src/share/vm/opto/runtime.cpp

Sat, 01 Dec 2007 00:00:00 +0000

author
duke
date
Sat, 01 Dec 2007 00:00:00 +0000
changeset 435
a61af66fc99e
child 777
37f87013dfd8
permissions
-rw-r--r--

Initial load

     1 /*
     2  * Copyright 1998-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_runtime.cpp.incl"
    29 // For debugging purposes:
    30 //  To force FullGCALot inside a runtime function, add the following two lines
    31 //
    32 //  Universe::release_fullgc_alot_dummy();
    33 //  MarkSweep::invoke(0, "Debugging");
    34 //
    35 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
    40 // Compiled code entry points
    41 address OptoRuntime::_new_instance_Java                           = NULL;
    42 address OptoRuntime::_new_array_Java                              = NULL;
    43 address OptoRuntime::_multianewarray2_Java                        = NULL;
    44 address OptoRuntime::_multianewarray3_Java                        = NULL;
    45 address OptoRuntime::_multianewarray4_Java                        = NULL;
    46 address OptoRuntime::_multianewarray5_Java                        = NULL;
    47 address OptoRuntime::_vtable_must_compile_Java                    = NULL;
    48 address OptoRuntime::_complete_monitor_locking_Java               = NULL;
    49 address OptoRuntime::_rethrow_Java                                = NULL;
    51 address OptoRuntime::_slow_arraycopy_Java                         = NULL;
    52 address OptoRuntime::_register_finalizer_Java                     = NULL;
    54 # ifdef ENABLE_ZAP_DEAD_LOCALS
    55 address OptoRuntime::_zap_dead_Java_locals_Java                   = NULL;
    56 address OptoRuntime::_zap_dead_native_locals_Java                 = NULL;
    57 # endif
    60 // This should be called in an assertion at the start of OptoRuntime routines
    61 // which are entered from compiled code (all of them)
    62 #ifndef PRODUCT
    63 static bool check_compiled_frame(JavaThread* thread) {
    64   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
    65 #ifdef ASSERT
    66   RegisterMap map(thread, false);
    67   frame caller = thread->last_frame().sender(&map);
    68   assert(caller.is_compiled_frame(), "not being called from compiled like code");
    69 #endif  /* ASSERT */
    70   return true;
    71 }
    72 #endif
    75 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
    76   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc)
    78 void OptoRuntime::generate(ciEnv* env) {
    80   generate_exception_blob();
    82   // Note: tls: Means fetching the return oop out of the thread-local storage
    83   //
    84   //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,save_args,retpc
    85   // -------------------------------------------------------------------------------------------------------------------------------
    86   gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true , false, false);
    87   gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true , false, false);
    88   gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true , false, false);
    89   gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true , false, false);
    90   gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true , false, false);
    91   gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true , false, false);
    92   gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C      ,    0 , false, false, false);
    93   gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , false, true );
    95   gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false, false);
    96   gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false, false);
    98 # ifdef ENABLE_ZAP_DEAD_LOCALS
    99   gen(env, _zap_dead_Java_locals_Java      , zap_dead_locals_Type         , zap_dead_Java_locals_C          ,    0 , false, true , false );
   100   gen(env, _zap_dead_native_locals_Java    , zap_dead_locals_Type         , zap_dead_native_locals_C        ,    0 , false, true , false );
   101 # endif
   103 }
   105 #undef gen
   108 // Helper method to do generation of RunTimeStub's
   109 address OptoRuntime::generate_stub( ciEnv* env,
   110                                     TypeFunc_generator gen, address C_function,
   111                                     const char *name, int is_fancy_jump,
   112                                     bool pass_tls,
   113                                     bool save_argument_registers,
   114                                     bool return_pc ) {
   115   ResourceMark rm;
   116   Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc );
   117   return  C.stub_entry_point();
   118 }
   120 const char* OptoRuntime::stub_name(address entry) {
   121 #ifndef PRODUCT
   122   CodeBlob* cb = CodeCache::find_blob(entry);
   123   RuntimeStub* rs =(RuntimeStub *)cb;
   124   assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
   125   return rs->name();
   126 #else
   127   // Fast implementation for product mode (maybe it should be inlined too)
   128   return "runtime stub";
   129 #endif
   130 }
   133 //=============================================================================
   134 // Opto compiler runtime routines
   135 //=============================================================================
   138 //=============================allocation======================================
   139 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
   140 // and try allocation again.
   142 void OptoRuntime::do_eager_card_mark(JavaThread* thread) {
   143   // After any safepoint, just before going back to compiled code,
   144   // we perform a card mark.  This lets the compiled code omit
   145   // card marks for initialization of new objects.
   146   // Keep this code consistent with GraphKit::store_barrier.
