src/cpu/sparc/vm/sparc.ad

Wed, 24 Apr 2013 20:55:28 -0400

author
dlong
date
Wed, 24 Apr 2013 20:55:28 -0400
changeset 5000
a6e09d6dd8e5
parent 4362
65c8342f726a
child 5001
e10e43e58e92
permissions
-rw-r--r--

8003853: specify offset of IC load in java_to_interp stub
Summary: refactored code to allow platform-specific differences
Reviewed-by: dlong, twisti
Contributed-by: Goetz Lindenmaier <goetz.lindenmaier@sap.com>

     1 //
     2 // Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
     3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4 //
     5 // This code is free software; you can redistribute it and/or modify it
     6 // under the terms of the GNU General Public License version 2 only, as
     7 // published by the Free Software Foundation.
     8 //
     9 // This code is distributed in the hope that it will be useful, but WITHOUT
    10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12 // version 2 for more details (a copy is included in the LICENSE file that
    13 // accompanied this code).
    14 //
    15 // You should have received a copy of the GNU General Public License version
    16 // 2 along with this work; if not, write to the Free Software Foundation,
    17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18 //
    19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20 // or visit www.oracle.com if you need additional information or have any
    21 // questions.
    22 //
    23 //
    25 // SPARC Architecture Description File
    27 //----------REGISTER DEFINITION BLOCK------------------------------------------
    28 // This information is used by the matcher and the register allocator to
    29 // describe individual registers and classes of registers within the target
    30 // archtecture.
    31 register %{
    32 //----------Architecture Description Register Definitions----------------------
    33 // General Registers
    34 // "reg_def"  name ( register save type, C convention save type,
    35 //                   ideal register type, encoding, vm name );
    36 // Register Save Types:
    37 //
    38 // NS  = No-Save:       The register allocator assumes that these registers
    39 //                      can be used without saving upon entry to the method, &
    40 //                      that they do not need to be saved at call sites.
    41 //
    42 // SOC = Save-On-Call:  The register allocator assumes that these registers
    43 //                      can be used without saving upon entry to the method,
    44 //                      but that they must be saved at call sites.
    45 //
    46 // SOE = Save-On-Entry: The register allocator assumes that these registers
    47 //                      must be saved before using them upon entry to the
    48 //                      method, but they do not need to be saved at call
    49 //                      sites.
    50 //
    51 // AS  = Always-Save:   The register allocator assumes that these registers
    52 //                      must be saved before using them upon entry to the
    53 //                      method, & that they must be saved at call sites.
    54 //
    55 // Ideal Register Type is used to determine how to save & restore a
    56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
    58 //
    59 // The encoding number is the actual bit-pattern placed into the opcodes.
    62 // ----------------------------
    63 // Integer/Long Registers
    64 // ----------------------------
    66 // Need to expose the hi/lo aspect of 64-bit registers
    67 // This register set is used for both the 64-bit build and
    68 // the 32-bit build with 1-register longs.
    70 // Global Registers 0-7
    71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
    72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
    73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
    74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
    75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
    76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
    77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
    78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
    79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
    80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
    81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
    82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
    83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
    84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
    85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
    86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
    88 // Output Registers 0-7
    89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
    90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
    91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
    92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
    93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
    94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
    95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
    96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
    97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
    98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
    99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
   100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
   101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
   102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
   103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
   104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
   106 // Local Registers 0-7
   107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
   108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
   109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
   110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
   111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
   112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
   113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
   114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
   115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
   116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
   117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
   118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
   119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
   120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
   121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
   122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
   124 // Input Registers 0-7
   125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
   126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
   127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
   128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
   129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
   130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
   131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
   132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
   133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
   134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
   135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
   136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
   137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
   138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
   139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
   140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
   142 // ----------------------------
   143 // Float/Double Registers
   144 // ----------------------------
   146 // Float Registers
   147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
   148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
   149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
   150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
   151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
   152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
   153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
   154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
   155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
   156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
   157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
   158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
   159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
   160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
   161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
   162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
   163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
   164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
   165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
   166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
   167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
   168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
   169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
   170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
   171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
   172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
   173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
   174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
   175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
   176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
   177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
   178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
   180 // Double Registers
   181 // The rules of ADL require that double registers be defined in pairs.
   182 // Each pair must be two 32-bit values, but not necessarily a pair of
   183 // single float registers.  In each pair, ADLC-assigned register numbers
   184 // must be adjacent, with the lower number even.  Finally, when the
   185 // CPU stores such a register pair to memory, the word associated with
   186 // the lower ADLC-assigned number must be stored to the lower address.
   188 // These definitions specify the actual bit encodings of the sparc
   189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
   190 // wants 0-63, so we have to convert every time we want to use fp regs
   191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
   192 // 255 is a flag meaning "don't go here".
   193 // I believe we can't handle callee-save doubles D32 and up until
   194 // the place in the sparc stack crawler that asserts on the 255 is
   195 // fixed up.
   196 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg());
   197 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg()->next());
   198 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg());
   199 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg()->next());
   200 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg());
   201 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg()->next());
   202 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg());
   203 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg()->next());
   204 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg());
   205 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg()->next());
   206 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg());
   207 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg()->next());
   208 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg());
   209 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg()->next());
   210 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg());
   211 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg()->next());
   212 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg());
   213 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg()->next());
   214 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg());
   215 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg()->next());
   216 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg());
   217 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg()->next());
   218 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg());
   219 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg()->next());
   220 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg());
   221 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg()->next());
   222 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg());
   223 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg()->next());
   224 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg());
   225 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg()->next());
   226 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg());
   227 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg()->next());
   230 // ----------------------------
   231 // Special Registers
   232 // Condition Codes Flag Registers
   233 // I tried to break out ICC and XCC but it's not very pretty.
   234 // Every Sparc instruction which defs/kills one also kills the other.
   235 // Hence every compare instruction which defs one kind of flags ends
   236 // up needing a kill of the other.
   237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
   241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
   242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
   244 // ----------------------------
   245 // Specify the enum values for the registers.  These enums are only used by the
   246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
   247 // for visibility to the rest of the vm. The order of this enum influences the
   248 // register allocator so having the freedom to set this order and not be stuck
   249 // with the order that is natural for the rest of the vm is worth it.
   250 alloc_class chunk0(
   251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
   252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
   253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
   254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
   256 // Note that a register is not allocatable unless it is also mentioned
   257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
   259 alloc_class chunk1(
   260   // The first registers listed here are those most likely to be used
   261   // as temporaries.  We move F0..F7 away from the front of the list,
   262   // to reduce the likelihood of interferences with parameters and
   263   // return values.  Likewise, we avoid using F0/F1 for parameters,
   264   // since they are used for return values.
   265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
   266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
   268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
   269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
   270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
   271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
   273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
   275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
   277 //----------Architecture Description Register Classes--------------------------
   278 // Several register classes are automatically defined based upon information in
   279 // this architecture description.
   280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
   281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
   282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   283 //
   285 // G0 is not included in integer class since it has special meaning.
   286 reg_class g0_reg(R_G0);
   288 // ----------------------------
   289 // Integer Register Classes
   290 // ----------------------------
   291 // Exclusions from i_reg:
   292 // R_G0: hardwired zero
   293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
   294 // R_G6: reserved by Solaris ABI to tools
   295 // R_G7: reserved by Solaris ABI to libthread
   296 // R_O7: Used as a temp in many encodings
   297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   299 // Class for all integer registers, except the G registers.  This is used for
   300 // encodings which use G registers as temps.  The regular inputs to such
   301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
   302 // will not put an input into a temp register.
   303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   305 reg_class g1_regI(R_G1);
   306 reg_class g3_regI(R_G3);
   307 reg_class g4_regI(R_G4);
   308 reg_class o0_regI(R_O0);
   309 reg_class o7_regI(R_O7);
   311 // ----------------------------
   312 // Pointer Register Classes
   313 // ----------------------------
   314 #ifdef _LP64
   315 // 64-bit build means 64-bit pointers means hi/lo pairs
   316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   320 // Lock encodings use G3 and G4 internally
   321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
   322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   325 // Special class for storeP instructions, which can store SP or RPC to TLS.
   326 // It is also used for memory addressing, allowing direct TLS addressing.
   327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
   329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
   331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   332 // We use it to save R_G2 across calls out of Java.
   333 reg_class l7_regP(R_L7H,R_L7);
   335 // Other special pointer regs
   336 reg_class g1_regP(R_G1H,R_G1);
   337 reg_class g2_regP(R_G2H,R_G2);
   338 reg_class g3_regP(R_G3H,R_G3);
   339 reg_class g4_regP(R_G4H,R_G4);
   340 reg_class g5_regP(R_G5H,R_G5);
   341 reg_class i0_regP(R_I0H,R_I0);
   342 reg_class o0_regP(R_O0H,R_O0);
   343 reg_class o1_regP(R_O1H,R_O1);
   344 reg_class o2_regP(R_O2H,R_O2);
   345 reg_class o7_regP(R_O7H,R_O7);
   347 #else // _LP64
   348 // 32-bit build means 32-bit pointers means 1 register.
   349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
   350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   353 // Lock encodings use G3 and G4 internally
   354 reg_class lock_ptr_reg(R_G1,               R_G5,
   355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   358 // Special class for storeP instructions, which can store SP or RPC to TLS.
   359 // It is also used for memory addressing, allowing direct TLS addressing.
   360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
   361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
   362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
   364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   365 // We use it to save R_G2 across calls out of Java.
   366 reg_class l7_regP(R_L7);
   368 // Other special pointer regs
   369 reg_class g1_regP(R_G1);
   370 reg_class g2_regP(R_G2);
   371 reg_class g3_regP(R_G3);
   372 reg_class g4_regP(R_G4);
   373 reg_class g5_regP(R_G5);
   374 reg_class i0_regP(R_I0);
   375 reg_class o0_regP(R_O0);
   376 reg_class o1_regP(R_O1);
   377 reg_class o2_regP(R_O2);
   378 reg_class o7_regP(R_O7);
   379 #endif // _LP64
   382 // ----------------------------
   383 // Long Register Classes
   384 // ----------------------------
   385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
   386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
   387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
   388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
   389 #ifdef _LP64
   390 // 64-bit, longs in 1 register: use all 64-bit integer registers
   391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
   392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
   393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
   394 #endif // _LP64
   395                   );
   397 reg_class g1_regL(R_G1H,R_G1);
   398 reg_class g3_regL(R_G3H,R_G3);
   399 reg_class o2_regL(R_O2H,R_O2);
   400 reg_class o7_regL(R_O7H,R_O7);
   402 // ----------------------------
   403 // Special Class for Condition Code Flags Register
   404 reg_class int_flags(CCR);
   405 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
   406 reg_class float_flag0(FCC0);
   409 // ----------------------------
   410 // Float Point Register Classes
   411 // ----------------------------
   412 // Skip F30/F31, they are reserved for mem-mem copies
   413 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
   415 // Paired floating point registers--they show up in the same order as the floats,
   416 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   417 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   418                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
   419                    /* Use extra V9 double registers; this AD file does not support V8 */
   420                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   421                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
   422                    );
   424 // Paired floating point registers--they show up in the same order as the floats,
   425 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   426 // This class is usable for mis-aligned loads as happen in I2C adapters.
   427 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   428                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
   429 %}
   431 //----------DEFINITION BLOCK---------------------------------------------------
   432 // Define name --> value mappings to inform the ADLC of an integer valued name
   433 // Current support includes integer values in the range [0, 0x7FFFFFFF]
   434 // Format:
   435 //        int_def  <name>         ( <int_value>, <expression>);
   436 // Generated Code in ad_<arch>.hpp
   437 //        #define  <name>   (<expression>)
   438 //        // value == <int_value>
   439 // Generated code in ad_<arch>.cpp adlc_verification()
   440 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
   441 //
   442 definitions %{
   443 // The default cost (of an ALU instruction).
   444   int_def DEFAULT_COST      (    100,     100);
   445   int_def HUGE_COST         (1000000, 1000000);
   447 // Memory refs are twice as expensive as run-of-the-mill.
   448   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
   450 // Branches are even more expensive.
   451   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
   452   int_def CALL_COST         (    300, DEFAULT_COST * 3);
   453 %}
   456 //----------SOURCE BLOCK-------------------------------------------------------
   457 // This is a block of C++ code which provides values, functions, and
   458 // definitions necessary in the rest of the architecture description
   459 source_hpp %{
   460 // Must be visible to the DFA in dfa_sparc.cpp
   461 extern bool can_branch_register( Node *bol, Node *cmp );
   463 extern bool use_block_zeroing(Node* count);
   465 // Macros to extract hi & lo halves from a long pair.
   466 // G0 is not part of any long pair, so assert on that.
   467 // Prevents accidentally using G1 instead of G0.
   468 #define LONG_HI_REG(x) (x)
   469 #define LONG_LO_REG(x) (x)
   471 %}
   473 source %{
   474 #define __ _masm.
   476 // tertiary op of a LoadP or StoreP encoding
   477 #define REGP_OP true
   479 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
   480 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
   481 static Register reg_to_register_object(int register_encoding);
   483 // Used by the DFA in dfa_sparc.cpp.
   484 // Check for being able to use a V9 branch-on-register.  Requires a
   485 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
   486 // extended.  Doesn't work following an integer ADD, for example, because of
   487 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
   488 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
   489 // replace them with zero, which could become sign-extension in a different OS
   490 // release.  There's no obvious reason why an interrupt will ever fill these
   491 // bits with non-zero junk (the registers are reloaded with standard LD
   492 // instructions which either zero-fill or sign-fill).
   493 bool can_branch_register( Node *bol, Node *cmp ) {
   494   if( !BranchOnRegister ) return false;
   495 #ifdef _LP64
   496   if( cmp->Opcode() == Op_CmpP )
   497     return true;  // No problems with pointer compares
   498 #endif
   499   if( cmp->Opcode() == Op_CmpL )
   500     return true;  // No problems with long compares
   502   if( !SparcV9RegsHiBitsZero ) return false;
   503   if( bol->as_Bool()->_test._test != BoolTest::ne &&
   504       bol->as_Bool()->_test._test != BoolTest::eq )
   505      return false;
   507   // Check for comparing against a 'safe' value.  Any operation which
   508   // clears out the high word is safe.  Thus, loads and certain shifts
   509   // are safe, as are non-negative constants.  Any operation which
   510   // preserves zero bits in the high word is safe as long as each of its
   511   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
   512   // inputs are safe.  At present, the only important case to recognize
   513   // seems to be loads.  Constants should fold away, and shifts &
   514   // logicals can use the 'cc' forms.
   515   Node *x = cmp->in(1);
   516   if( x->is_Load() ) return true;
   517   if( x->is_Phi() ) {
   518     for( uint i = 1; i < x->req(); i++ )
   519       if( !x->in(i)->is_Load() )
   520         return false;
   521     return true;
   522   }
   523   return false;
   524 }
   526 bool use_block_zeroing(Node* count) {
   527   // Use BIS for zeroing if count is not constant
   528   // or it is >= BlockZeroingLowLimit.
   529   return UseBlockZeroing && (count->find_intptr_t_con(BlockZeroingLowLimit) >= BlockZeroingLowLimit);
   530 }
   532 // ****************************************************************************
   534 // REQUIRED FUNCTIONALITY
   536 // !!!!! Special hack to get all type of calls to specify the byte offset
   537 //       from the start of the call to the point where the return address
   538 //       will point.
   539 //       The "return address" is the address of the call instruction, plus 8.
   541 int MachCallStaticJavaNode::ret_addr_offset() {
   542   int offset = NativeCall::instruction_size;  // call; delay slot
   543   if (_method_handle_invoke)
   544     offset += 4;  // restore SP
   545   return offset;
   546 }
   548 int MachCallDynamicJavaNode::ret_addr_offset() {
   549   int vtable_index = this->_vtable_index;
   550   if (vtable_index < 0) {
   551     // must be invalid_vtable_index, not nonvirtual_vtable_index
   552     assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
   553     return (NativeMovConstReg::instruction_size +
   554            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
   555   } else {
   556     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
   557     int entry_offset = InstanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
   558     int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
   559     int klass_load_size;
   560     if (UseCompressedKlassPointers) {
   561       assert(Universe::heap() != NULL, "java heap should be initialized");
   562       if (Universe::narrow_klass_base() == NULL)
   563         klass_load_size = 2*BytesPerInstWord; // see MacroAssembler::load_klass()
   564       else
   565         klass_load_size = 3*BytesPerInstWord;
   566     } else {
   567       klass_load_size = 1*BytesPerInstWord;
   568     }
   569     if (Assembler::is_simm13(v_off)) {
   570       return klass_load_size +
   571              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
   572              NativeCall::instruction_size);  // call; delay slot
   573     } else {
   574       return klass_load_size +
   575              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
   576              NativeCall::instruction_size);  // call; delay slot
   577     }
   578   }
   579 }
   581 int MachCallRuntimeNode::ret_addr_offset() {
   582 #ifdef _LP64
   583   if (MacroAssembler::is_far_target(entry_point())) {
   584     return NativeFarCall::instruction_size;
   585   } else {
   586     return NativeCall::instruction_size;
   587   }
   588 #else
   589   return NativeCall::instruction_size;  // call; delay slot
   590 #endif
   591 }
   593 // Indicate if the safepoint node needs the polling page as an input.
   594 // Since Sparc does not have absolute addressing, it does.
   595 bool SafePointNode::needs_polling_address_input() {
   596   return true;
   597 }
   599 // emit an interrupt that is caught by the debugger (for debugging compiler)
   600 void emit_break(CodeBuffer &cbuf) {
   601   MacroAssembler _masm(&cbuf);
   602   __ breakpoint_trap();
   603 }
   605 #ifndef PRODUCT
   606 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
   607   st->print("TA");
   608 }
   609 #endif
   611 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   612   emit_break(cbuf);
   613 }
   615 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
   616   return MachNode::size(ra_);
   617 }
   619 // Traceable jump
   620 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
   621   MacroAssembler _masm(&cbuf);
   622   Register rdest = reg_to_register_object(jump_target);
   623   __ JMP(rdest, 0);
   624   __ delayed()->nop();
   625 }
   627 // Traceable jump and set exception pc
   628 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
   629   MacroAssembler _masm(&cbuf);
   630   Register rdest = reg_to_register_object(jump_target);
   631   __ JMP(rdest, 0);
   632   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
   633 }
   635 void emit_nop(CodeBuffer &cbuf) {
   636   MacroAssembler _masm(&cbuf);
   637   __ nop();
   638 }
   640 void emit_illtrap(CodeBuffer &cbuf) {
   641   MacroAssembler _masm(&cbuf);
   642   __ illtrap(0);
   643 }
   646 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
   647   assert(n->rule() != loadUB_rule, "");
   649   intptr_t offset = 0;
   650   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
   651   const Node* addr = n->get_base_and_disp(offset, adr_type);
   652   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
   653   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
   654   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   655   atype = atype->add_offset(offset);
   656   assert(disp32 == offset, "wrong disp32");
   657   return atype->_offset;
   658 }
   661 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
   662   assert(n->rule() != loadUB_rule, "");
   664   intptr_t offset = 0;
   665   Node* addr = n->in(2);
   666   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   667   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
   668     Node* a = addr->in(2/*AddPNode::Address*/);
   669     Node* o = addr->in(3/*AddPNode::Offset*/);
   670     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
   671     atype = a->bottom_type()->is_ptr()->add_offset(offset);
   672     assert(atype->isa_oop_ptr(), "still an oop");
   673   }
   674   offset = atype->is_ptr()->_offset;
   675   if (offset != Type::OffsetBot)  offset += disp32;
   676   return offset;
   677 }
   679 static inline jdouble replicate_immI(int con, int count, int width) {
   680   // Load a constant replicated "count" times with width "width"
   681   assert(count*width == 8 && width <= 4, "sanity");
   682   int bit_width = width * 8;
   683   jlong val = con;
   684   val &= (((jlong) 1) << bit_width) - 1;  // mask off sign bits
   685   for (int i = 0; i < count - 1; i++) {
   686     val |= (val << bit_width);
   687   }
   688   jdouble dval = *((jdouble*) &val);  // coerce to double type
   689   return dval;
   690 }
   692 static inline jdouble replicate_immF(float con) {
   693   // Replicate float con 2 times and pack into vector.
   694   int val = *((int*)&con);
   695   jlong lval = val;
   696   lval = (lval << 32) | (lval & 0xFFFFFFFFl);
   697   jdouble dval = *((jdouble*) &lval);  // coerce to double type
   698   return dval;
   699 }
   701 // Standard Sparc opcode form2 field breakdown
   702 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
   703   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
   704   int op = (f30 << 30) |
   705            (f29 << 29) |
   706            (f25 << 25) |
   707            (f22 << 22) |
   708            (f20 << 20) |
   709            (f19 << 19) |
   710            (f0  <<  0);
   711   cbuf.insts()->emit_int32(op);
   712 }
   714 // Standard Sparc opcode form2 field breakdown
   715 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
   716   f0 >>= 10;           // Drop 10 bits
   717   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
   718   int op = (f30 << 30) |
   719            (f25 << 25) |
   720            (f22 << 22) |
   721            (f0  <<  0);
   722   cbuf.insts()->emit_int32(op);
   723 }
   725 // Standard Sparc opcode form3 field breakdown
   726 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
   727   int op = (f30 << 30) |
   728            (f25 << 25) |
   729            (f19 << 19) |
   730            (f14 << 14) |
   731            (f5  <<  5) |
   732            (f0  <<  0);
   733   cbuf.insts()->emit_int32(op);
   734 }
   736 // Standard Sparc opcode form3 field breakdown
   737 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
   738   simm13 &= (1<<13)-1; // Mask to 13 bits
   739   int op = (f30 << 30) |
   740            (f25 << 25) |
   741            (f19 << 19) |
   742            (f14 << 14) |
   743            (1   << 13) | // bit to indicate immediate-mode
   744            (simm13<<0);
   745   cbuf.insts()->emit_int32(op);
   746 }
   748 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
   749   simm10 &= (1<<10)-1; // Mask to 10 bits
   750   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
   751 }
   753 #ifdef ASSERT
   754 // Helper function for VerifyOops in emit_form3_mem_reg
   755 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
   756   warning("VerifyOops encountered unexpected instruction:");
   757   n->dump(2);
   758   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
   759 }
   760 #endif
   763 void emit_form3_mem_reg(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
   764                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
   766 #ifdef ASSERT
   767   // The following code implements the +VerifyOops feature.
   768   // It verifies oop values which are loaded into or stored out of
   769   // the current method activation.  +VerifyOops complements techniques
   770   // like ScavengeALot, because it eagerly inspects oops in transit,
   771   // as they enter or leave the stack, as opposed to ScavengeALot,
   772   // which inspects oops "at rest", in the stack or heap, at safepoints.
   773   // For this reason, +VerifyOops can sometimes detect bugs very close
   774   // to their point of creation.  It can also serve as a cross-check
   775   // on the validity of oop maps, when used toegether with ScavengeALot.
   777   // It would be good to verify oops at other points, especially
   778   // when an oop is used as a base pointer for a load or store.
   779   // This is presently difficult, because it is hard to know when
   780   // a base address is biased or not.  (If we had such information,
   781   // it would be easy and useful to make a two-argument version of
   782   // verify_oop which unbiases the base, and performs verification.)
   784   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
   785   bool is_verified_oop_base  = false;
   786   bool is_verified_oop_load  = false;
   787   bool is_verified_oop_store = false;
   788   int tmp_enc = -1;
   789   if (VerifyOops && src1_enc != R_SP_enc) {
   790     // classify the op, mainly for an assert check
   791     int st_op = 0, ld_op = 0;
   792     switch (primary) {
   793     case Assembler::stb_op3:  st_op = Op_StoreB; break;
   794     case Assembler::sth_op3:  st_op = Op_StoreC; break;
   795     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
   796     case Assembler::stw_op3:  st_op = Op_StoreI; break;
   797     case Assembler::std_op3:  st_op = Op_StoreL; break;
   798     case Assembler::stf_op3:  st_op = Op_StoreF; break;
   799     case Assembler::stdf_op3: st_op = Op_StoreD; break;
   801     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
   802     case Assembler::ldub_op3: ld_op = Op_LoadUB; break;
   803     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
   804     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
   805     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
   806     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
   807     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
   808     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
   809     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
   810     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
   811     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
   813     default: ShouldNotReachHere();
   814     }
   815     if (tertiary == REGP_OP) {
   816       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
   817       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
   818       else                          ShouldNotReachHere();
   819       if (st_op) {
   820         // a store
   821         // inputs are (0:control, 1:memory, 2:address, 3:value)
   822         Node* n2 = n->in(3);
   823         if (n2 != NULL) {
   824           const Type* t = n2->bottom_type();
   825           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   826         }
   827       } else {
   828         // a load
   829         const Type* t = n->bottom_type();
   830         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   831       }
   832     }
   834     if (ld_op) {
   835       // a Load
   836       // inputs are (0:control, 1:memory, 2:address)
   837       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
   838           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
   839           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
   840           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
   841           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
   842           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
   843           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
   844           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
   845           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
   846           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
   847           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
   848           !(n->ideal_Opcode()==Op_PrefetchRead  && ld_op==Op_LoadI) &&
   849           !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
   850           !(n->ideal_Opcode()==Op_PrefetchAllocation && ld_op==Op_LoadI) &&
   851           !(n->ideal_Opcode()==Op_LoadVector && ld_op==Op_LoadD) &&
   852           !(n->rule() == loadUB_rule)) {
   853         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
   854       }
   855     } else if (st_op) {
   856       // a Store
   857       // inputs are (0:control, 1:memory, 2:address, 3:value)
   858       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
   859           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
   860           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
   861           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
   862           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
   863           !(n->ideal_Opcode()==Op_StoreVector && st_op==Op_StoreD) &&
   864           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
   865         verify_oops_warning(n, n->ideal_Opcode(), st_op);
   866       }
   867     }
   869     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
   870       Node* addr = n->in(2);
   871       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
   872         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
   873         if (atype != NULL) {
   874           intptr_t offset = get_offset_from_base(n, atype, disp32);
   875           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
   876           if (offset != offset_2) {
   877             get_offset_from_base(n, atype, disp32);
   878             get_offset_from_base_2(n, atype, disp32);
   879           }
   880           assert(offset == offset_2, "different offsets");
   881           if (offset == disp32) {
   882             // we now know that src1 is a true oop pointer
   883             is_verified_oop_base = true;
   884             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
   885               if( primary == Assembler::ldd_op3 ) {
   886                 is_verified_oop_base = false; // Cannot 'ldd' into O7
   887               } else {
   888                 tmp_enc = dst_enc;
   889                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
   890                 assert(src1_enc != dst_enc, "");
   891               }
   892             }
   893           }
   894           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
   895                        || offset == oopDesc::mark_offset_in_bytes())) {
   896                       // loading the mark should not be allowed either, but
   897                       // we don't check this since it conflicts with InlineObjectHash
   898                       // usage of LoadINode to get the mark. We could keep the
   899                       // check if we create a new LoadMarkNode
   900             // but do not verify the object before its header is initialized
   901             ShouldNotReachHere();
   902           }
   903         }
   904       }
   905     }
   906   }
   907 #endif
   909   uint instr;
   910   instr = (Assembler::ldst_op << 30)
   911         | (dst_enc        << 25)
   912         | (primary        << 19)
   913         | (src1_enc       << 14);
   915   uint index = src2_enc;
   916   int disp = disp32;
   918   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
   919     disp += STACK_BIAS;
   921   // We should have a compiler bailout here rather than a guarantee.
   922   // Better yet would be some mechanism to handle variable-size matches correctly.
   923   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
   925   if( disp == 0 ) {
   926     // use reg-reg form
   927     // bit 13 is already zero
   928     instr |= index;
   929   } else {
   930     // use reg-imm form
   931     instr |= 0x00002000;          // set bit 13 to one
   932     instr |= disp & 0x1FFF;
   933   }
   935   cbuf.insts()->emit_int32(instr);
   937 #ifdef ASSERT
   938   {
   939     MacroAssembler _masm(&cbuf);
   940     if (is_verified_oop_base) {
   941       __ verify_oop(reg_to_register_object(src1_enc));
   942     }
   943     if (is_verified_oop_store) {
   944       __ verify_oop(reg_to_register_object(dst_enc));
   945     }
   946     if (tmp_enc != -1) {
   947       __ mov(O7, reg_to_register_object(tmp_enc));
   948     }
   949     if (is_verified_oop_load) {
   950       __ verify_oop(reg_to_register_object(dst_enc));
   951     }
   952   }
   953 #endif
   954 }
   956 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false) {
   957   // The method which records debug information at every safepoint
   958   // expects the call to be the first instruction in the snippet as
   959   // it creates a PcDesc structure which tracks the offset of a call
   960   // from the start of the codeBlob. This offset is computed as
   961   // code_end() - code_begin() of the code which has been emitted
   962   // so far.
   963   // In this particular case we have skirted around the problem by
   964   // putting the "mov" instruction in the delay slot but the problem
   965   // may bite us again at some other point and a cleaner/generic
   966   // solution using relocations would be needed.
   967   MacroAssembler _masm(&cbuf);
   968   __ set_inst_mark();
   970   // We flush the current window just so that there is a valid stack copy
   971   // the fact that the current window becomes active again instantly is
   972   // not a problem there is nothing live in it.
   974 #ifdef ASSERT
   975   int startpos = __ offset();
   976 #endif /* ASSERT */
   978   __ call((address)entry_point, rtype);
   980   if (preserve_g2)   __ delayed()->mov(G2, L7);
   981   else __ delayed()->nop();
   983   if (preserve_g2)   __ mov(L7, G2);
   985 #ifdef ASSERT
   986   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
   987 #ifdef _LP64
   988     // Trash argument dump slots.
   989     __ set(0xb0b8ac0db0b8ac0d, G1);
   990     __ mov(G1, G5);
   991     __ stx(G1, SP, STACK_BIAS + 0x80);
   992     __ stx(G1, SP, STACK_BIAS + 0x88);
   993     __ stx(G1, SP, STACK_BIAS + 0x90);
   994     __ stx(G1, SP, STACK_BIAS + 0x98);
   995     __ stx(G1, SP, STACK_BIAS + 0xA0);
   996     __ stx(G1, SP, STACK_BIAS + 0xA8);
   997 #else // _LP64
   998     // this is also a native call, so smash the first 7 stack locations,
   999     // and the various registers
  1001     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
  1002     // while [SP+0x44..0x58] are the argument dump slots.
  1003     __ set((intptr_t)0xbaadf00d, G1);
  1004     __ mov(G1, G5);
  1005     __ sllx(G1, 32, G1);
  1006     __ or3(G1, G5, G1);
  1007     __ mov(G1, G5);
  1008     __ stx(G1, SP, 0x40);
  1009     __ stx(G1, SP, 0x48);
  1010     __ stx(G1, SP, 0x50);
  1011     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
  1012 #endif // _LP64
  1014 #endif /*ASSERT*/
  1017 //=============================================================================
  1018 // REQUIRED FUNCTIONALITY for encoding
  1019 void emit_lo(CodeBuffer &cbuf, int val) {  }
  1020 void emit_hi(CodeBuffer &cbuf, int val) {  }
  1023 //=============================================================================
  1024 const RegMask& MachConstantBaseNode::_out_RegMask = PTR_REG_mask();
  1026 int Compile::ConstantTable::calculate_table_base_offset() const {
  1027   if (UseRDPCForConstantTableBase) {
  1028     // The table base offset might be less but then it fits into
  1029     // simm13 anyway and we are good (cf. MachConstantBaseNode::emit).
  1030     return Assembler::min_simm13();
  1031   } else {
  1032     int offset = -(size() / 2);
  1033     if (!Assembler::is_simm13(offset)) {
  1034       offset = Assembler::min_simm13();
  1036     return offset;
  1040 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
  1041   Compile* C = ra_->C;
  1042   Compile::ConstantTable& constant_table = C->constant_table();
  1043   MacroAssembler _masm(&cbuf);
  1045   Register r = as_Register(ra_->get_encode(this));
  1046   CodeSection* consts_section = __ code()->consts();
  1047   int consts_size = consts_section->align_at_start(consts_section->size());
  1048   assert(constant_table.size() == consts_size, err_msg("must be: %d == %d", constant_table.size(), consts_size));
  1050   if (UseRDPCForConstantTableBase) {
  1051     // For the following RDPC logic to work correctly the consts
  1052     // section must be allocated right before the insts section.  This
  1053     // assert checks for that.  The layout and the SECT_* constants
  1054     // are defined in src/share/vm/asm/codeBuffer.hpp.
  1055     assert(CodeBuffer::SECT_CONSTS + 1 == CodeBuffer::SECT_INSTS, "must be");
  1056     int insts_offset = __ offset();
  1058     // Layout:
  1059     //
  1060     // |----------- consts section ------------|----------- insts section -----------...
  1061     // |------ constant table -----|- padding -|------------------x----
  1062     //                                                            \ current PC (RDPC instruction)
  1063     // |<------------- consts_size ----------->|<- insts_offset ->|
  1064     //                                                            \ table base
  1065     // The table base offset is later added to the load displacement
  1066     // so it has to be negative.
  1067     int table_base_offset = -(consts_size + insts_offset);
  1068     int disp;
  1070     // If the displacement from the current PC to the constant table
  1071     // base fits into simm13 we set the constant table base to the
  1072     // current PC.
  1073     if (Assembler::is_simm13(table_base_offset)) {
  1074       constant_table.set_table_base_offset(table_base_offset);
  1075       disp = 0;
  1076     } else {
  1077       // Otherwise we set the constant table base offset to the
  1078       // maximum negative displacement of load instructions to keep
  1079       // the disp as small as possible:
  1080       //
  1081       // |<------------- consts_size ----------->|<- insts_offset ->|
  1082       // |<--------- min_simm13 --------->|<-------- disp --------->|
  1083       //                                  \ table base
  1084       table_base_offset = Assembler::min_simm13();
  1085       constant_table.set_table_base_offset(table_base_offset);
  1086       disp = (consts_size + insts_offset) + table_base_offset;
  1089     __ rdpc(r);
  1091     if (disp != 0) {
  1092       assert(r != O7, "need temporary");
  1093       __ sub(r, __ ensure_simm13_or_reg(disp, O7), r);
  1096   else {
  1097     // Materialize the constant table base.
  1098     address baseaddr = consts_section->start() + -(constant_table.table_base_offset());
  1099     RelocationHolder rspec = internal_word_Relocation::spec(baseaddr);
  1100     AddressLiteral base(baseaddr, rspec);
  1101     __ set(base, r);
  1105 uint MachConstantBaseNode::size(PhaseRegAlloc*) const {
  1106   if (UseRDPCForConstantTableBase) {
  1107     // This is really the worst case but generally it's only 1 instruction.
  1108     return (1 /*rdpc*/ + 1 /*sub*/ + MacroAssembler::worst_case_insts_for_set()) * BytesPerInstWord;
  1109   } else {
  1110     return MacroAssembler::worst_case_insts_for_set() * BytesPerInstWord;
  1114 #ifndef PRODUCT
  1115 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
  1116   char reg[128];
  1117   ra_->dump_register(this, reg);
  1118   if (UseRDPCForConstantTableBase) {
  1119     st->print("RDPC   %s\t! constant table base", reg);
  1120   } else {
  1121     st->print("SET    &constanttable,%s\t! constant table base", reg);
  1124 #endif
  1127 //=============================================================================
  1129 #ifndef PRODUCT
  1130 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1131   Compile* C = ra_->C;
  1133   for (int i = 0; i < OptoPrologueNops; i++) {
  1134     st->print_cr("NOP"); st->print("\t");
  1137   if( VerifyThread ) {
  1138     st->print_cr("Verify_Thread"); st->print("\t");
  1141   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1143   // Calls to C2R adapters often do not accept exceptional returns.
  1144   // We require that their callers must bang for them.  But be careful, because
  1145   // some VM calls (such as call site linkage) can use several kilobytes of
  1146   // stack.  But the stack safety zone should account for that.
  1147   // See bugs 4446381, 4468289, 4497237.
  1148   if (C->need_stack_bang(framesize)) {
  1149     st->print_cr("! stack bang"); st->print("\t");
  1152   if (Assembler::is_simm13(-framesize)) {
  1153     st->print   ("SAVE   R_SP,-%d,R_SP",framesize);
  1154   } else {
  1155     st->print_cr("SETHI  R_SP,hi%%(-%d),R_G3",framesize); st->print("\t");
  1156     st->print_cr("ADD    R_G3,lo%%(-%d),R_G3",framesize); st->print("\t");
  1157     st->print   ("SAVE   R_SP,R_G3,R_SP");
  1161 #endif
  1163 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1164   Compile* C = ra_->C;
  1165   MacroAssembler _masm(&cbuf);
  1167   for (int i = 0; i < OptoPrologueNops; i++) {
  1168     __ nop();
  1171   __ verify_thread();
  1173   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1174   assert(framesize >= 16*wordSize, "must have room for reg. save area");
  1175   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
  1177   // Calls to C2R adapters often do not accept exceptional returns.
  1178   // We require that their callers must bang for them.  But be careful, because
  1179   // some VM calls (such as call site linkage) can use several kilobytes of
  1180   // stack.  But the stack safety zone should account for that.
  1181   // See bugs 4446381, 4468289, 4497237.
  1182   if (C->need_stack_bang(framesize)) {
  1183     __ generate_stack_overflow_check(framesize);
  1186   if (Assembler::is_simm13(-framesize)) {
  1187     __ save(SP, -framesize, SP);
  1188   } else {
  1189     __ sethi(-framesize & ~0x3ff, G3);
  1190     __ add(G3, -framesize & 0x3ff, G3);
  1191     __ save(SP, G3, SP);
  1193   C->set_frame_complete( __ offset() );
  1195   if (!UseRDPCForConstantTableBase && C->has_mach_constant_base_node()) {
  1196     // NOTE: We set the table base offset here because users might be
  1197     // emitted before MachConstantBaseNode.
  1198     Compile::ConstantTable& constant_table = C->constant_table();
  1199     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
  1203 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
  1204   return MachNode::size(ra_);
  1207 int MachPrologNode::reloc() const {
  1208   return 10; // a large enough number
  1211 //=============================================================================
  1212 #ifndef PRODUCT
  1213 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1214   Compile* C = ra_->C;
  1216   if( do_polling() && ra_->C->is_method_compilation() ) {
  1217     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
  1218 #ifdef _LP64
  1219     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
  1220 #else
  1221     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
  1222 #endif
  1225   if( do_polling() )
  1226     st->print("RET\n\t");
  1228   st->print("RESTORE");
  1230 #endif
  1232 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1233   MacroAssembler _masm(&cbuf);
  1234   Compile* C = ra_->C;
  1236   __ verify_thread();
  1238   // If this does safepoint polling, then do it here
  1239   if( do_polling() && ra_->C->is_method_compilation() ) {
  1240     AddressLiteral polling_page(os::get_polling_page());
  1241     __ sethi(polling_page, L0);
  1242     __ relocate(relocInfo::poll_return_type);
  1243     __ ld_ptr( L0, 0, G0 );
  1246   // If this is a return, then stuff the restore in the delay slot
  1247   if( do_polling() ) {
  1248     __ ret();
  1249     __ delayed()->restore();
  1250   } else {
  1251     __ restore();
  1255 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
  1256   return MachNode::size(ra_);
  1259 int MachEpilogNode::reloc() const {
  1260   return 16; // a large enough number
  1263 const Pipeline * MachEpilogNode::pipeline() const {
  1264   return MachNode::pipeline_class();
  1267 int MachEpilogNode::safepoint_offset() const {
  1268   assert( do_polling(), "no return for this epilog node");
  1269   return MacroAssembler::insts_for_sethi(os::get_polling_page()) * BytesPerInstWord;
  1272 //=============================================================================
  1274 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
  1275 enum RC { rc_bad, rc_int, rc_float, rc_stack };
  1276 static enum RC rc_class( OptoReg::Name reg ) {
  1277   if( !OptoReg::is_valid(reg)  ) return rc_bad;
  1278   if (OptoReg::is_stack(reg)) return rc_stack;
  1279   VMReg r = OptoReg::as_VMReg(reg);
  1280   if (r->is_Register()) return rc_int;
  1281   assert(r->is_FloatRegister(), "must be");
  1282   return rc_float;
  1285 static int impl_helper( const MachNode *mach, CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
  1286   if( cbuf ) {
  1287     // Better yet would be some mechanism to handle variable-size matches correctly
  1288     if (!Assembler::is_simm13(offset + STACK_BIAS)) {
  1289       ra_->C->record_method_not_compilable("unable to handle large constant offsets");
  1290     } else {
  1291       emit_form3_mem_reg(*cbuf, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
  1294 #ifndef PRODUCT
  1295   else if( !do_size ) {
  1296     if( size != 0 ) st->print("\n\t");
  1297     if( is_load ) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
  1298     else          st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
  1300 #endif
  1301   return size+4;
  1304 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
  1305   if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
  1306 #ifndef PRODUCT
  1307   else if( !do_size ) {
  1308     if( size != 0 ) st->print("\n\t");
  1309     st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
  1311 #endif
  1312   return size+4;
  1315 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
  1316                                         PhaseRegAlloc *ra_,
  1317                                         bool do_size,
  1318                                         outputStream* st ) const {
  1319   // Get registers to move
  1320   OptoReg::Name src_second = ra_->get_reg_second(in(1));
  1321   OptoReg::Name src_first = ra_->get_reg_first(in(1));
  1322   OptoReg::Name dst_second = ra_->get_reg_second(this );
  1323   OptoReg::Name dst_first = ra_->get_reg_first(this );
  1325   enum RC src_second_rc = rc_class(src_second);
  1326   enum RC src_first_rc = rc_class(src_first);
  1327   enum RC dst_second_rc = rc_class(dst_second);
  1328   enum RC dst_first_rc = rc_class(dst_first);
  1330   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
  1332   // Generate spill code!
  1333   int size = 0;
  1335   if( src_first == dst_first && src_second == dst_second )
  1336     return size;            // Self copy, no move
  1338   // --------------------------------------
  1339   // Check for mem-mem move.  Load into unused float registers and fall into
  1340   // the float-store case.
  1341   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
  1342     int offset = ra_->reg2offset(src_first);
  1343     // Further check for aligned-adjacent pair, so we can use a double load
  1344     if( (src_first&1)==0 && src_first+1 == src_second ) {
  1345       src_second    = OptoReg::Name(R_F31_num);
  1346       src_second_rc = rc_float;
  1347       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
  1348     } else {
  1349       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
  1351     src_first    = OptoReg::Name(R_F30_num);
  1352     src_first_rc = rc_float;
  1355   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
  1356     int offset = ra_->reg2offset(src_second);
  1357     size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
  1358     src_second    = OptoReg::Name(R_F31_num);
  1359     src_second_rc = rc_float;
  1362   // --------------------------------------
  1363   // Check for float->int copy; requires a trip through memory
  1364   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS < 3) {
  1365     int offset = frame::register_save_words*wordSize;
  1366     if (cbuf) {
  1367       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
  1368       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1369       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1370       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
  1372 #ifndef PRODUCT
  1373     else if (!do_size) {
  1374       if (size != 0) st->print("\n\t");
  1375       st->print(  "SUB    R_SP,16,R_SP\n");
  1376       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1377       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1378       st->print("\tADD    R_SP,16,R_SP\n");
  1380 #endif
  1381     size += 16;
  1384   // Check for float->int copy on T4
  1385   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS >= 3) {
  1386     // Further check for aligned-adjacent pair, so we can use a double move
  1387     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
  1388       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mdtox_opf,"MOVDTOX",size, st);
  1389     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mstouw_opf,"MOVSTOUW",size, st);
  1391   // Check for int->float copy on T4
  1392   if (src_first_rc == rc_int && dst_first_rc == rc_float && UseVIS >= 3) {
  1393     // Further check for aligned-adjacent pair, so we can use a double move
  1394     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
  1395       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mxtod_opf,"MOVXTOD",size, st);
  1396     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mwtos_opf,"MOVWTOS",size, st);
  1399   // --------------------------------------
  1400   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
  1401   // In such cases, I have to do the big-endian swap.  For aligned targets, the
  1402   // hardware does the flop for me.  Doubles are always aligned, so no problem
  1403   // there.  Misaligned sources only come from native-long-returns (handled
  1404   // special below).
