src/share/vm/gc_implementation/parNew/parNewGeneration.cpp

Sat, 23 Oct 2010 23:03:49 -0700

author
ysr
date
Sat, 23 Oct 2010 23:03:49 -0700
changeset 2243
a7214d79fcf1
parent 2191
894b1d7c7e01
child 2314
f95d63e2154a
permissions
-rw-r--r--

6896603: CMS/GCH: collection_attempt_is_safe() ergo should use more recent data
Summary: Deprecated HandlePromotionFailure, removing the ability to turn off that feature, did away with one epoch look-ahead when deciding if a scavenge is likely to fail, relying on current data.
Reviewed-by: jmasa, johnc, poonam

     1 /*
     2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_parNewGeneration.cpp.incl"
    28 #ifdef _MSC_VER
    29 #pragma warning( push )
    30 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
    31 #endif
    32 ParScanThreadState::ParScanThreadState(Space* to_space_,
    33                                        ParNewGeneration* gen_,
    34                                        Generation* old_gen_,
    35                                        int thread_num_,
    36                                        ObjToScanQueueSet* work_queue_set_,
    37                                        Stack<oop>* overflow_stacks_,
    38                                        size_t desired_plab_sz_,
    39                                        ParallelTaskTerminator& term_) :
    40   _to_space(to_space_), _old_gen(old_gen_), _young_gen(gen_), _thread_num(thread_num_),
    41   _work_queue(work_queue_set_->queue(thread_num_)), _to_space_full(false),
    42   _overflow_stack(overflow_stacks_ ? overflow_stacks_ + thread_num_ : NULL),
    43   _ageTable(false), // false ==> not the global age table, no perf data.
    44   _to_space_alloc_buffer(desired_plab_sz_),
    45   _to_space_closure(gen_, this), _old_gen_closure(gen_, this),
    46   _to_space_root_closure(gen_, this), _old_gen_root_closure(gen_, this),
    47   _older_gen_closure(gen_, this),
    48   _evacuate_followers(this, &_to_space_closure, &_old_gen_closure,
    49                       &_to_space_root_closure, gen_, &_old_gen_root_closure,
    50                       work_queue_set_, &term_),
    51   _is_alive_closure(gen_), _scan_weak_ref_closure(gen_, this),
    52   _keep_alive_closure(&_scan_weak_ref_closure),
    53   _promotion_failure_size(0),
    54   _strong_roots_time(0.0), _term_time(0.0)
    55 {
    56   #if TASKQUEUE_STATS
    57   _term_attempts = 0;
    58   _overflow_refills = 0;
    59   _overflow_refill_objs = 0;
    60   #endif // TASKQUEUE_STATS
    62   _survivor_chunk_array =
    63     (ChunkArray*) old_gen()->get_data_recorder(thread_num());
    64   _hash_seed = 17;  // Might want to take time-based random value.
    65   _start = os::elapsedTime();
    66   _old_gen_closure.set_generation(old_gen_);
    67   _old_gen_root_closure.set_generation(old_gen_);
    68 }
    69 #ifdef _MSC_VER
    70 #pragma warning( pop )
    71 #endif
    73 void ParScanThreadState::record_survivor_plab(HeapWord* plab_start,
    74                                               size_t plab_word_size) {
    75   ChunkArray* sca = survivor_chunk_array();
    76   if (sca != NULL) {
    77     // A non-null SCA implies that we want the PLAB data recorded.
    78     sca->record_sample(plab_start, plab_word_size);
    79   }
    80 }
    82 bool ParScanThreadState::should_be_partially_scanned(oop new_obj, oop old_obj) const {
    83   return new_obj->is_objArray() &&
    84          arrayOop(new_obj)->length() > ParGCArrayScanChunk &&
    85          new_obj != old_obj;
    86 }
    88 void ParScanThreadState::scan_partial_array_and_push_remainder(oop old) {
    89   assert(old->is_objArray(), "must be obj array");
    90   assert(old->is_forwarded(), "must be forwarded");
    91   assert(Universe::heap()->is_in_reserved(old), "must be in heap.");
    92   assert(!old_gen()->is_in(old), "must be in young generation.");
    94   objArrayOop obj = objArrayOop(old->forwardee());
    95   // Process ParGCArrayScanChunk elements now
    96   // and push the remainder back onto queue
    97   int start     = arrayOop(old)->length();
    98   int end       = obj->length();
    99   int remainder = end - start;
   100   assert(start <= end, "just checking");
   101   if (remainder > 2 * ParGCArrayScanChunk) {
   102     // Test above combines last partial chunk with a full chunk
   103     end = start + ParGCArrayScanChunk;
   104     arrayOop(old)->set_length(end);
   105     // Push remainder.
   106     bool ok = work_queue()->push(old);
   107     assert(ok, "just popped, push must be okay");
   108   } else {
   109     // Restore length so that it can be used if there
   110     // is a promotion failure and forwarding pointers
   111     // must be removed.
   112     arrayOop(old)->set_length(end);
   113   }
   115   // process our set of indices (include header in first chunk)
   116   // should make sure end is even (aligned to HeapWord in case of compressed oops)
   117   if ((HeapWord *)obj < young_old_boundary()) {
   118     // object is in to_space
   119     obj->oop_iterate_range(&_to_space_closure, start, end);
   120   } else {
   121     // object is in old generation
   122     obj->oop_iterate_range(&_old_gen_closure, start, end);
   123   }
   124 }
   127 void ParScanThreadState::trim_queues(int max_size) {
   128   ObjToScanQueue* queue = work_queue();
   129   do {
   130     while (queue->size() > (juint)max_size) {
   131       oop obj_to_scan;
   132       if (queue->pop_local(obj_to_scan)) {
   133         if ((HeapWord *)obj_to_scan < young_old_boundary()) {
   134           if (obj_to_scan->is_objArray() &&
   135               obj_to_scan->is_forwarded() &&
   136               obj_to_scan->forwardee() != obj_to_scan) {
   137             scan_partial_array_and_push_remainder(obj_to_scan);
   138           } else {
   139             // object is in to_space
   140             obj_to_scan->oop_iterate(&_to_space_closure);
   141           }
   142         } else {
   143           // object is in old generation
   144           obj_to_scan->oop_iterate(&_old_gen_closure);
   145         }
   146       }
   147     }
   148     // For the  case of compressed oops, we have a private, non-shared
   149     // overflow stack, so we eagerly drain it so as to more evenly
   150     // distribute load early. Note: this may be good to do in
   151     // general rather than delay for the final stealing phase.
   152     // If applicable, we'll transfer a set of objects over to our
   153     // work queue, allowing them to be stolen and draining our
   154     // private overflow stack.
   155   } while (ParGCTrimOverflow && young_gen()->take_from_overflow_list(this));
   156 }
   158 bool ParScanThreadState::take_from_overflow_stack() {
   159   assert(ParGCUseLocalOverflow, "Else should not call");
   160   assert(young_gen()->overflow_list() == NULL, "Error");
   161   ObjToScanQueue* queue = work_queue();
   162   Stack<oop>* const of_stack = overflow_stack();
   163   const size_t num_overflow_elems = of_stack->size();
   164   const size_t space_available = queue->max_elems() - queue->size();
   165   const size_t num_take_elems = MIN3(space_available / 4,
   166                                      ParGCDesiredObjsFromOverflowList,
   167                                      num_overflow_elems);
   168   // Transfer the most recent num_take_elems from the overflow
   169   // stack to our work queue.
   170   for (size_t i = 0; i != num_take_elems; i++) {
   171     oop cur = of_stack->pop();
   172     oop obj_to_push = cur->forwardee();
   173     assert(Universe::heap()->is_in_reserved(cur), "Should be in heap");
   174     assert(!old_gen()->is_in_reserved(cur), "Should be in young gen");
   175     assert(Universe::heap()->is_in_reserved(obj_to_push), "Should be in heap");
   176     if (should_be_partially_scanned(obj_to_push, cur)) {
   177       assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
   178       obj_to_push = cur;
   179     }
   180     bool ok = queue->push(obj_to_push);
   181     assert(ok, "Should have succeeded");
   182   }
   183   assert(young_gen()->overflow_list() == NULL, "Error");
   184   return num_take_elems > 0;  // was something transferred?
