src/share/vm/opto/memnode.cpp

Sat, 01 Dec 2007 00:00:00 +0000

author
duke
date
Sat, 01 Dec 2007 00:00:00 +0000
changeset 435
a61af66fc99e
child 452
ff5961f4c095
permissions
-rw-r--r--

Initial load

     1 /*
     2  * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // Portions of code courtesy of Clifford Click
    27 // Optimization - Graph Style
    29 #include "incls/_precompiled.incl"
    30 #include "incls/_memnode.cpp.incl"
    32 //=============================================================================
    33 uint MemNode::size_of() const { return sizeof(*this); }
    35 const TypePtr *MemNode::adr_type() const {
    36   Node* adr = in(Address);
    37   const TypePtr* cross_check = NULL;
    38   DEBUG_ONLY(cross_check = _adr_type);
    39   return calculate_adr_type(adr->bottom_type(), cross_check);
    40 }
    42 #ifndef PRODUCT
    43 void MemNode::dump_spec(outputStream *st) const {
    44   if (in(Address) == NULL)  return; // node is dead
    45 #ifndef ASSERT
    46   // fake the missing field
    47   const TypePtr* _adr_type = NULL;
    48   if (in(Address) != NULL)
    49     _adr_type = in(Address)->bottom_type()->isa_ptr();
    50 #endif
    51   dump_adr_type(this, _adr_type, st);
    53   Compile* C = Compile::current();
    54   if( C->alias_type(_adr_type)->is_volatile() )
    55     st->print(" Volatile!");
    56 }
    58 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
    59   st->print(" @");
    60   if (adr_type == NULL) {
    61     st->print("NULL");
    62   } else {
    63     adr_type->dump_on(st);
    64     Compile* C = Compile::current();
    65     Compile::AliasType* atp = NULL;
    66     if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
    67     if (atp == NULL)
    68       st->print(", idx=?\?;");
    69     else if (atp->index() == Compile::AliasIdxBot)
    70       st->print(", idx=Bot;");
    71     else if (atp->index() == Compile::AliasIdxTop)
    72       st->print(", idx=Top;");
    73     else if (atp->index() == Compile::AliasIdxRaw)
    74       st->print(", idx=Raw;");
    75     else {
    76       ciField* field = atp->field();
    77       if (field) {
    78         st->print(", name=");
    79         field->print_name_on(st);
    80       }
    81       st->print(", idx=%d;", atp->index());
    82     }
    83   }
    84 }
    86 extern void print_alias_types();
    88 #endif
    90 //--------------------------Ideal_common---------------------------------------
    91 // Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
    92 // Unhook non-raw memories from complete (macro-expanded) initializations.
    93 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
    94   // If our control input is a dead region, kill all below the region
    95   Node *ctl = in(MemNode::Control);
    96   if (ctl && remove_dead_region(phase, can_reshape))
    97     return this;
    99   // Ignore if memory is dead, or self-loop
   100   Node *mem = in(MemNode::Memory);
   101   if( phase->type( mem ) == Type::TOP ) return NodeSentinel; // caller will return NULL
   102   assert( mem != this, "dead loop in MemNode::Ideal" );
   104   Node *address = in(MemNode::Address);
   105   const Type *t_adr = phase->type( address );
   106   if( t_adr == Type::TOP )              return NodeSentinel; // caller will return NULL
   108   // Avoid independent memory operations
   109   Node* old_mem = mem;
   111   if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
   112     InitializeNode* init = mem->in(0)->as_Initialize();
   113     if (init->is_complete()) {  // i.e., after macro expansion
   114       const TypePtr* tp = t_adr->is_ptr();
   115       uint alias_idx = phase->C->get_alias_index(tp);
   116       // Free this slice from the init.  It was hooked, temporarily,
   117       // by GraphKit::set_output_for_allocation.
   118       if (alias_idx > Compile::AliasIdxRaw) {
   119         mem = init->memory(alias_idx);
   120         // ...but not with the raw-pointer slice.
   121       }
   122     }
   123   }
   125   if (mem->is_MergeMem()) {
   126     MergeMemNode* mmem = mem->as_MergeMem();
   127     const TypePtr *tp = t_adr->is_ptr();
   128     uint alias_idx = phase->C->get_alias_index(tp);
   129 #ifdef ASSERT
   130     {
   131       // Check that current type is consistent with the alias index used during graph construction
   132       assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
   133       const TypePtr *adr_t =  adr_type();
   134       bool consistent =  adr_t == NULL || adr_t->empty() || phase->C->must_alias(adr_t, alias_idx );
   135       // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
   136       if( !consistent && adr_t != NULL && !adr_t->empty() &&
   137              tp->isa_aryptr() &&    tp->offset() == Type::OffsetBot &&
   138           adr_t->isa_aryptr() && adr_t->offset() != Type::OffsetBot &&
   139           ( adr_t->offset() == arrayOopDesc::length_offset_in_bytes() ||
   140             adr_t->offset() == oopDesc::klass_offset_in_bytes() ||
   141             adr_t->offset() == oopDesc::mark_offset_in_bytes() ) ) {
   142         // don't assert if it is dead code.
   143         consistent = true;
   144       }
   145       if( !consistent ) {
   146         tty->print("alias_idx==%d, adr_type()==", alias_idx); if( adr_t == NULL ) { tty->print("NULL"); } else { adr_t->dump(); }
   147         tty->cr();
   148         print_alias_types();
   149         assert(consistent, "adr_type must match alias idx");
   150       }
   151     }
   152 #endif
   153     // TypeInstPtr::NOTNULL+any is an OOP with unknown offset - generally
   154     // means an array I have not precisely typed yet.  Do not do any
   155     // alias stuff with it any time soon.
   156     const TypeInstPtr *tinst = tp->isa_instptr();
   157     if( tp->base() != Type::AnyPtr &&
   158         !(tinst &&
   159           tinst->klass()->is_java_lang_Object() &&
   160           tinst->offset() == Type::OffsetBot) ) {
   161       // compress paths and change unreachable cycles to TOP
   162       // If not, we can update the input infinitely along a MergeMem cycle
   163       // Equivalent code in PhiNode::Ideal
   164       Node* m  = phase->transform(mmem);
   165       // If tranformed to a MergeMem, get the desired slice
   166       // Otherwise the returned node represents memory for every slice
   167       mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
   168       // Update input if it is progress over what we have now
   169     }
   170   }
   172   if (mem != old_mem) {
   173     set_req(MemNode::Memory, mem);
   174     return this;
   175   }
   177   // let the subclass continue analyzing...
   178   return NULL;
   179 }
   181 // Helper function for proving some simple control dominations.
   182 // Attempt to prove that control input 'dom' dominates (or equals) 'sub'.
   183 // Already assumes that 'dom' is available at 'sub', and that 'sub'
   184 // is not a constant (dominated by the method's StartNode).
   185 // Used by MemNode::find_previous_store to prove that the
   186 // control input of a memory operation predates (dominates)
   187 // an allocation it wants to look past.
   188 bool MemNode::detect_dominating_control(Node* dom, Node* sub) {
   189   if (dom == NULL)      return false;
   190   if (dom->is_Proj())   dom = dom->in(0);
   191   if (dom->is_Start())  return true; // anything inside the method
   192   if (dom->is_Root())   return true; // dom 'controls' a constant
   193   int cnt = 20;                      // detect cycle or too much effort
   194   while (sub != NULL) {              // walk 'sub' up the chain to 'dom'
   195     if (--cnt < 0)   return false;   // in a cycle or too complex
   196     if (sub == dom)  return true;
   197     if (sub->is_Start())  return false;
   198     if (sub->is_Root())   return false;
   199     Node* up = sub->in(0);
   200     if (sub == up && sub->is_Region()) {
   201       for (uint i = 1; i < sub->req(); i++) {
   202         Node* in = sub->in(i);
   203         if (in != NULL && !in->is_top() && in != sub) {
   204           up = in; break;            // take any path on the way up to 'dom'
   205         }
   206       }
   207     }
   208     if (sub == up)  return false;    // some kind of tight cycle
   209     sub = up;
   210   }
   211   return false;
   212 }
   214 //---------------------detect_ptr_independence---------------------------------
   215 // Used by MemNode::find_previous_store to prove that two base
   216 // pointers are never equal.
   217 // The pointers are accompanied by their associated allocations,
   218 // if any, which have been previously discovered by the caller.
   219 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
   220                                       Node* p2, AllocateNode* a2,
   221                                       PhaseTransform* phase) {
   222   // Attempt to prove that these two pointers cannot be aliased.
   223   // They may both manifestly be allocations, and they should differ.
   224   // Or, if they are not both allocations, they can be distinct constants.
   225   // Otherwise, one is an allocation and the other a pre-existing value.
   226   if (a1 == NULL && a2 == NULL) {           // neither an allocation
   227     return (p1 != p2) && p1->is_Con() && p2->is_Con();
   228   } else if (a1 != NULL && a2 != NULL) {    // both allocations
   229     return (a1 != a2);
   230   } else if (a1 != NULL) {                  // one allocation a1
   231     // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
   232     return detect_dominating_control(p2->in(0), a1->in(0));
   233   } else { //(a2 != NULL)                   // one allocation a2
   234     return detect_dominating_control(p1->in(0), a2->in(0));
   235   }
   236   return false;
   237 }
   240 // The logic for reordering loads and stores uses four steps:
   241 // (a) Walk carefully past stores and initializations which we
   242 //     can prove are independent of this load.
   243 // (b) Observe that the next memory state makes an exact match
   244 //     with self (load or store), and locate the relevant store.
   245 // (c) Ensure that, if we were to wire self directly to the store,
   246 //     the optimizer would fold it up somehow.
   247 // (d) Do the rewiring, and return, depending on some other part of
   248 //     the optimizer to fold up the load.
   249 // This routine handles steps (a) and (b).  Steps (c) and (d) are
   250 // specific to loads and stores, so they are handled by the callers.
   251 // (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
   252 //
   253 Node* MemNode::find_previous_store(PhaseTransform* phase) {
   254   Node*         ctrl   = in(MemNode::Control);
   255   Node*         adr    = in(MemNode::Address);
   256   intptr_t      offset = 0;
   257   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
   258   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
   260   if (offset == Type::OffsetBot)
   261     return NULL;            // cannot unalias unless there are precise offsets
   263   intptr_t size_in_bytes = memory_size();
   265   Node* mem = in(MemNode::Memory);   // start searching here...
   267   int cnt = 50;             // Cycle limiter
   268   for (;;) {                // While we can dance past unrelated stores...
   269     if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
   271     if (mem->is_Store()) {
   272       Node* st_adr = mem->in(MemNode::Address);
   273       intptr_t st_offset = 0;
   274       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
   275       if (st_base == NULL)
   276         break;              // inscrutable pointer
   277       if (st_offset != offset && st_offset != Type::OffsetBot) {
   278         const int MAX_STORE = BytesPerLong;
   279         if (st_offset >= offset + size_in_bytes ||
   280             st_offset <= offset - MAX_STORE ||
   281             st_offset <= offset - mem->as_Store()->memory_size()) {
   282           // Success:  The offsets are provably independent.
   283           // (You may ask, why not just test st_offset != offset and be done?
   284           // The answer is that stores of different sizes can co-exist
   285           // in the same sequence of RawMem effects.  We sometimes initialize
   286           // a whole 'tile' of array elements with a single jint or jlong.)
   287           mem = mem->in(MemNode::Memory);
   288           continue;           // (a) advance through independent store memory
   289         }
   290       }
   291       if (st_base != base &&
   292           detect_ptr_independence(base, alloc,
   293                                   st_base,
   294                                   AllocateNode::Ideal_allocation(st_base, phase),
   295                                   phase)) {
   296         // Success:  The bases are provably independent.
   297         mem = mem->in(MemNode::Memory);
   298         continue;           // (a) advance through independent store memory
   299       }
   301       // (b) At this point, if the bases or offsets do not agree, we lose,
   302       // since we have not managed to prove 'this' and 'mem' independent.
   303       if (st_base == base && st_offset == offset) {
   304         return mem;         // let caller handle steps (c), (d)
   305       }
   307     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
   308       InitializeNode* st_init = mem->in(0)->as_Initialize();
   309       AllocateNode*  st_alloc = st_init->allocation();
   310       if (st_alloc == NULL)
   311         break;              // something degenerated
   312       bool known_identical = false;
   313       bool known_independent = false;
   314       if (alloc == st_alloc)
   315         known_identical = true;
   316       else if (alloc != NULL)
   317         known_independent = true;
   318       else if (ctrl != NULL &&
   319                detect_dominating_control(ctrl, st_alloc->in(0)))
   320         known_independent = true;
   322       if (known_independent) {
   323         // The bases are provably independent: Either they are
   324         // manifestly distinct allocations, or else the control
   325         // of this load dominates the store's allocation.
   326         int alias_idx = phase->C->get_alias_index(adr_type());
   327         if (alias_idx == Compile::AliasIdxRaw) {
   328           mem = st_alloc->in(TypeFunc::Memory);
   329         } else {
   330           mem = st_init->memory(alias_idx);
   331         }
   332         continue;           // (a) advance through independent store memory
   333       }
   335       // (b) at this point, if we are not looking at a store initializing
   336       // the same allocation we are loading from, we lose.
   337       if (known_identical) {
   338         // From caller, can_see_stored_value will consult find_captured_store.
   339         return mem;         // let caller handle steps (c), (d)
   340       }
   342     }
   344     // Unless there is an explicit 'continue', we must bail out here,
   345     // because 'mem' is an inscrutable memory state (e.g., a call).
   346     break;
   347   }
   349   return NULL;              // bail out
   350 }
   352 //----------------------calculate_adr_type-------------------------------------
   353 // Helper function.  Notices when the given type of address hits top or bottom.
   354 // Also, asserts a cross-check of the type against the expected address type.
   355 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
   356   if (t == Type::TOP)  return NULL; // does not touch memory any more?
   357   #ifdef PRODUCT
   358   cross_check = NULL;
   359   #else
   360   if (!VerifyAliases || is_error_reported() || Node::in_dump())  cross_check = NULL;
   361   #endif
   362   const TypePtr* tp = t->isa_ptr();
   363   if (tp == NULL) {
   364     assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
   365     return TypePtr::BOTTOM;           // touches lots of memory
   366   } else {
   367     #ifdef ASSERT
   368     // %%%% [phh] We don't check the alias index if cross_check is
   369     //            TypeRawPtr::BOTTOM.  Needs to be investigated.
   370     if (cross_check != NULL &&
   371         cross_check != TypePtr::BOTTOM &&
   372         cross_check != TypeRawPtr::BOTTOM) {
   373       // Recheck the alias index, to see if it has changed (due to a bug).
   374       Compile* C = Compile::current();
   375       assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
   376              "must stay in the original alias category");
   377       // The type of the address must be contained in the adr_type,
   378       // disregarding "null"-ness.
   379       // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
   380       const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
   381       assert(cross_check->meet(tp_notnull) == cross_check,
   382              "real address must not escape from expected memory type");
   383     }
   384     #endif
   385     return tp;
   386   }
   387 }
   389 //------------------------adr_phi_is_loop_invariant----------------------------
   390 // A helper function for Ideal_DU_postCCP to check if a Phi in a counted
   391 // loop is loop invariant. Make a quick traversal of Phi and associated
   392 // CastPP nodes, looking to see if they are a closed group within the loop.
   393 bool MemNode::adr_phi_is_loop_invariant(Node* adr_phi, Node* cast) {
   394   // The idea is that the phi-nest must boil down to only CastPP nodes
   395   // with the same data. This implies that any path into the loop already
   396   // includes such a CastPP, and so the original cast, whatever its input,
   397   // must be covered by an equivalent cast, with an earlier control input.
   398   ResourceMark rm;
   400   // The loop entry input of the phi should be the unique dominating
   401   // node for every Phi/CastPP in the loop.
   402   Unique_Node_List closure;
   403   closure.push(adr_phi->in(LoopNode::EntryControl));
   405   // Add the phi node and the cast to the worklist.
   406   Unique_Node_List worklist;
   407   worklist.push(adr_phi);
   408   if( cast != NULL ){
   409     if( !cast->is_ConstraintCast() ) return false;
   410     worklist.push(cast);
   411   }
   413   // Begin recursive walk of phi nodes.