  1405 #ifndef _LP64
  1406   if( src_first_rc == rc_int &&     // source is already big-endian
  1407       src_second_rc != rc_bad &&    // 64-bit move
  1408       ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
  1409     assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
  1410     // Do the big-endian flop.
  1411     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
  1412     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
  1414 #endif
  1416   // --------------------------------------
  1417   // Check for integer reg-reg copy
  1418   if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
  1419 #ifndef _LP64
  1420     if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
  1421       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1422       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1423       //       operand contains the least significant word of the 64-bit value and vice versa.
  1424       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
  1425       assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
  1426       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
  1427       if( cbuf ) {
  1428         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
  1429         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
  1430         emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
  1431 #ifndef PRODUCT
  1432       } else if( !do_size ) {
  1433         if( size != 0 ) st->print("\n\t");
  1434         st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
  1435         st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
  1436         st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
  1437 #endif
  1439       return size+12;
  1441     else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
  1442       // returning a long value in I0/I1
  1443       // a SpillCopy must be able to target a return instruction's reg_class
  1444       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1445       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1446       //       operand contains the least significant word of the 64-bit value and vice versa.
  1447       OptoReg::Name tdest = dst_first;
  1449       if (src_first == dst_first) {
  1450         tdest = OptoReg::Name(R_O7_num);
  1451         size += 4;
  1454       if( cbuf ) {
  1455         assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
  1456         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
  1457         // ShrL_reg_imm6
  1458         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
  1459         // ShrR_reg_imm6  src, 0, dst
  1460         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
  1461         if (tdest != dst_first) {
  1462           emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
  1465 #ifndef PRODUCT
  1466       else if( !do_size ) {
  1467         if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
  1468         st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
  1469         st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
  1470         if (tdest != dst_first) {
  1471           st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
  1474 #endif // PRODUCT
  1475       return size+8;
  1477 #endif // !_LP64
  1478     // Else normal reg-reg copy
  1479     assert( src_second != dst_first, "smashed second before evacuating it" );
  1480     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
  1481     assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
  1482     // This moves an aligned adjacent pair.
  1483     // See if we are done.
  1484     if( src_first+1 == src_second && dst_first+1 == dst_second )
  1485       return size;
  1488   // Check for integer store
  1489   if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
  1490     int offset = ra_->reg2offset(dst_first);
  1491     // Further check for aligned-adjacent pair, so we can use a double store
  1492     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1493       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
  1494     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
  1497   // Check for integer load
  1498   if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
  1499     int offset = ra_->reg2offset(src_first);
  1500     // Further check for aligned-adjacent pair, so we can use a double load
  1501     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1502       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
  1503     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1506   // Check for float reg-reg copy
  1507   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
  1508     // Further check for aligned-adjacent pair, so we can use a double move
  1509     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1510       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
  1511     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
  1514   // Check for float store
  1515   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
  1516     int offset = ra_->reg2offset(dst_first);
  1517     // Further check for aligned-adjacent pair, so we can use a double store
  1518     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1519       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
  1520     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1523   // Check for float load
  1524   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
  1525     int offset = ra_->reg2offset(src_first);
  1526     // Further check for aligned-adjacent pair, so we can use a double load
  1527     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1528       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
  1529     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
  1532   // --------------------------------------------------------------------
  1533   // Check for hi bits still needing moving.  Only happens for misaligned
  1534   // arguments to native calls.
  1535   if( src_second == dst_second )
  1536     return size;               // Self copy; no move
  1537   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
  1539 #ifndef _LP64
  1540   // In the LP64 build, all registers can be moved as aligned/adjacent
  1541   // pairs, so there's never any need to move the high bits separately.
  1542   // The 32-bit builds have to deal with the 32-bit ABI which can force
  1543   // all sorts of silly alignment problems.
  1545   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
  1546   // 32-bits of a 64-bit register, but are needed in low bits of another
  1547   // register (else it's a hi-bits-to-hi-bits copy which should have
  1548   // happened already as part of a 64-bit move)
  1549   if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
  1550     assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
  1551     assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
  1552     // Shift src_second down to dst_second's low bits.
  1553     if( cbuf ) {
  1554       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1555 #ifndef PRODUCT
  1556     } else if( !do_size ) {
  1557       if( size != 0 ) st->print("\n\t");
  1558       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
  1559 #endif
  1561     return size+4;
  1564   // Check for high word integer store.  Must down-shift the hi bits
  1565   // into a temp register, then fall into the case of storing int bits.
  1566   if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
  1567     // Shift src_second down to dst_second's low bits.
  1568     if( cbuf ) {
  1569       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1570 #ifndef PRODUCT
  1571     } else if( !do_size ) {
  1572       if( size != 0 ) st->print("\n\t");
  1573       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
  1574 #endif
  1576     size+=4;
  1577     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
  1580   // Check for high word integer load
  1581   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
  1582     return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
  1584   // Check for high word integer store
  1585   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
  1586     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
  1588   // Check for high word float store
  1589   if( src_second_rc == rc_float && dst_second_rc == rc_stack )
  1590     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
  1592 #endif // !_LP64
  1594   Unimplemented();
  1597 #ifndef PRODUCT
  1598 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1599   implementation( NULL, ra_, false, st );
  1601 #endif
  1603 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1604   implementation( &cbuf, ra_, false, NULL );
  1607 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1608   return implementation( NULL, ra_, true, NULL );
  1611 //=============================================================================
  1612 #ifndef PRODUCT
  1613 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
  1614   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
  1616 #endif
  1618 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
  1619   MacroAssembler _masm(&cbuf);
  1620   for(int i = 0; i < _count; i += 1) {
  1621     __ nop();
  1625 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
  1626   return 4 * _count;
  1630 //=============================================================================
  1631 #ifndef PRODUCT
  1632 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1633   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1634   int reg = ra_->get_reg_first(this);
  1635   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
  1637 #endif
  1639 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1640   MacroAssembler _masm(&cbuf);
  1641   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
  1642   int reg = ra_->get_encode(this);
  1644   if (Assembler::is_simm13(offset)) {
  1645      __ add(SP, offset, reg_to_register_object(reg));
  1646   } else {
  1647      __ set(offset, O7);
  1648      __ add(SP, O7, reg_to_register_object(reg));
  1652 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1653   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
  1654   assert(ra_ == ra_->C->regalloc(), "sanity");
  1655   return ra_->C->scratch_emit_size(this);
  1658 //=============================================================================
  1659 #ifndef PRODUCT
  1660 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1661   st->print_cr("\nUEP:");
  1662 #ifdef    _LP64
  1663   if (UseCompressedKlassPointers) {
  1664     assert(Universe::heap() != NULL, "java heap should be initialized");
  1665     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
  1666     st->print_cr("\tSLL    R_G5,3,R_G5");
  1667     if (Universe::narrow_klass_base() != NULL)
  1668       st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
  1669   } else {
  1670     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1672   st->print_cr("\tCMP    R_G5,R_G3" );
  1673   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1674 #else  // _LP64
  1675   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1676   st->print_cr("\tCMP    R_G5,R_G3" );
  1677   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1678 #endif // _LP64
  1680 #endif
  1682 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1683   MacroAssembler _masm(&cbuf);
  1684   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
  1685   Register temp_reg   = G3;
  1686   assert( G5_ic_reg != temp_reg, "conflicting registers" );
  1688   // Load klass from receiver
  1689   __ load_klass(O0, temp_reg);
  1690   // Compare against expected klass
  1691   __ cmp(temp_reg, G5_ic_reg);
  1692   // Branch to miss code, checks xcc or icc depending
  1693   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
  1696 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  1697   return MachNode::size(ra_);
  1701 //=============================================================================
  1703 uint size_exception_handler() {
  1704   if (TraceJumps) {
  1705     return (400); // just a guess
  1707   return ( NativeJump::instruction_size ); // sethi;jmp;nop
  1710 uint size_deopt_handler() {
  1711   if (TraceJumps) {
  1712     return (400); // just a guess
  1714   return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
  1717 // Emit exception handler code.
  1718 int emit_exception_handler(CodeBuffer& cbuf) {
  1719   Register temp_reg = G3;
  1720   AddressLiteral exception_blob(OptoRuntime::exception_blob()->entry_point());
  1721   MacroAssembler _masm(&cbuf);
  1723   address base =
  1724   __ start_a_stub(size_exception_handler());
  1725   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1727   int offset = __ offset();
  1729   __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
  1730   __ delayed()->nop();
  1732   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
  1734   __ end_a_stub();
  1736   return offset;
  1739 int emit_deopt_handler(CodeBuffer& cbuf) {
  1740   // Can't use any of the current frame's registers as we may have deopted
  1741   // at a poll and everything (including G3) can be live.
  1742   Register temp_reg = L0;
  1743   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
  1744   MacroAssembler _masm(&cbuf);
  1746   address base =
  1747   __ start_a_stub(size_deopt_handler());
  1748   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1750   int offset = __ offset();
  1751   __ save_frame(0);
  1752   __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
  1753   __ delayed()->restore();
  1755   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
  1757   __ end_a_stub();
  1758   return offset;
  1762 // Given a register encoding, produce a Integer Register object
  1763 static Register reg_to_register_object(int register_encoding) {
  1764   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
  1765   return as_Register(register_encoding);
  1768 // Given a register encoding, produce a single-precision Float Register object
  1769 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
  1770   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
  1771   return as_SingleFloatRegister(register_encoding);
  1774 // Given a register encoding, produce a double-precision Float Register object
  1775 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
  1776   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
  1777   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
  1778   return as_DoubleFloatRegister(register_encoding);
  1781 const bool Matcher::match_rule_supported(int opcode) {
  1782   if (!has_match_rule(opcode))
  1783     return false;
  1785   switch (opcode) {
  1786   case Op_CountLeadingZerosI:
  1787   case Op_CountLeadingZerosL:
  1788   case Op_CountTrailingZerosI:
  1789   case Op_CountTrailingZerosL:
  1790   case Op_PopCountI:
  1791   case Op_PopCountL:
  1792     if (!UsePopCountInstruction)
  1793       return false;
  1794   case Op_CompareAndSwapL:
  1795 #ifdef _LP64
  1796   case Op_CompareAndSwapP:
  1797 #endif
  1798     if (!VM_Version::supports_cx8())
  1799       return false;
  1800     break;
  1803   return true;  // Per default match rules are supported.
  1806 int Matcher::regnum_to_fpu_offset(int regnum) {
  1807   return regnum - 32; // The FP registers are in the second chunk
  1810 #ifdef ASSERT
  1811 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
  1812 #endif
  1814 // Vector width in bytes
  1815 const int Matcher::vector_width_in_bytes(BasicType bt) {
  1816   assert(MaxVectorSize == 8, "");
  1817   return 8;
  1820 // Vector ideal reg
  1821 const int Matcher::vector_ideal_reg(int size) {
  1822   assert(MaxVectorSize == 8, "");
  1823   return Op_RegD;
  1826 const int Matcher::vector_shift_count_ideal_reg(int size) {
  1827   fatal("vector shift is not supported");
  1828   return Node::NotAMachineReg;
  1831 // Limits on vector size (number of elements) loaded into vector.
  1832 const int Matcher::max_vector_size(const BasicType bt) {
  1833   assert(is_java_primitive(bt), "only primitive type vectors");
  1834   return vector_width_in_bytes(bt)/type2aelembytes(bt);
  1837 const int Matcher::min_vector_size(const BasicType bt) {
  1838   return max_vector_size(bt); // Same as max.
  1841 // SPARC doesn't support misaligned vectors store/load.
  1842 const bool Matcher::misaligned_vectors_ok() {
  1843   return false;
  1846 // USII supports fxtof through the whole range of number, USIII doesn't
  1847 const bool Matcher::convL2FSupported(void) {
  1848   return VM_Version::has_fast_fxtof();
  1851 // Is this branch offset short enough that a short branch can be used?
  1852 //
  1853 // NOTE: If the platform does not provide any short branch variants, then
  1854 //       this method should return false for offset 0.
  1855 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
  1856   // The passed offset is relative to address of the branch.
  1857   // Don't need to adjust the offset.
  1858   return UseCBCond && Assembler::is_simm12(offset);
  1861 const bool Matcher::isSimpleConstant64(jlong value) {
  1862   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
  1863   // Depends on optimizations in MacroAssembler::setx.
  1864   int hi = (int)(value >> 32);
  1865   int lo = (int)(value & ~0);
  1866   return (hi == 0) || (hi == -1) || (lo == 0);
  1869 // No scaling for the parameter the ClearArray node.
  1870 const bool Matcher::init_array_count_is_in_bytes = true;
  1872 // Threshold size for cleararray.
  1873 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  1875 // No additional cost for CMOVL.
  1876 const int Matcher::long_cmove_cost() { return 0; }
  1878 // CMOVF/CMOVD are expensive on T4 and on SPARC64.
  1879 const int Matcher::float_cmove_cost() {
  1880   return (VM_Version::is_T4() || VM_Version::is_sparc64()) ? ConditionalMoveLimit : 0;
  1883 // Should the Matcher clone shifts on addressing modes, expecting them to
  1884 // be subsumed into complex addressing expressions or compute them into
  1885 // registers?  True for Intel but false for most RISCs
  1886 const bool Matcher::clone_shift_expressions = false;
  1888 // Do we need to mask the count passed to shift instructions or does
  1889 // the cpu only look at the lower 5/6 bits anyway?
  1890 const bool Matcher::need_masked_shift_count = false;
  1892 bool Matcher::narrow_oop_use_complex_address() {
  1893   NOT_LP64(ShouldNotCallThis());
  1894   assert(UseCompressedOops, "only for compressed oops code");
  1895   return false;
  1898 bool Matcher::narrow_klass_use_complex_address() {
  1899   NOT_LP64(ShouldNotCallThis());
  1900   assert(UseCompressedKlassPointers, "only for compressed klass code");
  1901   return false;
  1904 // Is it better to copy float constants, or load them directly from memory?
  1905 // Intel can load a float constant from a direct address, requiring no
  1906 // extra registers.  Most RISCs will have to materialize an address into a
  1907 // register first, so they would do better to copy the constant from stack.
  1908 const bool Matcher::rematerialize_float_constants = false;
  1910 // If CPU can load and store mis-aligned doubles directly then no fixup is
  1911 // needed.  Else we split the double into 2 integer pieces and move it
  1912 // piece-by-piece.  Only happens when passing doubles into C code as the
  1913 // Java calling convention forces doubles to be aligned.
  1914 #ifdef _LP64
  1915 const bool Matcher::misaligned_doubles_ok = true;
  1916 #else
  1917 const bool Matcher::misaligned_doubles_ok = false;
  1918 #endif
  1920 // No-op on SPARC.
  1921 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  1924 // Advertise here if the CPU requires explicit rounding operations
  1925 // to implement the UseStrictFP mode.
  1926 const bool Matcher::strict_fp_requires_explicit_rounding = false;
  1928 // Are floats conerted to double when stored to stack during deoptimization?
  1929 // Sparc does not handle callee-save floats.
  1930 bool Matcher::float_in_double() { return false; }
  1932 // Do ints take an entire long register or just half?
  1933 // Note that we if-def off of _LP64.
  1934 // The relevant question is how the int is callee-saved.  In _LP64
  1935 // the whole long is written but de-opt'ing will have to extract
  1936 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
  1937 #ifdef _LP64
  1938 const bool Matcher::int_in_long = true;
  1939 #else
  1940 const bool Matcher::int_in_long = false;
  1941 #endif
  1943 // Return whether or not this register is ever used as an argument.  This
  1944 // function is used on startup to build the trampoline stubs in generateOptoStub.
  1945 // Registers not mentioned will be killed by the VM call in the trampoline, and
  1946 // arguments in those registers not be available to the callee.
  1947 bool Matcher::can_be_java_arg( int reg ) {
  1948   // Standard sparc 6 args in registers
  1949   if( reg == R_I0_num ||
  1950       reg == R_I1_num ||
  1951       reg == R_I2_num ||
  1952       reg == R_I3_num ||
  1953       reg == R_I4_num ||
  1954       reg == R_I5_num ) return true;
  1955 #ifdef _LP64
  1956   // 64-bit builds can pass 64-bit pointers and longs in
  1957   // the high I registers
  1958   if( reg == R_I0H_num ||
  1959       reg == R_I1H_num ||
  1960       reg == R_I2H_num ||
  1961       reg == R_I3H_num ||
  1962       reg == R_I4H_num ||
  1963       reg == R_I5H_num ) return true;
  1965   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
  1966     return true;
  1969 #else
  1970   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
  1971   // Longs cannot be passed in O regs, because O regs become I regs
  1972   // after a 'save' and I regs get their high bits chopped off on
  1973   // interrupt.
  1974   if( reg == R_G1H_num || reg == R_G1_num ) return true;
  1975   if( reg == R_G4H_num || reg == R_G4_num ) return true;
  1976 #endif
  1977   // A few float args in registers
  1978   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
  1980   return false;
  1983 bool Matcher::is_spillable_arg( int reg ) {
  1984   return can_be_java_arg(reg);
  1987 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
  1988   // Use hardware SDIVX instruction when it is
  1989   // faster than a code which use multiply.
  1990   return VM_Version::has_fast_idiv();
  1993 // Register for DIVI projection of divmodI
  1994 RegMask Matcher::divI_proj_mask() {
  1995   ShouldNotReachHere();
  1996   return RegMask();
  1999 // Register for MODI projection of divmodI
  2000 RegMask Matcher::modI_proj_mask() {
  2001   ShouldNotReachHere();
  2002   return RegMask();
  2005 // Register for DIVL projection of divmodL
  2006 RegMask Matcher::divL_proj_mask() {
  2007   ShouldNotReachHere();
  2008   return RegMask();
  2011 // Register for MODL projection of divmodL
  2012 RegMask Matcher::modL_proj_mask() {
  2013   ShouldNotReachHere();
  2014   return RegMask();
  2017 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
  2018   return L7_REGP_mask();
  2021 %}
  2024 // The intptr_t operand types, defined by textual substitution.
  2025 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
  2026 #ifdef _LP64
  2027 #define immX      immL
  2028 #define immX13    immL13
  2029 #define immX13m7  immL13m7
  2030 #define iRegX     iRegL
  2031 #define g1RegX    g1RegL
  2032 #else
  2033 #define immX      immI
  2034 #define immX13    immI13
  2035 #define immX13m7  immI13m7
  2036 #define iRegX     iRegI
  2037 #define g1RegX    g1RegI
  2038 #endif
  2040 //----------ENCODING BLOCK-----------------------------------------------------
  2041 // This block specifies the encoding classes used by the compiler to output
  2042 // byte streams.  Encoding classes are parameterized macros used by
  2043 // Machine Instruction Nodes in order to generate the bit encoding of the
  2044 // instruction.  Operands specify their base encoding interface with the
  2045 // interface keyword.  There are currently supported four interfaces,
  2046 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
  2047 // operand to generate a function which returns its register number when
  2048 // queried.   CONST_INTER causes an operand to generate a function which
  2049 // returns the value of the constant when queried.  MEMORY_INTER causes an
  2050 // operand to generate four functions which return the Base Register, the
  2051 // Index Register, the Scale Value, and the Offset Value of the operand when
  2052 // queried.  COND_INTER causes an operand to generate six functions which
  2053 // return the encoding code (ie - encoding bits for the instruction)
  2054 // associated with each basic boolean condition for a conditional instruction.
  2055 //
  2056 // Instructions specify two basic values for encoding.  Again, a function
  2057 // is available to check if the constant displacement is an oop. They use the
  2058 // ins_encode keyword to specify their encoding classes (which must be
  2059 // a sequence of enc_class names, and their parameters, specified in
  2060 // the encoding block), and they use the
  2061 // opcode keyword to specify, in order, their primary, secondary, and
  2062 // tertiary opcode.  Only the opcode sections which a particular instruction
  2063 // needs for encoding need to be specified.
  2064 encode %{
  2065   enc_class enc_untested %{
  2066 #ifdef ASSERT
  2067     MacroAssembler _masm(&cbuf);
  2068     __ untested("encoding");
  2069 #endif
  2070   %}
  2072   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
  2073     emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
  2074                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  2075   %}
  2077   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
  2078     emit_form3_mem_reg(cbuf, this, $primary, -1,
  2079                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  2080   %}
  2082   enc_class form3_mem_prefetch_read( memory mem ) %{
  2083     emit_form3_mem_reg(cbuf, this, $primary, -1,
  2084                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
  2085   %}
  2087   enc_class form3_mem_prefetch_write( memory mem ) %{
  2088     emit_form3_mem_reg(cbuf, this, $primary, -1,
  2089                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
  2090   %}
  2092   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
  2093     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
  2094     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
  2095     guarantee($mem$$index == R_G0_enc, "double index?");
  2096     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
  2097     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
  2098     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
  2099     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
  2100   %}
  2102   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
  2103     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
  2104     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
  2105     guarantee($mem$$index == R_G0_enc, "double index?");
  2106     // Load long with 2 instructions
  2107     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
  2108     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
  2109   %}
  2111   //%%% form3_mem_plus_4_reg is a hack--get rid of it
  2112   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
  2113     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
  2114     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
  2115   %}
  2117   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
  2118     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2119     if( $rs2$$reg != $rd$$reg )
  2120       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
  2121   %}
  2123   // Target lo half of long
  2124   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
  2125     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2126     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
  2127       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
  2128   %}
  2130   // Source lo half of long
  2131   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
  2132     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2133     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
  2134       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
  2135   %}
  2137   // Target hi half of long
  2138   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
  2139     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
  2140   %}
  2142   // Source lo half of long, and leave it sign extended.
  2143   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
  2144     // Sign extend low half
  2145     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
  2146   %}
  2148   // Source hi half of long, and leave it sign extended.
  2149   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
  2150     // Shift high half to low half
  2151     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
  2152   %}
  2154   // Source hi half of long
  2155   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
  2156     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2157     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
  2158       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
  2159   %}
  2161   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
  2162     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
  2163   %}
  2165   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
  2166     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
  2167     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
  2168   %}
  2170   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
  2171     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
  2172     // clear if nothing else is happening
  2173     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
  2174     // blt,a,pn done
  2175     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
  2176     // mov dst,-1 in delay slot
  2177     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2178   %}
  2180   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
  2181     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
  2182   %}
  2184   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
  2185     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
  2186   %}
  2188   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
  2189     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
  2190   %}
  2192   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
  2193     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
  2194   %}
  2196   enc_class move_return_pc_to_o1() %{
  2197     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
  2198   %}
  2200 #ifdef _LP64
  2201   /* %%% merge with enc_to_bool */
  2202   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
  2203     MacroAssembler _masm(&cbuf);
  2205     Register   src_reg = reg_to_register_object($src$$reg);
  2206     Register   dst_reg = reg_to_register_object($dst$$reg);
  2207     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
  2208   %}
  2209 #endif
  2211   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
  2212     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
  2213     MacroAssembler _masm(&cbuf);
  2215     Register   p_reg = reg_to_register_object($p$$reg);
  2216     Register   q_reg = reg_to_register_object($q$$reg);
  2217     Register   y_reg = reg_to_register_object($y$$reg);
  2218     Register tmp_reg = reg_to_register_object($tmp$$reg);
  2220     __ subcc( p_reg, q_reg,   p_reg );
  2221     __ add  ( p_reg, y_reg, tmp_reg );
  2222     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
  2223   %}
  2225   enc_class form_d2i_helper(regD src, regF dst) %{
  2226     // fcmp %fcc0,$src,$src
  2227     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2228     // branch %fcc0 not-nan, predict taken
  2229     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2230     // fdtoi $src,$dst
  2231     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
  2232     // fitos $dst,$dst (if nan)
  2233     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2234     // clear $dst (if nan)
  2235     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2236     // carry on here...
  2237   %}
  2239   enc_class form_d2l_helper(regD src, regD dst) %{
  2240     // fcmp %fcc0,$src,$src  check for NAN
  2241     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2242     // branch %fcc0 not-nan, predict taken
  2243     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2244     // fdtox $src,$dst   convert in delay slot
  2245     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
  2246     // fxtod $dst,$dst  (if nan)
  2247     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2248     // clear $dst (if nan)
  2249     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2250     // carry on here...
  2251   %}
  2253   enc_class form_f2i_helper(regF src, regF dst) %{
  2254     // fcmps %fcc0,$src,$src
  2255     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2256     // branch %fcc0 not-nan, predict taken
  2257     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2258     // fstoi $src,$dst
  2259     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
  2260     // fitos $dst,$dst (if nan)
  2261     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2262     // clear $dst (if nan)
  2263     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2264     // carry on here...
  2265   %}
  2267   enc_class form_f2l_helper(regF src, regD dst) %{
  2268     // fcmps %fcc0,$src,$src
  2269     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2270     // branch %fcc0 not-nan, predict taken
  2271     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2272     // fstox $src,$dst
  2273     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
  2274     // fxtod $dst,$dst (if nan)
  2275     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2276     // clear $dst (if nan)
  2277     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2278     // carry on here...
  2279   %}
  2281   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2282   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2283   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2284   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2286   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
  2288   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2289   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
  2291   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
  2292     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2293   %}
  2295   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
  2296     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2297   %}
  2299   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
  2300     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2301   %}
  2303   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
  2304     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2305   %}
  2307   enc_class form3_convI2F(regF rs2, regF rd) %{
  2308     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
  2309   %}
  2311   // Encloding class for traceable jumps
  2312   enc_class form_jmpl(g3RegP dest) %{
  2313     emit_jmpl(cbuf, $dest$$reg);
  2314   %}
  2316   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
  2317     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
  2318   %}
  2320   enc_class form2_nop() %{
  2321     emit_nop(cbuf);
  2322   %}
  2324   enc_class form2_illtrap() %{
  2325     emit_illtrap(cbuf);
  2326   %}
  2329   // Compare longs and convert into -1, 0, 1.
  2330   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
  2331     // CMP $src1,$src2
  2332     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
  2333     // blt,a,pn done
  2334     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
  2335     // mov dst,-1 in delay slot
  2336     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2337     // bgt,a,pn done
  2338     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
  2339     // mov dst,1 in delay slot
  2340     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
  2341     // CLR    $dst
  2342     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
  2343   %}
  2345   enc_class enc_PartialSubtypeCheck() %{
  2346     MacroAssembler _masm(&cbuf);
  2347     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
  2348     __ delayed()->nop();
  2349   %}
  2351   enc_class enc_bp( label labl, cmpOp cmp, flagsReg cc ) %{
  2352     MacroAssembler _masm(&cbuf);
  2353     Label* L = $labl$$label;
  2354     Assembler::Predict predict_taken =
  2355       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  2357     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  2358     __ delayed()->nop();
  2359   %}
  2361   enc_class enc_bpr( label labl, cmpOp_reg cmp, iRegI op1 ) %{
  2362     MacroAssembler _masm(&cbuf);
  2363     Label* L = $labl$$label;
  2364     Assembler::Predict predict_taken =
  2365       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  2367     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), *L);
  2368     __ delayed()->nop();
  2369   %}
  2371   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
  2372     int op = (Assembler::arith_op << 30) |
  2373              ($dst$$reg << 25) |
  2374              (Assembler::movcc_op3 << 19) |
  2375              (1 << 18) |                    // cc2 bit for 'icc'
  2376              ($cmp$$cmpcode << 14) |
  2377              (0 << 13) |                    // select register move
  2378              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
  2379              ($src$$reg << 0);
  2380     cbuf.insts()->emit_int32(op);
  2381   %}
  2383   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
  2384     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2385     int op = (Assembler::arith_op << 30) |
  2386              ($dst$$reg << 25) |
  2387              (Assembler::movcc_op3 << 19) |
  2388              (1 << 18) |                    // cc2 bit for 'icc'
  2389              ($cmp$$cmpcode << 14) |
  2390              (1 << 13) |                    // select immediate move
  2391              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
  2392              (simm11 << 0);
  2393     cbuf.insts()->emit_int32(op);
  2394   %}
  2396   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
  2397     int op = (Assembler::arith_op << 30) |
  2398              ($dst$$reg << 25) |
  2399              (Assembler::movcc_op3 << 19) |
  2400              (0 << 18) |                    // cc2 bit for 'fccX'
  2401              ($cmp$$cmpcode << 14) |
  2402              (0 << 13) |                    // select register move
  2403              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2404              ($src$$reg << 0);
  2405     cbuf.insts()->emit_int32(op);
  2406   %}
  2408   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
  2409     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2410     int op = (Assembler::arith_op << 30) |
  2411              ($dst$$reg << 25) |
  2412              (Assembler::movcc_op3 << 19) |
  2413              (0 << 18) |                    // cc2 bit for 'fccX'
  2414              ($cmp$$cmpcode << 14) |
  2415              (1 << 13) |                    // select immediate move
  2416              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2417              (simm11 << 0);
  2418     cbuf.insts()->emit_int32(op);
  2419   %}
  2421   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
  2422     int op = (Assembler::arith_op << 30) |
  2423              ($dst$$reg << 25) |
  2424              (Assembler::fpop2_op3 << 19) |
  2425              (0 << 18) |
  2426              ($cmp$$cmpcode << 14) |
  2427              (1 << 13) |                    // select register move
  2428              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
  2429              ($primary << 5) |              // select single, double or quad
  2430              ($src$$reg << 0);
  2431     cbuf.insts()->emit_int32(op);
  2432   %}
  2434   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
  2435     int op = (Assembler::arith_op << 30) |
  2436              ($dst$$reg << 25) |
  2437              (Assembler::fpop2_op3 << 19) |
  2438              (0 << 18) |
  2439              ($cmp$$cmpcode << 14) |
  2440              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
  2441              ($primary << 5) |              // select single, double or quad
  2442              ($src$$reg << 0);
  2443     cbuf.insts()->emit_int32(op);
  2444   %}
  2446   // Used by the MIN/MAX encodings.  Same as a CMOV, but
  2447   // the condition comes from opcode-field instead of an argument.
  2448   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
  2449     int op = (Assembler::arith_op << 30) |
  2450              ($dst$$reg << 25) |
  2451              (Assembler::movcc_op3 << 19) |
  2452              (1 << 18) |                    // cc2 bit for 'icc'
  2453              ($primary << 14) |
  2454              (0 << 13) |                    // select register move
  2455              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2456              ($src$$reg << 0);
  2457     cbuf.insts()->emit_int32(op);
  2458   %}
  2460   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
  2461     int op = (Assembler::arith_op << 30) |
  2462              ($dst$$reg << 25) |
  2463              (Assembler::movcc_op3 << 19) |
  2464              (6 << 16) |                    // cc2 bit for 'xcc'
  2465              ($primary << 14) |
  2466              (0 << 13) |                    // select register move
  2467              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2468              ($src$$reg << 0);
  2469     cbuf.insts()->emit_int32(op);
  2470   %}
  2472   enc_class Set13( immI13 src, iRegI rd ) %{
  2473     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
  2474   %}
  2476   enc_class SetHi22( immI src, iRegI rd ) %{
  2477     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
  2478   %}
  2480   enc_class Set32( immI src, iRegI rd ) %{
  2481     MacroAssembler _masm(&cbuf);
  2482     __ set($src$$constant, reg_to_register_object($rd$$reg));
  2483   %}
  2485   enc_class call_epilog %{
  2486     if( VerifyStackAtCalls ) {
  2487       MacroAssembler _masm(&cbuf);
  2488       int framesize = ra_->C->frame_slots() << LogBytesPerInt;
  2489       Register temp_reg = G3;
  2490       __ add(SP, framesize, temp_reg);
  2491       __ cmp(temp_reg, FP);
  2492       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
  2494   %}
  2496   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
  2497   // to G1 so the register allocator will not have to deal with the misaligned register
  2498   // pair.
  2499   enc_class adjust_long_from_native_call %{
  2500 #ifndef _LP64
  2501     if (returns_long()) {
  2502       //    sllx  O0,32,O0
  2503       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
  2504       //    srl   O1,0,O1
  2505       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
  2506       //    or    O0,O1,G1
  2507       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
  2509 #endif
  2510   %}
  2512   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
  2513     // CALL directly to the runtime
  2514     // The user of this is responsible for ensuring that R_L7 is empty (killed).
  2515     emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
  2516                     /*preserve_g2=*/true);
  2517   %}
  2519   enc_class preserve_SP %{
  2520     MacroAssembler _masm(&cbuf);
  2521     __ mov(SP, L7_mh_SP_save);
  2522   %}
  2524   enc_class restore_SP %{
  2525     MacroAssembler _masm(&cbuf);
  2526     __ mov(L7_mh_SP_save, SP);
  2527   %}
  2529   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
  2530     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  2531     // who we intended to call.
  2532     if (!_method) {
  2533       emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
  2534     } else if (_optimized_virtual) {
  2535       emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
  2536     } else {
  2537       emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
  2539     if (_method) {  // Emit stub for static call.
  2540       CompiledStaticCall::emit_to_interp_stub(cbuf);
  2542   %}
  2544   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
  2545     MacroAssembler _masm(&cbuf);
  2546     __ set_inst_mark();
  2547     int vtable_index = this->_vtable_index;
  2548     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
  2549     if (vtable_index < 0) {
  2550       // must be invalid_vtable_index, not nonvirtual_vtable_index
  2551       assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
  2552       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2553       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
  2554       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
  2555       __ ic_call((address)$meth$$method);
  2556     } else {
  2557       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
  2558       // Just go thru the vtable
  2559       // get receiver klass (receiver already checked for non-null)
  2560       // If we end up going thru a c2i adapter interpreter expects method in G5
  2561       int off = __ offset();
  2562       __ load_klass(O0, G3_scratch);
  2563       int klass_load_size;
  2564       if (UseCompressedKlassPointers) {
  2565         assert(Universe::heap() != NULL, "java heap should be initialized");
  2566         if (Universe::narrow_klass_base() == NULL)
  2567           klass_load_size = 2*BytesPerInstWord;
  2568         else
  2569           klass_load_size = 3*BytesPerInstWord;
  2570       } else {
  2571         klass_load_size = 1*BytesPerInstWord;
  2573       int entry_offset = InstanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
  2574       int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
  2575       if (Assembler::is_simm13(v_off)) {
  2576         __ ld_ptr(G3, v_off, G5_method);
  2577       } else {
  2578         // Generate 2 instructions
  2579         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
  2580         __ or3(G5_method, v_off & 0x3ff, G5_method);
  2581         // ld_ptr, set_hi, set
  2582         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
  2583                "Unexpected instruction size(s)");
  2584         __ ld_ptr(G3, G5_method, G5_method);
  2586       // NOTE: for vtable dispatches, the vtable entry will never be null.
  2587       // However it may very well end up in handle_wrong_method if the
  2588       // method is abstract for the particular class.
  2589       __ ld_ptr(G5_method, in_bytes(Method::from_compiled_offset()), G3_scratch);
  2590       // jump to target (either compiled code or c2iadapter)
  2591       __ jmpl(G3_scratch, G0, O7);
  2592       __ delayed()->nop();
  2594   %}
  2596   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
  2597     MacroAssembler _masm(&cbuf);
  2599     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2600     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
  2601                               // we might be calling a C2I adapter which needs it.
  2603     assert(temp_reg != G5_ic_reg, "conflicting registers");
  2604     // Load nmethod
  2605     __ ld_ptr(G5_ic_reg, in_bytes(Method::from_compiled_offset()), temp_reg);
  2607     // CALL to compiled java, indirect the contents of G3
  2608     __ set_inst_mark();
  2609     __ callr(temp_reg, G0);
  2610     __ delayed()->nop();
  2611   %}
  2613 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
  2614     MacroAssembler _masm(&cbuf);
  2615     Register Rdividend = reg_to_register_object($src1$$reg);
  2616     Register Rdivisor = reg_to_register_object($src2$$reg);
  2617     Register Rresult = reg_to_register_object($dst$$reg);
  2619     __ sra(Rdivisor, 0, Rdivisor);
  2620     __ sra(Rdividend, 0, Rdividend);
  2621     __ sdivx(Rdividend, Rdivisor, Rresult);
  2622 %}
  2624 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
  2625     MacroAssembler _masm(&cbuf);
  2627     Register Rdividend = reg_to_register_object($src1$$reg);
  2628     int divisor = $imm$$constant;
  2629     Register Rresult = reg_to_register_object($dst$$reg);
  2631     __ sra(Rdividend, 0, Rdividend);
  2632     __ sdivx(Rdividend, divisor, Rresult);
  2633 %}
  2635 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
  2636     MacroAssembler _masm(&cbuf);
  2637     Register Rsrc1 = reg_to_register_object($src1$$reg);
  2638     Register Rsrc2 = reg_to_register_object($src2$$reg);
  2639     Register Rdst  = reg_to_register_object($dst$$reg);
  2641     __ sra( Rsrc1, 0, Rsrc1 );
  2642     __ sra( Rsrc2, 0, Rsrc2 );
  2643     __ mulx( Rsrc1, Rsrc2, Rdst );
  2644     __ srlx( Rdst, 32, Rdst );
  2645 %}
  2647 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
  2648     MacroAssembler _masm(&cbuf);
  2649     Register Rdividend = reg_to_register_object($src1$$reg);
  2650     Register Rdivisor = reg_to_register_object($src2$$reg);
  2651     Register Rresult = reg_to_register_object($dst$$reg);
  2652     Register Rscratch = reg_to_register_object($scratch$$reg);
  2654     assert(Rdividend != Rscratch, "");
  2655     assert(Rdivisor  != Rscratch, "");
  2657     __ sra(Rdividend, 0, Rdividend);
  2658     __ sra(Rdivisor, 0, Rdivisor);
  2659     __ sdivx(Rdividend, Rdivisor, Rscratch);
  2660     __ mulx(Rscratch, Rdivisor, Rscratch);
  2661     __ sub(Rdividend, Rscratch, Rresult);
  2662 %}
  2664 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
  2665     MacroAssembler _masm(&cbuf);
  2667     Register Rdividend = reg_to_register_object($src1$$reg);
  2668     int divisor = $imm$$constant;
  2669     Register Rresult = reg_to_register_object($dst$$reg);
  2670     Register Rscratch = reg_to_register_object($scratch$$reg);
  2672     assert(Rdividend != Rscratch, "");
  2674     __ sra(Rdividend, 0, Rdividend);
  2675     __ sdivx(Rdividend, divisor, Rscratch);
  2676     __ mulx(Rscratch, divisor, Rscratch);
  2677     __ sub(Rdividend, Rscratch, Rresult);
  2678 %}
  2680 enc_class fabss (sflt_reg dst, sflt_reg src) %{
  2681     MacroAssembler _masm(&cbuf);
  2683     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2684     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2686     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
  2687 %}
  2689 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
  2690     MacroAssembler _masm(&cbuf);
  2692     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2693     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2695     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
  2696 %}
  2698 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
  2699     MacroAssembler _masm(&cbuf);
  2701     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2702     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2704     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
  2705 %}
  2707 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
  2708     MacroAssembler _masm(&cbuf);
  2710     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2711     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2713     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
  2714 %}
  2716 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
  2717     MacroAssembler _masm(&cbuf);
  2719     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2720     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2722     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
  2723 %}
  2725 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
  2726     MacroAssembler _masm(&cbuf);
  2728     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2729     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2731     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
  2732 %}
  2734 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
  2735     MacroAssembler _masm(&cbuf);
  2737     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2738     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2740     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
  2741 %}
  2743 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2744     MacroAssembler _masm(&cbuf);
  2746     Register Roop  = reg_to_register_object($oop$$reg);
  2747     Register Rbox  = reg_to_register_object($box$$reg);
  2748     Register Rscratch = reg_to_register_object($scratch$$reg);
  2749     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2751     assert(Roop  != Rscratch, "");
  2752     assert(Roop  != Rmark, "");
  2753     assert(Rbox  != Rscratch, "");
  2754     assert(Rbox  != Rmark, "");
  2756     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
  2757 %}
  2759 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2760     MacroAssembler _masm(&cbuf);
  2762     Register Roop  = reg_to_register_object($oop$$reg);
  2763     Register Rbox  = reg_to_register_object($box$$reg);
  2764     Register Rscratch = reg_to_register_object($scratch$$reg);
  2765     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2767     assert(Roop  != Rscratch, "");
  2768     assert(Roop  != Rmark, "");
  2769     assert(Rbox  != Rscratch, "");
  2770     assert(Rbox  != Rmark, "");
  2772     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
  2773   %}
  2775   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
  2776     MacroAssembler _masm(&cbuf);
  2777     Register Rmem = reg_to_register_object($mem$$reg);
  2778     Register Rold = reg_to_register_object($old$$reg);
  2779     Register Rnew = reg_to_register_object($new$$reg);
  2781     // casx_under_lock picks 1 of 3 encodings:
  2782     // For 32-bit pointers you get a 32-bit CAS
  2783     // For 64-bit pointers you get a 64-bit CASX
  2784     __ casn(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
  2785     __ cmp( Rold, Rnew );
  2786   %}
  2788   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
  2789     Register Rmem = reg_to_register_object($mem$$reg);
  2790     Register Rold = reg_to_register_object($old$$reg);
  2791     Register Rnew = reg_to_register_object($new$$reg);
  2793     MacroAssembler _masm(&cbuf);
  2794     __ mov(Rnew, O7);
  2795     __ casx(Rmem, Rold, O7);
  2796     __ cmp( Rold, O7 );
  2797   %}
  2799   // raw int cas, used for compareAndSwap
  2800   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
  2801     Register Rmem = reg_to_register_object($mem$$reg);
  2802     Register Rold = reg_to_register_object($old$$reg);
  2803     Register Rnew = reg_to_register_object($new$$reg);
  2805     MacroAssembler _masm(&cbuf);
  2806     __ mov(Rnew, O7);
  2807     __ cas(Rmem, Rold, O7);
  2808     __ cmp( Rold, O7 );
  2809   %}
  2811   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
  2812     Register Rres = reg_to_register_object($res$$reg);
  2814     MacroAssembler _masm(&cbuf);
  2815     __ mov(1, Rres);
  2816     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
  2817   %}
  2819   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
  2820     Register Rres = reg_to_register_object($res$$reg);
  2822     MacroAssembler _masm(&cbuf);
  2823     __ mov(1, Rres);
  2824     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
  2825   %}
  2827   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
  2828     MacroAssembler _masm(&cbuf);
  2829     Register Rdst = reg_to_register_object($dst$$reg);
  2830     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
  2831                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
  2832     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
  2833                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
  2835     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
  2836     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
  2837   %}
  2840   enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result) %{
  2841     Label Ldone, Lloop;
  2842     MacroAssembler _masm(&cbuf);
  2844     Register   str1_reg = reg_to_register_object($str1$$reg);
  2845     Register   str2_reg = reg_to_register_object($str2$$reg);
  2846     Register   cnt1_reg = reg_to_register_object($cnt1$$reg);
  2847     Register   cnt2_reg = reg_to_register_object($cnt2$$reg);
  2848     Register result_reg = reg_to_register_object($result$$reg);
  2850     assert(result_reg != str1_reg &&
  2851            result_reg != str2_reg &&
  2852            result_reg != cnt1_reg &&
  2853            result_reg != cnt2_reg ,
  2854            "need different registers");
  2856     // Compute the minimum of the string lengths(str1_reg) and the
  2857     // difference of the string lengths (stack)
  2859     // See if the lengths are different, and calculate min in str1_reg.
  2860     // Stash diff in O7 in case we need it for a tie-breaker.
  2861     Label Lskip;
  2862     __ subcc(cnt1_reg, cnt2_reg, O7);
  2863     __ sll(cnt1_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
  2864     __ br(Assembler::greater, true, Assembler::pt, Lskip);
  2865     // cnt2 is shorter, so use its count:
  2866     __ delayed()->sll(cnt2_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
  2867     __ bind(Lskip);
  2869     // reallocate cnt1_reg, cnt2_reg, result_reg
  2870     // Note:  limit_reg holds the string length pre-scaled by 2
  2871     Register limit_reg =   cnt1_reg;
  2872     Register  chr2_reg =   cnt2_reg;
  2873     Register  chr1_reg = result_reg;
  2874     // str{12} are the base pointers
  2876     // Is the minimum length zero?
