monitors in input edge mapping
   187   uint              _scloff;    // Offset to fields of scalar objs in input edge mapping
   188   uint              _endoff;    // Offset to end of input edge mapping
   189   uint              _sp;        // Jave Expression Stack Pointer for this state
   190   int               _bci;       // Byte Code Index of this JVM point
   191   ciMethod*         _method;    // Method Pointer
   192   SafePointNode*    _map;       // Map node associated with this scope
   193 public:
   194   friend class Compile;
   196   // Because JVMState objects live over the entire lifetime of the
   197   // Compile object, they are allocated into the comp_arena, which
   198   // does not get resource marked or reset during the compile process
   199   void *operator new( size_t x, Compile* C ) { return C->comp_arena()->Amalloc(x); }
   200   void operator delete( void * ) { } // fast deallocation
   202   // Create a new JVMState, ready for abstract interpretation.
   203   JVMState(ciMethod* method, JVMState* caller);
   204   JVMState(int stack_size);  // root state; has a null method
   206   // Access functions for the JVM
   207   uint              locoff() const { return _locoff; }
   208   uint              stkoff() const { return _stkoff; }
   209   uint              argoff() const { return _stkoff + _sp; }
   210   uint              monoff() const { return _monoff; }
   211   uint              scloff() const { return _scloff; }
   212   uint              endoff() const { return _endoff; }
   213   uint              oopoff() const { return debug_end(); }
   215   int            loc_size() const { return _stkoff - _locoff; }
   216   int            stk_size() const { return _monoff - _stkoff; }
   217   int            mon_size() const { return _scloff - _monoff; }
   218   int            scl_size() const { return _endoff - _scloff; }
   220   bool        is_loc(uint i) const { return i >= _locoff && i < _stkoff; }
   221   bool        is_stk(uint i) const { return i >= _stkoff && i < _monoff; }
   222   bool        is_mon(uint i) const { return i >= _monoff && i < _scloff; }
   223   bool        is_scl(uint i) const { return i >= _scloff && i < _endoff; }
   225   uint              sp()     const { return _sp; }
   226   int               bci()    const { return _bci; }
   227   bool          has_method() const { return _method != NULL; }
   228   ciMethod*         method() const { assert(has_method(), ""); return _method; }
   229   JVMState*         caller() const { return _caller; }
   230   SafePointNode*    map()    const { return _map; }
   231   uint              depth()  const { return _depth; }
   232   uint        debug_start()  const; // returns locoff of root caller
   233   uint        debug_end()    const; // returns endoff of self
   234   uint        debug_size()   const {
   235     return loc_size() + sp() + mon_size() + scl_size();
   236   }
   237   uint        debug_depth()  const; // returns sum of debug_size values at all depths
   239   // Returns the JVM state at the desired depth (1 == root).
   240   JVMState* of_depth(int d) const;
   242   // Tells if two JVM states have the same call chain (depth, methods, & bcis).