   414   while( worklist.size() ){
   415     // Take a node off the worklist
   416     Node *n = worklist.pop();
   417     if( !closure.member(n) ){
   418       // Add it to the closure.
   419       closure.push(n);
   420       // Make a sanity check to ensure we don't waste too much time here.
   421       if( closure.size() > 20) return false;
   422       // This node is OK if:
   423       //  - it is a cast of an identical value
   424       //  - or it is a phi node (then we add its inputs to the worklist)
   425       // Otherwise, the node is not OK, and we presume the cast is not invariant
   426       if( n->is_ConstraintCast() ){
   427         worklist.push(n->in(1));
   428       } else if( n->is_Phi() ) {
   429         for( uint i = 1; i < n->req(); i++ ) {
   430           worklist.push(n->in(i));
   431         }
   432       } else {
   433         return false;
   434       }
   435     }
   436   }
   438   // Quit when the worklist is empty, and we've found no offending nodes.
   439   return true;
   440 }
   442 //------------------------------Ideal_DU_postCCP-------------------------------
   443 // Find any cast-away of null-ness and keep its control.  Null cast-aways are
   444 // going away in this pass and we need to make this memory op depend on the
   445 // gating null check.
   447 // I tried to leave the CastPP's in.  This makes the graph more accurate in
   448 // some sense; we get to keep around the knowledge that an oop is not-null
   449 // after some test.  Alas, the CastPP's interfere with GVN (some values are
   450 // the regular oop, some are the CastPP of the oop, all merge at Phi's which
   451 // cannot collapse, etc).  This cost us 10% on SpecJVM, even when I removed
   452 // some of the more trivial cases in the optimizer.  Removing more useless
   453 // Phi's started allowing Loads to illegally float above null checks.  I gave
   454 // up on this approach.  CNC 10/20/2000
   455 Node *MemNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
   456   Node *ctr = in(MemNode::Control);
   457   Node *mem = in(MemNode::Memory);
   458   Node *adr = in(MemNode::Address);
   459   Node *skipped_cast = NULL;
   460   // Need a null check?  Regular static accesses do not because they are
   461   // from constant addresses.  Array ops are gated by the range check (which
   462   // always includes a NULL check).  Just check field ops.
   463   if( !ctr ) {
   464     // Scan upwards for the highest location we can place this memory op.
   465     while( true ) {
   466       switch( adr->Opcode() ) {
   468       case Op_AddP:             // No change to NULL-ness, so peek thru AddP's
   469         adr = adr->in(AddPNode::Base);
   470         continue;
   472       case Op_CastPP:
   473         // If the CastPP is useless, just peek on through it.
   474         if( ccp->type(adr) == ccp->type(adr->in(1)) ) {
   475           // Remember the cast that we've peeked though. If we peek
   476           // through more than one, then we end up remembering the highest
   477           // one, that is, if in a loop, the one closest to the top.
   478           skipped_cast = adr;
   479           adr = adr->in(1);
   480           continue;
   481         }
   482         // CastPP is going away in this pass!  We need this memory op to be
   483         // control-dependent on the test that is guarding the CastPP.
   484         ccp->hash_delete(this);
   485         set_req(MemNode::Control, adr->in(0));
   486         ccp->hash_insert(this);
   487         return this;
   489       case Op_Phi:
   490         // Attempt to float above a Phi to some dominating point.
   491         if (adr->in(0) != NULL && adr->in(0)->is_CountedLoop()) {
   492           // If we've already peeked through a Cast (which could have set the
   493           // control), we can't float above a Phi, because the skipped Cast
   494           // may not be loop invariant.
   495           if (adr_phi_is_loop_invariant(adr, skipped_cast)) {
   496             adr = adr->in(1);
   497             continue;
   498           }
   499         }
   501         // Intentional fallthrough!
   503         // No obvious dominating point.  The mem op is pinned below the Phi
   504         // by the Phi itself.  If the Phi goes away (no true value is merged)
   505         // then the mem op can float, but not indefinitely.  It must be pinned
   506         // behind the controls leading to the Phi.
   507       case Op_CheckCastPP:
   508         // These usually stick around to change address type, however a
   509         // useless one can be elided and we still need to pick up a control edge
   510         if (adr->in(0) == NULL) {
   511           // This CheckCastPP node has NO control and is likely useless. But we
   512           // need check further up the ancestor chain for a control input to keep
   513           // the node in place. 4959717.
   514           skipped_cast = adr;
   515           adr = adr->in(1);
   516           continue;
   517         }
   518         ccp->hash_delete(this);
   519         set_req(MemNode::Control, adr->in(0));
   520         ccp->hash_insert(this);
   521         return this;
   523         // List of "safe" opcodes; those that implicitly block the memory
   524         // op below any null check.
   525       case Op_CastX2P:          // no null checks on native pointers
   526       case Op_Parm:             // 'this' pointer is not null
   527       case Op_LoadP:            // Loading from within a klass
   528       case Op_LoadKlass:        // Loading from within a klass
   529       case Op_ConP:             // Loading from a klass
   530       case Op_CreateEx:         // Sucking up the guts of an exception oop
   531       case Op_Con:              // Reading from TLS
   532       case Op_CMoveP:           // CMoveP is pinned
   533         break;                  // No progress
   535       case Op_Proj:             // Direct call to an allocation routine
   536       case Op_SCMemProj:        // Memory state from store conditional ops
   537 #ifdef ASSERT
   538         {
   539           assert(adr->as_Proj()->_con == TypeFunc::Parms, "must be return value");
   540           const Node* call = adr->in(0);
   541           if (call->is_CallStaticJava()) {
   542             const CallStaticJavaNode* call_java = call->as_CallStaticJava();
   543             assert(call_java && call_java->method() == NULL, "must be runtime call");
   544             // We further presume that this is one of
   545             // new_instance_Java, new_array_Java, or
   546             // the like, but do not assert for this.
   547           } else if (call->is_Allocate()) {
   548             // similar case to new_instance_Java, etc.
   549           } else if (!call->is_CallLeaf()) {
   550             // Projections from fetch_oop (OSR) are allowed as well.
   551             ShouldNotReachHere();
   552           }
   553         }
   554 #endif
   555         break;
   556       default:
   557         ShouldNotReachHere();
   558       }
   559       break;
   560     }
   561   }
   563   return  NULL;               // No progress
   564 }
   567 //=============================================================================
   568 uint LoadNode::size_of() const { return sizeof(*this); }
   569 uint LoadNode::cmp( const Node &n ) const
   570 { return !Type::cmp( _type, ((LoadNode&)n)._type ); }
   571 const Type *LoadNode::bottom_type() const { return _type; }
   572 uint LoadNode::ideal_reg() const {
   573   return Matcher::base2reg[_type->base()];
   574 }
   576 #ifndef PRODUCT
   577 void LoadNode::dump_spec(outputStream *st) const {
   578   MemNode::dump_spec(st);
   579   if( !Verbose && !WizardMode ) {
   580     // standard dump does this in Verbose and WizardMode
   581     st->print(" #"); _type->dump_on(st);
   582   }
   583 }
   584 #endif
   587 //----------------------------LoadNode::make-----------------------------------
   588 // Polymorphic factory method:
   589 LoadNode *LoadNode::make( Compile *C, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt ) {
   590   // sanity check the alias category against the created node type
   591   assert(!(adr_type->isa_oopptr() &&
   592            adr_type->offset() == oopDesc::klass_offset_in_bytes()),
   593          "use LoadKlassNode instead");
   594   assert(!(adr_type->isa_aryptr() &&
   595            adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
   596          "use LoadRangeNode instead");
   597   switch (bt) {
   598   case T_BOOLEAN:
   599   case T_BYTE:    return new (C, 3) LoadBNode(ctl, mem, adr, adr_type, rt->is_int()    );
   600   case T_INT:     return new (C, 3) LoadINode(ctl, mem, adr, adr_type, rt->is_int()    );
   601   case T_CHAR:    return new (C, 3) LoadCNode(ctl, mem, adr, adr_type, rt->is_int()    );
   602   case T_SHORT:   return new (C, 3) LoadSNode(ctl, mem, adr, adr_type, rt->is_int()    );
   603   case T_LONG:    return new (C, 3) LoadLNode(ctl, mem, adr, adr_type, rt->is_long()   );
   604   case T_FLOAT:   return new (C, 3) LoadFNode(ctl, mem, adr, adr_type, rt              );
   605   case T_DOUBLE:  return new (C, 3) LoadDNode(ctl, mem, adr, adr_type, rt              );
   606   case T_ADDRESS: return new (C, 3) LoadPNode(ctl, mem, adr, adr_type, rt->is_ptr()    );
   607   case T_OBJECT:  return new (C, 3) LoadPNode(ctl, mem, adr, adr_type, rt->is_oopptr());
   608   }
   609   ShouldNotReachHere();
   610   return (LoadNode*)NULL;
   611 }
   613 LoadLNode* LoadLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt) {
   614   bool require_atomic = true;
   615   return new (C, 3) LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), require_atomic);
   616 }
   621 //------------------------------hash-------------------------------------------
   622 uint LoadNode::hash() const {
   623   // unroll addition of interesting fields
   624   return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
   625 }
   627 //---------------------------can_see_stored_value------------------------------
   628 // This routine exists to make sure this set of tests is done the same
   629 // everywhere.  We need to make a coordinated change: first LoadNode::Ideal
   630 // will change the graph shape in a way which makes memory alive twice at the
   631 // same time (uses the Oracle model of aliasing), then some
   632 // LoadXNode::Identity will fold things back to the equivalence-class model
   633 // of aliasing.
   634 Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
   635   Node* ld_adr = in(MemNode::Address);
   637   // Loop around twice in the case Load -> Initialize -> Store.
   638   // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
   639   for (int trip = 0; trip <= 1; trip++) {
   641     if (st->is_Store()) {
   642       Node* st_adr = st->in(MemNode::Address);
   643       if (!phase->eqv(st_adr, ld_adr)) {
   644         // Try harder before giving up...  Match raw and non-raw pointers.
   645         intptr_t st_off = 0;
   646         AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
   647         if (alloc == NULL)       return NULL;
   648         intptr_t ld_off = 0;
   649         AllocateNode* allo2 = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
   650         if (alloc != allo2)      return NULL;
   651         if (ld_off != st_off)    return NULL;
   652         // At this point we have proven something like this setup:
   653         //  A = Allocate(...)
   654         //  L = LoadQ(,  AddP(CastPP(, A.Parm),, #Off))
   655         //  S = StoreQ(, AddP(,        A.Parm  , #Off), V)
   656         // (Actually, we haven't yet proven the Q's are the same.)
   657         // In other words, we are loading from a casted version of
   658         // the same pointer-and-offset that we stored to.
   659         // Thus, we are able to replace L by V.
   660       }
   661       // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
   662       if (store_Opcode() != st->Opcode())
   663         return NULL;
   664       return st->in(MemNode::ValueIn);
   665     }
   667     intptr_t offset = 0;  // scratch
   669     // A load from a freshly-created object always returns zero.
   670     // (This can happen after LoadNode::Ideal resets the load's memory input
   671     // to find_captured_store, which returned InitializeNode::zero_memory.)
   672     if (st->is_Proj() && st->in(0)->is_Allocate() &&
   673         st->in(0) == AllocateNode::Ideal_allocation(ld_adr, phase, offset) &&
   674         offset >= st->in(0)->as_Allocate()->minimum_header_size()) {
   675       // return a zero value for the load's basic type
   676       // (This is one of the few places where a generic PhaseTransform
   677       // can create new nodes.  Think of it as lazily manifesting
   678       // virtually pre-existing constants.)
   679       return phase->zerocon(memory_type());
   680     }
   682     // A load from an initialization barrier can match a captured store.
   683     if (st->is_Proj() && st->in(0)->is_Initialize()) {
   684       InitializeNode* init = st->in(0)->as_Initialize();
   685       AllocateNode* alloc = init->allocation();
   686       if (alloc != NULL &&
   687           alloc == AllocateNode::Ideal_allocation(ld_adr, phase, offset)) {
   688         // examine a captured store value
   689         st = init->find_captured_store(offset, memory_size(), phase);
   690         if (st != NULL)
   691           continue;             // take one more trip around
   692       }
   693     }
   695     break;
   696   }
   698   return NULL;
   699 }
   701 //------------------------------Identity---------------------------------------
   702 // Loads are identity if previous store is to same address
   703 Node *LoadNode::Identity( PhaseTransform *phase ) {
   704   // If the previous store-maker is the right kind of Store, and the store is
   705   // to the same address, then we are equal to the value stored.
   706   Node* mem = in(MemNode::Memory);
   707   Node* value = can_see_stored_value(mem, phase);
   708   if( value ) {
   709     // byte, short & char stores truncate naturally.
   710     // A load has to load the truncated value which requires
   711     // some sort of masking operation and that requires an
   712     // Ideal call instead of an Identity call.
   713     if (memory_size() < BytesPerInt) {
   714       // If the input to the store does not fit with the load's result type,
   715       // it must be truncated via an Ideal call.
   716       if (!phase->type(value)->higher_equal(phase->type(this)))
   717         return this;
   718     }
   719     // (This works even when value is a Con, but LoadNode::Value
   720     // usually runs first, producing the singleton type of the Con.)
   721     return value;
   722   }
   723   return this;
   724 }
   726 //------------------------------Ideal------------------------------------------
   727 // If the load is from Field memory and the pointer is non-null, we can
   728 // zero out the control input.
   729 // If the offset is constant and the base is an object allocation,
   730 // try to hook me up to the exact initializing store.
   731 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   732   Node* p = MemNode::Ideal_common(phase, can_reshape);
   733   if (p)  return (p == NodeSentinel) ? NULL : p;
   735   Node* ctrl    = in(MemNode::Control);
   736   Node* address = in(MemNode::Address);
   738   // Skip up past a SafePoint control.  Cannot do this for Stores because
   739   // pointer stores & cardmarks must stay on the same side of a SafePoint.
   740   if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
   741       phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
   742     ctrl = ctrl->in(0);
   743     set_req(MemNode::Control,ctrl);
   744   }
   746   // Check for useless control edge in some common special cases
   747   if (in(MemNode::Control) != NULL) {
   748     intptr_t ignore = 0;
   749     Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
   750     if (base != NULL
   751         && phase->type(base)->higher_equal(TypePtr::NOTNULL)
   752         && detect_dominating_control(base->in(0), phase->C->start())) {
   753       // A method-invariant, non-null address (constant or 'this' argument).
   754       set_req(MemNode::Control, NULL);
   755     }
   756   }
   758   // Check for prior store with a different base or offset; make Load
   759   // independent.  Skip through any number of them.  Bail out if the stores
   760   // are in an endless dead cycle and report no progress.  This is a key
   761   // transform for Reflection.  However, if after skipping through the Stores
   762   // we can't then fold up against a prior store do NOT do the transform as
   763   // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
   764   // array memory alive twice: once for the hoisted Load and again after the
   765   // bypassed Store.  This situation only works if EVERYBODY who does
   766   // anti-dependence work knows how to bypass.  I.e. we need all
   767   // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
   768   // the alias index stuff.  So instead, peek through Stores and IFF we can
   769   // fold up, do so.
   770   Node* prev_mem = find_previous_store(phase);
   771   // Steps (a), (b):  Walk past independent stores to find an exact match.
   772   if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
   773     // (c) See if we can fold up on the spot, but don't fold up here.
   774     // Fold-up might require truncation (for LoadB/LoadS/LoadC) or
   775     // just return a prior value, which is done by Identity calls.
   776     if (can_see_stored_value(prev_mem, phase)) {
   777       // Make ready for step (d):
   778       set_req(MemNode::Memory, prev_mem);
   779       return this;
   780     }
   781   }
   783   return NULL;                  // No further progress
   784 }
   786 // Helper to recognize certain Klass fields which are invariant across
   787 // some group of array types (e.g., int[] or all T[] where T < Object).
   788 const Type*
   789 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
   790                                  ciKlass* klass) const {
   791   if (tkls->offset() == Klass::modifier_flags_offset_in_bytes() + (int)sizeof(oopDesc)) {
   792     // The field is Klass::_modifier_flags.  Return its (constant) value.