  2877     __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
  2878     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2879     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2881     // Load first characters
  2882     __ lduh(str1_reg, 0, chr1_reg);
  2883     __ lduh(str2_reg, 0, chr2_reg);
  2885     // Compare first characters
  2886     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2887     __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
  2888     assert(chr1_reg == result_reg, "result must be pre-placed");
  2889     __ delayed()->nop();
  2892       // Check after comparing first character to see if strings are equivalent
  2893       Label LSkip2;
  2894       // Check if the strings start at same location
  2895       __ cmp(str1_reg, str2_reg);
  2896       __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
  2897       __ delayed()->nop();
  2899       // Check if the length difference is zero (in O7)
  2900       __ cmp(G0, O7);
  2901       __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2902       __ delayed()->mov(G0, result_reg);  // result is zero
  2904       // Strings might not be equal
  2905       __ bind(LSkip2);
  2908     __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
  2909     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2910     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2912     // Shift str1_reg and str2_reg to the end of the arrays, negate limit
  2913     __ add(str1_reg, limit_reg, str1_reg);
  2914     __ add(str2_reg, limit_reg, str2_reg);
  2915     __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
  2917     // Compare the rest of the characters
  2918     __ lduh(str1_reg, limit_reg, chr1_reg);
  2919     __ bind(Lloop);
  2920     // __ lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2921     __ lduh(str2_reg, limit_reg, chr2_reg);
  2922     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2923     __ br(Assembler::notZero, false, Assembler::pt, Ldone);
  2924     assert(chr1_reg == result_reg, "result must be pre-placed");
  2925     __ delayed()->inccc(limit_reg, sizeof(jchar));
  2926     // annul LDUH if branch is not taken to prevent access past end of string
  2927     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
  2928     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2930     // If strings are equal up to min length, return the length difference.
  2931     __ mov(O7, result_reg);
  2933     // Otherwise, return the difference between the first mismatched chars.
  2934     __ bind(Ldone);
  2935   %}
  2937 enc_class enc_String_Equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result) %{
  2938     Label Lword_loop, Lpost_word, Lchar, Lchar_loop, Ldone;
  2939     MacroAssembler _masm(&cbuf);
  2941     Register   str1_reg = reg_to_register_object($str1$$reg);
  2942     Register   str2_reg = reg_to_register_object($str2$$reg);
  2943     Register    cnt_reg = reg_to_register_object($cnt$$reg);
  2944     Register   tmp1_reg = O7;
  2945     Register result_reg = reg_to_register_object($result$$reg);
  2947     assert(result_reg != str1_reg &&
  2948            result_reg != str2_reg &&
  2949            result_reg !=  cnt_reg &&
  2950            result_reg != tmp1_reg ,
  2951            "need different registers");
  2953     __ cmp(str1_reg, str2_reg); //same char[] ?
  2954     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
  2955     __ delayed()->add(G0, 1, result_reg);
  2957     __ cmp_zero_and_br(Assembler::zero, cnt_reg, Ldone, true, Assembler::pn);
  2958     __ delayed()->add(G0, 1, result_reg); // count == 0
  2960     //rename registers
  2961     Register limit_reg =    cnt_reg;
  2962     Register  chr1_reg = result_reg;
  2963     Register  chr2_reg =   tmp1_reg;
  2965     //check for alignment and position the pointers to the ends
  2966     __ or3(str1_reg, str2_reg, chr1_reg);
  2967     __ andcc(chr1_reg, 0x3, chr1_reg);
  2968     // notZero means at least one not 4-byte aligned.
  2969     // We could optimize the case when both arrays are not aligned
  2970     // but it is not frequent case and it requires additional checks.
  2971     __ br(Assembler::notZero, false, Assembler::pn, Lchar); // char by char compare
  2972     __ delayed()->sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg); // set byte count
  2974     // Compare char[] arrays aligned to 4 bytes.
  2975     __ char_arrays_equals(str1_reg, str2_reg, limit_reg, result_reg,
  2976                           chr1_reg, chr2_reg, Ldone);
  2977     __ ba(Ldone);
  2978     __ delayed()->add(G0, 1, result_reg);
  2980     // char by char compare
  2981     __ bind(Lchar);
  2982     __ add(str1_reg, limit_reg, str1_reg);
  2983     __ add(str2_reg, limit_reg, str2_reg);
  2984     __ neg(limit_reg); //negate count
  2986     __ lduh(str1_reg, limit_reg, chr1_reg);
  2987     // Lchar_loop
  2988     __ bind(Lchar_loop);
  2989     __ lduh(str2_reg, limit_reg, chr2_reg);
  2990     __ cmp(chr1_reg, chr2_reg);
  2991     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
  2992     __ delayed()->mov(G0, result_reg); //not equal
  2993     __ inccc(limit_reg, sizeof(jchar));
  2994     // annul LDUH if branch is not taken to prevent access past end of string
  2995     __ br(Assembler::notZero, true, Assembler::pt, Lchar_loop);
  2996     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2998     __ add(G0, 1, result_reg);  //equal
  3000     __ bind(Ldone);
  3001   %}
  3003 enc_class enc_Array_Equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, notemp_iRegI result) %{
  3004     Label Lvector, Ldone, Lloop;
  3005     MacroAssembler _masm(&cbuf);
  3007     Register   ary1_reg = reg_to_register_object($ary1$$reg);
  3008     Register   ary2_reg = reg_to_register_object($ary2$$reg);
  3009     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
  3010     Register   tmp2_reg = O7;
  3011     Register result_reg = reg_to_register_object($result$$reg);
  3013     int length_offset  = arrayOopDesc::length_offset_in_bytes();
  3014     int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
  3016     // return true if the same array
  3017     __ cmp(ary1_reg, ary2_reg);
  3018     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
  3019     __ delayed()->add(G0, 1, result_reg); // equal
  3021     __ br_null(ary1_reg, true, Assembler::pn, Ldone);
  3022     __ delayed()->mov(G0, result_reg);    // not equal
  3024     __ br_null(ary2_reg, true, Assembler::pn, Ldone);
  3025     __ delayed()->mov(G0, result_reg);    // not equal
  3027     //load the lengths of arrays
  3028     __ ld(Address(ary1_reg, length_offset), tmp1_reg);
  3029     __ ld(Address(ary2_reg, length_offset), tmp2_reg);
  3031     // return false if the two arrays are not equal length
  3032     __ cmp(tmp1_reg, tmp2_reg);
  3033     __ br(Assembler::notEqual, true, Assembler::pn, Ldone);
  3034     __ delayed()->mov(G0, result_reg);     // not equal
  3036     __ cmp_zero_and_br(Assembler::zero, tmp1_reg, Ldone, true, Assembler::pn);
  3037     __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
  3039     // load array addresses
  3040     __ add(ary1_reg, base_offset, ary1_reg);
  3041     __ add(ary2_reg, base_offset, ary2_reg);
  3043     // renaming registers
  3044     Register chr1_reg  =  result_reg; // for characters in ary1
  3045     Register chr2_reg  =  tmp2_reg;   // for characters in ary2
  3046     Register limit_reg =  tmp1_reg;   // length
  3048     // set byte count
  3049     __ sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg);
  3051     // Compare char[] arrays aligned to 4 bytes.
  3052     __ char_arrays_equals(ary1_reg, ary2_reg, limit_reg, result_reg,
  3053                           chr1_reg, chr2_reg, Ldone);
  3054     __ add(G0, 1, result_reg); // equals
  3056     __ bind(Ldone);
  3057   %}
  3059   enc_class enc_rethrow() %{
  3060     cbuf.set_insts_mark();
  3061     Register temp_reg = G3;
  3062     AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
  3063     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
  3064     MacroAssembler _masm(&cbuf);
  3065 #ifdef ASSERT
  3066     __ save_frame(0);
  3067     AddressLiteral last_rethrow_addrlit(&last_rethrow);
  3068     __ sethi(last_rethrow_addrlit, L1);
  3069     Address addr(L1, last_rethrow_addrlit.low10());
  3070     __ get_pc(L2);
  3071     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
  3072     __ st_ptr(L2, addr);
  3073     __ restore();
  3074 #endif
  3075     __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
  3076     __ delayed()->nop();
  3077   %}
  3079   enc_class emit_mem_nop() %{
  3080     // Generates the instruction LDUXA [o6,g0],#0x82,g0
  3081     cbuf.insts()->emit_int32((unsigned int) 0xc0839040);
  3082   %}
  3084   enc_class emit_fadd_nop() %{
  3085     // Generates the instruction FMOVS f31,f31
  3086     cbuf.insts()->emit_int32((unsigned int) 0xbfa0003f);
  3087   %}
  3089   enc_class emit_br_nop() %{
  3090     // Generates the instruction BPN,PN .
  3091     cbuf.insts()->emit_int32((unsigned int) 0x00400000);
  3092   %}
  3094   enc_class enc_membar_acquire %{
  3095     MacroAssembler _masm(&cbuf);
  3096     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
  3097   %}
  3099   enc_class enc_membar_release %{
  3100     MacroAssembler _masm(&cbuf);
  3101     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
  3102   %}
  3104   enc_class enc_membar_volatile %{
  3105     MacroAssembler _masm(&cbuf);
  3106     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
  3107   %}
  3109 %}
  3111 //----------FRAME--------------------------------------------------------------
  3112 // Definition of frame structure and management information.
  3113 //
  3114 //  S T A C K   L A Y O U T    Allocators stack-slot number
  3115 //                             |   (to get allocators register number
  3116 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
  3117 //  r   CALLER     |        |
  3118 //  o     |        +--------+      pad to even-align allocators stack-slot
  3119 //  w     V        |  pad0  |        numbers; owned by CALLER
  3120 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  3121 //  h     ^        |   in   |  5
  3122 //        |        |  args  |  4   Holes in incoming args owned by SELF
  3123 //  |     |        |        |  3
  3124 //  |     |        +--------+
  3125 //  V     |        | old out|      Empty on Intel, window on Sparc
  3126 //        |    old |preserve|      Must be even aligned.
  3127 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
  3128 //        |        |   in   |  3   area for Intel ret address
  3129 //     Owned by    |preserve|      Empty on Sparc.
  3130 //       SELF      +--------+
  3131 //        |        |  pad2  |  2   pad to align old SP
  3132 //        |        +--------+  1
  3133 //        |        | locks  |  0
  3134 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
  3135 //        |        |  pad1  | 11   pad to align new SP
  3136 //        |        +--------+
  3137 //        |        |        | 10
  3138 //        |        | spills |  9   spills
  3139 //        V        |        |  8   (pad0 slot for callee)
  3140 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  3141 //        ^        |  out   |  7
  3142 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  3143 //     Owned by    +--------+
  3144 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
  3145 //        |    new |preserve|      Must be even-aligned.
  3146 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
  3147 //        |        |        |
  3148 //
  3149 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
  3150 //         known from SELF's arguments and the Java calling convention.
  3151 //         Region 6-7 is determined per call site.
  3152 // Note 2: If the calling convention leaves holes in the incoming argument
  3153 //         area, those holes are owned by SELF.  Holes in the outgoing area
  3154 //         are owned by the CALLEE.  Holes should not be nessecary in the
  3155 //         incoming area, as the Java calling convention is completely under
  3156 //         the control of the AD file.  Doubles can be sorted and packed to
  3157 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  3158 //         varargs C calling conventions.
  3159 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
  3160 //         even aligned with pad0 as needed.
  3161 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  3162 //         region 6-11 is even aligned; it may be padded out more so that
  3163 //         the region from SP to FP meets the minimum stack alignment.
  3165 frame %{
  3166   // What direction does stack grow in (assumed to be same for native & Java)
  3167   stack_direction(TOWARDS_LOW);
  3169   // These two registers define part of the calling convention
  3170   // between compiled code and the interpreter.
  3171   inline_cache_reg(R_G5);                // Inline Cache Register or Method* for I2C
  3172   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
  3174   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  3175   cisc_spilling_operand_name(indOffset);
  3177   // Number of stack slots consumed by a Monitor enter
  3178 #ifdef _LP64
  3179   sync_stack_slots(2);
  3180 #else
  3181   sync_stack_slots(1);
  3182 #endif
  3184   // Compiled code's Frame Pointer
  3185   frame_pointer(R_SP);
  3187   // Stack alignment requirement
  3188   stack_alignment(StackAlignmentInBytes);
  3189   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
  3190   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
  3192   // Number of stack slots between incoming argument block and the start of
  3193   // a new frame.  The PROLOG must add this many slots to the stack.  The
  3194   // EPILOG must remove this many slots.
  3195   in_preserve_stack_slots(0);
  3197   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  3198   // for calls to C.  Supports the var-args backing area for register parms.
  3199   // ADLC doesn't support parsing expressions, so I folded the math by hand.
  3200 #ifdef _LP64
  3201   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
  3202   varargs_C_out_slots_killed(12);
  3203 #else
  3204   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
  3205   varargs_C_out_slots_killed( 7);
  3206 #endif
  3208   // The after-PROLOG location of the return address.  Location of
  3209   // return address specifies a type (REG or STACK) and a number
  3210   // representing the register number (i.e. - use a register name) or
  3211   // stack slot.
  3212   return_addr(REG R_I7);          // Ret Addr is in register I7
  3214   // Body of function which returns an OptoRegs array locating
  3215   // arguments either in registers or in stack slots for calling
  3216   // java
  3217   calling_convention %{
  3218     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
  3220   %}
  3222   // Body of function which returns an OptoRegs array locating
  3223   // arguments either in registers or in stack slots for callin
  3224   // C.
  3225   c_calling_convention %{
  3226     // This is obviously always outgoing
  3227     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
  3228   %}
  3230   // Location of native (C/C++) and interpreter return values.  This is specified to
  3231   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
  3232   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
  3233   // to and from the register pairs is done by the appropriate call and epilog
  3234   // opcodes.  This simplifies the register allocator.
  3235   c_return_value %{
  3236     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3237 #ifdef     _LP64
  3238     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3239     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3240     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3241     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3242 #else  // !_LP64
  3243     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3244     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3245     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3246     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3247 #endif
  3248     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3249                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3250   %}
  3252   // Location of compiled Java return values.  Same as C
  3253   return_value %{
  3254     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3255 #ifdef     _LP64
  3256     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3257     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3258     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3259     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3260 #else  // !_LP64
  3261     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3262     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3263     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3264     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3265 #endif
  3266     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3267                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3268   %}
  3270 %}
  3273 //----------ATTRIBUTES---------------------------------------------------------
  3274 //----------Operand Attributes-------------------------------------------------
  3275 op_attrib op_cost(1);          // Required cost attribute
  3277 //----------Instruction Attributes---------------------------------------------
  3278 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
  3279 ins_attrib ins_size(32);           // Required size attribute (in bits)
  3280 ins_attrib ins_avoid_back_to_back(0); // instruction should not be generated back to back
  3281 ins_attrib ins_short_branch(0);    // Required flag: is this instruction a
  3282                                    // non-matching short branch variant of some
  3283                                                             // long branch?
  3285 //----------OPERANDS-----------------------------------------------------------
  3286 // Operand definitions must precede instruction definitions for correct parsing
  3287 // in the ADLC because operands constitute user defined types which are used in
  3288 // instruction definitions.
  3290 //----------Simple Operands----------------------------------------------------
  3291 // Immediate Operands
  3292 // Integer Immediate: 32-bit
  3293 operand immI() %{
  3294   match(ConI);
  3296   op_cost(0);
  3297   // formats are generated automatically for constants and base registers
  3298   format %{ %}
  3299   interface(CONST_INTER);
  3300 %}
  3302 // Integer Immediate: 8-bit
  3303 operand immI8() %{
  3304   predicate(Assembler::is_simm8(n->get_int()));
  3305   match(ConI);
  3306   op_cost(0);
  3307   format %{ %}
  3308   interface(CONST_INTER);
  3309 %}
  3311 // Integer Immediate: 13-bit
  3312 operand immI13() %{
  3313   predicate(Assembler::is_simm13(n->get_int()));
  3314   match(ConI);
  3315   op_cost(0);
  3317   format %{ %}
  3318   interface(CONST_INTER);
  3319 %}
  3321 // Integer Immediate: 13-bit minus 7
  3322 operand immI13m7() %{
  3323   predicate((-4096 < n->get_int()) && ((n->get_int() + 7) <= 4095));
  3324   match(ConI);
  3325   op_cost(0);
  3327   format %{ %}
  3328   interface(CONST_INTER);
  3329 %}
  3331 // Integer Immediate: 16-bit
  3332 operand immI16() %{
  3333   predicate(Assembler::is_simm16(n->get_int()));
  3334   match(ConI);
  3335   op_cost(0);
  3336   format %{ %}
  3337   interface(CONST_INTER);
  3338 %}
  3340 // Unsigned (positive) Integer Immediate: 13-bit
  3341 operand immU13() %{
  3342   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
  3343   match(ConI);
  3344   op_cost(0);
  3346   format %{ %}
  3347   interface(CONST_INTER);
  3348 %}
  3350 // Integer Immediate: 6-bit
  3351 operand immU6() %{
  3352   predicate(n->get_int() >= 0 && n->get_int() <= 63);
  3353   match(ConI);
  3354   op_cost(0);
  3355   format %{ %}
  3356   interface(CONST_INTER);
  3357 %}
  3359 // Integer Immediate: 11-bit
  3360 operand immI11() %{
  3361   predicate(Assembler::is_simm11(n->get_int()));
  3362   match(ConI);
  3363   op_cost(0);
  3364   format %{ %}
  3365   interface(CONST_INTER);
  3366 %}
  3368 // Integer Immediate: 5-bit
  3369 operand immI5() %{
  3370   predicate(Assembler::is_simm5(n->get_int()));
  3371   match(ConI);
  3372   op_cost(0);
  3373   format %{ %}
  3374   interface(CONST_INTER);
  3375 %}
  3377 // Integer Immediate: 0-bit
  3378 operand immI0() %{
  3379   predicate(n->get_int() == 0);
  3380   match(ConI);
  3381   op_cost(0);
  3383   format %{ %}
  3384   interface(CONST_INTER);
  3385 %}
  3387 // Integer Immediate: the value 10
  3388 operand immI10() %{
  3389   predicate(n->get_int() == 10);
  3390   match(ConI);
  3391   op_cost(0);
  3393   format %{ %}
  3394   interface(CONST_INTER);
  3395 %}
  3397 // Integer Immediate: the values 0-31
  3398 operand immU5() %{
  3399   predicate(n->get_int() >= 0 && n->get_int() <= 31);
  3400   match(ConI);
  3401   op_cost(0);
  3403   format %{ %}
  3404   interface(CONST_INTER);
  3405 %}
  3407 // Integer Immediate: the values 1-31
  3408 operand immI_1_31() %{
  3409   predicate(n->get_int() >= 1 && n->get_int() <= 31);
  3410   match(ConI);
  3411   op_cost(0);
  3413   format %{ %}
  3414   interface(CONST_INTER);
  3415 %}
  3417 // Integer Immediate: the values 32-63
  3418 operand immI_32_63() %{
  3419   predicate(n->get_int() >= 32 && n->get_int() <= 63);
  3420   match(ConI);
  3421   op_cost(0);
  3423   format %{ %}
  3424   interface(CONST_INTER);
  3425 %}
  3427 // Immediates for special shifts (sign extend)
  3429 // Integer Immediate: the value 16
  3430 operand immI_16() %{
  3431   predicate(n->get_int() == 16);
  3432   match(ConI);
  3433   op_cost(0);
  3435   format %{ %}
  3436   interface(CONST_INTER);
  3437 %}
  3439 // Integer Immediate: the value 24
  3440 operand immI_24() %{
  3441   predicate(n->get_int() == 24);
  3442   match(ConI);
  3443   op_cost(0);
  3445   format %{ %}
  3446   interface(CONST_INTER);
  3447 %}
  3449 // Integer Immediate: the value 255
  3450 operand immI_255() %{
  3451   predicate( n->get_int() == 255 );
  3452   match(ConI);
  3453   op_cost(0);
  3455   format %{ %}
  3456   interface(CONST_INTER);
  3457 %}
  3459 // Integer Immediate: the value 65535
  3460 operand immI_65535() %{
  3461   predicate(n->get_int() == 65535);
  3462   match(ConI);
  3463   op_cost(0);
  3465   format %{ %}
  3466   interface(CONST_INTER);
  3467 %}
  3469 // Long Immediate: the value FF
  3470 operand immL_FF() %{
  3471   predicate( n->get_long() == 0xFFL );
  3472   match(ConL);
  3473   op_cost(0);
  3475   format %{ %}
  3476   interface(CONST_INTER);
  3477 %}
  3479 // Long Immediate: the value FFFF
  3480 operand immL_FFFF() %{
  3481   predicate( n->get_long() == 0xFFFFL );
  3482   match(ConL);
  3483   op_cost(0);
  3485   format %{ %}
  3486   interface(CONST_INTER);
  3487 %}
  3489 // Pointer Immediate: 32 or 64-bit
  3490 operand immP() %{
  3491   match(ConP);
  3493   op_cost(5);
  3494   // formats are generated automatically for constants and base registers
  3495   format %{ %}
  3496   interface(CONST_INTER);
  3497 %}
  3499 #ifdef _LP64
  3500 // Pointer Immediate: 64-bit
  3501 operand immP_set() %{
  3502   predicate(!VM_Version::is_niagara_plus());
  3503   match(ConP);
  3505   op_cost(5);
  3506   // formats are generated automatically for constants and base registers
  3507   format %{ %}
  3508   interface(CONST_INTER);
  3509 %}
  3511 // Pointer Immediate: 64-bit
  3512 // From Niagara2 processors on a load should be better than materializing.
  3513 operand immP_load() %{
  3514   predicate(VM_Version::is_niagara_plus() && (n->bottom_type()->isa_oop_ptr() || (MacroAssembler::insts_for_set(n->get_ptr()) > 3)));
  3515   match(ConP);
  3517   op_cost(5);
  3518   // formats are generated automatically for constants and base registers
  3519   format %{ %}
  3520   interface(CONST_INTER);
  3521 %}
  3523 // Pointer Immediate: 64-bit
  3524 operand immP_no_oop_cheap() %{
  3525   predicate(VM_Version::is_niagara_plus() && !n->bottom_type()->isa_oop_ptr() && (MacroAssembler::insts_for_set(n->get_ptr()) <= 3));
  3526   match(ConP);
  3528   op_cost(5);
  3529   // formats are generated automatically for constants and base registers
  3530   format %{ %}
  3531   interface(CONST_INTER);
  3532 %}
  3533 #endif
  3535 operand immP13() %{
  3536   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
  3537   match(ConP);
  3538   op_cost(0);
  3540   format %{ %}
  3541   interface(CONST_INTER);
  3542 %}
  3544 operand immP0() %{
  3545   predicate(n->get_ptr() == 0);
  3546   match(ConP);
  3547   op_cost(0);
  3549   format %{ %}
  3550   interface(CONST_INTER);
  3551 %}
  3553 operand immP_poll() %{
  3554   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
  3555   match(ConP);
  3557   // formats are generated automatically for constants and base registers
  3558   format %{ %}
  3559   interface(CONST_INTER);
  3560 %}
  3562 // Pointer Immediate
  3563 operand immN()
  3564 %{
  3565   match(ConN);
  3567   op_cost(10);
  3568   format %{ %}
  3569   interface(CONST_INTER);
  3570 %}
  3572 operand immNKlass()
  3573 %{
  3574   match(ConNKlass);
  3576   op_cost(10);
  3577   format %{ %}
  3578   interface(CONST_INTER);
  3579 %}
  3581 // NULL Pointer Immediate
  3582 operand immN0()
  3583 %{
  3584   predicate(n->get_narrowcon() == 0);
  3585   match(ConN);
  3587   op_cost(0);
  3588   format %{ %}
  3589   interface(CONST_INTER);
  3590 %}
  3592 operand immL() %{
  3593   match(ConL);
  3594   op_cost(40);
  3595   // formats are generated automatically for constants and base registers
  3596   format %{ %}
  3597   interface(CONST_INTER);
  3598 %}
  3600 operand immL0() %{
  3601   predicate(n->get_long() == 0L);
  3602   match(ConL);
  3603   op_cost(0);
  3604   // formats are generated automatically for constants and base registers
  3605   format %{ %}
  3606   interface(CONST_INTER);
  3607 %}
  3609 // Integer Immediate: 5-bit
  3610 operand immL5() %{
  3611   predicate(n->get_long() == (int)n->get_long() && Assembler::is_simm5((int)n->get_long()));
  3612   match(ConL);
  3613   op_cost(0);
  3614   format %{ %}
  3615   interface(CONST_INTER);
  3616 %}
  3618 // Long Immediate: 13-bit
  3619 operand immL13() %{
  3620   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
  3621   match(ConL);
  3622   op_cost(0);
  3624   format %{ %}
  3625   interface(CONST_INTER);
  3626 %}
  3628 // Long Immediate: 13-bit minus 7
  3629 operand immL13m7() %{
  3630   predicate((-4096L < n->get_long()) && ((n->get_long() + 7L) <= 4095L));
  3631   match(ConL);
  3632   op_cost(0);
  3634   format %{ %}
  3635   interface(CONST_INTER);
  3636 %}
  3638 // Long Immediate: low 32-bit mask
  3639 operand immL_32bits() %{
  3640   predicate(n->get_long() == 0xFFFFFFFFL);
  3641   match(ConL);
  3642   op_cost(0);
  3644   format %{ %}
  3645   interface(CONST_INTER);
  3646 %}
  3648 // Long Immediate: cheap (materialize in <= 3 instructions)
  3649 operand immL_cheap() %{
  3650   predicate(!VM_Version::is_niagara_plus() || MacroAssembler::insts_for_set64(n->get_long()) <= 3);
  3651   match(ConL);
  3652   op_cost(0);
  3654   format %{ %}
  3655   interface(CONST_INTER);
  3656 %}
  3658 // Long Immediate: expensive (materialize in > 3 instructions)
  3659 operand immL_expensive() %{
  3660   predicate(VM_Version::is_niagara_plus() && MacroAssembler::insts_for_set64(n->get_long()) > 3);
  3661   match(ConL);
  3662   op_cost(0);
  3664   format %{ %}
  3665   interface(CONST_INTER);
  3666 %}
  3668 // Double Immediate
  3669 operand immD() %{
  3670   match(ConD);
  3672   op_cost(40);
  3673   format %{ %}
  3674   interface(CONST_INTER);
  3675 %}
  3677 operand immD0() %{
  3678 #ifdef _LP64
  3679   // on 64-bit architectures this comparision is faster
  3680   predicate(jlong_cast(n->getd()) == 0);
  3681 #else
  3682   predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
  3683 #endif
  3684   match(ConD);
  3686   op_cost(0);
  3687   format %{ %}
  3688   interface(CONST_INTER);
  3689 %}
  3691 // Float Immediate
  3692 operand immF() %{
  3693   match(ConF);
  3695   op_cost(20);
  3696   format %{ %}
  3697   interface(CONST_INTER);
  3698 %}
  3700 // Float Immediate: 0
  3701 operand immF0() %{
  3702   predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
  3703   match(ConF);
  3705   op_cost(0);
  3706   format %{ %}
  3707   interface(CONST_INTER);
  3708 %}
  3710 // Integer Register Operands
  3711 // Integer Register
  3712 operand iRegI() %{
  3713   constraint(ALLOC_IN_RC(int_reg));
  3714   match(RegI);
  3716   match(notemp_iRegI);
  3717   match(g1RegI);
  3718   match(o0RegI);
  3719   match(iRegIsafe);
  3721   format %{ %}
  3722   interface(REG_INTER);
  3723 %}
  3725 operand notemp_iRegI() %{
  3726   constraint(ALLOC_IN_RC(notemp_int_reg));
  3727   match(RegI);
  3729   match(o0RegI);
  3731   format %{ %}
  3732   interface(REG_INTER);
  3733 %}
  3735 operand o0RegI() %{
  3736   constraint(ALLOC_IN_RC(o0_regI));
  3737   match(iRegI);
  3739   format %{ %}
  3740   interface(REG_INTER);
  3741 %}
  3743 // Pointer Register
  3744 operand iRegP() %{
  3745   constraint(ALLOC_IN_RC(ptr_reg));
  3746   match(RegP);
  3748   match(lock_ptr_RegP);
  3749   match(g1RegP);
  3750   match(g2RegP);
  3751   match(g3RegP);
  3752   match(g4RegP);
  3753   match(i0RegP);
  3754   match(o0RegP);
  3755   match(o1RegP);
  3756   match(l7RegP);
  3758   format %{ %}
  3759   interface(REG_INTER);
  3760 %}
  3762 operand sp_ptr_RegP() %{
  3763   constraint(ALLOC_IN_RC(sp_ptr_reg));
  3764   match(RegP);
  3765   match(iRegP);
  3767   format %{ %}
  3768   interface(REG_INTER);
  3769 %}
  3771 operand lock_ptr_RegP() %{
  3772   constraint(ALLOC_IN_RC(lock_ptr_reg));
  3773   match(RegP);
  3774   match(i0RegP);
  3775   match(o0RegP);
  3776   match(o1RegP);
  3777   match(l7RegP);
  3779   format %{ %}
  3780   interface(REG_INTER);
  3781 %}
  3783 operand g1RegP() %{
  3784   constraint(ALLOC_IN_RC(g1_regP));
  3785   match(iRegP);
  3787   format %{ %}
  3788   interface(REG_INTER);
  3789 %}
  3791 operand g2RegP() %{
  3792   constraint(ALLOC_IN_RC(g2_regP));
  3793   match(iRegP);
  3795   format %{ %}
  3796   interface(REG_INTER);
  3797 %}
  3799 operand g3RegP() %{
  3800   constraint(ALLOC_IN_RC(g3_regP));
  3801   match(iRegP);
  3803   format %{ %}
  3804   interface(REG_INTER);
  3805 %}
  3807 operand g1RegI() %{
  3808   constraint(ALLOC_IN_RC(g1_regI));
  3809   match(iRegI);
  3811   format %{ %}
  3812   interface(REG_INTER);
  3813 %}
  3815 operand g3RegI() %{
  3816   constraint(ALLOC_IN_RC(g3_regI));
  3817   match(iRegI);
  3819   format %{ %}
  3820   interface(REG_INTER);
  3821 %}
  3823 operand g4RegI() %{
  3824   constraint(ALLOC_IN_RC(g4_regI));
  3825   match(iRegI);
  3827   format %{ %}
  3828   interface(REG_INTER);
  3829 %}
  3831 operand g4RegP() %{
  3832   constraint(ALLOC_IN_RC(g4_regP));
  3833   match(iRegP);
  3835   format %{ %}
  3836   interface(REG_INTER);
  3837 %}
  3839 operand i0RegP() %{
  3840   constraint(ALLOC_IN_RC(i0_regP));
  3841   match(iRegP);
  3843   format %{ %}
  3844   interface(REG_INTER);
  3845 %}
  3847 operand o0RegP() %{
  3848   constraint(ALLOC_IN_RC(o0_regP));
  3849   match(iRegP);
  3851   format %{ %}
  3852   interface(REG_INTER);
  3853 %}
  3855 operand o1RegP() %{
  3856   constraint(ALLOC_IN_RC(o1_regP));
  3857   match(iRegP);
  3859   format %{ %}
  3860   interface(REG_INTER);
  3861 %}
  3863 operand o2RegP() %{
  3864   constraint(ALLOC_IN_RC(o2_regP));
  3865   match(iRegP);
  3867   format %{ %}
  3868   interface(REG_INTER);
  3869 %}
  3871 operand o7RegP() %{
  3872   constraint(ALLOC_IN_RC(o7_regP));
  3873   match(iRegP);
  3875   format %{ %}
  3876   interface(REG_INTER);
  3877 %}
  3879 operand l7RegP() %{
  3880   constraint(ALLOC_IN_RC(l7_regP));
  3881   match(iRegP);
  3883   format %{ %}
  3884   interface(REG_INTER);
  3885 %}
  3887 operand o7RegI() %{
  3888   constraint(ALLOC_IN_RC(o7_regI));
  3889   match(iRegI);
  3891   format %{ %}
  3892   interface(REG_INTER);
  3893 %}
  3895 operand iRegN() %{
  3896   constraint(ALLOC_IN_RC(int_reg));
  3897   match(RegN);
  3899   format %{ %}
  3900   interface(REG_INTER);
  3901 %}
  3903 // Long Register
  3904 operand iRegL() %{
  3905   constraint(ALLOC_IN_RC(long_reg));
  3906   match(RegL);
  3908   format %{ %}
  3909   interface(REG_INTER);
  3910 %}
  3912 operand o2RegL() %{
  3913   constraint(ALLOC_IN_RC(o2_regL));
  3914   match(iRegL);
  3916   format %{ %}
  3917   interface(REG_INTER);
  3918 %}
  3920 operand o7RegL() %{
  3921   constraint(ALLOC_IN_RC(o7_regL));
  3922   match(iRegL);
  3924   format %{ %}
  3925   interface(REG_INTER);
  3926 %}
  3928 operand g1RegL() %{
  3929   constraint(ALLOC_IN_RC(g1_regL));
  3930   match(iRegL);
  3932   format %{ %}
  3933   interface(REG_INTER);
  3934 %}
  3936 operand g3RegL() %{
  3937   constraint(ALLOC_IN_RC(g3_regL));
  3938   match(iRegL);
  3940   format %{ %}
  3941   interface(REG_INTER);
  3942 %}
  3944 // Int Register safe
  3945 // This is 64bit safe
  3946 operand iRegIsafe() %{
  3947   constraint(ALLOC_IN_RC(long_reg));
  3949   match(iRegI);
  3951   format %{ %}
  3952   interface(REG_INTER);
  3953 %}
  3955 // Condition Code Flag Register
  3956 operand flagsReg() %{
  3957   constraint(ALLOC_IN_RC(int_flags));
  3958   match(RegFlags);
  3960   format %{ "ccr" %} // both ICC and XCC
  3961   interface(REG_INTER);
  3962 %}
  3964 // Condition Code Register, unsigned comparisons.
  3965 operand flagsRegU() %{
  3966   constraint(ALLOC_IN_RC(int_flags));
  3967   match(RegFlags);
  3969   format %{ "icc_U" %}
  3970   interface(REG_INTER);
  3971 %}
  3973 // Condition Code Register, pointer comparisons.
  3974 operand flagsRegP() %{
  3975   constraint(ALLOC_IN_RC(int_flags));
  3976   match(RegFlags);
  3978 #ifdef _LP64
  3979   format %{ "xcc_P" %}
  3980 #else
  3981   format %{ "icc_P" %}
  3982 #endif
  3983   interface(REG_INTER);
  3984 %}
  3986 // Condition Code Register, long comparisons.
  3987 operand flagsRegL() %{
  3988   constraint(ALLOC_IN_RC(int_flags));
  3989   match(RegFlags);
  3991   format %{ "xcc_L" %}
  3992   interface(REG_INTER);
  3993 %}
  3995 // Condition Code Register, floating comparisons, unordered same as "less".
  3996 operand flagsRegF() %{
  3997   constraint(ALLOC_IN_RC(float_flags));
  3998   match(RegFlags);
  3999   match(flagsRegF0);
  4001   format %{ %}
  4002   interface(REG_INTER);
  4003 %}
  4005 operand flagsRegF0() %{
  4006   constraint(ALLOC_IN_RC(float_flag0));
  4007   match(RegFlags);
  4009   format %{ %}
  4010   interface(REG_INTER);
  4011 %}
  4014 // Condition Code Flag Register used by long compare
  4015 operand flagsReg_long_LTGE() %{
  4016   constraint(ALLOC_IN_RC(int_flags));
  4017   match(RegFlags);
  4018   format %{ "icc_LTGE" %}
  4019   interface(REG_INTER);
  4020 %}
  4021 operand flagsReg_long_EQNE() %{
  4022   constraint(ALLOC_IN_RC(int_flags));
  4023   match(RegFlags);
  4024   format %{ "icc_EQNE" %}
  4025   interface(REG_INTER);
  4026 %}
  4027 operand flagsReg_long_LEGT() %{
  4028   constraint(ALLOC_IN_RC(int_flags));
  4029   match(RegFlags);
  4030   format %{ "icc_LEGT" %}
  4031   interface(REG_INTER);
  4032 %}
  4035 operand regD() %{
  4036   constraint(ALLOC_IN_RC(dflt_reg));
  4037   match(RegD);
  4039   match(regD_low);
  4041   format %{ %}
  4042   interface(REG_INTER);
  4043 %}
  4045 operand regF() %{
  4046   constraint(ALLOC_IN_RC(sflt_reg));
  4047   match(RegF);
  4049   format %{ %}
  4050   interface(REG_INTER);
  4051 %}
  4053 operand regD_low() %{
  4054   constraint(ALLOC_IN_RC(dflt_low_reg));
  4055   match(regD);
  4057   format %{ %}
  4058   interface(REG_INTER);
  4059 %}
  4061 // Special Registers
  4063 // Method Register
  4064 operand inline_cache_regP(iRegP reg) %{
  4065   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
  4066   match(reg);
  4067   format %{ %}
  4068   interface(REG_INTER);
  4069 %}
  4071 operand interpreter_method_oop_regP(iRegP reg) %{
  4072   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
  4073   match(reg);
  4074   format %{ %}
  4075   interface(REG_INTER);
  4076 %}
  4079 //----------Complex Operands---------------------------------------------------
  4080 // Indirect Memory Reference
  4081 operand indirect(sp_ptr_RegP reg) %{
  4082   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4083   match(reg);
  4085   op_cost(100);
  4086   format %{ "[$reg]" %}
  4087   interface(MEMORY_INTER) %{
  4088     base($reg);
  4089     index(0x0);
  4090     scale(0x0);
  4091     disp(0x0);
  4092   %}
  4093 %}
  4095 // Indirect with simm13 Offset
  4096 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
  4097   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4098   match(AddP reg offset);
  4100   op_cost(100);
  4101   format %{ "[$reg + $offset]" %}
  4102   interface(MEMORY_INTER) %{
  4103     base($reg);
  4104     index(0x0);
  4105     scale(0x0);
  4106     disp($offset);
  4107   %}
  4108 %}
  4110 // Indirect with simm13 Offset minus 7
  4111 operand indOffset13m7(sp_ptr_RegP reg, immX13m7 offset) %{
  4112   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4113   match(AddP reg offset);
  4115   op_cost(100);
  4116   format %{ "[$reg + $offset]" %}
  4117   interface(MEMORY_INTER) %{
  4118     base($reg);
  4119     index(0x0);
  4120     scale(0x0);
  4121     disp($offset);
  4122   %}
  4123 %}
  4125 // Note:  Intel has a swapped version also, like this:
  4126 //operand indOffsetX(iRegI reg, immP offset) %{
  4127 //  constraint(ALLOC_IN_RC(int_reg));
  4128 //  match(AddP offset reg);
  4129 //
  4130 //  op_cost(100);
  4131 //  format %{ "[$reg + $offset]" %}
  4132 //  interface(MEMORY_INTER) %{
  4133 //    base($reg);
  4134 //    index(0x0);
  4135 //    scale(0x0);
  4136 //    disp($offset);
  4137 //  %}
  4138 //%}
  4139 //// However, it doesn't make sense for SPARC, since
  4140 // we have no particularly good way to embed oops in
  4141 // single instructions.
  4143 // Indirect with Register Index
  4144 operand indIndex(iRegP addr, iRegX index) %{
  4145   constraint(ALLOC_IN_RC(ptr_reg));
  4146   match(AddP addr index);
  4148   op_cost(100);
  4149   format %{ "[$addr + $index]" %}
  4150   interface(MEMORY_INTER) %{
  4151     base($addr);
  4152     index($index);
  4153     scale(0x0);
  4154     disp(0x0);
  4155   %}
  4156 %}
  4158 //----------Special Memory Operands--------------------------------------------
  4159 // Stack Slot Operand - This operand is used for loading and storing temporary
  4160 //                      values on the stack where a match requires a value to
  4161 //                      flow through memory.
  4162 operand stackSlotI(sRegI reg) %{
  4163   constraint(ALLOC_IN_RC(stack_slots));
  4164   op_cost(100);
  4165   //match(RegI);
  4166   format %{ "[$reg]" %}
  4167   interface(MEMORY_INTER) %{
  4168     base(0xE);   // R_SP
  4169     index(0x0);
  4170     scale(0x0);
  4171     disp($reg);  // Stack Offset
  4172   %}
  4173 %}
  4175 operand stackSlotP(sRegP reg) %{
  4176   constraint(ALLOC_IN_RC(stack_slots));
  4177   op_cost(100);
  4178   //match(RegP);
  4179   format %{ "[$reg]" %}
  4180   interface(MEMORY_INTER) %{
  4181     base(0xE);   // R_SP
  4182     index(0x0);
  4183     scale(0x0);
  4184     disp($reg);  // Stack Offset
  4185   %}
  4186 %}
  4188 operand stackSlotF(sRegF reg) %{
  4189   constraint(ALLOC_IN_RC(stack_slots));
  4190   op_cost(100);
  4191   //match(RegF);
  4192   format %{ "[$reg]" %}
  4193   interface(MEMORY_INTER) %{
  4194     base(0xE);   // R_SP
  4195     index(0x0);
  4196     scale(0x0);
  4197     disp($reg);  // Stack Offset
  4198   %}
  4199 %}
  4200 operand stackSlotD(sRegD reg) %{
  4201   constraint(ALLOC_IN_RC(stack_slots));
  4202   op_cost(100);
  4203   //match(RegD);
  4204   format %{ "[$reg]" %}
  4205   interface(MEMORY_INTER) %{
  4206     base(0xE);   // R_SP
  4207     index(0x0);
  4208     scale(0x0);
  4209     disp($reg);  // Stack Offset
  4210   %}
  4211 %}
  4212 operand stackSlotL(sRegL reg) %{
  4213   constraint(ALLOC_IN_RC(stack_slots));
  4214   op_cost(100);
  4215   //match(RegL);
  4216   format %{ "[$reg]" %}
  4217   interface(MEMORY_INTER) %{
  4218     base(0xE);   // R_SP
  4219     index(0x0);
  4220     scale(0x0);
  4221     disp($reg);  // Stack Offset
  4222   %}
  4223 %}
  4225 // Operands for expressing Control Flow
  4226 // NOTE:  Label is a predefined operand which should not be redefined in
  4227 //        the AD file.  It is generically handled within the ADLC.
  4229 //----------Conditional Branch Operands----------------------------------------
  4230 // Comparison Op  - This is the operation of the comparison, and is limited to
  4231 //                  the following set of codes:
  4232 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  4233 //
  4234 // Other attributes of the comparison, such as unsignedness, are specified
  4235 // by the comparison instruction that sets a condition code flags register.
  4236 // That result is represented by a flags operand whose subtype is appropriate
  4237 // to the unsignedness (etc.) of the comparison.