   148   oop new_obj = thread->vm_result();
   149   if (new_obj == NULL)  return;
   151   assert(Universe::heap()->can_elide_tlab_store_barriers(),
   152          "compiler must check this first");
   153   new_obj = Universe::heap()->new_store_barrier(new_obj);
   154   thread->set_vm_result(new_obj);
   155 }
   157 // object allocation
   158 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(klassOopDesc* klass, JavaThread* thread))
   159   JRT_BLOCK;
   160 #ifndef PRODUCT
   161   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
   162 #endif
   163   assert(check_compiled_frame(thread), "incorrect caller");
   165   // These checks are cheap to make and support reflective allocation.
   166   int lh = Klass::cast(klass)->layout_helper();
   167   if (Klass::layout_helper_needs_slow_path(lh)
   168       || !instanceKlass::cast(klass)->is_initialized()) {
   169     KlassHandle kh(THREAD, klass);
   170     kh->check_valid_for_instantiation(false, THREAD);
   171     if (!HAS_PENDING_EXCEPTION) {
   172       instanceKlass::cast(kh())->initialize(THREAD);
   173     }
   174     if (!HAS_PENDING_EXCEPTION) {
   175       klass = kh();
   176     } else {
   177       klass = NULL;
   178     }
   179   }
   181   if (klass != NULL) {
   182     // Scavenge and allocate an instance.
   183     oop result = instanceKlass::cast(klass)->allocate_instance(THREAD);
   184     thread->set_vm_result(result);
   186     // Pass oops back through thread local storage.  Our apparent type to Java
   187     // is that we return an oop, but we can block on exit from this routine and
   188     // a GC can trash the oop in C's return register.  The generated stub will
   189     // fetch the oop from TLS after any possible GC.
   190   }
   192   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   193   JRT_BLOCK_END;
   195   if (GraphKit::use_ReduceInitialCardMarks()) {
   196     // do them now so we don't have to do them on the fast path
   197     do_eager_card_mark(thread);
   198   }
   199 JRT_END
   202 // array allocation
   203 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(klassOopDesc* array_type, int len, JavaThread *thread))
   204   JRT_BLOCK;
   205 #ifndef PRODUCT
   206   SharedRuntime::_new_array_ctr++;            // new array requires GC
   207 #endif
   208   assert(check_compiled_frame(thread), "incorrect caller");
   210   // Scavenge and allocate an instance.
   211   oop result;
   213   if (Klass::cast(array_type)->oop_is_typeArray()) {
   214     // The oopFactory likes to work with the element type.
   215     // (We could bypass the oopFactory, since it doesn't add much value.)
   216     BasicType elem_type = typeArrayKlass::cast(array_type)->element_type();
   217     result = oopFactory::new_typeArray(elem_type, len, THREAD);
   218   } else {
   219     // Although the oopFactory likes to work with the elem_type,
   220     // the compiler prefers the array_type, since it must already have
   221     // that latter value in hand for the fast path.
   222     klassOopDesc* elem_type = objArrayKlass::cast(array_type)->element_klass();
   223     result = oopFactory::new_objArray(elem_type, len, THREAD);
   224   }
   226   // Pass oops back through thread local storage.  Our apparent type to Java
   227   // is that we return an oop, but we can block on exit from this routine and
   228   // a GC can trash the oop in C's return register.  The generated stub will
   229   // fetch the oop from TLS after any possible GC.
   230   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   231   thread->set_vm_result(result);
   232   JRT_BLOCK_END;
   234   if (GraphKit::use_ReduceInitialCardMarks()) {
   235     // do them now so we don't have to do them on the fast path
   236     do_eager_card_mark(thread);
   237   }
   238 JRT_END
   240 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
   242 // multianewarray for 2 dimensions
   243 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(klassOopDesc* elem_type, int len1, int len2, JavaThread *thread))
   244 #ifndef PRODUCT
   245   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
   246 #endif
   247   assert(check_compiled_frame(thread), "incorrect caller");
   248   assert(oop(elem_type)->is_klass(), "not a class");
   249   jint dims[2];
   250   dims[0] = len1;
   251   dims[1] = len2;
   252   oop obj = arrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
   253   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   254   thread->set_vm_result(obj);
   255 JRT_END
   257 // multianewarray for 3 dimensions
   258 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(klassOopDesc* elem_type, int len1, int len2, int len3, JavaThread *thread))
   259 #ifndef PRODUCT
   260   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
   261 #endif
   262   assert(check_compiled_frame(thread), "incorrect caller");
   263   assert(oop(elem_type)->is_klass(), "not a class");
   264   jint dims[3];
   265   dims[0] = len1;
   266   dims[1] = len2;
   267   dims[2] = len3;
   268   oop obj = arrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
   269   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   270   thread->set_vm_result(obj);
   271 JRT_END
   273 // multianewarray for 4 dimensions
   274 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(klassOopDesc* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
   275 #ifndef PRODUCT
   276   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
   277 #endif
   278   assert(check_compiled_frame(thread), "incorrect caller");
   279   assert(oop(elem_type)->is_klass(), "not a class");
   280   jint dims[4];
   281   dims[0] = len1;
   282   dims[1] = len2;
   283   dims[2] = len3;
   284   dims[3] = len4;
   285   oop obj = arrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
   286   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   287   thread->set_vm_result(obj);
   288 JRT_END
   290 // multianewarray for 5 dimensions
