src/share/vm/opto/regmask.cpp

Wed, 24 Apr 2013 20:55:28 -0400

author
dlong
date
Wed, 24 Apr 2013 20:55:28 -0400
changeset 5000
a6e09d6dd8e5
parent 4585
2c673161698a
child 6441
d2907f74462e
permissions
-rw-r--r--

8003853: specify offset of IC load in java_to_interp stub
Summary: refactored code to allow platform-specific differences
Reviewed-by: dlong, twisti
Contributed-by: Goetz Lindenmaier <goetz.lindenmaier@sap.com>

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "opto/compile.hpp"
    27 #include "opto/regmask.hpp"
    28 #ifdef TARGET_ARCH_MODEL_x86_32
    29 # include "adfiles/ad_x86_32.hpp"
    30 #endif
    31 #ifdef TARGET_ARCH_MODEL_x86_64
    32 # include "adfiles/ad_x86_64.hpp"
    33 #endif
    34 #ifdef TARGET_ARCH_MODEL_sparc
    35 # include "adfiles/ad_sparc.hpp"
    36 #endif
    37 #ifdef TARGET_ARCH_MODEL_zero
    38 # include "adfiles/ad_zero.hpp"
    39 #endif
    40 #ifdef TARGET_ARCH_MODEL_arm
    41 # include "adfiles/ad_arm.hpp"
    42 #endif
    43 #ifdef TARGET_ARCH_MODEL_ppc
    44 # include "adfiles/ad_ppc.hpp"
    45 #endif
    47 #define RM_SIZE _RM_SIZE /* a constant private to the class RegMask */
    49 //-------------Non-zero bit search methods used by RegMask---------------------
    50 // Find lowest 1, or return 32 if empty
    51 int find_lowest_bit( uint32 mask ) {
    52   int n = 0;
    53   if( (mask & 0xffff) == 0 ) {
    54     mask >>= 16;
    55     n += 16;
    56   }
    57   if( (mask & 0xff) == 0 ) {
    58     mask >>= 8;
    59     n += 8;
    60   }
    61   if( (mask & 0xf) == 0 ) {
    62     mask >>= 4;
    63     n += 4;
    64   }
    65   if( (mask & 0x3) == 0 ) {
    66     mask >>= 2;
    67     n += 2;
    68   }
    69   if( (mask & 0x1) == 0 ) {
    70     mask >>= 1;
    71      n += 1;
    72   }
    73   if( mask == 0 ) {
    74     n = 32;
    75   }
    76   return n;
    77 }
    79 // Find highest 1, or return 32 if empty
    80 int find_hihghest_bit( uint32 mask ) {
    81   int n = 0;
    82   if( mask > 0xffff ) {
    83     mask >>= 16;
    84     n += 16;
    85   }
    86   if( mask > 0xff ) {
    87     mask >>= 8;
    88     n += 8;
    89   }
    90   if( mask > 0xf ) {
    91     mask >>= 4;
    92     n += 4;
    93   }
    94   if( mask > 0x3 ) {
    95     mask >>= 2;
    96     n += 2;
    97   }
    98   if( mask > 0x1 ) {
    99     mask >>= 1;
   100     n += 1;
   101   }
   102   if( mask == 0 ) {
   103     n = 32;
   104   }
   105   return n;
   106 }
   108 //------------------------------dump-------------------------------------------
   110 #ifndef PRODUCT
   111 void OptoReg::dump(int r, outputStream *st) {
   112   switch (r) {
   113   case Special: st->print("r---"); break;
   114   case Bad:     st->print("rBAD"); break;
   115   default:
   116     if (r < _last_Mach_Reg) st->print(Matcher::regName[r]);
   117     else st->print("rS%d",r);
   118     break;
   119   }
   120 }
   121 #endif
   124 //=============================================================================
   125 const RegMask RegMask::Empty(
   126 # define BODY(I) 0,
   127   FORALL_BODY
   128 # undef BODY
   129   0
   130 );
   132 //=============================================================================
   133 bool RegMask::is_vector(uint ireg) {
   134   return (ireg == Op_VecS || ireg == Op_VecD || ireg == Op_VecX || ireg == Op_VecY);
   135 }
   137 int RegMask::num_registers(uint ireg) {
   138     switch(ireg) {
   139       case Op_VecY:
   140         return 8;
   141       case Op_VecX:
   142         return 4;
   143       case Op_VecD:
   144       case Op_RegD:
   145       case Op_RegL:
   146 #ifdef _LP64
   147       case Op_RegP:
   148 #endif
   149         return 2;
   150     }
   151     // Op_VecS and the rest ideal registers.