   243   bool same_calls_as(const JVMState* that) const;
   245   // Monitors (monitors are stored as (boxNode, objNode) pairs
   246   enum { logMonitorEdges = 1 };
   247   int  nof_monitors()              const { return mon_size() >> logMonitorEdges; }
   248   int  monitor_depth()             const { return nof_monitors() + (caller() ? caller()->monitor_depth() : 0); }
   249   int  monitor_box_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 0; }
   250   int  monitor_obj_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 1; }
   251   bool is_monitor_box(uint off)    const {
   252     assert(is_mon(off), "should be called only for monitor edge");
   253     return (0 == bitfield(off - monoff(), 0, logMonitorEdges));
   254   }
   255   bool is_monitor_use(uint off)    const { return (is_mon(off)
   256                                                    && is_monitor_box(off))
   257                                              || (caller() && caller()->is_monitor_use(off)); }
   259   // Initialization functions for the JVM
   260   void              set_locoff(uint off) { _locoff = off; }
   261   void              set_stkoff(uint off) { _stkoff = off; }
   262   void              set_monoff(uint off) { _monoff = off; }
   263   void              set_scloff(uint off) { _scloff = off; }
   264   void              set_endoff(uint off) { _endoff = off; }
   265   void              set_offsets(uint off) {
   266     _locoff = _stkoff = _monoff = _scloff = _endoff = off;
   267   }
   268   void              set_map(SafePointNode *map) { _map = map; }
   269   void              set_sp(uint sp) { _sp = sp; }
   270   void              set_bci(int bci) { _bci = bci; }
   272   // Miscellaneous utility functions
   273   JVMState* clone_deep(Compile* C) const;    // recursively clones caller chain
   274   JVMState* clone_shallow(Compile* C) const; // retains uncloned caller
   276 #ifndef PRODUCT
   277   void      format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const;
   278   void      dump_spec(outputStream *st) const;
   279   void      dump_on(outputStream* st) const;
   280   void      dump() const {
   281     dump_on(tty);
   282   }
   283 #endif
   284 };
   286 //------------------------------SafePointNode----------------------------------
   287 // A SafePointNode is a subclass of a MultiNode for convenience (and
   288 // potential code sharing) only - conceptually it is independent of
   289 // the Node semantics.
   290 class SafePointNode : public MultiNode {
   291   virtual uint           cmp( const Node &n ) const;
   292   virtual uint           size_of() const;       // Size is bigger
   294 public:
   295   SafePointNode(uint edges, JVMState* jvms,
   296                 // A plain safepoint advertises no memory effects (NULL):
   297                 const TypePtr* adr_type = NULL)
   298     : MultiNode( edges ),
   299       _jvms(jvms),
   300       _oop_map(NULL),
   301       _adr_type(adr_type)
   302   {
   303     init_class_id(Class_SafePoint);
   304   }
   306   OopMap*         _oop_map;   // Array of OopMap info (8-bit char) for GC
   307   JVMState* const _jvms;      // Pointer to list of JVM State objects
   308   const TypePtr*  _adr_type;  // What type of memory does this node produce?
   310   // Many calls take *all* of memory as input,
   311   // but some produce a limited subset of that memory as output.
   312   // The adr_type reports the call's behavior as a store, not a load.
   314   virtual JVMState* jvms() const { return _jvms; }
   315   void set_jvms(JVMState* s) {
   316     *(JVMState**)&_jvms = s;  // override const attribute in the accessor
   317   }
   318   OopMap *oop_map() const { return _oop_map; }
   319   void set_oop_map(OopMap *om) { _oop_map = om; }
   321   // Functionality from old debug nodes which has changed
   322   Node *local(JVMState* jvms, uint idx) const {
   323     assert(verify_jvms(jvms), "jvms must match");
   324     return in(jvms->locoff() + idx);
   325   }
   326   Node *stack(JVMState* jvms, uint idx) const {
   327     assert(verify_jvms(jvms), "jvms must match");
   328     return in(jvms->stkoff() + idx);
   329   }
   330   Node *argument(JVMState* jvms, uint idx) const {
   331     assert(verify_jvms(jvms), "jvms must match");