   185 }
   187 void ParScanThreadState::push_on_overflow_stack(oop p) {
   188   assert(ParGCUseLocalOverflow, "Else should not call");
   189   overflow_stack()->push(p);
   190   assert(young_gen()->overflow_list() == NULL, "Error");
   191 }
   193 HeapWord* ParScanThreadState::alloc_in_to_space_slow(size_t word_sz) {
   195   // Otherwise, if the object is small enough, try to reallocate the
   196   // buffer.
   197   HeapWord* obj = NULL;
   198   if (!_to_space_full) {
   199     ParGCAllocBuffer* const plab = to_space_alloc_buffer();
   200     Space*            const sp   = to_space();
   201     if (word_sz * 100 <
   202         ParallelGCBufferWastePct * plab->word_sz()) {
   203       // Is small enough; abandon this buffer and start a new one.
   204       plab->retire(false, false);
   205       size_t buf_size = plab->word_sz();
   206       HeapWord* buf_space = sp->par_allocate(buf_size);
   207       if (buf_space == NULL) {
   208         const size_t min_bytes =
   209           ParGCAllocBuffer::min_size() << LogHeapWordSize;
   210         size_t free_bytes = sp->free();
   211         while(buf_space == NULL && free_bytes >= min_bytes) {
   212           buf_size = free_bytes >> LogHeapWordSize;
   213           assert(buf_size == (size_t)align_object_size(buf_size),
   214                  "Invariant");
   215           buf_space  = sp->par_allocate(buf_size);
   216           free_bytes = sp->free();
   217         }
   218       }
   219       if (buf_space != NULL) {
   220         plab->set_word_size(buf_size);
   221         plab->set_buf(buf_space);
   222         record_survivor_plab(buf_space, buf_size);
   223         obj = plab->allocate(word_sz);
   224         // Note that we cannot compare buf_size < word_sz below
   225         // because of AlignmentReserve (see ParGCAllocBuffer::allocate()).
   226         assert(obj != NULL || plab->words_remaining() < word_sz,
   227                "Else should have been able to allocate");
   228         // It's conceivable that we may be able to use the
   229         // buffer we just grabbed for subsequent small requests
   230         // even if not for this one.
   231       } else {
   232         // We're used up.
   233         _to_space_full = true;
   234       }
   236     } else {
   237       // Too large; allocate the object individually.
   238       obj = sp->par_allocate(word_sz);
   239     }
   240   }
   241   return obj;
   242 }
   245 void ParScanThreadState::undo_alloc_in_to_space(HeapWord* obj,
   246                                                 size_t word_sz) {
   247   // Is the alloc in the current alloc buffer?
   248   if (to_space_alloc_buffer()->contains(obj)) {
   249     assert(to_space_alloc_buffer()->contains(obj + word_sz - 1),
   250            "Should contain whole object.");
   251     to_space_alloc_buffer()->undo_allocation(obj, word_sz);
   252   } else {
   253     CollectedHeap::fill_with_object(obj, word_sz);
   254   }
   255 }
   257 void ParScanThreadState::print_and_clear_promotion_failure_size() {
   258   if (_promotion_failure_size != 0) {
   259     if (PrintPromotionFailure) {
   260       gclog_or_tty->print(" (%d: promotion failure size = " SIZE_FORMAT ") ",
   261         _thread_num, _promotion_failure_size);
   262     }
   263     _promotion_failure_size = 0;
   264   }
   265 }
   267 class ParScanThreadStateSet: private ResourceArray {
   268 public:
   269   // Initializes states for the specified number of threads;
   270   ParScanThreadStateSet(int                     num_threads,
   271                         Space&                  to_space,
   272                         ParNewGeneration&       gen,
   273                         Generation&             old_gen,
   274                         ObjToScanQueueSet&      queue_set,
   275                         Stack<oop>*             overflow_stacks_,
   276                         size_t                  desired_plab_sz,
   277                         ParallelTaskTerminator& term);
   279   ~ParScanThreadStateSet() { TASKQUEUE_STATS_ONLY(reset_stats()); }
   281   inline ParScanThreadState& thread_state(int i);
   283   void reset(bool promotion_failed);
   284   void flush();
   286   #if TASKQUEUE_STATS
   287   static void
   288     print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
   289   void print_termination_stats(outputStream* const st = gclog_or_tty);
   290   static void
   291     print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
   292   void print_taskqueue_stats(outputStream* const st = gclog_or_tty);
   293   void reset_stats();
   294   #endif // TASKQUEUE_STATS
   296 private:
   297   ParallelTaskTerminator& _term;
   298   ParNewGeneration&       _gen;
   299   Generation&             _next_gen;
   300 };
   303 ParScanThreadStateSet::ParScanThreadStateSet(
   304   int num_threads, Space& to_space, ParNewGeneration& gen,
   305   Generation& old_gen, ObjToScanQueueSet& queue_set,
   306   Stack<oop>* overflow_stacks,
   307   size_t desired_plab_sz, ParallelTaskTerminator& term)
   308   : ResourceArray(sizeof(ParScanThreadState), num_threads),
   309     _gen(gen), _next_gen(old_gen), _term(term)
   310 {
   311   assert(num_threads > 0, "sanity check!");
   312   assert(ParGCUseLocalOverflow == (overflow_stacks != NULL),
   313          "overflow_stack allocation mismatch");
   314   // Initialize states.
   315   for (int i = 0; i < num_threads; ++i) {
   316     new ((ParScanThreadState*)_data + i)
   317         ParScanThreadState(&to_space, &gen, &old_gen, i, &queue_set,
   318                            overflow_stacks, desired_plab_sz, term);
   319   }
   320 }
   322 inline ParScanThreadState& ParScanThreadStateSet::thread_state(int i)
   323 {
   324   assert(i >= 0 && i < length(), "sanity check!");
   325   return ((ParScanThreadState*)_data)[i];
   326 }
   329 void ParScanThreadStateSet::reset(bool promotion_failed)
   330 {
   331   _term.reset_for_reuse();
   332   if (promotion_failed) {
   333     for (int i = 0; i < length(); ++i) {
   334       thread_state(i).print_and_clear_promotion_failure_size();
   335     }
   336   }
   337 }
   339 #if TASKQUEUE_STATS
   340 void
   341 ParScanThreadState::reset_stats()
   342 {
   343   taskqueue_stats().reset();
   344   _term_attempts = 0;
   345   _overflow_refills = 0;
   346   _overflow_refill_objs = 0;
   347 }
   349 void ParScanThreadStateSet::reset_stats()
   350 {
   351   for (int i = 0; i < length(); ++i) {
   352     thread_state(i).reset_stats();
   353   }
   354 }
   356 void
   357 ParScanThreadStateSet::print_termination_stats_hdr(outputStream* const st)
   358 {
   359   st->print_raw_cr("GC Termination Stats");
   360   st->print_raw_cr("     elapsed  --strong roots-- "
   361                    "-------termination-------");
   362   st->print_raw_cr("thr     ms        ms       %   "
   363                    "    ms       %   attempts");
   364   st->print_raw_cr("--- --------- --------- ------ "
   365                    "--------- ------ --------");
   366 }
   368 void ParScanThreadStateSet::print_termination_stats(outputStream* const st)
   369 {
   370   print_termination_stats_hdr(st);
   372   for (int i = 0; i < length(); ++i) {
   373     const ParScanThreadState & pss = thread_state(i);
   374     const double elapsed_ms = pss.elapsed_time() * 1000.0;
   375     const double s_roots_ms = pss.strong_roots_time() * 1000.0;
   376     const double term_ms = pss.term_time() * 1000.0;
   377     st->print_cr("%3d %9.2f %9.2f %6.2f "
   378                  "%9.2f %6.2f " SIZE_FORMAT_W(8),
   379                  i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
   380                  term_ms, term_ms * 100 / elapsed_ms, pss.term_attempts());
   381   }
   382 }
   384 // Print stats related to work queue activity.
