src/share/vm/runtime/sharedRuntime.cpp

Mon, 17 Sep 2012 07:36:31 -0400

author
dholmes
date
Mon, 17 Sep 2012 07:36:31 -0400
changeset 4077
a7509aff1b06
parent 4037
da91efe96a93
child 4101
2cb2f30450c7
permissions
-rw-r--r--

7194254: jstack reports wrong thread priorities
Reviewed-by: dholmes, sla, fparain
Contributed-by: Dmytro Sheyko <dmytro_sheyko@hotmail.com>

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "classfile/vmSymbols.hpp"
    28 #include "code/compiledIC.hpp"
    29 #include "code/scopeDesc.hpp"
    30 #include "code/vtableStubs.hpp"
    31 #include "compiler/abstractCompiler.hpp"
    32 #include "compiler/compileBroker.hpp"
    33 #include "compiler/compilerOracle.hpp"
    34 #include "interpreter/interpreter.hpp"
    35 #include "interpreter/interpreterRuntime.hpp"
    36 #include "memory/gcLocker.inline.hpp"
    37 #include "memory/universe.inline.hpp"
    38 #include "oops/oop.inline.hpp"
    39 #include "prims/forte.hpp"
    40 #include "prims/jvmtiExport.hpp"
    41 #include "prims/jvmtiRedefineClassesTrace.hpp"
    42 #include "prims/methodHandles.hpp"
    43 #include "prims/nativeLookup.hpp"
    44 #include "runtime/arguments.hpp"
    45 #include "runtime/biasedLocking.hpp"
    46 #include "runtime/handles.inline.hpp"
    47 #include "runtime/init.hpp"
    48 #include "runtime/interfaceSupport.hpp"
    49 #include "runtime/javaCalls.hpp"
    50 #include "runtime/sharedRuntime.hpp"
    51 #include "runtime/stubRoutines.hpp"
    52 #include "runtime/vframe.hpp"
    53 #include "runtime/vframeArray.hpp"
    54 #include "utilities/copy.hpp"
    55 #include "utilities/dtrace.hpp"
    56 #include "utilities/events.hpp"
    57 #include "utilities/hashtable.inline.hpp"
    58 #include "utilities/xmlstream.hpp"
    59 #ifdef TARGET_ARCH_x86
    60 # include "nativeInst_x86.hpp"
    61 # include "vmreg_x86.inline.hpp"
    62 #endif
    63 #ifdef TARGET_ARCH_sparc
    64 # include "nativeInst_sparc.hpp"
    65 # include "vmreg_sparc.inline.hpp"
    66 #endif
    67 #ifdef TARGET_ARCH_zero
    68 # include "nativeInst_zero.hpp"
    69 # include "vmreg_zero.inline.hpp"
    70 #endif
    71 #ifdef TARGET_ARCH_arm
    72 # include "nativeInst_arm.hpp"
    73 # include "vmreg_arm.inline.hpp"
    74 #endif
    75 #ifdef TARGET_ARCH_ppc
    76 # include "nativeInst_ppc.hpp"
    77 # include "vmreg_ppc.inline.hpp"
    78 #endif
    79 #ifdef COMPILER1
    80 #include "c1/c1_Runtime1.hpp"
    81 #endif
    83 // Shared stub locations
    84 RuntimeStub*        SharedRuntime::_wrong_method_blob;
    85 RuntimeStub*        SharedRuntime::_ic_miss_blob;
    86 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
    87 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
    88 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
    90 DeoptimizationBlob* SharedRuntime::_deopt_blob;
    91 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
    92 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
    94 #ifdef COMPILER2
    95 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
    96 #endif // COMPILER2
    99 //----------------------------generate_stubs-----------------------------------
   100 void SharedRuntime::generate_stubs() {
   101   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),         "wrong_method_stub");
   102   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss), "ic_miss_stub");
   103   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),  "resolve_opt_virtual_call");
   104   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),      "resolve_virtual_call");
   105   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),       "resolve_static_call");
   107   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), false);
   108   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), true);
   110   generate_deopt_blob();
   112 #ifdef COMPILER2
   113   generate_uncommon_trap_blob();
   114 #endif // COMPILER2
   115 }
   117 #include <math.h>
   119 #ifndef USDT2
   120 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
   121 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
   122                       char*, int, char*, int, char*, int);
   123 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
   124                       char*, int, char*, int, char*, int);
   125 #endif /* !USDT2 */
   127 // Implementation of SharedRuntime
   129 #ifndef PRODUCT
   130 // For statistics
   131 int SharedRuntime::_ic_miss_ctr = 0;
   132 int SharedRuntime::_wrong_method_ctr = 0;
   133 int SharedRuntime::_resolve_static_ctr = 0;
   134 int SharedRuntime::_resolve_virtual_ctr = 0;
   135 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
   136 int SharedRuntime::_implicit_null_throws = 0;
   137 int SharedRuntime::_implicit_div0_throws = 0;
   138 int SharedRuntime::_throw_null_ctr = 0;
   140 int SharedRuntime::_nof_normal_calls = 0;
   141 int SharedRuntime::_nof_optimized_calls = 0;
   142 int SharedRuntime::_nof_inlined_calls = 0;
   143 int SharedRuntime::_nof_megamorphic_calls = 0;
   144 int SharedRuntime::_nof_static_calls = 0;
   145 int SharedRuntime::_nof_inlined_static_calls = 0;
   146 int SharedRuntime::_nof_interface_calls = 0;
   147 int SharedRuntime::_nof_optimized_interface_calls = 0;
   148 int SharedRuntime::_nof_inlined_interface_calls = 0;
   149 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
   150 int SharedRuntime::_nof_removable_exceptions = 0;
   152 int SharedRuntime::_new_instance_ctr=0;
   153 int SharedRuntime::_new_array_ctr=0;
   154 int SharedRuntime::_multi1_ctr=0;
   155 int SharedRuntime::_multi2_ctr=0;
   156 int SharedRuntime::_multi3_ctr=0;
   157 int SharedRuntime::_multi4_ctr=0;
   158 int SharedRuntime::_multi5_ctr=0;
   159 int SharedRuntime::_mon_enter_stub_ctr=0;
   160 int SharedRuntime::_mon_exit_stub_ctr=0;
   161 int SharedRuntime::_mon_enter_ctr=0;
   162 int SharedRuntime::_mon_exit_ctr=0;
   163 int SharedRuntime::_partial_subtype_ctr=0;
   164 int SharedRuntime::_jbyte_array_copy_ctr=0;
   165 int SharedRuntime::_jshort_array_copy_ctr=0;
   166 int SharedRuntime::_jint_array_copy_ctr=0;
   167 int SharedRuntime::_jlong_array_copy_ctr=0;
   168 int SharedRuntime::_oop_array_copy_ctr=0;
   169 int SharedRuntime::_checkcast_array_copy_ctr=0;
   170 int SharedRuntime::_unsafe_array_copy_ctr=0;
   171 int SharedRuntime::_generic_array_copy_ctr=0;
   172 int SharedRuntime::_slow_array_copy_ctr=0;
   173 int SharedRuntime::_find_handler_ctr=0;
   174 int SharedRuntime::_rethrow_ctr=0;
   176 int     SharedRuntime::_ICmiss_index                    = 0;
   177 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
   178 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
   181 void SharedRuntime::trace_ic_miss(address at) {
   182   for (int i = 0; i < _ICmiss_index; i++) {
   183     if (_ICmiss_at[i] == at) {
   184       _ICmiss_count[i]++;
   185       return;
   186     }
   187   }
   188   int index = _ICmiss_index++;
   189   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
   190   _ICmiss_at[index] = at;
   191   _ICmiss_count[index] = 1;
   192 }
   194 void SharedRuntime::print_ic_miss_histogram() {
   195   if (ICMissHistogram) {
   196     tty->print_cr ("IC Miss Histogram:");
   197     int tot_misses = 0;
   198     for (int i = 0; i < _ICmiss_index; i++) {
   199       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
   200       tot_misses += _ICmiss_count[i];
   201     }
   202     tty->print_cr ("Total IC misses: %7d", tot_misses);
   203   }
   204 }
   205 #endif // PRODUCT
   207 #ifndef SERIALGC
   209 // G1 write-barrier pre: executed before a pointer store.
   210 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
   211   if (orig == NULL) {
   212     assert(false, "should be optimized out");
   213     return;
   214   }
   215   assert(orig->is_oop(true /* ignore mark word */), "Error");
   216   // store the original value that was in the field reference
   217   thread->satb_mark_queue().enqueue(orig);
   218 JRT_END
   220 // G1 write-barrier post: executed after a pointer store.
   221 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
   222   thread->dirty_card_queue().enqueue(card_addr);
   223 JRT_END
   225 #endif // !SERIALGC
   228 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
   229   return x * y;
   230 JRT_END
   233 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
   234   if (x == min_jlong && y == CONST64(-1)) {
   235     return x;
   236   } else {
   237     return x / y;
   238   }
   239 JRT_END
   242 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
   243   if (x == min_jlong && y == CONST64(-1)) {
   244     return 0;
   245   } else {
   246     return x % y;
   247   }
   248 JRT_END
   251 const juint  float_sign_mask  = 0x7FFFFFFF;
   252 const juint  float_infinity   = 0x7F800000;
   253 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
   254 const julong double_infinity  = CONST64(0x7FF0000000000000);
   256 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
   257 #ifdef _WIN64
   258   // 64-bit Windows on amd64 returns the wrong values for
   259   // infinity operands.
   260   union { jfloat f; juint i; } xbits, ybits;
   261   xbits.f = x;
   262   ybits.f = y;
   263   // x Mod Infinity == x unless x is infinity
   264   if ( ((xbits.i & float_sign_mask) != float_infinity) &&
   265        ((ybits.i & float_sign_mask) == float_infinity) ) {
   266     return x;
   267   }
   268 #endif
   269   return ((jfloat)fmod((double)x,(double)y));
   270 JRT_END
   273 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
   274 #ifdef _WIN64
   275   union { jdouble d; julong l; } xbits, ybits;
   276   xbits.d = x;
   277   ybits.d = y;
   278   // x Mod Infinity == x unless x is infinity
   279   if ( ((xbits.l & double_sign_mask) != double_infinity) &&
   280        ((ybits.l & double_sign_mask) == double_infinity) ) {
   281     return x;
   282   }
   283 #endif
   284   return ((jdouble)fmod((double)x,(double)y));
   285 JRT_END
   287 #ifdef __SOFTFP__
   288 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
   289   return x + y;
   290 JRT_END
   292 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
   293   return x - y;
   294 JRT_END
   296 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
   297   return x * y;
   298 JRT_END
   300 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
   301   return x / y;
   302 JRT_END
   304 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
   305   return x + y;
   306 JRT_END
   308 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
   309   return x - y;
   310 JRT_END
   312 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
   313   return x * y;
   314 JRT_END
   316 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
   317   return x / y;
   318 JRT_END
   320 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
   321   return (jfloat)x;
   322 JRT_END
   324 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
   325   return (jdouble)x;
   326 JRT_END
   328 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
   329   return (jdouble)x;
   330 JRT_END
   332 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
   333   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
   334 JRT_END
   336 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
   337   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
   338 JRT_END
   340 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
   341   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
   342 JRT_END
   344 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
   345   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
   346 JRT_END
   348 // Functions to return the opposite of the aeabi functions for nan.
   349 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
   350   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   351 JRT_END
   353 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
   354   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   355 JRT_END
   357 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
   358   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   359 JRT_END
   361 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
   362   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   363 JRT_END
   365 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
   366   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   367 JRT_END
   369 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
   370   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   371 JRT_END
   373 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
   374   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   375 JRT_END
   377 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
   378   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   379 JRT_END
   381 // Intrinsics make gcc generate code for these.