   332     return in(jvms->argoff() + idx);
   333   }
   334   Node *monitor_box(JVMState* jvms, uint idx) const {
   335     assert(verify_jvms(jvms), "jvms must match");
   336     return in(jvms->monitor_box_offset(idx));
   337   }
   338   Node *monitor_obj(JVMState* jvms, uint idx) const {
   339     assert(verify_jvms(jvms), "jvms must match");
   340     return in(jvms->monitor_obj_offset(idx));
   341   }
   343   void  set_local(JVMState* jvms, uint idx, Node *c);
   345   void  set_stack(JVMState* jvms, uint idx, Node *c) {
   346     assert(verify_jvms(jvms), "jvms must match");
   347     set_req(jvms->stkoff() + idx, c);
   348   }
   349   void  set_argument(JVMState* jvms, uint idx, Node *c) {
   350     assert(verify_jvms(jvms), "jvms must match");
   351     set_req(jvms->argoff() + idx, c);
   352   }
   353   void ensure_stack(JVMState* jvms, uint stk_size) {
   354     assert(verify_jvms(jvms), "jvms must match");
   355     int grow_by = (int)stk_size - (int)jvms->stk_size();
   356     if (grow_by > 0)  grow_stack(jvms, grow_by);
   357   }
   358   void grow_stack(JVMState* jvms, uint grow_by);
   359   // Handle monitor stack
   360   void push_monitor( const FastLockNode *lock );
   361   void pop_monitor ();
   362   Node *peek_monitor_box() const;
   363   Node *peek_monitor_obj() const;
   365   // Access functions for the JVM
   366   Node *control  () const { return in(TypeFunc::Control  ); }
   367   Node *i_o      () const { return in(TypeFunc::I_O      ); }
   368   Node *memory   () const { return in(TypeFunc::Memory   ); }
   369   Node *returnadr() const { return in(TypeFunc::ReturnAdr); }
   370   Node *frameptr () const { return in(TypeFunc::FramePtr ); }
   372   void set_control  ( Node *c ) { set_req(TypeFunc::Control,c); }
   373   void set_i_o      ( Node *c ) { set_req(TypeFunc::I_O    ,c); }
   374   void set_memory   ( Node *c ) { set_req(TypeFunc::Memory ,c); }
   376   MergeMemNode* merged_memory() const {
   377     return in(TypeFunc::Memory)->as_MergeMem();
   378   }
   380   // The parser marks useless maps as dead when it's done with them:
   381   bool is_killed() { return in(TypeFunc::Control) == NULL; }
   383   // Exception states bubbling out of subgraphs such as inlined calls
   384   // are recorded here.  (There might be more than one, hence the "next".)
   385   // This feature is used only for safepoints which serve as "maps"
   386   // for JVM states during parsing, intrinsic expansion, etc.
   387   SafePointNode*         next_exception() const;
   388   void               set_next_exception(SafePointNode* n);
   389   bool                   has_exceptions() const { return next_exception() != NULL; }
   391   // Does this node have a use of n other than in debug information?
   392   virtual bool           has_non_debug_use(Node *n)  {return false; }
   394   // Standard Node stuff
   395   virtual int            Opcode() const;
   396   virtual bool           pinned() const { return true; }
   397   virtual const Type    *Value( PhaseTransform *phase ) const;
   398   virtual const Type    *bottom_type() const { return Type::CONTROL; }
   399   virtual const TypePtr *adr_type() const { return _adr_type; }
   400   virtual Node          *Ideal(PhaseGVN *phase, bool can_reshape);
   401   virtual Node          *Identity( PhaseTransform *phase );
   402   virtual uint           ideal_reg() const { return 0; }
   403   virtual const RegMask &in_RegMask(uint) const;
   404   virtual const RegMask &out_RegMask() const;
   405   virtual uint           match_edge(uint idx) const;
   407   static  bool           needs_polling_address_input();
   409 #ifndef PRODUCT
   410   virtual void              dump_spec(outputStream *st) const;
   411 #endif
   412 };
   414 //------------------------------SafePointScalarObjectNode----------------------
   415 // A SafePointScalarObjectNode represents the state of a scalarized object
   416 // at a safepoint.
   418 class SafePointScalarObjectNode: public TypeNode {
   419   uint _first_index; // First input edge index of a SafePoint node where
   420                      // states of the scalarized object fields are collected.
   421   uint _n_fields;    // Number of non-static fields of the scalarized object.