   385 void ParScanThreadStateSet::print_taskqueue_stats_hdr(outputStream* const st)
   386 {
   387   st->print_raw_cr("GC Task Stats");
   388   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
   389   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
   390 }
   392 void ParScanThreadStateSet::print_taskqueue_stats(outputStream* const st)
   393 {
   394   print_taskqueue_stats_hdr(st);
   396   TaskQueueStats totals;
   397   for (int i = 0; i < length(); ++i) {
   398     const ParScanThreadState & pss = thread_state(i);
   399     const TaskQueueStats & stats = pss.taskqueue_stats();
   400     st->print("%3d ", i); stats.print(st); st->cr();
   401     totals += stats;
   403     if (pss.overflow_refills() > 0) {
   404       st->print_cr("    " SIZE_FORMAT_W(10) " overflow refills    "
   405                    SIZE_FORMAT_W(10) " overflow objects",
   406                    pss.overflow_refills(), pss.overflow_refill_objs());
   407     }
   408   }
   409   st->print("tot "); totals.print(st); st->cr();
   411   DEBUG_ONLY(totals.verify());
   412 }
   413 #endif // TASKQUEUE_STATS
   415 void ParScanThreadStateSet::flush()
   416 {
   417   // Work in this loop should be kept as lightweight as
   418   // possible since this might otherwise become a bottleneck
   419   // to scaling. Should we add heavy-weight work into this
   420   // loop, consider parallelizing the loop into the worker threads.
   421   for (int i = 0; i < length(); ++i) {
   422     ParScanThreadState& par_scan_state = thread_state(i);
   424     // Flush stats related to To-space PLAB activity and
   425     // retire the last buffer.
   426     par_scan_state.to_space_alloc_buffer()->
   427       flush_stats_and_retire(_gen.plab_stats(),
   428                              false /* !retain */);
   430     // Every thread has its own age table.  We need to merge
   431     // them all into one.
   432     ageTable *local_table = par_scan_state.age_table();
   433     _gen.age_table()->merge(local_table);
   435     // Inform old gen that we're done.
   436     _next_gen.par_promote_alloc_done(i);
   437     _next_gen.par_oop_since_save_marks_iterate_done(i);
   438   }
   440   if (UseConcMarkSweepGC && ParallelGCThreads > 0) {
   441     // We need to call this even when ResizeOldPLAB is disabled
   442     // so as to avoid breaking some asserts. While we may be able
   443     // to avoid this by reorganizing the code a bit, I am loathe
   444     // to do that unless we find cases where ergo leads to bad
   445     // performance.
   446     CFLS_LAB::compute_desired_plab_size();
   447   }
   448 }
   450 ParScanClosure::ParScanClosure(ParNewGeneration* g,
   451                                ParScanThreadState* par_scan_state) :
   452   OopsInGenClosure(g), _par_scan_state(par_scan_state), _g(g)
   453 {
   454   assert(_g->level() == 0, "Optimized for youngest generation");
   455   _boundary = _g->reserved().end();
   456 }
   458 void ParScanWithBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, true, false); }
   459 void ParScanWithBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, true, false); }
   461 void ParScanWithoutBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, false, false); }
   462 void ParScanWithoutBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, false, false); }
   464 void ParRootScanWithBarrierTwoGensClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, true, true); }
   465 void ParRootScanWithBarrierTwoGensClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, true, true); }
   467 void ParRootScanWithoutBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, false, true); }
   468 void ParRootScanWithoutBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, false, true); }
   470 ParScanWeakRefClosure::ParScanWeakRefClosure(ParNewGeneration* g,
   471                                              ParScanThreadState* par_scan_state)
   472   : ScanWeakRefClosure(g), _par_scan_state(par_scan_state)
   473 {}
   475 void ParScanWeakRefClosure::do_oop(oop* p)       { ParScanWeakRefClosure::do_oop_work(p); }
   476 void ParScanWeakRefClosure::do_oop(narrowOop* p) { ParScanWeakRefClosure::do_oop_work(p); }
   478 #ifdef WIN32
   479 #pragma warning(disable: 4786) /* identifier was truncated to '255' characters in the browser information */
   480 #endif
   482 ParEvacuateFollowersClosure::ParEvacuateFollowersClosure(
   483     ParScanThreadState* par_scan_state_,
   484     ParScanWithoutBarrierClosure* to_space_closure_,
   485     ParScanWithBarrierClosure* old_gen_closure_,
   486     ParRootScanWithoutBarrierClosure* to_space_root_closure_,
   487     ParNewGeneration* par_gen_,
   488     ParRootScanWithBarrierTwoGensClosure* old_gen_root_closure_,
   489     ObjToScanQueueSet* task_queues_,
   490     ParallelTaskTerminator* terminator_) :
   492     _par_scan_state(par_scan_state_),
   493     _to_space_closure(to_space_closure_),
   494     _old_gen_closure(old_gen_closure_),
   495     _to_space_root_closure(to_space_root_closure_),
   496     _old_gen_root_closure(old_gen_root_closure_),
   497     _par_gen(par_gen_),
   498     _task_queues(task_queues_),
   499     _terminator(terminator_)
   500 {}
   502 void ParEvacuateFollowersClosure::do_void() {
   503   ObjToScanQueue* work_q = par_scan_state()->work_queue();
   505   while (true) {
   507     // Scan to-space and old-gen objs until we run out of both.
   508     oop obj_to_scan;
   509     par_scan_state()->trim_queues(0);
   511     // We have no local work, attempt to steal from other threads.
   513     // attempt to steal work from promoted.
   514     if (task_queues()->steal(par_scan_state()->thread_num(),
   515                              par_scan_state()->hash_seed(),
   516                              obj_to_scan)) {
   517       bool res = work_q->push(obj_to_scan);
   518       assert(res, "Empty queue should have room for a push.");
   520       //   if successful, goto Start.
   521       continue;
   523       // try global overflow list.
   524     } else if (par_gen()->take_from_overflow_list(par_scan_state())) {
   525       continue;
   526     }
   528     // Otherwise, offer termination.
   529     par_scan_state()->start_term_time();
   530     if (terminator()->offer_termination()) break;
   531     par_scan_state()->end_term_time();
   532   }
   533   assert(par_gen()->_overflow_list == NULL && par_gen()->_num_par_pushes == 0,
   534          "Broken overflow list?");
   535   // Finish the last termination pause.
   536   par_scan_state()->end_term_time();
   537 }
   539 ParNewGenTask::ParNewGenTask(ParNewGeneration* gen, Generation* next_gen,
   540                 HeapWord* young_old_boundary, ParScanThreadStateSet* state_set) :
   541     AbstractGangTask("ParNewGeneration collection"),
   542     _gen(gen), _next_gen(next_gen),
   543     _young_old_boundary(young_old_boundary),
   544     _state_set(state_set)
   545   {}
   547 void ParNewGenTask::work(int i) {
   548   GenCollectedHeap* gch = GenCollectedHeap::heap();
   549   // Since this is being done in a separate thread, need new resource
   550   // and handle marks.
   551   ResourceMark rm;
   552   HandleMark hm;
   553   // We would need multiple old-gen queues otherwise.
   554   assert(gch->n_gens() == 2, "Par young collection currently only works with one older gen.");
   556   Generation* old_gen = gch->next_gen(_gen);
   558   ParScanThreadState& par_scan_state = _state_set->thread_state(i);
   559   par_scan_state.set_young_old_boundary(_young_old_boundary);
   561   par_scan_state.start_strong_roots();
   562   gch->gen_process_strong_roots(_gen->level(),
   563                                 true,  // Process younger gens, if any,
   564                                        // as strong roots.
   565                                 false, // no scope; this is parallel code
   566                                 false, // not collecting perm generation.
   567                                 SharedHeap::SO_AllClasses,
   568                                 &par_scan_state.to_space_root_closure(),
   569                                 true,   // walk *all* scavengable nmethods
   570                                 &par_scan_state.older_gen_closure());
   571   par_scan_state.end_strong_roots();
   573   // "evacuate followers".