   382 float  SharedRuntime::fneg(float f)   {
   383   return -f;
   384 }
   386 double SharedRuntime::dneg(double f)  {
   387   return -f;
   388 }
   390 #endif // __SOFTFP__
   392 #if defined(__SOFTFP__) || defined(E500V2)
   393 // Intrinsics make gcc generate code for these.
   394 double SharedRuntime::dabs(double f)  {
   395   return (f <= (double)0.0) ? (double)0.0 - f : f;
   396 }
   398 #endif
   400 #if defined(__SOFTFP__) || defined(PPC)
   401 double SharedRuntime::dsqrt(double f) {
   402   return sqrt(f);
   403 }
   404 #endif
   406 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
   407   if (g_isnan(x))
   408     return 0;
   409   if (x >= (jfloat) max_jint)
   410     return max_jint;
   411   if (x <= (jfloat) min_jint)
   412     return min_jint;
   413   return (jint) x;
   414 JRT_END
   417 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
   418   if (g_isnan(x))
   419     return 0;
   420   if (x >= (jfloat) max_jlong)
   421     return max_jlong;
   422   if (x <= (jfloat) min_jlong)
   423     return min_jlong;
   424   return (jlong) x;
   425 JRT_END
   428 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
   429   if (g_isnan(x))
   430     return 0;
   431   if (x >= (jdouble) max_jint)
   432     return max_jint;
   433   if (x <= (jdouble) min_jint)
   434     return min_jint;
   435   return (jint) x;
   436 JRT_END
   439 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
   440   if (g_isnan(x))
   441     return 0;
   442   if (x >= (jdouble) max_jlong)
   443     return max_jlong;
   444   if (x <= (jdouble) min_jlong)
   445     return min_jlong;
   446   return (jlong) x;
   447 JRT_END
   450 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
   451   return (jfloat)x;
   452 JRT_END
   455 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
   456   return (jfloat)x;
   457 JRT_END
   460 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
   461   return (jdouble)x;
   462 JRT_END
   464 // Exception handling accross interpreter/compiler boundaries
   465 //
   466 // exception_handler_for_return_address(...) returns the continuation address.
   467 // The continuation address is the entry point of the exception handler of the
   468 // previous frame depending on the return address.
   470 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
   471   assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address));
   473   // Reset method handle flag.
   474   thread->set_is_method_handle_return(false);
   476   // The fastest case first
   477   CodeBlob* blob = CodeCache::find_blob(return_address);
   478   nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
   479   if (nm != NULL) {
   480     // Set flag if return address is a method handle call site.
   481     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
   482     // native nmethods don't have exception handlers
   483     assert(!nm->is_native_method(), "no exception handler");
   484     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
   485     if (nm->is_deopt_pc(return_address)) {
   486       return SharedRuntime::deopt_blob()->unpack_with_exception();
   487     } else {
   488       return nm->exception_begin();
   489     }
   490   }
   492   // Entry code
   493   if (StubRoutines::returns_to_call_stub(return_address)) {
   494     return StubRoutines::catch_exception_entry();
   495   }
   496   // Interpreted code
   497   if (Interpreter::contains(return_address)) {
   498     return Interpreter::rethrow_exception_entry();
   499   }
   501   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
   502   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
   504 #ifndef PRODUCT
   505   { ResourceMark rm;
   506     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
   507     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
   508     tty->print_cr("b) other problem");
   509   }
   510 #endif // PRODUCT
   512   ShouldNotReachHere();
   513   return NULL;
   514 }
   517 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
   518   return raw_exception_handler_for_return_address(thread, return_address);
   519 JRT_END
   522 address SharedRuntime::get_poll_stub(address pc) {
   523   address stub;
   524   // Look up the code blob
   525   CodeBlob *cb = CodeCache::find_blob(pc);
   527   // Should be an nmethod
   528   assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
   530   // Look up the relocation information
   531   assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
   532     "safepoint polling: type must be poll" );
   534   assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
   535     "Only polling locations are used for safepoint");
   537   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
   538   if (at_poll_return) {
   539     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
   540            "polling page return stub not created yet");
   541     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
   542   } else {
   543     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
   544            "polling page safepoint stub not created yet");
   545     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
   546   }
   547 #ifndef PRODUCT
   548   if( TraceSafepoint ) {
   549     char buf[256];
   550     jio_snprintf(buf, sizeof(buf),
   551                  "... found polling page %s exception at pc = "
   552                  INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
   553                  at_poll_return ? "return" : "loop",
   554                  (intptr_t)pc, (intptr_t)stub);
   555     tty->print_raw_cr(buf);
   556   }
   557 #endif // PRODUCT
   558   return stub;
   559 }
   562 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
   563   assert(caller.is_interpreted_frame(), "");
   564   int args_size = ArgumentSizeComputer(sig).size() + 1;
   565   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
   566   oop result = (oop) *caller.interpreter_frame_tos_at(args_size - 1);
   567   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
   568   return result;
   569 }
   572 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
   573   if (JvmtiExport::can_post_on_exceptions()) {
   574     vframeStream vfst(thread, true);
   575     methodHandle method = methodHandle(thread, vfst.method());
   576     address bcp = method()->bcp_from(vfst.bci());
   577     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
   578   }
   579   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
   580 }
   582 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
   583   Handle h_exception = Exceptions::new_exception(thread, name, message);
   584   throw_and_post_jvmti_exception(thread, h_exception);
   585 }
   587 // The interpreter code to call this tracing function is only
   588 // called/generated when TraceRedefineClasses has the right bits
   589 // set. Since obsolete methods are never compiled, we don't have
   590 // to modify the compilers to generate calls to this function.
   591 //
   592 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
   593     JavaThread* thread, Method* method))
   594   assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
   596   if (method->is_obsolete()) {
   597     // We are calling an obsolete method, but this is not necessarily
   598     // an error. Our method could have been redefined just after we
   599     // fetched the Method* from the constant pool.
   601     // RC_TRACE macro has an embedded ResourceMark
   602     RC_TRACE_WITH_THREAD(0x00001000, thread,
   603                          ("calling obsolete method '%s'",
   604                           method->name_and_sig_as_C_string()));
   605     if (RC_TRACE_ENABLED(0x00002000)) {
   606       // this option is provided to debug calls to obsolete methods
   607       guarantee(false, "faulting at call to an obsolete method.");
   608     }
   609   }
   610   return 0;
   611 JRT_END
   613 // ret_pc points into caller; we are returning caller's exception handler
   614 // for given exception
   615 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
   616                                                     bool force_unwind, bool top_frame_only) {
   617   assert(nm != NULL, "must exist");
   618   ResourceMark rm;
   620   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
   621   // determine handler bci, if any
   622   EXCEPTION_MARK;
   624   int handler_bci = -1;
   625   int scope_depth = 0;
   626   if (!force_unwind) {
   627     int bci = sd->bci();
   628     bool recursive_exception = false;
   629     do {
   630       bool skip_scope_increment = false;
   631       // exception handler lookup
   632       KlassHandle ek (THREAD, exception->klass());
   633       handler_bci = sd->method()->fast_exception_handler_bci_for(ek, bci, THREAD);
   634       if (HAS_PENDING_EXCEPTION) {
   635         recursive_exception = true;
   636         // We threw an exception while trying to find the exception handler.
   637         // Transfer the new exception to the exception handle which will
   638         // be set into thread local storage, and do another lookup for an
   639         // exception handler for this exception, this time starting at the
   640         // BCI of the exception handler which caused the exception to be
   641         // thrown (bugs 4307310 and 4546590). Set "exception" reference
   642         // argument to ensure that the correct exception is thrown (4870175).
   643         exception = Handle(THREAD, PENDING_EXCEPTION);
   644         CLEAR_PENDING_EXCEPTION;
   645         if (handler_bci >= 0) {
   646           bci = handler_bci;
   647           handler_bci = -1;
   648           skip_scope_increment = true;
   649         }
   650       }
   651       else {
   652         recursive_exception = false;
   653       }
   654       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
   655         sd = sd->sender();
   656         if (sd != NULL) {
   657           bci = sd->bci();
   658         }
   659         ++scope_depth;
   660       }
   661     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
   662   }
   664   // found handling method => lookup exception handler
   665   int catch_pco = ret_pc - nm->code_begin();
   667   ExceptionHandlerTable table(nm);
   668   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
   669   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
   670     // Allow abbreviated catch tables.  The idea is to allow a method
   671     // to materialize its exceptions without committing to the exact
   672     // routing of exceptions.  In particular this is needed for adding
   673     // a synthethic handler to unlock monitors when inlining
   674     // synchonized methods since the unlock path isn't represented in
   675     // the bytecodes.
   676     t = table.entry_for(catch_pco, -1, 0);
   677   }
   679 #ifdef COMPILER1
   680   if (t == NULL && nm->is_compiled_by_c1()) {
   681     assert(nm->unwind_handler_begin() != NULL, "");
   682     return nm->unwind_handler_begin();
   683   }
   684 #endif
   686   if (t == NULL) {
   687     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
   688     tty->print_cr("   Exception:");
   689     exception->print();
   690     tty->cr();
   691     tty->print_cr(" Compiled exception table :");
   692     table.print();
   693     nm->print_code();
   694     guarantee(false, "missing exception handler");
   695     return NULL;
   696   }
   698   return nm->code_begin() + t->pco();
   699 }
   701 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
   702   // These errors occur only at call sites
   703   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
   704 JRT_END
   706 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
   707   // These errors occur only at call sites
   708   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
   709 JRT_END
   711 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
   712   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
   713 JRT_END
   715 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
   716   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
   717 JRT_END
   719 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
   720   // This entry point is effectively only used for NullPointerExceptions which occur at inline
   721   // cache sites (when the callee activation is not yet set up) so we are at a call site
   722   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
   723 JRT_END
   725 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
   726   // We avoid using the normal exception construction in this case because
   727   // it performs an upcall to Java, and we're already out of stack space.
   728   Klass* k = SystemDictionary::StackOverflowError_klass();
   729   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
   730   Handle exception (thread, exception_oop);
   731   if (StackTraceInThrowable) {
   732     java_lang_Throwable::fill_in_stack_trace(exception);
   733   }
   734   throw_and_post_jvmti_exception(thread, exception);
   735 JRT_END
   737 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
   738                                                            address pc,
   739                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
   740 {
   741   address target_pc = NULL;
   743   if (Interpreter::contains(pc)) {
   744 #ifdef CC_INTERP
   745     // C++ interpreter doesn't throw implicit exceptions
   746     ShouldNotReachHere();
   747 #else
   748     switch (exception_kind) {
   749       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
   750       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
   751       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
   752       default:                      ShouldNotReachHere();
   753     }
   754 #endif // !CC_INTERP
   755   } else {
   756     switch (exception_kind) {
   757       case STACK_OVERFLOW: {
   758         // Stack overflow only occurs upon frame setup; the callee is
   759         // going to be unwound. Dispatch to a shared runtime stub
   760         // which will cause the StackOverflowError to be fabricated
   761         // and processed.
   762         // For stack overflow in deoptimization blob, cleanup thread.
   763         if (thread->deopt_mark() != NULL) {
   764           Deoptimization::cleanup_deopt_info(thread, NULL);
   765         }
   766         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, pc);
   767         return StubRoutines::throw_StackOverflowError_entry();
   768       }
   770       case IMPLICIT_NULL: {
   771         if (VtableStubs::contains(pc)) {
   772           // We haven't yet entered the callee frame. Fabricate an
   773           // exception and begin dispatching it in the caller. Since
   774           // the caller was at a call site, it's safe to destroy all
   775           // caller-saved registers, as these entry points do.