   291 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(klassOopDesc* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
   292 #ifndef PRODUCT
   293   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
   294 #endif
   295   assert(check_compiled_frame(thread), "incorrect caller");
   296   assert(oop(elem_type)->is_klass(), "not a class");
   297   jint dims[5];
   298   dims[0] = len1;
   299   dims[1] = len2;
   300   dims[2] = len3;
   301   dims[3] = len4;
   302   dims[4] = len5;
   303   oop obj = arrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
   304   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   305   thread->set_vm_result(obj);
   306 JRT_END
   308 const TypeFunc *OptoRuntime::new_instance_Type() {
   309   // create input type (domain)
   310   const Type **fields = TypeTuple::fields(1);
   311   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
   312   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
   314   // create result type (range)
   315   fields = TypeTuple::fields(1);
   316   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   318   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   320   return TypeFunc::make(domain, range);
   321 }
   324 const TypeFunc *OptoRuntime::athrow_Type() {
   325   // create input type (domain)
   326   const Type **fields = TypeTuple::fields(1);
   327   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
   328   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
   330   // create result type (range)
   331   fields = TypeTuple::fields(0);
   333   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
   335   return TypeFunc::make(domain, range);
   336 }
   339 const TypeFunc *OptoRuntime::new_array_Type() {
   340   // create input type (domain)
   341   const Type **fields = TypeTuple::fields(2);
   342   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
   343   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
   344   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   346   // create result type (range)
   347   fields = TypeTuple::fields(1);
   348   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   350   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   352   return TypeFunc::make(domain, range);
   353 }
   355 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
   356   // create input type (domain)
   357   const int nargs = ndim + 1;
   358   const Type **fields = TypeTuple::fields(nargs);
   359   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
   360   for( int i = 1; i < nargs; i++ )
   361     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
   362   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
   364   // create result type (range)
   365   fields = TypeTuple::fields(1);
   366   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   367   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   369   return TypeFunc::make(domain, range);
   370 }
   372 const TypeFunc *OptoRuntime::multianewarray2_Type() {
   373   return multianewarray_Type(2);
   374 }
   376 const TypeFunc *OptoRuntime::multianewarray3_Type() {
   377   return multianewarray_Type(3);
   378 }
   380 const TypeFunc *OptoRuntime::multianewarray4_Type() {
   381   return multianewarray_Type(4);
   382 }
   384 const TypeFunc *OptoRuntime::multianewarray5_Type() {
   385   return multianewarray_Type(5);
   386 }
   388 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
   389   // create input type (domain)
   390   const Type **fields = TypeTuple::fields(1);
   391   // symbolOop name of class to be loaded
   392   fields[TypeFunc::Parms+0] = TypeInt::INT;
   393   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
   395   // create result type (range)
   396   fields = TypeTuple::fields(0);
   397   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
   399   return TypeFunc::make(domain, range);
   400 }
   402 # ifdef ENABLE_ZAP_DEAD_LOCALS
   403 // Type used for stub generation for zap_dead_locals.
   404 // No inputs or outputs
   405 const TypeFunc *OptoRuntime::zap_dead_locals_Type() {
   406   // create input type (domain)
   407   const Type **fields = TypeTuple::fields(0);
   408   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms,fields);
   410   // create result type (range)
   411   fields = TypeTuple::fields(0);
   412   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms,fields);
   414   return TypeFunc::make(domain,range);
   415 }
   416 # endif
   419 //-----------------------------------------------------------------------------
   420 // Monitor Handling
   421 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
   422   // create input type (domain)
   423   const Type **fields = TypeTuple::fields(2);
   424   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
   425   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
   426   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
   428   // create result type (range)
   429   fields = TypeTuple::fields(0);
   431   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
   433   return TypeFunc::make(domain,range);
   434 }
   437 //-----------------------------------------------------------------------------
   438 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
   439   // create input type (domain)
   440   const Type **fields = TypeTuple::fields(2);
   441   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
   442   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
   443   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
   445   // create result type (range)
   446   fields = TypeTuple::fields(0);
   448   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
   450   return TypeFunc::make(domain,range);
   451 }
   453 const TypeFunc* OptoRuntime::flush_windows_Type() {
   454   // create input type (domain)
   455   const Type** fields = TypeTuple::fields(1);
   456   fields[TypeFunc::Parms+0] = NULL; // void
