src/share/vm/opto/macro.cpp

Sat, 01 Dec 2007 00:00:00 +0000

author
duke
date
Sat, 01 Dec 2007 00:00:00 +0000
changeset 435
a61af66fc99e
child 498
eac007780a58
permissions
-rw-r--r--

Initial load

     1 /*
     2  * Copyright 2005-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_macro.cpp.incl"
    29 //
    30 // Replace any references to "oldref" in inputs to "use" with "newref".
    31 // Returns the number of replacements made.
    32 //
    33 int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) {
    34   int nreplacements = 0;
    35   uint req = use->req();
    36   for (uint j = 0; j < use->len(); j++) {
    37     Node *uin = use->in(j);
    38     if (uin == oldref) {
    39       if (j < req)
    40         use->set_req(j, newref);
    41       else
    42         use->set_prec(j, newref);
    43       nreplacements++;
    44     } else if (j >= req && uin == NULL) {
    45       break;
    46     }
    47   }
    48   return nreplacements;
    49 }
    51 void PhaseMacroExpand::copy_call_debug_info(CallNode *oldcall, CallNode * newcall) {
    52   // Copy debug information and adjust JVMState information
    53   uint old_dbg_start = oldcall->tf()->domain()->cnt();
    54   uint new_dbg_start = newcall->tf()->domain()->cnt();
    55   int jvms_adj  = new_dbg_start - old_dbg_start;
    56   assert (new_dbg_start == newcall->req(), "argument count mismatch");
    57   for (uint i = old_dbg_start; i < oldcall->req(); i++) {
    58     newcall->add_req(oldcall->in(i));
    59   }
    60   newcall->set_jvms(oldcall->jvms());
    61   for (JVMState *jvms = newcall->jvms(); jvms != NULL; jvms = jvms->caller()) {
    62     jvms->set_map(newcall);
    63     jvms->set_locoff(jvms->locoff()+jvms_adj);
    64     jvms->set_stkoff(jvms->stkoff()+jvms_adj);
    65     jvms->set_monoff(jvms->monoff()+jvms_adj);
    66     jvms->set_endoff(jvms->endoff()+jvms_adj);
    67   }
    68 }
    70 Node* PhaseMacroExpand::opt_iff(Node* region, Node* iff) {
    71   IfNode *opt_iff = transform_later(iff)->as_If();
    73   // Fast path taken; set region slot 2
    74   Node *fast_taken = transform_later( new (C, 1) IfFalseNode(opt_iff) );
    75   region->init_req(2,fast_taken); // Capture fast-control
    77   // Fast path not-taken, i.e. slow path
    78   Node *slow_taken = transform_later( new (C, 1) IfTrueNode(opt_iff) );
    79   return slow_taken;
    80 }
    82 //--------------------copy_predefined_input_for_runtime_call--------------------
    83 void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) {
    84   // Set fixed predefined input arguments
    85   call->init_req( TypeFunc::Control, ctrl );
    86   call->init_req( TypeFunc::I_O    , oldcall->in( TypeFunc::I_O) );
    87   call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ?????
    88   call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) );
    89   call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) );
    90 }
    92 //------------------------------make_slow_call---------------------------------
    93 CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type, address slow_call, const char* leaf_name, Node* slow_path, Node* parm0, Node* parm1) {
    95   // Slow-path call
    96   int size = slow_call_type->domain()->cnt();
    97  CallNode *call = leaf_name
    98    ? (CallNode*)new (C, size) CallLeafNode      ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM )
    99    : (CallNode*)new (C, size) CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), oldcall->jvms()->bci(), TypeRawPtr::BOTTOM );
   101   // Slow path call has no side-effects, uses few values
   102   copy_predefined_input_for_runtime_call(slow_path, oldcall, call );
   103   if (parm0 != NULL)  call->init_req(TypeFunc::Parms+0, parm0);
   104   if (parm1 != NULL)  call->init_req(TypeFunc::Parms+1, parm1);
   105   copy_call_debug_info(oldcall, call);
   106   call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
   107   _igvn.hash_delete(oldcall);
   108   _igvn.subsume_node(oldcall, call);
   109   transform_later(call);
   111   return call;
   112 }
   114 void PhaseMacroExpand::extract_call_projections(CallNode *call) {
   115   _fallthroughproj = NULL;
   116   _fallthroughcatchproj = NULL;
   117   _ioproj_fallthrough = NULL;
   118   _ioproj_catchall = NULL;
   119   _catchallcatchproj = NULL;
   120   _memproj_fallthrough = NULL;
   121   _memproj_catchall = NULL;
   122   _resproj = NULL;