   574   par_scan_state.evacuate_followers_closure().do_void();
   575 }
   577 #ifdef _MSC_VER
   578 #pragma warning( push )
   579 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
   580 #endif
   581 ParNewGeneration::
   582 ParNewGeneration(ReservedSpace rs, size_t initial_byte_size, int level)
   583   : DefNewGeneration(rs, initial_byte_size, level, "PCopy"),
   584   _overflow_list(NULL),
   585   _is_alive_closure(this),
   586   _plab_stats(YoungPLABSize, PLABWeight)
   587 {
   588   NOT_PRODUCT(_overflow_counter = ParGCWorkQueueOverflowInterval;)
   589   NOT_PRODUCT(_num_par_pushes = 0;)
   590   _task_queues = new ObjToScanQueueSet(ParallelGCThreads);
   591   guarantee(_task_queues != NULL, "task_queues allocation failure.");
   593   for (uint i1 = 0; i1 < ParallelGCThreads; i1++) {
   594     ObjToScanQueue *q = new ObjToScanQueue();
   595     guarantee(q != NULL, "work_queue Allocation failure.");
   596     _task_queues->register_queue(i1, q);
   597   }
   599   for (uint i2 = 0; i2 < ParallelGCThreads; i2++)
   600     _task_queues->queue(i2)->initialize();
   602   _overflow_stacks = NULL;
   603   if (ParGCUseLocalOverflow) {
   604     _overflow_stacks = NEW_C_HEAP_ARRAY(Stack<oop>, ParallelGCThreads);
   605     for (size_t i = 0; i < ParallelGCThreads; ++i) {
   606       new (_overflow_stacks + i) Stack<oop>();
   607     }
   608   }
   610   if (UsePerfData) {
   611     EXCEPTION_MARK;
   612     ResourceMark rm;
   614     const char* cname =
   615          PerfDataManager::counter_name(_gen_counters->name_space(), "threads");
   616     PerfDataManager::create_constant(SUN_GC, cname, PerfData::U_None,
   617                                      ParallelGCThreads, CHECK);
   618   }
   619 }
   620 #ifdef _MSC_VER
   621 #pragma warning( pop )
   622 #endif
   624 // ParNewGeneration::
   625 ParKeepAliveClosure::ParKeepAliveClosure(ParScanWeakRefClosure* cl) :
   626   DefNewGeneration::KeepAliveClosure(cl), _par_cl(cl) {}
   628 template <class T>
   629 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop_work(T* p) {
   630 #ifdef ASSERT
   631   {
   632     assert(!oopDesc::is_null(*p), "expected non-null ref");
   633     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
   634     // We never expect to see a null reference being processed
   635     // as a weak reference.
   636     assert(obj->is_oop(), "expected an oop while scanning weak refs");
   637   }
   638 #endif // ASSERT
   640   _par_cl->do_oop_nv(p);
   642   if (Universe::heap()->is_in_reserved(p)) {
   643     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
   644     _rs->write_ref_field_gc_par(p, obj);
   645   }
   646 }
   648 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop(oop* p)       { ParKeepAliveClosure::do_oop_work(p); }
   649 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop(narrowOop* p) { ParKeepAliveClosure::do_oop_work(p); }
   651 // ParNewGeneration::
   652 KeepAliveClosure::KeepAliveClosure(ScanWeakRefClosure* cl) :
   653   DefNewGeneration::KeepAliveClosure(cl) {}
   655 template <class T>
   656 void /*ParNewGeneration::*/KeepAliveClosure::do_oop_work(T* p) {
   657 #ifdef ASSERT
   658   {
   659     assert(!oopDesc::is_null(*p), "expected non-null ref");
   660     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
   661     // We never expect to see a null reference being processed
   662     // as a weak reference.
   663     assert(obj->is_oop(), "expected an oop while scanning weak refs");
   664   }
   665 #endif // ASSERT
   667   _cl->do_oop_nv(p);
   669   if (Universe::heap()->is_in_reserved(p)) {
   670     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
   671     _rs->write_ref_field_gc_par(p, obj);
   672   }
   673 }
   675 void /*ParNewGeneration::*/KeepAliveClosure::do_oop(oop* p)       { KeepAliveClosure::do_oop_work(p); }
   676 void /*ParNewGeneration::*/KeepAliveClosure::do_oop(narrowOop* p) { KeepAliveClosure::do_oop_work(p); }
   678 template <class T> void ScanClosureWithParBarrier::do_oop_work(T* p) {
   679   T heap_oop = oopDesc::load_heap_oop(p);
   680   if (!oopDesc::is_null(heap_oop)) {
   681     oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
   682     if ((HeapWord*)obj < _boundary) {
   683       assert(!_g->to()->is_in_reserved(obj), "Scanning field twice?");
   684       oop new_obj = obj->is_forwarded()
   685                       ? obj->forwardee()
   686                       : _g->DefNewGeneration::copy_to_survivor_space(obj);
   687       oopDesc::encode_store_heap_oop_not_null(p, new_obj);
   688     }
   689     if (_gc_barrier) {
   690       // If p points to a younger generation, mark the card.
   691       if ((HeapWord*)obj < _gen_boundary) {
   692         _rs->write_ref_field_gc_par(p, obj);
   693       }
   694     }
   695   }
   696 }
   698 void ScanClosureWithParBarrier::do_oop(oop* p)       { ScanClosureWithParBarrier::do_oop_work(p); }
   699 void ScanClosureWithParBarrier::do_oop(narrowOop* p) { ScanClosureWithParBarrier::do_oop_work(p); }
   701 class ParNewRefProcTaskProxy: public AbstractGangTask {
   702   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
   703 public:
   704   ParNewRefProcTaskProxy(ProcessTask& task, ParNewGeneration& gen,
   705                          Generation& next_gen,
   706                          HeapWord* young_old_boundary,
   707                          ParScanThreadStateSet& state_set);
   709 private:
   710   virtual void work(int i);
   712 private:
   713   ParNewGeneration&      _gen;
   714   ProcessTask&           _task;
   715   Generation&            _next_gen;
   716   HeapWord*              _young_old_boundary;
   717   ParScanThreadStateSet& _state_set;
   718 };
   720 ParNewRefProcTaskProxy::ParNewRefProcTaskProxy(
   721     ProcessTask& task, ParNewGeneration& gen,
   722     Generation& next_gen,
   723     HeapWord* young_old_boundary,
   724     ParScanThreadStateSet& state_set)
   725   : AbstractGangTask("ParNewGeneration parallel reference processing"),
   726     _gen(gen),
   727     _task(task),
   728     _next_gen(next_gen),
   729     _young_old_boundary(young_old_boundary),
   730     _state_set(state_set)
   731 {
   732 }
   734 void ParNewRefProcTaskProxy::work(int i)
   735 {
   736   ResourceMark rm;
   737   HandleMark hm;
   738   ParScanThreadState& par_scan_state = _state_set.thread_state(i);
   739   par_scan_state.set_young_old_boundary(_young_old_boundary);
   740   _task.work(i, par_scan_state.is_alive_closure(),
   741              par_scan_state.keep_alive_closure(),
   742              par_scan_state.evacuate_followers_closure());
   743 }
   745 class ParNewRefEnqueueTaskProxy: public AbstractGangTask {
   746   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
   747   EnqueueTask& _task;
   749 public:
   750   ParNewRefEnqueueTaskProxy(EnqueueTask& task)
   751     : AbstractGangTask("ParNewGeneration parallel reference enqueue"),
   752       _task(task)
   753   { }
   755   virtual void work(int i)
   756   {
   757     _task.work(i);
   758   }
   759 };
   762 void ParNewRefProcTaskExecutor::execute(ProcessTask& task)
   763 {
   764   GenCollectedHeap* gch = GenCollectedHeap::heap();
   765   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
   766          "not a generational heap");
   767   WorkGang* workers = gch->workers();
   768   assert(workers != NULL, "Need parallel worker threads.");
   769   ParNewRefProcTaskProxy rp_task(task, _generation, *_generation.next_gen(),
   770                                  _generation.reserved().end(), _state_set);
   771   workers->run_task(&rp_task);
   772   _state_set.reset(_generation.promotion_failed());
   773 }
   775 void ParNewRefProcTaskExecutor::execute(EnqueueTask& task)
   776 {
   777   GenCollectedHeap* gch = GenCollectedHeap::heap();
   778   WorkGang* workers = gch->workers();
   779   assert(workers != NULL, "Need parallel worker threads.");
   780   ParNewRefEnqueueTaskProxy enq_task(task);
   781   workers->run_task(&enq_task);
   782 }
   784 void ParNewRefProcTaskExecutor::set_single_threaded_mode()
   785 {
   786   _state_set.flush();
   787   GenCollectedHeap* gch = GenCollectedHeap::heap();
   788   gch->set_par_threads(0);  // 0 ==> non-parallel.