  4238 //
  4239 // Later, the instruction which matches both the Comparison Op (a Bool) and
  4240 // the flags (produced by the Cmp) specifies the coding of the comparison op
  4241 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  4243 operand cmpOp() %{
  4244   match(Bool);
  4246   format %{ "" %}
  4247   interface(COND_INTER) %{
  4248     equal(0x1);
  4249     not_equal(0x9);
  4250     less(0x3);
  4251     greater_equal(0xB);
  4252     less_equal(0x2);
  4253     greater(0xA);
  4254   %}
  4255 %}
  4257 // Comparison Op, unsigned
  4258 operand cmpOpU() %{
  4259   match(Bool);
  4261   format %{ "u" %}
  4262   interface(COND_INTER) %{
  4263     equal(0x1);
  4264     not_equal(0x9);
  4265     less(0x5);
  4266     greater_equal(0xD);
  4267     less_equal(0x4);
  4268     greater(0xC);
  4269   %}
  4270 %}
  4272 // Comparison Op, pointer (same as unsigned)
  4273 operand cmpOpP() %{
  4274   match(Bool);
  4276   format %{ "p" %}
  4277   interface(COND_INTER) %{
  4278     equal(0x1);
  4279     not_equal(0x9);
  4280     less(0x5);
  4281     greater_equal(0xD);
  4282     less_equal(0x4);
  4283     greater(0xC);
  4284   %}
  4285 %}
  4287 // Comparison Op, branch-register encoding
  4288 operand cmpOp_reg() %{
  4289   match(Bool);
  4291   format %{ "" %}
  4292   interface(COND_INTER) %{
  4293     equal        (0x1);
  4294     not_equal    (0x5);
  4295     less         (0x3);
  4296     greater_equal(0x7);
  4297     less_equal   (0x2);
  4298     greater      (0x6);
  4299   %}
  4300 %}
  4302 // Comparison Code, floating, unordered same as less
  4303 operand cmpOpF() %{
  4304   match(Bool);
  4306   format %{ "fl" %}
  4307   interface(COND_INTER) %{
  4308     equal(0x9);
  4309     not_equal(0x1);
  4310     less(0x3);
  4311     greater_equal(0xB);
  4312     less_equal(0xE);
  4313     greater(0x6);
  4314   %}
  4315 %}
  4317 // Used by long compare
  4318 operand cmpOp_commute() %{
  4319   match(Bool);
  4321   format %{ "" %}
  4322   interface(COND_INTER) %{
  4323     equal(0x1);
  4324     not_equal(0x9);
  4325     less(0xA);
  4326     greater_equal(0x2);
  4327     less_equal(0xB);
  4328     greater(0x3);
  4329   %}
  4330 %}
  4332 //----------OPERAND CLASSES----------------------------------------------------
  4333 // Operand Classes are groups of operands that are used to simplify
  4334 // instruction definitions by not requiring the AD writer to specify separate
  4335 // instructions for every form of operand when the instruction accepts
  4336 // multiple operand types with the same basic encoding and format.  The classic
  4337 // case of this is memory operands.
  4338 opclass memory( indirect, indOffset13, indIndex );
  4339 opclass indIndexMemory( indIndex );
  4341 //----------PIPELINE-----------------------------------------------------------
  4342 pipeline %{
  4344 //----------ATTRIBUTES---------------------------------------------------------
  4345 attributes %{
  4346   fixed_size_instructions;           // Fixed size instructions
  4347   branch_has_delay_slot;             // Branch has delay slot following
  4348   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
  4349   instruction_unit_size = 4;         // An instruction is 4 bytes long
  4350   instruction_fetch_unit_size = 16;  // The processor fetches one line
  4351   instruction_fetch_units = 1;       // of 16 bytes
  4353   // List of nop instructions
  4354   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
  4355 %}
  4357 //----------RESOURCES----------------------------------------------------------
  4358 // Resources are the functional units available to the machine
  4359 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
  4361 //----------PIPELINE DESCRIPTION-----------------------------------------------
  4362 // Pipeline Description specifies the stages in the machine's pipeline
  4364 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
  4366 //----------PIPELINE CLASSES---------------------------------------------------
  4367 // Pipeline Classes describe the stages in which input and output are
  4368 // referenced by the hardware pipeline.
  4370 // Integer ALU reg-reg operation
  4371 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4372     single_instruction;
  4373     dst   : E(write);
  4374     src1  : R(read);
  4375     src2  : R(read);
  4376     IALU  : R;
  4377 %}
  4379 // Integer ALU reg-reg long operation
  4380 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  4381     instruction_count(2);
  4382     dst   : E(write);
  4383     src1  : R(read);
  4384     src2  : R(read);
  4385     IALU  : R;
  4386     IALU  : R;
  4387 %}
  4389 // Integer ALU reg-reg long dependent operation
  4390 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
  4391     instruction_count(1); multiple_bundles;
  4392     dst   : E(write);
  4393     src1  : R(read);
  4394     src2  : R(read);
  4395     cr    : E(write);
  4396     IALU  : R(2);
  4397 %}
  4399 // Integer ALU reg-imm operaion
  4400 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4401     single_instruction;
  4402     dst   : E(write);
  4403     src1  : R(read);
  4404     IALU  : R;
  4405 %}
  4407 // Integer ALU reg-reg operation with condition code
  4408 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
  4409     single_instruction;
  4410     dst   : E(write);
  4411     cr    : E(write);
  4412     src1  : R(read);
  4413     src2  : R(read);
  4414     IALU  : R;
  4415 %}
  4417 // Integer ALU reg-imm operation with condition code
  4418 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
  4419     single_instruction;
  4420     dst   : E(write);
  4421     cr    : E(write);
  4422     src1  : R(read);
  4423     IALU  : R;
  4424 %}
  4426 // Integer ALU zero-reg operation
  4427 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  4428     single_instruction;
  4429     dst   : E(write);
  4430     src2  : R(read);
  4431     IALU  : R;
  4432 %}
  4434 // Integer ALU zero-reg operation with condition code only
  4435 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
  4436     single_instruction;
  4437     cr    : E(write);
  4438     src   : R(read);
  4439     IALU  : R;
  4440 %}
  4442 // Integer ALU reg-reg operation with condition code only
  4443 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4444     single_instruction;
  4445     cr    : E(write);
  4446     src1  : R(read);
  4447     src2  : R(read);
  4448     IALU  : R;
  4449 %}
  4451 // Integer ALU reg-imm operation with condition code only
  4452 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4453     single_instruction;
  4454     cr    : E(write);
  4455     src1  : R(read);
  4456     IALU  : R;
  4457 %}
  4459 // Integer ALU reg-reg-zero operation with condition code only
  4460 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
  4461     single_instruction;
  4462     cr    : E(write);
  4463     src1  : R(read);
  4464     src2  : R(read);
  4465     IALU  : R;
  4466 %}
  4468 // Integer ALU reg-imm-zero operation with condition code only
  4469 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
  4470     single_instruction;
  4471     cr    : E(write);
  4472     src1  : R(read);
  4473     IALU  : R;
  4474 %}
  4476 // Integer ALU reg-reg operation with condition code, src1 modified
  4477 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4478     single_instruction;
  4479     cr    : E(write);
  4480     src1  : E(write);
  4481     src1  : R(read);
  4482     src2  : R(read);
  4483     IALU  : R;
  4484 %}
  4486 // Integer ALU reg-imm operation with condition code, src1 modified
  4487 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4488     single_instruction;
  4489     cr    : E(write);
  4490     src1  : E(write);
  4491     src1  : R(read);
  4492     IALU  : R;
  4493 %}
  4495 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
  4496     multiple_bundles;
  4497     dst   : E(write)+4;
  4498     cr    : E(write);
  4499     src1  : R(read);
  4500     src2  : R(read);
  4501     IALU  : R(3);
  4502     BR    : R(2);
  4503 %}
  4505 // Integer ALU operation
  4506 pipe_class ialu_none(iRegI dst) %{
  4507     single_instruction;
  4508     dst   : E(write);
  4509     IALU  : R;
  4510 %}
  4512 // Integer ALU reg operation
  4513 pipe_class ialu_reg(iRegI dst, iRegI src) %{
  4514     single_instruction; may_have_no_code;
  4515     dst   : E(write);
  4516     src   : R(read);
  4517     IALU  : R;
  4518 %}
  4520 // Integer ALU reg conditional operation
  4521 // This instruction has a 1 cycle stall, and cannot execute
  4522 // in the same cycle as the instruction setting the condition
  4523 // code. We kludge this by pretending to read the condition code
  4524 // 1 cycle earlier, and by marking the functional units as busy
  4525 // for 2 cycles with the result available 1 cycle later than
  4526 // is really the case.
  4527 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
  4528     single_instruction;
  4529     op2_out : C(write);
  4530     op1     : R(read);
  4531     cr      : R(read);       // This is really E, with a 1 cycle stall
  4532     BR      : R(2);
  4533     MS      : R(2);
  4534 %}
  4536 #ifdef _LP64
  4537 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
  4538     instruction_count(1); multiple_bundles;
  4539     dst     : C(write)+1;
  4540     src     : R(read)+1;
  4541     IALU    : R(1);
  4542     BR      : E(2);
  4543     MS      : E(2);
  4544 %}
  4545 #endif
  4547 // Integer ALU reg operation
  4548 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
  4549     single_instruction; may_have_no_code;
  4550     dst   : E(write);
  4551     src   : R(read);
  4552     IALU  : R;
  4553 %}
  4554 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
  4555     single_instruction; may_have_no_code;
  4556     dst   : E(write);
  4557     src   : R(read);
  4558     IALU  : R;
  4559 %}
  4561 // Two integer ALU reg operations
  4562 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
  4563     instruction_count(2);
  4564     dst   : E(write);
  4565     src   : R(read);
  4566     A0    : R;
  4567     A1    : R;
  4568 %}
  4570 // Two integer ALU reg operations
  4571 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
  4572     instruction_count(2); may_have_no_code;
  4573     dst   : E(write);
  4574     src   : R(read);
  4575     A0    : R;
  4576     A1    : R;
  4577 %}
  4579 // Integer ALU imm operation
  4580 pipe_class ialu_imm(iRegI dst, immI13 src) %{
  4581     single_instruction;
  4582     dst   : E(write);
  4583     IALU  : R;
  4584 %}
  4586 // Integer ALU reg-reg with carry operation
  4587 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
  4588     single_instruction;
  4589     dst   : E(write);
  4590     src1  : R(read);
  4591     src2  : R(read);
  4592     IALU  : R;
  4593 %}
  4595 // Integer ALU cc operation
  4596 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
  4597     single_instruction;
  4598     dst   : E(write);
  4599     cc    : R(read);
  4600     IALU  : R;
  4601 %}
  4603 // Integer ALU cc / second IALU operation
  4604 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
  4605     instruction_count(1); multiple_bundles;
  4606     dst   : E(write)+1;
  4607     src   : R(read);
  4608     IALU  : R;
  4609 %}
  4611 // Integer ALU cc / second IALU operation
  4612 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
  4613     instruction_count(1); multiple_bundles;
  4614     dst   : E(write)+1;
  4615     p     : R(read);
  4616     q     : R(read);
  4617     IALU  : R;
  4618 %}
  4620 // Integer ALU hi-lo-reg operation
  4621 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
  4622     instruction_count(1); multiple_bundles;
  4623     dst   : E(write)+1;
  4624     IALU  : R(2);
  4625 %}
  4627 // Float ALU hi-lo-reg operation (with temp)
  4628 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
  4629     instruction_count(1); multiple_bundles;
  4630     dst   : E(write)+1;
  4631     IALU  : R(2);
  4632 %}
  4634 // Long Constant
  4635 pipe_class loadConL( iRegL dst, immL src ) %{
  4636     instruction_count(2); multiple_bundles;
  4637     dst   : E(write)+1;
  4638     IALU  : R(2);
  4639     IALU  : R(2);
  4640 %}
  4642 // Pointer Constant
  4643 pipe_class loadConP( iRegP dst, immP src ) %{
  4644     instruction_count(0); multiple_bundles;
  4645     fixed_latency(6);
  4646 %}
  4648 // Polling Address
  4649 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
  4650 #ifdef _LP64
  4651     instruction_count(0); multiple_bundles;
  4652     fixed_latency(6);
  4653 #else
  4654     dst   : E(write);
  4655     IALU  : R;
  4656 #endif
  4657 %}
  4659 // Long Constant small
  4660 pipe_class loadConLlo( iRegL dst, immL src ) %{
  4661     instruction_count(2);
  4662     dst   : E(write);
  4663     IALU  : R;
  4664     IALU  : R;
  4665 %}
  4667 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
  4668 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
  4669     instruction_count(1); multiple_bundles;
  4670     src   : R(read);
  4671     dst   : M(write)+1;
  4672     IALU  : R;
  4673     MS    : E;
  4674 %}
  4676 // Integer ALU nop operation
  4677 pipe_class ialu_nop() %{
  4678     single_instruction;
  4679     IALU  : R;
  4680 %}
  4682 // Integer ALU nop operation
  4683 pipe_class ialu_nop_A0() %{
  4684     single_instruction;
  4685     A0    : R;
  4686 %}
  4688 // Integer ALU nop operation
  4689 pipe_class ialu_nop_A1() %{
  4690     single_instruction;
  4691     A1    : R;
  4692 %}
  4694 // Integer Multiply reg-reg operation
  4695 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4696     single_instruction;
  4697     dst   : E(write);
  4698     src1  : R(read);
  4699     src2  : R(read);
  4700     MS    : R(5);
  4701 %}
  4703 // Integer Multiply reg-imm operation
  4704 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4705     single_instruction;
  4706     dst   : E(write);
  4707     src1  : R(read);
  4708     MS    : R(5);
  4709 %}
  4711 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4712     single_instruction;
  4713     dst   : E(write)+4;
  4714     src1  : R(read);
  4715     src2  : R(read);
  4716     MS    : R(6);
  4717 %}
  4719 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4720     single_instruction;
  4721     dst   : E(write)+4;
  4722     src1  : R(read);
  4723     MS    : R(6);
  4724 %}
  4726 // Integer Divide reg-reg
  4727 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
  4728     instruction_count(1); multiple_bundles;
  4729     dst   : E(write);
  4730     temp  : E(write);
  4731     src1  : R(read);
  4732     src2  : R(read);
  4733     temp  : R(read);
  4734     MS    : R(38);
  4735 %}
  4737 // Integer Divide reg-imm
  4738 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
  4739     instruction_count(1); multiple_bundles;
  4740     dst   : E(write);
  4741     temp  : E(write);
  4742     src1  : R(read);
  4743     temp  : R(read);
  4744     MS    : R(38);
  4745 %}
  4747 // Long Divide
  4748 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4749     dst  : E(write)+71;
  4750     src1 : R(read);
  4751     src2 : R(read)+1;
  4752     MS   : R(70);
  4753 %}
  4755 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4756     dst  : E(write)+71;
  4757     src1 : R(read);
  4758     MS   : R(70);
  4759 %}
  4761 // Floating Point Add Float
  4762 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
  4763     single_instruction;
  4764     dst   : X(write);
  4765     src1  : E(read);
  4766     src2  : E(read);
  4767     FA    : R;
  4768 %}
  4770 // Floating Point Add Double
  4771 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
  4772     single_instruction;
  4773     dst   : X(write);
  4774     src1  : E(read);
  4775     src2  : E(read);
  4776     FA    : R;
  4777 %}
  4779 // Floating Point Conditional Move based on integer flags
  4780 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
  4781     single_instruction;
  4782     dst   : X(write);
  4783     src   : E(read);
  4784     cr    : R(read);
  4785     FA    : R(2);
  4786     BR    : R(2);
  4787 %}
  4789 // Floating Point Conditional Move based on integer flags
  4790 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
  4791     single_instruction;
  4792     dst   : X(write);
  4793     src   : E(read);
  4794     cr    : R(read);
  4795     FA    : R(2);
  4796     BR    : R(2);
  4797 %}
  4799 // Floating Point Multiply Float
  4800 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
  4801     single_instruction;
  4802     dst   : X(write);
  4803     src1  : E(read);
  4804     src2  : E(read);
  4805     FM    : R;
  4806 %}
  4808 // Floating Point Multiply Double
  4809 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
  4810     single_instruction;
  4811     dst   : X(write);
  4812     src1  : E(read);
  4813     src2  : E(read);
  4814     FM    : R;
  4815 %}
  4817 // Floating Point Divide Float
  4818 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
  4819     single_instruction;
  4820     dst   : X(write);
  4821     src1  : E(read);
  4822     src2  : E(read);
  4823     FM    : R;
  4824     FDIV  : C(14);
  4825 %}
  4827 // Floating Point Divide Double
  4828 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
  4829     single_instruction;
  4830     dst   : X(write);
  4831     src1  : E(read);
  4832     src2  : E(read);
  4833     FM    : R;
  4834     FDIV  : C(17);
  4835 %}
  4837 // Floating Point Move/Negate/Abs Float
  4838 pipe_class faddF_reg(regF dst, regF src) %{
  4839     single_instruction;
  4840     dst   : W(write);
  4841     src   : E(read);
  4842     FA    : R(1);
  4843 %}
  4845 // Floating Point Move/Negate/Abs Double
  4846 pipe_class faddD_reg(regD dst, regD src) %{
  4847     single_instruction;
  4848     dst   : W(write);
  4849     src   : E(read);
  4850     FA    : R;
  4851 %}
  4853 // Floating Point Convert F->D
  4854 pipe_class fcvtF2D(regD dst, regF src) %{
  4855     single_instruction;
  4856     dst   : X(write);
  4857     src   : E(read);
  4858     FA    : R;
  4859 %}
  4861 // Floating Point Convert I->D
  4862 pipe_class fcvtI2D(regD dst, regF src) %{
  4863     single_instruction;
  4864     dst   : X(write);
  4865     src   : E(read);
  4866     FA    : R;
  4867 %}
  4869 // Floating Point Convert LHi->D
  4870 pipe_class fcvtLHi2D(regD dst, regD src) %{
  4871     single_instruction;
  4872     dst   : X(write);
  4873     src   : E(read);
  4874     FA    : R;
  4875 %}
  4877 // Floating Point Convert L->D
  4878 pipe_class fcvtL2D(regD dst, regF src) %{
  4879     single_instruction;
  4880     dst   : X(write);
  4881     src   : E(read);
  4882     FA    : R;
  4883 %}
  4885 // Floating Point Convert L->F
  4886 pipe_class fcvtL2F(regD dst, regF src) %{
  4887     single_instruction;
  4888     dst   : X(write);
  4889     src   : E(read);
  4890     FA    : R;
  4891 %}
  4893 // Floating Point Convert D->F
  4894 pipe_class fcvtD2F(regD dst, regF src) %{
  4895     single_instruction;
  4896     dst   : X(write);
  4897     src   : E(read);
  4898     FA    : R;
  4899 %}
  4901 // Floating Point Convert I->L
  4902 pipe_class fcvtI2L(regD dst, regF src) %{
  4903     single_instruction;
  4904     dst   : X(write);
  4905     src   : E(read);
  4906     FA    : R;
  4907 %}
  4909 // Floating Point Convert D->F
  4910 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
  4911     instruction_count(1); multiple_bundles;
  4912     dst   : X(write)+6;
  4913     src   : E(read);
  4914     FA    : R;
  4915 %}
  4917 // Floating Point Convert D->L
  4918 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
  4919     instruction_count(1); multiple_bundles;
  4920     dst   : X(write)+6;
  4921     src   : E(read);
  4922     FA    : R;
  4923 %}
  4925 // Floating Point Convert F->I
  4926 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
  4927     instruction_count(1); multiple_bundles;
  4928     dst   : X(write)+6;
  4929     src   : E(read);
  4930     FA    : R;
  4931 %}
  4933 // Floating Point Convert F->L
  4934 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
  4935     instruction_count(1); multiple_bundles;
  4936     dst   : X(write)+6;
  4937     src   : E(read);
  4938     FA    : R;
  4939 %}
  4941 // Floating Point Convert I->F
  4942 pipe_class fcvtI2F(regF dst, regF src) %{
  4943     single_instruction;
  4944     dst   : X(write);
  4945     src   : E(read);
  4946     FA    : R;
  4947 %}
  4949 // Floating Point Compare
  4950 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
  4951     single_instruction;
  4952     cr    : X(write);
  4953     src1  : E(read);
  4954     src2  : E(read);
  4955     FA    : R;
  4956 %}
  4958 // Floating Point Compare
  4959 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
  4960     single_instruction;
  4961     cr    : X(write);
  4962     src1  : E(read);
  4963     src2  : E(read);
  4964     FA    : R;
  4965 %}
  4967 // Floating Add Nop
  4968 pipe_class fadd_nop() %{
  4969     single_instruction;
  4970     FA  : R;
  4971 %}
  4973 // Integer Store to Memory
  4974 pipe_class istore_mem_reg(memory mem, iRegI src) %{
  4975     single_instruction;
  4976     mem   : R(read);
  4977     src   : C(read);
  4978     MS    : R;
  4979 %}
  4981 // Integer Store to Memory
  4982 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
  4983     single_instruction;
  4984     mem   : R(read);
  4985     src   : C(read);
  4986     MS    : R;
  4987 %}
  4989 // Integer Store Zero to Memory
  4990 pipe_class istore_mem_zero(memory mem, immI0 src) %{
  4991     single_instruction;
  4992     mem   : R(read);
  4993     MS    : R;
  4994 %}
  4996 // Special Stack Slot Store
  4997 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
  4998     single_instruction;
  4999     stkSlot : R(read);
  5000     src     : C(read);
  5001     MS      : R;
  5002 %}
  5004 // Special Stack Slot Store
  5005 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
  5006     instruction_count(2); multiple_bundles;
  5007     stkSlot : R(read);
  5008     src     : C(read);
  5009     MS      : R(2);
  5010 %}
  5012 // Float Store
  5013 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
  5014     single_instruction;
  5015     mem : R(read);
  5016     src : C(read);
  5017     MS  : R;
  5018 %}
  5020 // Float Store
  5021 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
  5022     single_instruction;
  5023     mem : R(read);
  5024     MS  : R;
  5025 %}
  5027 // Double Store
  5028 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
  5029     instruction_count(1);
  5030     mem : R(read);
  5031     src : C(read);
  5032     MS  : R;
  5033 %}
  5035 // Double Store
  5036 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
  5037     single_instruction;
  5038     mem : R(read);
  5039     MS  : R;
  5040 %}
  5042 // Special Stack Slot Float Store
  5043 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
  5044     single_instruction;
  5045     stkSlot : R(read);
  5046     src     : C(read);
  5047     MS      : R;
  5048 %}
  5050 // Special Stack Slot Double Store
  5051 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
  5052     single_instruction;
  5053     stkSlot : R(read);
  5054     src     : C(read);
  5055     MS      : R;
  5056 %}
  5058 // Integer Load (when sign bit propagation not needed)
  5059 pipe_class iload_mem(iRegI dst, memory mem) %{
  5060     single_instruction;
  5061     mem : R(read);
  5062     dst : C(write);
  5063     MS  : R;
  5064 %}
  5066 // Integer Load from stack operand
  5067 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
  5068     single_instruction;
  5069     mem : R(read);
  5070     dst : C(write);
  5071     MS  : R;
  5072 %}
  5074 // Integer Load (when sign bit propagation or masking is needed)
  5075 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
  5076     single_instruction;
  5077     mem : R(read);
  5078     dst : M(write);
  5079     MS  : R;
  5080 %}
  5082 // Float Load
  5083 pipe_class floadF_mem(regF dst, memory mem) %{
  5084     single_instruction;
  5085     mem : R(read);
  5086     dst : M(write);
  5087     MS  : R;
  5088 %}
  5090 // Float Load
  5091 pipe_class floadD_mem(regD dst, memory mem) %{
  5092     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
  5093     mem : R(read);
  5094     dst : M(write);
  5095     MS  : R;
  5096 %}
  5098 // Float Load
  5099 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
  5100     single_instruction;
  5101     stkSlot : R(read);
  5102     dst : M(write);
  5103     MS  : R;
  5104 %}
  5106 // Float Load
  5107 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
  5108     single_instruction;
  5109     stkSlot : R(read);
  5110     dst : M(write);
  5111     MS  : R;
  5112 %}
  5114 // Memory Nop
  5115 pipe_class mem_nop() %{
  5116     single_instruction;
  5117     MS  : R;
  5118 %}
  5120 pipe_class sethi(iRegP dst, immI src) %{
  5121     single_instruction;
  5122     dst  : E(write);
  5123     IALU : R;
  5124 %}
  5126 pipe_class loadPollP(iRegP poll) %{
  5127     single_instruction;
  5128     poll : R(read);
  5129     MS   : R;
  5130 %}
  5132 pipe_class br(Universe br, label labl) %{
  5133     single_instruction_with_delay_slot;
  5134     BR  : R;
  5135 %}
  5137 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
  5138     single_instruction_with_delay_slot;
  5139     cr    : E(read);
  5140     BR    : R;
  5141 %}
  5143 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
  5144     single_instruction_with_delay_slot;
  5145     op1 : E(read);
  5146     BR  : R;
  5147     MS  : R;
  5148 %}
  5150 // Compare and branch
  5151 pipe_class cmp_br_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl, flagsReg cr) %{
  5152     instruction_count(2); has_delay_slot;
  5153     cr    : E(write);
  5154     src1  : R(read);
  5155     src2  : R(read);
  5156     IALU  : R;
  5157     BR    : R;
  5158 %}
  5160 // Compare and branch
  5161 pipe_class cmp_br_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI13 src2, label labl, flagsReg cr) %{
  5162     instruction_count(2); has_delay_slot;
  5163     cr    : E(write);
  5164     src1  : R(read);
  5165     IALU  : R;
  5166     BR    : R;
  5167 %}
  5169 // Compare and branch using cbcond
  5170 pipe_class cbcond_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl) %{
  5171     single_instruction;
  5172     src1  : E(read);
  5173     src2  : E(read);
  5174     IALU  : R;
  5175     BR    : R;
  5176 %}
  5178 // Compare and branch using cbcond
  5179 pipe_class cbcond_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI5 src2, label labl) %{
  5180     single_instruction;
  5181     src1  : E(read);
  5182     IALU  : R;
  5183     BR    : R;
  5184 %}
  5186 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
  5187     single_instruction_with_delay_slot;
  5188     cr    : E(read);
  5189     BR    : R;
  5190 %}
  5192 pipe_class br_nop() %{
  5193     single_instruction;
  5194     BR  : R;
  5195 %}
  5197 pipe_class simple_call(method meth) %{
  5198     instruction_count(2); multiple_bundles; force_serialization;
  5199     fixed_latency(100);
  5200     BR  : R(1);
  5201     MS  : R(1);
  5202     A0  : R(1);
  5203 %}
  5205 pipe_class compiled_call(method meth) %{
  5206     instruction_count(1); multiple_bundles; force_serialization;
  5207     fixed_latency(100);
  5208     MS  : R(1);
  5209 %}
  5211 pipe_class call(method meth) %{
  5212     instruction_count(0); multiple_bundles; force_serialization;
  5213     fixed_latency(100);
  5214 %}
  5216 pipe_class tail_call(Universe ignore, label labl) %{
  5217     single_instruction; has_delay_slot;
  5218     fixed_latency(100);
  5219     BR  : R(1);
  5220     MS  : R(1);
  5221 %}
  5223 pipe_class ret(Universe ignore) %{
  5224     single_instruction; has_delay_slot;
  5225     BR  : R(1);
  5226     MS  : R(1);
  5227 %}
  5229 pipe_class ret_poll(g3RegP poll) %{
  5230     instruction_count(3); has_delay_slot;
  5231     poll : E(read);
  5232     MS   : R;
  5233 %}
  5235 // The real do-nothing guy
  5236 pipe_class empty( ) %{
  5237     instruction_count(0);
  5238 %}
  5240 pipe_class long_memory_op() %{
  5241     instruction_count(0); multiple_bundles; force_serialization;
  5242     fixed_latency(25);
  5243     MS  : R(1);
  5244 %}
  5246 // Check-cast
  5247 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
  5248     array : R(read);
  5249     match  : R(read);
  5250     IALU   : R(2);
  5251     BR     : R(2);
  5252     MS     : R;
  5253 %}
  5255 // Convert FPU flags into +1,0,-1
  5256 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
  5257     src1  : E(read);
  5258     src2  : E(read);
  5259     dst   : E(write);
  5260     FA    : R;
  5261     MS    : R(2);
  5262     BR    : R(2);
  5263 %}
  5265 // Compare for p < q, and conditionally add y
  5266 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
  5267     p     : E(read);
  5268     q     : E(read);
  5269     y     : E(read);
  5270     IALU  : R(3)
  5271 %}
  5273 // Perform a compare, then move conditionally in a branch delay slot.
  5274 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
  5275     src2   : E(read);
  5276     srcdst : E(read);
  5277     IALU   : R;
  5278     BR     : R;
  5279 %}
  5281 // Define the class for the Nop node
  5282 define %{
  5283    MachNop = ialu_nop;
  5284 %}
  5286 %}
  5288 //----------INSTRUCTIONS-------------------------------------------------------
  5290 //------------Special Stack Slot instructions - no match rules-----------------
  5291 instruct stkI_to_regF(regF dst, stackSlotI src) %{
  5292   // No match rule to avoid chain rule match.
  5293   effect(DEF dst, USE src);
  5294   ins_cost(MEMORY_REF_COST);
  5295   size(4);
  5296   format %{ "LDF    $src,$dst\t! stkI to regF" %}
  5297   opcode(Assembler::ldf_op3);
  5298   ins_encode(simple_form3_mem_reg(src, dst));
  5299   ins_pipe(floadF_stk);
  5300 %}
  5302 instruct stkL_to_regD(regD dst, stackSlotL src) %{
  5303   // No match rule to avoid chain rule match.
  5304   effect(DEF dst, USE src);
  5305   ins_cost(MEMORY_REF_COST);
  5306   size(4);
  5307   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
  5308   opcode(Assembler::lddf_op3);
  5309   ins_encode(simple_form3_mem_reg(src, dst));
  5310   ins_pipe(floadD_stk);
  5311 %}
  5313 instruct regF_to_stkI(stackSlotI dst, regF src) %{
  5314   // No match rule to avoid chain rule match.
  5315   effect(DEF dst, USE src);
  5316   ins_cost(MEMORY_REF_COST);
  5317   size(4);
  5318   format %{ "STF    $src,$dst\t! regF to stkI" %}
  5319   opcode(Assembler::stf_op3);
  5320   ins_encode(simple_form3_mem_reg(dst, src));
  5321   ins_pipe(fstoreF_stk_reg);
  5322 %}
  5324 instruct regD_to_stkL(stackSlotL dst, regD src) %{
  5325   // No match rule to avoid chain rule match.
  5326   effect(DEF dst, USE src);
  5327   ins_cost(MEMORY_REF_COST);
  5328   size(4);
  5329   format %{ "STDF   $src,$dst\t! regD to stkL" %}
  5330   opcode(Assembler::stdf_op3);
  5331   ins_encode(simple_form3_mem_reg(dst, src));
  5332   ins_pipe(fstoreD_stk_reg);
  5333 %}
  5335 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
  5336   effect(DEF dst, USE src);
  5337   ins_cost(MEMORY_REF_COST*2);
  5338   size(8);
  5339   format %{ "STW    $src,$dst.hi\t! long\n\t"
  5340             "STW    R_G0,$dst.lo" %}
  5341   opcode(Assembler::stw_op3);
  5342   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
  5343   ins_pipe(lstoreI_stk_reg);
  5344 %}
  5346 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
  5347   // No match rule to avoid chain rule match.
  5348   effect(DEF dst, USE src);
  5349   ins_cost(MEMORY_REF_COST);
  5350   size(4);
  5351   format %{ "STX    $src,$dst\t! regL to stkD" %}
  5352   opcode(Assembler::stx_op3);
  5353   ins_encode(simple_form3_mem_reg( dst, src ) );
  5354   ins_pipe(istore_stk_reg);
  5355 %}
  5357 //---------- Chain stack slots between similar types --------
  5359 // Load integer from stack slot
  5360 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
  5361   match(Set dst src);
  5362   ins_cost(MEMORY_REF_COST);
  5364   size(4);
  5365   format %{ "LDUW   $src,$dst\t!stk" %}
  5366   opcode(Assembler::lduw_op3);
  5367   ins_encode(simple_form3_mem_reg( src, dst ) );
  5368   ins_pipe(iload_mem);
  5369 %}
  5371 // Store integer to stack slot
  5372 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
  5373   match(Set dst src);
  5374   ins_cost(MEMORY_REF_COST);
  5376   size(4);
  5377   format %{ "STW    $src,$dst\t!stk" %}
  5378   opcode(Assembler::stw_op3);
  5379   ins_encode(simple_form3_mem_reg( dst, src ) );
  5380   ins_pipe(istore_mem_reg);
  5381 %}
  5383 // Load long from stack slot
  5384 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
  5385   match(Set dst src);
  5387   ins_cost(MEMORY_REF_COST);
  5388   size(4);
  5389   format %{ "LDX    $src,$dst\t! long" %}
  5390   opcode(Assembler::ldx_op3);
  5391   ins_encode(simple_form3_mem_reg( src, dst ) );
  5392   ins_pipe(iload_mem);
  5393 %}
  5395 // Store long to stack slot
  5396 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
  5397   match(Set dst src);
  5399   ins_cost(MEMORY_REF_COST);
  5400   size(4);
  5401   format %{ "STX    $src,$dst\t! long" %}
  5402   opcode(Assembler::stx_op3);
  5403   ins_encode(simple_form3_mem_reg( dst, src ) );
  5404   ins_pipe(istore_mem_reg);
  5405 %}
  5407 #ifdef _LP64
  5408 // Load pointer from stack slot, 64-bit encoding
  5409 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5410   match(Set dst src);
  5411   ins_cost(MEMORY_REF_COST);
  5412   size(4);
  5413   format %{ "LDX    $src,$dst\t!ptr" %}
  5414   opcode(Assembler::ldx_op3);
  5415   ins_encode(simple_form3_mem_reg( src, dst ) );
  5416   ins_pipe(iload_mem);
  5417 %}
  5419 // Store pointer to stack slot
  5420 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5421   match(Set dst src);
  5422   ins_cost(MEMORY_REF_COST);
  5423   size(4);
  5424   format %{ "STX    $src,$dst\t!ptr" %}
  5425   opcode(Assembler::stx_op3);
  5426   ins_encode(simple_form3_mem_reg( dst, src ) );
  5427   ins_pipe(istore_mem_reg);
  5428 %}
  5429 #else // _LP64
  5430 // Load pointer from stack slot, 32-bit encoding
  5431 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5432   match(Set dst src);
  5433   ins_cost(MEMORY_REF_COST);
  5434   format %{ "LDUW   $src,$dst\t!ptr" %}
  5435   opcode(Assembler::lduw_op3, Assembler::ldst_op);
  5436   ins_encode(simple_form3_mem_reg( src, dst ) );
  5437   ins_pipe(iload_mem);
  5438 %}
  5440 // Store pointer to stack slot
  5441 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5442   match(Set dst src);
  5443   ins_cost(MEMORY_REF_COST);
  5444   format %{ "STW    $src,$dst\t!ptr" %}
  5445   opcode(Assembler::stw_op3, Assembler::ldst_op);
  5446   ins_encode(simple_form3_mem_reg( dst, src ) );
  5447   ins_pipe(istore_mem_reg);
  5448 %}
  5449 #endif // _LP64
  5451 //------------Special Nop instructions for bundling - no match rules-----------
  5452 // Nop using the A0 functional unit
  5453 instruct Nop_A0() %{
  5454   ins_cost(0);
  5456   format %{ "NOP    ! Alu Pipeline" %}
  5457   opcode(Assembler::or_op3, Assembler::arith_op);
  5458   ins_encode( form2_nop() );
  5459   ins_pipe(ialu_nop_A0);
  5460 %}
  5462 // Nop using the A1 functional unit
  5463 instruct Nop_A1( ) %{
  5464   ins_cost(0);
  5466   format %{ "NOP    ! Alu Pipeline" %}
  5467   opcode(Assembler::or_op3, Assembler::arith_op);
  5468   ins_encode( form2_nop() );
  5469   ins_pipe(ialu_nop_A1);
  5470 %}
  5472 // Nop using the memory functional unit
  5473 instruct Nop_MS( ) %{
  5474   ins_cost(0);
  5476   format %{ "NOP    ! Memory Pipeline" %}
  5477   ins_encode( emit_mem_nop );
  5478   ins_pipe(mem_nop);
  5479 %}
  5481 // Nop using the floating add functional unit
  5482 instruct Nop_FA( ) %{
  5483   ins_cost(0);
  5485   format %{ "NOP    ! Floating Add Pipeline" %}
  5486   ins_encode( emit_fadd_nop );
  5487   ins_pipe(fadd_nop);
  5488 %}
  5490 // Nop using the branch functional unit
  5491 instruct Nop_BR( ) %{
  5492   ins_cost(0);
  5494   format %{ "NOP    ! Branch Pipeline" %}
  5495   ins_encode( emit_br_nop );
  5496   ins_pipe(br_nop);
  5497 %}
  5499 //----------Load/Store/Move Instructions---------------------------------------
  5500 //----------Load Instructions--------------------------------------------------
  5501 // Load Byte (8bit signed)
  5502 instruct loadB(iRegI dst, memory mem) %{
  5503   match(Set dst (LoadB mem));
  5504   ins_cost(MEMORY_REF_COST);
  5506   size(4);
  5507   format %{ "LDSB   $mem,$dst\t! byte" %}
  5508   ins_encode %{
  5509     __ ldsb($mem$$Address, $dst$$Register);
  5510   %}
  5511   ins_pipe(iload_mask_mem);
  5512 %}
  5514 // Load Byte (8bit signed) into a Long Register
  5515 instruct loadB2L(iRegL dst, memory mem) %{
  5516   match(Set dst (ConvI2L (LoadB mem)));
  5517   ins_cost(MEMORY_REF_COST);
  5519   size(4);
  5520   format %{ "LDSB   $mem,$dst\t! byte -> long" %}
  5521   ins_encode %{
  5522     __ ldsb($mem$$Address, $dst$$Register);
  5523   %}
  5524   ins_pipe(iload_mask_mem);
  5525 %}
  5527 // Load Unsigned Byte (8bit UNsigned) into an int reg
  5528 instruct loadUB(iRegI dst, memory mem) %{
  5529   match(Set dst (LoadUB mem));
  5530   ins_cost(MEMORY_REF_COST);
  5532   size(4);
  5533   format %{ "LDUB   $mem,$dst\t! ubyte" %}
  5534   ins_encode %{
  5535     __ ldub($mem$$Address, $dst$$Register);
  5536   %}
  5537   ins_pipe(iload_mem);
  5538 %}
  5540 // Load Unsigned Byte (8bit UNsigned) into a Long Register
  5541 instruct loadUB2L(iRegL dst, memory mem) %{
  5542   match(Set dst (ConvI2L (LoadUB mem)));
  5543   ins_cost(MEMORY_REF_COST);
  5545   size(4);
  5546   format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
  5547   ins_encode %{
  5548     __ ldub($mem$$Address, $dst$$Register);
  5549   %}
  5550   ins_pipe(iload_mem);
  5551 %}
  5553 // Load Unsigned Byte (8 bit UNsigned) with 8-bit mask into Long Register
  5554 instruct loadUB2L_immI8(iRegL dst, memory mem, immI8 mask) %{
  5555   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
  5556   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5558   size(2*4);
  5559   format %{ "LDUB   $mem,$dst\t# ubyte & 8-bit mask -> long\n\t"
  5560             "AND    $dst,$mask,$dst" %}
  5561   ins_encode %{
  5562     __ ldub($mem$$Address, $dst$$Register);
  5563     __ and3($dst$$Register, $mask$$constant, $dst$$Register);
  5564   %}
  5565   ins_pipe(iload_mem);
  5566 %}
  5568 // Load Short (16bit signed)
  5569 instruct loadS(iRegI dst, memory mem) %{
  5570   match(Set dst (LoadS mem));
  5571   ins_cost(MEMORY_REF_COST);
  5573   size(4);
  5574   format %{ "LDSH   $mem,$dst\t! short" %}
  5575   ins_encode %{
  5576     __ ldsh($mem$$Address, $dst$$Register);
  5577   %}
  5578   ins_pipe(iload_mask_mem);
  5579 %}
  5581 // Load Short (16 bit signed) to Byte (8 bit signed)
  5582 instruct loadS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5583   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
  5584   ins_cost(MEMORY_REF_COST);
  5586   size(4);
  5588   format %{ "LDSB   $mem+1,$dst\t! short -> byte" %}
  5589   ins_encode %{
  5590     __ ldsb($mem$$Address, $dst$$Register, 1);
  5591   %}
  5592   ins_pipe(iload_mask_mem);
  5593 %}
  5595 // Load Short (16bit signed) into a Long Register
  5596 instruct loadS2L(iRegL dst, memory mem) %{
  5597   match(Set dst (ConvI2L (LoadS mem)));
  5598   ins_cost(MEMORY_REF_COST);
  5600   size(4);
  5601   format %{ "LDSH   $mem,$dst\t! short -> long" %}
  5602   ins_encode %{
  5603     __ ldsh($mem$$Address, $dst$$Register);
  5604   %}
  5605   ins_pipe(iload_mask_mem);
  5606 %}
  5608 // Load Unsigned Short/Char (16bit UNsigned)
  5609 instruct loadUS(iRegI dst, memory mem) %{
  5610   match(Set dst (LoadUS mem));
  5611   ins_cost(MEMORY_REF_COST);
  5613   size(4);
  5614   format %{ "LDUH   $mem,$dst\t! ushort/char" %}
  5615   ins_encode %{
  5616     __ lduh($mem$$Address, $dst$$Register);
  5617   %}
  5618   ins_pipe(iload_mem);
  5619 %}
  5621 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
  5622 instruct loadUS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5623   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
  5624   ins_cost(MEMORY_REF_COST);
  5626   size(4);
  5627   format %{ "LDSB   $mem+1,$dst\t! ushort -> byte" %}
  5628   ins_encode %{
  5629     __ ldsb($mem$$Address, $dst$$Register, 1);
  5630   %}
  5631   ins_pipe(iload_mask_mem);
  5632 %}
  5634 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
  5635 instruct loadUS2L(iRegL dst, memory mem) %{
  5636   match(Set dst (ConvI2L (LoadUS mem)));
  5637   ins_cost(MEMORY_REF_COST);
  5639   size(4);
  5640   format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
  5641   ins_encode %{
  5642     __ lduh($mem$$Address, $dst$$Register);
  5643   %}
  5644   ins_pipe(iload_mem);
  5645 %}
  5647 // Load Unsigned Short/Char (16bit UNsigned) with mask 0xFF into a Long Register
  5648 instruct loadUS2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
  5649   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5650   ins_cost(MEMORY_REF_COST);
  5652   size(4);
  5653   format %{ "LDUB   $mem+1,$dst\t! ushort/char & 0xFF -> long" %}
  5654   ins_encode %{
  5655     __ ldub($mem$$Address, $dst$$Register, 1);  // LSB is index+1 on BE
  5656   %}
  5657   ins_pipe(iload_mem);
  5658 %}
  5660 // Load Unsigned Short/Char (16bit UNsigned) with a 13-bit mask into a Long Register
  5661 instruct loadUS2L_immI13(iRegL dst, memory mem, immI13 mask) %{
  5662   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5663   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5665   size(2*4);
  5666   format %{ "LDUH   $mem,$dst\t! ushort/char & 13-bit mask -> long\n\t"
  5667             "AND    $dst,$mask,$dst" %}
  5668   ins_encode %{
  5669     Register Rdst = $dst$$Register;
  5670     __ lduh($mem$$Address, Rdst);
  5671     __ and3(Rdst, $mask$$constant, Rdst);
  5672   %}
  5673   ins_pipe(iload_mem);
  5674 %}
  5676 // Load Unsigned Short/Char (16bit UNsigned) with a 16-bit mask into a Long Register
  5677 instruct loadUS2L_immI16(iRegL dst, memory mem, immI16 mask, iRegL tmp) %{
  5678   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5679   effect(TEMP dst, TEMP tmp);
  5680   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
  5682   size((3+1)*4);  // set may use two instructions.