   776           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
   778           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
   779           if (vt_stub == NULL) return NULL;
   781           if (vt_stub->is_abstract_method_error(pc)) {
   782             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
   783             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, pc);
   784             return StubRoutines::throw_AbstractMethodError_entry();
   785           } else {
   786             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, pc);
   787             return StubRoutines::throw_NullPointerException_at_call_entry();
   788           }
   789         } else {
   790           CodeBlob* cb = CodeCache::find_blob(pc);
   792           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
   793           if (cb == NULL) return NULL;
   795           // Exception happened in CodeCache. Must be either:
   796           // 1. Inline-cache check in C2I handler blob,
   797           // 2. Inline-cache check in nmethod, or
   798           // 3. Implict null exception in nmethod
   800           if (!cb->is_nmethod()) {
   801             guarantee(cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(),
   802                       "exception happened outside interpreter, nmethods and vtable stubs (1)");
   803             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, pc);
   804             // There is no handler here, so we will simply unwind.
   805             return StubRoutines::throw_NullPointerException_at_call_entry();
   806           }
   808           // Otherwise, it's an nmethod.  Consult its exception handlers.
   809           nmethod* nm = (nmethod*)cb;
   810           if (nm->inlinecache_check_contains(pc)) {
   811             // exception happened inside inline-cache check code
   812             // => the nmethod is not yet active (i.e., the frame
   813             // is not set up yet) => use return address pushed by
   814             // caller => don't push another return address
   815             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, pc);
   816             return StubRoutines::throw_NullPointerException_at_call_entry();
   817           }
   819           if (nm->method()->is_method_handle_intrinsic()) {
   820             // exception happened inside MH dispatch code, similar to a vtable stub
   821             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, pc);
   822             return StubRoutines::throw_NullPointerException_at_call_entry();
   823           }
   825 #ifndef PRODUCT
   826           _implicit_null_throws++;
   827 #endif
   828           target_pc = nm->continuation_for_implicit_exception(pc);
   829           // If there's an unexpected fault, target_pc might be NULL,
   830           // in which case we want to fall through into the normal
   831           // error handling code.
   832         }
   834         break; // fall through
   835       }
   838       case IMPLICIT_DIVIDE_BY_ZERO: {
   839         nmethod* nm = CodeCache::find_nmethod(pc);
   840         guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
   841 #ifndef PRODUCT
   842         _implicit_div0_throws++;
   843 #endif
   844         target_pc = nm->continuation_for_implicit_exception(pc);
   845         // If there's an unexpected fault, target_pc might be NULL,
   846         // in which case we want to fall through into the normal
   847         // error handling code.
   848         break; // fall through
   849       }
   851       default: ShouldNotReachHere();
   852     }
   854     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
   856     // for AbortVMOnException flag
   857     NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
   858     if (exception_kind == IMPLICIT_NULL) {
   859       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
   860     } else {
   861       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
   862     }
   863     return target_pc;
   864   }
   866   ShouldNotReachHere();
   867   return NULL;
   868 }
   871 JNI_ENTRY(void, throw_unsatisfied_link_error(JNIEnv* env, ...))
   872 {
   873   THROW(vmSymbols::java_lang_UnsatisfiedLinkError());
   874 }
   875 JNI_END
   877 JNI_ENTRY(void, throw_unsupported_operation_exception(JNIEnv* env, ...))
   878 {
   879   THROW(vmSymbols::java_lang_UnsupportedOperationException());
   880 }
   881 JNI_END
   883 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
   884   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
   885 }
   887 address SharedRuntime::native_method_throw_unsupported_operation_exception_entry() {
   888   return CAST_FROM_FN_PTR(address, &throw_unsupported_operation_exception);
   889 }
   892 #ifndef PRODUCT
   893 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
   894   const frame f = thread->last_frame();
   895   assert(f.is_interpreted_frame(), "must be an interpreted frame");
   896 #ifndef PRODUCT
   897   methodHandle mh(THREAD, f.interpreter_frame_method());
   898   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
   899 #endif // !PRODUCT
   900   return preserve_this_value;
   901 JRT_END
   902 #endif // !PRODUCT
   905 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
   906   os::yield_all(attempts);
   907 JRT_END
   910 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
   911   assert(obj->is_oop(), "must be a valid oop");
   912   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
   913   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
   914 JRT_END
   917 jlong SharedRuntime::get_java_tid(Thread* thread) {
   918   if (thread != NULL) {
   919     if (thread->is_Java_thread()) {
   920       oop obj = ((JavaThread*)thread)->threadObj();
   921       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
   922     }
   923   }
   924   return 0;
   925 }
   927 /**
   928  * This function ought to be a void function, but cannot be because
   929  * it gets turned into a tail-call on sparc, which runs into dtrace bug
   930  * 6254741.  Once that is fixed we can remove the dummy return value.
   931  */
   932 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
   933   return dtrace_object_alloc_base(Thread::current(), o);
   934 }
   936 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) {
   937   assert(DTraceAllocProbes, "wrong call");
   938   Klass* klass = o->klass();
   939   int size = o->size();
   940   Symbol* name = klass->name();
   941 #ifndef USDT2
   942   HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
   943                    name->bytes(), name->utf8_length(), size * HeapWordSize);
   944 #else /* USDT2 */
   945   HOTSPOT_OBJECT_ALLOC(
   946                    get_java_tid(thread),
   947                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
   948 #endif /* USDT2 */
   949   return 0;
   950 }
   952 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
   953     JavaThread* thread, Method* method))
   954   assert(DTraceMethodProbes, "wrong call");
   955   Symbol* kname = method->klass_name();
   956   Symbol* name = method->name();
   957   Symbol* sig = method->signature();
   958 #ifndef USDT2
   959   HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
   960       kname->bytes(), kname->utf8_length(),
   961       name->bytes(), name->utf8_length(),
   962       sig->bytes(), sig->utf8_length());
   963 #else /* USDT2 */
   964   HOTSPOT_METHOD_ENTRY(
   965       get_java_tid(thread),
   966       (char *) kname->bytes(), kname->utf8_length(),
   967       (char *) name->bytes(), name->utf8_length(),
   968       (char *) sig->bytes(), sig->utf8_length());
   969 #endif /* USDT2 */
   970   return 0;
   971 JRT_END
   973 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
   974     JavaThread* thread, Method* method))
   975   assert(DTraceMethodProbes, "wrong call");
   976   Symbol* kname = method->klass_name();
   977   Symbol* name = method->name();
   978   Symbol* sig = method->signature();
   979 #ifndef USDT2
   980   HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
   981       kname->bytes(), kname->utf8_length(),
   982       name->bytes(), name->utf8_length(),
   983       sig->bytes(), sig->utf8_length());
   984 #else /* USDT2 */
   985   HOTSPOT_METHOD_RETURN(
   986       get_java_tid(thread),
   987       (char *) kname->bytes(), kname->utf8_length(),
   988       (char *) name->bytes(), name->utf8_length(),
   989       (char *) sig->bytes(), sig->utf8_length());
   990 #endif /* USDT2 */
   991   return 0;
   992 JRT_END
   995 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
   996 // for a call current in progress, i.e., arguments has been pushed on stack
   997 // put callee has not been invoked yet.  Used by: resolve virtual/static,
   998 // vtable updates, etc.  Caller frame must be compiled.
   999 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
  1000   ResourceMark rm(THREAD);
  1002   // last java frame on stack (which includes native call frames)
  1003   vframeStream vfst(thread, true);  // Do not skip and javaCalls
  1005   return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
  1009 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
  1010 // for a call current in progress, i.e., arguments has been pushed on stack
  1011 // but callee has not been invoked yet.  Caller frame must be compiled.
  1012 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
  1013                                               vframeStream& vfst,
  1014                                               Bytecodes::Code& bc,
  1015                                               CallInfo& callinfo, TRAPS) {
  1016   Handle receiver;
  1017   Handle nullHandle;  //create a handy null handle for exception returns
  1019   assert(!vfst.at_end(), "Java frame must exist");
  1021   // Find caller and bci from vframe
  1022   methodHandle caller(THREAD, vfst.method());
  1023   int          bci   = vfst.bci();
  1025   // Find bytecode
  1026   Bytecode_invoke bytecode(caller, bci);
  1027   bc = bytecode.invoke_code();
  1028   int bytecode_index = bytecode.index();
  1030   // Find receiver for non-static call
  1031   if (bc != Bytecodes::_invokestatic &&
  1032       bc != Bytecodes::_invokedynamic) {
  1033     // This register map must be update since we need to find the receiver for
  1034     // compiled frames. The receiver might be in a register.
  1035     RegisterMap reg_map2(thread);
  1036     frame stubFrame   = thread->last_frame();
  1037     // Caller-frame is a compiled frame
  1038     frame callerFrame = stubFrame.sender(&reg_map2);
  1040     methodHandle callee = bytecode.static_target(CHECK_(nullHandle));
  1041     if (callee.is_null()) {
  1042       THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
  1044     // Retrieve from a compiled argument list
  1045     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
  1047     if (receiver.is_null()) {
  1048       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
  1052   // Resolve method. This is parameterized by bytecode.
  1053   constantPoolHandle constants(THREAD, caller->constants());
  1054   assert(receiver.is_null() || receiver->is_oop(), "wrong receiver");
  1055   LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
  1057 #ifdef ASSERT
  1058   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
  1059   if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic) {
  1060     assert(receiver.not_null(), "should have thrown exception");
  1061     KlassHandle receiver_klass(THREAD, receiver->klass());
  1062     Klass* rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
  1063                             // klass is already loaded
  1064     KlassHandle static_receiver_klass(THREAD, rk);
  1065     // Method handle invokes might have been optimized to a direct call
  1066     // so don't check for the receiver class.
  1067     // FIXME this weakens the assert too much
  1068     methodHandle callee = callinfo.selected_method();
  1069     assert(receiver_klass->is_subtype_of(static_receiver_klass()) ||
  1070            callee->is_method_handle_intrinsic() ||
  1071            callee->is_compiled_lambda_form(),
  1072            "actual receiver must be subclass of static receiver klass");
  1073     if (receiver_klass->oop_is_instance()) {
  1074       if (InstanceKlass::cast(receiver_klass())->is_not_initialized()) {
  1075         tty->print_cr("ERROR: Klass not yet initialized!!");
  1076         receiver_klass()->print();
  1078       assert(!InstanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
  1081 #endif
  1083   return receiver;
  1086 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
  1087   ResourceMark rm(THREAD);
  1088   // We need first to check if any Java activations (compiled, interpreted)
  1089   // exist on the stack since last JavaCall.  If not, we need
  1090   // to get the target method from the JavaCall wrapper.
  1091   vframeStream vfst(thread, true);  // Do not skip any javaCalls
  1092   methodHandle callee_method;
  1093   if (vfst.at_end()) {
  1094     // No Java frames were found on stack since we did the JavaCall.
  1095     // Hence the stack can only contain an entry_frame.  We need to
  1096     // find the target method from the stub frame.
  1097     RegisterMap reg_map(thread, false);
  1098     frame fr = thread->last_frame();
  1099     assert(fr.is_runtime_frame(), "must be a runtimeStub");
  1100     fr = fr.sender(&reg_map);
  1101     assert(fr.is_entry_frame(), "must be");
  1102     // fr is now pointing to the entry frame.
  1103     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
  1104     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
  1105   } else {
  1106     Bytecodes::Code bc;
  1107     CallInfo callinfo;
  1108     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
  1109     callee_method = callinfo.selected_method();
  1111   assert(callee_method()->is_method(), "must be");
  1112   return callee_method;
  1115 // Resolves a call.
  1116 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
  1117                                            bool is_virtual,
  1118                                            bool is_optimized, TRAPS) {
  1119   methodHandle callee_method;
  1120   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
  1121   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
  1122     int retry_count = 0;
  1123     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
  1124            callee_method->method_holder() != SystemDictionary::Object_klass()) {
  1125       // If has a pending exception then there is no need to re-try to
  1126       // resolve this method.