   789   gch->save_marks();
   790 }
   792 ScanClosureWithParBarrier::
   793 ScanClosureWithParBarrier(ParNewGeneration* g, bool gc_barrier) :
   794   ScanClosure(g, gc_barrier) {}
   796 EvacuateFollowersClosureGeneral::
   797 EvacuateFollowersClosureGeneral(GenCollectedHeap* gch, int level,
   798                                 OopsInGenClosure* cur,
   799                                 OopsInGenClosure* older) :
   800   _gch(gch), _level(level),
   801   _scan_cur_or_nonheap(cur), _scan_older(older)
   802 {}
   804 void EvacuateFollowersClosureGeneral::do_void() {
   805   do {
   806     // Beware: this call will lead to closure applications via virtual
   807     // calls.
   808     _gch->oop_since_save_marks_iterate(_level,
   809                                        _scan_cur_or_nonheap,
   810                                        _scan_older);
   811   } while (!_gch->no_allocs_since_save_marks(_level));
   812 }
   815 bool ParNewGeneration::_avoid_promotion_undo = false;
   817 void ParNewGeneration::adjust_desired_tenuring_threshold() {
   818   // Set the desired survivor size to half the real survivor space
   819   _tenuring_threshold =
   820     age_table()->compute_tenuring_threshold(to()->capacity()/HeapWordSize);
   821 }
   823 // A Generation that does parallel young-gen collection.
   825 void ParNewGeneration::collect(bool   full,
   826                                bool   clear_all_soft_refs,
   827                                size_t size,
   828                                bool   is_tlab) {
   829   assert(full || size > 0, "otherwise we don't want to collect");
   830   GenCollectedHeap* gch = GenCollectedHeap::heap();
   831   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
   832     "not a CMS generational heap");
   833   AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
   834   WorkGang* workers = gch->workers();
   835   _next_gen = gch->next_gen(this);
   836   assert(_next_gen != NULL,
   837     "This must be the youngest gen, and not the only gen");
   838   assert(gch->n_gens() == 2,
   839          "Par collection currently only works with single older gen.");
   840   // Do we have to avoid promotion_undo?
   841   if (gch->collector_policy()->is_concurrent_mark_sweep_policy()) {
   842     set_avoid_promotion_undo(true);
   843   }
   845   // If the next generation is too full to accomodate worst-case promotion
   846   // from this generation, pass on collection; let the next generation
   847   // do it.
   848   if (!collection_attempt_is_safe()) {
   849     gch->set_incremental_collection_failed();  // slight lie, in that we did not even attempt one
   850     return;
   851   }
   852   assert(to()->is_empty(), "Else not collection_attempt_is_safe");
   854   init_assuming_no_promotion_failure();
   856   if (UseAdaptiveSizePolicy) {
   857     set_survivor_overflow(false);
   858     size_policy->minor_collection_begin();
   859   }
   861   TraceTime t1("GC", PrintGC && !PrintGCDetails, true, gclog_or_tty);
   862   // Capture heap used before collection (for printing).
   863   size_t gch_prev_used = gch->used();
   865   SpecializationStats::clear();
   867   age_table()->clear();
   868   to()->clear(SpaceDecorator::Mangle);
   870   gch->save_marks();
   871   assert(workers != NULL, "Need parallel worker threads.");
   872   ParallelTaskTerminator _term(workers->total_workers(), task_queues());
   873   ParScanThreadStateSet thread_state_set(workers->total_workers(),
   874                                          *to(), *this, *_next_gen, *task_queues(),
   875                                          _overflow_stacks, desired_plab_sz(), _term);
   877   ParNewGenTask tsk(this, _next_gen, reserved().end(), &thread_state_set);
   878   int n_workers = workers->total_workers();
   879   gch->set_par_threads(n_workers);
   880   gch->rem_set()->prepare_for_younger_refs_iterate(true);
   881   // It turns out that even when we're using 1 thread, doing the work in a
   882   // separate thread causes wide variance in run times.  We can't help this
   883   // in the multi-threaded case, but we special-case n=1 here to get
   884   // repeatable measurements of the 1-thread overhead of the parallel code.
   885   if (n_workers > 1) {
   886     GenCollectedHeap::StrongRootsScope srs(gch);
   887     workers->run_task(&tsk);
   888   } else {
   889     GenCollectedHeap::StrongRootsScope srs(gch);
   890     tsk.work(0);
   891   }
   892   thread_state_set.reset(promotion_failed());
   894   // Process (weak) reference objects found during scavenge.
   895   ReferenceProcessor* rp = ref_processor();
   896   IsAliveClosure is_alive(this);
   897   ScanWeakRefClosure scan_weak_ref(this);
   898   KeepAliveClosure keep_alive(&scan_weak_ref);
   899   ScanClosure               scan_without_gc_barrier(this, false);
   900   ScanClosureWithParBarrier scan_with_gc_barrier(this, true);
   901   set_promo_failure_scan_stack_closure(&scan_without_gc_barrier);
   902   EvacuateFollowersClosureGeneral evacuate_followers(gch, _level,
   903     &scan_without_gc_barrier, &scan_with_gc_barrier);
   904   rp->setup_policy(clear_all_soft_refs);
   905   if (rp->processing_is_mt()) {
   906     ParNewRefProcTaskExecutor task_executor(*this, thread_state_set);
   907     rp->process_discovered_references(&is_alive, &keep_alive,
   908                                       &evacuate_followers, &task_executor);
   909   } else {
   910     thread_state_set.flush();
   911     gch->set_par_threads(0);  // 0 ==> non-parallel.
   912     gch->save_marks();
   913     rp->process_discovered_references(&is_alive, &keep_alive,
   914                                       &evacuate_followers, NULL);
   915   }
   916   if (!promotion_failed()) {
   917     // Swap the survivor spaces.
   918     eden()->clear(SpaceDecorator::Mangle);
   919     from()->clear(SpaceDecorator::Mangle);
   920     if (ZapUnusedHeapArea) {
   921       // This is now done here because of the piece-meal mangling which
   922       // can check for valid mangling at intermediate points in the
   923       // collection(s).  When a minor collection fails to collect
   924       // sufficient space resizing of the young generation can occur
   925       // an redistribute the spaces in the young generation.  Mangle
   926       // here so that unzapped regions don't get distributed to
   927       // other spaces.
   928       to()->mangle_unused_area();
   929     }
   930     swap_spaces();
   932     // A successful scavenge should restart the GC time limit count which is
   933     // for full GC's.
   934     size_policy->reset_gc_overhead_limit_count();
   936     assert(to()->is_empty(), "to space should be empty now");
   937   } else {
   938     assert(_promo_failure_scan_stack.is_empty(), "post condition");
   939     _promo_failure_scan_stack.clear(true); // Clear cached segments.
   941     remove_forwarding_pointers();
   942     if (PrintGCDetails) {
   943       gclog_or_tty->print(" (promotion failed)");
   944     }
   945     // All the spaces are in play for mark-sweep.
   946     swap_spaces();  // Make life simpler for CMS || rescan; see 6483690.
   947     from()->set_next_compaction_space(to());
   948     gch->set_incremental_collection_failed();
   949     // Inform the next generation that a promotion failure occurred.