  5683   format %{ "LDUH   $mem,$dst\t! ushort/char & 16-bit mask -> long\n\t"
  5684             "SET    $mask,$tmp\n\t"
  5685             "AND    $dst,$tmp,$dst" %}
  5686   ins_encode %{
  5687     Register Rdst = $dst$$Register;
  5688     Register Rtmp = $tmp$$Register;
  5689     __ lduh($mem$$Address, Rdst);
  5690     __ set($mask$$constant, Rtmp);
  5691     __ and3(Rdst, Rtmp, Rdst);
  5692   %}
  5693   ins_pipe(iload_mem);
  5694 %}
  5696 // Load Integer
  5697 instruct loadI(iRegI dst, memory mem) %{
  5698   match(Set dst (LoadI mem));
  5699   ins_cost(MEMORY_REF_COST);
  5701   size(4);
  5702   format %{ "LDUW   $mem,$dst\t! int" %}
  5703   ins_encode %{
  5704     __ lduw($mem$$Address, $dst$$Register);
  5705   %}
  5706   ins_pipe(iload_mem);
  5707 %}
  5709 // Load Integer to Byte (8 bit signed)
  5710 instruct loadI2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5711   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
  5712   ins_cost(MEMORY_REF_COST);
  5714   size(4);
  5716   format %{ "LDSB   $mem+3,$dst\t! int -> byte" %}
  5717   ins_encode %{
  5718     __ ldsb($mem$$Address, $dst$$Register, 3);
  5719   %}
  5720   ins_pipe(iload_mask_mem);
  5721 %}
  5723 // Load Integer to Unsigned Byte (8 bit UNsigned)
  5724 instruct loadI2UB(iRegI dst, indOffset13m7 mem, immI_255 mask) %{
  5725   match(Set dst (AndI (LoadI mem) mask));
  5726   ins_cost(MEMORY_REF_COST);
  5728   size(4);
  5730   format %{ "LDUB   $mem+3,$dst\t! int -> ubyte" %}
  5731   ins_encode %{
  5732     __ ldub($mem$$Address, $dst$$Register, 3);
  5733   %}
  5734   ins_pipe(iload_mask_mem);
  5735 %}
  5737 // Load Integer to Short (16 bit signed)
  5738 instruct loadI2S(iRegI dst, indOffset13m7 mem, immI_16 sixteen) %{
  5739   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
  5740   ins_cost(MEMORY_REF_COST);
  5742   size(4);
  5744   format %{ "LDSH   $mem+2,$dst\t! int -> short" %}
  5745   ins_encode %{
  5746     __ ldsh($mem$$Address, $dst$$Register, 2);
  5747   %}
  5748   ins_pipe(iload_mask_mem);
  5749 %}
  5751 // Load Integer to Unsigned Short (16 bit UNsigned)
  5752 instruct loadI2US(iRegI dst, indOffset13m7 mem, immI_65535 mask) %{
  5753   match(Set dst (AndI (LoadI mem) mask));
  5754   ins_cost(MEMORY_REF_COST);
  5756   size(4);
  5758   format %{ "LDUH   $mem+2,$dst\t! int -> ushort/char" %}
  5759   ins_encode %{
  5760     __ lduh($mem$$Address, $dst$$Register, 2);
  5761   %}
  5762   ins_pipe(iload_mask_mem);
  5763 %}
  5765 // Load Integer into a Long Register
  5766 instruct loadI2L(iRegL dst, memory mem) %{
  5767   match(Set dst (ConvI2L (LoadI mem)));
  5768   ins_cost(MEMORY_REF_COST);
  5770   size(4);
  5771   format %{ "LDSW   $mem,$dst\t! int -> long" %}
  5772   ins_encode %{
  5773     __ ldsw($mem$$Address, $dst$$Register);
  5774   %}
  5775   ins_pipe(iload_mask_mem);
  5776 %}
  5778 // Load Integer with mask 0xFF into a Long Register
  5779 instruct loadI2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
  5780   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5781   ins_cost(MEMORY_REF_COST);
  5783   size(4);
  5784   format %{ "LDUB   $mem+3,$dst\t! int & 0xFF -> long" %}
  5785   ins_encode %{
  5786     __ ldub($mem$$Address, $dst$$Register, 3);  // LSB is index+3 on BE
  5787   %}
  5788   ins_pipe(iload_mem);
  5789 %}
  5791 // Load Integer with mask 0xFFFF into a Long Register
  5792 instruct loadI2L_immI_65535(iRegL dst, indOffset13m7 mem, immI_65535 mask) %{
  5793   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5794   ins_cost(MEMORY_REF_COST);
  5796   size(4);
  5797   format %{ "LDUH   $mem+2,$dst\t! int & 0xFFFF -> long" %}
  5798   ins_encode %{
  5799     __ lduh($mem$$Address, $dst$$Register, 2);  // LSW is index+2 on BE
  5800   %}
  5801   ins_pipe(iload_mem);
  5802 %}
  5804 // Load Integer with a 13-bit mask into a Long Register
  5805 instruct loadI2L_immI13(iRegL dst, memory mem, immI13 mask) %{
  5806   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5807   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5809   size(2*4);
  5810   format %{ "LDUW   $mem,$dst\t! int & 13-bit mask -> long\n\t"
  5811             "AND    $dst,$mask,$dst" %}
  5812   ins_encode %{
  5813     Register Rdst = $dst$$Register;
  5814     __ lduw($mem$$Address, Rdst);
  5815     __ and3(Rdst, $mask$$constant, Rdst);
  5816   %}
  5817   ins_pipe(iload_mem);
  5818 %}
  5820 // Load Integer with a 32-bit mask into a Long Register
  5821 instruct loadI2L_immI(iRegL dst, memory mem, immI mask, iRegL tmp) %{
  5822   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5823   effect(TEMP dst, TEMP tmp);
  5824   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
  5826   size((3+1)*4);  // set may use two instructions.
  5827   format %{ "LDUW   $mem,$dst\t! int & 32-bit mask -> long\n\t"
  5828             "SET    $mask,$tmp\n\t"
  5829             "AND    $dst,$tmp,$dst" %}
  5830   ins_encode %{
  5831     Register Rdst = $dst$$Register;
  5832     Register Rtmp = $tmp$$Register;
  5833     __ lduw($mem$$Address, Rdst);
  5834     __ set($mask$$constant, Rtmp);
  5835     __ and3(Rdst, Rtmp, Rdst);
  5836   %}
  5837   ins_pipe(iload_mem);
  5838 %}
  5840 // Load Unsigned Integer into a Long Register
  5841 instruct loadUI2L(iRegL dst, memory mem, immL_32bits mask) %{
  5842   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
  5843   ins_cost(MEMORY_REF_COST);
  5845   size(4);
  5846   format %{ "LDUW   $mem,$dst\t! uint -> long" %}
  5847   ins_encode %{
  5848     __ lduw($mem$$Address, $dst$$Register);
  5849   %}
  5850   ins_pipe(iload_mem);
  5851 %}
  5853 // Load Long - aligned
  5854 instruct loadL(iRegL dst, memory mem ) %{
  5855   match(Set dst (LoadL mem));
  5856   ins_cost(MEMORY_REF_COST);
  5858   size(4);
  5859   format %{ "LDX    $mem,$dst\t! long" %}
  5860   ins_encode %{
  5861     __ ldx($mem$$Address, $dst$$Register);
  5862   %}
  5863   ins_pipe(iload_mem);
  5864 %}
  5866 // Load Long - UNaligned
  5867 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
  5868   match(Set dst (LoadL_unaligned mem));
  5869   effect(KILL tmp);
  5870   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  5871   size(16);
  5872   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
  5873           "\tLDUW   $mem  ,$dst\n"
  5874           "\tSLLX   #32, $dst, $dst\n"
  5875           "\tOR     $dst, R_O7, $dst" %}
  5876   opcode(Assembler::lduw_op3);
  5877   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
  5878   ins_pipe(iload_mem);
  5879 %}
  5881 // Load Range
  5882 instruct loadRange(iRegI dst, memory mem) %{
  5883   match(Set dst (LoadRange mem));
  5884   ins_cost(MEMORY_REF_COST);
  5886   size(4);
  5887   format %{ "LDUW   $mem,$dst\t! range" %}
  5888   opcode(Assembler::lduw_op3);
  5889   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5890   ins_pipe(iload_mem);
  5891 %}
  5893 // Load Integer into %f register (for fitos/fitod)
  5894 instruct loadI_freg(regF dst, memory mem) %{
  5895   match(Set dst (LoadI mem));
  5896   ins_cost(MEMORY_REF_COST);
  5897   size(4);
  5899   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
  5900   opcode(Assembler::ldf_op3);
  5901   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5902   ins_pipe(floadF_mem);
  5903 %}
  5905 // Load Pointer
  5906 instruct loadP(iRegP dst, memory mem) %{
  5907   match(Set dst (LoadP mem));
  5908   ins_cost(MEMORY_REF_COST);
  5909   size(4);
  5911 #ifndef _LP64
  5912   format %{ "LDUW   $mem,$dst\t! ptr" %}
  5913   ins_encode %{
  5914     __ lduw($mem$$Address, $dst$$Register);
  5915   %}
  5916 #else
  5917   format %{ "LDX    $mem,$dst\t! ptr" %}
  5918   ins_encode %{
  5919     __ ldx($mem$$Address, $dst$$Register);
  5920   %}
  5921 #endif
  5922   ins_pipe(iload_mem);
  5923 %}
  5925 // Load Compressed Pointer
  5926 instruct loadN(iRegN dst, memory mem) %{
  5927   match(Set dst (LoadN mem));
  5928   ins_cost(MEMORY_REF_COST);
  5929   size(4);
  5931   format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
  5932   ins_encode %{
  5933     __ lduw($mem$$Address, $dst$$Register);
  5934   %}
  5935   ins_pipe(iload_mem);
  5936 %}
  5938 // Load Klass Pointer
  5939 instruct loadKlass(iRegP dst, memory mem) %{
  5940   match(Set dst (LoadKlass mem));
  5941   ins_cost(MEMORY_REF_COST);
  5942   size(4);
  5944 #ifndef _LP64
  5945   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
  5946   ins_encode %{
  5947     __ lduw($mem$$Address, $dst$$Register);
  5948   %}
  5949 #else
  5950   format %{ "LDX    $mem,$dst\t! klass ptr" %}
  5951   ins_encode %{
  5952     __ ldx($mem$$Address, $dst$$Register);
  5953   %}
  5954 #endif
  5955   ins_pipe(iload_mem);
  5956 %}
  5958 // Load narrow Klass Pointer
  5959 instruct loadNKlass(iRegN dst, memory mem) %{
  5960   match(Set dst (LoadNKlass mem));
  5961   ins_cost(MEMORY_REF_COST);
  5962   size(4);
  5964   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
  5965   ins_encode %{
  5966     __ lduw($mem$$Address, $dst$$Register);
  5967   %}
  5968   ins_pipe(iload_mem);
  5969 %}
  5971 // Load Double
  5972 instruct loadD(regD dst, memory mem) %{
  5973   match(Set dst (LoadD mem));
  5974   ins_cost(MEMORY_REF_COST);
  5976   size(4);
  5977   format %{ "LDDF   $mem,$dst" %}
  5978   opcode(Assembler::lddf_op3);
  5979   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5980   ins_pipe(floadD_mem);
  5981 %}
  5983 // Load Double - UNaligned
  5984 instruct loadD_unaligned(regD_low dst, memory mem ) %{
  5985   match(Set dst (LoadD_unaligned mem));
  5986   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  5987   size(8);
  5988   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
  5989           "\tLDF    $mem+4,$dst.lo\t!" %}
  5990   opcode(Assembler::ldf_op3);
  5991   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
  5992   ins_pipe(iload_mem);
  5993 %}
  5995 // Load Float
  5996 instruct loadF(regF dst, memory mem) %{
  5997   match(Set dst (LoadF mem));
  5998   ins_cost(MEMORY_REF_COST);
  6000   size(4);
  6001   format %{ "LDF    $mem,$dst" %}
  6002   opcode(Assembler::ldf_op3);
  6003   ins_encode(simple_form3_mem_reg( mem, dst ) );
  6004   ins_pipe(floadF_mem);
  6005 %}
  6007 // Load Constant
  6008 instruct loadConI( iRegI dst, immI src ) %{
  6009   match(Set dst src);
  6010   ins_cost(DEFAULT_COST * 3/2);
  6011   format %{ "SET    $src,$dst" %}
  6012   ins_encode( Set32(src, dst) );
  6013   ins_pipe(ialu_hi_lo_reg);
  6014 %}
  6016 instruct loadConI13( iRegI dst, immI13 src ) %{
  6017   match(Set dst src);
  6019   size(4);
  6020   format %{ "MOV    $src,$dst" %}
  6021   ins_encode( Set13( src, dst ) );
  6022   ins_pipe(ialu_imm);
  6023 %}
  6025 #ifndef _LP64
  6026 instruct loadConP(iRegP dst, immP con) %{
  6027   match(Set dst con);
  6028   ins_cost(DEFAULT_COST * 3/2);
  6029   format %{ "SET    $con,$dst\t!ptr" %}
  6030   ins_encode %{
  6031     relocInfo::relocType constant_reloc = _opnds[1]->constant_reloc();
  6032       intptr_t val = $con$$constant;
  6033     if (constant_reloc == relocInfo::oop_type) {
  6034       __ set_oop_constant((jobject) val, $dst$$Register);
  6035     } else if (constant_reloc == relocInfo::metadata_type) {
  6036       __ set_metadata_constant((Metadata*)val, $dst$$Register);
  6037     } else {          // non-oop pointers, e.g. card mark base, heap top
  6038       assert(constant_reloc == relocInfo::none, "unexpected reloc type");
  6039       __ set(val, $dst$$Register);
  6041   %}
  6042   ins_pipe(loadConP);
  6043 %}
  6044 #else
  6045 instruct loadConP_set(iRegP dst, immP_set con) %{
  6046   match(Set dst con);
  6047   ins_cost(DEFAULT_COST * 3/2);
  6048   format %{ "SET    $con,$dst\t! ptr" %}
  6049   ins_encode %{
  6050     relocInfo::relocType constant_reloc = _opnds[1]->constant_reloc();
  6051       intptr_t val = $con$$constant;
  6052     if (constant_reloc == relocInfo::oop_type) {
  6053       __ set_oop_constant((jobject) val, $dst$$Register);
  6054     } else if (constant_reloc == relocInfo::metadata_type) {
  6055       __ set_metadata_constant((Metadata*)val, $dst$$Register);
  6056     } else {          // non-oop pointers, e.g. card mark base, heap top
  6057       assert(constant_reloc == relocInfo::none, "unexpected reloc type");
  6058       __ set(val, $dst$$Register);
  6060   %}
  6061   ins_pipe(loadConP);
  6062 %}
  6064 instruct loadConP_load(iRegP dst, immP_load con) %{
  6065   match(Set dst con);
  6066   ins_cost(MEMORY_REF_COST);
  6067   format %{ "LD     [$constanttablebase + $constantoffset],$dst\t! load from constant table: ptr=$con" %}
  6068   ins_encode %{
  6069     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
  6070     __ ld_ptr($constanttablebase, con_offset, $dst$$Register);
  6071   %}
  6072   ins_pipe(loadConP);
  6073 %}
  6075 instruct loadConP_no_oop_cheap(iRegP dst, immP_no_oop_cheap con) %{
  6076   match(Set dst con);
  6077   ins_cost(DEFAULT_COST * 3/2);
  6078   format %{ "SET    $con,$dst\t! non-oop ptr" %}
  6079   ins_encode %{
  6080     __ set($con$$constant, $dst$$Register);
  6081   %}
  6082   ins_pipe(loadConP);
  6083 %}
  6084 #endif // _LP64
  6086 instruct loadConP0(iRegP dst, immP0 src) %{
  6087   match(Set dst src);
  6089   size(4);
  6090   format %{ "CLR    $dst\t!ptr" %}
  6091   ins_encode %{
  6092     __ clr($dst$$Register);
  6093   %}
  6094   ins_pipe(ialu_imm);
  6095 %}
  6097 instruct loadConP_poll(iRegP dst, immP_poll src) %{
  6098   match(Set dst src);
  6099   ins_cost(DEFAULT_COST);
  6100   format %{ "SET    $src,$dst\t!ptr" %}
  6101   ins_encode %{
  6102     AddressLiteral polling_page(os::get_polling_page());
  6103     __ sethi(polling_page, reg_to_register_object($dst$$reg));
  6104   %}
  6105   ins_pipe(loadConP_poll);
  6106 %}
  6108 instruct loadConN0(iRegN dst, immN0 src) %{
  6109   match(Set dst src);
  6111   size(4);
  6112   format %{ "CLR    $dst\t! compressed NULL ptr" %}
  6113   ins_encode %{
  6114     __ clr($dst$$Register);
  6115   %}
  6116   ins_pipe(ialu_imm);
  6117 %}
  6119 instruct loadConN(iRegN dst, immN src) %{
  6120   match(Set dst src);
  6121   ins_cost(DEFAULT_COST * 3/2);
  6122   format %{ "SET    $src,$dst\t! compressed ptr" %}
  6123   ins_encode %{
  6124     Register dst = $dst$$Register;
  6125     __ set_narrow_oop((jobject)$src$$constant, dst);
  6126   %}
  6127   ins_pipe(ialu_hi_lo_reg);
  6128 %}
  6130 instruct loadConNKlass(iRegN dst, immNKlass src) %{
  6131   match(Set dst src);
  6132   ins_cost(DEFAULT_COST * 3/2);
  6133   format %{ "SET    $src,$dst\t! compressed klass ptr" %}
  6134   ins_encode %{
  6135     Register dst = $dst$$Register;
  6136     __ set_narrow_klass((Klass*)$src$$constant, dst);
  6137   %}
  6138   ins_pipe(ialu_hi_lo_reg);
  6139 %}
  6141 // Materialize long value (predicated by immL_cheap).
  6142 instruct loadConL_set64(iRegL dst, immL_cheap con, o7RegL tmp) %{
  6143   match(Set dst con);
  6144   effect(KILL tmp);
  6145   ins_cost(DEFAULT_COST * 3);
  6146   format %{ "SET64   $con,$dst KILL $tmp\t! cheap long" %}
  6147   ins_encode %{
  6148     __ set64($con$$constant, $dst$$Register, $tmp$$Register);
  6149   %}
  6150   ins_pipe(loadConL);
  6151 %}
  6153 // Load long value from constant table (predicated by immL_expensive).
  6154 instruct loadConL_ldx(iRegL dst, immL_expensive con) %{
  6155   match(Set dst con);
  6156   ins_cost(MEMORY_REF_COST);
  6157   format %{ "LDX     [$constanttablebase + $constantoffset],$dst\t! load from constant table: long=$con" %}
  6158   ins_encode %{
  6159       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
  6160     __ ldx($constanttablebase, con_offset, $dst$$Register);
  6161   %}
  6162   ins_pipe(loadConL);
  6163 %}
  6165 instruct loadConL0( iRegL dst, immL0 src ) %{
  6166   match(Set dst src);
  6167   ins_cost(DEFAULT_COST);
  6168   size(4);
  6169   format %{ "CLR    $dst\t! long" %}
  6170   ins_encode( Set13( src, dst ) );
  6171   ins_pipe(ialu_imm);
  6172 %}
  6174 instruct loadConL13( iRegL dst, immL13 src ) %{
  6175   match(Set dst src);
  6176   ins_cost(DEFAULT_COST * 2);
  6178   size(4);
  6179   format %{ "MOV    $src,$dst\t! long" %}
  6180   ins_encode( Set13( src, dst ) );
  6181   ins_pipe(ialu_imm);
  6182 %}
  6184 instruct loadConF(regF dst, immF con, o7RegI tmp) %{
  6185   match(Set dst con);
  6186   effect(KILL tmp);
  6187   format %{ "LDF    [$constanttablebase + $constantoffset],$dst\t! load from constant table: float=$con" %}
  6188   ins_encode %{
  6189       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
  6190     __ ldf(FloatRegisterImpl::S, $constanttablebase, con_offset, $dst$$FloatRegister);
  6191   %}
  6192   ins_pipe(loadConFD);
  6193 %}
  6195 instruct loadConD(regD dst, immD con, o7RegI tmp) %{
  6196   match(Set dst con);
  6197   effect(KILL tmp);
  6198   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: double=$con" %}
  6199   ins_encode %{
  6200     // XXX This is a quick fix for 6833573.
  6201     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset($con), $dst$$FloatRegister);
  6202     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
  6203     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  6204   %}
  6205   ins_pipe(loadConFD);
  6206 %}
  6208 // Prefetch instructions.
  6209 // Must be safe to execute with invalid address (cannot fault).
  6211 instruct prefetchr( memory mem ) %{
  6212   match( PrefetchRead mem );
  6213   ins_cost(MEMORY_REF_COST);
  6214   size(4);
  6216   format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
  6217   opcode(Assembler::prefetch_op3);
  6218   ins_encode( form3_mem_prefetch_read( mem ) );
  6219   ins_pipe(iload_mem);
  6220 %}
  6222 instruct prefetchw( memory mem ) %{
  6223   match( PrefetchWrite mem );
  6224   ins_cost(MEMORY_REF_COST);
  6225   size(4);
  6227   format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
  6228   opcode(Assembler::prefetch_op3);
  6229   ins_encode( form3_mem_prefetch_write( mem ) );
  6230   ins_pipe(iload_mem);
  6231 %}
  6233 // Prefetch instructions for allocation.
  6235 instruct prefetchAlloc( memory mem ) %{
  6236   predicate(AllocatePrefetchInstr == 0);
  6237   match( PrefetchAllocation mem );
  6238   ins_cost(MEMORY_REF_COST);
  6239   size(4);
  6241   format %{ "PREFETCH $mem,2\t! Prefetch allocation" %}
  6242   opcode(Assembler::prefetch_op3);
  6243   ins_encode( form3_mem_prefetch_write( mem ) );
  6244   ins_pipe(iload_mem);
  6245 %}
  6247 // Use BIS instruction to prefetch for allocation.
  6248 // Could fault, need space at the end of TLAB.
  6249 instruct prefetchAlloc_bis( iRegP dst ) %{
  6250   predicate(AllocatePrefetchInstr == 1);
  6251   match( PrefetchAllocation dst );
  6252   ins_cost(MEMORY_REF_COST);
  6253   size(4);
  6255   format %{ "STXA   [$dst]\t! // Prefetch allocation using BIS" %}
  6256   ins_encode %{
  6257     __ stxa(G0, $dst$$Register, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
  6258   %}
  6259   ins_pipe(istore_mem_reg);
  6260 %}
  6262 // Next code is used for finding next cache line address to prefetch.
  6263 #ifndef _LP64
  6264 instruct cacheLineAdr( iRegP dst, iRegP src, immI13 mask ) %{
  6265   match(Set dst (CastX2P (AndI (CastP2X src) mask)));
  6266   ins_cost(DEFAULT_COST);
  6267   size(4);
  6269   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
  6270   ins_encode %{
  6271     __ and3($src$$Register, $mask$$constant, $dst$$Register);
  6272   %}
  6273   ins_pipe(ialu_reg_imm);
  6274 %}
  6275 #else
  6276 instruct cacheLineAdr( iRegP dst, iRegP src, immL13 mask ) %{
  6277   match(Set dst (CastX2P (AndL (CastP2X src) mask)));
  6278   ins_cost(DEFAULT_COST);
  6279   size(4);
  6281   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
  6282   ins_encode %{
  6283     __ and3($src$$Register, $mask$$constant, $dst$$Register);
  6284   %}
  6285   ins_pipe(ialu_reg_imm);
  6286 %}
  6287 #endif
  6289 //----------Store Instructions-------------------------------------------------
  6290 // Store Byte
  6291 instruct storeB(memory mem, iRegI src) %{
  6292   match(Set mem (StoreB mem src));
  6293   ins_cost(MEMORY_REF_COST);
  6295   size(4);
  6296   format %{ "STB    $src,$mem\t! byte" %}
  6297   opcode(Assembler::stb_op3);
  6298   ins_encode(simple_form3_mem_reg( mem, src ) );
  6299   ins_pipe(istore_mem_reg);
  6300 %}
  6302 instruct storeB0(memory mem, immI0 src) %{
  6303   match(Set mem (StoreB mem src));
  6304   ins_cost(MEMORY_REF_COST);
  6306   size(4);
  6307   format %{ "STB    $src,$mem\t! byte" %}
  6308   opcode(Assembler::stb_op3);
  6309   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6310   ins_pipe(istore_mem_zero);
  6311 %}
  6313 instruct storeCM0(memory mem, immI0 src) %{
  6314   match(Set mem (StoreCM mem src));
  6315   ins_cost(MEMORY_REF_COST);
  6317   size(4);
  6318   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
  6319   opcode(Assembler::stb_op3);
  6320   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6321   ins_pipe(istore_mem_zero);
  6322 %}
  6324 // Store Char/Short
  6325 instruct storeC(memory mem, iRegI src) %{
  6326   match(Set mem (StoreC mem src));
  6327   ins_cost(MEMORY_REF_COST);
  6329   size(4);
  6330   format %{ "STH    $src,$mem\t! short" %}
  6331   opcode(Assembler::sth_op3);
  6332   ins_encode(simple_form3_mem_reg( mem, src ) );
  6333   ins_pipe(istore_mem_reg);
  6334 %}
  6336 instruct storeC0(memory mem, immI0 src) %{
  6337   match(Set mem (StoreC mem src));
  6338   ins_cost(MEMORY_REF_COST);
  6340   size(4);
  6341   format %{ "STH    $src,$mem\t! short" %}
  6342   opcode(Assembler::sth_op3);
  6343   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6344   ins_pipe(istore_mem_zero);
  6345 %}
  6347 // Store Integer
  6348 instruct storeI(memory mem, iRegI src) %{
  6349   match(Set mem (StoreI mem src));
  6350   ins_cost(MEMORY_REF_COST);
  6352   size(4);
  6353   format %{ "STW    $src,$mem" %}
  6354   opcode(Assembler::stw_op3);
  6355   ins_encode(simple_form3_mem_reg( mem, src ) );
  6356   ins_pipe(istore_mem_reg);
  6357 %}
  6359 // Store Long
  6360 instruct storeL(memory mem, iRegL src) %{
  6361   match(Set mem (StoreL mem src));
  6362   ins_cost(MEMORY_REF_COST);
  6363   size(4);
  6364   format %{ "STX    $src,$mem\t! long" %}
  6365   opcode(Assembler::stx_op3);
  6366   ins_encode(simple_form3_mem_reg( mem, src ) );
  6367   ins_pipe(istore_mem_reg);
  6368 %}
  6370 instruct storeI0(memory mem, immI0 src) %{
  6371   match(Set mem (StoreI mem src));
  6372   ins_cost(MEMORY_REF_COST);
  6374   size(4);
  6375   format %{ "STW    $src,$mem" %}
  6376   opcode(Assembler::stw_op3);
  6377   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6378   ins_pipe(istore_mem_zero);
  6379 %}
  6381 instruct storeL0(memory mem, immL0 src) %{
  6382   match(Set mem (StoreL mem src));
  6383   ins_cost(MEMORY_REF_COST);
  6385   size(4);
  6386   format %{ "STX    $src,$mem" %}
  6387   opcode(Assembler::stx_op3);
  6388   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6389   ins_pipe(istore_mem_zero);
  6390 %}
  6392 // Store Integer from float register (used after fstoi)
  6393 instruct storeI_Freg(memory mem, regF src) %{
  6394   match(Set mem (StoreI mem src));
  6395   ins_cost(MEMORY_REF_COST);
  6397   size(4);
  6398   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
  6399   opcode(Assembler::stf_op3);
  6400   ins_encode(simple_form3_mem_reg( mem, src ) );
  6401   ins_pipe(fstoreF_mem_reg);
  6402 %}
  6404 // Store Pointer
  6405 instruct storeP(memory dst, sp_ptr_RegP src) %{
  6406   match(Set dst (StoreP dst src));
  6407   ins_cost(MEMORY_REF_COST);
  6408   size(4);
  6410 #ifndef _LP64
  6411   format %{ "STW    $src,$dst\t! ptr" %}
  6412   opcode(Assembler::stw_op3, 0, REGP_OP);
  6413 #else
  6414   format %{ "STX    $src,$dst\t! ptr" %}
  6415   opcode(Assembler::stx_op3, 0, REGP_OP);
  6416 #endif
  6417   ins_encode( form3_mem_reg( dst, src ) );
  6418   ins_pipe(istore_mem_spORreg);
  6419 %}
  6421 instruct storeP0(memory dst, immP0 src) %{
  6422   match(Set dst (StoreP dst src));
  6423   ins_cost(MEMORY_REF_COST);
  6424   size(4);
  6426 #ifndef _LP64
  6427   format %{ "STW    $src,$dst\t! ptr" %}
  6428   opcode(Assembler::stw_op3, 0, REGP_OP);
  6429 #else
  6430   format %{ "STX    $src,$dst\t! ptr" %}
  6431   opcode(Assembler::stx_op3, 0, REGP_OP);
  6432 #endif
  6433   ins_encode( form3_mem_reg( dst, R_G0 ) );
  6434   ins_pipe(istore_mem_zero);
  6435 %}
  6437 // Store Compressed Pointer
  6438 instruct storeN(memory dst, iRegN src) %{
  6439    match(Set dst (StoreN dst src));
  6440    ins_cost(MEMORY_REF_COST);
  6441    size(4);
  6443    format %{ "STW    $src,$dst\t! compressed ptr" %}
  6444    ins_encode %{
  6445      Register base = as_Register($dst$$base);
  6446      Register index = as_Register($dst$$index);
  6447      Register src = $src$$Register;
  6448      if (index != G0) {
  6449        __ stw(src, base, index);
  6450      } else {
  6451        __ stw(src, base, $dst$$disp);
  6453    %}
  6454    ins_pipe(istore_mem_spORreg);
  6455 %}
  6457 instruct storeNKlass(memory dst, iRegN src) %{
  6458    match(Set dst (StoreNKlass dst src));
  6459    ins_cost(MEMORY_REF_COST);
  6460    size(4);
  6462    format %{ "STW    $src,$dst\t! compressed klass ptr" %}
  6463    ins_encode %{
  6464      Register base = as_Register($dst$$base);
  6465      Register index = as_Register($dst$$index);
  6466      Register src = $src$$Register;
  6467      if (index != G0) {
  6468        __ stw(src, base, index);
  6469      } else {
  6470        __ stw(src, base, $dst$$disp);
  6472    %}
  6473    ins_pipe(istore_mem_spORreg);
  6474 %}
  6476 instruct storeN0(memory dst, immN0 src) %{
  6477    match(Set dst (StoreN dst src));
  6478    ins_cost(MEMORY_REF_COST);
  6479    size(4);
  6481    format %{ "STW    $src,$dst\t! compressed ptr" %}
  6482    ins_encode %{
  6483      Register base = as_Register($dst$$base);
  6484      Register index = as_Register($dst$$index);
  6485      if (index != G0) {
  6486        __ stw(0, base, index);
  6487      } else {
  6488        __ stw(0, base, $dst$$disp);
  6490    %}
  6491    ins_pipe(istore_mem_zero);
  6492 %}
  6494 // Store Double
  6495 instruct storeD( memory mem, regD src) %{
  6496   match(Set mem (StoreD mem src));
  6497   ins_cost(MEMORY_REF_COST);
  6499   size(4);
  6500   format %{ "STDF   $src,$mem" %}
  6501   opcode(Assembler::stdf_op3);
  6502   ins_encode(simple_form3_mem_reg( mem, src ) );
  6503   ins_pipe(fstoreD_mem_reg);
  6504 %}
  6506 instruct storeD0( memory mem, immD0 src) %{
  6507   match(Set mem (StoreD mem src));
  6508   ins_cost(MEMORY_REF_COST);
  6510   size(4);
  6511   format %{ "STX    $src,$mem" %}
  6512   opcode(Assembler::stx_op3);
  6513   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6514   ins_pipe(fstoreD_mem_zero);
  6515 %}
  6517 // Store Float
  6518 instruct storeF( memory mem, regF src) %{
  6519   match(Set mem (StoreF mem src));
  6520   ins_cost(MEMORY_REF_COST);
  6522   size(4);
  6523   format %{ "STF    $src,$mem" %}
  6524   opcode(Assembler::stf_op3);
  6525   ins_encode(simple_form3_mem_reg( mem, src ) );
  6526   ins_pipe(fstoreF_mem_reg);
  6527 %}
  6529 instruct storeF0( memory mem, immF0 src) %{
  6530   match(Set mem (StoreF mem src));
  6531   ins_cost(MEMORY_REF_COST);
  6533   size(4);
  6534   format %{ "STW    $src,$mem\t! storeF0" %}
  6535   opcode(Assembler::stw_op3);
  6536   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6537   ins_pipe(fstoreF_mem_zero);
  6538 %}
  6540 // Convert oop pointer into compressed form
  6541 instruct encodeHeapOop(iRegN dst, iRegP src) %{
  6542   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
  6543   match(Set dst (EncodeP src));
  6544   format %{ "encode_heap_oop $src, $dst" %}
  6545   ins_encode %{
  6546     __ encode_heap_oop($src$$Register, $dst$$Register);
  6547   %}
  6548   ins_pipe(ialu_reg);
  6549 %}
  6551 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
  6552   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
  6553   match(Set dst (EncodeP src));
  6554   format %{ "encode_heap_oop_not_null $src, $dst" %}
  6555   ins_encode %{
  6556     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
  6557   %}
  6558   ins_pipe(ialu_reg);
  6559 %}
  6561 instruct decodeHeapOop(iRegP dst, iRegN src) %{
  6562   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
  6563             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
  6564   match(Set dst (DecodeN src));
  6565   format %{ "decode_heap_oop $src, $dst" %}
  6566   ins_encode %{
  6567     __ decode_heap_oop($src$$Register, $dst$$Register);
  6568   %}
  6569   ins_pipe(ialu_reg);
  6570 %}
  6572 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
  6573   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
  6574             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
  6575   match(Set dst (DecodeN src));
  6576   format %{ "decode_heap_oop_not_null $src, $dst" %}
  6577   ins_encode %{
  6578     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
  6579   %}
  6580   ins_pipe(ialu_reg);
  6581 %}
  6583 instruct encodeKlass_not_null(iRegN dst, iRegP src) %{
  6584   match(Set dst (EncodePKlass src));
  6585   format %{ "encode_klass_not_null $src, $dst" %}
  6586   ins_encode %{
  6587     __ encode_klass_not_null($src$$Register, $dst$$Register);
  6588   %}
  6589   ins_pipe(ialu_reg);
  6590 %}
  6592 instruct decodeKlass_not_null(iRegP dst, iRegN src) %{
  6593   match(Set dst (DecodeNKlass src));
  6594   format %{ "decode_klass_not_null $src, $dst" %}
  6595   ins_encode %{
  6596     __ decode_klass_not_null($src$$Register, $dst$$Register);
  6597   %}
  6598   ins_pipe(ialu_reg);
  6599 %}
  6601 //----------MemBar Instructions-----------------------------------------------
  6602 // Memory barrier flavors
  6604 instruct membar_acquire() %{
  6605   match(MemBarAcquire);
  6606   ins_cost(4*MEMORY_REF_COST);
  6608   size(0);
  6609   format %{ "MEMBAR-acquire" %}
  6610   ins_encode( enc_membar_acquire );
  6611   ins_pipe(long_memory_op);
  6612 %}
  6614 instruct membar_acquire_lock() %{
  6615   match(MemBarAcquireLock);
  6616   ins_cost(0);
  6618   size(0);
  6619   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
  6620   ins_encode( );
  6621   ins_pipe(empty);
  6622 %}
  6624 instruct membar_release() %{
  6625   match(MemBarRelease);
  6626   ins_cost(4*MEMORY_REF_COST);
  6628   size(0);
  6629   format %{ "MEMBAR-release" %}
  6630   ins_encode( enc_membar_release );
  6631   ins_pipe(long_memory_op);
  6632 %}
  6634 instruct membar_release_lock() %{
  6635   match(MemBarReleaseLock);
  6636   ins_cost(0);
  6638   size(0);
  6639   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
  6640   ins_encode( );
  6641   ins_pipe(empty);
  6642 %}
  6644 instruct membar_volatile() %{
  6645   match(MemBarVolatile);
  6646   ins_cost(4*MEMORY_REF_COST);
  6648   size(4);
  6649   format %{ "MEMBAR-volatile" %}
  6650   ins_encode( enc_membar_volatile );
  6651   ins_pipe(long_memory_op);
  6652 %}
  6654 instruct unnecessary_membar_volatile() %{
  6655   match(MemBarVolatile);
  6656   predicate(Matcher::post_store_load_barrier(n));
  6657   ins_cost(0);
  6659   size(0);
  6660   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
  6661   ins_encode( );
  6662   ins_pipe(empty);
  6663 %}
  6665 instruct membar_storestore() %{
  6666   match(MemBarStoreStore);
  6667   ins_cost(0);
  6669   size(0);
  6670   format %{ "!MEMBAR-storestore (empty encoding)" %}
  6671   ins_encode( );
  6672   ins_pipe(empty);
  6673 %}
  6675 //----------Register Move Instructions-----------------------------------------
  6676 instruct roundDouble_nop(regD dst) %{
  6677   match(Set dst (RoundDouble dst));
  6678   ins_cost(0);
  6679   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6680   ins_encode( );
  6681   ins_pipe(empty);
  6682 %}
  6685 instruct roundFloat_nop(regF dst) %{
  6686   match(Set dst (RoundFloat dst));
  6687   ins_cost(0);
  6688   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6689   ins_encode( );
  6690   ins_pipe(empty);
  6691 %}
  6694 // Cast Index to Pointer for unsafe natives
  6695 instruct castX2P(iRegX src, iRegP dst) %{
  6696   match(Set dst (CastX2P src));
  6698   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
  6699   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6700   ins_pipe(ialu_reg);
  6701 %}
  6703 // Cast Pointer to Index for unsafe natives
  6704 instruct castP2X(iRegP src, iRegX dst) %{
  6705   match(Set dst (CastP2X src));
  6707   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
  6708   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6709   ins_pipe(ialu_reg);
  6710 %}
  6712 instruct stfSSD(stackSlotD stkSlot, regD src) %{
  6713   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6714   match(Set stkSlot src);   // chain rule
  6715   ins_cost(MEMORY_REF_COST);
  6716   format %{ "STDF   $src,$stkSlot\t!stk" %}
  6717   opcode(Assembler::stdf_op3);
  6718   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6719   ins_pipe(fstoreD_stk_reg);
  6720 %}
  6722 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
  6723   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6724   match(Set dst stkSlot);   // chain rule
  6725   ins_cost(MEMORY_REF_COST);
  6726   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
  6727   opcode(Assembler::lddf_op3);
  6728   ins_encode(simple_form3_mem_reg(stkSlot, dst));
  6729   ins_pipe(floadD_stk);
  6730 %}
  6732 instruct stfSSF(stackSlotF stkSlot, regF src) %{
  6733   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6734   match(Set stkSlot src);   // chain rule
  6735   ins_cost(MEMORY_REF_COST);
  6736   format %{ "STF   $src,$stkSlot\t!stk" %}
  6737   opcode(Assembler::stf_op3);
  6738   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6739   ins_pipe(fstoreF_stk_reg);
  6740 %}
  6742 //----------Conditional Move---------------------------------------------------
  6743 // Conditional move
  6744 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
  6745   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6746   ins_cost(150);
  6747   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6748   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6749   ins_pipe(ialu_reg);
  6750 %}
  6752 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
  6753   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6754   ins_cost(140);
  6755   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6756   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6757   ins_pipe(ialu_imm);
  6758 %}
  6760 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
  6761   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6762   ins_cost(150);
  6763   size(4);
  6764   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6765   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6766   ins_pipe(ialu_reg);
  6767 %}
  6769 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
  6770   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6771   ins_cost(140);
  6772   size(4);
  6773   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6774   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6775   ins_pipe(ialu_imm);
  6776 %}
  6778 instruct cmovIIu_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
  6779   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6780   ins_cost(150);
  6781   size(4);
  6782   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6783   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6784   ins_pipe(ialu_reg);
  6785 %}
  6787 instruct cmovIIu_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
  6788   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6789   ins_cost(140);
  6790   size(4);
  6791   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6792   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6793   ins_pipe(ialu_imm);
  6794 %}
  6796 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
  6797   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6798   ins_cost(150);
  6799   size(4);
  6800   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6801   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6802   ins_pipe(ialu_reg);
  6803 %}
  6805 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
  6806   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6807   ins_cost(140);
  6808   size(4);
  6809   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6810   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  6811   ins_pipe(ialu_imm);
  6812 %}
  6814 // Conditional move for RegN. Only cmov(reg,reg).
  6815 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
  6816   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
  6817   ins_cost(150);
  6818   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6819   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6820   ins_pipe(ialu_reg);
  6821 %}
  6823 // This instruction also works with CmpN so we don't need cmovNN_reg.
  6824 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
  6825   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
  6826   ins_cost(150);
  6827   size(4);
  6828   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6829   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6830   ins_pipe(ialu_reg);
  6831 %}
  6833 // This instruction also works with CmpN so we don't need cmovNN_reg.
  6834 instruct cmovNIu_reg(cmpOpU cmp, flagsRegU icc, iRegN dst, iRegN src) %{
  6835   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
  6836   ins_cost(150);
  6837   size(4);
  6838   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6839   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6840   ins_pipe(ialu_reg);
  6841 %}
  6843 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
  6844   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
  6845   ins_cost(150);
  6846   size(4);
  6847   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6848   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6849   ins_pipe(ialu_reg);
  6850 %}
  6852 // Conditional move
  6853 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
  6854   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6855   ins_cost(150);
  6856   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6857   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6858   ins_pipe(ialu_reg);
  6859 %}
  6861 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
  6862   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6863   ins_cost(140);
  6864   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6865   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6866   ins_pipe(ialu_imm);
  6867 %}
  6869 // This instruction also works with CmpN so we don't need cmovPN_reg.
  6870 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
  6871   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6872   ins_cost(150);
  6874   size(4);
  6875   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6876   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6877   ins_pipe(ialu_reg);
  6878 %}
  6880 instruct cmovPIu_reg(cmpOpU cmp, flagsRegU icc, iRegP dst, iRegP src) %{
  6881   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6882   ins_cost(150);
  6884   size(4);
  6885   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6886   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6887   ins_pipe(ialu_reg);
  6888 %}
  6890 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
  6891   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6892   ins_cost(140);
  6894   size(4);
  6895   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6896   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6897   ins_pipe(ialu_imm);
  6898 %}
  6900 instruct cmovPIu_imm(cmpOpU cmp, flagsRegU icc, iRegP dst, immP0 src) %{
  6901   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6902   ins_cost(140);
  6904   size(4);
  6905   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6906   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6907   ins_pipe(ialu_imm);
  6908 %}
  6910 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
  6911   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  6912   ins_cost(150);
  6913   size(4);
  6914   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6915   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6916   ins_pipe(ialu_imm);
  6917 %}
  6919 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
  6920   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  6921   ins_cost(140);
  6922   size(4);
  6923   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6924   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  6925   ins_pipe(ialu_imm);
  6926 %}
  6928 // Conditional move
  6929 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
  6930   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
  6931   ins_cost(150);
  6932   opcode(0x101);
  6933   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  6934   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6935   ins_pipe(int_conditional_float_move);
  6936 %}
  6938 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
  6939   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  6940   ins_cost(150);
  6942   size(4);
  6943   format %{ "FMOVS$cmp $icc,$src,$dst" %}
  6944   opcode(0x101);
  6945   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6946   ins_pipe(int_conditional_float_move);
  6947 %}
  6949 instruct cmovFIu_reg(cmpOpU cmp, flagsRegU icc, regF dst, regF src) %{
  6950   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  6951   ins_cost(150);
  6953   size(4);
  6954   format %{ "FMOVS$cmp $icc,$src,$dst" %}
  6955   opcode(0x101);
  6956   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6957   ins_pipe(int_conditional_float_move);
  6958 %}
  6960 // Conditional move,
  6961 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
  6962   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
  6963   ins_cost(150);
  6964   size(4);
  6965   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
  6966   opcode(0x1);
  6967   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  6968   ins_pipe(int_conditional_double_move);
  6969 %}
  6971 // Conditional move
  6972 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
  6973   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
  6974   ins_cost(150);
  6975   size(4);
  6976   opcode(0x102);
  6977   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  6978   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6979   ins_pipe(int_conditional_double_move);
  6980 %}
  6982 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
  6983   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  6984   ins_cost(150);
  6986   size(4);
  6987   format %{ "FMOVD$cmp $icc,$src,$dst" %}
  6988   opcode(0x102);
  6989   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6990   ins_pipe(int_conditional_double_move);
  6991 %}
  6993 instruct cmovDIu_reg(cmpOpU cmp, flagsRegU icc, regD dst, regD src) %{
  6994   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  6995   ins_cost(150);
  6997   size(4);
  6998   format %{ "FMOVD$cmp $icc,$src,$dst" %}
  6999   opcode(0x102);
  7000   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  7001   ins_pipe(int_conditional_double_move);
  7002 %}
  7004 // Conditional move,
  7005 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
  7006   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
  7007   ins_cost(150);
  7008   size(4);
  7009   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
  7010   opcode(0x2);
  7011   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  7012   ins_pipe(int_conditional_double_move);
  7013 %}
  7015 // Conditional move
  7016 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
  7017   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  7018   ins_cost(150);
  7019   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  7020   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  7021   ins_pipe(ialu_reg);
  7022 %}
  7024 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
  7025   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  7026   ins_cost(140);
  7027   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  7028   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  7029   ins_pipe(ialu_imm);
  7030 %}
  7032 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
  7033   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  7034   ins_cost(150);
  7036   size(4);
  7037   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  7038   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  7039   ins_pipe(ialu_reg);
  7040 %}
  7043 instruct cmovLIu_reg(cmpOpU cmp, flagsRegU icc, iRegL dst, iRegL src) %{
  7044   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  7045   ins_cost(150);
  7047   size(4);
  7048   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  7049   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  7050   ins_pipe(ialu_reg);
  7051 %}
  7054 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
  7055   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
  7056   ins_cost(150);
  7058   size(4);
  7059   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
  7060   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  7061   ins_pipe(ialu_reg);
  7062 %}
  7066 //----------OS and Locking Instructions----------------------------------------
  7068 // This name is KNOWN by the ADLC and cannot be changed.