   457   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
   459   // create result type
   460   fields = TypeTuple::fields(1);
   461   fields[TypeFunc::Parms+0] = NULL; // void
   462   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   464   return TypeFunc::make(domain, range);
   465 }
   467 const TypeFunc* OptoRuntime::l2f_Type() {
   468   // create input type (domain)
   469   const Type **fields = TypeTuple::fields(2);
   470   fields[TypeFunc::Parms+0] = TypeLong::LONG;
   471   fields[TypeFunc::Parms+1] = Type::HALF;
   472   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   474   // create result type (range)
   475   fields = TypeTuple::fields(1);
   476   fields[TypeFunc::Parms+0] = Type::FLOAT;
   477   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   479   return TypeFunc::make(domain, range);
   480 }
   482 const TypeFunc* OptoRuntime::modf_Type() {
   483   const Type **fields = TypeTuple::fields(2);
   484   fields[TypeFunc::Parms+0] = Type::FLOAT;
   485   fields[TypeFunc::Parms+1] = Type::FLOAT;
   486   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   488   // create result type (range)
   489   fields = TypeTuple::fields(1);
   490   fields[TypeFunc::Parms+0] = Type::FLOAT;
   492   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   494   return TypeFunc::make(domain, range);
   495 }
   497 const TypeFunc *OptoRuntime::Math_D_D_Type() {
   498   // create input type (domain)
   499   const Type **fields = TypeTuple::fields(2);
   500   // symbolOop name of class to be loaded
   501   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   502   fields[TypeFunc::Parms+1] = Type::HALF;
   503   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   505   // create result type (range)
   506   fields = TypeTuple::fields(2);
   507   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   508   fields[TypeFunc::Parms+1] = Type::HALF;
   509   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
   511   return TypeFunc::make(domain, range);
   512 }
   514 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
   515   const Type **fields = TypeTuple::fields(4);
   516   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   517   fields[TypeFunc::Parms+1] = Type::HALF;
   518   fields[TypeFunc::Parms+2] = Type::DOUBLE;
   519   fields[TypeFunc::Parms+3] = Type::HALF;
   520   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
   522   // create result type (range)
   523   fields = TypeTuple::fields(2);
   524   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   525   fields[TypeFunc::Parms+1] = Type::HALF;
   526   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
   528   return TypeFunc::make(domain, range);
   529 }
   531 //-------------- currentTimeMillis
   533 const TypeFunc* OptoRuntime::current_time_millis_Type() {
   534   // create input type (domain)
   535   const Type **fields = TypeTuple::fields(0);
   536   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
   538   // create result type (range)
   539   fields = TypeTuple::fields(2);
   540   fields[TypeFunc::Parms+0] = TypeLong::LONG;
   541   fields[TypeFunc::Parms+1] = Type::HALF;
   542   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
   544   return TypeFunc::make(domain, range);
   545 }
   547 // arraycopy stub variations:
   548 enum ArrayCopyType {
   549   ac_fast,                      // void(ptr, ptr, size_t)
   550   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
   551   ac_slow,                      // void(ptr, int, ptr, int, int)
   552   ac_generic                    //  int(ptr, int, ptr, int, int)
   553 };
   555 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
   556   // create input type (domain)
   557   int num_args      = (act == ac_fast ? 3 : 5);
   558   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
   559   int argcnt = num_args;
   560   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
   561   const Type** fields = TypeTuple::fields(argcnt);
   562   int argp = TypeFunc::Parms;
   563   fields[argp++] = TypePtr::NOTNULL;    // src
   564   if (num_size_args == 0) {
   565     fields[argp++] = TypeInt::INT;      // src_pos
   566   }
   567   fields[argp++] = TypePtr::NOTNULL;    // dest
   568   if (num_size_args == 0) {
   569     fields[argp++] = TypeInt::INT;      // dest_pos
   570     fields[argp++] = TypeInt::INT;      // length
   571   }
   572   while (num_size_args-- > 0) {
   573     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
   574     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
   575   }
   576   if (act == ac_checkcast) {
   577     fields[argp++] = TypePtr::NOTNULL;  // super_klass
   578   }
   579   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
   580   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   582   // create result type if needed
   583   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
   584   fields = TypeTuple::fields(1);
   585   if (retcnt == 0)
   586     fields[TypeFunc::Parms+0] = NULL; // void
   587   else
   588     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
   589   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
   590   return TypeFunc::make(domain, range);
   591 }
   593 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
   594   // This signature is simple:  Two base pointers and a size_t.
   595   return make_arraycopy_Type(ac_fast);
   596 }
   598 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
   599   // An extension of fast_arraycopy_Type which adds type checking.
   600   return make_arraycopy_Type(ac_checkcast);
   601 }
   603 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
   604   // This signature is exactly the same as System.arraycopy.
   605   // There are no intptr_t (int/long) arguments.
   606   return make_arraycopy_Type(ac_slow);
   607 }
   609 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
   610   // This signature is like System.arraycopy, except that it returns status.