   152     return 1;
   153 }
   155 //------------------------------find_first_pair--------------------------------
   156 // Find the lowest-numbered register pair in the mask.  Return the
   157 // HIGHEST register number in the pair, or BAD if no pairs.
   158 OptoReg::Name RegMask::find_first_pair() const {
   159   verify_pairs();
   160   for( int i = 0; i < RM_SIZE; i++ ) {
   161     if( _A[i] ) {               // Found some bits
   162       int bit = _A[i] & -_A[i]; // Extract low bit
   163       // Convert to bit number, return hi bit in pair
   164       return OptoReg::Name((i<<_LogWordBits)+find_lowest_bit(bit)+1);
   165     }
   166   }
   167   return OptoReg::Bad;
   168 }
   170 //------------------------------ClearToPairs-----------------------------------
   171 // Clear out partial bits; leave only bit pairs
   172 void RegMask::clear_to_pairs() {
   173   for( int i = 0; i < RM_SIZE; i++ ) {
   174     int bits = _A[i];
   175     bits &= ((bits & 0x55555555)<<1); // 1 hi-bit set for each pair
   176     bits |= (bits>>1);          // Smear 1 hi-bit into a pair
   177     _A[i] = bits;
   178   }
   179   verify_pairs();
   180 }
   182 //------------------------------SmearToPairs-----------------------------------
   183 // Smear out partial bits; leave only bit pairs
   184 void RegMask::smear_to_pairs() {
   185   for( int i = 0; i < RM_SIZE; i++ ) {
   186     int bits = _A[i];
   187     bits |= ((bits & 0x55555555)<<1); // Smear lo bit hi per pair
   188     bits |= ((bits & 0xAAAAAAAA)>>1); // Smear hi bit lo per pair
   189     _A[i] = bits;
   190   }
   191   verify_pairs();
   192 }
   194 //------------------------------is_aligned_pairs-------------------------------
   195 bool RegMask::is_aligned_pairs() const {
   196   // Assert that the register mask contains only bit pairs.
   197   for( int i = 0; i < RM_SIZE; i++ ) {
   198     int bits = _A[i];
   199     while( bits ) {             // Check bits for pairing
   200       int bit = bits & -bits;   // Extract low bit
   201       // Low bit is not odd means its mis-aligned.
   202       if( (bit & 0x55555555) == 0 ) return false;
   203       bits -= bit;              // Remove bit from mask
   204       // Check for aligned adjacent bit
   205       if( (bits & (bit<<1)) == 0 ) return false;
   206       bits -= (bit<<1);         // Remove other halve of pair
   207     }
   208   }
   209   return true;
   210 }
   212 //------------------------------is_bound1--------------------------------------
   213 // Return TRUE if the mask contains a single bit
   214 int RegMask::is_bound1() const {
   215   if( is_AllStack() ) return false;
   216   int bit = -1;                 // Set to hold the one bit allowed
   217   for( int i = 0; i < RM_SIZE; i++ ) {
   218     if( _A[i] ) {               // Found some bits
   219       if( bit != -1 ) return false; // Already had bits, so fail
   220       bit = _A[i] & -_A[i];     // Extract 1 bit from mask
   221       if( bit != _A[i] ) return false; // Found many bits, so fail
   222     }
   223   }
   224   // True for both the empty mask and for a single bit
   225   return true;
   226 }
   228 //------------------------------is_bound2--------------------------------------
   229 // Return TRUE if the mask contains an adjacent pair of bits and no other bits.
   230 int RegMask::is_bound_pair() const {
   231   if( is_AllStack() ) return false;
   233   int bit = -1;                 // Set to hold the one bit allowed
   234   for( int i = 0; i < RM_SIZE; i++ ) {
   235     if( _A[i] ) {               // Found some bits
   236       if( bit != -1 ) return false; // Already had bits, so fail
   237       bit = _A[i] & -(_A[i]);   // Extract 1 bit from mask
   238       if( (bit << 1) != 0 ) {   // Bit pair stays in same word?
   239         if( (bit | (bit<<1)) != _A[i] )
   240           return false;         // Require adjacent bit pair and no more bits
   241       } else {                  // Else its a split-pair case
   242         if( bit != _A[i] ) return false; // Found many bits, so fail
   243         i++;                    // Skip iteration forward
   244         if( i >= RM_SIZE || _A[i] != 1 )
   245           return false; // Require 1 lo bit in next word
   246       }
   247     }
   248   }
   249   // True for both the empty mask and for a bit pair
   250   return true;
   251 }
   253 static int low_bits[3] = { 0x55555555, 0x11111111, 0x01010101 };
   254 //------------------------------find_first_set---------------------------------
   255 // Find the lowest-numbered register set in the mask.  Return the
   256 // HIGHEST register number in the set, or BAD if no sets.