  7069 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
  7070 // for this guy.
  7071 instruct tlsLoadP(g2RegP dst) %{
  7072   match(Set dst (ThreadLocal));
  7074   size(0);
  7075   ins_cost(0);
  7076   format %{ "# TLS is in G2" %}
  7077   ins_encode( /*empty encoding*/ );
  7078   ins_pipe(ialu_none);
  7079 %}
  7081 instruct checkCastPP( iRegP dst ) %{
  7082   match(Set dst (CheckCastPP dst));
  7084   size(0);
  7085   format %{ "# checkcastPP of $dst" %}
  7086   ins_encode( /*empty encoding*/ );
  7087   ins_pipe(empty);
  7088 %}
  7091 instruct castPP( iRegP dst ) %{
  7092   match(Set dst (CastPP dst));
  7093   format %{ "# castPP of $dst" %}
  7094   ins_encode( /*empty encoding*/ );
  7095   ins_pipe(empty);
  7096 %}
  7098 instruct castII( iRegI dst ) %{
  7099   match(Set dst (CastII dst));
  7100   format %{ "# castII of $dst" %}
  7101   ins_encode( /*empty encoding*/ );
  7102   ins_cost(0);
  7103   ins_pipe(empty);
  7104 %}
  7106 //----------Arithmetic Instructions--------------------------------------------
  7107 // Addition Instructions
  7108 // Register Addition
  7109 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7110   match(Set dst (AddI src1 src2));
  7112   size(4);
  7113   format %{ "ADD    $src1,$src2,$dst" %}
  7114   ins_encode %{
  7115     __ add($src1$$Register, $src2$$Register, $dst$$Register);
  7116   %}
  7117   ins_pipe(ialu_reg_reg);
  7118 %}
  7120 // Immediate Addition
  7121 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7122   match(Set dst (AddI src1 src2));
  7124   size(4);
  7125   format %{ "ADD    $src1,$src2,$dst" %}
  7126   opcode(Assembler::add_op3, Assembler::arith_op);
  7127   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7128   ins_pipe(ialu_reg_imm);
  7129 %}
  7131 // Pointer Register Addition
  7132 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
  7133   match(Set dst (AddP src1 src2));
  7135   size(4);
  7136   format %{ "ADD    $src1,$src2,$dst" %}
  7137   opcode(Assembler::add_op3, Assembler::arith_op);
  7138   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7139   ins_pipe(ialu_reg_reg);
  7140 %}
  7142 // Pointer Immediate Addition
  7143 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
  7144   match(Set dst (AddP src1 src2));
  7146   size(4);
  7147   format %{ "ADD    $src1,$src2,$dst" %}
  7148   opcode(Assembler::add_op3, Assembler::arith_op);
  7149   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7150   ins_pipe(ialu_reg_imm);
  7151 %}
  7153 // Long Addition
  7154 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7155   match(Set dst (AddL src1 src2));
  7157   size(4);
  7158   format %{ "ADD    $src1,$src2,$dst\t! long" %}
  7159   opcode(Assembler::add_op3, Assembler::arith_op);
  7160   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7161   ins_pipe(ialu_reg_reg);
  7162 %}
  7164 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7165   match(Set dst (AddL src1 con));
  7167   size(4);
  7168   format %{ "ADD    $src1,$con,$dst" %}
  7169   opcode(Assembler::add_op3, Assembler::arith_op);
  7170   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7171   ins_pipe(ialu_reg_imm);
  7172 %}
  7174 //----------Conditional_store--------------------------------------------------
  7175 // Conditional-store of the updated heap-top.
  7176 // Used during allocation of the shared heap.
  7177 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
  7179 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
  7180 instruct loadPLocked(iRegP dst, memory mem) %{
  7181   match(Set dst (LoadPLocked mem));
  7182   ins_cost(MEMORY_REF_COST);
  7184 #ifndef _LP64
  7185   size(4);
  7186   format %{ "LDUW   $mem,$dst\t! ptr" %}
  7187   opcode(Assembler::lduw_op3, 0, REGP_OP);
  7188 #else
  7189   format %{ "LDX    $mem,$dst\t! ptr" %}
  7190   opcode(Assembler::ldx_op3, 0, REGP_OP);
  7191 #endif
  7192   ins_encode( form3_mem_reg( mem, dst ) );
  7193   ins_pipe(iload_mem);
  7194 %}
  7196 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
  7197   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
  7198   effect( KILL newval );
  7199   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
  7200             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
  7201   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
  7202   ins_pipe( long_memory_op );
  7203 %}
  7205 // Conditional-store of an int value.
  7206 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
  7207   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
  7208   effect( KILL newval );
  7209   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
  7210             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  7211   ins_encode( enc_cas(mem_ptr,oldval,newval) );
  7212   ins_pipe( long_memory_op );
  7213 %}
  7215 // Conditional-store of a long value.
  7216 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
  7217   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
  7218   effect( KILL newval );
  7219   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
  7220             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  7221   ins_encode( enc_cas(mem_ptr,oldval,newval) );
  7222   ins_pipe( long_memory_op );
  7223 %}
  7225 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
  7227 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7228   predicate(VM_Version::supports_cx8());
  7229   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
  7230   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7231   format %{
  7232             "MOV    $newval,O7\n\t"
  7233             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7234             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7235             "MOV    1,$res\n\t"
  7236             "MOVne  xcc,R_G0,$res"
  7237   %}
  7238   ins_encode( enc_casx(mem_ptr, oldval, newval),
  7239               enc_lflags_ne_to_boolean(res) );
  7240   ins_pipe( long_memory_op );
  7241 %}
  7244 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7245   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
  7246   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7247   format %{
  7248             "MOV    $newval,O7\n\t"
  7249             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7250             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7251             "MOV    1,$res\n\t"
  7252             "MOVne  icc,R_G0,$res"
  7253   %}
  7254   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7255               enc_iflags_ne_to_boolean(res) );
  7256   ins_pipe( long_memory_op );
  7257 %}
  7259 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7260 #ifdef _LP64
  7261   predicate(VM_Version::supports_cx8());
  7262 #endif
  7263   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
  7264   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7265   format %{
  7266             "MOV    $newval,O7\n\t"
  7267             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7268             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7269             "MOV    1,$res\n\t"
  7270             "MOVne  xcc,R_G0,$res"
  7271   %}
  7272 #ifdef _LP64
  7273   ins_encode( enc_casx(mem_ptr, oldval, newval),
  7274               enc_lflags_ne_to_boolean(res) );
  7275 #else
  7276   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7277               enc_iflags_ne_to_boolean(res) );
  7278 #endif
  7279   ins_pipe( long_memory_op );
  7280 %}
  7282 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7283   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
  7284   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7285   format %{
  7286             "MOV    $newval,O7\n\t"
  7287             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7288             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7289             "MOV    1,$res\n\t"
  7290             "MOVne  icc,R_G0,$res"
  7291   %}
  7292   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7293               enc_iflags_ne_to_boolean(res) );
  7294   ins_pipe( long_memory_op );
  7295 %}
  7297 instruct xchgI( memory mem, iRegI newval) %{
  7298   match(Set newval (GetAndSetI mem newval));
  7299   format %{ "SWAP  [$mem],$newval" %}
  7300   size(4);
  7301   ins_encode %{
  7302     __ swap($mem$$Address, $newval$$Register);
  7303   %}
  7304   ins_pipe( long_memory_op );
  7305 %}
  7307 #ifndef _LP64
  7308 instruct xchgP( memory mem, iRegP newval) %{
  7309   match(Set newval (GetAndSetP mem newval));
  7310   format %{ "SWAP  [$mem],$newval" %}
  7311   size(4);
  7312   ins_encode %{
  7313     __ swap($mem$$Address, $newval$$Register);
  7314   %}
  7315   ins_pipe( long_memory_op );
  7316 %}
  7317 #endif
  7319 instruct xchgN( memory mem, iRegN newval) %{
  7320   match(Set newval (GetAndSetN mem newval));
  7321   format %{ "SWAP  [$mem],$newval" %}
  7322   size(4);
  7323   ins_encode %{
  7324     __ swap($mem$$Address, $newval$$Register);
  7325   %}
  7326   ins_pipe( long_memory_op );
  7327 %}
  7329 //---------------------
  7330 // Subtraction Instructions
  7331 // Register Subtraction
  7332 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7333   match(Set dst (SubI src1 src2));
  7335   size(4);
  7336   format %{ "SUB    $src1,$src2,$dst" %}
  7337   opcode(Assembler::sub_op3, Assembler::arith_op);
  7338   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7339   ins_pipe(ialu_reg_reg);
  7340 %}
  7342 // Immediate Subtraction
  7343 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7344   match(Set dst (SubI src1 src2));
  7346   size(4);
  7347   format %{ "SUB    $src1,$src2,$dst" %}
  7348   opcode(Assembler::sub_op3, Assembler::arith_op);
  7349   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7350   ins_pipe(ialu_reg_imm);
  7351 %}
  7353 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  7354   match(Set dst (SubI zero src2));
  7356   size(4);
  7357   format %{ "NEG    $src2,$dst" %}
  7358   opcode(Assembler::sub_op3, Assembler::arith_op);
  7359   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  7360   ins_pipe(ialu_zero_reg);
  7361 %}
  7363 // Long subtraction
  7364 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7365   match(Set dst (SubL src1 src2));
  7367   size(4);
  7368   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7369   opcode(Assembler::sub_op3, Assembler::arith_op);
  7370   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7371   ins_pipe(ialu_reg_reg);
  7372 %}
  7374 // Immediate Subtraction
  7375 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7376   match(Set dst (SubL src1 con));
  7378   size(4);
  7379   format %{ "SUB    $src1,$con,$dst\t! long" %}
  7380   opcode(Assembler::sub_op3, Assembler::arith_op);
  7381   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7382   ins_pipe(ialu_reg_imm);
  7383 %}
  7385 // Long negation
  7386 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
  7387   match(Set dst (SubL zero src2));
  7389   size(4);
  7390   format %{ "NEG    $src2,$dst\t! long" %}
  7391   opcode(Assembler::sub_op3, Assembler::arith_op);
  7392   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  7393   ins_pipe(ialu_zero_reg);
  7394 %}
  7396 // Multiplication Instructions
  7397 // Integer Multiplication
  7398 // Register Multiplication
  7399 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7400   match(Set dst (MulI src1 src2));
  7402   size(4);
  7403   format %{ "MULX   $src1,$src2,$dst" %}
  7404   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7405   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7406   ins_pipe(imul_reg_reg);
  7407 %}
  7409 // Immediate Multiplication
  7410 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7411   match(Set dst (MulI src1 src2));
  7413   size(4);
  7414   format %{ "MULX   $src1,$src2,$dst" %}
  7415   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7416   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7417   ins_pipe(imul_reg_imm);
  7418 %}
  7420 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7421   match(Set dst (MulL src1 src2));
  7422   ins_cost(DEFAULT_COST * 5);
  7423   size(4);
  7424   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  7425   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7426   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7427   ins_pipe(mulL_reg_reg);
  7428 %}
  7430 // Immediate Multiplication
  7431 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7432   match(Set dst (MulL src1 src2));
  7433   ins_cost(DEFAULT_COST * 5);
  7434   size(4);
  7435   format %{ "MULX   $src1,$src2,$dst" %}
  7436   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7437   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7438   ins_pipe(mulL_reg_imm);
  7439 %}
  7441 // Integer Division
  7442 // Register Division
  7443 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
  7444   match(Set dst (DivI src1 src2));
  7445   ins_cost((2+71)*DEFAULT_COST);
  7447   format %{ "SRA     $src2,0,$src2\n\t"
  7448             "SRA     $src1,0,$src1\n\t"
  7449             "SDIVX   $src1,$src2,$dst" %}
  7450   ins_encode( idiv_reg( src1, src2, dst ) );
  7451   ins_pipe(sdiv_reg_reg);
  7452 %}
  7454 // Immediate Division
  7455 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
  7456   match(Set dst (DivI src1 src2));
  7457   ins_cost((2+71)*DEFAULT_COST);
  7459   format %{ "SRA     $src1,0,$src1\n\t"
  7460             "SDIVX   $src1,$src2,$dst" %}
  7461   ins_encode( idiv_imm( src1, src2, dst ) );
  7462   ins_pipe(sdiv_reg_imm);
  7463 %}
  7465 //----------Div-By-10-Expansion------------------------------------------------
  7466 // Extract hi bits of a 32x32->64 bit multiply.
  7467 // Expand rule only, not matched
  7468 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
  7469   effect( DEF dst, USE src1, USE src2 );
  7470   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
  7471             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
  7472   ins_encode( enc_mul_hi(dst,src1,src2));
  7473   ins_pipe(sdiv_reg_reg);
  7474 %}
  7476 // Magic constant, reciprocal of 10
  7477 instruct loadConI_x66666667(iRegIsafe dst) %{
  7478   effect( DEF dst );
  7480   size(8);
  7481   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
  7482   ins_encode( Set32(0x66666667, dst) );
  7483   ins_pipe(ialu_hi_lo_reg);
  7484 %}
  7486 // Register Shift Right Arithmetic Long by 32-63
  7487 instruct sra_31( iRegI dst, iRegI src ) %{
  7488   effect( DEF dst, USE src );
  7489   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
  7490   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
  7491   ins_pipe(ialu_reg_reg);
  7492 %}
  7494 // Arithmetic Shift Right by 8-bit immediate
  7495 instruct sra_reg_2( iRegI dst, iRegI src ) %{
  7496   effect( DEF dst, USE src );
  7497   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
  7498   opcode(Assembler::sra_op3, Assembler::arith_op);
  7499   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
  7500   ins_pipe(ialu_reg_imm);
  7501 %}
  7503 // Integer DIV with 10
  7504 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
  7505   match(Set dst (DivI src div));
  7506   ins_cost((6+6)*DEFAULT_COST);
  7507   expand %{
  7508     iRegIsafe tmp1;               // Killed temps;
  7509     iRegIsafe tmp2;               // Killed temps;
  7510     iRegI tmp3;                   // Killed temps;
  7511     iRegI tmp4;                   // Killed temps;
  7512     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
  7513     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
  7514     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
  7515     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
  7516     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
  7517   %}
  7518 %}
  7520 // Register Long Division
  7521 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7522   match(Set dst (DivL src1 src2));
  7523   ins_cost(DEFAULT_COST*71);
  7524   size(4);
  7525   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7526   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7527   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7528   ins_pipe(divL_reg_reg);
  7529 %}
  7531 // Register Long Division
  7532 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7533   match(Set dst (DivL src1 src2));
  7534   ins_cost(DEFAULT_COST*71);
  7535   size(4);
  7536   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7537   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7538   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7539   ins_pipe(divL_reg_imm);
  7540 %}
  7542 // Integer Remainder
  7543 // Register Remainder
  7544 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
  7545   match(Set dst (ModI src1 src2));
  7546   effect( KILL ccr, KILL temp);
  7548   format %{ "SREM   $src1,$src2,$dst" %}
  7549   ins_encode( irem_reg(src1, src2, dst, temp) );
  7550   ins_pipe(sdiv_reg_reg);
  7551 %}
  7553 // Immediate Remainder
  7554 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
  7555   match(Set dst (ModI src1 src2));
  7556   effect( KILL ccr, KILL temp);
  7558   format %{ "SREM   $src1,$src2,$dst" %}
  7559   ins_encode( irem_imm(src1, src2, dst, temp) );
  7560   ins_pipe(sdiv_reg_imm);
  7561 %}
  7563 // Register Long Remainder
  7564 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7565   effect(DEF dst, USE src1, USE src2);
  7566   size(4);
  7567   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7568   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7569   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7570   ins_pipe(divL_reg_reg);
  7571 %}
  7573 // Register Long Division
  7574 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  7575   effect(DEF dst, USE src1, USE src2);
  7576   size(4);
  7577   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7578   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7579   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7580   ins_pipe(divL_reg_imm);
  7581 %}
  7583 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7584   effect(DEF dst, USE src1, USE src2);
  7585   size(4);
  7586   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  7587   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7588   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7589   ins_pipe(mulL_reg_reg);
  7590 %}
  7592 // Immediate Multiplication
  7593 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  7594   effect(DEF dst, USE src1, USE src2);
  7595   size(4);
  7596   format %{ "MULX   $src1,$src2,$dst" %}
  7597   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7598   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7599   ins_pipe(mulL_reg_imm);
  7600 %}
  7602 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7603   effect(DEF dst, USE src1, USE src2);
  7604   size(4);
  7605   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7606   opcode(Assembler::sub_op3, Assembler::arith_op);
  7607   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7608   ins_pipe(ialu_reg_reg);
  7609 %}
  7611 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  7612   effect(DEF dst, USE src1, USE src2);
  7613   size(4);
  7614   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7615   opcode(Assembler::sub_op3, Assembler::arith_op);
  7616   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7617   ins_pipe(ialu_reg_reg);
  7618 %}
  7620 // Register Long Remainder
  7621 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7622   match(Set dst (ModL src1 src2));
  7623   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  7624   expand %{
  7625     iRegL tmp1;
  7626     iRegL tmp2;
  7627     divL_reg_reg_1(tmp1, src1, src2);
  7628     mulL_reg_reg_1(tmp2, tmp1, src2);
  7629     subL_reg_reg_1(dst,  src1, tmp2);
  7630   %}
  7631 %}
  7633 // Register Long Remainder
  7634 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7635   match(Set dst (ModL src1 src2));
  7636   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  7637   expand %{
  7638     iRegL tmp1;
  7639     iRegL tmp2;
  7640     divL_reg_imm13_1(tmp1, src1, src2);
  7641     mulL_reg_imm13_1(tmp2, tmp1, src2);
  7642     subL_reg_reg_2  (dst,  src1, tmp2);
  7643   %}
  7644 %}
  7646 // Integer Shift Instructions
  7647 // Register Shift Left
  7648 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7649   match(Set dst (LShiftI src1 src2));
  7651   size(4);
  7652   format %{ "SLL    $src1,$src2,$dst" %}
  7653   opcode(Assembler::sll_op3, Assembler::arith_op);
  7654   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7655   ins_pipe(ialu_reg_reg);
  7656 %}
  7658 // Register Shift Left Immediate
  7659 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7660   match(Set dst (LShiftI src1 src2));
  7662   size(4);
  7663   format %{ "SLL    $src1,$src2,$dst" %}
  7664   opcode(Assembler::sll_op3, Assembler::arith_op);
  7665   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7666   ins_pipe(ialu_reg_imm);
  7667 %}
  7669 // Register Shift Left
  7670 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7671   match(Set dst (LShiftL src1 src2));
  7673   size(4);
  7674   format %{ "SLLX   $src1,$src2,$dst" %}
  7675   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7676   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7677   ins_pipe(ialu_reg_reg);
  7678 %}
  7680 // Register Shift Left Immediate
  7681 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7682   match(Set dst (LShiftL src1 src2));
  7684   size(4);
  7685   format %{ "SLLX   $src1,$src2,$dst" %}
  7686   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7687   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7688   ins_pipe(ialu_reg_imm);
  7689 %}
  7691 // Register Arithmetic Shift Right
  7692 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7693   match(Set dst (RShiftI src1 src2));
  7694   size(4);
  7695   format %{ "SRA    $src1,$src2,$dst" %}
  7696   opcode(Assembler::sra_op3, Assembler::arith_op);
  7697   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7698   ins_pipe(ialu_reg_reg);
  7699 %}
  7701 // Register Arithmetic Shift Right Immediate
  7702 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7703   match(Set dst (RShiftI src1 src2));
  7705   size(4);
  7706   format %{ "SRA    $src1,$src2,$dst" %}
  7707   opcode(Assembler::sra_op3, Assembler::arith_op);
  7708   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7709   ins_pipe(ialu_reg_imm);
  7710 %}
  7712 // Register Shift Right Arithmatic Long
  7713 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7714   match(Set dst (RShiftL src1 src2));
  7716   size(4);
  7717   format %{ "SRAX   $src1,$src2,$dst" %}
  7718   opcode(Assembler::srax_op3, Assembler::arith_op);
  7719   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7720   ins_pipe(ialu_reg_reg);
  7721 %}
  7723 // Register Shift Left Immediate
  7724 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7725   match(Set dst (RShiftL src1 src2));
  7727   size(4);
  7728   format %{ "SRAX   $src1,$src2,$dst" %}
  7729   opcode(Assembler::srax_op3, Assembler::arith_op);
  7730   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7731   ins_pipe(ialu_reg_imm);
  7732 %}
  7734 // Register Shift Right
  7735 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7736   match(Set dst (URShiftI src1 src2));
  7738   size(4);
  7739   format %{ "SRL    $src1,$src2,$dst" %}
  7740   opcode(Assembler::srl_op3, Assembler::arith_op);
  7741   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7742   ins_pipe(ialu_reg_reg);
  7743 %}
  7745 // Register Shift Right Immediate
  7746 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7747   match(Set dst (URShiftI src1 src2));
  7749   size(4);
  7750   format %{ "SRL    $src1,$src2,$dst" %}
  7751   opcode(Assembler::srl_op3, Assembler::arith_op);
  7752   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7753   ins_pipe(ialu_reg_imm);
  7754 %}
  7756 // Register Shift Right
  7757 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7758   match(Set dst (URShiftL src1 src2));
  7760   size(4);
  7761   format %{ "SRLX   $src1,$src2,$dst" %}
  7762   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7763   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7764   ins_pipe(ialu_reg_reg);
  7765 %}
  7767 // Register Shift Right Immediate
  7768 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7769   match(Set dst (URShiftL src1 src2));
  7771   size(4);
  7772   format %{ "SRLX   $src1,$src2,$dst" %}
  7773   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7774   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7775   ins_pipe(ialu_reg_imm);
  7776 %}
  7778 // Register Shift Right Immediate with a CastP2X
  7779 #ifdef _LP64
  7780 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
  7781   match(Set dst (URShiftL (CastP2X src1) src2));
  7782   size(4);
  7783   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
  7784   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7785   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7786   ins_pipe(ialu_reg_imm);
  7787 %}
  7788 #else
  7789 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
  7790   match(Set dst (URShiftI (CastP2X src1) src2));
  7791   size(4);
  7792   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
  7793   opcode(Assembler::srl_op3, Assembler::arith_op);
  7794   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7795   ins_pipe(ialu_reg_imm);
  7796 %}
  7797 #endif
  7800 //----------Floating Point Arithmetic Instructions-----------------------------
  7802 //  Add float single precision
  7803 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
  7804   match(Set dst (AddF src1 src2));
  7806   size(4);
  7807   format %{ "FADDS  $src1,$src2,$dst" %}
  7808   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
  7809   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7810   ins_pipe(faddF_reg_reg);
  7811 %}
  7813 //  Add float double precision
  7814 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
  7815   match(Set dst (AddD src1 src2));
  7817   size(4);
  7818   format %{ "FADDD  $src1,$src2,$dst" %}
  7819   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  7820   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7821   ins_pipe(faddD_reg_reg);
  7822 %}
  7824 //  Sub float single precision
  7825 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
  7826   match(Set dst (SubF src1 src2));
  7828   size(4);
  7829   format %{ "FSUBS  $src1,$src2,$dst" %}
  7830   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
  7831   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7832   ins_pipe(faddF_reg_reg);
  7833 %}
  7835 //  Sub float double precision
  7836 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
  7837   match(Set dst (SubD src1 src2));
  7839   size(4);
  7840   format %{ "FSUBD  $src1,$src2,$dst" %}
  7841   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  7842   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7843   ins_pipe(faddD_reg_reg);
  7844 %}
  7846 //  Mul float single precision
  7847 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
  7848   match(Set dst (MulF src1 src2));
  7850   size(4);
  7851   format %{ "FMULS  $src1,$src2,$dst" %}
  7852   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
  7853   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7854   ins_pipe(fmulF_reg_reg);
  7855 %}
  7857 //  Mul float double precision
  7858 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
  7859   match(Set dst (MulD src1 src2));
  7861   size(4);
  7862   format %{ "FMULD  $src1,$src2,$dst" %}
  7863   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  7864   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7865   ins_pipe(fmulD_reg_reg);
  7866 %}
  7868 //  Div float single precision
  7869 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
  7870   match(Set dst (DivF src1 src2));
  7872   size(4);
  7873   format %{ "FDIVS  $src1,$src2,$dst" %}
  7874   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
  7875   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7876   ins_pipe(fdivF_reg_reg);
  7877 %}
  7879 //  Div float double precision
  7880 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
  7881   match(Set dst (DivD src1 src2));
  7883   size(4);
  7884   format %{ "FDIVD  $src1,$src2,$dst" %}
  7885   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
  7886   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7887   ins_pipe(fdivD_reg_reg);
  7888 %}
  7890 //  Absolute float double precision
  7891 instruct absD_reg(regD dst, regD src) %{
  7892   match(Set dst (AbsD src));
  7894   format %{ "FABSd  $src,$dst" %}
  7895   ins_encode(fabsd(dst, src));
  7896   ins_pipe(faddD_reg);
  7897 %}
  7899 //  Absolute float single precision
  7900 instruct absF_reg(regF dst, regF src) %{
  7901   match(Set dst (AbsF src));
  7903   format %{ "FABSs  $src,$dst" %}
  7904   ins_encode(fabss(dst, src));
  7905   ins_pipe(faddF_reg);
  7906 %}
  7908 instruct negF_reg(regF dst, regF src) %{
  7909   match(Set dst (NegF src));
  7911   size(4);
  7912   format %{ "FNEGs  $src,$dst" %}
  7913   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
  7914   ins_encode(form3_opf_rs2F_rdF(src, dst));
  7915   ins_pipe(faddF_reg);
  7916 %}
  7918 instruct negD_reg(regD dst, regD src) %{
  7919   match(Set dst (NegD src));
  7921   format %{ "FNEGd  $src,$dst" %}
  7922   ins_encode(fnegd(dst, src));
  7923   ins_pipe(faddD_reg);
  7924 %}
  7926 //  Sqrt float double precision
  7927 instruct sqrtF_reg_reg(regF dst, regF src) %{
  7928   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
  7930   size(4);
  7931   format %{ "FSQRTS $src,$dst" %}
  7932   ins_encode(fsqrts(dst, src));
  7933   ins_pipe(fdivF_reg_reg);
  7934 %}
  7936 //  Sqrt float double precision
  7937 instruct sqrtD_reg_reg(regD dst, regD src) %{
  7938   match(Set dst (SqrtD src));
  7940   size(4);
  7941   format %{ "FSQRTD $src,$dst" %}
  7942   ins_encode(fsqrtd(dst, src));
  7943   ins_pipe(fdivD_reg_reg);
  7944 %}
  7946 //----------Logical Instructions-----------------------------------------------
  7947 // And Instructions
  7948 // Register And
  7949 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7950   match(Set dst (AndI src1 src2));
  7952   size(4);
  7953   format %{ "AND    $src1,$src2,$dst" %}
  7954   opcode(Assembler::and_op3, Assembler::arith_op);
  7955   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7956   ins_pipe(ialu_reg_reg);
  7957 %}
  7959 // Immediate And
  7960 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7961   match(Set dst (AndI src1 src2));
  7963   size(4);
  7964   format %{ "AND    $src1,$src2,$dst" %}
  7965   opcode(Assembler::and_op3, Assembler::arith_op);
  7966   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7967   ins_pipe(ialu_reg_imm);
  7968 %}
  7970 // Register And Long
  7971 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7972   match(Set dst (AndL src1 src2));
  7974   ins_cost(DEFAULT_COST);
  7975   size(4);
  7976   format %{ "AND    $src1,$src2,$dst\t! long" %}
  7977   opcode(Assembler::and_op3, Assembler::arith_op);
  7978   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7979   ins_pipe(ialu_reg_reg);
  7980 %}
  7982 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7983   match(Set dst (AndL src1 con));
  7985   ins_cost(DEFAULT_COST);
  7986   size(4);
  7987   format %{ "AND    $src1,$con,$dst\t! long" %}
  7988   opcode(Assembler::and_op3, Assembler::arith_op);
  7989   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7990   ins_pipe(ialu_reg_imm);
  7991 %}
  7993 // Or Instructions
  7994 // Register Or
  7995 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7996   match(Set dst (OrI src1 src2));
  7998   size(4);
  7999   format %{ "OR     $src1,$src2,$dst" %}
  8000   opcode(Assembler::or_op3, Assembler::arith_op);
  8001   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8002   ins_pipe(ialu_reg_reg);
  8003 %}
  8005 // Immediate Or
  8006 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  8007   match(Set dst (OrI src1 src2));
  8009   size(4);
  8010   format %{ "OR     $src1,$src2,$dst" %}
  8011   opcode(Assembler::or_op3, Assembler::arith_op);
  8012   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  8013   ins_pipe(ialu_reg_imm);
  8014 %}
  8016 // Register Or Long
  8017 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  8018   match(Set dst (OrL src1 src2));
  8020   ins_cost(DEFAULT_COST);
  8021   size(4);
  8022   format %{ "OR     $src1,$src2,$dst\t! long" %}
  8023   opcode(Assembler::or_op3, Assembler::arith_op);
  8024   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8025   ins_pipe(ialu_reg_reg);
  8026 %}
  8028 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  8029   match(Set dst (OrL src1 con));
  8030   ins_cost(DEFAULT_COST*2);
  8032   ins_cost(DEFAULT_COST);
  8033   size(4);
  8034   format %{ "OR     $src1,$con,$dst\t! long" %}
  8035   opcode(Assembler::or_op3, Assembler::arith_op);
  8036   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  8037   ins_pipe(ialu_reg_imm);
  8038 %}
  8040 #ifndef _LP64
  8042 // Use sp_ptr_RegP to match G2 (TLS register) without spilling.
  8043 instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
  8044   match(Set dst (OrI src1 (CastP2X src2)));
  8046   size(4);
  8047   format %{ "OR     $src1,$src2,$dst" %}
  8048   opcode(Assembler::or_op3, Assembler::arith_op);
  8049   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8050   ins_pipe(ialu_reg_reg);
  8051 %}
  8053 #else
  8055 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
  8056   match(Set dst (OrL src1 (CastP2X src2)));
  8058   ins_cost(DEFAULT_COST);
  8059   size(4);
  8060   format %{ "OR     $src1,$src2,$dst\t! long" %}
  8061   opcode(Assembler::or_op3, Assembler::arith_op);
  8062   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8063   ins_pipe(ialu_reg_reg);
  8064 %}
  8066 #endif
  8068 // Xor Instructions
  8069 // Register Xor
  8070 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  8071   match(Set dst (XorI src1 src2));
  8073   size(4);
  8074   format %{ "XOR    $src1,$src2,$dst" %}
  8075   opcode(Assembler::xor_op3, Assembler::arith_op);
  8076   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8077   ins_pipe(ialu_reg_reg);
  8078 %}
  8080 // Immediate Xor
  8081 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  8082   match(Set dst (XorI src1 src2));
  8084   size(4);
  8085   format %{ "XOR    $src1,$src2,$dst" %}
  8086   opcode(Assembler::xor_op3, Assembler::arith_op);
  8087   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  8088   ins_pipe(ialu_reg_imm);
  8089 %}
  8091 // Register Xor Long
  8092 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  8093   match(Set dst (XorL src1 src2));
  8095   ins_cost(DEFAULT_COST);
  8096   size(4);
  8097   format %{ "XOR    $src1,$src2,$dst\t! long" %}
  8098   opcode(Assembler::xor_op3, Assembler::arith_op);
  8099   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8100   ins_pipe(ialu_reg_reg);
  8101 %}
  8103 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  8104   match(Set dst (XorL src1 con));
  8106   ins_cost(DEFAULT_COST);
  8107   size(4);
  8108   format %{ "XOR    $src1,$con,$dst\t! long" %}
  8109   opcode(Assembler::xor_op3, Assembler::arith_op);
  8110   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  8111   ins_pipe(ialu_reg_imm);
  8112 %}
  8114 //----------Convert to Boolean-------------------------------------------------
  8115 // Nice hack for 32-bit tests but doesn't work for
  8116 // 64-bit pointers.
  8117 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
  8118   match(Set dst (Conv2B src));
  8119   effect( KILL ccr );
  8120   ins_cost(DEFAULT_COST*2);
  8121   format %{ "CMP    R_G0,$src\n\t"
  8122             "ADDX   R_G0,0,$dst" %}
  8123   ins_encode( enc_to_bool( src, dst ) );
  8124   ins_pipe(ialu_reg_ialu);
  8125 %}
  8127 #ifndef _LP64
  8128 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
  8129   match(Set dst (Conv2B src));
  8130   effect( KILL ccr );
  8131   ins_cost(DEFAULT_COST*2);
  8132   format %{ "CMP    R_G0,$src\n\t"
  8133             "ADDX   R_G0,0,$dst" %}
  8134   ins_encode( enc_to_bool( src, dst ) );
  8135   ins_pipe(ialu_reg_ialu);
  8136 %}
  8137 #else
  8138 instruct convP2B( iRegI dst, iRegP src ) %{
  8139   match(Set dst (Conv2B src));
  8140   ins_cost(DEFAULT_COST*2);
  8141   format %{ "MOV    $src,$dst\n\t"
  8142             "MOVRNZ $src,1,$dst" %}
  8143   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
  8144   ins_pipe(ialu_clr_and_mover);
  8145 %}
  8146 #endif
  8148 instruct cmpLTMask0( iRegI dst, iRegI src, immI0 zero, flagsReg ccr ) %{
  8149   match(Set dst (CmpLTMask src zero));
  8150   effect(KILL ccr);
  8151   size(4);
  8152   format %{ "SRA    $src,#31,$dst\t# cmpLTMask0" %}
  8153   ins_encode %{
  8154     __ sra($src$$Register, 31, $dst$$Register);
  8155   %}
  8156   ins_pipe(ialu_reg_imm);
  8157 %}
  8159 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
  8160   match(Set dst (CmpLTMask p q));
  8161   effect( KILL ccr );
  8162   ins_cost(DEFAULT_COST*4);
  8163   format %{ "CMP    $p,$q\n\t"
  8164             "MOV    #0,$dst\n\t"
  8165             "BLT,a  .+8\n\t"
  8166             "MOV    #-1,$dst" %}
  8167   ins_encode( enc_ltmask(p,q,dst) );
  8168   ins_pipe(ialu_reg_reg_ialu);
  8169 %}
  8171 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
  8172   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
  8173   effect(KILL ccr, TEMP tmp);
  8174   ins_cost(DEFAULT_COST*3);
  8176   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
  8177             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
  8178             "MOVlt  $tmp,$p\t! p' < 0 ? p'+y : p'" %}
  8179   ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
  8180   ins_pipe( cadd_cmpltmask );
  8181 %}
  8184 //-----------------------------------------------------------------
  8185 // Direct raw moves between float and general registers using VIS3.
  8187 //  ins_pipe(faddF_reg);
  8188 instruct MoveF2I_reg_reg(iRegI dst, regF src) %{
  8189   predicate(UseVIS >= 3);
  8190   match(Set dst (MoveF2I src));
  8192   format %{ "MOVSTOUW $src,$dst\t! MoveF2I" %}
  8193   ins_encode %{
  8194     __ movstouw($src$$FloatRegister, $dst$$Register);
  8195   %}
  8196   ins_pipe(ialu_reg_reg);
  8197 %}
  8199 instruct MoveI2F_reg_reg(regF dst, iRegI src) %{
  8200   predicate(UseVIS >= 3);
  8201   match(Set dst (MoveI2F src));
  8203   format %{ "MOVWTOS $src,$dst\t! MoveI2F" %}
  8204   ins_encode %{
  8205     __ movwtos($src$$Register, $dst$$FloatRegister);
  8206   %}
  8207   ins_pipe(ialu_reg_reg);
  8208 %}
  8210 instruct MoveD2L_reg_reg(iRegL dst, regD src) %{
  8211   predicate(UseVIS >= 3);
  8212   match(Set dst (MoveD2L src));
  8214   format %{ "MOVDTOX $src,$dst\t! MoveD2L" %}
  8215   ins_encode %{
  8216     __ movdtox(as_DoubleFloatRegister($src$$reg), $dst$$Register);
  8217   %}
  8218   ins_pipe(ialu_reg_reg);
  8219 %}
  8221 instruct MoveL2D_reg_reg(regD dst, iRegL src) %{
  8222   predicate(UseVIS >= 3);
  8223   match(Set dst (MoveL2D src));
  8225   format %{ "MOVXTOD $src,$dst\t! MoveL2D" %}
  8226   ins_encode %{
  8227     __ movxtod($src$$Register, as_DoubleFloatRegister($dst$$reg));
  8228   %}
  8229   ins_pipe(ialu_reg_reg);
  8230 %}
  8233 // Raw moves between float and general registers using stack.
  8235 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
  8236   match(Set dst (MoveF2I src));
  8237   effect(DEF dst, USE src);
  8238   ins_cost(MEMORY_REF_COST);
  8240   size(4);
  8241   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
  8242   opcode(Assembler::lduw_op3);
  8243   ins_encode(simple_form3_mem_reg( src, dst ) );
  8244   ins_pipe(iload_mem);
  8245 %}
  8247 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
  8248   match(Set dst (MoveI2F src));
  8249   effect(DEF dst, USE src);
  8250   ins_cost(MEMORY_REF_COST);
  8252   size(4);
  8253   format %{ "LDF    $src,$dst\t! MoveI2F" %}
  8254   opcode(Assembler::ldf_op3);
  8255   ins_encode(simple_form3_mem_reg(src, dst));
  8256   ins_pipe(floadF_stk);
  8257 %}
  8259 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
  8260   match(Set dst (MoveD2L src));
  8261   effect(DEF dst, USE src);
  8262   ins_cost(MEMORY_REF_COST);
  8264   size(4);
  8265   format %{ "LDX    $src,$dst\t! MoveD2L" %}
  8266   opcode(Assembler::ldx_op3);
  8267   ins_encode(simple_form3_mem_reg( src, dst ) );
  8268   ins_pipe(iload_mem);
  8269 %}
  8271 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
  8272   match(Set dst (MoveL2D src));
  8273   effect(DEF dst, USE src);
  8274   ins_cost(MEMORY_REF_COST);
  8276   size(4);
  8277   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
  8278   opcode(Assembler::lddf_op3);
  8279   ins_encode(simple_form3_mem_reg(src, dst));
  8280   ins_pipe(floadD_stk);
  8281 %}
  8283 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
  8284   match(Set dst (MoveF2I src));
  8285   effect(DEF dst, USE src);
  8286   ins_cost(MEMORY_REF_COST);
  8288   size(4);
  8289   format %{ "STF   $src,$dst\t! MoveF2I" %}
  8290   opcode(Assembler::stf_op3);
  8291   ins_encode(simple_form3_mem_reg(dst, src));
  8292   ins_pipe(fstoreF_stk_reg);
  8293 %}
  8295 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
  8296   match(Set dst (MoveI2F src));
  8297   effect(DEF dst, USE src);
  8298   ins_cost(MEMORY_REF_COST);
  8300   size(4);
  8301   format %{ "STW    $src,$dst\t! MoveI2F" %}
  8302   opcode(Assembler::stw_op3);
  8303   ins_encode(simple_form3_mem_reg( dst, src ) );
  8304   ins_pipe(istore_mem_reg);
  8305 %}
  8307 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
  8308   match(Set dst (MoveD2L src));
  8309   effect(DEF dst, USE src);
  8310   ins_cost(MEMORY_REF_COST);
  8312   size(4);
  8313   format %{ "STDF   $src,$dst\t! MoveD2L" %}
  8314   opcode(Assembler::stdf_op3);
  8315   ins_encode(simple_form3_mem_reg(dst, src));
  8316   ins_pipe(fstoreD_stk_reg);
  8317 %}
  8319 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
  8320   match(Set dst (MoveL2D src));
  8321   effect(DEF dst, USE src);
  8322   ins_cost(MEMORY_REF_COST);
  8324   size(4);
  8325   format %{ "STX    $src,$dst\t! MoveL2D" %}
  8326   opcode(Assembler::stx_op3);
  8327   ins_encode(simple_form3_mem_reg( dst, src ) );
  8328   ins_pipe(istore_mem_reg);
  8329 %}
  8332 //----------Arithmetic Conversion Instructions---------------------------------
  8333 // The conversions operations are all Alpha sorted.  Please keep it that way!
  8335 instruct convD2F_reg(regF dst, regD src) %{
  8336   match(Set dst (ConvD2F src));
  8337   size(4);
  8338   format %{ "FDTOS  $src,$dst" %}
  8339   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
  8340   ins_encode(form3_opf_rs2D_rdF(src, dst));
  8341   ins_pipe(fcvtD2F);
  8342 %}
  8345 // Convert a double to an int in a float register.
  8346 // If the double is a NAN, stuff a zero in instead.
  8347 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
  8348   effect(DEF dst, USE src, KILL fcc0);
  8349   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  8350             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8351             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
  8352             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  8353             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  8354       "skip:" %}
  8355   ins_encode(form_d2i_helper(src,dst));
  8356   ins_pipe(fcvtD2I);
  8357 %}
  8359 instruct convD2I_stk(stackSlotI dst, regD src) %{
  8360   match(Set dst (ConvD2I src));
  8361   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8362   expand %{
  8363     regF tmp;
  8364     convD2I_helper(tmp, src);
  8365     regF_to_stkI(dst, tmp);
  8366   %}
  8367 %}
  8369 instruct convD2I_reg(iRegI dst, regD src) %{
  8370   predicate(UseVIS >= 3);
  8371   match(Set dst (ConvD2I src));
  8372   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8373   expand %{
  8374     regF tmp;
  8375     convD2I_helper(tmp, src);
  8376     MoveF2I_reg_reg(dst, tmp);
  8377   %}
  8378 %}
  8381 // Convert a double to a long in a double register.
  8382 // If the double is a NAN, stuff a zero in instead.
  8383 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
  8384   effect(DEF dst, USE src, KILL fcc0);
  8385   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  8386             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8387             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
  8388             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  8389             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  8390       "skip:" %}
  8391   ins_encode(form_d2l_helper(src,dst));
  8392   ins_pipe(fcvtD2L);
  8393 %}
  8395 instruct convD2L_stk(stackSlotL dst, regD src) %{
  8396   match(Set dst (ConvD2L src));
  8397   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8398   expand %{
  8399     regD tmp;
  8400     convD2L_helper(tmp, src);
  8401     regD_to_stkL(dst, tmp);
  8402   %}
  8403 %}
  8405 instruct convD2L_reg(iRegL dst, regD src) %{
  8406   predicate(UseVIS >= 3);
  8407   match(Set dst (ConvD2L src));
  8408   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8409   expand %{
  8410     regD tmp;
  8411     convD2L_helper(tmp, src);
  8412     MoveD2L_reg_reg(dst, tmp);
  8413   %}
  8414 %}
  8417 instruct convF2D_reg(regD dst, regF src) %{
  8418   match(Set dst (ConvF2D src));
  8419   format %{ "FSTOD  $src,$dst" %}
  8420   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
  8421   ins_encode(form3_opf_rs2F_rdD(src, dst));
  8422   ins_pipe(fcvtF2D);
  8423 %}
  8426 // Convert a float to an int in a float register.