   950     _next_gen->promotion_failure_occurred();
   952     // Reset the PromotionFailureALot counters.
   953     NOT_PRODUCT(Universe::heap()->reset_promotion_should_fail();)
   954   }
   955   // set new iteration safe limit for the survivor spaces
   956   from()->set_concurrent_iteration_safe_limit(from()->top());
   957   to()->set_concurrent_iteration_safe_limit(to()->top());
   959   adjust_desired_tenuring_threshold();
   960   if (ResizePLAB) {
   961     plab_stats()->adjust_desired_plab_sz();
   962   }
   964   if (PrintGC && !PrintGCDetails) {
   965     gch->print_heap_change(gch_prev_used);
   966   }
   968   if (PrintGCDetails && ParallelGCVerbose) {
   969     TASKQUEUE_STATS_ONLY(thread_state_set.print_termination_stats());
   970     TASKQUEUE_STATS_ONLY(thread_state_set.print_taskqueue_stats());
   971   }
   973   if (UseAdaptiveSizePolicy) {
   974     size_policy->minor_collection_end(gch->gc_cause());
   975     size_policy->avg_survived()->sample(from()->used());
   976   }
   978   update_time_of_last_gc(os::javaTimeMillis());
   980   SpecializationStats::print();
   982   rp->set_enqueuing_is_done(true);
   983   if (rp->processing_is_mt()) {
   984     ParNewRefProcTaskExecutor task_executor(*this, thread_state_set);
   985     rp->enqueue_discovered_references(&task_executor);
   986   } else {
   987     rp->enqueue_discovered_references(NULL);
   988   }
   989   rp->verify_no_references_recorded();
   990 }
   992 static int sum;
   993 void ParNewGeneration::waste_some_time() {
   994   for (int i = 0; i < 100; i++) {
   995     sum += i;
   996   }
   997 }
   999 static const oop ClaimedForwardPtr = oop(0x4);
  1001 // Because of concurrency, there are times where an object for which
  1002 // "is_forwarded()" is true contains an "interim" forwarding pointer
  1003 // value.  Such a value will soon be overwritten with a real value.
  1004 // This method requires "obj" to have a forwarding pointer, and waits, if
  1005 // necessary for a real one to be inserted, and returns it.
  1007 oop ParNewGeneration::real_forwardee(oop obj) {
  1008   oop forward_ptr = obj->forwardee();
  1009   if (forward_ptr != ClaimedForwardPtr) {
  1010     return forward_ptr;
  1011   } else {
  1012     return real_forwardee_slow(obj);
  1016 oop ParNewGeneration::real_forwardee_slow(oop obj) {
  1017   // Spin-read if it is claimed but not yet written by another thread.
  1018   oop forward_ptr = obj->forwardee();
  1019   while (forward_ptr == ClaimedForwardPtr) {
  1020     waste_some_time();
  1021     assert(obj->is_forwarded(), "precondition");
  1022     forward_ptr = obj->forwardee();
  1024   return forward_ptr;
  1027 #ifdef ASSERT
  1028 bool ParNewGeneration::is_legal_forward_ptr(oop p) {
  1029   return
  1030     (_avoid_promotion_undo && p == ClaimedForwardPtr)
  1031     || Universe::heap()->is_in_reserved(p);
  1033 #endif
  1035 void ParNewGeneration::preserve_mark_if_necessary(oop obj, markOop m) {
  1036   if ((m != markOopDesc::prototype()) &&
  1037       (!UseBiasedLocking || (m != markOopDesc::biased_locking_prototype()))) {
  1038     MutexLocker ml(ParGCRareEvent_lock);
  1039     DefNewGeneration::preserve_mark_if_necessary(obj, m);
  1043 // Multiple GC threads may try to promote an object.  If the object
  1044 // is successfully promoted, a forwarding pointer will be installed in
  1045 // the object in the young generation.  This method claims the right
  1046 // to install the forwarding pointer before it copies the object,
  1047 // thus avoiding the need to undo the copy as in
  1048 // copy_to_survivor_space_avoiding_with_undo.
  1050 oop ParNewGeneration::copy_to_survivor_space_avoiding_promotion_undo(
  1051         ParScanThreadState* par_scan_state, oop old, size_t sz, markOop m) {
  1052   // In the sequential version, this assert also says that the object is
  1053   // not forwarded.  That might not be the case here.  It is the case that
  1054   // the caller observed it to be not forwarded at some time in the past.
  1055   assert(is_in_reserved(old), "shouldn't be scavenging this oop");
  1057   // The sequential code read "old->age()" below.  That doesn't work here,
  1058   // since the age is in the mark word, and that might be overwritten with
  1059   // a forwarding pointer by a parallel thread.  So we must save the mark
  1060   // word in a local and then analyze it.
  1061   oopDesc dummyOld;
  1062   dummyOld.set_mark(m);
  1063   assert(!dummyOld.is_forwarded(),
  1064          "should not be called with forwarding pointer mark word.");
  1066   oop new_obj = NULL;
  1067   oop forward_ptr;
  1069   // Try allocating obj in to-space (unless too old)
  1070   if (dummyOld.age() < tenuring_threshold()) {
  1071     new_obj = (oop)par_scan_state->alloc_in_to_space(sz);
  1072     if (new_obj == NULL) {
  1073       set_survivor_overflow(true);
  1077   if (new_obj == NULL) {
  1078     // Either to-space is full or we decided to promote
  1079     // try allocating obj tenured
  1081     // Attempt to install a null forwarding pointer (atomically),
  1082     // to claim the right to install the real forwarding pointer.
  1083     forward_ptr = old->forward_to_atomic(ClaimedForwardPtr);
  1084     if (forward_ptr != NULL) {
  1085       // someone else beat us to it.
  1086         return real_forwardee(old);
  1089     new_obj = _next_gen->par_promote(par_scan_state->thread_num(),
  1090                                        old, m, sz);
  1092     if (new_obj == NULL) {
  1093       // promotion failed, forward to self
  1094       _promotion_failed = true;
  1095       new_obj = old;
  1097       preserve_mark_if_necessary(old, m);
  1098       // Log the size of the maiden promotion failure
  1099       par_scan_state->log_promotion_failure(sz);
  1102     old->forward_to(new_obj);
  1103     forward_ptr = NULL;
  1104   } else {
  1105     // Is in to-space; do copying ourselves.
  1106     Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)new_obj, sz);
  1107     forward_ptr = old->forward_to_atomic(new_obj);
  1108     // Restore the mark word copied above.
  1109     new_obj->set_mark(m);
  1110     // Increment age if obj still in new generation
  1111     new_obj->incr_age();
  1112     par_scan_state->age_table()->add(new_obj, sz);
  1114   assert(new_obj != NULL, "just checking");
  1116   if (forward_ptr == NULL) {
  1117     oop obj_to_push = new_obj;
  1118     if (par_scan_state->should_be_partially_scanned(obj_to_push, old)) {
  1119       // Length field used as index of next element to be scanned.
  1120       // Real length can be obtained from real_forwardee()
  1121       arrayOop(old)->set_length(0);
  1122       obj_to_push = old;
  1123       assert(obj_to_push->is_forwarded() && obj_to_push->forwardee() != obj_to_push,
  1124              "push forwarded object");
  1126     // Push it on one of the queues of to-be-scanned objects.
  1127     bool simulate_overflow = false;
  1128     NOT_PRODUCT(
  1129       if (ParGCWorkQueueOverflowALot && should_simulate_overflow()) {
  1130         // simulate a stack overflow
  1131         simulate_overflow = true;
  1134     if (simulate_overflow || !par_scan_state->work_queue()->push(obj_to_push)) {
  1135       // Add stats for overflow pushes.
  1136       if (Verbose && PrintGCDetails) {
  1137         gclog_or_tty->print("queue overflow!\n");
  1139       push_on_overflow_list(old, par_scan_state);
  1140       TASKQUEUE_STATS_ONLY(par_scan_state->taskqueue_stats().record_overflow(0));
  1143     return new_obj;
  1146   // Oops.  Someone beat us to it.  Undo the allocation.  Where did we
  1147   // allocate it?