   793     // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
   794     assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
   795     return TypeInt::make(klass->modifier_flags());
   796   }
   797   if (tkls->offset() == Klass::access_flags_offset_in_bytes() + (int)sizeof(oopDesc)) {
   798     // The field is Klass::_access_flags.  Return its (constant) value.
   799     // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
   800     assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
   801     return TypeInt::make(klass->access_flags());
   802   }
   803   if (tkls->offset() == Klass::layout_helper_offset_in_bytes() + (int)sizeof(oopDesc)) {
   804     // The field is Klass::_layout_helper.  Return its constant value if known.
   805     assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
   806     return TypeInt::make(klass->layout_helper());
   807   }
   809   // No match.
   810   return NULL;
   811 }
   813 //------------------------------Value-----------------------------------------
   814 const Type *LoadNode::Value( PhaseTransform *phase ) const {
   815   // Either input is TOP ==> the result is TOP
   816   Node* mem = in(MemNode::Memory);
   817   const Type *t1 = phase->type(mem);
   818   if (t1 == Type::TOP)  return Type::TOP;
   819   Node* adr = in(MemNode::Address);
   820   const TypePtr* tp = phase->type(adr)->isa_ptr();
   821   if (tp == NULL || tp->empty())  return Type::TOP;
   822   int off = tp->offset();
   823   assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
   825   // Try to guess loaded type from pointer type
   826   if (tp->base() == Type::AryPtr) {
   827     const Type *t = tp->is_aryptr()->elem();
   828     // Don't do this for integer types. There is only potential profit if
   829     // the element type t is lower than _type; that is, for int types, if _type is
   830     // more restrictive than t.  This only happens here if one is short and the other
   831     // char (both 16 bits), and in those cases we've made an intentional decision
   832     // to use one kind of load over the other. See AndINode::Ideal and 4965907.
   833     // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
   834     //
   835     // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
   836     // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
   837     // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
   838     // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
   839     // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
   840     // In fact, that could have been the original type of p1, and p1 could have
   841     // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
   842     // expression (LShiftL quux 3) independently optimized to the constant 8.
   843     if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
   844         && Opcode() != Op_LoadKlass) {
   845       // t might actually be lower than _type, if _type is a unique
   846       // concrete subclass of abstract class t.
   847       // Make sure the reference is not into the header, by comparing
   848       // the offset against the offset of the start of the array's data.
   849       // Different array types begin at slightly different offsets (12 vs. 16).
   850       // We choose T_BYTE as an example base type that is least restrictive
   851       // as to alignment, which will therefore produce the smallest
   852       // possible base offset.
   853       const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
   854       if ((uint)off >= (uint)min_base_off) {  // is the offset beyond the header?
   855         const Type* jt = t->join(_type);
   856         // In any case, do not allow the join, per se, to empty out the type.
   857         if (jt->empty() && !t->empty()) {
   858           // This can happen if a interface-typed array narrows to a class type.
   859           jt = _type;
   860         }
   861         return jt;
   862       }
   863     }
   864   } else if (tp->base() == Type::InstPtr) {
   865     assert( off != Type::OffsetBot ||
   866             // arrays can be cast to Objects
   867             tp->is_oopptr()->klass()->is_java_lang_Object() ||
   868             // unsafe field access may not have a constant offset
   869             phase->C->has_unsafe_access(),
   870             "Field accesses must be precise" );
   871     // For oop loads, we expect the _type to be precise
   872   } else if (tp->base() == Type::KlassPtr) {
   873     assert( off != Type::OffsetBot ||
   874             // arrays can be cast to Objects
   875             tp->is_klassptr()->klass()->is_java_lang_Object() ||
   876             // also allow array-loading from the primary supertype
   877             // array during subtype checks
   878             Opcode() == Op_LoadKlass,
   879             "Field accesses must be precise" );
   880     // For klass/static loads, we expect the _type to be precise
   881   }
   883   const TypeKlassPtr *tkls = tp->isa_klassptr();
   884   if (tkls != NULL && !StressReflectiveCode) {
   885     ciKlass* klass = tkls->klass();
   886     if (klass->is_loaded() && tkls->klass_is_exact()) {
   887       // We are loading a field from a Klass metaobject whose identity
   888       // is known at compile time (the type is "exact" or "precise").
   889       // Check for fields we know are maintained as constants by the VM.
   890       if (tkls->offset() == Klass::super_check_offset_offset_in_bytes() + (int)sizeof(oopDesc)) {
   891         // The field is Klass::_super_check_offset.  Return its (constant) value.
   892         // (Folds up type checking code.)
   893         assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
   894         return TypeInt::make(klass->super_check_offset());
   895       }
   896       // Compute index into primary_supers array
   897       juint depth = (tkls->offset() - (Klass::primary_supers_offset_in_bytes() + (int)sizeof(oopDesc))) / sizeof(klassOop);
   898       // Check for overflowing; use unsigned compare to handle the negative case.
   899       if( depth < ciKlass::primary_super_limit() ) {
   900         // The field is an element of Klass::_primary_supers.  Return its (constant) value.
   901         // (Folds up type checking code.)
   902         assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
   903         ciKlass *ss = klass->super_of_depth(depth);
   904         return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
   905       }
   906       const Type* aift = load_array_final_field(tkls, klass);
   907       if (aift != NULL)  return aift;
   908       if (tkls->offset() == in_bytes(arrayKlass::component_mirror_offset()) + (int)sizeof(oopDesc)
   909           && klass->is_array_klass()) {
   910         // The field is arrayKlass::_component_mirror.  Return its (constant) value.
   911         // (Folds up aClassConstant.getComponentType, common in Arrays.copyOf.)
   912         assert(Opcode() == Op_LoadP, "must load an oop from _component_mirror");
   913         return TypeInstPtr::make(klass->as_array_klass()->component_mirror());
   914       }
   915       if (tkls->offset() == Klass::java_mirror_offset_in_bytes() + (int)sizeof(oopDesc)) {
   916         // The field is Klass::_java_mirror.  Return its (constant) value.
   917         // (Folds up the 2nd indirection in anObjConstant.getClass().)
   918         assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
   919         return TypeInstPtr::make(klass->java_mirror());
   920       }
   921     }
   923     // We can still check if we are loading from the primary_supers array at a
   924     // shallow enough depth.  Even though the klass is not exact, entries less
   925     // than or equal to its super depth are correct.
   926     if (klass->is_loaded() ) {
   927       ciType *inner = klass->klass();
   928       while( inner->is_obj_array_klass() )
   929         inner = inner->as_obj_array_klass()->base_element_type();
   930       if( inner->is_instance_klass() &&
   931           !inner->as_instance_klass()->flags().is_interface() ) {
   932         // Compute index into primary_supers array
   933         juint depth = (tkls->offset() - (Klass::primary_supers_offset_in_bytes() + (int)sizeof(oopDesc))) / sizeof(klassOop);
   934         // Check for overflowing; use unsigned compare to handle the negative case.
   935         if( depth < ciKlass::primary_super_limit() &&
   936             depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
   937           // The field is an element of Klass::_primary_supers.  Return its (constant) value.
   938           // (Folds up type checking code.)
   939           assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
   940           ciKlass *ss = klass->super_of_depth(depth);
   941           return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
   942         }
   943       }
   944     }
   946     // If the type is enough to determine that the thing is not an array,
   947     // we can give the layout_helper a positive interval type.
   948     // This will help short-circuit some reflective code.
   949     if (tkls->offset() == Klass::layout_helper_offset_in_bytes() + (int)sizeof(oopDesc)
   950         && !klass->is_array_klass() // not directly typed as an array
   951         && !klass->is_interface()  // specifically not Serializable & Cloneable
   952         && !klass->is_java_lang_Object()   // not the supertype of all T[]
   953         ) {
   954       // Note:  When interfaces are reliable, we can narrow the interface
   955       // test to (klass != Serializable && klass != Cloneable).
   956       assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
   957       jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
   958       // The key property of this type is that it folds up tests
   959       // for array-ness, since it proves that the layout_helper is positive.
   960       // Thus, a generic value like the basic object layout helper works fine.
   961       return TypeInt::make(min_size, max_jint, Type::WidenMin);
   962     }
   963   }
   965   // If we are loading from a freshly-allocated object, produce a zero,
   966   // if the load is provably beyond the header of the object.
   967   // (Also allow a variable load from a fresh array to produce zero.)
   968   if (ReduceFieldZeroing) {
   969     Node* value = can_see_stored_value(mem,phase);
   970     if (value != NULL && value->is_Con())
   971       return value->bottom_type();
   972   }
   974   return _type;
   975 }
   977 //------------------------------match_edge-------------------------------------
   978 // Do we Match on this edge index or not?  Match only the address.
   979 uint LoadNode::match_edge(uint idx) const {
   980   return idx == MemNode::Address;
   981 }
   983 //--------------------------LoadBNode::Ideal--------------------------------------
   984 //
   985 //  If the previous store is to the same address as this load,
   986 //  and the value stored was larger than a byte, replace this load
   987 //  with the value stored truncated to a byte.  If no truncation is
   988 //  needed, the replacement is done in LoadNode::Identity().
   989 //
   990 Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   991   Node* mem = in(MemNode::Memory);
   992   Node* value = can_see_stored_value(mem,phase);
   993   if( value && !phase->type(value)->higher_equal( _type ) ) {
   994     Node *result = phase->transform( new (phase->C, 3) LShiftINode(value, phase->intcon(24)) );
   995     return new (phase->C, 3) RShiftINode(result, phase->intcon(24));
   996   }
   997   // Identity call will handle the case where truncation is not needed.
   998   return LoadNode::Ideal(phase, can_reshape);
   999 }
  1001 //--------------------------LoadCNode::Ideal--------------------------------------
  1002 //
  1003 //  If the previous store is to the same address as this load,
  1004 //  and the value stored was larger than a char, replace this load
  1005 //  with the value stored truncated to a char.  If no truncation is
  1006 //  needed, the replacement is done in LoadNode::Identity().
  1007 //
  1008 Node *LoadCNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1009   Node* mem = in(MemNode::Memory);
  1010   Node* value = can_see_stored_value(mem,phase);
  1011   if( value && !phase->type(value)->higher_equal( _type ) )
  1012     return new (phase->C, 3) AndINode(value,phase->intcon(0xFFFF));
  1013   // Identity call will handle the case where truncation is not needed.
  1014   return LoadNode::Ideal(phase, can_reshape);
  1017 //--------------------------LoadSNode::Ideal--------------------------------------
  1018 //
  1019 //  If the previous store is to the same address as this load,
  1020 //  and the value stored was larger than a short, replace this load
  1021 //  with the value stored truncated to a short.  If no truncation is
  1022 //  needed, the replacement is done in LoadNode::Identity().
  1023 //
  1024 Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1025   Node* mem = in(MemNode::Memory);
  1026   Node* value = can_see_stored_value(mem,phase);
  1027   if( value && !phase->type(value)->higher_equal( _type ) ) {
  1028     Node *result = phase->transform( new (phase->C, 3) LShiftINode(value, phase->intcon(16)) );
  1029     return new (phase->C, 3) RShiftINode(result, phase->intcon(16));
  1031   // Identity call will handle the case where truncation is not needed.
  1032   return LoadNode::Ideal(phase, can_reshape);
  1035 //=============================================================================
  1036 //------------------------------Value------------------------------------------
  1037 const Type *LoadKlassNode::Value( PhaseTransform *phase ) const {
  1038   // Either input is TOP ==> the result is TOP
  1039   const Type *t1 = phase->type( in(MemNode::Memory) );
  1040   if (t1 == Type::TOP)  return Type::TOP;
  1041   Node *adr = in(MemNode::Address);
  1042   const Type *t2 = phase->type( adr );
  1043   if (t2 == Type::TOP)  return Type::TOP;
  1044   const TypePtr *tp = t2->is_ptr();
  1045   if (TypePtr::above_centerline(tp->ptr()) ||
  1046       tp->ptr() == TypePtr::Null)  return Type::TOP;
  1048   // Return a more precise klass, if possible
  1049   const TypeInstPtr *tinst = tp->isa_instptr();
  1050   if (tinst != NULL) {
  1051     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
  1052     int offset = tinst->offset();
  1053     if (ik == phase->C->env()->Class_klass()
  1054         && (offset == java_lang_Class::klass_offset_in_bytes() ||
  1055             offset == java_lang_Class::array_klass_offset_in_bytes())) {
  1056       // We are loading a special hidden field from a Class mirror object,
  1057       // the field which points to the VM's Klass metaobject.
  1058       ciType* t = tinst->java_mirror_type();
  1059       // java_mirror_type returns non-null for compile-time Class constants.
  1060       if (t != NULL) {
  1061         // constant oop => constant klass
  1062         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
  1063           return TypeKlassPtr::make(ciArrayKlass::make(t));
  1065         if (!t->is_klass()) {
  1066           // a primitive Class (e.g., int.class) has NULL for a klass field
  1067           return TypePtr::NULL_PTR;
  1069         // (Folds up the 1st indirection in aClassConstant.getModifiers().)
  1070         return TypeKlassPtr::make(t->as_klass());
  1072       // non-constant mirror, so we can't tell what's going on
  1074     if( !ik->is_loaded() )
  1075       return _type;             // Bail out if not loaded
  1076     if (offset == oopDesc::klass_offset_in_bytes()) {
  1077       if (tinst->klass_is_exact()) {
  1078         return TypeKlassPtr::make(ik);
  1080       // See if we can become precise: no subklasses and no interface
  1081       // (Note:  We need to support verified interfaces.)
  1082       if (!ik->is_interface() && !ik->has_subklass()) {
  1083         //assert(!UseExactTypes, "this code should be useless with exact types");
  1084         // Add a dependence; if any subclass added we need to recompile
  1085         if (!ik->is_final()) {
  1086           // %%% should use stronger assert_unique_concrete_subtype instead
  1087           phase->C->dependencies()->assert_leaf_type(ik);
  1089         // Return precise klass
  1090         return TypeKlassPtr::make(ik);
  1093       // Return root of possible klass
  1094       return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
  1098   // Check for loading klass from an array
  1099   const TypeAryPtr *tary = tp->isa_aryptr();
  1100   if( tary != NULL ) {
  1101     ciKlass *tary_klass = tary->klass();
  1102     if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP
  1103         && tary->offset() == oopDesc::klass_offset_in_bytes()) {
  1104       if (tary->klass_is_exact()) {
  1105         return TypeKlassPtr::make(tary_klass);
  1107       ciArrayKlass *ak = tary->klass()->as_array_klass();
  1108       // If the klass is an object array, we defer the question to the
  1109       // array component klass.
  1110       if( ak->is_obj_array_klass() ) {
  1111         assert( ak->is_loaded(), "" );
  1112         ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
  1113         if( base_k->is_loaded() && base_k->is_instance_klass() ) {
  1114           ciInstanceKlass* ik = base_k->as_instance_klass();
  1115           // See if we can become precise: no subklasses and no interface
  1116           if (!ik->is_interface() && !ik->has_subklass()) {
  1117             //assert(!UseExactTypes, "this code should be useless with exact types");
  1118             // Add a dependence; if any subclass added we need to recompile
  1119             if (!ik->is_final()) {
  1120               phase->C->dependencies()->assert_leaf_type(ik);
  1122             // Return precise array klass
  1123             return TypeKlassPtr::make(ak);
  1126         return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
  1127       } else {                  // Found a type-array?
  1128         //assert(!UseExactTypes, "this code should be useless with exact types");
  1129         assert( ak->is_type_array_klass(), "" );
  1130         return TypeKlassPtr::make(ak); // These are always precise
  1135   // Check for loading klass from an array klass
  1136   const TypeKlassPtr *tkls = tp->isa_klassptr();
  1137   if (tkls != NULL && !StressReflectiveCode) {
  1138     ciKlass* klass = tkls->klass();
  1139     if( !klass->is_loaded() )
  1140       return _type;             // Bail out if not loaded
  1141     if( klass->is_obj_array_klass() &&
  1142         (uint)tkls->offset() == objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)) {
  1143       ciKlass* elem = klass->as_obj_array_klass()->element_klass();
  1144       // // Always returning precise element type is incorrect,
  1145       // // e.g., element type could be object and array may contain strings
  1146       // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
  1148       // The array's TypeKlassPtr was declared 'precise' or 'not precise'
  1149       // according to the element type's subclassing.