   123   for (DUIterator_Fast imax, i = call->fast_outs(imax); i < imax; i++) {
   124     ProjNode *pn = call->fast_out(i)->as_Proj();
   125     switch (pn->_con) {
   126       case TypeFunc::Control:
   127       {
   128         // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
   129         _fallthroughproj = pn;
   130         DUIterator_Fast jmax, j = pn->fast_outs(jmax);
   131         const Node *cn = pn->fast_out(j);
   132         if (cn->is_Catch()) {
   133           ProjNode *cpn = NULL;
   134           for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
   135             cpn = cn->fast_out(k)->as_Proj();
   136             assert(cpn->is_CatchProj(), "must be a CatchProjNode");
   137             if (cpn->_con == CatchProjNode::fall_through_index)
   138               _fallthroughcatchproj = cpn;
   139             else {
   140               assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
   141               _catchallcatchproj = cpn;
   142             }
   143           }
   144         }
   145         break;
   146       }
   147       case TypeFunc::I_O:
   148         if (pn->_is_io_use)
   149           _ioproj_catchall = pn;
   150         else
   151           _ioproj_fallthrough = pn;
   152         break;
   153       case TypeFunc::Memory:
   154         if (pn->_is_io_use)
   155           _memproj_catchall = pn;
   156         else
   157           _memproj_fallthrough = pn;
   158         break;
   159       case TypeFunc::Parms:
   160         _resproj = pn;
   161         break;
   162       default:
   163         assert(false, "unexpected projection from allocation node.");
   164     }
   165   }
   167 }
   170 //---------------------------set_eden_pointers-------------------------
   171 void PhaseMacroExpand::set_eden_pointers(Node* &eden_top_adr, Node* &eden_end_adr) {
   172   if (UseTLAB) {                // Private allocation: load from TLS
   173     Node* thread = transform_later(new (C, 1) ThreadLocalNode());
   174     int tlab_top_offset = in_bytes(JavaThread::tlab_top_offset());
   175     int tlab_end_offset = in_bytes(JavaThread::tlab_end_offset());
   176     eden_top_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_top_offset);
   177     eden_end_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_end_offset);
   178   } else {                      // Shared allocation: load from globals
   179     CollectedHeap* ch = Universe::heap();
   180     address top_adr = (address)ch->top_addr();
   181     address end_adr = (address)ch->end_addr();
   182     eden_top_adr = makecon(TypeRawPtr::make(top_adr));
   183     eden_end_adr = basic_plus_adr(eden_top_adr, end_adr - top_adr);
   184   }
   185 }
   188 Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) {
   189   Node* adr = basic_plus_adr(base, offset);
   190   const TypePtr* adr_type = TypeRawPtr::BOTTOM;
   191   Node* value = LoadNode::make(C, ctl, mem, adr, adr_type, value_type, bt);
   192   transform_later(value);
   193   return value;
   194 }
   197 Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) {
   198   Node* adr = basic_plus_adr(base, offset);
   199   mem = StoreNode::make(C, ctl, mem, adr, NULL, value, bt);
   200   transform_later(mem);
   201   return mem;
   202 }
   204 //=============================================================================
   205 //
   206 //                              A L L O C A T I O N
   207 //
   208 // Allocation attempts to be fast in the case of frequent small objects.
   209 // It breaks down like this:
   210 //
   211 // 1) Size in doublewords is computed.  This is a constant for objects and
   212 // variable for most arrays.  Doubleword units are used to avoid size
   213 // overflow of huge doubleword arrays.  We need doublewords in the end for
   214 // rounding.
   215 //
   216 // 2) Size is checked for being 'too large'.  Too-large allocations will go
   217 // the slow path into the VM.  The slow path can throw any required
   218 // exceptions, and does all the special checks for very large arrays.  The
   219 // size test can constant-fold away for objects.  For objects with
   220 // finalizers it constant-folds the otherway: you always go slow with
   221 // finalizers.
   222 //
   223 // 3) If NOT using TLABs, this is the contended loop-back point.
   224 // Load-Locked the heap top.  If using TLABs normal-load the heap top.
   225 //
   226 // 4) Check that heap top + size*8 < max.  If we fail go the slow ` route.