  1148   if (is_in_reserved(new_obj)) {
  1149     // Must be in to_space.
  1150     assert(to()->is_in_reserved(new_obj), "Checking");
  1151     if (forward_ptr == ClaimedForwardPtr) {
  1152       // Wait to get the real forwarding pointer value.
  1153       forward_ptr = real_forwardee(old);
  1155     par_scan_state->undo_alloc_in_to_space((HeapWord*)new_obj, sz);
  1158   return forward_ptr;
  1162 // Multiple GC threads may try to promote the same object.  If two
  1163 // or more GC threads copy the object, only one wins the race to install
  1164 // the forwarding pointer.  The other threads have to undo their copy.
  1166 oop ParNewGeneration::copy_to_survivor_space_with_undo(
  1167         ParScanThreadState* par_scan_state, oop old, size_t sz, markOop m) {
  1169   // In the sequential version, this assert also says that the object is
  1170   // not forwarded.  That might not be the case here.  It is the case that
  1171   // the caller observed it to be not forwarded at some time in the past.
  1172   assert(is_in_reserved(old), "shouldn't be scavenging this oop");
  1174   // The sequential code read "old->age()" below.  That doesn't work here,
  1175   // since the age is in the mark word, and that might be overwritten with
  1176   // a forwarding pointer by a parallel thread.  So we must save the mark
  1177   // word here, install it in a local oopDesc, and then analyze it.
  1178   oopDesc dummyOld;
  1179   dummyOld.set_mark(m);
  1180   assert(!dummyOld.is_forwarded(),
  1181          "should not be called with forwarding pointer mark word.");
  1183   bool failed_to_promote = false;
  1184   oop new_obj = NULL;
  1185   oop forward_ptr;
  1187   // Try allocating obj in to-space (unless too old)
  1188   if (dummyOld.age() < tenuring_threshold()) {
  1189     new_obj = (oop)par_scan_state->alloc_in_to_space(sz);
  1190     if (new_obj == NULL) {
  1191       set_survivor_overflow(true);
  1195   if (new_obj == NULL) {
  1196     // Either to-space is full or we decided to promote
  1197     // try allocating obj tenured
  1198     new_obj = _next_gen->par_promote(par_scan_state->thread_num(),
  1199                                        old, m, sz);
  1201     if (new_obj == NULL) {
  1202       // promotion failed, forward to self
  1203       forward_ptr = old->forward_to_atomic(old);
  1204       new_obj = old;
  1206       if (forward_ptr != NULL) {
  1207         return forward_ptr;   // someone else succeeded
  1210       _promotion_failed = true;
  1211       failed_to_promote = true;
  1213       preserve_mark_if_necessary(old, m);
  1214       // Log the size of the maiden promotion failure
  1215       par_scan_state->log_promotion_failure(sz);
  1217   } else {
  1218     // Is in to-space; do copying ourselves.
  1219     Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)new_obj, sz);
  1220     // Restore the mark word copied above.
  1221     new_obj->set_mark(m);
  1222     // Increment age if new_obj still in new generation
  1223     new_obj->incr_age();
  1224     par_scan_state->age_table()->add(new_obj, sz);
  1226   assert(new_obj != NULL, "just checking");
  1228   // Now attempt to install the forwarding pointer (atomically).
  1229   // We have to copy the mark word before overwriting with forwarding
  1230   // ptr, so we can restore it below in the copy.
  1231   if (!failed_to_promote) {
  1232     forward_ptr = old->forward_to_atomic(new_obj);
  1235   if (forward_ptr == NULL) {
  1236     oop obj_to_push = new_obj;
  1237     if (par_scan_state->should_be_partially_scanned(obj_to_push, old)) {
  1238       // Length field used as index of next element to be scanned.
  1239       // Real length can be obtained from real_forwardee()
  1240       arrayOop(old)->set_length(0);
  1241       obj_to_push = old;
  1242       assert(obj_to_push->is_forwarded() && obj_to_push->forwardee() != obj_to_push,
  1243              "push forwarded object");
  1245     // Push it on one of the queues of to-be-scanned objects.
  1246     bool simulate_overflow = false;
  1247     NOT_PRODUCT(
  1248       if (ParGCWorkQueueOverflowALot && should_simulate_overflow()) {
  1249         // simulate a stack overflow
  1250         simulate_overflow = true;
  1253     if (simulate_overflow || !par_scan_state->work_queue()->push(obj_to_push)) {
  1254       // Add stats for overflow pushes.
  1255       push_on_overflow_list(old, par_scan_state);
  1256       TASKQUEUE_STATS_ONLY(par_scan_state->taskqueue_stats().record_overflow(0));
  1259     return new_obj;
  1262   // Oops.  Someone beat us to it.  Undo the allocation.  Where did we
  1263   // allocate it?
  1264   if (is_in_reserved(new_obj)) {
  1265     // Must be in to_space.
  1266     assert(to()->is_in_reserved(new_obj), "Checking");
  1267     par_scan_state->undo_alloc_in_to_space((HeapWord*)new_obj, sz);
  1268   } else {
  1269     assert(!_avoid_promotion_undo, "Should not be here if avoiding.");
  1270     _next_gen->par_promote_alloc_undo(par_scan_state->thread_num(),
  1271                                       (HeapWord*)new_obj, sz);
  1274   return forward_ptr;
  1277 #ifndef PRODUCT
  1278 // It's OK to call this multi-threaded;  the worst thing
  1279 // that can happen is that we'll get a bunch of closely
  1280 // spaced simulated oveflows, but that's OK, in fact
  1281 // probably good as it would exercise the overflow code
  1282 // under contention.
  1283 bool ParNewGeneration::should_simulate_overflow() {
  1284   if (_overflow_counter-- <= 0) { // just being defensive
  1285     _overflow_counter = ParGCWorkQueueOverflowInterval;
  1286     return true;
  1287   } else {
  1288     return false;
  1291 #endif
  1293 // In case we are using compressed oops, we need to be careful.
  1294 // If the object being pushed is an object array, then its length
  1295 // field keeps track of the "grey boundary" at which the next
  1296 // incremental scan will be done (see ParGCArrayScanChunk).
  1297 // When using compressed oops, this length field is kept in the
  1298 // lower 32 bits of the erstwhile klass word and cannot be used
  1299 // for the overflow chaining pointer (OCP below). As such the OCP
  1300 // would itself need to be compressed into the top 32-bits in this
  1301 // case. Unfortunately, see below, in the event that we have a
  1302 // promotion failure, the node to be pushed on the list can be
  1303 // outside of the Java heap, so the heap-based pointer compression
  1304 // would not work (we would have potential aliasing between C-heap
  1305 // and Java-heap pointers). For this reason, when using compressed
  1306 // oops, we simply use a worker-thread-local, non-shared overflow
  1307 // list in the form of a growable array, with a slightly different
  1308 // overflow stack draining strategy. If/when we start using fat
  1309 // stacks here, we can go back to using (fat) pointer chains
  1310 // (although some performance comparisons would be useful since
  1311 // single global lists have their own performance disadvantages
  1312 // as we were made painfully aware not long ago, see 6786503).
  1313 #define BUSY (oop(0x1aff1aff))
  1314 void ParNewGeneration::push_on_overflow_list(oop from_space_obj, ParScanThreadState* par_scan_state) {
  1315   assert(is_in_reserved(from_space_obj), "Should be from this generation");
  1316   if (ParGCUseLocalOverflow) {
  1317     // In the case of compressed oops, we use a private, not-shared
  1318     // overflow stack.
  1319     par_scan_state->push_on_overflow_stack(from_space_obj);
  1320   } else {
  1321     assert(!UseCompressedOops, "Error");
  1322     // if the object has been forwarded to itself, then we cannot
  1323     // use the klass pointer for the linked list.  Instead we have
  1324     // to allocate an oopDesc in the C-Heap and use that for the linked list.
  1325     // XXX This is horribly inefficient when a promotion failure occurs
  1326     // and should be fixed. XXX FIX ME !!!