   422   DEBUG_ONLY(AllocateNode* _alloc;)
   423 public:
   424   SafePointScalarObjectNode(const TypeOopPtr* tp,
   425 #ifdef ASSERT
   426                             AllocateNode* alloc,
   427 #endif
   428                             uint first_index, uint n_fields);
   429   virtual int Opcode() const;
   430   virtual uint           ideal_reg() const;
   431   virtual const RegMask &in_RegMask(uint) const;
   432   virtual const RegMask &out_RegMask() const;
   433   virtual uint           match_edge(uint idx) const;
   435   uint first_index() const { return _first_index; }
   436   uint n_fields()    const { return _n_fields; }
   437   DEBUG_ONLY(AllocateNode* alloc() const { return _alloc; })
   439   virtual uint size_of() const { return sizeof(*this); }
   441   // Assumes that "this" is an argument to a safepoint node "s", and that
   442   // "new_call" is being created to correspond to "s".  But the difference
   443   // between the start index of the jvmstates of "new_call" and "s" is
   444   // "jvms_adj".  Produce and return a SafePointScalarObjectNode that
   445   // corresponds appropriately to "this" in "new_call".  Assumes that
   446   // "sosn_map" is a map, specific to the translation of "s" to "new_call",
   447   // mapping old SafePointScalarObjectNodes to new, to avoid multiple copies.
   448   SafePointScalarObjectNode* clone(int jvms_adj, Dict* sosn_map) const;
   450 #ifndef PRODUCT
   451   virtual void              dump_spec(outputStream *st) const;
   452 #endif
   453 };
   455 //------------------------------CallNode---------------------------------------
   456 // Call nodes now subsume the function of debug nodes at callsites, so they
   457 // contain the functionality of a full scope chain of debug nodes.
   458 class CallNode : public SafePointNode {
   459 public:
   460   const TypeFunc *_tf;        // Function type
   461   address      _entry_point;  // Address of method being called
   462   float        _cnt;          // Estimate of number of times called
   464   CallNode(const TypeFunc* tf, address addr, const TypePtr* adr_type)
   465     : SafePointNode(tf->domain()->cnt(), NULL, adr_type),
   466       _tf(tf),
   467       _entry_point(addr),
   468       _cnt(COUNT_UNKNOWN)
   469   {
   470     init_class_id(Class_Call);
   471     init_flags(Flag_is_Call);
   472   }
   474   const TypeFunc* tf()        const { return _tf; }
   475   const address entry_point() const { return _entry_point; }
   476   const float   cnt()         const { return _cnt; }
   478   void set_tf(const TypeFunc* tf) { _tf = tf; }
   479   void set_entry_point(address p) { _entry_point = p; }
   480   void set_cnt(float c)           { _cnt = c; }
   482   virtual const Type *bottom_type() const;
   483   virtual const Type *Value( PhaseTransform *phase ) const;
   484   virtual Node *Identity( PhaseTransform *phase ) { return this; }
   485   virtual uint        cmp( const Node &n ) const;
   486   virtual uint        size_of() const = 0;
   487   virtual void        calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
   488   virtual Node       *match( const ProjNode *proj, const Matcher *m );
   489   virtual uint        ideal_reg() const { return NotAMachineReg; }
   490   // Are we guaranteed that this node is a safepoint?  Not true for leaf calls and
   491   // for some macro nodes whose expansion does not have a safepoint on the fast path.
   492   virtual bool        guaranteed_safepoint()  { return true; }
   493   // For macro nodes, the JVMState gets modified during expansion, so when cloning
   494   // the node the JVMState must be cloned.
   495   virtual void        clone_jvms() { }   // default is not to clone
   497   // Returns true if the call may modify n
   498   virtual bool        may_modify(const TypePtr *addr_t, PhaseTransform *phase);
   499   // Does this node have a use of n other than in debug information?
   500   virtual bool        has_non_debug_use(Node *n);
   501   // Returns the unique CheckCastPP of a call
   502   // or result projection is there are several CheckCastPP
   503   // or returns NULL if there is no one.