  8427 // If the float is a NAN, stuff a zero in instead.
  8428 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
  8429   effect(DEF dst, USE src, KILL fcc0);
  8430   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  8431             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8432             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
  8433             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  8434             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  8435       "skip:" %}
  8436   ins_encode(form_f2i_helper(src,dst));
  8437   ins_pipe(fcvtF2I);
  8438 %}
  8440 instruct convF2I_stk(stackSlotI dst, regF src) %{
  8441   match(Set dst (ConvF2I src));
  8442   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8443   expand %{
  8444     regF tmp;
  8445     convF2I_helper(tmp, src);
  8446     regF_to_stkI(dst, tmp);
  8447   %}
  8448 %}
  8450 instruct convF2I_reg(iRegI dst, regF src) %{
  8451   predicate(UseVIS >= 3);
  8452   match(Set dst (ConvF2I src));
  8453   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8454   expand %{
  8455     regF tmp;
  8456     convF2I_helper(tmp, src);
  8457     MoveF2I_reg_reg(dst, tmp);
  8458   %}
  8459 %}
  8462 // Convert a float to a long in a float register.
  8463 // If the float is a NAN, stuff a zero in instead.
  8464 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
  8465   effect(DEF dst, USE src, KILL fcc0);
  8466   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  8467             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8468             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
  8469             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  8470             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  8471       "skip:" %}
  8472   ins_encode(form_f2l_helper(src,dst));
  8473   ins_pipe(fcvtF2L);
  8474 %}
  8476 instruct convF2L_stk(stackSlotL dst, regF src) %{
  8477   match(Set dst (ConvF2L src));
  8478   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8479   expand %{
  8480     regD tmp;
  8481     convF2L_helper(tmp, src);
  8482     regD_to_stkL(dst, tmp);
  8483   %}
  8484 %}
  8486 instruct convF2L_reg(iRegL dst, regF src) %{
  8487   predicate(UseVIS >= 3);
  8488   match(Set dst (ConvF2L src));
  8489   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8490   expand %{
  8491     regD tmp;
  8492     convF2L_helper(tmp, src);
  8493     MoveD2L_reg_reg(dst, tmp);
  8494   %}
  8495 %}
  8498 instruct convI2D_helper(regD dst, regF tmp) %{
  8499   effect(USE tmp, DEF dst);
  8500   format %{ "FITOD  $tmp,$dst" %}
  8501   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  8502   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
  8503   ins_pipe(fcvtI2D);
  8504 %}
  8506 instruct convI2D_stk(stackSlotI src, regD dst) %{
  8507   match(Set dst (ConvI2D src));
  8508   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8509   expand %{
  8510     regF tmp;
  8511     stkI_to_regF(tmp, src);
  8512     convI2D_helper(dst, tmp);
  8513   %}
  8514 %}
  8516 instruct convI2D_reg(regD_low dst, iRegI src) %{
  8517   predicate(UseVIS >= 3);
  8518   match(Set dst (ConvI2D src));
  8519   expand %{
  8520     regF tmp;
  8521     MoveI2F_reg_reg(tmp, src);
  8522     convI2D_helper(dst, tmp);
  8523   %}
  8524 %}
  8526 instruct convI2D_mem(regD_low dst, memory mem) %{
  8527   match(Set dst (ConvI2D (LoadI mem)));
  8528   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8529   size(8);
  8530   format %{ "LDF    $mem,$dst\n\t"
  8531             "FITOD  $dst,$dst" %}
  8532   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
  8533   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  8534   ins_pipe(floadF_mem);
  8535 %}
  8538 instruct convI2F_helper(regF dst, regF tmp) %{
  8539   effect(DEF dst, USE tmp);
  8540   format %{ "FITOS  $tmp,$dst" %}
  8541   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
  8542   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
  8543   ins_pipe(fcvtI2F);
  8544 %}
  8546 instruct convI2F_stk(regF dst, stackSlotI src) %{
  8547   match(Set dst (ConvI2F src));
  8548   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8549   expand %{
  8550     regF tmp;
  8551     stkI_to_regF(tmp,src);
  8552     convI2F_helper(dst, tmp);
  8553   %}
  8554 %}
  8556 instruct convI2F_reg(regF dst, iRegI src) %{
  8557   predicate(UseVIS >= 3);
  8558   match(Set dst (ConvI2F src));
  8559   ins_cost(DEFAULT_COST);
  8560   expand %{
  8561     regF tmp;
  8562     MoveI2F_reg_reg(tmp, src);
  8563     convI2F_helper(dst, tmp);
  8564   %}
  8565 %}
  8567 instruct convI2F_mem( regF dst, memory mem ) %{
  8568   match(Set dst (ConvI2F (LoadI mem)));
  8569   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8570   size(8);
  8571   format %{ "LDF    $mem,$dst\n\t"
  8572             "FITOS  $dst,$dst" %}
  8573   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
  8574   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  8575   ins_pipe(floadF_mem);
  8576 %}
  8579 instruct convI2L_reg(iRegL dst, iRegI src) %{
  8580   match(Set dst (ConvI2L src));
  8581   size(4);
  8582   format %{ "SRA    $src,0,$dst\t! int->long" %}
  8583   opcode(Assembler::sra_op3, Assembler::arith_op);
  8584   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8585   ins_pipe(ialu_reg_reg);
  8586 %}
  8588 // Zero-extend convert int to long
  8589 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
  8590   match(Set dst (AndL (ConvI2L src) mask) );
  8591   size(4);
  8592   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
  8593   opcode(Assembler::srl_op3, Assembler::arith_op);
  8594   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8595   ins_pipe(ialu_reg_reg);
  8596 %}
  8598 // Zero-extend long
  8599 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
  8600   match(Set dst (AndL src mask) );
  8601   size(4);
  8602   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
  8603   opcode(Assembler::srl_op3, Assembler::arith_op);
  8604   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8605   ins_pipe(ialu_reg_reg);
  8606 %}
  8609 //-----------
  8610 // Long to Double conversion using V8 opcodes.
  8611 // Still useful because cheetah traps and becomes
  8612 // amazingly slow for some common numbers.
  8614 // Magic constant, 0x43300000
  8615 instruct loadConI_x43300000(iRegI dst) %{
  8616   effect(DEF dst);
  8617   size(4);
  8618   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
  8619   ins_encode(SetHi22(0x43300000, dst));
  8620   ins_pipe(ialu_none);
  8621 %}
  8623 // Magic constant, 0x41f00000
  8624 instruct loadConI_x41f00000(iRegI dst) %{
  8625   effect(DEF dst);
  8626   size(4);
  8627   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
  8628   ins_encode(SetHi22(0x41f00000, dst));
  8629   ins_pipe(ialu_none);
  8630 %}
  8632 // Construct a double from two float halves
  8633 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
  8634   effect(DEF dst, USE src1, USE src2);
  8635   size(8);
  8636   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
  8637             "FMOVS  $src2.lo,$dst.lo" %}
  8638   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
  8639   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
  8640   ins_pipe(faddD_reg_reg);
  8641 %}
  8643 // Convert integer in high half of a double register (in the lower half of
  8644 // the double register file) to double
  8645 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
  8646   effect(DEF dst, USE src);
  8647   size(4);
  8648   format %{ "FITOD  $src,$dst" %}
  8649   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  8650   ins_encode(form3_opf_rs2D_rdD(src, dst));
  8651   ins_pipe(fcvtLHi2D);
  8652 %}
  8654 // Add float double precision
  8655 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
  8656   effect(DEF dst, USE src1, USE src2);
  8657   size(4);
  8658   format %{ "FADDD  $src1,$src2,$dst" %}
  8659   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  8660   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8661   ins_pipe(faddD_reg_reg);
  8662 %}
  8664 // Sub float double precision
  8665 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
  8666   effect(DEF dst, USE src1, USE src2);
  8667   size(4);
  8668   format %{ "FSUBD  $src1,$src2,$dst" %}
  8669   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  8670   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8671   ins_pipe(faddD_reg_reg);
  8672 %}
  8674 // Mul float double precision
  8675 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
  8676   effect(DEF dst, USE src1, USE src2);
  8677   size(4);
  8678   format %{ "FMULD  $src1,$src2,$dst" %}
  8679   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  8680   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8681   ins_pipe(fmulD_reg_reg);
  8682 %}
  8684 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
  8685   match(Set dst (ConvL2D src));
  8686   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
  8688   expand %{
  8689     regD_low   tmpsrc;
  8690     iRegI      ix43300000;
  8691     iRegI      ix41f00000;
  8692     stackSlotL lx43300000;
  8693     stackSlotL lx41f00000;
  8694     regD_low   dx43300000;
  8695     regD       dx41f00000;
  8696     regD       tmp1;
  8697     regD_low   tmp2;
  8698     regD       tmp3;
  8699     regD       tmp4;
  8701     stkL_to_regD(tmpsrc, src);
  8703     loadConI_x43300000(ix43300000);
  8704     loadConI_x41f00000(ix41f00000);
  8705     regI_to_stkLHi(lx43300000, ix43300000);
  8706     regI_to_stkLHi(lx41f00000, ix41f00000);
  8707     stkL_to_regD(dx43300000, lx43300000);
  8708     stkL_to_regD(dx41f00000, lx41f00000);
  8710     convI2D_regDHi_regD(tmp1, tmpsrc);
  8711     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
  8712     subD_regD_regD(tmp3, tmp2, dx43300000);
  8713     mulD_regD_regD(tmp4, tmp1, dx41f00000);
  8714     addD_regD_regD(dst, tmp3, tmp4);
  8715   %}
  8716 %}
  8718 // Long to Double conversion using fast fxtof
  8719 instruct convL2D_helper(regD dst, regD tmp) %{
  8720   effect(DEF dst, USE tmp);
  8721   size(4);
  8722   format %{ "FXTOD  $tmp,$dst" %}
  8723   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
  8724   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
  8725   ins_pipe(fcvtL2D);
  8726 %}
  8728 instruct convL2D_stk_fast_fxtof(regD dst, stackSlotL src) %{
  8729   predicate(VM_Version::has_fast_fxtof());
  8730   match(Set dst (ConvL2D src));
  8731   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
  8732   expand %{
  8733     regD tmp;
  8734     stkL_to_regD(tmp, src);
  8735     convL2D_helper(dst, tmp);
  8736   %}
  8737 %}
  8739 instruct convL2D_reg(regD dst, iRegL src) %{
  8740   predicate(UseVIS >= 3);
  8741   match(Set dst (ConvL2D src));
  8742   expand %{
  8743     regD tmp;
  8744     MoveL2D_reg_reg(tmp, src);
  8745     convL2D_helper(dst, tmp);
  8746   %}
  8747 %}
  8749 // Long to Float conversion using fast fxtof
  8750 instruct convL2F_helper(regF dst, regD tmp) %{
  8751   effect(DEF dst, USE tmp);
  8752   size(4);
  8753   format %{ "FXTOS  $tmp,$dst" %}
  8754   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
  8755   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
  8756   ins_pipe(fcvtL2F);
  8757 %}
  8759 instruct convL2F_stk_fast_fxtof(regF dst, stackSlotL src) %{
  8760   match(Set dst (ConvL2F src));
  8761   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8762   expand %{
  8763     regD tmp;
  8764     stkL_to_regD(tmp, src);
  8765     convL2F_helper(dst, tmp);
  8766   %}
  8767 %}
  8769 instruct convL2F_reg(regF dst, iRegL src) %{
  8770   predicate(UseVIS >= 3);
  8771   match(Set dst (ConvL2F src));
  8772   ins_cost(DEFAULT_COST);
  8773   expand %{
  8774     regD tmp;
  8775     MoveL2D_reg_reg(tmp, src);
  8776     convL2F_helper(dst, tmp);
  8777   %}
  8778 %}
  8780 //-----------
  8782 instruct convL2I_reg(iRegI dst, iRegL src) %{
  8783   match(Set dst (ConvL2I src));
  8784 #ifndef _LP64
  8785   format %{ "MOV    $src.lo,$dst\t! long->int" %}
  8786   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
  8787   ins_pipe(ialu_move_reg_I_to_L);
  8788 #else
  8789   size(4);
  8790   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
  8791   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
  8792   ins_pipe(ialu_reg);
  8793 #endif
  8794 %}
  8796 // Register Shift Right Immediate
  8797 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
  8798   match(Set dst (ConvL2I (RShiftL src cnt)));
  8800   size(4);
  8801   format %{ "SRAX   $src,$cnt,$dst" %}
  8802   opcode(Assembler::srax_op3, Assembler::arith_op);
  8803   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
  8804   ins_pipe(ialu_reg_imm);
  8805 %}
  8807 //----------Control Flow Instructions------------------------------------------
  8808 // Compare Instructions
  8809 // Compare Integers
  8810 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
  8811   match(Set icc (CmpI op1 op2));
  8812   effect( DEF icc, USE op1, USE op2 );
  8814   size(4);
  8815   format %{ "CMP    $op1,$op2" %}
  8816   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8817   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8818   ins_pipe(ialu_cconly_reg_reg);
  8819 %}
  8821 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
  8822   match(Set icc (CmpU op1 op2));
  8824   size(4);
  8825   format %{ "CMP    $op1,$op2\t! unsigned" %}
  8826   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8827   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8828   ins_pipe(ialu_cconly_reg_reg);
  8829 %}
  8831 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
  8832   match(Set icc (CmpI op1 op2));
  8833   effect( DEF icc, USE op1 );
  8835   size(4);
  8836   format %{ "CMP    $op1,$op2" %}
  8837   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8838   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8839   ins_pipe(ialu_cconly_reg_imm);
  8840 %}
  8842 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
  8843   match(Set icc (CmpI (AndI op1 op2) zero));
  8845   size(4);
  8846   format %{ "BTST   $op2,$op1" %}
  8847   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8848   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8849   ins_pipe(ialu_cconly_reg_reg_zero);
  8850 %}
  8852 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
  8853   match(Set icc (CmpI (AndI op1 op2) zero));
  8855   size(4);
  8856   format %{ "BTST   $op2,$op1" %}
  8857   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8858   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8859   ins_pipe(ialu_cconly_reg_imm_zero);
  8860 %}
  8862 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
  8863   match(Set xcc (CmpL op1 op2));
  8864   effect( DEF xcc, USE op1, USE op2 );
  8866   size(4);
  8867   format %{ "CMP    $op1,$op2\t\t! long" %}
  8868   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8869   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8870   ins_pipe(ialu_cconly_reg_reg);
  8871 %}
  8873 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
  8874   match(Set xcc (CmpL op1 con));
  8875   effect( DEF xcc, USE op1, USE con );
  8877   size(4);
  8878   format %{ "CMP    $op1,$con\t\t! long" %}
  8879   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8880   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  8881   ins_pipe(ialu_cconly_reg_reg);
  8882 %}
  8884 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
  8885   match(Set xcc (CmpL (AndL op1 op2) zero));
  8886   effect( DEF xcc, USE op1, USE op2 );
  8888   size(4);
  8889   format %{ "BTST   $op1,$op2\t\t! long" %}
  8890   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8891   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8892   ins_pipe(ialu_cconly_reg_reg);
  8893 %}
  8895 // useful for checking the alignment of a pointer:
  8896 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
  8897   match(Set xcc (CmpL (AndL op1 con) zero));
  8898   effect( DEF xcc, USE op1, USE con );
  8900   size(4);
  8901   format %{ "BTST   $op1,$con\t\t! long" %}
  8902   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8903   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  8904   ins_pipe(ialu_cconly_reg_reg);
  8905 %}
  8907 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU13 op2 ) %{
  8908   match(Set icc (CmpU op1 op2));
  8910   size(4);
  8911   format %{ "CMP    $op1,$op2\t! unsigned" %}
  8912   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8913   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8914   ins_pipe(ialu_cconly_reg_imm);
  8915 %}
  8917 // Compare Pointers
  8918 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
  8919   match(Set pcc (CmpP op1 op2));
  8921   size(4);
  8922   format %{ "CMP    $op1,$op2\t! ptr" %}
  8923   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8924   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8925   ins_pipe(ialu_cconly_reg_reg);
  8926 %}
  8928 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
  8929   match(Set pcc (CmpP op1 op2));
  8931   size(4);
  8932   format %{ "CMP    $op1,$op2\t! ptr" %}
  8933   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8934   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8935   ins_pipe(ialu_cconly_reg_imm);
  8936 %}
  8938 // Compare Narrow oops
  8939 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
  8940   match(Set icc (CmpN op1 op2));
  8942   size(4);
  8943   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  8944   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8945   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8946   ins_pipe(ialu_cconly_reg_reg);
  8947 %}
  8949 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
  8950   match(Set icc (CmpN op1 op2));
  8952   size(4);
  8953   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  8954   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8955   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8956   ins_pipe(ialu_cconly_reg_imm);
  8957 %}
  8959 //----------Max and Min--------------------------------------------------------
  8960 // Min Instructions
  8961 // Conditional move for min
  8962 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
  8963   effect( USE_DEF op2, USE op1, USE icc );
  8965   size(4);
  8966   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
  8967   opcode(Assembler::less);
  8968   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  8969   ins_pipe(ialu_reg_flags);
  8970 %}
  8972 // Min Register with Register.
  8973 instruct minI_eReg(iRegI op1, iRegI op2) %{
  8974   match(Set op2 (MinI op1 op2));
  8975   ins_cost(DEFAULT_COST*2);
  8976   expand %{
  8977     flagsReg icc;
  8978     compI_iReg(icc,op1,op2);
  8979     cmovI_reg_lt(op2,op1,icc);
  8980   %}
  8981 %}
  8983 // Max Instructions
  8984 // Conditional move for max
  8985 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
  8986   effect( USE_DEF op2, USE op1, USE icc );
  8987   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
  8988   opcode(Assembler::greater);
  8989   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  8990   ins_pipe(ialu_reg_flags);
  8991 %}
  8993 // Max Register with Register
  8994 instruct maxI_eReg(iRegI op1, iRegI op2) %{
  8995   match(Set op2 (MaxI op1 op2));
  8996   ins_cost(DEFAULT_COST*2);
  8997   expand %{
  8998     flagsReg icc;
  8999     compI_iReg(icc,op1,op2);
  9000     cmovI_reg_gt(op2,op1,icc);
  9001   %}
  9002 %}
  9005 //----------Float Compares----------------------------------------------------
  9006 // Compare floating, generate condition code
  9007 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
  9008   match(Set fcc (CmpF src1 src2));
  9010   size(4);
  9011   format %{ "FCMPs  $fcc,$src1,$src2" %}
  9012   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
  9013   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
  9014   ins_pipe(faddF_fcc_reg_reg_zero);
  9015 %}
  9017 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
  9018   match(Set fcc (CmpD src1 src2));
  9020   size(4);
  9021   format %{ "FCMPd  $fcc,$src1,$src2" %}
  9022   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
  9023   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
  9024   ins_pipe(faddD_fcc_reg_reg_zero);
  9025 %}
  9028 // Compare floating, generate -1,0,1
  9029 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
  9030   match(Set dst (CmpF3 src1 src2));
  9031   effect(KILL fcc0);
  9032   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  9033   format %{ "fcmpl  $dst,$src1,$src2" %}
  9034   // Primary = float
  9035   opcode( true );
  9036   ins_encode( floating_cmp( dst, src1, src2 ) );
  9037   ins_pipe( floating_cmp );
  9038 %}
  9040 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
  9041   match(Set dst (CmpD3 src1 src2));
  9042   effect(KILL fcc0);
  9043   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  9044   format %{ "dcmpl  $dst,$src1,$src2" %}
  9045   // Primary = double (not float)
  9046   opcode( false );
  9047   ins_encode( floating_cmp( dst, src1, src2 ) );
  9048   ins_pipe( floating_cmp );
  9049 %}
  9051 //----------Branches---------------------------------------------------------
  9052 // Jump
  9053 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
  9054 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
  9055   match(Jump switch_val);
  9056   effect(TEMP table);
  9058   ins_cost(350);
  9060   format %{  "ADD    $constanttablebase, $constantoffset, O7\n\t"
  9061              "LD     [O7 + $switch_val], O7\n\t"
  9062              "JUMP   O7" %}
  9063   ins_encode %{
  9064     // Calculate table address into a register.
  9065     Register table_reg;
  9066     Register label_reg = O7;
  9067     // If we are calculating the size of this instruction don't trust
  9068     // zero offsets because they might change when
  9069     // MachConstantBaseNode decides to optimize the constant table
  9070     // base.
  9071     if ((constant_offset() == 0) && !Compile::current()->in_scratch_emit_size()) {
  9072       table_reg = $constanttablebase;
  9073     } else {
  9074       table_reg = O7;
  9075       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset, O7);
  9076       __ add($constanttablebase, con_offset, table_reg);
  9079     // Jump to base address + switch value
  9080     __ ld_ptr(table_reg, $switch_val$$Register, label_reg);
  9081     __ jmp(label_reg, G0);
  9082     __ delayed()->nop();
  9083   %}
  9084   ins_pipe(ialu_reg_reg);
  9085 %}
  9087 // Direct Branch.  Use V8 version with longer range.
  9088 instruct branch(label labl) %{
  9089   match(Goto);
  9090   effect(USE labl);
  9092   size(8);
  9093   ins_cost(BRANCH_COST);
  9094   format %{ "BA     $labl" %}
  9095   ins_encode %{
  9096     Label* L = $labl$$label;
  9097     __ ba(*L);
  9098     __ delayed()->nop();
  9099   %}
  9100   ins_pipe(br);
  9101 %}
  9103 // Direct Branch, short with no delay slot
  9104 instruct branch_short(label labl) %{
  9105   match(Goto);
  9106   predicate(UseCBCond);
  9107   effect(USE labl);
  9109   size(4);
  9110   ins_cost(BRANCH_COST);
  9111   format %{ "BA     $labl\t! short branch" %}
  9112   ins_encode %{ 
  9113     Label* L = $labl$$label;
  9114     assert(__ use_cbcond(*L), "back to back cbcond");
  9115     __ ba_short(*L);
  9116   %}
  9117   ins_short_branch(1);
  9118   ins_avoid_back_to_back(1);
  9119   ins_pipe(cbcond_reg_imm);
  9120 %}
  9122 // Conditional Direct Branch
  9123 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
  9124   match(If cmp icc);
  9125   effect(USE labl);
  9127   size(8);
  9128   ins_cost(BRANCH_COST);
  9129   format %{ "BP$cmp   $icc,$labl" %}
  9130   // Prim = bits 24-22, Secnd = bits 31-30
  9131   ins_encode( enc_bp( labl, cmp, icc ) );
  9132   ins_pipe(br_cc);
  9133 %}
  9135 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
  9136   match(If cmp icc);
  9137   effect(USE labl);
  9139   ins_cost(BRANCH_COST);
  9140   format %{ "BP$cmp  $icc,$labl" %}
  9141   // Prim = bits 24-22, Secnd = bits 31-30
  9142   ins_encode( enc_bp( labl, cmp, icc ) );
  9143   ins_pipe(br_cc);
  9144 %}
  9146 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
  9147   match(If cmp pcc);
  9148   effect(USE labl);
  9150   size(8);
  9151   ins_cost(BRANCH_COST);
  9152   format %{ "BP$cmp  $pcc,$labl" %}
  9153   ins_encode %{
  9154     Label* L = $labl$$label;
  9155     Assembler::Predict predict_taken =
  9156       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9158     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
  9159     __ delayed()->nop();
  9160   %}
  9161   ins_pipe(br_cc);
  9162 %}
  9164 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
  9165   match(If cmp fcc);
  9166   effect(USE labl);
  9168   size(8);
  9169   ins_cost(BRANCH_COST);
  9170   format %{ "FBP$cmp $fcc,$labl" %}
  9171   ins_encode %{
  9172     Label* L = $labl$$label;
  9173     Assembler::Predict predict_taken =
  9174       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9176     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($fcc$$reg), predict_taken, *L);
  9177     __ delayed()->nop();
  9178   %}
  9179   ins_pipe(br_fcc);
  9180 %}
  9182 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
  9183   match(CountedLoopEnd cmp icc);
  9184   effect(USE labl);
  9186   size(8);
  9187   ins_cost(BRANCH_COST);
  9188   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
  9189   // Prim = bits 24-22, Secnd = bits 31-30
  9190   ins_encode( enc_bp( labl, cmp, icc ) );
  9191   ins_pipe(br_cc);
  9192 %}
  9194 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
  9195   match(CountedLoopEnd cmp icc);
  9196   effect(USE labl);
  9198   size(8);
  9199   ins_cost(BRANCH_COST);
  9200   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
  9201   // Prim = bits 24-22, Secnd = bits 31-30
  9202   ins_encode( enc_bp( labl, cmp, icc ) );
  9203   ins_pipe(br_cc);
  9204 %}
  9206 // Compare and branch instructions
  9207 instruct cmpI_reg_branch(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9208   match(If cmp (CmpI op1 op2));
  9209   effect(USE labl, KILL icc);
  9211   size(12);
  9212   ins_cost(BRANCH_COST);
  9213   format %{ "CMP    $op1,$op2\t! int\n\t"
  9214             "BP$cmp   $labl" %}
  9215   ins_encode %{
  9216     Label* L = $labl$$label;
  9217     Assembler::Predict predict_taken =
  9218       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9219     __ cmp($op1$$Register, $op2$$Register);
  9220     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9221     __ delayed()->nop();
  9222   %}
  9223   ins_pipe(cmp_br_reg_reg);
  9224 %}
  9226 instruct cmpI_imm_branch(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9227   match(If cmp (CmpI op1 op2));
  9228   effect(USE labl, KILL icc);
  9230   size(12);
  9231   ins_cost(BRANCH_COST);
  9232   format %{ "CMP    $op1,$op2\t! int\n\t"
  9233             "BP$cmp   $labl" %}
  9234   ins_encode %{
  9235     Label* L = $labl$$label;
  9236     Assembler::Predict predict_taken =
  9237       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9238     __ cmp($op1$$Register, $op2$$constant);
  9239     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9240     __ delayed()->nop();
  9241   %}
  9242   ins_pipe(cmp_br_reg_imm);
  9243 %}
  9245 instruct cmpU_reg_branch(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
  9246   match(If cmp (CmpU op1 op2));
  9247   effect(USE labl, KILL icc);
  9249   size(12);
  9250   ins_cost(BRANCH_COST);
  9251   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
  9252             "BP$cmp  $labl" %}
  9253   ins_encode %{
  9254     Label* L = $labl$$label;
  9255     Assembler::Predict predict_taken =
  9256       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9257     __ cmp($op1$$Register, $op2$$Register);
  9258     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9259     __ delayed()->nop();
  9260   %}
  9261   ins_pipe(cmp_br_reg_reg);
  9262 %}
  9264 instruct cmpU_imm_branch(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
  9265   match(If cmp (CmpU op1 op2));
  9266   effect(USE labl, KILL icc);
  9268   size(12);
  9269   ins_cost(BRANCH_COST);
  9270   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
  9271             "BP$cmp  $labl" %}
  9272   ins_encode %{
  9273     Label* L = $labl$$label;
  9274     Assembler::Predict predict_taken =
  9275       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9276     __ cmp($op1$$Register, $op2$$constant);
  9277     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9278     __ delayed()->nop();
  9279   %}
  9280   ins_pipe(cmp_br_reg_imm);
  9281 %}
  9283 instruct cmpL_reg_branch(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
  9284   match(If cmp (CmpL op1 op2));
  9285   effect(USE labl, KILL xcc);
  9287   size(12);
  9288   ins_cost(BRANCH_COST);
  9289   format %{ "CMP    $op1,$op2\t! long\n\t"
  9290             "BP$cmp   $labl" %}
  9291   ins_encode %{
  9292     Label* L = $labl$$label;
  9293     Assembler::Predict predict_taken =
  9294       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9295     __ cmp($op1$$Register, $op2$$Register);
  9296     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
  9297     __ delayed()->nop();
  9298   %}
  9299   ins_pipe(cmp_br_reg_reg);
  9300 %}
  9302 instruct cmpL_imm_branch(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
  9303   match(If cmp (CmpL op1 op2));
  9304   effect(USE labl, KILL xcc);
  9306   size(12);
  9307   ins_cost(BRANCH_COST);
  9308   format %{ "CMP    $op1,$op2\t! long\n\t"
  9309             "BP$cmp   $labl" %}
  9310   ins_encode %{
  9311     Label* L = $labl$$label;
  9312     Assembler::Predict predict_taken =
  9313       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9314     __ cmp($op1$$Register, $op2$$constant);
  9315     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
  9316     __ delayed()->nop();
  9317   %}
  9318   ins_pipe(cmp_br_reg_imm);
  9319 %}
  9321 // Compare Pointers and branch
  9322 instruct cmpP_reg_branch(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
  9323   match(If cmp (CmpP op1 op2));
  9324   effect(USE labl, KILL pcc);
  9326   size(12);
  9327   ins_cost(BRANCH_COST);
  9328   format %{ "CMP    $op1,$op2\t! ptr\n\t"
  9329             "B$cmp   $labl" %}
  9330   ins_encode %{
  9331     Label* L = $labl$$label;
  9332     Assembler::Predict predict_taken =
  9333       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9334     __ cmp($op1$$Register, $op2$$Register);
  9335     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
  9336     __ delayed()->nop();
  9337   %}
  9338   ins_pipe(cmp_br_reg_reg);
  9339 %}
  9341 instruct cmpP_null_branch(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
  9342   match(If cmp (CmpP op1 null));
  9343   effect(USE labl, KILL pcc);
  9345   size(12);
  9346   ins_cost(BRANCH_COST);
  9347   format %{ "CMP    $op1,0\t! ptr\n\t"
  9348             "B$cmp   $labl" %}
  9349   ins_encode %{
  9350     Label* L = $labl$$label;
  9351     Assembler::Predict predict_taken =
  9352       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9353     __ cmp($op1$$Register, G0);
  9354     // bpr() is not used here since it has shorter distance.
  9355     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
  9356     __ delayed()->nop();
  9357   %}
  9358   ins_pipe(cmp_br_reg_reg);
  9359 %}
  9361 instruct cmpN_reg_branch(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
  9362   match(If cmp (CmpN op1 op2));
  9363   effect(USE labl, KILL icc);
  9365   size(12);
  9366   ins_cost(BRANCH_COST);
  9367   format %{ "CMP    $op1,$op2\t! compressed ptr\n\t"
  9368             "BP$cmp   $labl" %}
  9369   ins_encode %{
  9370     Label* L = $labl$$label;
  9371     Assembler::Predict predict_taken =
  9372       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9373     __ cmp($op1$$Register, $op2$$Register);
  9374     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9375     __ delayed()->nop();
  9376   %}
  9377   ins_pipe(cmp_br_reg_reg);
  9378 %}
  9380 instruct cmpN_null_branch(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
  9381   match(If cmp (CmpN op1 null));
  9382   effect(USE labl, KILL icc);
  9384   size(12);
  9385   ins_cost(BRANCH_COST);
  9386   format %{ "CMP    $op1,0\t! compressed ptr\n\t"
  9387             "BP$cmp   $labl" %}
  9388   ins_encode %{
  9389     Label* L = $labl$$label;
  9390     Assembler::Predict predict_taken =
  9391       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9392     __ cmp($op1$$Register, G0);
  9393     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9394     __ delayed()->nop();
  9395   %}
  9396   ins_pipe(cmp_br_reg_reg);
  9397 %}
  9399 // Loop back branch
  9400 instruct cmpI_reg_branchLoopEnd(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9401   match(CountedLoopEnd cmp (CmpI op1 op2));
  9402   effect(USE labl, KILL icc);
  9404   size(12);
  9405   ins_cost(BRANCH_COST);
  9406   format %{ "CMP    $op1,$op2\t! int\n\t"
  9407             "BP$cmp   $labl\t! Loop end" %}
  9408   ins_encode %{
  9409     Label* L = $labl$$label;
  9410     Assembler::Predict predict_taken =
  9411       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9412     __ cmp($op1$$Register, $op2$$Register);
  9413     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9414     __ delayed()->nop();
  9415   %}
  9416   ins_pipe(cmp_br_reg_reg);
  9417 %}
  9419 instruct cmpI_imm_branchLoopEnd(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9420   match(CountedLoopEnd cmp (CmpI op1 op2));
  9421   effect(USE labl, KILL icc);
  9423   size(12);
  9424   ins_cost(BRANCH_COST);
  9425   format %{ "CMP    $op1,$op2\t! int\n\t"
  9426             "BP$cmp   $labl\t! Loop end" %}
  9427   ins_encode %{
  9428     Label* L = $labl$$label;
  9429     Assembler::Predict predict_taken =
  9430       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9431     __ cmp($op1$$Register, $op2$$constant);
  9432     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9433     __ delayed()->nop();
  9434   %}
  9435   ins_pipe(cmp_br_reg_imm);
  9436 %}
  9438 // Short compare and branch instructions
  9439 instruct cmpI_reg_branch_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9440   match(If cmp (CmpI op1 op2));
  9441   predicate(UseCBCond);
  9442   effect(USE labl, KILL icc);
  9444   size(4);
  9445   ins_cost(BRANCH_COST);
  9446   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
  9447   ins_encode %{
  9448     Label* L = $labl$$label;
  9449     assert(__ use_cbcond(*L), "back to back cbcond");
  9450     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9451   %}
  9452   ins_short_branch(1);
  9453   ins_avoid_back_to_back(1);
  9454   ins_pipe(cbcond_reg_reg);
  9455 %}
  9457 instruct cmpI_imm_branch_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9458   match(If cmp (CmpI op1 op2));
  9459   predicate(UseCBCond);
  9460   effect(USE labl, KILL icc);
  9462   size(4);
  9463   ins_cost(BRANCH_COST);
  9464   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
  9465   ins_encode %{
  9466     Label* L = $labl$$label;
  9467     assert(__ use_cbcond(*L), "back to back cbcond");
  9468     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  9469   %}
  9470   ins_short_branch(1);
  9471   ins_avoid_back_to_back(1);
  9472   ins_pipe(cbcond_reg_imm);
  9473 %}
  9475 instruct cmpU_reg_branch_short(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
  9476   match(If cmp (CmpU op1 op2));
  9477   predicate(UseCBCond);
  9478   effect(USE labl, KILL icc);
  9480   size(4);
  9481   ins_cost(BRANCH_COST);
  9482   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
  9483   ins_encode %{
  9484     Label* L = $labl$$label;
  9485     assert(__ use_cbcond(*L), "back to back cbcond");
  9486     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9487   %}
  9488   ins_short_branch(1);
  9489   ins_avoid_back_to_back(1);
  9490   ins_pipe(cbcond_reg_reg);
  9491 %}
  9493 instruct cmpU_imm_branch_short(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
  9494   match(If cmp (CmpU op1 op2));
  9495   predicate(UseCBCond);
  9496   effect(USE labl, KILL icc);
  9498   size(4);
  9499   ins_cost(BRANCH_COST);
  9500   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
  9501   ins_encode %{
  9502     Label* L = $labl$$label;
  9503     assert(__ use_cbcond(*L), "back to back cbcond");
  9504     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  9505   %}
  9506   ins_short_branch(1);
  9507   ins_avoid_back_to_back(1);
  9508   ins_pipe(cbcond_reg_imm);
  9509 %}
  9511 instruct cmpL_reg_branch_short(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
  9512   match(If cmp (CmpL op1 op2));
  9513   predicate(UseCBCond);
  9514   effect(USE labl, KILL xcc);
  9516   size(4);
  9517   ins_cost(BRANCH_COST);
  9518   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
  9519   ins_encode %{
  9520     Label* L = $labl$$label;
  9521     assert(__ use_cbcond(*L), "back to back cbcond");
  9522     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$Register, *L);
  9523   %}
  9524   ins_short_branch(1);
  9525   ins_avoid_back_to_back(1);
  9526   ins_pipe(cbcond_reg_reg);
  9527 %}
  9529 instruct cmpL_imm_branch_short(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
  9530   match(If cmp (CmpL op1 op2));
  9531   predicate(UseCBCond);
  9532   effect(USE labl, KILL xcc);
  9534   size(4);
  9535   ins_cost(BRANCH_COST);
  9536   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
  9537   ins_encode %{
  9538     Label* L = $labl$$label;
  9539     assert(__ use_cbcond(*L), "back to back cbcond");
  9540     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$constant, *L);
  9541   %}
  9542   ins_short_branch(1);
  9543   ins_avoid_back_to_back(1);
  9544   ins_pipe(cbcond_reg_imm);
  9545 %}
  9547 // Compare Pointers and branch
  9548 instruct cmpP_reg_branch_short(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
  9549   match(If cmp (CmpP op1 op2));
  9550   predicate(UseCBCond);
  9551   effect(USE labl, KILL pcc);
  9553   size(4);
  9554   ins_cost(BRANCH_COST);
  9555 #ifdef _LP64
  9556   format %{ "CXB$cmp $op1,$op2,$labl\t! ptr" %}
  9557 #else
  9558   format %{ "CWB$cmp $op1,$op2,$labl\t! ptr" %}
  9559 #endif
  9560   ins_encode %{
  9561     Label* L = $labl$$label;
  9562     assert(__ use_cbcond(*L), "back to back cbcond");
  9563     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, $op2$$Register, *L);
  9564   %}
  9565   ins_short_branch(1);
  9566   ins_avoid_back_to_back(1);
  9567   ins_pipe(cbcond_reg_reg);
  9568 %}
  9570 instruct cmpP_null_branch_short(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
  9571   match(If cmp (CmpP op1 null));
  9572   predicate(UseCBCond);
  9573   effect(USE labl, KILL pcc);
  9575   size(4);
  9576   ins_cost(BRANCH_COST);
  9577 #ifdef _LP64
  9578   format %{ "CXB$cmp $op1,0,$labl\t! ptr" %}
  9579 #else
  9580   format %{ "CWB$cmp $op1,0,$labl\t! ptr" %}
  9581 #endif
  9582   ins_encode %{
  9583     Label* L = $labl$$label;
  9584     assert(__ use_cbcond(*L), "back to back cbcond");
  9585     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, G0, *L);
  9586   %}
  9587   ins_short_branch(1);
  9588   ins_avoid_back_to_back(1);
  9589   ins_pipe(cbcond_reg_reg);
  9590 %}
  9592 instruct cmpN_reg_branch_short(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
  9593   match(If cmp (CmpN op1 op2));
  9594   predicate(UseCBCond);
  9595   effect(USE labl, KILL icc);
  9597   size(4);
  9598   ins_cost(BRANCH_COST);
  9599   format %{ "CWB$cmp  $op1,op2,$labl\t! compressed ptr" %}
  9600   ins_encode %{
  9601     Label* L = $labl$$label;
  9602     assert(__ use_cbcond(*L), "back to back cbcond");
  9603     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9604   %}
  9605   ins_short_branch(1);
  9606   ins_avoid_back_to_back(1);
  9607   ins_pipe(cbcond_reg_reg);
  9608 %}
  9610 instruct cmpN_null_branch_short(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
  9611   match(If cmp (CmpN op1 null));
  9612   predicate(UseCBCond);
  9613   effect(USE labl, KILL icc);
  9615   size(4);
  9616   ins_cost(BRANCH_COST);
  9617   format %{ "CWB$cmp  $op1,0,$labl\t! compressed ptr" %}
  9618   ins_encode %{
  9619     Label* L = $labl$$label;
  9620     assert(__ use_cbcond(*L), "back to back cbcond");
  9621     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, G0, *L);
  9622   %}
  9623   ins_short_branch(1);
  9624   ins_avoid_back_to_back(1);
  9625   ins_pipe(cbcond_reg_reg);
  9626 %}
  9628 // Loop back branch
  9629 instruct cmpI_reg_branchLoopEnd_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9630   match(CountedLoopEnd cmp (CmpI op1 op2));
  9631   predicate(UseCBCond);
  9632   effect(USE labl, KILL icc);
  9634   size(4);
  9635   ins_cost(BRANCH_COST);
  9636   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
  9637   ins_encode %{
  9638     Label* L = $labl$$label;
  9639     assert(__ use_cbcond(*L), "back to back cbcond");
  9640     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9641   %}
  9642   ins_short_branch(1);
  9643   ins_avoid_back_to_back(1);
  9644   ins_pipe(cbcond_reg_reg);
  9645 %}
  9647 instruct cmpI_imm_branchLoopEnd_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9648   match(CountedLoopEnd cmp (CmpI op1 op2));
  9649   predicate(UseCBCond);
  9650   effect(USE labl, KILL icc);
  9652   size(4);
  9653   ins_cost(BRANCH_COST);
  9654   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
  9655   ins_encode %{
  9656     Label* L = $labl$$label;
  9657     assert(__ use_cbcond(*L), "back to back cbcond");
  9658     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  9659   %}
  9660   ins_short_branch(1);
  9661   ins_avoid_back_to_back(1);
  9662   ins_pipe(cbcond_reg_imm);
  9663 %}
  9665 // Branch-on-register tests all 64 bits.  We assume that values
  9666 // in 64-bit registers always remains zero or sign extended
  9667 // unless our code munges the high bits.  Interrupts can chop
  9668 // the high order bits to zero or sign at any time.
  9669 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
  9670   match(If cmp (CmpI op1 zero));
  9671   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9672   effect(USE labl);
  9674   size(8);
  9675   ins_cost(BRANCH_COST);
  9676   format %{ "BR$cmp   $op1,$labl" %}
  9677   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9678   ins_pipe(br_reg);
  9679 %}
  9681 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
  9682   match(If cmp (CmpP op1 null));
  9683   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9684   effect(USE labl);
  9686   size(8);
  9687   ins_cost(BRANCH_COST);
  9688   format %{ "BR$cmp   $op1,$labl" %}
  9689   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9690   ins_pipe(br_reg);
  9691 %}
  9693 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
  9694   match(If cmp (CmpL op1 zero));
  9695   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9696   effect(USE labl);
  9698   size(8);
  9699   ins_cost(BRANCH_COST);
  9700   format %{ "BR$cmp   $op1,$labl" %}
  9701   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9702   ins_pipe(br_reg);
  9703 %}
  9706 // ============================================================================
  9707 // Long Compare
  9708 //
  9709 // Currently we hold longs in 2 registers.  Comparing such values efficiently
  9710 // is tricky.  The flavor of compare used depends on whether we are testing
  9711 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
  9712 // The GE test is the negated LT test.  The LE test can be had by commuting
  9713 // the operands (yielding a GE test) and then negating; negate again for the
  9714 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
  9715 // NE test is negated from that.
  9717 // Due to a shortcoming in the ADLC, it mixes up expressions like:
  9718 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
  9719 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
  9720 // are collapsed internally in the ADLC's dfa-gen code.  The match for
  9721 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
  9722 // foo match ends up with the wrong leaf.  One fix is to not match both
  9723 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
  9724 // both forms beat the trinary form of long-compare and both are very useful
  9725 // on Intel which has so few registers.
  9727 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
  9728   match(If cmp xcc);
  9729   effect(USE labl);
  9731   size(8);
  9732   ins_cost(BRANCH_COST);
  9733   format %{ "BP$cmp   $xcc,$labl" %}
  9734   ins_encode %{
  9735     Label* L = $labl$$label;
  9736     Assembler::Predict predict_taken =
  9737       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9739     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
  9740     __ delayed()->nop();
  9741   %}
  9742   ins_pipe(br_cc);
  9743 %}
  9745 // Manifest a CmpL3 result in an integer register.  Very painful.
  9746 // This is the test to avoid.