  1327 #ifndef PRODUCT
  1328     Atomic::inc_ptr(&_num_par_pushes);
  1329     assert(_num_par_pushes > 0, "Tautology");
  1330 #endif
  1331     if (from_space_obj->forwardee() == from_space_obj) {
  1332       oopDesc* listhead = NEW_C_HEAP_ARRAY(oopDesc, 1);
  1333       listhead->forward_to(from_space_obj);
  1334       from_space_obj = listhead;
  1336     oop observed_overflow_list = _overflow_list;
  1337     oop cur_overflow_list;
  1338     do {
  1339       cur_overflow_list = observed_overflow_list;
  1340       if (cur_overflow_list != BUSY) {
  1341         from_space_obj->set_klass_to_list_ptr(cur_overflow_list);
  1342       } else {
  1343         from_space_obj->set_klass_to_list_ptr(NULL);
  1345       observed_overflow_list =
  1346         (oop)Atomic::cmpxchg_ptr(from_space_obj, &_overflow_list, cur_overflow_list);
  1347     } while (cur_overflow_list != observed_overflow_list);
  1351 bool ParNewGeneration::take_from_overflow_list(ParScanThreadState* par_scan_state) {
  1352   bool res;
  1354   if (ParGCUseLocalOverflow) {
  1355     res = par_scan_state->take_from_overflow_stack();
  1356   } else {
  1357     assert(!UseCompressedOops, "Error");
  1358     res = take_from_overflow_list_work(par_scan_state);
  1360   return res;
  1364 // *NOTE*: The overflow list manipulation code here and
  1365 // in CMSCollector:: are very similar in shape,
  1366 // except that in the CMS case we thread the objects
  1367 // directly into the list via their mark word, and do
  1368 // not need to deal with special cases below related
  1369 // to chunking of object arrays and promotion failure
  1370 // handling.
  1371 // CR 6797058 has been filed to attempt consolidation of
  1372 // the common code.
  1373 // Because of the common code, if you make any changes in
  1374 // the code below, please check the CMS version to see if
  1375 // similar changes might be needed.
  1376 // See CMSCollector::par_take_from_overflow_list() for
  1377 // more extensive documentation comments.
  1378 bool ParNewGeneration::take_from_overflow_list_work(ParScanThreadState* par_scan_state) {
  1379   ObjToScanQueue* work_q = par_scan_state->work_queue();
  1380   // How many to take?
  1381   size_t objsFromOverflow = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
  1382                                  (size_t)ParGCDesiredObjsFromOverflowList);
  1384   assert(!UseCompressedOops, "Error");
  1385   assert(par_scan_state->overflow_stack() == NULL, "Error");
  1386   if (_overflow_list == NULL) return false;
  1388   // Otherwise, there was something there; try claiming the list.
  1389   oop prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list);
  1390   // Trim off a prefix of at most objsFromOverflow items
  1391   Thread* tid = Thread::current();
  1392   size_t spin_count = (size_t)ParallelGCThreads;
  1393   size_t sleep_time_millis = MAX2((size_t)1, objsFromOverflow/100);
  1394   for (size_t spin = 0; prefix == BUSY && spin < spin_count; spin++) {
  1395     // someone grabbed it before we did ...
  1396     // ... we spin for a short while...
  1397     os::sleep(tid, sleep_time_millis, false);
  1398     if (_overflow_list == NULL) {
  1399       // nothing left to take
  1400       return false;
  1401     } else if (_overflow_list != BUSY) {
  1402      // try and grab the prefix
  1403      prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list);
  1406   if (prefix == NULL || prefix == BUSY) {
  1407      // Nothing to take or waited long enough
  1408      if (prefix == NULL) {
  1409        // Write back the NULL in case we overwrote it with BUSY above
  1410        // and it is still the same value.
  1411        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
  1413      return false;
  1415   assert(prefix != NULL && prefix != BUSY, "Error");
  1416   size_t i = 1;
  1417   oop cur = prefix;
  1418   while (i < objsFromOverflow && cur->klass_or_null() != NULL) {
  1419     i++; cur = oop(cur->klass());
  1422   // Reattach remaining (suffix) to overflow list
  1423   if (cur->klass_or_null() == NULL) {
  1424     // Write back the NULL in lieu of the BUSY we wrote
  1425     // above and it is still the same value.
  1426     if (_overflow_list == BUSY) {
  1427       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
  1429   } else {
  1430     assert(cur->klass_or_null() != BUSY, "Error");
  1431     oop suffix = oop(cur->klass());       // suffix will be put back on global list
  1432     cur->set_klass_to_list_ptr(NULL);     // break off suffix
  1433     // It's possible that the list is still in the empty(busy) state
  1434     // we left it in a short while ago; in that case we may be
  1435     // able to place back the suffix.
  1436     oop observed_overflow_list = _overflow_list;
  1437     oop cur_overflow_list = observed_overflow_list;
  1438     bool attached = false;
  1439     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
  1440       observed_overflow_list =
  1441         (oop) Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
  1442       if (cur_overflow_list == observed_overflow_list) {
  1443         attached = true;
  1444         break;
  1445       } else cur_overflow_list = observed_overflow_list;
  1447     if (!attached) {
  1448       // Too bad, someone else got in in between; we'll need to do a splice.
  1449       // Find the last item of suffix list
  1450       oop last = suffix;
  1451       while (last->klass_or_null() != NULL) {
  1452         last = oop(last->klass());
  1454       // Atomically prepend suffix to current overflow list
  1455       observed_overflow_list = _overflow_list;
  1456       do {
  1457         cur_overflow_list = observed_overflow_list;
  1458         if (cur_overflow_list != BUSY) {
  1459           // Do the splice ...
  1460           last->set_klass_to_list_ptr(cur_overflow_list);
  1461         } else { // cur_overflow_list == BUSY
  1462           last->set_klass_to_list_ptr(NULL);
  1464         observed_overflow_list =
  1465           (oop)Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
  1466       } while (cur_overflow_list != observed_overflow_list);
  1470   // Push objects on prefix list onto this thread's work queue
  1471   assert(prefix != NULL && prefix != BUSY, "program logic");
  1472   cur = prefix;
  1473   ssize_t n = 0;
  1474   while (cur != NULL) {
  1475     oop obj_to_push = cur->forwardee();
  1476     oop next        = oop(cur->klass_or_null());
  1477     cur->set_klass(obj_to_push->klass());
  1478     // This may be an array object that is self-forwarded. In that case, the list pointer
  1479     // space, cur, is not in the Java heap, but rather in the C-heap and should be freed.
  1480     if (!is_in_reserved(cur)) {
  1481       // This can become a scaling bottleneck when there is work queue overflow coincident
  1482       // with promotion failure.
  1483       oopDesc* f = cur;
  1484       FREE_C_HEAP_ARRAY(oopDesc, f);
  1485     } else if (par_scan_state->should_be_partially_scanned(obj_to_push, cur)) {
  1486       assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
  1487       obj_to_push = cur;
  1489     bool ok = work_q->push(obj_to_push);
  1490     assert(ok, "Should have succeeded");
  1491     cur = next;
  1492     n++;
  1494   TASKQUEUE_STATS_ONLY(par_scan_state->note_overflow_refill(n));
  1495 #ifndef PRODUCT
  1496   assert(_num_par_pushes >= n, "Too many pops?");
  1497   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
  1498 #endif
  1499   return true;
  1501 #undef BUSY
  1503 void ParNewGeneration::ref_processor_init()
  1505   if (_ref_processor == NULL) {
  1506     // Allocate and initialize a reference processor
  1507     _ref_processor = ReferenceProcessor::create_ref_processor(
  1508         _reserved,                  // span
  1509         refs_discovery_is_atomic(), // atomic_discovery
  1510         refs_discovery_is_mt(),     // mt_discovery
  1511         NULL,                       // is_alive_non_header
  1512         ParallelGCThreads,
  1513         ParallelRefProcEnabled);
  1517 const char* ParNewGeneration::name() const {
  1518   return "par new generation";
  1521 bool ParNewGeneration::in_use() {
  1522   return UseParNewGC && ParallelGCThreads > 0;

mercurial