   611   return make_arraycopy_Type(ac_generic);
   612 }
   615 //------------- Interpreter state access for on stack replacement
   616 const TypeFunc* OptoRuntime::osr_end_Type() {
   617   // create input type (domain)
   618   const Type **fields = TypeTuple::fields(1);
   619   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
   620   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
   622   // create result type
   623   fields = TypeTuple::fields(1);
   624   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
   625   fields[TypeFunc::Parms+0] = NULL; // void
   626   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   627   return TypeFunc::make(domain, range);
   628 }
   630 //-------------- methodData update helpers
   632 const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
   633   // create input type (domain)
   634   const Type **fields = TypeTuple::fields(2);
   635   fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL;    // methodData pointer
   636   fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM;    // receiver oop
   637   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   639   // create result type
   640   fields = TypeTuple::fields(1);
   641   fields[TypeFunc::Parms+0] = NULL; // void
   642   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   643   return TypeFunc::make(domain,range);
   644 }
   646 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
   647   if (receiver == NULL) return;
   648   klassOop receiver_klass = receiver->klass();
   650   intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
   651   int empty_row = -1;           // free row, if any is encountered
   653   // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
   654   for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
   655     // if (vc->receiver(row) == receiver_klass)
   656     int receiver_off = ReceiverTypeData::receiver_cell_index(row);
   657     intptr_t row_recv = *(mdp + receiver_off);
   658     if (row_recv == (intptr_t) receiver_klass) {
   659       // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
   660       int count_off = ReceiverTypeData::receiver_count_cell_index(row);
   661       *(mdp + count_off) += DataLayout::counter_increment;
   662       return;
   663     } else if (row_recv == 0) {
   664       // else if (vc->receiver(row) == NULL)
   665       empty_row = (int) row;
   666     }
   667   }
   669   if (empty_row != -1) {
   670     int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
   671     // vc->set_receiver(empty_row, receiver_klass);
   672     *(mdp + receiver_off) = (intptr_t) receiver_klass;
   673     // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
   674     int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
   675     *(mdp + count_off) = DataLayout::counter_increment;
   676   }
   677 JRT_END
   679 //-----------------------------------------------------------------------------
   680 // implicit exception support.
   682 static void report_null_exception_in_code_cache(address exception_pc) {
   683   ResourceMark rm;
   684   CodeBlob* n = CodeCache::find_blob(exception_pc);
   685   if (n != NULL) {
   686     tty->print_cr("#");
   687     tty->print_cr("# HotSpot Runtime Error, null exception in generated code");
   688     tty->print_cr("#");
   689     tty->print_cr("# pc where exception happened = " INTPTR_FORMAT, exception_pc);
   691     if (n->is_nmethod()) {
   692       methodOop method = ((nmethod*)n)->method();
   693       tty->print_cr("# Method where it happened %s.%s ", Klass::cast(method->method_holder())->name()->as_C_string(), method->name()->as_C_string());
   694       tty->print_cr("#");
   695       if (ShowMessageBoxOnError && UpdateHotSpotCompilerFileOnError) {
   696         const char* title    = "HotSpot Runtime Error";
   697         const char* question = "Do you want to exclude compilation of this method in future runs?";
   698         if (os::message_box(title, question)) {
   699           CompilerOracle::append_comment_to_file("");
   700           CompilerOracle::append_comment_to_file("Null exception in compiled code resulted in the following exclude");
   701           CompilerOracle::append_comment_to_file("");
   702           CompilerOracle::append_exclude_to_file(method);
   703           tty->print_cr("#");
   704           tty->print_cr("# %s has been updated to exclude the specified method", CompileCommandFile);
   705           tty->print_cr("#");
   706         }
   707       }
   708       fatal("Implicit null exception happened in compiled method");
   709     } else {
   710       n->print();
   711       fatal("Implicit null exception happened in generated stub");
   712     }
   713   }
   714   fatal("Implicit null exception at wrong place");
   715 }
   718 //-------------------------------------------------------------------------------------
   719 // register policy
   721 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
   722   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
   723   switch (register_save_policy[reg]) {
   724     case 'C': return false; //SOC
   725     case 'E': return true ; //SOE
   726     case 'N': return false; //NS
   727     case 'A': return false; //AS
   728   }
   729   ShouldNotReachHere();
   730   return false;
   731 }
   733 //-----------------------------------------------------------------------
   734 // Exceptions
   735 //
   737 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) PRODUCT_RETURN;
   739 // The method is an entry that is always called by a C++ method not
   740 // directly from compiled code. Compiled code will call the C++ method following.
   741 // We can't allow async exception to be installed during  exception processing.
   742 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
   744   // Do not confuse exception_oop with pending_exception. The exception_oop
   745   // is only used to pass arguments into the method. Not for general
   746   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
   747   // the runtime stubs checks this on exit.