   257 // Works also for size 1.
   258 OptoReg::Name RegMask::find_first_set(const int size) const {
   259   verify_sets(size);
   260   for (int i = 0; i < RM_SIZE; i++) {
   261     if (_A[i]) {                // Found some bits
   262       int bit = _A[i] & -_A[i]; // Extract low bit
   263       // Convert to bit number, return hi bit in pair
   264       return OptoReg::Name((i<<_LogWordBits)+find_lowest_bit(bit)+(size-1));
   265     }
   266   }
   267   return OptoReg::Bad;
   268 }
   270 //------------------------------clear_to_sets----------------------------------
   271 // Clear out partial bits; leave only aligned adjacent bit pairs
   272 void RegMask::clear_to_sets(const int size) {
   273   if (size == 1) return;
   274   assert(2 <= size && size <= 8, "update low bits table");
   275   assert(is_power_of_2(size), "sanity");
   276   int low_bits_mask = low_bits[size>>2];
   277   for (int i = 0; i < RM_SIZE; i++) {
   278     int bits = _A[i];
   279     int sets = (bits & low_bits_mask);
   280     for (int j = 1; j < size; j++) {
   281       sets = (bits & (sets<<1)); // filter bits which produce whole sets
   282     }
   283     sets |= (sets>>1);           // Smear 1 hi-bit into a set
   284     if (size > 2) {
   285       sets |= (sets>>2);         // Smear 2 hi-bits into a set
   286       if (size > 4) {
   287         sets |= (sets>>4);       // Smear 4 hi-bits into a set
   288       }
   289     }
   290     _A[i] = sets;
   291   }
   292   verify_sets(size);
   293 }
   295 //------------------------------smear_to_sets----------------------------------
   296 // Smear out partial bits to aligned adjacent bit sets
   297 void RegMask::smear_to_sets(const int size) {
   298   if (size == 1) return;
   299   assert(2 <= size && size <= 8, "update low bits table");
   300   assert(is_power_of_2(size), "sanity");
   301   int low_bits_mask = low_bits[size>>2];
   302   for (int i = 0; i < RM_SIZE; i++) {
   303     int bits = _A[i];
   304     int sets = 0;
   305     for (int j = 0; j < size; j++) {
   306       sets |= (bits & low_bits_mask);  // collect partial bits
   307       bits  = bits>>1;
   308     }
   309     sets |= (sets<<1);           // Smear 1 lo-bit  into a set
   310     if (size > 2) {
   311       sets |= (sets<<2);         // Smear 2 lo-bits into a set
   312       if (size > 4) {
   313         sets |= (sets<<4);       // Smear 4 lo-bits into a set
   314       }
   315     }
   316     _A[i] = sets;
   317   }
   318   verify_sets(size);
   319 }
   321 //------------------------------is_aligned_set--------------------------------
   322 bool RegMask::is_aligned_sets(const int size) const {
   323   if (size == 1) return true;
   324   assert(2 <= size && size <= 8, "update low bits table");
   325   assert(is_power_of_2(size), "sanity");
   326   int low_bits_mask = low_bits[size>>2];
   327   // Assert that the register mask contains only bit sets.
   328   for (int i = 0; i < RM_SIZE; i++) {
   329     int bits = _A[i];
   330     while (bits) {              // Check bits for pairing
   331       int bit = bits & -bits;   // Extract low bit
   332       // Low bit is not odd means its mis-aligned.
   333       if ((bit & low_bits_mask) == 0) return false;
   334       // Do extra work since (bit << size) may overflow.
   335       int hi_bit = bit << (size-1); // high bit
   336       int set = hi_bit + ((hi_bit-1) & ~(bit-1));
   337       // Check for aligned adjacent bits in this set
   338       if ((bits & set) != set) return false;
   339       bits -= set;  // Remove this set
   340     }
   341   }
   342   return true;
   343 }
   345 //------------------------------is_bound_set-----------------------------------
   346 // Return TRUE if the mask contains one adjacent set of bits and no other bits.
   347 // Works also for size 1.