  1150       return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
  1152     if( klass->is_instance_klass() && tkls->klass_is_exact() &&
  1153         (uint)tkls->offset() == Klass::super_offset_in_bytes() + sizeof(oopDesc)) {
  1154       ciKlass* sup = klass->as_instance_klass()->super();
  1155       // The field is Klass::_super.  Return its (constant) value.
  1156       // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
  1157       return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
  1161   // Bailout case
  1162   return LoadNode::Value(phase);
  1165 //------------------------------Identity---------------------------------------
  1166 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
  1167 // Also feed through the klass in Allocate(...klass...)._klass.
  1168 Node* LoadKlassNode::Identity( PhaseTransform *phase ) {
  1169   Node* x = LoadNode::Identity(phase);
  1170   if (x != this)  return x;
  1172   // Take apart the address into an oop and and offset.
  1173   // Return 'this' if we cannot.
  1174   Node*    adr    = in(MemNode::Address);
  1175   intptr_t offset = 0;
  1176   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
  1177   if (base == NULL)     return this;
  1178   const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
  1179   if (toop == NULL)     return this;
  1181   // We can fetch the klass directly through an AllocateNode.
  1182   // This works even if the klass is not constant (clone or newArray).
  1183   if (offset == oopDesc::klass_offset_in_bytes()) {
  1184     Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
  1185     if (allocated_klass != NULL) {
  1186       return allocated_klass;
  1190   // Simplify k.java_mirror.as_klass to plain k, where k is a klassOop.
  1191   // Simplify ak.component_mirror.array_klass to plain ak, ak an arrayKlass.
  1192   // See inline_native_Class_query for occurrences of these patterns.
  1193   // Java Example:  x.getClass().isAssignableFrom(y)
  1194   // Java Example:  Array.newInstance(x.getClass().getComponentType(), n)
  1195   //
  1196   // This improves reflective code, often making the Class
  1197   // mirror go completely dead.  (Current exception:  Class
  1198   // mirrors may appear in debug info, but we could clean them out by
  1199   // introducing a new debug info operator for klassOop.java_mirror).
  1200   if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
  1201       && (offset == java_lang_Class::klass_offset_in_bytes() ||
  1202           offset == java_lang_Class::array_klass_offset_in_bytes())) {
  1203     // We are loading a special hidden field from a Class mirror,
  1204     // the field which points to its Klass or arrayKlass metaobject.
  1205     if (base->is_Load()) {
  1206       Node* adr2 = base->in(MemNode::Address);
  1207       const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
  1208       if (tkls != NULL && !tkls->empty()
  1209           && (tkls->klass()->is_instance_klass() ||
  1210               tkls->klass()->is_array_klass())
  1211           && adr2->is_AddP()
  1212           ) {
  1213         int mirror_field = Klass::java_mirror_offset_in_bytes();
  1214         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
  1215           mirror_field = in_bytes(arrayKlass::component_mirror_offset());
  1217         if (tkls->offset() == mirror_field + (int)sizeof(oopDesc)) {
  1218           return adr2->in(AddPNode::Base);
  1224   return this;
  1227 //------------------------------Value-----------------------------------------
  1228 const Type *LoadRangeNode::Value( PhaseTransform *phase ) const {
  1229   // Either input is TOP ==> the result is TOP
  1230   const Type *t1 = phase->type( in(MemNode::Memory) );
  1231   if( t1 == Type::TOP ) return Type::TOP;
  1232   Node *adr = in(MemNode::Address);
  1233   const Type *t2 = phase->type( adr );
  1234   if( t2 == Type::TOP ) return Type::TOP;
  1235   const TypePtr *tp = t2->is_ptr();
  1236   if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
  1237   const TypeAryPtr *tap = tp->isa_aryptr();
  1238   if( !tap ) return _type;
  1239   return tap->size();
  1242 //------------------------------Identity---------------------------------------
  1243 // Feed through the length in AllocateArray(...length...)._length.
  1244 Node* LoadRangeNode::Identity( PhaseTransform *phase ) {
  1245   Node* x = LoadINode::Identity(phase);
  1246   if (x != this)  return x;
  1248   // Take apart the address into an oop and and offset.
  1249   // Return 'this' if we cannot.
  1250   Node*    adr    = in(MemNode::Address);
  1251   intptr_t offset = 0;
  1252   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
  1253   if (base == NULL)     return this;
  1254   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
  1255   if (tary == NULL)     return this;
  1257   // We can fetch the length directly through an AllocateArrayNode.
  1258   // This works even if the length is not constant (clone or newArray).
  1259   if (offset == arrayOopDesc::length_offset_in_bytes()) {
  1260     Node* allocated_length = AllocateArrayNode::Ideal_length(base, phase);
  1261     if (allocated_length != NULL) {
  1262       return allocated_length;
  1266   return this;
  1269 //=============================================================================
  1270 //---------------------------StoreNode::make-----------------------------------
  1271 // Polymorphic factory method:
  1272 StoreNode* StoreNode::make( Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt ) {
  1273   switch (bt) {
  1274   case T_BOOLEAN:
  1275   case T_BYTE:    return new (C, 4) StoreBNode(ctl, mem, adr, adr_type, val);
  1276   case T_INT:     return new (C, 4) StoreINode(ctl, mem, adr, adr_type, val);
  1277   case T_CHAR:
  1278   case T_SHORT:   return new (C, 4) StoreCNode(ctl, mem, adr, adr_type, val);
  1279   case T_LONG:    return new (C, 4) StoreLNode(ctl, mem, adr, adr_type, val);
  1280   case T_FLOAT:   return new (C, 4) StoreFNode(ctl, mem, adr, adr_type, val);
  1281   case T_DOUBLE:  return new (C, 4) StoreDNode(ctl, mem, adr, adr_type, val);
  1282   case T_ADDRESS:
  1283   case T_OBJECT:  return new (C, 4) StorePNode(ctl, mem, adr, adr_type, val);
  1285   ShouldNotReachHere();
  1286   return (StoreNode*)NULL;
  1289 StoreLNode* StoreLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val) {
  1290   bool require_atomic = true;
  1291   return new (C, 4) StoreLNode(ctl, mem, adr, adr_type, val, require_atomic);
  1295 //--------------------------bottom_type----------------------------------------
  1296 const Type *StoreNode::bottom_type() const {
  1297   return Type::MEMORY;
  1300 //------------------------------hash-------------------------------------------
  1301 uint StoreNode::hash() const {
  1302   // unroll addition of interesting fields
  1303   //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
  1305   // Since they are not commoned, do not hash them:
  1306   return NO_HASH;
  1309 //------------------------------Ideal------------------------------------------
  1310 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
  1311 // When a store immediately follows a relevant allocation/initialization,
  1312 // try to capture it into the initialization, or hoist it above.
  1313 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1314   Node* p = MemNode::Ideal_common(phase, can_reshape);
  1315   if (p)  return (p == NodeSentinel) ? NULL : p;
  1317   Node* mem     = in(MemNode::Memory);
  1318   Node* address = in(MemNode::Address);
  1320   // Back-to-back stores to same address?  Fold em up.
  1321   // Generally unsafe if I have intervening uses...
  1322   if (mem->is_Store() && phase->eqv_uncast(mem->in(MemNode::Address), address)) {
  1323     // Looking at a dead closed cycle of memory?
  1324     assert(mem != mem->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
  1326     assert(Opcode() == mem->Opcode() ||
  1327            phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw,
  1328            "no mismatched stores, except on raw memory");
  1330     if (mem->outcnt() == 1 &&           // check for intervening uses
  1331         mem->as_Store()->memory_size() <= this->memory_size()) {
  1332       // If anybody other than 'this' uses 'mem', we cannot fold 'mem' away.
  1333       // For example, 'mem' might be the final state at a conditional return.
  1334       // Or, 'mem' might be used by some node which is live at the same time
  1335       // 'this' is live, which might be unschedulable.  So, require exactly
  1336       // ONE user, the 'this' store, until such time as we clone 'mem' for
  1337       // each of 'mem's uses (thus making the exactly-1-user-rule hold true).
  1338       if (can_reshape) {  // (%%% is this an anachronism?)
  1339         set_req_X(MemNode::Memory, mem->in(MemNode::Memory),
  1340                   phase->is_IterGVN());
  1341       } else {
  1342         // It's OK to do this in the parser, since DU info is always accurate,
  1343         // and the parser always refers to nodes via SafePointNode maps.
  1344         set_req(MemNode::Memory, mem->in(MemNode::Memory));
  1346       return this;
  1350   // Capture an unaliased, unconditional, simple store into an initializer.
  1351   // Or, if it is independent of the allocation, hoist it above the allocation.
  1352   if (ReduceFieldZeroing && /*can_reshape &&*/
  1353       mem->is_Proj() && mem->in(0)->is_Initialize()) {
  1354     InitializeNode* init = mem->in(0)->as_Initialize();
  1355     intptr_t offset = init->can_capture_store(this, phase);
  1356     if (offset > 0) {
  1357       Node* moved = init->capture_store(this, offset, phase);
  1358       // If the InitializeNode captured me, it made a raw copy of me,
  1359       // and I need to disappear.
  1360       if (moved != NULL) {
  1361         // %%% hack to ensure that Ideal returns a new node:
  1362         mem = MergeMemNode::make(phase->C, mem);
  1363         return mem;             // fold me away
  1368   return NULL;                  // No further progress
  1371 //------------------------------Value-----------------------------------------
  1372 const Type *StoreNode::Value( PhaseTransform *phase ) const {
  1373   // Either input is TOP ==> the result is TOP
  1374   const Type *t1 = phase->type( in(MemNode::Memory) );
  1375   if( t1 == Type::TOP ) return Type::TOP;
  1376   const Type *t2 = phase->type( in(MemNode::Address) );
  1377   if( t2 == Type::TOP ) return Type::TOP;
  1378   const Type *t3 = phase->type( in(MemNode::ValueIn) );
  1379   if( t3 == Type::TOP ) return Type::TOP;
  1380   return Type::MEMORY;
  1383 //------------------------------Identity---------------------------------------
  1384 // Remove redundant stores:
  1385 //   Store(m, p, Load(m, p)) changes to m.
  1386 //   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
  1387 Node *StoreNode::Identity( PhaseTransform *phase ) {
  1388   Node* mem = in(MemNode::Memory);
  1389   Node* adr = in(MemNode::Address);
  1390   Node* val = in(MemNode::ValueIn);
  1392   // Load then Store?  Then the Store is useless
  1393   if (val->is_Load() &&
  1394       phase->eqv_uncast( val->in(MemNode::Address), adr ) &&
  1395       phase->eqv_uncast( val->in(MemNode::Memory ), mem ) &&
  1396       val->as_Load()->store_Opcode() == Opcode()) {
  1397     return mem;
  1400   // Two stores in a row of the same value?
  1401   if (mem->is_Store() &&
  1402       phase->eqv_uncast( mem->in(MemNode::Address), adr ) &&
  1403       phase->eqv_uncast( mem->in(MemNode::ValueIn), val ) &&
  1404       mem->Opcode() == Opcode()) {
  1405     return mem;
  1408   // Store of zero anywhere into a freshly-allocated object?
  1409   // Then the store is useless.
  1410   // (It must already have been captured by the InitializeNode.)
  1411   if (ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
  1412     // a newly allocated object is already all-zeroes everywhere
  1413     if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
  1414       return mem;
  1417     // the store may also apply to zero-bits in an earlier object
  1418     Node* prev_mem = find_previous_store(phase);
  1419     // Steps (a), (b):  Walk past independent stores to find an exact match.
  1420     if (prev_mem != NULL) {
  1421       Node* prev_val = can_see_stored_value(prev_mem, phase);
  1422       if (prev_val != NULL && phase->eqv(prev_val, val)) {
  1423         // prev_val and val might differ by a cast; it would be good
  1424         // to keep the more informative of the two.
  1425         return mem;
  1430   return this;
  1433 //------------------------------match_edge-------------------------------------
  1434 // Do we Match on this edge index or not?  Match only memory & value
  1435 uint StoreNode::match_edge(uint idx) const {
  1436   return idx == MemNode::Address || idx == MemNode::ValueIn;
  1439 //------------------------------cmp--------------------------------------------
  1440 // Do not common stores up together.  They generally have to be split
  1441 // back up anyways, so do not bother.
  1442 uint StoreNode::cmp( const Node &n ) const {
  1443   return (&n == this);          // Always fail except on self
  1446 //------------------------------Ideal_masked_input-----------------------------
  1447 // Check for a useless mask before a partial-word store
  1448 // (StoreB ... (AndI valIn conIa) )
  1449 // If (conIa & mask == mask) this simplifies to
  1450 // (StoreB ... (valIn) )
  1451 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
  1452   Node *val = in(MemNode::ValueIn);
  1453   if( val->Opcode() == Op_AndI ) {
  1454     const TypeInt *t = phase->type( val->in(2) )->isa_int();
  1455     if( t && t->is_con() && (t->get_con() & mask) == mask ) {
  1456       set_req(MemNode::ValueIn, val->in(1));
  1457       return this;
  1460   return NULL;
  1464 //------------------------------Ideal_sign_extended_input----------------------
  1465 // Check for useless sign-extension before a partial-word store
  1466 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
  1467 // If (conIL == conIR && conIR <= num_bits)  this simplifies to
  1468 // (StoreB ... (valIn) )
  1469 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
  1470   Node *val = in(MemNode::ValueIn);
  1471   if( val->Opcode() == Op_RShiftI ) {
  1472     const TypeInt *t = phase->type( val->in(2) )->isa_int();
  1473     if( t && t->is_con() && (t->get_con() <= num_bits) ) {
  1474       Node *shl = val->in(1);
  1475       if( shl->Opcode() == Op_LShiftI ) {
  1476         const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
  1477         if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
  1478           set_req(MemNode::ValueIn, shl->in(1));
  1479           return this;
  1484   return NULL;
  1487 //------------------------------value_never_loaded-----------------------------------
  1488 // Determine whether there are any possible loads of the value stored.
  1489 // For simplicity, we actually check if there are any loads from the
  1490 // address stored to, not just for loads of the value stored by this node.
  1491 //
  1492 bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
  1493   Node *adr = in(Address);
  1494   const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
  1495   if (adr_oop == NULL)
  1496     return false;
  1497   if (!adr_oop->is_instance())
  1498     return false; // if not a distinct instance, there may be aliases of the address
  1499   for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
  1500     Node *use = adr->fast_out(i);
  1501     int opc = use->Opcode();
  1502     if (use->is_Load() || use->is_LoadStore()) {
  1503       return false;
  1506   return true;
  1509 //=============================================================================
  1510 //------------------------------Ideal------------------------------------------
  1511 // If the store is from an AND mask that leaves the low bits untouched, then
  1512 // we can skip the AND operation.  If the store is from a sign-extension
  1513 // (a left shift, then right shift) we can skip both.