   748   assert(thread->exception_oop() != NULL, "exception oop is found");
   749   address handler_address = NULL;
   751   Handle exception(thread, thread->exception_oop());
   753   if (TraceExceptions) {
   754     trace_exception(exception(), thread->exception_pc(), "");
   755   }
   756   // for AbortVMOnException flag
   757   NOT_PRODUCT(Exceptions::debug_check_abort(exception));
   759   #ifdef ASSERT
   760     if (!(exception->is_a(SystemDictionary::throwable_klass()))) {
   761       // should throw an exception here
   762       ShouldNotReachHere();
   763     }
   764   #endif
   767   // new exception handling: this method is entered only from adapters
   768   // exceptions from compiled java methods are handled in compiled code
   769   // using rethrow node
   771   address pc = thread->exception_pc();
   772   nm = CodeCache::find_nmethod(pc);
   773   assert(nm != NULL, "No NMethod found");
   774   if (nm->is_native_method()) {
   775     fatal("Native mathod should not have path to exception handling");
   776   } else {
   777     // we are switching to old paradigm: search for exception handler in caller_frame
   778     // instead in exception handler of caller_frame.sender()
   780     if (JvmtiExport::can_post_exceptions()) {
   781       // "Full-speed catching" is not necessary here,
   782       // since we're notifying the VM on every catch.
   783       // Force deoptimization and the rest of the lookup
   784       // will be fine.
   785       deoptimize_caller_frame(thread, true);
   786     }
   788     // Check the stack guard pages.  If enabled, look for handler in this frame;
   789     // otherwise, forcibly unwind the frame.
   790     //
   791     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
   792     bool force_unwind = !thread->reguard_stack();
   793     bool deopting = false;
   794     if (nm->is_deopt_pc(pc)) {
   795       deopting = true;
   796       RegisterMap map(thread, false);
   797       frame deoptee = thread->last_frame().sender(&map);
   798       assert(deoptee.is_deoptimized_frame(), "must be deopted");
   799       // Adjust the pc back to the original throwing pc
   800       pc = deoptee.pc();
   801     }
   803     // If we are forcing an unwind because of stack overflow then deopt is
   804     // irrelevant sice we are throwing the frame away anyway.
   806     if (deopting && !force_unwind) {
   807       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
   808     } else {
   810       handler_address =
   811         force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
   813       if (handler_address == NULL) {
   814         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true);
   815         assert (handler_address != NULL, "must have compiled handler");
   816         // Update the exception cache only when the unwind was not forced.
   817         if (!force_unwind) {
   818           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
   819         }
   820       } else {
   821         assert(handler_address == SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true), "Must be the same");
   822       }
   823     }
   825     thread->set_exception_pc(pc);
   826     thread->set_exception_handler_pc(handler_address);
   827     thread->set_exception_stack_size(0);
   828   }
   830   // Restore correct return pc.  Was saved above.
   831   thread->set_exception_oop(exception());
   832   return handler_address;
   834 JRT_END
   836 // We are entering here from exception_blob
   837 // If there is a compiled exception handler in this method, we will continue there;
   838 // otherwise we will unwind the stack and continue at the caller of top frame method
   839 // Note we enter without the usual JRT wrapper. We will call a helper routine that
   840 // will do the normal VM entry. We do it this way so that we can see if the nmethod
   841 // we looked up the handler for has been deoptimized in the meantime. If it has been
   842 // we must not use the handler and instread return the deopt blob.
   843 address OptoRuntime::handle_exception_C(JavaThread* thread) {
   844 //
   845 // We are in Java not VM and in debug mode we have a NoHandleMark
   846 //
   847 #ifndef PRODUCT
   848   SharedRuntime::_find_handler_ctr++;          // find exception handler
   849 #endif
   850   debug_only(NoHandleMark __hm;)
   851   nmethod* nm = NULL;
   852   address handler_address = NULL;
   853   {
   854     // Enter the VM
   856     ResetNoHandleMark rnhm;
   857     handler_address = handle_exception_C_helper(thread, nm);
   858   }
   860   // Back in java: Use no oops, DON'T safepoint
   862   // Now check to see if the handler we are returning is in a now
   863   // deoptimized frame
   865   if (nm != NULL) {
   866     RegisterMap map(thread, false);
   867     frame caller = thread->last_frame().sender(&map);
   868 #ifdef ASSERT
   869     assert(caller.is_compiled_frame(), "must be");
   870 #endif // ASSERT
   871     if (caller.is_deoptimized_frame()) {
   872       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
   873     }
   874   }
   875   return handler_address;
   876 }
   878 //------------------------------rethrow----------------------------------------
   879 // We get here after compiled code has executed a 'RethrowNode'.  The callee
   880 // is either throwing or rethrowing an exception.  The callee-save registers
   881 // have been restored, synchronized objects have been unlocked and the callee
   882 // stack frame has been removed.  The return address was passed in.
   883 // Exception oop is passed as the 1st argument.  This routine is then called
   884 // from the stub.  On exit, we know where to jump in the caller's code.