   348 int RegMask::is_bound_set(const int size) const {
   349   if( is_AllStack() ) return false;
   350   assert(1 <= size && size <= 8, "update low bits table");
   351   int bit = -1;                 // Set to hold the one bit allowed
   352   for (int i = 0; i < RM_SIZE; i++) {
   353     if (_A[i] ) {               // Found some bits
   354       if (bit != -1)
   355        return false;            // Already had bits, so fail
   356       bit = _A[i] & -_A[i];     // Extract low bit from mask
   357       int hi_bit = bit << (size-1); // high bit
   358       if (hi_bit != 0) {        // Bit set stays in same word?
   359         int set = hi_bit + ((hi_bit-1) & ~(bit-1));
   360         if (set != _A[i])
   361           return false;         // Require adjacent bit set and no more bits
   362       } else {                  // Else its a split-set case
   363         if (((-1) & ~(bit-1)) != _A[i])
   364           return false;         // Found many bits, so fail
   365         i++;                    // Skip iteration forward and check high part
   366         // The lower 24 bits should be 0 since it is split case and size <= 8.
   367         int set = bit>>24;
   368         set = set & -set; // Remove sign extension.
   369         set = (((set << size) - 1) >> 8);
   370         if (i >= RM_SIZE || _A[i] != set)
   371           return false; // Require expected low bits in next word
   372       }
   373     }
   374   }
   375   // True for both the empty mask and for a bit set
   376   return true;
   377 }
   379 //------------------------------is_UP------------------------------------------
   380 // UP means register only, Register plus stack, or stack only is DOWN
   381 bool RegMask::is_UP() const {
   382   // Quick common case check for DOWN (any stack slot is legal)
   383   if( is_AllStack() )
   384     return false;
   385   // Slower check for any stack bits set (also DOWN)
   386   if( overlap(Matcher::STACK_ONLY_mask) )
   387     return false;
   388   // Not DOWN, so must be UP
   389   return true;
   390 }
   392 //------------------------------Size-------------------------------------------
   393 // Compute size of register mask in bits
   394 uint RegMask::Size() const {
   395   extern uint8 bitsInByte[256];
   396   uint sum = 0;
   397   for( int i = 0; i < RM_SIZE; i++ )
   398     sum +=
   399       bitsInByte[(_A[i]>>24) & 0xff] +
   400       bitsInByte[(_A[i]>>16) & 0xff] +
   401       bitsInByte[(_A[i]>> 8) & 0xff] +
   402       bitsInByte[ _A[i]      & 0xff];
   403   return sum;
   404 }
   406 #ifndef PRODUCT
   407 //------------------------------print------------------------------------------
   408 void RegMask::dump(outputStream *st) const {
   409   st->print("[");
   410   RegMask rm = *this;           // Structure copy into local temp
   412   OptoReg::Name start = rm.find_first_elem(); // Get a register
   413   if (OptoReg::is_valid(start)) { // Check for empty mask
   414     rm.Remove(start);           // Yank from mask
   415     OptoReg::dump(start, st);   // Print register
   416     OptoReg::Name last = start;
   418     // Now I have printed an initial register.
   419     // Print adjacent registers as "rX-rZ" instead of "rX,rY,rZ".
   420     // Begin looping over the remaining registers.
   421     while (1) {                 //
   422       OptoReg::Name reg = rm.find_first_elem(); // Get a register
   423       if (!OptoReg::is_valid(reg))
   424         break;                  // Empty mask, end loop
   425       rm.Remove(reg);           // Yank from mask
   427       if (last+1 == reg) {      // See if they are adjacent
   428         // Adjacent registers just collect into long runs, no printing.
   429         last = reg;
   430       } else {                  // Ending some kind of run
   431         if (start == last) {    // 1-register run; no special printing
   432         } else if (start+1 == last) {
   433           st->print(",");       // 2-register run; print as "rX,rY"
   434           OptoReg::dump(last, st);
   435         } else {                // Multi-register run; print as "rX-rZ"
   436           st->print("-");
   437           OptoReg::dump(last, st);
   438         }
   439         st->print(",");         // Seperate start of new run
   440         start = last = reg;     // Start a new register run
   441         OptoReg::dump(start, st); // Print register
   442       } // End of if ending a register run or not
   443     } // End of while regmask not empty
   445     if (start == last) {        // 1-register run; no special printing
   446     } else if (start+1 == last) {
   447       st->print(",");           // 2-register run; print as "rX,rY"
   448       OptoReg::dump(last, st);
   449     } else {                    // Multi-register run; print as "rX-rZ"
   450       st->print("-");
   451       OptoReg::dump(last, st);
   452     }
   453     if (rm.is_AllStack()) st->print("...");
   454   }
   455   st->print("]");
   456 }
   457 #endif

mercurial