  1514 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
  1515   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
  1516   if( progress != NULL ) return progress;
  1518   progress = StoreNode::Ideal_sign_extended_input(phase, 24);
  1519   if( progress != NULL ) return progress;
  1521   // Finally check the default case
  1522   return StoreNode::Ideal(phase, can_reshape);
  1525 //=============================================================================
  1526 //------------------------------Ideal------------------------------------------
  1527 // If the store is from an AND mask that leaves the low bits untouched, then
  1528 // we can skip the AND operation
  1529 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
  1530   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
  1531   if( progress != NULL ) return progress;
  1533   progress = StoreNode::Ideal_sign_extended_input(phase, 16);
  1534   if( progress != NULL ) return progress;
  1536   // Finally check the default case
  1537   return StoreNode::Ideal(phase, can_reshape);
  1540 //=============================================================================
  1541 //------------------------------Identity---------------------------------------
  1542 Node *StoreCMNode::Identity( PhaseTransform *phase ) {
  1543   // No need to card mark when storing a null ptr
  1544   Node* my_store = in(MemNode::OopStore);
  1545   if (my_store->is_Store()) {
  1546     const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
  1547     if( t1 == TypePtr::NULL_PTR ) {
  1548       return in(MemNode::Memory);
  1551   return this;
  1554 //------------------------------Value-----------------------------------------
  1555 const Type *StoreCMNode::Value( PhaseTransform *phase ) const {
  1556   // If extra input is TOP ==> the result is TOP
  1557   const Type *t1 = phase->type( in(MemNode::OopStore) );
  1558   if( t1 == Type::TOP ) return Type::TOP;
  1560   return StoreNode::Value( phase );
  1564 //=============================================================================
  1565 //----------------------------------SCMemProjNode------------------------------
  1566 const Type * SCMemProjNode::Value( PhaseTransform *phase ) const
  1568   return bottom_type();
  1571 //=============================================================================
  1572 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : Node(5) {
  1573   init_req(MemNode::Control, c  );
  1574   init_req(MemNode::Memory , mem);
  1575   init_req(MemNode::Address, adr);
  1576   init_req(MemNode::ValueIn, val);
  1577   init_req(         ExpectedIn, ex );
  1578   init_class_id(Class_LoadStore);
  1582 //=============================================================================
  1583 //-------------------------------adr_type--------------------------------------
  1584 // Do we Match on this edge index or not?  Do not match memory
  1585 const TypePtr* ClearArrayNode::adr_type() const {
  1586   Node *adr = in(3);
  1587   return MemNode::calculate_adr_type(adr->bottom_type());
  1590 //------------------------------match_edge-------------------------------------
  1591 // Do we Match on this edge index or not?  Do not match memory
  1592 uint ClearArrayNode::match_edge(uint idx) const {
  1593   return idx > 1;
  1596 //------------------------------Identity---------------------------------------
  1597 // Clearing a zero length array does nothing
  1598 Node *ClearArrayNode::Identity( PhaseTransform *phase ) {
  1599   return phase->type(in(2))->higher_equal(TypeInt::ZERO)  ? in(1) : this;
  1602 //------------------------------Idealize---------------------------------------
  1603 // Clearing a short array is faster with stores
  1604 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape){
  1605   const int unit = BytesPerLong;
  1606   const TypeX* t = phase->type(in(2))->isa_intptr_t();
  1607   if (!t)  return NULL;
  1608   if (!t->is_con())  return NULL;
  1609   intptr_t raw_count = t->get_con();
  1610   intptr_t size = raw_count;
  1611   if (!Matcher::init_array_count_is_in_bytes) size *= unit;
  1612   // Clearing nothing uses the Identity call.
  1613   // Negative clears are possible on dead ClearArrays
  1614   // (see jck test stmt114.stmt11402.val).
  1615   if (size <= 0 || size % unit != 0)  return NULL;
  1616   intptr_t count = size / unit;
  1617   // Length too long; use fast hardware clear
  1618   if (size > Matcher::init_array_short_size)  return NULL;
  1619   Node *mem = in(1);
  1620   if( phase->type(mem)==Type::TOP ) return NULL;
  1621   Node *adr = in(3);
  1622   const Type* at = phase->type(adr);
  1623   if( at==Type::TOP ) return NULL;
  1624   const TypePtr* atp = at->isa_ptr();
  1625   // adjust atp to be the correct array element address type
  1626   if (atp == NULL)  atp = TypePtr::BOTTOM;
  1627   else              atp = atp->add_offset(Type::OffsetBot);
  1628   // Get base for derived pointer purposes
  1629   if( adr->Opcode() != Op_AddP ) Unimplemented();
  1630   Node *base = adr->in(1);
  1632   Node *zero = phase->makecon(TypeLong::ZERO);
  1633   Node *off  = phase->MakeConX(BytesPerLong);
  1634   mem = new (phase->C, 4) StoreLNode(in(0),mem,adr,atp,zero);
  1635   count--;
  1636   while( count-- ) {
  1637     mem = phase->transform(mem);
  1638     adr = phase->transform(new (phase->C, 4) AddPNode(base,adr,off));
  1639     mem = new (phase->C, 4) StoreLNode(in(0),mem,adr,atp,zero);
  1641   return mem;
  1644 //----------------------------clear_memory-------------------------------------
  1645 // Generate code to initialize object storage to zero.
  1646 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  1647                                    intptr_t start_offset,
  1648                                    Node* end_offset,
  1649                                    PhaseGVN* phase) {
  1650   Compile* C = phase->C;
  1651   intptr_t offset = start_offset;
  1653   int unit = BytesPerLong;
  1654   if ((offset % unit) != 0) {
  1655     Node* adr = new (C, 4) AddPNode(dest, dest, phase->MakeConX(offset));
  1656     adr = phase->transform(adr);
  1657     const TypePtr* atp = TypeRawPtr::BOTTOM;
  1658     mem = StoreNode::make(C, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
  1659     mem = phase->transform(mem);
  1660     offset += BytesPerInt;
  1662   assert((offset % unit) == 0, "");
  1664   // Initialize the remaining stuff, if any, with a ClearArray.
  1665   return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
  1668 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  1669                                    Node* start_offset,
  1670                                    Node* end_offset,
  1671                                    PhaseGVN* phase) {
  1672   Compile* C = phase->C;
  1673   int unit = BytesPerLong;
  1674   Node* zbase = start_offset;
  1675   Node* zend  = end_offset;
  1677   // Scale to the unit required by the CPU:
  1678   if (!Matcher::init_array_count_is_in_bytes) {
  1679     Node* shift = phase->intcon(exact_log2(unit));
  1680     zbase = phase->transform( new(C,3) URShiftXNode(zbase, shift) );
  1681     zend  = phase->transform( new(C,3) URShiftXNode(zend,  shift) );
  1684   Node* zsize = phase->transform( new(C,3) SubXNode(zend, zbase) );
  1685   Node* zinit = phase->zerocon((unit == BytesPerLong) ? T_LONG : T_INT);
  1687   // Bulk clear double-words
  1688   Node* adr = phase->transform( new(C,4) AddPNode(dest, dest, start_offset) );
  1689   mem = new (C, 4) ClearArrayNode(ctl, mem, zsize, adr);
  1690   return phase->transform(mem);
  1693 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  1694                                    intptr_t start_offset,
  1695                                    intptr_t end_offset,
  1696                                    PhaseGVN* phase) {
  1697   Compile* C = phase->C;
  1698   assert((end_offset % BytesPerInt) == 0, "odd end offset");
  1699   intptr_t done_offset = end_offset;
  1700   if ((done_offset % BytesPerLong) != 0) {
  1701     done_offset -= BytesPerInt;
  1703   if (done_offset > start_offset) {
  1704     mem = clear_memory(ctl, mem, dest,
  1705                        start_offset, phase->MakeConX(done_offset), phase);
  1707   if (done_offset < end_offset) { // emit the final 32-bit store
  1708     Node* adr = new (C, 4) AddPNode(dest, dest, phase->MakeConX(done_offset));
  1709     adr = phase->transform(adr);
  1710     const TypePtr* atp = TypeRawPtr::BOTTOM;
  1711     mem = StoreNode::make(C, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
  1712     mem = phase->transform(mem);
  1713     done_offset += BytesPerInt;
  1715   assert(done_offset == end_offset, "");
  1716   return mem;
  1719 //=============================================================================
  1720 // Do we match on this edge? No memory edges
  1721 uint StrCompNode::match_edge(uint idx) const {
  1722   return idx == 5 || idx == 6;
  1725 //------------------------------Ideal------------------------------------------
  1726 // Return a node which is more "ideal" than the current node.  Strip out
  1727 // control copies
  1728 Node *StrCompNode::Ideal(PhaseGVN *phase, bool can_reshape){
  1729   return remove_dead_region(phase, can_reshape) ? this : NULL;
  1733 //=============================================================================
  1734 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
  1735   : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
  1736     _adr_type(C->get_adr_type(alias_idx))
  1738   init_class_id(Class_MemBar);
  1739   Node* top = C->top();
  1740   init_req(TypeFunc::I_O,top);
  1741   init_req(TypeFunc::FramePtr,top);
  1742   init_req(TypeFunc::ReturnAdr,top);
  1743   if (precedent != NULL)
  1744     init_req(TypeFunc::Parms, precedent);
  1747 //------------------------------cmp--------------------------------------------
  1748 uint MemBarNode::hash() const { return NO_HASH; }
  1749 uint MemBarNode::cmp( const Node &n ) const {
  1750   return (&n == this);          // Always fail except on self
  1753 //------------------------------make-------------------------------------------
  1754 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
  1755   int len = Precedent + (pn == NULL? 0: 1);
  1756   switch (opcode) {
  1757   case Op_MemBarAcquire:   return new(C, len) MemBarAcquireNode(C,  atp, pn);
  1758   case Op_MemBarRelease:   return new(C, len) MemBarReleaseNode(C,  atp, pn);
  1759   case Op_MemBarVolatile:  return new(C, len) MemBarVolatileNode(C, atp, pn);
  1760   case Op_MemBarCPUOrder:  return new(C, len) MemBarCPUOrderNode(C, atp, pn);
  1761   case Op_Initialize:      return new(C, len) InitializeNode(C,     atp, pn);
  1762   default:                 ShouldNotReachHere(); return NULL;
  1766 //------------------------------Ideal------------------------------------------
  1767 // Return a node which is more "ideal" than the current node.  Strip out
  1768 // control copies
  1769 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1770   if (remove_dead_region(phase, can_reshape))  return this;
  1771   return NULL;
  1774 //------------------------------Value------------------------------------------
  1775 const Type *MemBarNode::Value( PhaseTransform *phase ) const {
  1776   if( !in(0) ) return Type::TOP;
  1777   if( phase->type(in(0)) == Type::TOP )
  1778     return Type::TOP;
  1779   return TypeTuple::MEMBAR;
  1782 //------------------------------match------------------------------------------
  1783 // Construct projections for memory.
  1784 Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
  1785   switch (proj->_con) {
  1786   case TypeFunc::Control:
  1787   case TypeFunc::Memory:
  1788     return new (m->C, 1) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
  1790   ShouldNotReachHere();
  1791   return NULL;
  1794 //===========================InitializeNode====================================
  1795 // SUMMARY:
  1796 // This node acts as a memory barrier on raw memory, after some raw stores.
  1797 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
  1798 // The Initialize can 'capture' suitably constrained stores as raw inits.
  1799 // It can coalesce related raw stores into larger units (called 'tiles').
  1800 // It can avoid zeroing new storage for memory units which have raw inits.
  1801 // At macro-expansion, it is marked 'complete', and does not optimize further.
  1802 //
  1803 // EXAMPLE:
  1804 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
  1805 //   ctl = incoming control; mem* = incoming memory
  1806 // (Note:  A star * on a memory edge denotes I/O and other standard edges.)
  1807 // First allocate uninitialized memory and fill in the header:
  1808 //   alloc = (Allocate ctl mem* 16 #short[].klass ...)
  1809 //   ctl := alloc.Control; mem* := alloc.Memory*
  1810 //   rawmem = alloc.Memory; rawoop = alloc.RawAddress
  1811 // Then initialize to zero the non-header parts of the raw memory block:
  1812 //   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
  1813 //   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
  1814 // After the initialize node executes, the object is ready for service:
  1815 //   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
  1816 // Suppose its body is immediately initialized as {1,2}:
  1817 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
  1818 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
  1819 //   mem.SLICE(#short[*]) := store2
  1820 //
  1821 // DETAILS:
  1822 // An InitializeNode collects and isolates object initialization after
  1823 // an AllocateNode and before the next possible safepoint.  As a
  1824 // memory barrier (MemBarNode), it keeps critical stores from drifting
  1825 // down past any safepoint or any publication of the allocation.
  1826 // Before this barrier, a newly-allocated object may have uninitialized bits.
  1827 // After this barrier, it may be treated as a real oop, and GC is allowed.
  1828 //
  1829 // The semantics of the InitializeNode include an implicit zeroing of
  1830 // the new object from object header to the end of the object.
  1831 // (The object header and end are determined by the AllocateNode.)
  1832 //
  1833 // Certain stores may be added as direct inputs to the InitializeNode.
  1834 // These stores must update raw memory, and they must be to addresses
  1835 // derived from the raw address produced by AllocateNode, and with
  1836 // a constant offset.  They must be ordered by increasing offset.
  1837 // The first one is at in(RawStores), the last at in(req()-1).
  1838 // Unlike most memory operations, they are not linked in a chain,
  1839 // but are displayed in parallel as users of the rawmem output of
  1840 // the allocation.
  1841 //
  1842 // (See comments in InitializeNode::capture_store, which continue
  1843 // the example given above.)
  1844 //
  1845 // When the associated Allocate is macro-expanded, the InitializeNode
  1846 // may be rewritten to optimize collected stores.  A ClearArrayNode
  1847 // may also be created at that point to represent any required zeroing.
  1848 // The InitializeNode is then marked 'complete', prohibiting further
  1849 // capturing of nearby memory operations.
  1850 //
  1851 // During macro-expansion, all captured initializations which store
  1852 // constant values of 32 bits or smaller are coalesced (if advantagous)
  1853 // into larger 'tiles' 32 or 64 bits.  This allows an object to be
  1854 // initialized in fewer memory operations.  Memory words which are
  1855 // covered by neither tiles nor non-constant stores are pre-zeroed
  1856 // by explicit stores of zero.  (The code shape happens to do all
  1857 // zeroing first, then all other stores, with both sequences occurring
  1858 // in order of ascending offsets.)
  1859 //
  1860 // Alternatively, code may be inserted between an AllocateNode and its
  1861 // InitializeNode, to perform arbitrary initialization of the new object.
  1862 // E.g., the object copying intrinsics insert complex data transfers here.
  1863 // The initialization must then be marked as 'complete' disable the
  1864 // built-in zeroing semantics and the collection of initializing stores.
  1865 //
  1866 // While an InitializeNode is incomplete, reads from the memory state
  1867 // produced by it are optimizable if they match the control edge and
  1868 // new oop address associated with the allocation/initialization.
  1869 // They return a stored value (if the offset matches) or else zero.
  1870 // A write to the memory state, if it matches control and address,
  1871 // and if it is to a constant offset, may be 'captured' by the
  1872 // InitializeNode.  It is cloned as a raw memory operation and rewired
  1873 // inside the initialization, to the raw oop produced by the allocation.
  1874 // Operations on addresses which are provably distinct (e.g., to
  1875 // other AllocateNodes) are allowed to bypass the initialization.
  1876 //
  1877 // The effect of all this is to consolidate object initialization
  1878 // (both arrays and non-arrays, both piecewise and bulk) into a
  1879 // single location, where it can be optimized as a unit.
  1880 //
  1881 // Only stores with an offset less than TrackedInitializationLimit words
  1882 // will be considered for capture by an InitializeNode.  This puts a
  1883 // reasonable limit on the complexity of optimized initializations.
  1885 //---------------------------InitializeNode------------------------------------
  1886 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
  1887   : _is_complete(false),
  1888     MemBarNode(C, adr_type, rawoop)
  1890   init_class_id(Class_Initialize);
  1892   assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
  1893   assert(in(RawAddress) == rawoop, "proper init");
  1894   // Note:  allocation() can be NULL, for secondary initialization barriers
  1897 // Since this node is not matched, it will be processed by the
  1898 // register allocator.  Declare that there are no constraints
  1899 // on the allocation of the RawAddress edge.
  1900 const RegMask &InitializeNode::in_RegMask(uint idx) const {
  1901   // This edge should be set to top, by the set_complete.  But be conservative.
  1902   if (idx == InitializeNode::RawAddress)
  1903     return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
  1904   return RegMask::Empty;
  1907 Node* InitializeNode::memory(uint alias_idx) {
  1908   Node* mem = in(Memory);
  1909   if (mem->is_MergeMem()) {
  1910     return mem->as_MergeMem()->memory_at(alias_idx);
  1911   } else {
  1912     // incoming raw memory is not split
  1913     return mem;
  1917 bool InitializeNode::is_non_zero() {
  1918   if (is_complete())  return false;
  1919   remove_extra_zeroes();
  1920   return (req() > RawStores);
  1923 void InitializeNode::set_complete(PhaseGVN* phase) {
  1924   assert(!is_complete(), "caller responsibility");
  1925   _is_complete = true;
  1927   // After this node is complete, it contains a bunch of
  1928   // raw-memory initializations.  There is no need for
  1929   // it to have anything to do with non-raw memory effects.
  1930   // Therefore, tell all non-raw users to re-optimize themselves,
  1931   // after skipping the memory effects of this initialization.