   504   Node *result_cast();
   506   virtual uint match_edge(uint idx) const;
   508 #ifndef PRODUCT
   509   virtual void        dump_req()  const;
   510   virtual void        dump_spec(outputStream *st) const;
   511 #endif
   512 };
   514 //------------------------------CallJavaNode-----------------------------------
   515 // Make a static or dynamic subroutine call node using Java calling
   516 // convention.  (The "Java" calling convention is the compiler's calling
   517 // convention, as opposed to the interpreter's or that of native C.)
   518 class CallJavaNode : public CallNode {
   519 protected:
   520   virtual uint cmp( const Node &n ) const;
   521   virtual uint size_of() const; // Size is bigger
   523   bool    _optimized_virtual;
   524   ciMethod* _method;            // Method being direct called
   525 public:
   526   const int       _bci;         // Byte Code Index of call byte code
   527   CallJavaNode(const TypeFunc* tf , address addr, ciMethod* method, int bci)
   528     : CallNode(tf, addr, TypePtr::BOTTOM),
   529       _method(method), _bci(bci), _optimized_virtual(false)
   530   {
   531     init_class_id(Class_CallJava);
   532   }
   534   virtual int   Opcode() const;
   535   ciMethod* method() const                { return _method; }
   536   void  set_method(ciMethod *m)           { _method = m; }
   537   void  set_optimized_virtual(bool f)     { _optimized_virtual = f; }
   538   bool  is_optimized_virtual() const      { return _optimized_virtual; }
   540 #ifndef PRODUCT
   541   virtual void  dump_spec(outputStream *st) const;
   542 #endif
   543 };
   545 //------------------------------CallStaticJavaNode-----------------------------
   546 // Make a direct subroutine call using Java calling convention (for static
   547 // calls and optimized virtual calls, plus calls to wrappers for run-time
   548 // routines); generates static stub.
   549 class CallStaticJavaNode : public CallJavaNode {
   550   virtual uint cmp( const Node &n ) const;
   551   virtual uint size_of() const; // Size is bigger
   552 public:
   553   CallStaticJavaNode(const TypeFunc* tf, address addr, ciMethod* method, int bci)
   554     : CallJavaNode(tf, addr, method, bci), _name(NULL) {
   555     init_class_id(Class_CallStaticJava);
   556   }
   557   CallStaticJavaNode(const TypeFunc* tf, address addr, const char* name, int bci,
   558                      const TypePtr* adr_type)
   559     : CallJavaNode(tf, addr, NULL, bci), _name(name) {
   560     init_class_id(Class_CallStaticJava);
   561     // This node calls a runtime stub, which often has narrow memory effects.
   562     _adr_type = adr_type;
   563   }
   564   const char *_name;            // Runtime wrapper name
   566   // If this is an uncommon trap, return the request code, else zero.
   567   int uncommon_trap_request() const;
   568   static int extract_uncommon_trap_request(const Node* call);
   570   virtual int         Opcode() const;
   571 #ifndef PRODUCT
   572   virtual void        dump_spec(outputStream *st) const;
   573 #endif
   574 };
   576 //------------------------------CallDynamicJavaNode----------------------------
   577 // Make a dispatched call using Java calling convention.
   578 class CallDynamicJavaNode : public CallJavaNode {
   579   virtual uint cmp( const Node &n ) const;
   580   virtual uint size_of() const; // Size is bigger
   581 public:
   582   CallDynamicJavaNode( const TypeFunc *tf , address addr, ciMethod* method, int vtable_index, int bci ) : CallJavaNode(tf,addr,method,bci), _vtable_index(vtable_index) {
   583     init_class_id(Class_CallDynamicJava);
   584   }
   586   int _vtable_index;
   587   virtual int   Opcode() const;
   588 #ifndef PRODUCT
   589   virtual void  dump_spec(outputStream *st) const;
   590 #endif
   591 };
   593 //------------------------------CallRuntimeNode--------------------------------
   594 // Make a direct subroutine call node into compiled C++ code.