   885 // After this C code exits, the stub will pop his frame and end in a jump
   886 // (instead of a return).  We enter the caller's default handler.
   887 //
   888 // This must be JRT_LEAF:
   889 //     - caller will not change its state as we cannot block on exit,
   890 //       therefore raw_exception_handler_for_return_address is all it takes
   891 //       to handle deoptimized blobs
   892 //
   893 // However, there needs to be a safepoint check in the middle!  So compiled
   894 // safepoints are completely watertight.
   895 //
   896 // Thus, it cannot be a leaf since it contains the No_GC_Verifier.
   897 //
   898 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
   899 //
   900 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
   901 #ifndef PRODUCT
   902   SharedRuntime::_rethrow_ctr++;               // count rethrows
   903 #endif
   904   assert (exception != NULL, "should have thrown a NULLPointerException");
   905 #ifdef ASSERT
   906   if (!(exception->is_a(SystemDictionary::throwable_klass()))) {
   907     // should throw an exception here
   908     ShouldNotReachHere();
   909   }
   910 #endif
   912   thread->set_vm_result(exception);
   913   // Frame not compiled (handles deoptimization blob)
   914   return SharedRuntime::raw_exception_handler_for_return_address(ret_pc);
   915 }
   918 const TypeFunc *OptoRuntime::rethrow_Type() {
   919   // create input type (domain)
   920   const Type **fields = TypeTuple::fields(1);
   921   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
   922   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
   924   // create result type (range)
   925   fields = TypeTuple::fields(1);
   926   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
   927   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   929   return TypeFunc::make(domain, range);
   930 }
   933 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
   934   // Deoptimize frame
   935   if (doit) {
   936     // Called from within the owner thread, so no need for safepoint
   937     RegisterMap reg_map(thread);
   938     frame stub_frame = thread->last_frame();
   939     assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
   940     frame caller_frame = stub_frame.sender(&reg_map);
   942     VM_DeoptimizeFrame deopt(thread, caller_frame.id());
   943     VMThread::execute(&deopt);
   944   }
   945 }
   948 const TypeFunc *OptoRuntime::register_finalizer_Type() {
   949   // create input type (domain)
   950   const Type **fields = TypeTuple::fields(1);
   951   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
   952   // // The JavaThread* is passed to each routine as the last argument
   953   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
   954   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
   956   // create result type (range)
   957   fields = TypeTuple::fields(0);
   959   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
   961   return TypeFunc::make(domain,range);
   962 }
   965 //-----------------------------------------------------------------------------
   966 // Dtrace support.  entry and exit probes have the same signature
   967 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
   968   // create input type (domain)
   969   const Type **fields = TypeTuple::fields(2);
   970   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
   971   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // methodOop;    Method we are entering
   972   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
   974   // create result type (range)
   975   fields = TypeTuple::fields(0);
   977   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
   979   return TypeFunc::make(domain,range);
   980 }
   982 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
   983   // create input type (domain)
   984   const Type **fields = TypeTuple::fields(2);
   985   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
   986   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
   988   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
   990   // create result type (range)
   991   fields = TypeTuple::fields(0);
   993   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
   995   return TypeFunc::make(domain,range);
   996 }
   999 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
  1000   assert(obj->is_oop(), "must be a valid oop");
  1001   assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
  1002   instanceKlass::register_finalizer(instanceOop(obj), CHECK);
  1003 JRT_END
  1005 //-----------------------------------------------------------------------------
  1007 NamedCounter * volatile OptoRuntime::_named_counters = NULL;
  1009 //
  1010 // dump the collected NamedCounters.
  1011 //
  1012 void OptoRuntime::print_named_counters() {
  1013   int total_lock_count = 0;
  1014   int eliminated_lock_count = 0;
  1016   NamedCounter* c = _named_counters;
  1017   while (c) {
  1018     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
  1019       int count = c->count();
  1020       if (count > 0) {
  1021         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
  1022         if (Verbose) {
  1023           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
  1025         total_lock_count += count;
  1026         if (eliminated) {
  1027           eliminated_lock_count += count;
  1030     } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
  1031       BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
  1032       if (blc->nonzero()) {
  1033         tty->print_cr("%s", c->name());
  1034         blc->print_on(tty);
  1037     c = c->next();
  1039   if (total_lock_count > 0) {
  1040     tty->print_cr("dynamic locks: %d", total_lock_count);
  1041     if (eliminated_lock_count) {
  1042       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
  1043                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
  1048 //
  1049 //  Allocate a new NamedCounter.  The JVMState is used to generate the
  1050 //  name which consists of method@line for the inlining tree.
  1051 //
  1053 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
  1054   int max_depth = youngest_jvms->depth();
  1056   // Visit scopes from youngest to oldest.