  1932   PhaseIterGVN* igvn = phase->is_IterGVN();
  1933   if (igvn)  igvn->add_users_to_worklist(this);
  1936 // convenience function
  1937 // return false if the init contains any stores already
  1938 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
  1939   InitializeNode* init = initialization();
  1940   if (init == NULL || init->is_complete())  return false;
  1941   init->remove_extra_zeroes();
  1942   // for now, if this allocation has already collected any inits, bail:
  1943   if (init->is_non_zero())  return false;
  1944   init->set_complete(phase);
  1945   return true;
  1948 void InitializeNode::remove_extra_zeroes() {
  1949   if (req() == RawStores)  return;
  1950   Node* zmem = zero_memory();
  1951   uint fill = RawStores;
  1952   for (uint i = fill; i < req(); i++) {
  1953     Node* n = in(i);
  1954     if (n->is_top() || n == zmem)  continue;  // skip
  1955     if (fill < i)  set_req(fill, n);          // compact
  1956     ++fill;
  1958   // delete any empty spaces created:
  1959   while (fill < req()) {
  1960     del_req(fill);
  1964 // Helper for remembering which stores go with which offsets.
  1965 intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
  1966   if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
  1967   intptr_t offset = -1;
  1968   Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
  1969                                                phase, offset);
  1970   if (base == NULL)     return -1;  // something is dead,
  1971   if (offset < 0)       return -1;  //        dead, dead
  1972   return offset;
  1975 // Helper for proving that an initialization expression is
  1976 // "simple enough" to be folded into an object initialization.
  1977 // Attempts to prove that a store's initial value 'n' can be captured
  1978 // within the initialization without creating a vicious cycle, such as:
  1979 //     { Foo p = new Foo(); p.next = p; }
  1980 // True for constants and parameters and small combinations thereof.
  1981 bool InitializeNode::detect_init_independence(Node* n,
  1982                                               bool st_is_pinned,
  1983                                               int& count) {
  1984   if (n == NULL)      return true;   // (can this really happen?)
  1985   if (n->is_Proj())   n = n->in(0);
  1986   if (n == this)      return false;  // found a cycle
  1987   if (n->is_Con())    return true;
  1988   if (n->is_Start())  return true;   // params, etc., are OK
  1989   if (n->is_Root())   return true;   // even better
  1991   Node* ctl = n->in(0);
  1992   if (ctl != NULL && !ctl->is_top()) {
  1993     if (ctl->is_Proj())  ctl = ctl->in(0);
  1994     if (ctl == this)  return false;
  1996     // If we already know that the enclosing memory op is pinned right after
  1997     // the init, then any control flow that the store has picked up
  1998     // must have preceded the init, or else be equal to the init.
  1999     // Even after loop optimizations (which might change control edges)
  2000     // a store is never pinned *before* the availability of its inputs.
  2001     if (!MemNode::detect_dominating_control(ctl, this->in(0)))
  2002       return false;                  // failed to prove a good control
  2006   // Check data edges for possible dependencies on 'this'.
  2007   if ((count += 1) > 20)  return false;  // complexity limit
  2008   for (uint i = 1; i < n->req(); i++) {
  2009     Node* m = n->in(i);
  2010     if (m == NULL || m == n || m->is_top())  continue;
  2011     uint first_i = n->find_edge(m);
  2012     if (i != first_i)  continue;  // process duplicate edge just once
  2013     if (!detect_init_independence(m, st_is_pinned, count)) {
  2014       return false;
  2018   return true;
  2021 // Here are all the checks a Store must pass before it can be moved into
  2022 // an initialization.  Returns zero if a check fails.
  2023 // On success, returns the (constant) offset to which the store applies,
  2024 // within the initialized memory.
  2025 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase) {
  2026   const int FAIL = 0;
  2027   if (st->req() != MemNode::ValueIn + 1)
  2028     return FAIL;                // an inscrutable StoreNode (card mark?)
  2029   Node* ctl = st->in(MemNode::Control);
  2030   if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
  2031     return FAIL;                // must be unconditional after the initialization
  2032   Node* mem = st->in(MemNode::Memory);
  2033   if (!(mem->is_Proj() && mem->in(0) == this))
  2034     return FAIL;                // must not be preceded by other stores
  2035   Node* adr = st->in(MemNode::Address);
  2036   intptr_t offset;
  2037   AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
  2038   if (alloc == NULL)
  2039     return FAIL;                // inscrutable address
  2040   if (alloc != allocation())
  2041     return FAIL;                // wrong allocation!  (store needs to float up)
  2042   Node* val = st->in(MemNode::ValueIn);
  2043   int complexity_count = 0;
  2044   if (!detect_init_independence(val, true, complexity_count))
  2045     return FAIL;                // stored value must be 'simple enough'
  2047   return offset;                // success
  2050 // Find the captured store in(i) which corresponds to the range
  2051 // [start..start+size) in the initialized object.
  2052 // If there is one, return its index i.  If there isn't, return the
  2053 // negative of the index where it should be inserted.
  2054 // Return 0 if the queried range overlaps an initialization boundary
  2055 // or if dead code is encountered.
  2056 // If size_in_bytes is zero, do not bother with overlap checks.
  2057 int InitializeNode::captured_store_insertion_point(intptr_t start,
  2058                                                    int size_in_bytes,
  2059                                                    PhaseTransform* phase) {
  2060   const int FAIL = 0, MAX_STORE = BytesPerLong;
  2062   if (is_complete())
  2063     return FAIL;                // arraycopy got here first; punt
  2065   assert(allocation() != NULL, "must be present");
  2067   // no negatives, no header fields:
  2068   if (start < (intptr_t) sizeof(oopDesc))  return FAIL;
  2069   if (start < (intptr_t) sizeof(arrayOopDesc) &&
  2070       start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
  2072   // after a certain size, we bail out on tracking all the stores:
  2073   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
  2074   if (start >= ti_limit)  return FAIL;
  2076   for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
  2077     if (i >= limit)  return -(int)i; // not found; here is where to put it
  2079     Node*    st     = in(i);
  2080     intptr_t st_off = get_store_offset(st, phase);
  2081     if (st_off < 0) {
  2082       if (st != zero_memory()) {
  2083         return FAIL;            // bail out if there is dead garbage
  2085     } else if (st_off > start) {
  2086       // ...we are done, since stores are ordered
  2087       if (st_off < start + size_in_bytes) {
  2088         return FAIL;            // the next store overlaps
  2090       return -(int)i;           // not found; here is where to put it
  2091     } else if (st_off < start) {
  2092       if (size_in_bytes != 0 &&
  2093           start < st_off + MAX_STORE &&
  2094           start < st_off + st->as_Store()->memory_size()) {
  2095         return FAIL;            // the previous store overlaps
  2097     } else {
  2098       if (size_in_bytes != 0 &&
  2099           st->as_Store()->memory_size() != size_in_bytes) {
  2100         return FAIL;            // mismatched store size
  2102       return i;
  2105     ++i;
  2109 // Look for a captured store which initializes at the offset 'start'
  2110 // with the given size.  If there is no such store, and no other
  2111 // initialization interferes, then return zero_memory (the memory
  2112 // projection of the AllocateNode).
  2113 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
  2114                                           PhaseTransform* phase) {
  2115   assert(stores_are_sane(phase), "");
  2116   int i = captured_store_insertion_point(start, size_in_bytes, phase);
  2117   if (i == 0) {
  2118     return NULL;                // something is dead
  2119   } else if (i < 0) {
  2120     return zero_memory();       // just primordial zero bits here
  2121   } else {
  2122     Node* st = in(i);           // here is the store at this position
  2123     assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
  2124     return st;
  2128 // Create, as a raw pointer, an address within my new object at 'offset'.
  2129 Node* InitializeNode::make_raw_address(intptr_t offset,
  2130                                        PhaseTransform* phase) {
  2131   Node* addr = in(RawAddress);
  2132   if (offset != 0) {
  2133     Compile* C = phase->C;
  2134     addr = phase->transform( new (C, 4) AddPNode(C->top(), addr,
  2135                                                  phase->MakeConX(offset)) );
  2137   return addr;
  2140 // Clone the given store, converting it into a raw store
  2141 // initializing a field or element of my new object.
  2142 // Caller is responsible for retiring the original store,
  2143 // with subsume_node or the like.
  2144 //
  2145 // From the example above InitializeNode::InitializeNode,
  2146 // here are the old stores to be captured:
  2147 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
  2148 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
  2149 //
  2150 // Here is the changed code; note the extra edges on init:
  2151 //   alloc = (Allocate ...)
  2152 //   rawoop = alloc.RawAddress
  2153 //   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
  2154 //   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
  2155 //   init = (Initialize alloc.Control alloc.Memory rawoop
  2156 //                      rawstore1 rawstore2)
  2157 //
  2158 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
  2159                                     PhaseTransform* phase) {
  2160   assert(stores_are_sane(phase), "");
  2162   if (start < 0)  return NULL;
  2163   assert(can_capture_store(st, phase) == start, "sanity");
  2165   Compile* C = phase->C;
  2166   int size_in_bytes = st->memory_size();
  2167   int i = captured_store_insertion_point(start, size_in_bytes, phase);
  2168   if (i == 0)  return NULL;     // bail out
  2169   Node* prev_mem = NULL;        // raw memory for the captured store
  2170   if (i > 0) {
  2171     prev_mem = in(i);           // there is a pre-existing store under this one
  2172     set_req(i, C->top());       // temporarily disconnect it
  2173     // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
  2174   } else {
  2175     i = -i;                     // no pre-existing store
  2176     prev_mem = zero_memory();   // a slice of the newly allocated object
  2177     if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
  2178       set_req(--i, C->top());   // reuse this edge; it has been folded away
  2179     else
  2180       ins_req(i, C->top());     // build a new edge
  2182   Node* new_st = st->clone();
  2183   new_st->set_req(MemNode::Control, in(Control));
  2184   new_st->set_req(MemNode::Memory,  prev_mem);
  2185   new_st->set_req(MemNode::Address, make_raw_address(start, phase));
  2186   new_st = phase->transform(new_st);
  2188   // At this point, new_st might have swallowed a pre-existing store
  2189   // at the same offset, or perhaps new_st might have disappeared,
  2190   // if it redundantly stored the same value (or zero to fresh memory).
  2192   // In any case, wire it in:
  2193   set_req(i, new_st);
  2195   // The caller may now kill the old guy.
  2196   DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
  2197   assert(check_st == new_st || check_st == NULL, "must be findable");
  2198   assert(!is_complete(), "");
  2199   return new_st;
  2202 static bool store_constant(jlong* tiles, int num_tiles,
  2203                            intptr_t st_off, int st_size,
  2204                            jlong con) {
  2205   if ((st_off & (st_size-1)) != 0)
  2206     return false;               // strange store offset (assume size==2**N)
  2207   address addr = (address)tiles + st_off;
  2208   assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
  2209   switch (st_size) {
  2210   case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
  2211   case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
  2212   case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
  2213   case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
  2214   default: return false;        // strange store size (detect size!=2**N here)
  2216   return true;                  // return success to caller
  2219 // Coalesce subword constants into int constants and possibly
  2220 // into long constants.  The goal, if the CPU permits,
  2221 // is to initialize the object with a small number of 64-bit tiles.
  2222 // Also, convert floating-point constants to bit patterns.
  2223 // Non-constants are not relevant to this pass.
  2224 //
  2225 // In terms of the running example on InitializeNode::InitializeNode
  2226 // and InitializeNode::capture_store, here is the transformation
  2227 // of rawstore1 and rawstore2 into rawstore12:
  2228 //   alloc = (Allocate ...)
  2229 //   rawoop = alloc.RawAddress
  2230 //   tile12 = 0x00010002
  2231 //   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
  2232 //   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
  2233 //
  2234 void
  2235 InitializeNode::coalesce_subword_stores(intptr_t header_size,
  2236                                         Node* size_in_bytes,
  2237                                         PhaseGVN* phase) {
  2238   Compile* C = phase->C;
  2240   assert(stores_are_sane(phase), "");
  2241   // Note:  After this pass, they are not completely sane,
  2242   // since there may be some overlaps.
  2244   int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
  2246   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
  2247   intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
  2248   size_limit = MIN2(size_limit, ti_limit);
  2249   size_limit = align_size_up(size_limit, BytesPerLong);
  2250   int num_tiles = size_limit / BytesPerLong;
  2252   // allocate space for the tile map:
  2253   const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
  2254   jlong  tiles_buf[small_len];
  2255   Node*  nodes_buf[small_len];
  2256   jlong  inits_buf[small_len];
  2257   jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
  2258                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
  2259   Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
  2260                   : NEW_RESOURCE_ARRAY(Node*, num_tiles));
  2261   jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
  2262                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
  2263   // tiles: exact bitwise model of all primitive constants
  2264   // nodes: last constant-storing node subsumed into the tiles model
  2265   // inits: which bytes (in each tile) are touched by any initializations
  2267   //// Pass A: Fill in the tile model with any relevant stores.
  2269   Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
  2270   Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
  2271   Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
  2272   Node* zmem = zero_memory(); // initially zero memory state
  2273   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
  2274     Node* st = in(i);
  2275     intptr_t st_off = get_store_offset(st, phase);
  2277     // Figure out the store's offset and constant value:
  2278     if (st_off < header_size)             continue; //skip (ignore header)
  2279     if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
  2280     int st_size = st->as_Store()->memory_size();
  2281     if (st_off + st_size > size_limit)    break;
  2283     // Record which bytes are touched, whether by constant or not.
  2284     if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
  2285       continue;                 // skip (strange store size)
  2287     const Type* val = phase->type(st->in(MemNode::ValueIn));
  2288     if (!val->singleton())                continue; //skip (non-con store)
  2289     BasicType type = val->basic_type();
  2291     jlong con = 0;
  2292     switch (type) {
  2293     case T_INT:    con = val->is_int()->get_con();  break;
  2294     case T_LONG:   con = val->is_long()->get_con(); break;
  2295     case T_FLOAT:  con = jint_cast(val->getf());    break;
  2296     case T_DOUBLE: con = jlong_cast(val->getd());   break;
  2297     default:                              continue; //skip (odd store type)
  2300     if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
  2301         st->Opcode() == Op_StoreL) {
  2302       continue;                 // This StoreL is already optimal.
  2305     // Store down the constant.
  2306     store_constant(tiles, num_tiles, st_off, st_size, con);
  2308     intptr_t j = st_off >> LogBytesPerLong;
  2310     if (type == T_INT && st_size == BytesPerInt
  2311         && (st_off & BytesPerInt) == BytesPerInt) {
  2312       jlong lcon = tiles[j];
  2313       if (!Matcher::isSimpleConstant64(lcon) &&
  2314           st->Opcode() == Op_StoreI) {
  2315         // This StoreI is already optimal by itself.
  2316         jint* intcon = (jint*) &tiles[j];
  2317         intcon[1] = 0;  // undo the store_constant()
  2319         // If the previous store is also optimal by itself, back up and
  2320         // undo the action of the previous loop iteration... if we can.
  2321         // But if we can't, just let the previous half take care of itself.
  2322         st = nodes[j];
  2323         st_off -= BytesPerInt;
  2324         con = intcon[0];
  2325         if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
  2326           assert(st_off >= header_size, "still ignoring header");
  2327           assert(get_store_offset(st, phase) == st_off, "must be");
  2328           assert(in(i-1) == zmem, "must be");
  2329           DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
  2330           assert(con == tcon->is_int()->get_con(), "must be");
  2331           // Undo the effects of the previous loop trip, which swallowed st:
  2332           intcon[0] = 0;        // undo store_constant()
  2333           set_req(i-1, st);     // undo set_req(i, zmem)
  2334           nodes[j] = NULL;      // undo nodes[j] = st
  2335           --old_subword;        // undo ++old_subword
  2337         continue;               // This StoreI is already optimal.
  2341     // This store is not needed.
  2342     set_req(i, zmem);
  2343     nodes[j] = st;              // record for the moment
  2344     if (st_size < BytesPerLong) // something has changed
  2345           ++old_subword;        // includes int/float, but who's counting...
  2346     else  ++old_long;
  2349   if ((old_subword + old_long) == 0)
  2350     return;                     // nothing more to do
  2352   //// Pass B: Convert any non-zero tiles into optimal constant stores.
  2353   // Be sure to insert them before overlapping non-constant stores.