   595 class CallRuntimeNode : public CallNode {
   596   virtual uint cmp( const Node &n ) const;
   597   virtual uint size_of() const; // Size is bigger
   598 public:
   599   CallRuntimeNode(const TypeFunc* tf, address addr, const char* name,
   600                   const TypePtr* adr_type)
   601     : CallNode(tf, addr, adr_type),
   602       _name(name)
   603   {
   604     init_class_id(Class_CallRuntime);
   605   }
   607   const char *_name;            // Printable name, if _method is NULL
   608   virtual int   Opcode() const;
   609   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
   611 #ifndef PRODUCT
   612   virtual void  dump_spec(outputStream *st) const;
   613 #endif
   614 };
   616 //------------------------------CallLeafNode-----------------------------------
   617 // Make a direct subroutine call node into compiled C++ code, without
   618 // safepoints
   619 class CallLeafNode : public CallRuntimeNode {
   620 public:
   621   CallLeafNode(const TypeFunc* tf, address addr, const char* name,
   622                const TypePtr* adr_type)
   623     : CallRuntimeNode(tf, addr, name, adr_type)
   624   {
   625     init_class_id(Class_CallLeaf);
   626   }
   627   virtual int   Opcode() const;
   628   virtual bool        guaranteed_safepoint()  { return false; }
   629 #ifndef PRODUCT
   630   virtual void  dump_spec(outputStream *st) const;
   631 #endif
   632 };
   634 //------------------------------CallLeafNoFPNode-------------------------------
   635 // CallLeafNode, not using floating point or using it in the same manner as
   636 // the generated code
   637 class CallLeafNoFPNode : public CallLeafNode {
   638 public:
   639   CallLeafNoFPNode(const TypeFunc* tf, address addr, const char* name,
   640                    const TypePtr* adr_type)
   641     : CallLeafNode(tf, addr, name, adr_type)
   642   {
   643   }
   644   virtual int   Opcode() const;
   645 };
   648 //------------------------------Allocate---------------------------------------
   649 // High-level memory allocation
   650 //
   651 //  AllocateNode and AllocateArrayNode are subclasses of CallNode because they will
   652 //  get expanded into a code sequence containing a call.  Unlike other CallNodes,
   653 //  they have 2 memory projections and 2 i_o projections (which are distinguished by
   654 //  the _is_io_use flag in the projection.)  This is needed when expanding the node in
   655 //  order to differentiate the uses of the projection on the normal control path from
   656 //  those on the exception return path.
   657 //
   658 class AllocateNode : public CallNode {
   659 public:
   660   enum {
   661     // Output:
   662     RawAddress  = TypeFunc::Parms,    // the newly-allocated raw address
   663     // Inputs:
   664     AllocSize   = TypeFunc::Parms,    // size (in bytes) of the new object
   665     KlassNode,                        // type (maybe dynamic) of the obj.
   666     InitialTest,                      // slow-path test (may be constant)
   667     ALength,                          // array length (or TOP if none)
   668     ParmLimit
   669   };
   671   static const TypeFunc* alloc_type() {
   672     const Type** fields = TypeTuple::fields(ParmLimit - TypeFunc::Parms);
   673     fields[AllocSize]   = TypeInt::POS;
   674     fields[KlassNode]   = TypeInstPtr::NOTNULL;
   675     fields[InitialTest] = TypeInt::BOOL;
   676     fields[ALength]     = TypeInt::INT;  // length (can be a bad length)
   678     const TypeTuple *domain = TypeTuple::make(ParmLimit, fields);
   680     // create result type (range)
   681     fields = TypeTuple::fields(1);
   682     fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   684     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   686     return TypeFunc::make(domain, range);
   687   }
   689   bool _is_scalar_replaceable;  // Result of Escape Analysis
   691   virtual uint size_of() const; // Size is bigger
   692   AllocateNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
   693                Node *size, Node *klass_node, Node *initial_test);
   694   // Expansion modifies the JVMState, so we need to clone it
   695   virtual void  clone_jvms() {
   696     set_jvms(jvms()->clone_deep(Compile::current()));
   697   }
   698   virtual int Opcode() const;
   699   virtual uint ideal_reg() const { return Op_RegP; }
   700   virtual bool        guaranteed_safepoint()  { return false; }
   702   // allocations do not modify their arguments
   703   virtual bool        may_modify(const TypePtr *addr_t, PhaseTransform *phase) { return false;}
   705   // Pattern-match a possible usage of AllocateNode.