  1127       // If the method has been redefined, we need to try again.
  1128       // Hack: we have no way to update the vtables of arrays, so don't
  1129       // require that java.lang.Object has been updated.
  1131       // It is very unlikely that method is redefined more than 100 times
  1132       // in the middle of resolve. If it is looping here more than 100 times
  1133       // means then there could be a bug here.
  1134       guarantee((retry_count++ < 100),
  1135                 "Could not resolve to latest version of redefined method");
  1136       // method is redefined in the middle of resolve so re-try.
  1137       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
  1140   return callee_method;
  1143 // Resolves a call.  The compilers generate code for calls that go here
  1144 // and are patched with the real destination of the call.
  1145 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
  1146                                            bool is_virtual,
  1147                                            bool is_optimized, TRAPS) {
  1149   ResourceMark rm(thread);
  1150   RegisterMap cbl_map(thread, false);
  1151   frame caller_frame = thread->last_frame().sender(&cbl_map);
  1153   CodeBlob* caller_cb = caller_frame.cb();
  1154   guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
  1155   nmethod* caller_nm = caller_cb->as_nmethod_or_null();
  1156   // make sure caller is not getting deoptimized
  1157   // and removed before we are done with it.
  1158   // CLEANUP - with lazy deopt shouldn't need this lock
  1159   nmethodLocker caller_lock(caller_nm);
  1162   // determine call info & receiver
  1163   // note: a) receiver is NULL for static calls
  1164   //       b) an exception is thrown if receiver is NULL for non-static calls
  1165   CallInfo call_info;
  1166   Bytecodes::Code invoke_code = Bytecodes::_illegal;
  1167   Handle receiver = find_callee_info(thread, invoke_code,
  1168                                      call_info, CHECK_(methodHandle()));
  1169   methodHandle callee_method = call_info.selected_method();
  1171   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
  1172          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
  1173          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
  1174          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
  1176 #ifndef PRODUCT
  1177   // tracing/debugging/statistics
  1178   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
  1179                 (is_virtual) ? (&_resolve_virtual_ctr) :
  1180                                (&_resolve_static_ctr);
  1181   Atomic::inc(addr);
  1183   if (TraceCallFixup) {
  1184     ResourceMark rm(thread);
  1185     tty->print("resolving %s%s (%s) call to",
  1186       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
  1187       Bytecodes::name(invoke_code));
  1188     callee_method->print_short_name(tty);
  1189     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, caller_frame.pc(), callee_method->code());
  1191 #endif
  1193   // JSR 292 key invariant:
  1194   // If the resolved method is a MethodHandle invoke target the call
  1195   // site must be a MethodHandle call site, because the lambda form might tail-call
  1196   // leaving the stack in a state unknown to either caller or callee
  1197   // TODO detune for now but we might need it again
  1198 //  assert(!callee_method->is_compiled_lambda_form() ||
  1199 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
  1201   // Compute entry points. This might require generation of C2I converter
  1202   // frames, so we cannot be holding any locks here. Furthermore, the
  1203   // computation of the entry points is independent of patching the call.  We
  1204   // always return the entry-point, but we only patch the stub if the call has
  1205   // not been deoptimized.  Return values: For a virtual call this is an
  1206   // (cached_oop, destination address) pair. For a static call/optimized
  1207   // virtual this is just a destination address.
  1209   StaticCallInfo static_call_info;
  1210   CompiledICInfo virtual_call_info;
  1212   // Make sure the callee nmethod does not get deoptimized and removed before
  1213   // we are done patching the code.
  1214   nmethod* callee_nm = callee_method->code();
  1215   nmethodLocker nl_callee(callee_nm);
  1216 #ifdef ASSERT
  1217   address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
  1218 #endif
  1220   if (is_virtual) {
  1221     assert(receiver.not_null(), "sanity check");
  1222     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
  1223     KlassHandle h_klass(THREAD, receiver->klass());
  1224     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
  1225                      is_optimized, static_bound, virtual_call_info,
  1226                      CHECK_(methodHandle()));
  1227   } else {
  1228     // static call
  1229     CompiledStaticCall::compute_entry(callee_method, static_call_info);
  1232   // grab lock, check for deoptimization and potentially patch caller
  1234     MutexLocker ml_patch(CompiledIC_lock);
  1236     // Now that we are ready to patch if the Method* was redefined then
  1237     // don't update call site and let the caller retry.
  1239     if (!callee_method->is_old()) {
  1240 #ifdef ASSERT
  1241       // We must not try to patch to jump to an already unloaded method.
  1242       if (dest_entry_point != 0) {
  1243         assert(CodeCache::find_blob(dest_entry_point) != NULL,
  1244                "should not unload nmethod while locked");
  1246 #endif
  1247       if (is_virtual) {
  1248         nmethod* nm = callee_nm;
  1249         if (nm == NULL) CodeCache::find_blob(caller_frame.pc());
  1250         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
  1251         if (inline_cache->is_clean()) {
  1252           inline_cache->set_to_monomorphic(virtual_call_info);
  1254       } else {
  1255         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
  1256         if (ssc->is_clean()) ssc->set(static_call_info);
  1260   } // unlock CompiledIC_lock
  1262   return callee_method;
  1266 // Inline caches exist only in compiled code
  1267 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
  1268 #ifdef ASSERT
  1269   RegisterMap reg_map(thread, false);
  1270   frame stub_frame = thread->last_frame();
  1271   assert(stub_frame.is_runtime_frame(), "sanity check");
  1272   frame caller_frame = stub_frame.sender(&reg_map);
  1273   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
  1274 #endif /* ASSERT */
  1276   methodHandle callee_method;
  1277   JRT_BLOCK
  1278     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
  1279     // Return Method* through TLS
  1280     thread->set_vm_result_2(callee_method());
  1281   JRT_BLOCK_END
  1282   // return compiled code entry point after potential safepoints
  1283   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1284   return callee_method->verified_code_entry();
  1285 JRT_END
  1288 // Handle call site that has been made non-entrant
  1289 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
  1290   // 6243940 We might end up in here if the callee is deoptimized
  1291   // as we race to call it.  We don't want to take a safepoint if
  1292   // the caller was interpreted because the caller frame will look
  1293   // interpreted to the stack walkers and arguments are now
  1294   // "compiled" so it is much better to make this transition
  1295   // invisible to the stack walking code. The i2c path will
  1296   // place the callee method in the callee_target. It is stashed
  1297   // there because if we try and find the callee by normal means a
  1298   // safepoint is possible and have trouble gc'ing the compiled args.
  1299   RegisterMap reg_map(thread, false);
  1300   frame stub_frame = thread->last_frame();
  1301   assert(stub_frame.is_runtime_frame(), "sanity check");
  1302   frame caller_frame = stub_frame.sender(&reg_map);
  1304   // MethodHandle invokes don't have a CompiledIC and should always
  1305   // simply redispatch to the callee_target.
  1306   address   sender_pc = caller_frame.pc();
  1307   CodeBlob* sender_cb = caller_frame.cb();
  1308   nmethod*  sender_nm = sender_cb->as_nmethod_or_null();
  1310   if (caller_frame.is_interpreted_frame() ||
  1311       caller_frame.is_entry_frame()) {
  1312     Method* callee = thread->callee_target();
  1313     guarantee(callee != NULL && callee->is_method(), "bad handshake");
  1314     thread->set_vm_result_2(callee);
  1315     thread->set_callee_target(NULL);
  1316     return callee->get_c2i_entry();
  1319   // Must be compiled to compiled path which is safe to stackwalk
  1320   methodHandle callee_method;
  1321   JRT_BLOCK
  1322     // Force resolving of caller (if we called from compiled frame)
  1323     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
  1324     thread->set_vm_result_2(callee_method());
  1325   JRT_BLOCK_END
  1326   // return compiled code entry point after potential safepoints
  1327   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1328   return callee_method->verified_code_entry();
  1329 JRT_END
  1332 // resolve a static call and patch code
  1333 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
  1334   methodHandle callee_method;
  1335   JRT_BLOCK
  1336     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
  1337     thread->set_vm_result_2(callee_method());
  1338   JRT_BLOCK_END
  1339   // return compiled code entry point after potential safepoints
  1340   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1341   return callee_method->verified_code_entry();
  1342 JRT_END
  1345 // resolve virtual call and update inline cache to monomorphic
  1346 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
  1347   methodHandle callee_method;
  1348   JRT_BLOCK
  1349     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
  1350     thread->set_vm_result_2(callee_method());
  1351   JRT_BLOCK_END
  1352   // return compiled code entry point after potential safepoints
  1353   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1354   return callee_method->verified_code_entry();
  1355 JRT_END
  1358 // Resolve a virtual call that can be statically bound (e.g., always
  1359 // monomorphic, so it has no inline cache).  Patch code to resolved target.
  1360 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
  1361   methodHandle callee_method;
  1362   JRT_BLOCK
  1363     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
  1364     thread->set_vm_result_2(callee_method());
  1365   JRT_BLOCK_END
  1366   // return compiled code entry point after potential safepoints
  1367   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1368   return callee_method->verified_code_entry();
  1369 JRT_END
  1375 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
  1376   ResourceMark rm(thread);
  1377   CallInfo call_info;
  1378   Bytecodes::Code bc;
  1380   // receiver is NULL for static calls. An exception is thrown for NULL
  1381   // receivers for non-static calls
  1382   Handle receiver = find_callee_info(thread, bc, call_info,
  1383                                      CHECK_(methodHandle()));
  1384   // Compiler1 can produce virtual call sites that can actually be statically bound
  1385   // If we fell thru to below we would think that the site was going megamorphic
  1386   // when in fact the site can never miss. Worse because we'd think it was megamorphic
  1387   // we'd try and do a vtable dispatch however methods that can be statically bound
  1388   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
  1389   // reresolution of the  call site (as if we did a handle_wrong_method and not an
  1390   // plain ic_miss) and the site will be converted to an optimized virtual call site
  1391   // never to miss again. I don't believe C2 will produce code like this but if it
  1392   // did this would still be the correct thing to do for it too, hence no ifdef.
  1393   //
  1394   if (call_info.resolved_method()->can_be_statically_bound()) {
  1395     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
  1396     if (TraceCallFixup) {
  1397       RegisterMap reg_map(thread, false);
  1398       frame caller_frame = thread->last_frame().sender(&reg_map);
  1399       ResourceMark rm(thread);
  1400       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
  1401       callee_method->print_short_name(tty);
  1402       tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
  1403       tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1405     return callee_method;
  1408   methodHandle callee_method = call_info.selected_method();
  1410   bool should_be_mono = false;
  1412 #ifndef PRODUCT
  1413   Atomic::inc(&_ic_miss_ctr);
  1415   // Statistics & Tracing
  1416   if (TraceCallFixup) {
  1417     ResourceMark rm(thread);
  1418     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
  1419     callee_method->print_short_name(tty);
  1420     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1423   if (ICMissHistogram) {
  1424     MutexLocker m(VMStatistic_lock);
  1425     RegisterMap reg_map(thread, false);
  1426     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
  1427     // produce statistics under the lock
  1428     trace_ic_miss(f.pc());
  1430 #endif
  1432   // install an event collector so that when a vtable stub is created the
  1433   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
  1434   // event can't be posted when the stub is created as locks are held
  1435   // - instead the event will be deferred until the event collector goes
  1436   // out of scope.
  1437   JvmtiDynamicCodeEventCollector event_collector;
  1439   // Update inline cache to megamorphic. Skip update if caller has been
  1440   // made non-entrant or we are called from interpreted.