  2354   // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
  2355   for (int j = 0; j < num_tiles; j++) {
  2356     jlong con  = tiles[j];
  2357     jlong init = inits[j];
  2358     if (con == 0)  continue;
  2359     jint con0,  con1;           // split the constant, address-wise
  2360     jint init0, init1;          // split the init map, address-wise
  2361     { union { jlong con; jint intcon[2]; } u;
  2362       u.con = con;
  2363       con0  = u.intcon[0];
  2364       con1  = u.intcon[1];
  2365       u.con = init;
  2366       init0 = u.intcon[0];
  2367       init1 = u.intcon[1];
  2370     Node* old = nodes[j];
  2371     assert(old != NULL, "need the prior store");
  2372     intptr_t offset = (j * BytesPerLong);
  2374     bool split = !Matcher::isSimpleConstant64(con);
  2376     if (offset < header_size) {
  2377       assert(offset + BytesPerInt >= header_size, "second int counts");
  2378       assert(*(jint*)&tiles[j] == 0, "junk in header");
  2379       split = true;             // only the second word counts
  2380       // Example:  int a[] = { 42 ... }
  2381     } else if (con0 == 0 && init0 == -1) {
  2382       split = true;             // first word is covered by full inits
  2383       // Example:  int a[] = { ... foo(), 42 ... }
  2384     } else if (con1 == 0 && init1 == -1) {
  2385       split = true;             // second word is covered by full inits
  2386       // Example:  int a[] = { ... 42, foo() ... }
  2389     // Here's a case where init0 is neither 0 nor -1:
  2390     //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
  2391     // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
  2392     // In this case the tile is not split; it is (jlong)42.
  2393     // The big tile is stored down, and then the foo() value is inserted.
  2394     // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
  2396     Node* ctl = old->in(MemNode::Control);
  2397     Node* adr = make_raw_address(offset, phase);
  2398     const TypePtr* atp = TypeRawPtr::BOTTOM;
  2400     // One or two coalesced stores to plop down.
  2401     Node*    st[2];
  2402     intptr_t off[2];
  2403     int  nst = 0;
  2404     if (!split) {
  2405       ++new_long;
  2406       off[nst] = offset;
  2407       st[nst++] = StoreNode::make(C, ctl, zmem, adr, atp,
  2408                                   phase->longcon(con), T_LONG);
  2409     } else {
  2410       // Omit either if it is a zero.
  2411       if (con0 != 0) {
  2412         ++new_int;
  2413         off[nst]  = offset;
  2414         st[nst++] = StoreNode::make(C, ctl, zmem, adr, atp,
  2415                                     phase->intcon(con0), T_INT);
  2417       if (con1 != 0) {
  2418         ++new_int;
  2419         offset += BytesPerInt;
  2420         adr = make_raw_address(offset, phase);
  2421         off[nst]  = offset;
  2422         st[nst++] = StoreNode::make(C, ctl, zmem, adr, atp,
  2423                                     phase->intcon(con1), T_INT);
  2427     // Insert second store first, then the first before the second.
  2428     // Insert each one just before any overlapping non-constant stores.
  2429     while (nst > 0) {
  2430       Node* st1 = st[--nst];
  2431       C->copy_node_notes_to(st1, old);
  2432       st1 = phase->transform(st1);
  2433       offset = off[nst];
  2434       assert(offset >= header_size, "do not smash header");
  2435       int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
  2436       guarantee(ins_idx != 0, "must re-insert constant store");
  2437       if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
  2438       if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
  2439         set_req(--ins_idx, st1);
  2440       else
  2441         ins_req(ins_idx, st1);
  2445   if (PrintCompilation && WizardMode)
  2446     tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
  2447                   old_subword, old_long, new_int, new_long);
  2448   if (C->log() != NULL)
  2449     C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
  2450                    old_subword, old_long, new_int, new_long);
  2452   // Clean up any remaining occurrences of zmem:
  2453   remove_extra_zeroes();
  2456 // Explore forward from in(start) to find the first fully initialized
  2457 // word, and return its offset.  Skip groups of subword stores which
  2458 // together initialize full words.  If in(start) is itself part of a
  2459 // fully initialized word, return the offset of in(start).  If there
  2460 // are no following full-word stores, or if something is fishy, return
  2461 // a negative value.
  2462 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
  2463   int       int_map = 0;
  2464   intptr_t  int_map_off = 0;
  2465   const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
  2467   for (uint i = start, limit = req(); i < limit; i++) {
  2468     Node* st = in(i);
  2470     intptr_t st_off = get_store_offset(st, phase);
  2471     if (st_off < 0)  break;  // return conservative answer
  2473     int st_size = st->as_Store()->memory_size();
  2474     if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
  2475       return st_off;            // we found a complete word init
  2478     // update the map:
  2480     intptr_t this_int_off = align_size_down(st_off, BytesPerInt);
  2481     if (this_int_off != int_map_off) {
  2482       // reset the map:
  2483       int_map = 0;
  2484       int_map_off = this_int_off;
  2487     int subword_off = st_off - this_int_off;
  2488     int_map |= right_n_bits(st_size) << subword_off;
  2489     if ((int_map & FULL_MAP) == FULL_MAP) {
  2490       return this_int_off;      // we found a complete word init
  2493     // Did this store hit or cross the word boundary?
  2494     intptr_t next_int_off = align_size_down(st_off + st_size, BytesPerInt);
  2495     if (next_int_off == this_int_off + BytesPerInt) {
  2496       // We passed the current int, without fully initializing it.
  2497       int_map_off = next_int_off;
  2498       int_map >>= BytesPerInt;
  2499     } else if (next_int_off > this_int_off + BytesPerInt) {
  2500       // We passed the current and next int.
  2501       return this_int_off + BytesPerInt;
  2505   return -1;
  2509 // Called when the associated AllocateNode is expanded into CFG.
  2510 // At this point, we may perform additional optimizations.
  2511 // Linearize the stores by ascending offset, to make memory
  2512 // activity as coherent as possible.
  2513 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
  2514                                       intptr_t header_size,
  2515                                       Node* size_in_bytes,
  2516                                       PhaseGVN* phase) {
  2517   assert(!is_complete(), "not already complete");
  2518   assert(stores_are_sane(phase), "");
  2519   assert(allocation() != NULL, "must be present");
  2521   remove_extra_zeroes();
  2523   if (ReduceFieldZeroing || ReduceBulkZeroing)
  2524     // reduce instruction count for common initialization patterns
  2525     coalesce_subword_stores(header_size, size_in_bytes, phase);
  2527   Node* zmem = zero_memory();   // initially zero memory state
  2528   Node* inits = zmem;           // accumulating a linearized chain of inits
  2529   #ifdef ASSERT
  2530   intptr_t last_init_off = sizeof(oopDesc);  // previous init offset
  2531   intptr_t last_init_end = sizeof(oopDesc);  // previous init offset+size
  2532   intptr_t last_tile_end = sizeof(oopDesc);  // previous tile offset+size
  2533   #endif
  2534   intptr_t zeroes_done = header_size;
  2536   bool do_zeroing = true;       // we might give up if inits are very sparse
  2537   int  big_init_gaps = 0;       // how many large gaps have we seen?
  2539   if (ZeroTLAB)  do_zeroing = false;
  2540   if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
  2542   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
  2543     Node* st = in(i);
  2544     intptr_t st_off = get_store_offset(st, phase);
  2545     if (st_off < 0)
  2546       break;                    // unknown junk in the inits
  2547     if (st->in(MemNode::Memory) != zmem)
  2548       break;                    // complicated store chains somehow in list
  2550     int st_size = st->as_Store()->memory_size();
  2551     intptr_t next_init_off = st_off + st_size;
  2553     if (do_zeroing && zeroes_done < next_init_off) {
  2554       // See if this store needs a zero before it or under it.
  2555       intptr_t zeroes_needed = st_off;
  2557       if (st_size < BytesPerInt) {
  2558         // Look for subword stores which only partially initialize words.
  2559         // If we find some, we must lay down some word-level zeroes first,
  2560         // underneath the subword stores.
  2561         //
  2562         // Examples:
  2563         //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
  2564         //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
  2565         //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
  2566         //
  2567         // Note:  coalesce_subword_stores may have already done this,
  2568         // if it was prompted by constant non-zero subword initializers.
  2569         // But this case can still arise with non-constant stores.
  2571         intptr_t next_full_store = find_next_fullword_store(i, phase);
  2573         // In the examples above:
  2574         //   in(i)          p   q   r   s     x   y     z
  2575         //   st_off        12  13  14  15    12  13    14
  2576         //   st_size        1   1   1   1     1   1     1
  2577         //   next_full_s.  12  16  16  16    16  16    16
  2578         //   z's_done      12  16  16  16    12  16    12
  2579         //   z's_needed    12  16  16  16    16  16    16
  2580         //   zsize          0   0   0   0     4   0     4
  2581         if (next_full_store < 0) {
  2582           // Conservative tack:  Zero to end of current word.
  2583           zeroes_needed = align_size_up(zeroes_needed, BytesPerInt);
  2584         } else {
  2585           // Zero to beginning of next fully initialized word.
  2586           // Or, don't zero at all, if we are already in that word.
  2587           assert(next_full_store >= zeroes_needed, "must go forward");
  2588           assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
  2589           zeroes_needed = next_full_store;
  2593       if (zeroes_needed > zeroes_done) {
  2594         intptr_t zsize = zeroes_needed - zeroes_done;
  2595         // Do some incremental zeroing on rawmem, in parallel with inits.
  2596         zeroes_done = align_size_down(zeroes_done, BytesPerInt);
  2597         rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
  2598                                               zeroes_done, zeroes_needed,
  2599                                               phase);
  2600         zeroes_done = zeroes_needed;
  2601         if (zsize > Matcher::init_array_short_size && ++big_init_gaps > 2)
  2602           do_zeroing = false;   // leave the hole, next time
  2606     // Collect the store and move on:
  2607     st->set_req(MemNode::Memory, inits);
  2608     inits = st;                 // put it on the linearized chain
  2609     set_req(i, zmem);           // unhook from previous position
  2611     if (zeroes_done == st_off)
  2612       zeroes_done = next_init_off;
  2614     assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
  2616     #ifdef ASSERT
  2617     // Various order invariants.  Weaker than stores_are_sane because
  2618     // a large constant tile can be filled in by smaller non-constant stores.
  2619     assert(st_off >= last_init_off, "inits do not reverse");
  2620     last_init_off = st_off;
  2621     const Type* val = NULL;
  2622     if (st_size >= BytesPerInt &&
  2623         (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
  2624         (int)val->basic_type() < (int)T_OBJECT) {
  2625       assert(st_off >= last_tile_end, "tiles do not overlap");
  2626       assert(st_off >= last_init_end, "tiles do not overwrite inits");
  2627       last_tile_end = MAX2(last_tile_end, next_init_off);
  2628     } else {
  2629       intptr_t st_tile_end = align_size_up(next_init_off, BytesPerLong);
  2630       assert(st_tile_end >= last_tile_end, "inits stay with tiles");
  2631       assert(st_off      >= last_init_end, "inits do not overlap");
  2632       last_init_end = next_init_off;  // it's a non-tile
  2634     #endif //ASSERT
  2637   remove_extra_zeroes();        // clear out all the zmems left over
  2638   add_req(inits);
  2640   if (!ZeroTLAB) {
  2641     // If anything remains to be zeroed, zero it all now.
  2642     zeroes_done = align_size_down(zeroes_done, BytesPerInt);
  2643     // if it is the last unused 4 bytes of an instance, forget about it
  2644     intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
  2645     if (zeroes_done + BytesPerLong >= size_limit) {
  2646       assert(allocation() != NULL, "");
  2647       Node* klass_node = allocation()->in(AllocateNode::KlassNode);
  2648       ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
  2649       if (zeroes_done == k->layout_helper())
  2650         zeroes_done = size_limit;
  2652     if (zeroes_done < size_limit) {
  2653       rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
  2654                                             zeroes_done, size_in_bytes, phase);
  2658   set_complete(phase);
  2659   return rawmem;
  2663 #ifdef ASSERT
  2664 bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
  2665   if (is_complete())
  2666     return true;                // stores could be anything at this point
  2667   intptr_t last_off = sizeof(oopDesc);
  2668   for (uint i = InitializeNode::RawStores; i < req(); i++) {
  2669     Node* st = in(i);
  2670     intptr_t st_off = get_store_offset(st, phase);
  2671     if (st_off < 0)  continue;  // ignore dead garbage
  2672     if (last_off > st_off) {
  2673       tty->print_cr("*** bad store offset at %d: %d > %d", i, last_off, st_off);
  2674       this->dump(2);
  2675       assert(false, "ascending store offsets");
  2676       return false;
  2678     last_off = st_off + st->as_Store()->memory_size();
  2680   return true;
  2682 #endif //ASSERT
  2687 //============================MergeMemNode=====================================
  2688 //
  2689 // SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
  2690 // contributing store or call operations.  Each contributor provides the memory
  2691 // state for a particular "alias type" (see Compile::alias_type).  For example,
  2692 // if a MergeMem has an input X for alias category #6, then any memory reference
  2693 // to alias category #6 may use X as its memory state input, as an exact equivalent
  2694 // to using the MergeMem as a whole.
  2695 //   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
  2696 //
  2697 // (Here, the <N> notation gives the index of the relevant adr_type.)
  2698 //
  2699 // In one special case (and more cases in the future), alias categories overlap.
  2700 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
  2701 // states.  Therefore, if a MergeMem has only one contributing input W for Bot,
  2702 // it is exactly equivalent to that state W:
  2703 //   MergeMem(<Bot>: W) <==> W
  2704 //
  2705 // Usually, the merge has more than one input.  In that case, where inputs
  2706 // overlap (i.e., one is Bot), the narrower alias type determines the memory
  2707 // state for that type, and the wider alias type (Bot) fills in everywhere else:
  2708 //   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
  2709 //   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
  2710 //
  2711 // A merge can take a "wide" memory state as one of its narrow inputs.
  2712 // This simply means that the merge observes out only the relevant parts of
  2713 // the wide input.  That is, wide memory states arriving at narrow merge inputs
  2714 // are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
  2715 //
  2716 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
  2717 // and that memory slices "leak through":
  2718 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
  2719 //
  2720 // But, in such a cascade, repeated memory slices can "block the leak":
  2721 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
  2722 //
  2723 // In the last example, Y is not part of the combined memory state of the
  2724 // outermost MergeMem.  The system must, of course, prevent unschedulable
  2725 // memory states from arising, so you can be sure that the state Y is somehow
  2726 // a precursor to state Y'.
  2727 //
  2728 //
  2729 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
  2730 // of each MergeMemNode array are exactly the numerical alias indexes, including
  2731 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
  2732 // Compile::alias_type (and kin) produce and manage these indexes.
  2733 //
  2734 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
  2735 // (Note that this provides quick access to the top node inside MergeMem methods,
  2736 // without the need to reach out via TLS to Compile::current.)
  2737 //
  2738 // As a consequence of what was just described, a MergeMem that represents a full
  2739 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
  2740 // containing all alias categories.
  2741 //
  2742 // MergeMem nodes never (?) have control inputs, so in(0) is NULL.
  2743 //
  2744 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
  2745 // a memory state for the alias type <N>, or else the top node, meaning that
  2746 // there is no particular input for that alias type.  Note that the length of
  2747 // a MergeMem is variable, and may be extended at any time to accommodate new
  2748 // memory states at larger alias indexes.  When merges grow, they are of course
  2749 // filled with "top" in the unused in() positions.
  2750 //
  2751 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
  2752 // (Top was chosen because it works smoothly with passes like GCM.)
  2753 //
  2754 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
  2755 // the type of random VM bits like TLS references.)  Since it is always the
  2756 // first non-Bot memory slice, some low-level loops use it to initialize an
  2757 // index variable:  for (i = AliasIdxRaw; i < req(); i++).
  2758 //
  2759 //
  2760 // ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
  2761 // the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
  2762 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
  2763 // it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
  2764 // or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
  2765 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
  2766 //
  2767 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
  2768 // really that different from the other memory inputs.  An abbreviation called
  2769 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
  2770 //
  2771 //
  2772 // PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
  2773 // partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
  2774 // that "emerges though" the base memory will be marked as excluding the alias types
  2775 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
  2776 //
  2777 //   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
  2778 //     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
  2779 //
  2780 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
  2781 // (It is currently unimplemented.)  As you can see, the resulting merge is
  2782 // actually a disjoint union of memory states, rather than an overlay.