   706   // Return null if no allocation is recognized.
   707   // The operand is the pointer produced by the (possible) allocation.
   708   // It must be a projection of the Allocate or its subsequent CastPP.
   709   // (Note:  This function is defined in file graphKit.cpp, near
   710   // GraphKit::new_instance/new_array, whose output it recognizes.)
   711   // The 'ptr' may not have an offset unless the 'offset' argument is given.
   712   static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase);
   714   // Fancy version which uses AddPNode::Ideal_base_and_offset to strip
   715   // an offset, which is reported back to the caller.
   716   // (Note:  AllocateNode::Ideal_allocation is defined in graphKit.cpp.)
   717   static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase,
   718                                         intptr_t& offset);
   720   // Dig the klass operand out of a (possible) allocation site.
   721   static Node* Ideal_klass(Node* ptr, PhaseTransform* phase) {
   722     AllocateNode* allo = Ideal_allocation(ptr, phase);
   723     return (allo == NULL) ? NULL : allo->in(KlassNode);
   724   }
   726   // Conservatively small estimate of offset of first non-header byte.
   727   int minimum_header_size() {
   728     return is_AllocateArray() ? arrayOopDesc::base_offset_in_bytes(T_BYTE) :
   729                                 instanceOopDesc::base_offset_in_bytes();
   730   }
   732   // Return the corresponding initialization barrier (or null if none).
   733   // Walks out edges to find it...
   734   // (Note: Both InitializeNode::allocation and AllocateNode::initialization
   735   // are defined in graphKit.cpp, which sets up the bidirectional relation.)
   736   InitializeNode* initialization();
   738   // Convenience for initialization->maybe_set_complete(phase)
   739   bool maybe_set_complete(PhaseGVN* phase);
   740 };
   742 //------------------------------AllocateArray---------------------------------
   743 //
   744 // High-level array allocation
   745 //
   746 class AllocateArrayNode : public AllocateNode {
   747 public:
   748   AllocateArrayNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
   749                     Node* size, Node* klass_node, Node* initial_test,
   750                     Node* count_val
   751                     )
   752     : AllocateNode(C, atype, ctrl, mem, abio, size, klass_node,
   753                    initial_test)
   754   {
   755     init_class_id(Class_AllocateArray);
   756     set_req(AllocateNode::ALength,        count_val);
   757   }
   758   virtual int Opcode() const;
   759   virtual uint size_of() const; // Size is bigger
   761   // Pattern-match a possible usage of AllocateArrayNode.
   762   // Return null if no allocation is recognized.
   763   static AllocateArrayNode* Ideal_array_allocation(Node* ptr, PhaseTransform* phase) {
   764     AllocateNode* allo = Ideal_allocation(ptr, phase);
   765     return (allo == NULL || !allo->is_AllocateArray())
   766            ? NULL : allo->as_AllocateArray();
   767   }
   769   // Dig the length operand out of a (possible) array allocation site.