  1441   { MutexLocker ml_patch (CompiledIC_lock);
  1442     RegisterMap reg_map(thread, false);
  1443     frame caller_frame = thread->last_frame().sender(&reg_map);
  1444     CodeBlob* cb = caller_frame.cb();
  1445     if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
  1446       // Not a non-entrant nmethod, so find inline_cache
  1447       CompiledIC* inline_cache = CompiledIC_before(((nmethod*)cb), caller_frame.pc());
  1448       bool should_be_mono = false;
  1449       if (inline_cache->is_optimized()) {
  1450         if (TraceCallFixup) {
  1451           ResourceMark rm(thread);
  1452           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
  1453           callee_method->print_short_name(tty);
  1454           tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1456         should_be_mono = true;
  1457       } else if (inline_cache->is_icholder_call()) {
  1458         CompiledICHolder* ic_oop = inline_cache->cached_icholder();
  1459         if ( ic_oop != NULL) {
  1461           if (receiver()->klass() == ic_oop->holder_klass()) {
  1462             // This isn't a real miss. We must have seen that compiled code
  1463             // is now available and we want the call site converted to a
  1464             // monomorphic compiled call site.
  1465             // We can't assert for callee_method->code() != NULL because it
  1466             // could have been deoptimized in the meantime
  1467             if (TraceCallFixup) {
  1468               ResourceMark rm(thread);
  1469               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
  1470               callee_method->print_short_name(tty);
  1471               tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1473             should_be_mono = true;
  1478       if (should_be_mono) {
  1480         // We have a path that was monomorphic but was going interpreted
  1481         // and now we have (or had) a compiled entry. We correct the IC
  1482         // by using a new icBuffer.
  1483         CompiledICInfo info;
  1484         KlassHandle receiver_klass(THREAD, receiver()->klass());
  1485         inline_cache->compute_monomorphic_entry(callee_method,
  1486                                                 receiver_klass,
  1487                                                 inline_cache->is_optimized(),
  1488                                                 false,
  1489                                                 info, CHECK_(methodHandle()));
  1490         inline_cache->set_to_monomorphic(info);
  1491       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
  1492         // Change to megamorphic
  1493         inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
  1494       } else {
  1495         // Either clean or megamorphic
  1498   } // Release CompiledIC_lock
  1500   return callee_method;
  1503 //
  1504 // Resets a call-site in compiled code so it will get resolved again.
  1505 // This routines handles both virtual call sites, optimized virtual call
  1506 // sites, and static call sites. Typically used to change a call sites
  1507 // destination from compiled to interpreted.
  1508 //
  1509 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
  1510   ResourceMark rm(thread);
  1511   RegisterMap reg_map(thread, false);
  1512   frame stub_frame = thread->last_frame();
  1513   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
  1514   frame caller = stub_frame.sender(&reg_map);
  1516   // Do nothing if the frame isn't a live compiled frame.
  1517   // nmethod could be deoptimized by the time we get here
  1518   // so no update to the caller is needed.
  1520   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
  1522     address pc = caller.pc();
  1524     // Default call_addr is the location of the "basic" call.
  1525     // Determine the address of the call we a reresolving. With
  1526     // Inline Caches we will always find a recognizable call.
  1527     // With Inline Caches disabled we may or may not find a
  1528     // recognizable call. We will always find a call for static
  1529     // calls and for optimized virtual calls. For vanilla virtual
  1530     // calls it depends on the state of the UseInlineCaches switch.
  1531     //
  1532     // With Inline Caches disabled we can get here for a virtual call
  1533     // for two reasons:
  1534     //   1 - calling an abstract method. The vtable for abstract methods
  1535     //       will run us thru handle_wrong_method and we will eventually
  1536     //       end up in the interpreter to throw the ame.
  1537     //   2 - a racing deoptimization. We could be doing a vanilla vtable
  1538     //       call and between the time we fetch the entry address and
  1539     //       we jump to it the target gets deoptimized. Similar to 1
  1540     //       we will wind up in the interprter (thru a c2i with c2).
  1541     //
  1542     address call_addr = NULL;
  1544       // Get call instruction under lock because another thread may be
  1545       // busy patching it.
  1546       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
  1547       // Location of call instruction
  1548       if (NativeCall::is_call_before(pc)) {
  1549         NativeCall *ncall = nativeCall_before(pc);
  1550         call_addr = ncall->instruction_address();
  1554     // Check for static or virtual call
  1555     bool is_static_call = false;
  1556     nmethod* caller_nm = CodeCache::find_nmethod(pc);
  1557     // Make sure nmethod doesn't get deoptimized and removed until
  1558     // this is done with it.
  1559     // CLEANUP - with lazy deopt shouldn't need this lock
  1560     nmethodLocker nmlock(caller_nm);
  1562     if (call_addr != NULL) {
  1563       RelocIterator iter(caller_nm, call_addr, call_addr+1);
  1564       int ret = iter.next(); // Get item
  1565       if (ret) {
  1566         assert(iter.addr() == call_addr, "must find call");
  1567         if (iter.type() == relocInfo::static_call_type) {
  1568           is_static_call = true;
  1569         } else {
  1570           assert(iter.type() == relocInfo::virtual_call_type ||
  1571                  iter.type() == relocInfo::opt_virtual_call_type
  1572                 , "unexpected relocInfo. type");
  1574       } else {
  1575         assert(!UseInlineCaches, "relocation info. must exist for this address");
  1578       // Cleaning the inline cache will force a new resolve. This is more robust
  1579       // than directly setting it to the new destination, since resolving of calls
  1580       // is always done through the same code path. (experience shows that it
  1581       // leads to very hard to track down bugs, if an inline cache gets updated
  1582       // to a wrong method). It should not be performance critical, since the
  1583       // resolve is only done once.
  1585       MutexLocker ml(CompiledIC_lock);
  1586       //
  1587       // We do not patch the call site if the nmethod has been made non-entrant
  1588       // as it is a waste of time
  1589       //
  1590       if (caller_nm->is_in_use()) {
  1591         if (is_static_call) {
  1592           CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
  1593           ssc->set_to_clean();
  1594         } else {
  1595           // compiled, dispatched call (which used to call an interpreted method)
  1596           CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
  1597           inline_cache->set_to_clean();
  1604   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
  1607 #ifndef PRODUCT
  1608   Atomic::inc(&_wrong_method_ctr);
  1610   if (TraceCallFixup) {
  1611     ResourceMark rm(thread);
  1612     tty->print("handle_wrong_method reresolving call to");
  1613     callee_method->print_short_name(tty);
  1614     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1616 #endif
  1618   return callee_method;
  1621 // ---------------------------------------------------------------------------
  1622 // We are calling the interpreter via a c2i. Normally this would mean that
  1623 // we were called by a compiled method. However we could have lost a race
  1624 // where we went int -> i2c -> c2i and so the caller could in fact be
  1625 // interpreted. If the caller is compiled we attempt to patch the caller
  1626 // so he no longer calls into the interpreter.
  1627 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
  1628   Method* moop(method);
  1630   address entry_point = moop->from_compiled_entry();
  1632   // It's possible that deoptimization can occur at a call site which hasn't
  1633   // been resolved yet, in which case this function will be called from
  1634   // an nmethod that has been patched for deopt and we can ignore the
  1635   // request for a fixup.
  1636   // Also it is possible that we lost a race in that from_compiled_entry
  1637   // is now back to the i2c in that case we don't need to patch and if
  1638   // we did we'd leap into space because the callsite needs to use
  1639   // "to interpreter" stub in order to load up the Method*. Don't
  1640   // ask me how I know this...
  1642   CodeBlob* cb = CodeCache::find_blob(caller_pc);
  1643   if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
  1644     return;
  1647   // The check above makes sure this is a nmethod.
  1648   nmethod* nm = cb->as_nmethod_or_null();
  1649   assert(nm, "must be");
  1651   // Get the return PC for the passed caller PC.
  1652   address return_pc = caller_pc + frame::pc_return_offset;
  1654   // There is a benign race here. We could be attempting to patch to a compiled
  1655   // entry point at the same time the callee is being deoptimized. If that is
  1656   // the case then entry_point may in fact point to a c2i and we'd patch the
  1657   // call site with the same old data. clear_code will set code() to NULL
  1658   // at the end of it. If we happen to see that NULL then we can skip trying
  1659   // to patch. If we hit the window where the callee has a c2i in the
  1660   // from_compiled_entry and the NULL isn't present yet then we lose the race
  1661   // and patch the code with the same old data. Asi es la vida.
  1663   if (moop->code() == NULL) return;
  1665   if (nm->is_in_use()) {
  1667     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
  1668     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
  1669     if (NativeCall::is_call_before(return_pc)) {
  1670       NativeCall *call = nativeCall_before(return_pc);
  1671       //
  1672       // bug 6281185. We might get here after resolving a call site to a vanilla
  1673       // virtual call. Because the resolvee uses the verified entry it may then
  1674       // see compiled code and attempt to patch the site by calling us. This would
  1675       // then incorrectly convert the call site to optimized and its downhill from
  1676       // there. If you're lucky you'll get the assert in the bugid, if not you've
  1677       // just made a call site that could be megamorphic into a monomorphic site
  1678       // for the rest of its life! Just another racing bug in the life of
  1679       // fixup_callers_callsite ...
  1680       //
  1681       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
  1682       iter.next();
  1683       assert(iter.has_current(), "must have a reloc at java call site");
  1684       relocInfo::relocType typ = iter.reloc()->type();
  1685       if ( typ != relocInfo::static_call_type &&
  1686            typ != relocInfo::opt_virtual_call_type &&
  1687            typ != relocInfo::static_stub_type) {
  1688         return;
  1690       address destination = call->destination();
  1691       if (destination != entry_point) {
  1692         CodeBlob* callee = CodeCache::find_blob(destination);
  1693         // callee == cb seems weird. It means calling interpreter thru stub.
  1694         if (callee == cb || callee->is_adapter_blob()) {
  1695           // static call or optimized virtual
  1696           if (TraceCallFixup) {
  1697             tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", caller_pc);
  1698             moop->print_short_name(tty);
  1699             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
  1701           call->set_destination_mt_safe(entry_point);
  1702         } else {
  1703           if (TraceCallFixup) {
  1704             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
  1705             moop->print_short_name(tty);
  1706             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
  1708           // assert is too strong could also be resolve destinations.
  1709           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
  1711       } else {
  1712           if (TraceCallFixup) {
  1713             tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
  1714             moop->print_short_name(tty);
  1715             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
  1720 IRT_END
  1723 // same as JVM_Arraycopy, but called directly from compiled code
  1724 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
  1725                                                 oopDesc* dest, jint dest_pos,
  1726                                                 jint length,
  1727                                                 JavaThread* thread)) {
  1728 #ifndef PRODUCT
  1729   _slow_array_copy_ctr++;
  1730 #endif
  1731   // Check if we have null pointers
  1732   if (src == NULL || dest == NULL) {
  1733     THROW(vmSymbols::java_lang_NullPointerException());
  1735   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
  1736   // even though the copy_array API also performs dynamic checks to ensure
  1737   // that src and dest are truly arrays (and are conformable).
  1738   // The copy_array mechanism is awkward and could be removed, but
  1739   // the compilers don't call this function except as a last resort,
  1740   // so it probably doesn't matter.