  9747 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
  9748   match(Set dst (CmpL3 src1 src2) );
  9749   effect( KILL ccr );
  9750   ins_cost(6*DEFAULT_COST);
  9751   size(24);
  9752   format %{ "CMP    $src1,$src2\t\t! long\n"
  9753           "\tBLT,a,pn done\n"
  9754           "\tMOV    -1,$dst\t! delay slot\n"
  9755           "\tBGT,a,pn done\n"
  9756           "\tMOV    1,$dst\t! delay slot\n"
  9757           "\tCLR    $dst\n"
  9758     "done:"     %}
  9759   ins_encode( cmpl_flag(src1,src2,dst) );
  9760   ins_pipe(cmpL_reg);
  9761 %}
  9763 // Conditional move
  9764 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
  9765   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  9766   ins_cost(150);
  9767   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  9768   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9769   ins_pipe(ialu_reg);
  9770 %}
  9772 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
  9773   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  9774   ins_cost(140);
  9775   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  9776   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9777   ins_pipe(ialu_imm);
  9778 %}
  9780 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
  9781   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  9782   ins_cost(150);
  9783   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9784   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9785   ins_pipe(ialu_reg);
  9786 %}
  9788 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
  9789   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  9790   ins_cost(140);
  9791   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9792   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9793   ins_pipe(ialu_imm);
  9794 %}
  9796 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
  9797   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
  9798   ins_cost(150);
  9799   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9800   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9801   ins_pipe(ialu_reg);
  9802 %}
  9804 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
  9805   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  9806   ins_cost(150);
  9807   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9808   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9809   ins_pipe(ialu_reg);
  9810 %}
  9812 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
  9813   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  9814   ins_cost(140);
  9815   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9816   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9817   ins_pipe(ialu_imm);
  9818 %}
  9820 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
  9821   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
  9822   ins_cost(150);
  9823   opcode(0x101);
  9824   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
  9825   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
  9826   ins_pipe(int_conditional_float_move);
  9827 %}
  9829 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
  9830   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
  9831   ins_cost(150);
  9832   opcode(0x102);
  9833   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
  9834   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
  9835   ins_pipe(int_conditional_float_move);
  9836 %}
  9838 // ============================================================================
  9839 // Safepoint Instruction
  9840 instruct safePoint_poll(iRegP poll) %{
  9841   match(SafePoint poll);
  9842   effect(USE poll);
  9844   size(4);
  9845 #ifdef _LP64
  9846   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
  9847 #else
  9848   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
  9849 #endif
  9850   ins_encode %{
  9851     __ relocate(relocInfo::poll_type);
  9852     __ ld_ptr($poll$$Register, 0, G0);
  9853   %}
  9854   ins_pipe(loadPollP);
  9855 %}
  9857 // ============================================================================
  9858 // Call Instructions
  9859 // Call Java Static Instruction
  9860 instruct CallStaticJavaDirect( method meth ) %{
  9861   match(CallStaticJava);
  9862   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
  9863   effect(USE meth);
  9865   size(8);
  9866   ins_cost(CALL_COST);
  9867   format %{ "CALL,static  ; NOP ==> " %}
  9868   ins_encode( Java_Static_Call( meth ), call_epilog );
  9869   ins_pipe(simple_call);
  9870 %}
  9872 // Call Java Static Instruction (method handle version)
  9873 instruct CallStaticJavaHandle(method meth, l7RegP l7_mh_SP_save) %{
  9874   match(CallStaticJava);
  9875   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
  9876   effect(USE meth, KILL l7_mh_SP_save);
  9878   size(16);
  9879   ins_cost(CALL_COST);
  9880   format %{ "CALL,static/MethodHandle" %}
  9881   ins_encode(preserve_SP, Java_Static_Call(meth), restore_SP, call_epilog);
  9882   ins_pipe(simple_call);
  9883 %}
  9885 // Call Java Dynamic Instruction
  9886 instruct CallDynamicJavaDirect( method meth ) %{
  9887   match(CallDynamicJava);
  9888   effect(USE meth);
  9890   ins_cost(CALL_COST);
  9891   format %{ "SET    (empty),R_G5\n\t"
  9892             "CALL,dynamic  ; NOP ==> " %}
  9893   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
  9894   ins_pipe(call);
  9895 %}
  9897 // Call Runtime Instruction
  9898 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
  9899   match(CallRuntime);
  9900   effect(USE meth, KILL l7);
  9901   ins_cost(CALL_COST);
  9902   format %{ "CALL,runtime" %}
  9903   ins_encode( Java_To_Runtime( meth ),
  9904               call_epilog, adjust_long_from_native_call );
  9905   ins_pipe(simple_call);
  9906 %}
  9908 // Call runtime without safepoint - same as CallRuntime
  9909 instruct CallLeafDirect(method meth, l7RegP l7) %{
  9910   match(CallLeaf);
  9911   effect(USE meth, KILL l7);
  9912   ins_cost(CALL_COST);
  9913   format %{ "CALL,runtime leaf" %}
  9914   ins_encode( Java_To_Runtime( meth ),
  9915               call_epilog,
  9916               adjust_long_from_native_call );
  9917   ins_pipe(simple_call);
  9918 %}
  9920 // Call runtime without safepoint - same as CallLeaf
  9921 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
  9922   match(CallLeafNoFP);
  9923   effect(USE meth, KILL l7);
  9924   ins_cost(CALL_COST);
  9925   format %{ "CALL,runtime leaf nofp" %}
  9926   ins_encode( Java_To_Runtime( meth ),
  9927               call_epilog,
  9928               adjust_long_from_native_call );
  9929   ins_pipe(simple_call);
  9930 %}
  9932 // Tail Call; Jump from runtime stub to Java code.
  9933 // Also known as an 'interprocedural jump'.
  9934 // Target of jump will eventually return to caller.
  9935 // TailJump below removes the return address.
  9936 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
  9937   match(TailCall jump_target method_oop );
  9939   ins_cost(CALL_COST);
  9940   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
  9941   ins_encode(form_jmpl(jump_target));
  9942   ins_pipe(tail_call);
  9943 %}
  9946 // Return Instruction
  9947 instruct Ret() %{
  9948   match(Return);
  9950   // The epilogue node did the ret already.
  9951   size(0);
  9952   format %{ "! return" %}
  9953   ins_encode();
  9954   ins_pipe(empty);
  9955 %}
  9958 // Tail Jump; remove the return address; jump to target.
  9959 // TailCall above leaves the return address around.
  9960 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
  9961 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
  9962 // "restore" before this instruction (in Epilogue), we need to materialize it
  9963 // in %i0.
  9964 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
  9965   match( TailJump jump_target ex_oop );
  9966   ins_cost(CALL_COST);
  9967   format %{ "! discard R_O7\n\t"
  9968             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
  9969   ins_encode(form_jmpl_set_exception_pc(jump_target));
  9970   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
  9971   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
  9972   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
  9973   ins_pipe(tail_call);
  9974 %}
  9976 // Create exception oop: created by stack-crawling runtime code.
  9977 // Created exception is now available to this handler, and is setup
  9978 // just prior to jumping to this handler.  No code emitted.
  9979 instruct CreateException( o0RegP ex_oop )
  9980 %{
  9981   match(Set ex_oop (CreateEx));
  9982   ins_cost(0);
  9984   size(0);
  9985   // use the following format syntax
  9986   format %{ "! exception oop is in R_O0; no code emitted" %}
  9987   ins_encode();
  9988   ins_pipe(empty);
  9989 %}
  9992 // Rethrow exception:
  9993 // The exception oop will come in the first argument position.
  9994 // Then JUMP (not call) to the rethrow stub code.
  9995 instruct RethrowException()
  9996 %{
  9997   match(Rethrow);
  9998   ins_cost(CALL_COST);
 10000   // use the following format syntax
 10001   format %{ "Jmp    rethrow_stub" %}
 10002   ins_encode(enc_rethrow);
 10003   ins_pipe(tail_call);
 10004 %}
 10007 // Die now
 10008 instruct ShouldNotReachHere( )
 10009 %{
 10010   match(Halt);
 10011   ins_cost(CALL_COST);
 10013   size(4);
 10014   // Use the following format syntax
 10015   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
 10016   ins_encode( form2_illtrap() );
 10017   ins_pipe(tail_call);
 10018 %}
 10020 // ============================================================================
 10021 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
 10022 // array for an instance of the superklass.  Set a hidden internal cache on a
 10023 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
 10024 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
 10025 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
 10026   match(Set index (PartialSubtypeCheck sub super));
 10027   effect( KILL pcc, KILL o7 );
 10028   ins_cost(DEFAULT_COST*10);
 10029   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
 10030   ins_encode( enc_PartialSubtypeCheck() );
 10031   ins_pipe(partial_subtype_check_pipe);
 10032 %}
 10034 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
 10035   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
 10036   effect( KILL idx, KILL o7 );
 10037   ins_cost(DEFAULT_COST*10);
 10038   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
 10039   ins_encode( enc_PartialSubtypeCheck() );
 10040   ins_pipe(partial_subtype_check_pipe);
 10041 %}
 10044 // ============================================================================
 10045 // inlined locking and unlocking
 10047 instruct cmpFastLock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
 10048   match(Set pcc (FastLock object box));
 10050   effect(TEMP scratch2, USE_KILL box, KILL scratch);
 10051   ins_cost(100);
 10053   format %{ "FASTLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
 10054   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
 10055   ins_pipe(long_memory_op);
 10056 %}
 10059 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
 10060   match(Set pcc (FastUnlock object box));
 10061   effect(TEMP scratch2, USE_KILL box, KILL scratch);
 10062   ins_cost(100);
 10064   format %{ "FASTUNLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
 10065   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
 10066   ins_pipe(long_memory_op);
 10067 %}
 10069 // The encodings are generic.
 10070 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
 10071   predicate(!use_block_zeroing(n->in(2)) );
 10072   match(Set dummy (ClearArray cnt base));
 10073   effect(TEMP temp, KILL ccr);
 10074   ins_cost(300);
 10075   format %{ "MOV    $cnt,$temp\n"
 10076     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
 10077     "        BRge   loop\t\t! Clearing loop\n"
 10078     "        STX    G0,[$base+$temp]\t! delay slot" %}
 10080   ins_encode %{
 10081     // Compiler ensures base is doubleword aligned and cnt is count of doublewords
 10082     Register nof_bytes_arg    = $cnt$$Register;
 10083     Register nof_bytes_tmp    = $temp$$Register;
 10084     Register base_pointer_arg = $base$$Register;
 10086     Label loop;
 10087     __ mov(nof_bytes_arg, nof_bytes_tmp);
 10089     // Loop and clear, walking backwards through the array.
 10090     // nof_bytes_tmp (if >0) is always the number of bytes to zero
 10091     __ bind(loop);
 10092     __ deccc(nof_bytes_tmp, 8);
 10093     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
 10094     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
 10095     // %%%% this mini-loop must not cross a cache boundary!
 10096   %}
 10097   ins_pipe(long_memory_op);
 10098 %}
 10100 instruct clear_array_bis(g1RegX cnt, o0RegP base, Universe dummy, flagsReg ccr) %{
 10101   predicate(use_block_zeroing(n->in(2)));
 10102   match(Set dummy (ClearArray cnt base));
 10103   effect(USE_KILL cnt, USE_KILL base, KILL ccr);
 10104   ins_cost(300);
 10105   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
 10107   ins_encode %{
 10109     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
 10110     Register to    = $base$$Register;
 10111     Register count = $cnt$$Register;
 10113     Label Ldone;
 10114     __ nop(); // Separate short branches
 10115     // Use BIS for zeroing (temp is not used).
 10116     __ bis_zeroing(to, count, G0, Ldone);
 10117     __ bind(Ldone);
 10119   %}
 10120   ins_pipe(long_memory_op);
 10121 %}
 10123 instruct clear_array_bis_2(g1RegX cnt, o0RegP base, iRegX tmp, Universe dummy, flagsReg ccr) %{
 10124   predicate(use_block_zeroing(n->in(2)) && !Assembler::is_simm13((int)BlockZeroingLowLimit));
 10125   match(Set dummy (ClearArray cnt base));
 10126   effect(TEMP tmp, USE_KILL cnt, USE_KILL base, KILL ccr);
 10127   ins_cost(300);
 10128   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
 10130   ins_encode %{
 10132     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
 10133     Register to    = $base$$Register;
 10134     Register count = $cnt$$Register;
 10135     Register temp  = $tmp$$Register;
 10137     Label Ldone;
 10138     __ nop(); // Separate short branches
 10139     // Use BIS for zeroing
 10140     __ bis_zeroing(to, count, temp, Ldone);
 10141     __ bind(Ldone);
 10143   %}
 10144   ins_pipe(long_memory_op);
 10145 %}
 10147 instruct string_compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
 10148                         o7RegI tmp, flagsReg ccr) %{
 10149   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
 10150   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
 10151   ins_cost(300);
 10152   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
 10153   ins_encode( enc_String_Compare(str1, str2, cnt1, cnt2, result) );
 10154   ins_pipe(long_memory_op);
 10155 %}
 10157 instruct string_equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
 10158                        o7RegI tmp, flagsReg ccr) %{
 10159   match(Set result (StrEquals (Binary str1 str2) cnt));
 10160   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
 10161   ins_cost(300);
 10162   format %{ "String Equals $str1,$str2,$cnt -> $result   // KILL $tmp" %}
 10163   ins_encode( enc_String_Equals(str1, str2, cnt, result) );
 10164   ins_pipe(long_memory_op);
 10165 %}
 10167 instruct array_equals(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
 10168                       o7RegI tmp2, flagsReg ccr) %{
 10169   match(Set result (AryEq ary1 ary2));
 10170   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
 10171   ins_cost(300);
 10172   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
 10173   ins_encode( enc_Array_Equals(ary1, ary2, tmp1, result));
 10174   ins_pipe(long_memory_op);
 10175 %}
 10178 //---------- Zeros Count Instructions ------------------------------------------
 10180 instruct countLeadingZerosI(iRegIsafe dst, iRegI src, iRegI tmp, flagsReg cr) %{
 10181   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10182   match(Set dst (CountLeadingZerosI src));
 10183   effect(TEMP dst, TEMP tmp, KILL cr);
 10185   // x |= (x >> 1);
 10186   // x |= (x >> 2);
 10187   // x |= (x >> 4);
 10188   // x |= (x >> 8);
 10189   // x |= (x >> 16);
 10190   // return (WORDBITS - popc(x));
 10191   format %{ "SRL     $src,1,$tmp\t! count leading zeros (int)\n\t"
 10192             "SRL     $src,0,$dst\t! 32-bit zero extend\n\t"
 10193             "OR      $dst,$tmp,$dst\n\t"
 10194             "SRL     $dst,2,$tmp\n\t"
 10195             "OR      $dst,$tmp,$dst\n\t"
 10196             "SRL     $dst,4,$tmp\n\t"
 10197             "OR      $dst,$tmp,$dst\n\t"
 10198             "SRL     $dst,8,$tmp\n\t"
 10199             "OR      $dst,$tmp,$dst\n\t"
 10200             "SRL     $dst,16,$tmp\n\t"
 10201             "OR      $dst,$tmp,$dst\n\t"
 10202             "POPC    $dst,$dst\n\t"
 10203             "MOV     32,$tmp\n\t"
 10204             "SUB     $tmp,$dst,$dst" %}
 10205   ins_encode %{
 10206     Register Rdst = $dst$$Register;
 10207     Register Rsrc = $src$$Register;
 10208     Register Rtmp = $tmp$$Register;
 10209     __ srl(Rsrc, 1,    Rtmp);
 10210     __ srl(Rsrc, 0,    Rdst);
 10211     __ or3(Rdst, Rtmp, Rdst);
 10212     __ srl(Rdst, 2,    Rtmp);
 10213     __ or3(Rdst, Rtmp, Rdst);
 10214     __ srl(Rdst, 4,    Rtmp);
 10215     __ or3(Rdst, Rtmp, Rdst);
 10216     __ srl(Rdst, 8,    Rtmp);
 10217     __ or3(Rdst, Rtmp, Rdst);
 10218     __ srl(Rdst, 16,   Rtmp);
 10219     __ or3(Rdst, Rtmp, Rdst);
 10220     __ popc(Rdst, Rdst);
 10221     __ mov(BitsPerInt, Rtmp);
 10222     __ sub(Rtmp, Rdst, Rdst);
 10223   %}
 10224   ins_pipe(ialu_reg);
 10225 %}
 10227 instruct countLeadingZerosL(iRegIsafe dst, iRegL src, iRegL tmp, flagsReg cr) %{
 10228   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10229   match(Set dst (CountLeadingZerosL src));
 10230   effect(TEMP dst, TEMP tmp, KILL cr);
 10232   // x |= (x >> 1);
 10233   // x |= (x >> 2);
 10234   // x |= (x >> 4);
 10235   // x |= (x >> 8);
 10236   // x |= (x >> 16);
 10237   // x |= (x >> 32);
 10238   // return (WORDBITS - popc(x));
 10239   format %{ "SRLX    $src,1,$tmp\t! count leading zeros (long)\n\t"
 10240             "OR      $src,$tmp,$dst\n\t"
 10241             "SRLX    $dst,2,$tmp\n\t"
 10242             "OR      $dst,$tmp,$dst\n\t"
 10243             "SRLX    $dst,4,$tmp\n\t"
 10244             "OR      $dst,$tmp,$dst\n\t"
 10245             "SRLX    $dst,8,$tmp\n\t"
 10246             "OR      $dst,$tmp,$dst\n\t"
 10247             "SRLX    $dst,16,$tmp\n\t"
 10248             "OR      $dst,$tmp,$dst\n\t"
 10249             "SRLX    $dst,32,$tmp\n\t"
 10250             "OR      $dst,$tmp,$dst\n\t"
 10251             "POPC    $dst,$dst\n\t"
 10252             "MOV     64,$tmp\n\t"
 10253             "SUB     $tmp,$dst,$dst" %}
 10254   ins_encode %{
 10255     Register Rdst = $dst$$Register;
 10256     Register Rsrc = $src$$Register;
 10257     Register Rtmp = $tmp$$Register;
 10258     __ srlx(Rsrc, 1,    Rtmp);
 10259     __ or3( Rsrc, Rtmp, Rdst);
 10260     __ srlx(Rdst, 2,    Rtmp);
 10261     __ or3( Rdst, Rtmp, Rdst);
 10262     __ srlx(Rdst, 4,    Rtmp);
 10263     __ or3( Rdst, Rtmp, Rdst);
 10264     __ srlx(Rdst, 8,    Rtmp);
 10265     __ or3( Rdst, Rtmp, Rdst);
 10266     __ srlx(Rdst, 16,   Rtmp);
 10267     __ or3( Rdst, Rtmp, Rdst);
 10268     __ srlx(Rdst, 32,   Rtmp);
 10269     __ or3( Rdst, Rtmp, Rdst);
 10270     __ popc(Rdst, Rdst);
 10271     __ mov(BitsPerLong, Rtmp);
 10272     __ sub(Rtmp, Rdst, Rdst);
 10273   %}
 10274   ins_pipe(ialu_reg);
 10275 %}
 10277 instruct countTrailingZerosI(iRegIsafe dst, iRegI src, flagsReg cr) %{
 10278   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10279   match(Set dst (CountTrailingZerosI src));
 10280   effect(TEMP dst, KILL cr);
 10282   // return popc(~x & (x - 1));
 10283   format %{ "SUB     $src,1,$dst\t! count trailing zeros (int)\n\t"
 10284             "ANDN    $dst,$src,$dst\n\t"
 10285             "SRL     $dst,R_G0,$dst\n\t"
 10286             "POPC    $dst,$dst" %}
 10287   ins_encode %{
 10288     Register Rdst = $dst$$Register;
 10289     Register Rsrc = $src$$Register;
 10290     __ sub(Rsrc, 1, Rdst);
 10291     __ andn(Rdst, Rsrc, Rdst);
 10292     __ srl(Rdst, G0, Rdst);
 10293     __ popc(Rdst, Rdst);
 10294   %}
 10295   ins_pipe(ialu_reg);
 10296 %}
 10298 instruct countTrailingZerosL(iRegIsafe dst, iRegL src, flagsReg cr) %{
 10299   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10300   match(Set dst (CountTrailingZerosL src));
 10301   effect(TEMP dst, KILL cr);
 10303   // return popc(~x & (x - 1));
 10304   format %{ "SUB     $src,1,$dst\t! count trailing zeros (long)\n\t"
 10305             "ANDN    $dst,$src,$dst\n\t"
 10306             "POPC    $dst,$dst" %}
 10307   ins_encode %{
 10308     Register Rdst = $dst$$Register;
 10309     Register Rsrc = $src$$Register;
 10310     __ sub(Rsrc, 1, Rdst);
 10311     __ andn(Rdst, Rsrc, Rdst);
 10312     __ popc(Rdst, Rdst);
 10313   %}
 10314   ins_pipe(ialu_reg);
 10315 %}
 10318 //---------- Population Count Instructions -------------------------------------
 10320 instruct popCountI(iRegIsafe dst, iRegI src) %{
 10321   predicate(UsePopCountInstruction);
 10322   match(Set dst (PopCountI src));
 10324   format %{ "SRL    $src, G0, $dst\t! clear upper word for 64 bit POPC\n\t"
 10325             "POPC   $dst, $dst" %}
 10326   ins_encode %{
 10327     __ srl($src$$Register, G0, $dst$$Register);
 10328     __ popc($dst$$Register, $dst$$Register);
 10329   %}
 10330   ins_pipe(ialu_reg);
 10331 %}
 10333 // Note: Long.bitCount(long) returns an int.
 10334 instruct popCountL(iRegIsafe dst, iRegL src) %{
 10335   predicate(UsePopCountInstruction);
 10336   match(Set dst (PopCountL src));
 10338   format %{ "POPC   $src, $dst" %}
 10339   ins_encode %{
 10340     __ popc($src$$Register, $dst$$Register);
 10341   %}
 10342   ins_pipe(ialu_reg);
 10343 %}
 10346 // ============================================================================
 10347 //------------Bytes reverse--------------------------------------------------
 10349 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
 10350   match(Set dst (ReverseBytesI src));
 10352   // Op cost is artificially doubled to make sure that load or store
 10353   // instructions are preferred over this one which requires a spill
 10354   // onto a stack slot.
 10355   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10356   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
 10358   ins_encode %{
 10359     __ set($src$$disp + STACK_BIAS, O7);
 10360     __ lduwa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10361   %}
 10362   ins_pipe( iload_mem );
 10363 %}
 10365 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
 10366   match(Set dst (ReverseBytesL src));
 10368   // Op cost is artificially doubled to make sure that load or store
 10369   // instructions are preferred over this one which requires a spill
 10370   // onto a stack slot.
 10371   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10372   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
 10374   ins_encode %{
 10375     __ set($src$$disp + STACK_BIAS, O7);
 10376     __ ldxa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10377   %}
 10378   ins_pipe( iload_mem );
 10379 %}
 10381 instruct bytes_reverse_unsigned_short(iRegI dst, stackSlotI src) %{
 10382   match(Set dst (ReverseBytesUS src));
 10384   // Op cost is artificially doubled to make sure that load or store
 10385   // instructions are preferred over this one which requires a spill
 10386   // onto a stack slot.
 10387   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10388   format %{ "LDUHA  $src, $dst\t!asi=primary_little\n\t" %}
 10390   ins_encode %{
 10391     // the value was spilled as an int so bias the load
 10392     __ set($src$$disp + STACK_BIAS + 2, O7);
 10393     __ lduha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10394   %}
 10395   ins_pipe( iload_mem );
 10396 %}
 10398 instruct bytes_reverse_short(iRegI dst, stackSlotI src) %{
 10399   match(Set dst (ReverseBytesS src));
 10401   // Op cost is artificially doubled to make sure that load or store
 10402   // instructions are preferred over this one which requires a spill
 10403   // onto a stack slot.
 10404   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10405   format %{ "LDSHA  $src, $dst\t!asi=primary_little\n\t" %}
 10407   ins_encode %{
 10408     // the value was spilled as an int so bias the load
 10409     __ set($src$$disp + STACK_BIAS + 2, O7);
 10410     __ ldsha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10411   %}
 10412   ins_pipe( iload_mem );
 10413 %}
 10415 // Load Integer reversed byte order
 10416 instruct loadI_reversed(iRegI dst, indIndexMemory src) %{
 10417   match(Set dst (ReverseBytesI (LoadI src)));
 10419   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
 10420   size(4);
 10421   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
 10423   ins_encode %{
 10424     __ lduwa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10425   %}
 10426   ins_pipe(iload_mem);
 10427 %}
 10429 // Load Long - aligned and reversed
 10430 instruct loadL_reversed(iRegL dst, indIndexMemory src) %{
 10431   match(Set dst (ReverseBytesL (LoadL src)));
 10433   ins_cost(MEMORY_REF_COST);
 10434   size(4);
 10435   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
 10437   ins_encode %{
 10438     __ ldxa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10439   %}
 10440   ins_pipe(iload_mem);
 10441 %}
 10443 // Load unsigned short / char reversed byte order
 10444 instruct loadUS_reversed(iRegI dst, indIndexMemory src) %{
 10445   match(Set dst (ReverseBytesUS (LoadUS src)));
 10447   ins_cost(MEMORY_REF_COST);
 10448   size(4);
 10449   format %{ "LDUHA  $src, $dst\t!asi=primary_little" %}
 10451   ins_encode %{
 10452     __ lduha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10453   %}
 10454   ins_pipe(iload_mem);
 10455 %}
 10457 // Load short reversed byte order
 10458 instruct loadS_reversed(iRegI dst, indIndexMemory src) %{
 10459   match(Set dst (ReverseBytesS (LoadS src)));
 10461   ins_cost(MEMORY_REF_COST);
 10462   size(4);
 10463   format %{ "LDSHA  $src, $dst\t!asi=primary_little" %}
 10465   ins_encode %{
 10466     __ ldsha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10467   %}
 10468   ins_pipe(iload_mem);
 10469 %}
 10471 // Store Integer reversed byte order
 10472 instruct storeI_reversed(indIndexMemory dst, iRegI src) %{
 10473   match(Set dst (StoreI dst (ReverseBytesI src)));
 10475   ins_cost(MEMORY_REF_COST);
 10476   size(4);
 10477   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
 10479   ins_encode %{
 10480     __ stwa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10481   %}
 10482   ins_pipe(istore_mem_reg);
 10483 %}
 10485 // Store Long reversed byte order
 10486 instruct storeL_reversed(indIndexMemory dst, iRegL src) %{
 10487   match(Set dst (StoreL dst (ReverseBytesL src)));
 10489   ins_cost(MEMORY_REF_COST);
 10490   size(4);
 10491   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
 10493   ins_encode %{
 10494     __ stxa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10495   %}
 10496   ins_pipe(istore_mem_reg);
 10497 %}
 10499 // Store unsighed short/char reversed byte order
 10500 instruct storeUS_reversed(indIndexMemory dst, iRegI src) %{
 10501   match(Set dst (StoreC dst (ReverseBytesUS src)));
 10503   ins_cost(MEMORY_REF_COST);
 10504   size(4);
 10505   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
 10507   ins_encode %{
 10508     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10509   %}
 10510   ins_pipe(istore_mem_reg);
 10511 %}
 10513 // Store short reversed byte order
 10514 instruct storeS_reversed(indIndexMemory dst, iRegI src) %{
 10515   match(Set dst (StoreC dst (ReverseBytesS src)));
 10517   ins_cost(MEMORY_REF_COST);
 10518   size(4);
 10519   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
 10521   ins_encode %{
 10522     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10523   %}
 10524   ins_pipe(istore_mem_reg);
 10525 %}
 10527 // ====================VECTOR INSTRUCTIONS=====================================
 10529 // Load Aligned Packed values into a Double Register
 10530 instruct loadV8(regD dst, memory mem) %{
 10531   predicate(n->as_LoadVector()->memory_size() == 8);
 10532   match(Set dst (LoadVector mem));
 10533   ins_cost(MEMORY_REF_COST);
 10534   size(4);
 10535   format %{ "LDDF   $mem,$dst\t! load vector (8 bytes)" %}
 10536   ins_encode %{
 10537     __ ldf(FloatRegisterImpl::D, $mem$$Address, as_DoubleFloatRegister($dst$$reg));
 10538   %}
 10539   ins_pipe(floadD_mem);
 10540 %}
 10542 // Store Vector in Double register to memory
 10543 instruct storeV8(memory mem, regD src) %{
 10544   predicate(n->as_StoreVector()->memory_size() == 8);
 10545   match(Set mem (StoreVector mem src));
 10546   ins_cost(MEMORY_REF_COST);
 10547   size(4);
 10548   format %{ "STDF   $src,$mem\t! store vector (8 bytes)" %}
 10549   ins_encode %{
 10550     __ stf(FloatRegisterImpl::D, as_DoubleFloatRegister($src$$reg), $mem$$Address);
 10551   %}
 10552   ins_pipe(fstoreD_mem_reg);
 10553 %}
 10555 // Store Zero into vector in memory
 10556 instruct storeV8B_zero(memory mem, immI0 zero) %{
 10557   predicate(n->as_StoreVector()->memory_size() == 8);
 10558   match(Set mem (StoreVector mem (ReplicateB zero)));
 10559   ins_cost(MEMORY_REF_COST);
 10560   size(4);
 10561   format %{ "STX    $zero,$mem\t! store zero vector (8 bytes)" %}
 10562   ins_encode %{
 10563     __ stx(G0, $mem$$Address);
 10564   %}
 10565   ins_pipe(fstoreD_mem_zero);
 10566 %}
 10568 instruct storeV4S_zero(memory mem, immI0 zero) %{
 10569   predicate(n->as_StoreVector()->memory_size() == 8);
 10570   match(Set mem (StoreVector mem (ReplicateS zero)));
 10571   ins_cost(MEMORY_REF_COST);
 10572   size(4);
 10573   format %{ "STX    $zero,$mem\t! store zero vector (4 shorts)" %}
 10574   ins_encode %{
 10575     __ stx(G0, $mem$$Address);
 10576   %}
 10577   ins_pipe(fstoreD_mem_zero);
 10578 %}
 10580 instruct storeV2I_zero(memory mem, immI0 zero) %{
 10581   predicate(n->as_StoreVector()->memory_size() == 8);
 10582   match(Set mem (StoreVector mem (ReplicateI zero)));
 10583   ins_cost(MEMORY_REF_COST);
 10584   size(4);
 10585   format %{ "STX    $zero,$mem\t! store zero vector (2 ints)" %}
 10586   ins_encode %{
 10587     __ stx(G0, $mem$$Address);
 10588   %}
 10589   ins_pipe(fstoreD_mem_zero);
 10590 %}
 10592 instruct storeV2F_zero(memory mem, immF0 zero) %{
 10593   predicate(n->as_StoreVector()->memory_size() == 8);
 10594   match(Set mem (StoreVector mem (ReplicateF zero)));
 10595   ins_cost(MEMORY_REF_COST);
 10596   size(4);
 10597   format %{ "STX    $zero,$mem\t! store zero vector (2 floats)" %}
 10598   ins_encode %{
 10599     __ stx(G0, $mem$$Address);
 10600   %}
 10601   ins_pipe(fstoreD_mem_zero);
 10602 %}
 10604 // Replicate scalar to packed byte values into Double register
 10605 instruct Repl8B_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10606   predicate(n->as_Vector()->length() == 8 && UseVIS >= 3);
 10607   match(Set dst (ReplicateB src));
 10608   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10609   format %{ "SLLX  $src,56,$tmp\n\t"
 10610             "SRLX  $tmp, 8,$tmp2\n\t"
 10611             "OR    $tmp,$tmp2,$tmp\n\t"
 10612             "SRLX  $tmp,16,$tmp2\n\t"
 10613             "OR    $tmp,$tmp2,$tmp\n\t"
 10614             "SRLX  $tmp,32,$tmp2\n\t"
 10615             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
 10616             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
 10617   ins_encode %{
 10618     Register Rsrc = $src$$Register;
 10619     Register Rtmp = $tmp$$Register;
 10620     Register Rtmp2 = $tmp2$$Register;
 10621     __ sllx(Rsrc,    56, Rtmp);
 10622     __ srlx(Rtmp,     8, Rtmp2);
 10623     __ or3 (Rtmp, Rtmp2, Rtmp);
 10624     __ srlx(Rtmp,    16, Rtmp2);
 10625     __ or3 (Rtmp, Rtmp2, Rtmp);
 10626     __ srlx(Rtmp,    32, Rtmp2);
 10627     __ or3 (Rtmp, Rtmp2, Rtmp);
 10628     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
 10629   %}
 10630   ins_pipe(ialu_reg);
 10631 %}
 10633 // Replicate scalar to packed byte values into Double stack
 10634 instruct Repl8B_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10635   predicate(n->as_Vector()->length() == 8 && UseVIS < 3);
 10636   match(Set dst (ReplicateB src));
 10637   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10638   format %{ "SLLX  $src,56,$tmp\n\t"
 10639             "SRLX  $tmp, 8,$tmp2\n\t"
 10640             "OR    $tmp,$tmp2,$tmp\n\t"
 10641             "SRLX  $tmp,16,$tmp2\n\t"
 10642             "OR    $tmp,$tmp2,$tmp\n\t"
 10643             "SRLX  $tmp,32,$tmp2\n\t"
 10644             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
 10645             "STX   $tmp,$dst\t! regL to stkD" %}
 10646   ins_encode %{
 10647     Register Rsrc = $src$$Register;
 10648     Register Rtmp = $tmp$$Register;
 10649     Register Rtmp2 = $tmp2$$Register;
 10650     __ sllx(Rsrc,    56, Rtmp);
 10651     __ srlx(Rtmp,     8, Rtmp2);
 10652     __ or3 (Rtmp, Rtmp2, Rtmp);
 10653     __ srlx(Rtmp,    16, Rtmp2);
 10654     __ or3 (Rtmp, Rtmp2, Rtmp);
 10655     __ srlx(Rtmp,    32, Rtmp2);
 10656     __ or3 (Rtmp, Rtmp2, Rtmp);
 10657     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
 10658     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
 10659   %}
 10660   ins_pipe(ialu_reg);
 10661 %}
 10663 // Replicate scalar constant to packed byte values in Double register
 10664 instruct Repl8B_immI(regD dst, immI13 con, o7RegI tmp) %{
 10665   predicate(n->as_Vector()->length() == 8);
 10666   match(Set dst (ReplicateB con));
 10667   effect(KILL tmp);
 10668   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl8B($con)" %}
 10669   ins_encode %{
 10670     // XXX This is a quick fix for 6833573.
 10671     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 8, 1)), $dst$$FloatRegister);
 10672     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 8, 1)), $tmp$$Register);
 10673     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
 10674   %}
 10675   ins_pipe(loadConFD);
 10676 %}
 10678 // Replicate scalar to packed char/short values into Double register
 10679 instruct Repl4S_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10680   predicate(n->as_Vector()->length() == 4 && UseVIS >= 3);
 10681   match(Set dst (ReplicateS src));
 10682   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10683   format %{ "SLLX  $src,48,$tmp\n\t"
 10684             "SRLX  $tmp,16,$tmp2\n\t"
 10685             "OR    $tmp,$tmp2,$tmp\n\t"
 10686             "SRLX  $tmp,32,$tmp2\n\t"
 10687             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
 10688             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
 10689   ins_encode %{
 10690     Register Rsrc = $src$$Register;
 10691     Register Rtmp = $tmp$$Register;
 10692     Register Rtmp2 = $tmp2$$Register;
 10693     __ sllx(Rsrc,    48, Rtmp);
 10694     __ srlx(Rtmp,    16, Rtmp2);
 10695     __ or3 (Rtmp, Rtmp2, Rtmp);
 10696     __ srlx(Rtmp,    32, Rtmp2);
 10697     __ or3 (Rtmp, Rtmp2, Rtmp);
 10698     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
 10699   %}
 10700   ins_pipe(ialu_reg);
 10701 %}
 10703 // Replicate scalar to packed char/short values into Double stack
 10704 instruct Repl4S_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10705   predicate(n->as_Vector()->length() == 4 && UseVIS < 3);
 10706   match(Set dst (ReplicateS src));
 10707   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10708   format %{ "SLLX  $src,48,$tmp\n\t"
 10709             "SRLX  $tmp,16,$tmp2\n\t"
 10710             "OR    $tmp,$tmp2,$tmp\n\t"
 10711             "SRLX  $tmp,32,$tmp2\n\t"
 10712             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
 10713             "STX   $tmp,$dst\t! regL to stkD" %}
 10714   ins_encode %{
 10715     Register Rsrc = $src$$Register;
 10716     Register Rtmp = $tmp$$Register;
 10717     Register Rtmp2 = $tmp2$$Register;
 10718     __ sllx(Rsrc,    48, Rtmp);
 10719     __ srlx(Rtmp,    16, Rtmp2);
 10720     __ or3 (Rtmp, Rtmp2, Rtmp);
 10721     __ srlx(Rtmp,    32, Rtmp2);
 10722     __ or3 (Rtmp, Rtmp2, Rtmp);
 10723     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
 10724     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
 10725   %}
 10726   ins_pipe(ialu_reg);
 10727 %}
 10729 // Replicate scalar constant to packed char/short values in Double register
 10730 instruct Repl4S_immI(regD dst, immI con, o7RegI tmp) %{
 10731   predicate(n->as_Vector()->length() == 4);
 10732   match(Set dst (ReplicateS con));
 10733   effect(KILL tmp);
 10734   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4S($con)" %}
 10735   ins_encode %{
 10736     // XXX This is a quick fix for 6833573.
 10737     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
 10738     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
 10739     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
 10740   %}
 10741   ins_pipe(loadConFD);
 10742 %}
 10744 // Replicate scalar to packed int values into Double register
 10745 instruct Repl2I_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10746   predicate(n->as_Vector()->length() == 2 && UseVIS >= 3);
 10747   match(Set dst (ReplicateI src));
 10748   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10749   format %{ "SLLX  $src,32,$tmp\n\t"
 10750             "SRLX  $tmp,32,$tmp2\n\t"
 10751             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
 10752             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
 10753   ins_encode %{
 10754     Register Rsrc = $src$$Register;
 10755     Register Rtmp = $tmp$$Register;
 10756     Register Rtmp2 = $tmp2$$Register;
 10757     __ sllx(Rsrc,    32, Rtmp);
 10758     __ srlx(Rtmp,    32, Rtmp2);
 10759     __ or3 (Rtmp, Rtmp2, Rtmp);
 10760     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
 10761   %}
 10762   ins_pipe(ialu_reg);
 10763 %}
 10765 // Replicate scalar to packed int values into Double stack
 10766 instruct Repl2I_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10767   predicate(n->as_Vector()->length() == 2 && UseVIS < 3);
 10768   match(Set dst (ReplicateI src));
 10769   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10770   format %{ "SLLX  $src,32,$tmp\n\t"
 10771             "SRLX  $tmp,32,$tmp2\n\t"
 10772             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
 10773             "STX   $tmp,$dst\t! regL to stkD" %}
 10774   ins_encode %{
 10775     Register Rsrc = $src$$Register;
 10776     Register Rtmp = $tmp$$Register;
 10777     Register Rtmp2 = $tmp2$$Register;
 10778     __ sllx(Rsrc,    32, Rtmp);
 10779     __ srlx(Rtmp,    32, Rtmp2);
 10780     __ or3 (Rtmp, Rtmp2, Rtmp);
 10781     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
 10782     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
 10783   %}
 10784   ins_pipe(ialu_reg);
 10785 %}
 10787 // Replicate scalar zero constant to packed int values in Double register
 10788 instruct Repl2I_immI(regD dst, immI con, o7RegI tmp) %{
 10789   predicate(n->as_Vector()->length() == 2);
 10790   match(Set dst (ReplicateI con));
 10791   effect(KILL tmp);
 10792   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2I($con)" %}
 10793   ins_encode %{
 10794     // XXX This is a quick fix for 6833573.
 10795     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 2, 4)), $dst$$FloatRegister);
 10796     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 2, 4)), $tmp$$Register);
 10797     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
 10798   %}
 10799   ins_pipe(loadConFD);
 10800 %}
 10802 // Replicate scalar to packed float values into Double stack
 10803 instruct Repl2F_stk(stackSlotD dst, regF src) %{
 10804   predicate(n->as_Vector()->length() == 2);
 10805   match(Set dst (ReplicateF src));
 10806   ins_cost(MEMORY_REF_COST*2);
 10807   format %{ "STF    $src,$dst.hi\t! packed2F\n\t"
 10808             "STF    $src,$dst.lo" %}
 10809   opcode(Assembler::stf_op3);
 10810   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, src));
 10811   ins_pipe(fstoreF_stk_reg);
 10812 %}
 10814 // Replicate scalar zero constant to packed float values in Double register
 10815 instruct Repl2F_immF(regD dst, immF con, o7RegI tmp) %{
 10816   predicate(n->as_Vector()->length() == 2);
 10817   match(Set dst (ReplicateF con));
 10818   effect(KILL tmp);
 10819   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2F($con)" %}
 10820   ins_encode %{
 10821     // XXX This is a quick fix for 6833573.
 10822     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immF($con$$constant)), $dst$$FloatRegister);
 10823     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immF($con$$constant)), $tmp$$Register);
 10824     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
 10825   %}
 10826   ins_pipe(loadConFD);
 10827 %}
 10829 //----------PEEPHOLE RULES-----------------------------------------------------
 10830 // These must follow all instruction definitions as they use the names
 10831 // defined in the instructions definitions.
 10832 //
 10833 // peepmatch ( root_instr_name [preceding_instruction]* );
 10834 //
 10835 // peepconstraint %{
 10836 // (instruction_number.operand_name relational_op instruction_number.operand_name
 10837 //  [, ...] );
 10838 // // instruction numbers are zero-based using left to right order in peepmatch
 10839 //
 10840 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
 10841 // // provide an instruction_number.operand_name for each operand that appears
 10842 // // in the replacement instruction's match rule
 10843 //
 10844 // ---------VM FLAGS---------------------------------------------------------
 10845 //
 10846 // All peephole optimizations can be turned off using -XX:-OptoPeephole
 10847 //
 10848 // Each peephole rule is given an identifying number starting with zero and
 10849 // increasing by one in the order seen by the parser.  An individual peephole
 10850 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
 10851 // on the command-line.
 10852 //
 10853 // ---------CURRENT LIMITATIONS----------------------------------------------
 10854 //
 10855 // Only match adjacent instructions in same basic block
 10856 // Only equality constraints
 10857 // Only constraints between operands, not (0.dest_reg == EAX_enc)
 10858 // Only one replacement instruction
 10859 //
 10860 // ---------EXAMPLE----------------------------------------------------------
 10861 //
 10862 // // pertinent parts of existing instructions in architecture description
 10863 // instruct movI(eRegI dst, eRegI src) %{
 10864 //   match(Set dst (CopyI src));
 10865 // %}
 10866 //
 10867 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
 10868 //   match(Set dst (AddI dst src));
 10869 //   effect(KILL cr);
 10870 // %}
 10871 //
 10872 // // Change (inc mov) to lea
 10873 // peephole %{
 10874 //   // increment preceeded by register-register move
 10875 //   peepmatch ( incI_eReg movI );
 10876 //   // require that the destination register of the increment
 10877 //   // match the destination register of the move
 10878 //   peepconstraint ( 0.dst == 1.dst );
 10879 //   // construct a replacement instruction that sets
 10880 //   // the destination to ( move's source register + one )
 10881 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
 10882 // %}
 10883 //
 10885 // // Change load of spilled value to only a spill
 10886 // instruct storeI(memory mem, eRegI src) %{
 10887 //   match(Set mem (StoreI mem src));
 10888 // %}
 10889 //
 10890 // instruct loadI(eRegI dst, memory mem) %{
 10891 //   match(Set dst (LoadI mem));
 10892 // %}
 10893 //
 10894 // peephole %{
 10895 //   peepmatch ( loadI storeI );
 10896 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 10897 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
 10898 // %}
 10900 //----------SMARTSPILL RULES---------------------------------------------------
 10901 // These must follow all instruction definitions as they use the names
 10902 // defined in the instructions definitions.
 10903 //
 10904 // SPARC will probably not have any of these rules due to RISC instruction set.
 10906 //----------PIPELINE-----------------------------------------------------------
 10907 // Rules which define the behavior of the target architectures pipeline.

mercurial