   227 // NOTE: "top+size*8" cannot wrap the 4Gig line!  Here's why: for largish
   228 // "size*8" we always enter the VM, where "largish" is a constant picked small
   229 // enough that there's always space between the eden max and 4Gig (old space is
   230 // there so it's quite large) and large enough that the cost of entering the VM
   231 // is dwarfed by the cost to initialize the space.
   232 //
   233 // 5) If NOT using TLABs, Store-Conditional the adjusted heap top back
   234 // down.  If contended, repeat at step 3.  If using TLABs normal-store
   235 // adjusted heap top back down; there is no contention.
   236 //
   237 // 6) If !ZeroTLAB then Bulk-clear the object/array.  Fill in klass & mark
   238 // fields.
   239 //
   240 // 7) Merge with the slow-path; cast the raw memory pointer to the correct
   241 // oop flavor.
   242 //
   243 //=============================================================================
   244 // FastAllocateSizeLimit value is in DOUBLEWORDS.
   245 // Allocations bigger than this always go the slow route.
   246 // This value must be small enough that allocation attempts that need to
   247 // trigger exceptions go the slow route.  Also, it must be small enough so
   248 // that heap_top + size_in_bytes does not wrap around the 4Gig limit.
   249 //=============================================================================j//
   250 // %%% Here is an old comment from parseHelper.cpp; is it outdated?
   251 // The allocator will coalesce int->oop copies away.  See comment in
   252 // coalesce.cpp about how this works.  It depends critically on the exact
   253 // code shape produced here, so if you are changing this code shape
   254 // make sure the GC info for the heap-top is correct in and around the
   255 // slow-path call.
   256 //
   258 void PhaseMacroExpand::expand_allocate_common(
   259             AllocateNode* alloc, // allocation node to be expanded
   260             Node* length,  // array length for an array allocation
   261             const TypeFunc* slow_call_type, // Type of slow call
   262             address slow_call_address  // Address of slow call
   263     )
   264 {
   266   Node* ctrl = alloc->in(TypeFunc::Control);
   267   Node* mem  = alloc->in(TypeFunc::Memory);
   268   Node* i_o  = alloc->in(TypeFunc::I_O);
   269   Node* size_in_bytes     = alloc->in(AllocateNode::AllocSize);
   270   Node* klass_node        = alloc->in(AllocateNode::KlassNode);
   271   Node* initial_slow_test = alloc->in(AllocateNode::InitialTest);
   273   Node* eden_top_adr;
   274   Node* eden_end_adr;
   275   set_eden_pointers(eden_top_adr, eden_end_adr);
   277   uint raw_idx = C->get_alias_index(TypeRawPtr::BOTTOM);
   278   assert(ctrl != NULL, "must have control");
   280   // Load Eden::end.  Loop invariant and hoisted.
   281   //
   282   // Note: We set the control input on "eden_end" and "old_eden_top" when using
   283   //       a TLAB to work around a bug where these values were being moved across
   284   //       a safepoint.  These are not oops, so they cannot be include in the oop
   285   //       map, but the can be changed by a GC.   The proper way to fix this would
   286   //       be to set the raw memory state when generating a  SafepointNode.  However
   287   //       this will require extensive changes to the loop optimization in order to
   288   //       prevent a degradation of the optimization.
   289   //       See comment in memnode.hpp, around line 227 in class LoadPNode.
   290   Node* eden_end = make_load(ctrl, mem, eden_end_adr, 0, TypeRawPtr::BOTTOM, T_ADDRESS);
   292   // We need a Region and corresponding Phi's to merge the slow-path and fast-path results.
   293   // they will not be used if "always_slow" is set
   294   enum { slow_result_path = 1, fast_result_path = 2 };
   295   Node *result_region;
   296   Node *result_phi_rawmem;
   297   Node *result_phi_rawoop;
   298   Node *result_phi_i_o;
   300   // The initial slow comparison is a size check, the comparison
   301   // we want to do is a BoolTest::gt
   302   bool always_slow = false;
   303   int tv = _igvn.find_int_con(initial_slow_test, -1);
   304   if (tv >= 0) {
   305     always_slow = (tv == 1);
   306     initial_slow_test = NULL;
   307   } else {
   308     initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn);
   309   }
   311   if (DTraceAllocProbes) {
   312     // Force slow-path allocation
   313     always_slow = true;
   314     initial_slow_test = NULL;
   315   }
   317   enum { too_big_or_final_path = 1, need_gc_path = 2 };
   318   Node *slow_region = NULL;
   319   Node *toobig_false = ctrl;
   321   assert (initial_slow_test == NULL || !always_slow, "arguments must be consistent");
   322   // generate the initial test if necessary
   323   if (initial_slow_test != NULL ) {
   324     slow_region = new (C, 3) RegionNode(3);
   326     // Now make the initial failure test.  Usually a too-big test but
   327     // might be a TRUE for finalizers or a fancy class check for
   328     // newInstance0.