  1741   Klass::cast(src->klass())->copy_array((arrayOopDesc*)src,  src_pos,
  1742                                         (arrayOopDesc*)dest, dest_pos,
  1743                                         length, thread);
  1745 JRT_END
  1747 char* SharedRuntime::generate_class_cast_message(
  1748     JavaThread* thread, const char* objName) {
  1750   // Get target class name from the checkcast instruction
  1751   vframeStream vfst(thread, true);
  1752   assert(!vfst.at_end(), "Java frame must exist");
  1753   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
  1754   Klass* targetKlass = Klass::cast(vfst.method()->constants()->klass_at(
  1755     cc.index(), thread));
  1756   return generate_class_cast_message(objName, targetKlass->external_name());
  1759 char* SharedRuntime::generate_class_cast_message(
  1760     const char* objName, const char* targetKlassName, const char* desc) {
  1761   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
  1763   char* message = NEW_RESOURCE_ARRAY(char, msglen);
  1764   if (NULL == message) {
  1765     // Shouldn't happen, but don't cause even more problems if it does
  1766     message = const_cast<char*>(objName);
  1767   } else {
  1768     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
  1770   return message;
  1773 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
  1774   (void) JavaThread::current()->reguard_stack();
  1775 JRT_END
  1778 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
  1779 #ifndef PRODUCT
  1780 int SharedRuntime::_monitor_enter_ctr=0;
  1781 #endif
  1782 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
  1783   oop obj(_obj);
  1784 #ifndef PRODUCT
  1785   _monitor_enter_ctr++;             // monitor enter slow
  1786 #endif
  1787   if (PrintBiasedLockingStatistics) {
  1788     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
  1790   Handle h_obj(THREAD, obj);
  1791   if (UseBiasedLocking) {
  1792     // Retry fast entry if bias is revoked to avoid unnecessary inflation
  1793     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
  1794   } else {
  1795     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
  1797   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
  1798 JRT_END
  1800 #ifndef PRODUCT
  1801 int SharedRuntime::_monitor_exit_ctr=0;
  1802 #endif
  1803 // Handles the uncommon cases of monitor unlocking in compiled code
  1804 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
  1805    oop obj(_obj);
  1806 #ifndef PRODUCT
  1807   _monitor_exit_ctr++;              // monitor exit slow
  1808 #endif
  1809   Thread* THREAD = JavaThread::current();
  1810   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
  1811   // testing was unable to ever fire the assert that guarded it so I have removed it.
  1812   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
  1813 #undef MIGHT_HAVE_PENDING
  1814 #ifdef MIGHT_HAVE_PENDING
  1815   // Save and restore any pending_exception around the exception mark.
  1816   // While the slow_exit must not throw an exception, we could come into
  1817   // this routine with one set.
  1818   oop pending_excep = NULL;
  1819   const char* pending_file;
  1820   int pending_line;
  1821   if (HAS_PENDING_EXCEPTION) {
  1822     pending_excep = PENDING_EXCEPTION;
  1823     pending_file  = THREAD->exception_file();
  1824     pending_line  = THREAD->exception_line();
  1825     CLEAR_PENDING_EXCEPTION;
  1827 #endif /* MIGHT_HAVE_PENDING */
  1830     // Exit must be non-blocking, and therefore no exceptions can be thrown.
  1831     EXCEPTION_MARK;
  1832     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
  1835 #ifdef MIGHT_HAVE_PENDING
  1836   if (pending_excep != NULL) {
  1837     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
  1839 #endif /* MIGHT_HAVE_PENDING */
  1840 JRT_END
  1842 #ifndef PRODUCT
  1844 void SharedRuntime::print_statistics() {
  1845   ttyLocker ttyl;
  1846   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
  1848   if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow",  _monitor_enter_ctr);
  1849   if (_monitor_exit_ctr  ) tty->print_cr("%5d monitor exit slow",   _monitor_exit_ctr);
  1850   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
  1852   SharedRuntime::print_ic_miss_histogram();
  1854   if (CountRemovableExceptions) {
  1855     if (_nof_removable_exceptions > 0) {
  1856       Unimplemented(); // this counter is not yet incremented
  1857       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
  1861   // Dump the JRT_ENTRY counters
  1862   if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
  1863   if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
  1864   if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
  1865   if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
  1866   if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
  1867   if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
  1868   if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
  1870   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
  1871   tty->print_cr("%5d wrong method", _wrong_method_ctr );
  1872   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
  1873   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
  1874   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
  1876   if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
  1877   if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
  1878   if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
  1879   if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
  1880   if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
  1881   if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
  1882   if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
  1883   if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
  1884   if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
  1885   if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
  1886   if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
  1887   if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
  1888   if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
  1889   if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
  1890   if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
  1891   if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
  1893   AdapterHandlerLibrary::print_statistics();
  1895   if (xtty != NULL)  xtty->tail("statistics");
  1898 inline double percent(int x, int y) {
  1899   return 100.0 * x / MAX2(y, 1);
  1902 class MethodArityHistogram {
  1903  public:
  1904   enum { MAX_ARITY = 256 };
  1905  private:
  1906   static int _arity_histogram[MAX_ARITY];     // histogram of #args
  1907   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
  1908   static int _max_arity;                      // max. arity seen
  1909   static int _max_size;                       // max. arg size seen
  1911   static void add_method_to_histogram(nmethod* nm) {
  1912     Method* m = nm->method();
  1913     ArgumentCount args(m->signature());
  1914     int arity   = args.size() + (m->is_static() ? 0 : 1);
  1915     int argsize = m->size_of_parameters();
  1916     arity   = MIN2(arity, MAX_ARITY-1);
  1917     argsize = MIN2(argsize, MAX_ARITY-1);
  1918     int count = nm->method()->compiled_invocation_count();
  1919     _arity_histogram[arity]  += count;
  1920     _size_histogram[argsize] += count;
  1921     _max_arity = MAX2(_max_arity, arity);
  1922     _max_size  = MAX2(_max_size, argsize);
  1925   void print_histogram_helper(int n, int* histo, const char* name) {
  1926     const int N = MIN2(5, n);
  1927     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
  1928     double sum = 0;
  1929     double weighted_sum = 0;
  1930     int i;
  1931     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
  1932     double rest = sum;
  1933     double percent = sum / 100;
  1934     for (i = 0; i <= N; i++) {
  1935       rest -= histo[i];
  1936       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
  1938     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
  1939     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
  1942   void print_histogram() {
  1943     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
  1944     print_histogram_helper(_max_arity, _arity_histogram, "arity");
  1945     tty->print_cr("\nSame for parameter size (in words):");
  1946     print_histogram_helper(_max_size, _size_histogram, "size");
  1947     tty->cr();
  1950  public:
  1951   MethodArityHistogram() {
  1952     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
  1953     _max_arity = _max_size = 0;
  1954     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
  1955     CodeCache::nmethods_do(add_method_to_histogram);
  1956     print_histogram();
  1958 };
  1960 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
  1961 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
  1962 int MethodArityHistogram::_max_arity;
  1963 int MethodArityHistogram::_max_size;
  1965 void SharedRuntime::print_call_statistics(int comp_total) {
  1966   tty->print_cr("Calls from compiled code:");
  1967   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
  1968   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
  1969   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
  1970   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
  1971   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
  1972   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
  1973   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
  1974   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
  1975   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
  1976   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
  1977   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
  1978   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
  1979   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
  1980   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
  1981   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
  1982   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
  1983   tty->cr();
  1984   tty->print_cr("Note 1: counter updates are not MT-safe.");
  1985   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
  1986   tty->print_cr("        %% in nested categories are relative to their category");
  1987   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
  1988   tty->cr();
  1990   MethodArityHistogram h;
  1992 #endif
  1995 // A simple wrapper class around the calling convention information
  1996 // that allows sharing of adapters for the same calling convention.
  1997 class AdapterFingerPrint : public CHeapObj<mtCode> {
  1998  private:
  1999   enum {
  2000     _basic_type_bits = 4,
  2001     _basic_type_mask = right_n_bits(_basic_type_bits),
  2002     _basic_types_per_int = BitsPerInt / _basic_type_bits,
  2003     _compact_int_count = 3
  2004   };
  2005   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
  2006   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
  2008   union {
  2009     int  _compact[_compact_int_count];
  2010     int* _fingerprint;
  2011   } _value;
  2012   int _length; // A negative length indicates the fingerprint is in the compact form,
  2013                // Otherwise _value._fingerprint is the array.
  2015   // Remap BasicTypes that are handled equivalently by the adapters.
  2016   // These are correct for the current system but someday it might be
  2017   // necessary to make this mapping platform dependent.
  2018   static int adapter_encoding(BasicType in) {
  2019     switch(in) {
  2020       case T_BOOLEAN:
  2021       case T_BYTE:
  2022       case T_SHORT:
  2023       case T_CHAR:
  2024         // There are all promoted to T_INT in the calling convention
  2025         return T_INT;
  2027       case T_OBJECT:
  2028       case T_ARRAY:
  2029         // In other words, we assume that any register good enough for
  2030         // an int or long is good enough for a managed pointer.
  2031 #ifdef _LP64
  2032         return T_LONG;
  2033 #else
  2034         return T_INT;
  2035 #endif
  2037       case T_INT:
  2038       case T_LONG:
  2039       case T_FLOAT:
  2040       case T_DOUBLE:
  2041       case T_VOID:
  2042         return in;
  2044       default:
  2045         ShouldNotReachHere();
  2046         return T_CONFLICT;
  2050  public:
  2051   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
  2052     // The fingerprint is based on the BasicType signature encoded
  2053     // into an array of ints with eight entries per int.
  2054     int* ptr;
  2055     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
  2056     if (len <= _compact_int_count) {
  2057       assert(_compact_int_count == 3, "else change next line");
  2058       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
  2059       // Storing the signature encoded as signed chars hits about 98%
  2060       // of the time.