   770   static Node* Ideal_length(Node* ptr, PhaseTransform* phase) {
   771     AllocateArrayNode* allo = Ideal_array_allocation(ptr, phase);
   772     return (allo == NULL) ? NULL : allo->in(AllocateNode::ALength);
   773   }
   774 };
   776 //------------------------------AbstractLockNode-----------------------------------
   777 class AbstractLockNode: public CallNode {
   778 private:
   779  bool _eliminate;    // indicates this lock can be safely eliminated
   780 #ifndef PRODUCT
   781   NamedCounter* _counter;
   782 #endif
   784 protected:
   785   // helper functions for lock elimination
   786   //
   788   bool find_matching_unlock(const Node* ctrl, LockNode* lock,
   789                             GrowableArray<AbstractLockNode*> &lock_ops);
   790   bool find_lock_and_unlock_through_if(Node* node, LockNode* lock,
   791                                        GrowableArray<AbstractLockNode*> &lock_ops);
   792   bool find_unlocks_for_region(const RegionNode* region, LockNode* lock,
   793                                GrowableArray<AbstractLockNode*> &lock_ops);
   794   LockNode *find_matching_lock(UnlockNode* unlock);
   797 public:
   798   AbstractLockNode(const TypeFunc *tf)
   799     : CallNode(tf, NULL, TypeRawPtr::BOTTOM),
   800       _eliminate(false)
   801   {
   802 #ifndef PRODUCT
   803     _counter = NULL;
   804 #endif
   805   }
   806   virtual int Opcode() const = 0;
   807   Node *   obj_node() const       {return in(TypeFunc::Parms + 0); }
   808   Node *   box_node() const       {return in(TypeFunc::Parms + 1); }
   809   Node *   fastlock_node() const  {return in(TypeFunc::Parms + 2); }
   810   const Type *sub(const Type *t1, const Type *t2) const { return TypeInt::CC;}
   812   virtual uint size_of() const { return sizeof(*this); }
   814   bool is_eliminated()         {return _eliminate; }
   815   // mark node as eliminated and update the counter if there is one
   816   void set_eliminated();
   818   // locking does not modify its arguments
   819   virtual bool        may_modify(const TypePtr *addr_t, PhaseTransform *phase){ return false;}
   821 #ifndef PRODUCT
   822   void create_lock_counter(JVMState* s);
   823   NamedCounter* counter() const { return _counter; }
   824 #endif
   825 };
   827 //------------------------------Lock---------------------------------------
   828 // High-level lock operation
   829 //
   830 // This is a subclass of CallNode because it is a macro node which gets expanded
   831 // into a code sequence containing a call.  This node takes 3 "parameters":
   832 //    0  -  object to lock
   833 //    1 -   a BoxLockNode
   834 //    2 -   a FastLockNode
   835 //
   836 class LockNode : public AbstractLockNode {
   837 public:
   839   static const TypeFunc *lock_type() {
   840     // create input type (domain)
   841     const Type **fields = TypeTuple::fields(3);
   842     fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
   843     fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock
   844     fields[TypeFunc::Parms+2] = TypeInt::BOOL;         // FastLock
   845     const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3,fields);
   847     // create result type (range)
   848     fields = TypeTuple::fields(0);
   850     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
   852     return TypeFunc::make(domain,range);
   853   }
   855   virtual int Opcode() const;
   856   virtual uint size_of() const; // Size is bigger
   857   LockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
   858     init_class_id(Class_Lock);
   859     init_flags(Flag_is_macro);
   860     C->add_macro_node(this);
   861   }
   862   virtual bool        guaranteed_safepoint()  { return false; }
   864   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   865   // Expansion modifies the JVMState, so we need to clone it
   866   virtual void  clone_jvms() {
   867     set_jvms(jvms()->clone_deep(Compile::current()));
   868   }
   869 };
   871 //------------------------------Unlock---------------------------------------
   872 // High-level unlock operation
   873 class UnlockNode : public AbstractLockNode {
   874 public:
   875   virtual int Opcode() const;
   876   virtual uint size_of() const; // Size is bigger
   877   UnlockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
   878     init_class_id(Class_Unlock);
   879     init_flags(Flag_is_macro);
   880     C->add_macro_node(this);
   881   }
   882   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   883   // unlock is never a safepoint
   884   virtual bool        guaranteed_safepoint()  { return false; }
   885 };

mercurial