  1057   bool first = true;
  1058   stringStream st;
  1059   for (int depth = max_depth; depth >= 1; depth--) {
  1060     JVMState* jvms = youngest_jvms->of_depth(depth);
  1061     ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
  1062     if (!first) {
  1063       st.print(" ");
  1064     } else {
  1065       first = false;
  1067     int bci = jvms->bci();
  1068     if (bci < 0) bci = 0;
  1069     st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci);
  1070     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
  1072   NamedCounter* c;
  1073   if (tag == NamedCounter::BiasedLockingCounter) {
  1074     c = new BiasedLockingNamedCounter(strdup(st.as_string()));
  1075   } else {
  1076     c = new NamedCounter(strdup(st.as_string()), tag);
  1079   // atomically add the new counter to the head of the list.  We only
  1080   // add counters so this is safe.
  1081   NamedCounter* head;
  1082   do {
  1083     head = _named_counters;
  1084     c->set_next(head);
  1085   } while (Atomic::cmpxchg_ptr(c, &_named_counters, head) != head);
  1086   return c;
  1089 //-----------------------------------------------------------------------------
  1090 // Non-product code
  1091 #ifndef PRODUCT
  1093 int trace_exception_counter = 0;
  1094 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) {
  1095   ttyLocker ttyl;
  1096   trace_exception_counter++;
  1097   tty->print("%d [Exception (%s): ", trace_exception_counter, msg);
  1098   exception_oop->print_value();
  1099   tty->print(" in ");
  1100   CodeBlob* blob = CodeCache::find_blob(exception_pc);
  1101   if (blob->is_nmethod()) {
  1102     ((nmethod*)blob)->method()->print_value();
  1103   } else if (blob->is_runtime_stub()) {
  1104     tty->print("<runtime-stub>");
  1105   } else {
  1106     tty->print("<unknown>");
  1108   tty->print(" at " INTPTR_FORMAT,  exception_pc);
  1109   tty->print_cr("]");
  1112 #endif  // PRODUCT
  1115 # ifdef ENABLE_ZAP_DEAD_LOCALS
  1116 // Called from call sites in compiled code with oop maps (actually safepoints)
  1117 // Zaps dead locals in first java frame.
  1118 // Is entry because may need to lock to generate oop maps
  1119 // Currently, only used for compiler frames, but someday may be used
  1120 // for interpreter frames, too.
  1122 int OptoRuntime::ZapDeadCompiledLocals_count = 0;
  1124 // avoid pointers to member funcs with these helpers
  1125 static bool is_java_frame(  frame* f) { return f->is_java_frame();   }
  1126 static bool is_native_frame(frame* f) { return f->is_native_frame(); }
  1129 void OptoRuntime::zap_dead_java_or_native_locals(JavaThread* thread,
  1130                                                 bool (*is_this_the_right_frame_to_zap)(frame*)) {
  1131   assert(JavaThread::current() == thread, "is this needed?");
  1133   if ( !ZapDeadCompiledLocals )  return;
  1135   bool skip = false;
  1137        if ( ZapDeadCompiledLocalsFirst  ==  0  ) ; // nothing special
  1138   else if ( ZapDeadCompiledLocalsFirst  >  ZapDeadCompiledLocals_count )  skip = true;
  1139   else if ( ZapDeadCompiledLocalsFirst  == ZapDeadCompiledLocals_count )
  1140     warning("starting zapping after skipping");
  1142        if ( ZapDeadCompiledLocalsLast  ==  -1  ) ; // nothing special
  1143   else if ( ZapDeadCompiledLocalsLast  <   ZapDeadCompiledLocals_count )  skip = true;
  1144   else if ( ZapDeadCompiledLocalsLast  ==  ZapDeadCompiledLocals_count )
  1145     warning("about to zap last zap");
  1147   ++ZapDeadCompiledLocals_count; // counts skipped zaps, too
  1149   if ( skip )  return;
  1151   // find java frame and zap it
  1153   for (StackFrameStream sfs(thread);  !sfs.is_done();  sfs.next()) {
  1154     if (is_this_the_right_frame_to_zap(sfs.current()) ) {
  1155       sfs.current()->zap_dead_locals(thread, sfs.register_map());
  1156       return;
  1159   warning("no frame found to zap in zap_dead_Java_locals_C");
  1162 JRT_LEAF(void, OptoRuntime::zap_dead_Java_locals_C(JavaThread* thread))
  1163   zap_dead_java_or_native_locals(thread, is_java_frame);
  1164 JRT_END
  1166 // The following does not work because for one thing, the
  1167 // thread state is wrong; it expects java, but it is native.
  1168 // Also, the invarients in a native stub are different and
  1169 // I'm not sure it is safe to have a MachCalRuntimeDirectNode
  1170 // in there.
  1171 // So for now, we do not zap in native stubs.
  1173 JRT_LEAF(void, OptoRuntime::zap_dead_native_locals_C(JavaThread* thread))
  1174   zap_dead_java_or_native_locals(thread, is_native_frame);
  1175 JRT_END
  1177 # endif

mercurial