  2061       _length = -len;
  2062       ptr = _value._compact;
  2063     } else {
  2064       _length = len;
  2065       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
  2066       ptr = _value._fingerprint;
  2069     // Now pack the BasicTypes with 8 per int
  2070     int sig_index = 0;
  2071     for (int index = 0; index < len; index++) {
  2072       int value = 0;
  2073       for (int byte = 0; byte < _basic_types_per_int; byte++) {
  2074         int bt = ((sig_index < total_args_passed)
  2075                   ? adapter_encoding(sig_bt[sig_index++])
  2076                   : 0);
  2077         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
  2078         value = (value << _basic_type_bits) | bt;
  2080       ptr[index] = value;
  2084   ~AdapterFingerPrint() {
  2085     if (_length > 0) {
  2086       FREE_C_HEAP_ARRAY(int, _value._fingerprint, mtCode);
  2090   int value(int index) {
  2091     if (_length < 0) {
  2092       return _value._compact[index];
  2094     return _value._fingerprint[index];
  2096   int length() {
  2097     if (_length < 0) return -_length;
  2098     return _length;
  2101   bool is_compact() {
  2102     return _length <= 0;
  2105   unsigned int compute_hash() {
  2106     int hash = 0;
  2107     for (int i = 0; i < length(); i++) {
  2108       int v = value(i);
  2109       hash = (hash << 8) ^ v ^ (hash >> 5);
  2111     return (unsigned int)hash;
  2114   const char* as_string() {
  2115     stringStream st;
  2116     st.print("0x");
  2117     for (int i = 0; i < length(); i++) {
  2118       st.print("%08x", value(i));
  2120     return st.as_string();
  2123   bool equals(AdapterFingerPrint* other) {
  2124     if (other->_length != _length) {
  2125       return false;
  2127     if (_length < 0) {
  2128       assert(_compact_int_count == 3, "else change next line");
  2129       return _value._compact[0] == other->_value._compact[0] &&
  2130              _value._compact[1] == other->_value._compact[1] &&
  2131              _value._compact[2] == other->_value._compact[2];
  2132     } else {
  2133       for (int i = 0; i < _length; i++) {
  2134         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
  2135           return false;
  2139     return true;
  2141 };
  2144 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
  2145 class AdapterHandlerTable : public BasicHashtable<mtCode> {
  2146   friend class AdapterHandlerTableIterator;
  2148  private:
  2150 #ifndef PRODUCT
  2151   static int _lookups; // number of calls to lookup
  2152   static int _buckets; // number of buckets checked
  2153   static int _equals;  // number of buckets checked with matching hash
  2154   static int _hits;    // number of successful lookups
  2155   static int _compact; // number of equals calls with compact signature
  2156 #endif
  2158   AdapterHandlerEntry* bucket(int i) {
  2159     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
  2162  public:
  2163   AdapterHandlerTable()
  2164     : BasicHashtable<mtCode>(293, sizeof(AdapterHandlerEntry)) { }
  2166   // Create a new entry suitable for insertion in the table
  2167   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
  2168     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
  2169     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
  2170     return entry;
  2173   // Insert an entry into the table
  2174   void add(AdapterHandlerEntry* entry) {
  2175     int index = hash_to_index(entry->hash());
  2176     add_entry(index, entry);
  2179   void free_entry(AdapterHandlerEntry* entry) {
  2180     entry->deallocate();
  2181     BasicHashtable<mtCode>::free_entry(entry);
  2184   // Find a entry with the same fingerprint if it exists
  2185   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
  2186     NOT_PRODUCT(_lookups++);
  2187     AdapterFingerPrint fp(total_args_passed, sig_bt);
  2188     unsigned int hash = fp.compute_hash();
  2189     int index = hash_to_index(hash);
  2190     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
  2191       NOT_PRODUCT(_buckets++);
  2192       if (e->hash() == hash) {
  2193         NOT_PRODUCT(_equals++);
  2194         if (fp.equals(e->fingerprint())) {
  2195 #ifndef PRODUCT
  2196           if (fp.is_compact()) _compact++;
  2197           _hits++;
  2198 #endif
  2199           return e;
  2203     return NULL;
  2206 #ifndef PRODUCT
  2207   void print_statistics() {
  2208     ResourceMark rm;
  2209     int longest = 0;
  2210     int empty = 0;
  2211     int total = 0;
  2212     int nonempty = 0;
  2213     for (int index = 0; index < table_size(); index++) {
  2214       int count = 0;
  2215       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
  2216         count++;
  2218       if (count != 0) nonempty++;
  2219       if (count == 0) empty++;
  2220       if (count > longest) longest = count;
  2221       total += count;
  2223     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
  2224                   empty, longest, total, total / (double)nonempty);
  2225     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
  2226                   _lookups, _buckets, _equals, _hits, _compact);
  2228 #endif
  2229 };
  2232 #ifndef PRODUCT
  2234 int AdapterHandlerTable::_lookups;
  2235 int AdapterHandlerTable::_buckets;
  2236 int AdapterHandlerTable::_equals;
  2237 int AdapterHandlerTable::_hits;
  2238 int AdapterHandlerTable::_compact;
  2240 #endif
  2242 class AdapterHandlerTableIterator : public StackObj {
  2243  private:
  2244   AdapterHandlerTable* _table;
  2245   int _index;
  2246   AdapterHandlerEntry* _current;
  2248   void scan() {
  2249     while (_index < _table->table_size()) {
  2250       AdapterHandlerEntry* a = _table->bucket(_index);
  2251       _index++;
  2252       if (a != NULL) {
  2253         _current = a;
  2254         return;
  2259  public:
  2260   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
  2261     scan();
  2263   bool has_next() {
  2264     return _current != NULL;
  2266   AdapterHandlerEntry* next() {
  2267     if (_current != NULL) {
  2268       AdapterHandlerEntry* result = _current;
  2269       _current = _current->next();
  2270       if (_current == NULL) scan();
  2271       return result;
  2272     } else {
  2273       return NULL;
  2276 };
  2279 // ---------------------------------------------------------------------------
  2280 // Implementation of AdapterHandlerLibrary
  2281 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
  2282 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
  2283 const int AdapterHandlerLibrary_size = 16*K;
  2284 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
  2286 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
  2287   // Should be called only when AdapterHandlerLibrary_lock is active.
  2288   if (_buffer == NULL) // Initialize lazily
  2289       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
  2290   return _buffer;
  2293 void AdapterHandlerLibrary::initialize() {
  2294   if (_adapters != NULL) return;
  2295   _adapters = new AdapterHandlerTable();
  2297   // Create a special handler for abstract methods.  Abstract methods
  2298   // are never compiled so an i2c entry is somewhat meaningless, but
  2299   // fill it in with something appropriate just in case.  Pass handle
  2300   // wrong method for the c2i transitions.
  2301   address wrong_method = SharedRuntime::get_handle_wrong_method_stub();
  2302   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
  2303                                                               StubRoutines::throw_AbstractMethodError_entry(),
  2304                                                               wrong_method, wrong_method);
  2307 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
  2308                                                       address i2c_entry,
  2309                                                       address c2i_entry,
  2310                                                       address c2i_unverified_entry) {
  2311   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
  2314 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
  2315   // Use customized signature handler.  Need to lock around updates to
  2316   // the AdapterHandlerTable (it is not safe for concurrent readers
  2317   // and a single writer: this could be fixed if it becomes a
  2318   // problem).
  2320   // Get the address of the ic_miss handlers before we grab the
  2321   // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
  2322   // was caused by the initialization of the stubs happening
  2323   // while we held the lock and then notifying jvmti while
  2324   // holding it. This just forces the initialization to be a little
  2325   // earlier.
  2326   address ic_miss = SharedRuntime::get_ic_miss_stub();
  2327   assert(ic_miss != NULL, "must have handler");
  2329   ResourceMark rm;
  2331   NOT_PRODUCT(int insts_size);
  2332   AdapterBlob* B = NULL;
  2333   AdapterHandlerEntry* entry = NULL;
  2334   AdapterFingerPrint* fingerprint = NULL;
  2336     MutexLocker mu(AdapterHandlerLibrary_lock);
  2337     // make sure data structure is initialized
  2338     initialize();
  2340     if (method->is_abstract()) {
  2341       return _abstract_method_handler;
  2344     // Fill in the signature array, for the calling-convention call.
  2345     int total_args_passed = method->size_of_parameters(); // All args on stack
  2347     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
  2348     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
  2349     int i = 0;
  2350     if (!method->is_static())  // Pass in receiver first
  2351       sig_bt[i++] = T_OBJECT;
  2352     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
  2353       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
  2354       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
  2355         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  2357     assert(i == total_args_passed, "");
  2359     // Lookup method signature's fingerprint
  2360     entry = _adapters->lookup(total_args_passed, sig_bt);
  2362 #ifdef ASSERT
  2363     AdapterHandlerEntry* shared_entry = NULL;
  2364     if (VerifyAdapterSharing && entry != NULL) {
  2365       shared_entry = entry;
  2366       entry = NULL;
  2368 #endif
  2370     if (entry != NULL) {
  2371       return entry;
  2374     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
  2375     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
  2377     // Make a C heap allocated version of the fingerprint to store in the adapter
  2378     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
  2380     // Create I2C & C2I handlers
  2382     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
  2383     if (buf != NULL) {
  2384       CodeBuffer buffer(buf);
  2385       short buffer_locs[20];
  2386       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
  2387                                              sizeof(buffer_locs)/sizeof(relocInfo));
  2388       MacroAssembler _masm(&buffer);
  2390       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
  2391                                                      total_args_passed,
  2392                                                      comp_args_on_stack,
  2393                                                      sig_bt,
  2394                                                      regs,
  2395                                                      fingerprint);
  2397 #ifdef ASSERT
  2398       if (VerifyAdapterSharing) {
  2399         if (shared_entry != NULL) {
  2400           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt),
  2401                  "code must match");
  2402           // Release the one just created and return the original
  2403           _adapters->free_entry(entry);
  2404           return shared_entry;
  2405         } else  {
  2406           entry->save_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt);
  2409 #endif
  2411       B = AdapterBlob::create(&buffer);
  2412       NOT_PRODUCT(insts_size = buffer.insts_size());
  2414     if (B == NULL) {
  2415       // CodeCache is full, disable compilation
  2416       // Ought to log this but compile log is only per compile thread
  2417       // and we're some non descript Java thread.
  2418       MutexUnlocker mu(AdapterHandlerLibrary_lock);
  2419       CompileBroker::handle_full_code_cache();
  2420       return NULL; // Out of CodeCache space
  2422     entry->relocate(B->content_begin());
  2423 #ifndef PRODUCT
  2424     // debugging suppport
  2425     if (PrintAdapterHandlers || PrintStubCode) {
  2426       entry->print_adapter_on(tty);
  2427       tty->print_cr("i2c argument handler #%d for: %s %s (%d bytes generated)",
  2428                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
  2429                     method->signature()->as_C_string(), insts_size);
  2430       tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
  2431       if (Verbose || PrintStubCode) {
  2432         address first_pc = entry->base_address();
  2433         if (first_pc != NULL)
  2434           Disassembler::decode(first_pc, first_pc + insts_size);
  2437 #endif
  2439     _adapters->add(entry);
  2441   // Outside of the lock
  2442   if (B != NULL) {
  2443     char blob_id[256];
  2444     jio_snprintf(blob_id,
  2445                  sizeof(blob_id),
  2446                  "%s(%s)@" PTR_FORMAT,
  2447                  B->name(),
  2448                  fingerprint->as_string(),
  2449                  B->content_begin());
  2450     Forte::register_stub(blob_id, B->content_begin(), B->content_end());
  2452     if (JvmtiExport::should_post_dynamic_code_generated()) {
  2453       JvmtiExport::post_dynamic_code_generated(blob_id, B->content_begin(), B->content_end());
  2456   return entry;
  2459 address AdapterHandlerEntry::base_address() {
  2460   address base = _i2c_entry;
  2461   if (base == NULL)  base = _c2i_entry;
  2462   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
  2463   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
  2464   return base;
  2467 void AdapterHandlerEntry::relocate(address new_base) {
  2468   address old_base = base_address();
  2469   assert(old_base != NULL, "");
  2470   ptrdiff_t delta = new_base - old_base;
  2471   if (_i2c_entry != NULL)
  2472     _i2c_entry += delta;
  2473   if (_c2i_entry != NULL)
  2474     _c2i_entry += delta;
  2475   if (_c2i_unverified_entry != NULL)
  2476     _c2i_unverified_entry += delta;
  2477   assert(base_address() == new_base, "");
  2481 void AdapterHandlerEntry::deallocate() {
  2482   delete _fingerprint;
  2483 #ifdef ASSERT
  2484   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code, mtCode);
  2485   if (_saved_sig)  FREE_C_HEAP_ARRAY(Basictype, _saved_sig, mtCode);
  2486 #endif
  2490 #ifdef ASSERT
  2491 // Capture the code before relocation so that it can be compared
  2492 // against other versions.  If the code is captured after relocation
  2493 // then relative instructions won't be equivalent.
  2494 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
  2495   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
  2496   _code_length = length;
  2497   memcpy(_saved_code, buffer, length);
  2498   _total_args_passed = total_args_passed;
  2499   _saved_sig = NEW_C_HEAP_ARRAY(BasicType, _total_args_passed, mtCode);
  2500   memcpy(_saved_sig, sig_bt, _total_args_passed * sizeof(BasicType));
  2504 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
  2505   if (length != _code_length) {
  2506     return false;
  2508   for (int i = 0; i < length; i++) {
  2509     if (buffer[i] != _saved_code[i]) {
  2510       return false;
  2513   return true;
  2515 #endif
  2518 // Create a native wrapper for this native method.  The wrapper converts the
  2519 // java compiled calling convention to the native convention, handlizes
  2520 // arguments, and transitions to native.  On return from the native we transition
  2521 // back to java blocking if a safepoint is in progress.
  2522 nmethod *AdapterHandlerLibrary::create_native_wrapper(methodHandle method, int compile_id) {
  2523   ResourceMark rm;
  2524   nmethod* nm = NULL;
  2526   assert(method->is_native(), "must be native");
  2527   assert(method->is_method_handle_intrinsic() ||
  2528          method->has_native_function(), "must have something valid to call!");
  2531     // perform the work while holding the lock, but perform any printing outside the lock
  2532     MutexLocker mu(AdapterHandlerLibrary_lock);
  2533     // See if somebody beat us to it
  2534     nm = method->code();
  2535     if (nm) {
  2536       return nm;
  2539     ResourceMark rm;
  2541     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
  2542     if (buf != NULL) {
  2543       CodeBuffer buffer(buf);
  2544       double locs_buf[20];
  2545       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
  2546       MacroAssembler _masm(&buffer);
  2548       // Fill in the signature array, for the calling-convention call.