  2783 //
  2785 //------------------------------MergeMemNode-----------------------------------
  2786 Node* MergeMemNode::make_empty_memory() {
  2787   Node* empty_memory = (Node*) Compile::current()->top();
  2788   assert(empty_memory->is_top(), "correct sentinel identity");
  2789   return empty_memory;
  2792 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
  2793   init_class_id(Class_MergeMem);
  2794   // all inputs are nullified in Node::Node(int)
  2795   // set_input(0, NULL);  // no control input
  2797   // Initialize the edges uniformly to top, for starters.
  2798   Node* empty_mem = make_empty_memory();
  2799   for (uint i = Compile::AliasIdxTop; i < req(); i++) {
  2800     init_req(i,empty_mem);
  2802   assert(empty_memory() == empty_mem, "");
  2804   if( new_base != NULL && new_base->is_MergeMem() ) {
  2805     MergeMemNode* mdef = new_base->as_MergeMem();
  2806     assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
  2807     for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
  2808       mms.set_memory(mms.memory2());
  2810     assert(base_memory() == mdef->base_memory(), "");
  2811   } else {
  2812     set_base_memory(new_base);
  2816 // Make a new, untransformed MergeMem with the same base as 'mem'.
  2817 // If mem is itself a MergeMem, populate the result with the same edges.
  2818 MergeMemNode* MergeMemNode::make(Compile* C, Node* mem) {
  2819   return new(C, 1+Compile::AliasIdxRaw) MergeMemNode(mem);
  2822 //------------------------------cmp--------------------------------------------
  2823 uint MergeMemNode::hash() const { return NO_HASH; }
  2824 uint MergeMemNode::cmp( const Node &n ) const {
  2825   return (&n == this);          // Always fail except on self
  2828 //------------------------------Identity---------------------------------------
  2829 Node* MergeMemNode::Identity(PhaseTransform *phase) {
  2830   // Identity if this merge point does not record any interesting memory
  2831   // disambiguations.
  2832   Node* base_mem = base_memory();
  2833   Node* empty_mem = empty_memory();
  2834   if (base_mem != empty_mem) {  // Memory path is not dead?
  2835     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  2836       Node* mem = in(i);
  2837       if (mem != empty_mem && mem != base_mem) {
  2838         return this;            // Many memory splits; no change
  2842   return base_mem;              // No memory splits; ID on the one true input
  2845 //------------------------------Ideal------------------------------------------
  2846 // This method is invoked recursively on chains of MergeMem nodes
  2847 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  2848   // Remove chain'd MergeMems
  2849   //
  2850   // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
  2851   // relative to the "in(Bot)".  Since we are patching both at the same time,
  2852   // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
  2853   // but rewrite each "in(i)" relative to the new "in(Bot)".
  2854   Node *progress = NULL;
  2857   Node* old_base = base_memory();
  2858   Node* empty_mem = empty_memory();
  2859   if (old_base == empty_mem)
  2860     return NULL; // Dead memory path.
  2862   MergeMemNode* old_mbase;
  2863   if (old_base != NULL && old_base->is_MergeMem())
  2864     old_mbase = old_base->as_MergeMem();
  2865   else
  2866     old_mbase = NULL;
  2867   Node* new_base = old_base;
  2869   // simplify stacked MergeMems in base memory
  2870   if (old_mbase)  new_base = old_mbase->base_memory();
  2872   // the base memory might contribute new slices beyond my req()
  2873   if (old_mbase)  grow_to_match(old_mbase);
  2875   // Look carefully at the base node if it is a phi.
  2876   PhiNode* phi_base;
  2877   if (new_base != NULL && new_base->is_Phi())
  2878     phi_base = new_base->as_Phi();
  2879   else
  2880     phi_base = NULL;
  2882   Node*    phi_reg = NULL;
  2883   uint     phi_len = (uint)-1;
  2884   if (phi_base != NULL && !phi_base->is_copy()) {
  2885     // do not examine phi if degraded to a copy
  2886     phi_reg = phi_base->region();
  2887     phi_len = phi_base->req();
  2888     // see if the phi is unfinished
  2889     for (uint i = 1; i < phi_len; i++) {
  2890       if (phi_base->in(i) == NULL) {
  2891         // incomplete phi; do not look at it yet!
  2892         phi_reg = NULL;
  2893         phi_len = (uint)-1;
  2894         break;
  2899   // Note:  We do not call verify_sparse on entry, because inputs
  2900   // can normalize to the base_memory via subsume_node or similar
  2901   // mechanisms.  This method repairs that damage.
  2903   assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
  2905   // Look at each slice.
  2906   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  2907     Node* old_in = in(i);
  2908     // calculate the old memory value
  2909     Node* old_mem = old_in;
  2910     if (old_mem == empty_mem)  old_mem = old_base;
  2911     assert(old_mem == memory_at(i), "");
  2913     // maybe update (reslice) the old memory value
  2915     // simplify stacked MergeMems
  2916     Node* new_mem = old_mem;
  2917     MergeMemNode* old_mmem;
  2918     if (old_mem != NULL && old_mem->is_MergeMem())
  2919       old_mmem = old_mem->as_MergeMem();
  2920     else
  2921       old_mmem = NULL;
  2922     if (old_mmem == this) {
  2923       // This can happen if loops break up and safepoints disappear.
  2924       // A merge of BotPtr (default) with a RawPtr memory derived from a
  2925       // safepoint can be rewritten to a merge of the same BotPtr with
  2926       // the BotPtr phi coming into the loop.  If that phi disappears
  2927       // also, we can end up with a self-loop of the mergemem.
  2928       // In general, if loops degenerate and memory effects disappear,
  2929       // a mergemem can be left looking at itself.  This simply means
  2930       // that the mergemem's default should be used, since there is
  2931       // no longer any apparent effect on this slice.
  2932       // Note: If a memory slice is a MergeMem cycle, it is unreachable
  2933       //       from start.  Update the input to TOP.
  2934       new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
  2936     else if (old_mmem != NULL) {
  2937       new_mem = old_mmem->memory_at(i);
  2939     // else preceeding memory was not a MergeMem
  2941     // replace equivalent phis (unfortunately, they do not GVN together)
  2942     if (new_mem != NULL && new_mem != new_base &&
  2943         new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
  2944       if (new_mem->is_Phi()) {
  2945         PhiNode* phi_mem = new_mem->as_Phi();
  2946         for (uint i = 1; i < phi_len; i++) {
  2947           if (phi_base->in(i) != phi_mem->in(i)) {
  2948             phi_mem = NULL;
  2949             break;
  2952         if (phi_mem != NULL) {
  2953           // equivalent phi nodes; revert to the def
  2954           new_mem = new_base;
  2959     // maybe store down a new value
  2960     Node* new_in = new_mem;
  2961     if (new_in == new_base)  new_in = empty_mem;
  2963     if (new_in != old_in) {
  2964       // Warning:  Do not combine this "if" with the previous "if"
  2965       // A memory slice might have be be rewritten even if it is semantically
  2966       // unchanged, if the base_memory value has changed.
  2967       set_req(i, new_in);
  2968       progress = this;          // Report progress
  2972   if (new_base != old_base) {
  2973     set_req(Compile::AliasIdxBot, new_base);
  2974     // Don't use set_base_memory(new_base), because we need to update du.
  2975     assert(base_memory() == new_base, "");
  2976     progress = this;
  2979   if( base_memory() == this ) {
  2980     // a self cycle indicates this memory path is dead
  2981     set_req(Compile::AliasIdxBot, empty_mem);
  2984   // Resolve external cycles by calling Ideal on a MergeMem base_memory
  2985   // Recursion must occur after the self cycle check above
  2986   if( base_memory()->is_MergeMem() ) {
  2987     MergeMemNode *new_mbase = base_memory()->as_MergeMem();
  2988     Node *m = phase->transform(new_mbase);  // Rollup any cycles
  2989     if( m != NULL && (m->is_top() ||
  2990         m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem) ) {
  2991       // propagate rollup of dead cycle to self
  2992       set_req(Compile::AliasIdxBot, empty_mem);
  2996   if( base_memory() == empty_mem ) {
  2997     progress = this;
  2998     // Cut inputs during Parse phase only.
  2999     // During Optimize phase a dead MergeMem node will be subsumed by Top.
  3000     if( !can_reshape ) {
  3001       for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3002         if( in(i) != empty_mem ) { set_req(i, empty_mem); }
  3007   if( !progress && base_memory()->is_Phi() && can_reshape ) {
  3008     // Check if PhiNode::Ideal's "Split phis through memory merges"
  3009     // transform should be attempted. Look for this->phi->this cycle.
  3010     uint merge_width = req();
  3011     if (merge_width > Compile::AliasIdxRaw) {
  3012       PhiNode* phi = base_memory()->as_Phi();
  3013       for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
  3014         if (phi->in(i) == this) {
  3015           phase->is_IterGVN()->_worklist.push(phi);
  3016           break;
  3022   assert(verify_sparse(), "please, no dups of base");
  3023   return progress;
  3026 //-------------------------set_base_memory-------------------------------------
  3027 void MergeMemNode::set_base_memory(Node *new_base) {
  3028   Node* empty_mem = empty_memory();
  3029   set_req(Compile::AliasIdxBot, new_base);
  3030   assert(memory_at(req()) == new_base, "must set default memory");
  3031   // Clear out other occurrences of new_base:
  3032   if (new_base != empty_mem) {
  3033     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3034       if (in(i) == new_base)  set_req(i, empty_mem);
  3039 //------------------------------out_RegMask------------------------------------
  3040 const RegMask &MergeMemNode::out_RegMask() const {
  3041   return RegMask::Empty;
  3044 //------------------------------dump_spec--------------------------------------
  3045 #ifndef PRODUCT
  3046 void MergeMemNode::dump_spec(outputStream *st) const {
  3047   st->print(" {");
  3048   Node* base_mem = base_memory();
  3049   for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
  3050     Node* mem = memory_at(i);
  3051     if (mem == base_mem) { st->print(" -"); continue; }
  3052     st->print( " N%d:", mem->_idx );
  3053     Compile::current()->get_adr_type(i)->dump_on(st);
  3055   st->print(" }");
  3057 #endif // !PRODUCT
  3060 #ifdef ASSERT
  3061 static bool might_be_same(Node* a, Node* b) {
  3062   if (a == b)  return true;
  3063   if (!(a->is_Phi() || b->is_Phi()))  return false;
  3064   // phis shift around during optimization
  3065   return true;  // pretty stupid...
  3068 // verify a narrow slice (either incoming or outgoing)
  3069 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
  3070   if (!VerifyAliases)       return;  // don't bother to verify unless requested
  3071   if (is_error_reported())  return;  // muzzle asserts when debugging an error
  3072   if (Node::in_dump())      return;  // muzzle asserts when printing
  3073   assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
  3074   assert(n != NULL, "");
  3075   // Elide intervening MergeMem's
  3076   while (n->is_MergeMem()) {
  3077     n = n->as_MergeMem()->memory_at(alias_idx);
  3079   Compile* C = Compile::current();
  3080   const TypePtr* n_adr_type = n->adr_type();
  3081   if (n == m->empty_memory()) {
  3082     // Implicit copy of base_memory()
  3083   } else if (n_adr_type != TypePtr::BOTTOM) {
  3084     assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
  3085     assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
  3086   } else {
  3087     // A few places like make_runtime_call "know" that VM calls are narrow,
  3088     // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
  3089     bool expected_wide_mem = false;
  3090     if (n == m->base_memory()) {
  3091       expected_wide_mem = true;
  3092     } else if (alias_idx == Compile::AliasIdxRaw ||
  3093                n == m->memory_at(Compile::AliasIdxRaw)) {
  3094       expected_wide_mem = true;
  3095     } else if (!C->alias_type(alias_idx)->is_rewritable()) {
  3096       // memory can "leak through" calls on channels that
  3097       // are write-once.  Allow this also.
  3098       expected_wide_mem = true;
  3100     assert(expected_wide_mem, "expected narrow slice replacement");
  3103 #else // !ASSERT
  3104 #define verify_memory_slice(m,i,n) (0)  // PRODUCT version is no-op
  3105 #endif
  3108 //-----------------------------memory_at---------------------------------------
  3109 Node* MergeMemNode::memory_at(uint alias_idx) const {
  3110   assert(alias_idx >= Compile::AliasIdxRaw ||
  3111          alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
  3112          "must avoid base_memory and AliasIdxTop");
  3114   // Otherwise, it is a narrow slice.
  3115   Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
  3116   Compile *C = Compile::current();
  3117   if (is_empty_memory(n)) {
  3118     // the array is sparse; empty slots are the "top" node
  3119     n = base_memory();
  3120     assert(Node::in_dump()
  3121            || n == NULL || n->bottom_type() == Type::TOP
  3122            || n->adr_type() == TypePtr::BOTTOM
  3123            || n->adr_type() == TypeRawPtr::BOTTOM
  3124            || Compile::current()->AliasLevel() == 0,
  3125            "must be a wide memory");
  3126     // AliasLevel == 0 if we are organizing the memory states manually.
  3127     // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
  3128   } else {
  3129     // make sure the stored slice is sane
  3130     #ifdef ASSERT
  3131     if (is_error_reported() || Node::in_dump()) {
  3132     } else if (might_be_same(n, base_memory())) {
  3133       // Give it a pass:  It is a mostly harmless repetition of the base.
  3134       // This can arise normally from node subsumption during optimization.
  3135     } else {
  3136       verify_memory_slice(this, alias_idx, n);
  3138     #endif
  3140   return n;
  3143 //---------------------------set_memory_at-------------------------------------
  3144 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
  3145   verify_memory_slice(this, alias_idx, n);
  3146   Node* empty_mem = empty_memory();
  3147   if (n == base_memory())  n = empty_mem;  // collapse default
  3148   uint need_req = alias_idx+1;
  3149   if (req() < need_req) {
  3150     if (n == empty_mem)  return;  // already the default, so do not grow me
  3151     // grow the sparse array
  3152     do {
  3153       add_req(empty_mem);
  3154     } while (req() < need_req);
  3156   set_req( alias_idx, n );
  3161 //--------------------------iteration_setup------------------------------------
  3162 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
  3163   if (other != NULL) {
  3164     grow_to_match(other);
  3165     // invariant:  the finite support of mm2 is within mm->req()
  3166     #ifdef ASSERT
  3167     for (uint i = req(); i < other->req(); i++) {
  3168       assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
  3170     #endif
  3172   // Replace spurious copies of base_memory by top.
  3173   Node* base_mem = base_memory();
  3174   if (base_mem != NULL && !base_mem->is_top()) {
  3175     for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
  3176       if (in(i) == base_mem)
  3177         set_req(i, empty_memory());
  3182 //---------------------------grow_to_match-------------------------------------
  3183 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
  3184   Node* empty_mem = empty_memory();
  3185   assert(other->is_empty_memory(empty_mem), "consistent sentinels");
  3186   // look for the finite support of the other memory
  3187   for (uint i = other->req(); --i >= req(); ) {
  3188     if (other->in(i) != empty_mem) {
  3189       uint new_len = i+1;
  3190       while (req() < new_len)  add_req(empty_mem);
  3191       break;
  3196 //---------------------------verify_sparse-------------------------------------
  3197 #ifndef PRODUCT
  3198 bool MergeMemNode::verify_sparse() const {
  3199   assert(is_empty_memory(make_empty_memory()), "sane sentinel");
  3200   Node* base_mem = base_memory();
  3201   // The following can happen in degenerate cases, since empty==top.
  3202   if (is_empty_memory(base_mem))  return true;
  3203   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3204     assert(in(i) != NULL, "sane slice");
  3205     if (in(i) == base_mem)  return false;  // should have been the sentinel value!
  3207   return true;
  3210 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
  3211   Node* n;
  3212   n = mm->in(idx);
  3213   if (mem == n)  return true;  // might be empty_memory()
  3214   n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
  3215   if (mem == n)  return true;
  3216   while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
  3217     if (mem == n)  return true;
  3218     if (n == NULL)  break;
  3220   return false;
  3222 #endif // !PRODUCT

mercurial