  2549       int total_args_passed = method->size_of_parameters();
  2551       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType,total_args_passed);
  2552       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair,total_args_passed);
  2553       int i=0;
  2554       if( !method->is_static() )  // Pass in receiver first
  2555         sig_bt[i++] = T_OBJECT;
  2556       SignatureStream ss(method->signature());
  2557       for( ; !ss.at_return_type(); ss.next()) {
  2558         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
  2559         if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
  2560           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  2562       assert( i==total_args_passed, "" );
  2563       BasicType ret_type = ss.type();
  2565       // Now get the compiled-Java layout as input (or output) arguments.
  2566       // NOTE: Stubs for compiled entry points of method handle intrinsics
  2567       // are just trampolines so the argument registers must be outgoing ones.
  2568       const bool is_outgoing = method->is_method_handle_intrinsic();
  2569       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
  2571       // Generate the compiled-to-native wrapper code
  2572       nm = SharedRuntime::generate_native_wrapper(&_masm,
  2573                                                   method,
  2574                                                   compile_id,
  2575                                                   total_args_passed,
  2576                                                   comp_args_on_stack,
  2577                                                   sig_bt,regs,
  2578                                                   ret_type);
  2582   // Must unlock before calling set_code
  2584   // Install the generated code.
  2585   if (nm != NULL) {
  2586     if (PrintCompilation) {
  2587       ttyLocker ttyl;
  2588       CompileTask::print_compilation(tty, nm, method->is_static() ? "(static)" : "");
  2590     method->set_code(method, nm);
  2591     nm->post_compiled_method_load_event();
  2592   } else {
  2593     // CodeCache is full, disable compilation
  2594     CompileBroker::handle_full_code_cache();
  2596   return nm;
  2599 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
  2600   assert(thread == JavaThread::current(), "must be");
  2601   // The code is about to enter a JNI lazy critical native method and
  2602   // _needs_gc is true, so if this thread is already in a critical
  2603   // section then just return, otherwise this thread should block
  2604   // until needs_gc has been cleared.
  2605   if (thread->in_critical()) {
  2606     return;
  2608   // Lock and unlock a critical section to give the system a chance to block
  2609   GC_locker::lock_critical(thread);
  2610   GC_locker::unlock_critical(thread);
  2611 JRT_END
  2613 #ifdef HAVE_DTRACE_H
  2614 // Create a dtrace nmethod for this method.  The wrapper converts the
  2615 // java compiled calling convention to the native convention, makes a dummy call
  2616 // (actually nops for the size of the call instruction, which become a trap if
  2617 // probe is enabled). The returns to the caller. Since this all looks like a
  2618 // leaf no thread transition is needed.
  2620 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
  2621   ResourceMark rm;
  2622   nmethod* nm = NULL;
  2624   if (PrintCompilation) {
  2625     ttyLocker ttyl;
  2626     tty->print("---   n%s  ");
  2627     method->print_short_name(tty);
  2628     if (method->is_static()) {
  2629       tty->print(" (static)");
  2631     tty->cr();
  2635     // perform the work while holding the lock, but perform any printing
  2636     // outside the lock
  2637     MutexLocker mu(AdapterHandlerLibrary_lock);
  2638     // See if somebody beat us to it
  2639     nm = method->code();
  2640     if (nm) {
  2641       return nm;
  2644     ResourceMark rm;
  2646     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
  2647     if (buf != NULL) {
  2648       CodeBuffer buffer(buf);
  2649       // Need a few relocation entries
  2650       double locs_buf[20];
  2651       buffer.insts()->initialize_shared_locs(
  2652         (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
  2653       MacroAssembler _masm(&buffer);
  2655       // Generate the compiled-to-native wrapper code
  2656       nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
  2659   return nm;
  2662 // the dtrace method needs to convert java lang string to utf8 string.
  2663 void SharedRuntime::get_utf(oopDesc* src, address dst) {
  2664   typeArrayOop jlsValue  = java_lang_String::value(src);
  2665   int          jlsOffset = java_lang_String::offset(src);
  2666   int          jlsLen    = java_lang_String::length(src);
  2667   jchar*       jlsPos    = (jlsLen == 0) ? NULL :
  2668                                            jlsValue->char_at_addr(jlsOffset);
  2669   assert(typeArrayKlass::cast(jlsValue->klass())->element_type() == T_CHAR, "compressed string");
  2670   (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
  2672 #endif // ndef HAVE_DTRACE_H
  2674 // -------------------------------------------------------------------------
  2675 // Java-Java calling convention
  2676 // (what you use when Java calls Java)
  2678 //------------------------------name_for_receiver----------------------------------
  2679 // For a given signature, return the VMReg for parameter 0.
  2680 VMReg SharedRuntime::name_for_receiver() {
  2681   VMRegPair regs;
  2682   BasicType sig_bt = T_OBJECT;
  2683   (void) java_calling_convention(&sig_bt, &regs, 1, true);
  2684   // Return argument 0 register.  In the LP64 build pointers
  2685   // take 2 registers, but the VM wants only the 'main' name.
  2686   return regs.first();
  2689 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, int* arg_size) {
  2690   // This method is returning a data structure allocating as a
  2691   // ResourceObject, so do not put any ResourceMarks in here.
  2692   char *s = sig->as_C_string();
  2693   int len = (int)strlen(s);
  2694   *s++; len--;                  // Skip opening paren
  2695   char *t = s+len;
  2696   while( *(--t) != ')' ) ;      // Find close paren
  2698   BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
  2699   VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
  2700   int cnt = 0;
  2701   if (has_receiver) {
  2702     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
  2705   while( s < t ) {
  2706     switch( *s++ ) {            // Switch on signature character
  2707     case 'B': sig_bt[cnt++] = T_BYTE;    break;
  2708     case 'C': sig_bt[cnt++] = T_CHAR;    break;
  2709     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
  2710     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
  2711     case 'I': sig_bt[cnt++] = T_INT;     break;
  2712     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
  2713     case 'S': sig_bt[cnt++] = T_SHORT;   break;
  2714     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
  2715     case 'V': sig_bt[cnt++] = T_VOID;    break;
  2716     case 'L':                   // Oop
  2717       while( *s++ != ';'  ) ;   // Skip signature
  2718       sig_bt[cnt++] = T_OBJECT;
  2719       break;
  2720     case '[': {                 // Array
  2721       do {                      // Skip optional size
  2722         while( *s >= '0' && *s <= '9' ) s++;
  2723       } while( *s++ == '[' );   // Nested arrays?
  2724       // Skip element type
  2725       if( s[-1] == 'L' )
  2726         while( *s++ != ';'  ) ; // Skip signature
  2727       sig_bt[cnt++] = T_ARRAY;
  2728       break;
  2730     default : ShouldNotReachHere();
  2733   assert( cnt < 256, "grow table size" );
  2735   int comp_args_on_stack;
  2736   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
  2738   // the calling convention doesn't count out_preserve_stack_slots so
  2739   // we must add that in to get "true" stack offsets.
  2741   if (comp_args_on_stack) {
  2742     for (int i = 0; i < cnt; i++) {
  2743       VMReg reg1 = regs[i].first();
  2744       if( reg1->is_stack()) {
  2745         // Yuck
  2746         reg1 = reg1->bias(out_preserve_stack_slots());
  2748       VMReg reg2 = regs[i].second();
  2749       if( reg2->is_stack()) {
  2750         // Yuck
  2751         reg2 = reg2->bias(out_preserve_stack_slots());
  2753       regs[i].set_pair(reg2, reg1);
  2757   // results
  2758   *arg_size = cnt;
  2759   return regs;
  2762 // OSR Migration Code
  2763 //
  2764 // This code is used convert interpreter frames into compiled frames.  It is
  2765 // called from very start of a compiled OSR nmethod.  A temp array is
  2766 // allocated to hold the interesting bits of the interpreter frame.  All
  2767 // active locks are inflated to allow them to move.  The displaced headers and
  2768 // active interpeter locals are copied into the temp buffer.  Then we return
  2769 // back to the compiled code.  The compiled code then pops the current
  2770 // interpreter frame off the stack and pushes a new compiled frame.  Then it
  2771 // copies the interpreter locals and displaced headers where it wants.
  2772 // Finally it calls back to free the temp buffer.
  2773 //
  2774 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
  2776 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
  2778 #ifdef IA64
  2779   ShouldNotReachHere(); // NYI
  2780 #endif /* IA64 */
  2782   //
  2783   // This code is dependent on the memory layout of the interpreter local
  2784   // array and the monitors. On all of our platforms the layout is identical
  2785   // so this code is shared. If some platform lays the their arrays out
  2786   // differently then this code could move to platform specific code or
  2787   // the code here could be modified to copy items one at a time using
  2788   // frame accessor methods and be platform independent.
  2790   frame fr = thread->last_frame();
  2791   assert( fr.is_interpreted_frame(), "" );
  2792   assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
  2794   // Figure out how many monitors are active.
  2795   int active_monitor_count = 0;
  2796   for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
  2797        kptr < fr.interpreter_frame_monitor_begin();
  2798        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
  2799     if( kptr->obj() != NULL ) active_monitor_count++;
  2802   // QQQ we could place number of active monitors in the array so that compiled code
  2803   // could double check it.
  2805   Method* moop = fr.interpreter_frame_method();
  2806   int max_locals = moop->max_locals();
  2807   // Allocate temp buffer, 1 word per local & 2 per active monitor
  2808   int buf_size_words = max_locals + active_monitor_count*2;
  2809   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
  2811   // Copy the locals.  Order is preserved so that loading of longs works.
  2812   // Since there's no GC I can copy the oops blindly.
  2813   assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
  2814   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
  2815                        (HeapWord*)&buf[0],
  2816                        max_locals);
  2818   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
  2819   int i = max_locals;
  2820   for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
  2821        kptr2 < fr.interpreter_frame_monitor_begin();
  2822        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
  2823     if( kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
  2824       BasicLock *lock = kptr2->lock();
  2825       // Inflate so the displaced header becomes position-independent
  2826       if (lock->displaced_header()->is_unlocked())
  2827         ObjectSynchronizer::inflate_helper(kptr2->obj());
  2828       // Now the displaced header is free to move
  2829       buf[i++] = (intptr_t)lock->displaced_header();
  2830       buf[i++] = (intptr_t)kptr2->obj();
  2833   assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
  2835   return buf;
  2836 JRT_END
  2838 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
  2839   FREE_C_HEAP_ARRAY(intptr_t,buf, mtCode);
  2840 JRT_END
  2842 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
  2843   AdapterHandlerTableIterator iter(_adapters);
  2844   while (iter.has_next()) {
  2845     AdapterHandlerEntry* a = iter.next();
  2846     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
  2848   return false;
  2851 void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) {
  2852   AdapterHandlerTableIterator iter(_adapters);
  2853   while (iter.has_next()) {
  2854     AdapterHandlerEntry* a = iter.next();
  2855     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
  2856       st->print("Adapter for signature: ");
  2857       a->print_adapter_on(tty);
  2858       return;
  2861   assert(false, "Should have found handler");
  2864 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
  2865   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
  2866                (intptr_t) this, fingerprint()->as_string(),
  2867                get_i2c_entry(), get_c2i_entry(), get_c2i_unverified_entry());
  2871 #ifndef PRODUCT
  2873 void AdapterHandlerLibrary::print_statistics() {
  2874   _adapters->print_statistics();
  2877 #endif /* PRODUCT */

mercurial