   329     IfNode *toobig_iff = new (C, 2) IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
   330     transform_later(toobig_iff);
   331     // Plug the failing-too-big test into the slow-path region
   332     Node *toobig_true = new (C, 1) IfTrueNode( toobig_iff );
   333     transform_later(toobig_true);
   334     slow_region    ->init_req( too_big_or_final_path, toobig_true );
   335     toobig_false = new (C, 1) IfFalseNode( toobig_iff );
   336     transform_later(toobig_false);
   337   } else {         // No initial test, just fall into next case
   338     toobig_false = ctrl;
   339     debug_only(slow_region = NodeSentinel);
   340   }
   342   Node *slow_mem = mem;  // save the current memory state for slow path
   343   // generate the fast allocation code unless we know that the initial test will always go slow
   344   if (!always_slow) {
   345     // allocate the Region and Phi nodes for the result
   346     result_region = new (C, 3) RegionNode(3);
   347     result_phi_rawmem = new (C, 3) PhiNode( result_region, Type::MEMORY, TypeRawPtr::BOTTOM );
   348     result_phi_rawoop = new (C, 3) PhiNode( result_region, TypeRawPtr::BOTTOM );
   349     result_phi_i_o    = new (C, 3) PhiNode( result_region, Type::ABIO ); // I/O is used for Prefetch
   351     // We need a Region for the loop-back contended case.
   352     enum { fall_in_path = 1, contended_loopback_path = 2 };
   353     Node *contended_region;
   354     Node *contended_phi_rawmem;
   355     if( UseTLAB ) {
   356       contended_region = toobig_false;
   357       contended_phi_rawmem = mem;
   358     } else {
   359       contended_region = new (C, 3) RegionNode(3);
   360       contended_phi_rawmem = new (C, 3) PhiNode( contended_region, Type::MEMORY, TypeRawPtr::BOTTOM);
   361       // Now handle the passing-too-big test.  We fall into the contended
   362       // loop-back merge point.
   363       contended_region    ->init_req( fall_in_path, toobig_false );
   364       contended_phi_rawmem->init_req( fall_in_path, mem );
   365       transform_later(contended_region);
   366       transform_later(contended_phi_rawmem);
   367     }
   369     // Load(-locked) the heap top.
   370     // See note above concerning the control input when using a TLAB
   371     Node *old_eden_top = UseTLAB
   372       ? new (C, 3) LoadPNode     ( ctrl, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM )
   373       : new (C, 3) LoadPLockedNode( contended_region, contended_phi_rawmem, eden_top_adr );
   375     transform_later(old_eden_top);
   376     // Add to heap top to get a new heap top
   377     Node *new_eden_top = new (C, 4) AddPNode( top(), old_eden_top, size_in_bytes );
   378     transform_later(new_eden_top);
   379     // Check for needing a GC; compare against heap end
   380     Node *needgc_cmp = new (C, 3) CmpPNode( new_eden_top, eden_end );
   381     transform_later(needgc_cmp);
   382     Node *needgc_bol = new (C, 2) BoolNode( needgc_cmp, BoolTest::ge );
   383     transform_later(needgc_bol);
   384     IfNode *needgc_iff = new (C, 2) IfNode(contended_region, needgc_bol, PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
   385     transform_later(needgc_iff);
   387     // Plug the failing-heap-space-need-gc test into the slow-path region
   388     Node *needgc_true = new (C, 1) IfTrueNode( needgc_iff );
   389     transform_later(needgc_true);
   390     if( initial_slow_test ) {
   391       slow_region    ->init_req( need_gc_path, needgc_true );
   392       // This completes all paths into the slow merge point
   393       transform_later(slow_region);
   394     } else {                      // No initial slow path needed!
   395       // Just fall from the need-GC path straight into the VM call.
   396       slow_region    = needgc_true;
   397     }
   398     // No need for a GC.  Setup for the Store-Conditional
   399     Node *needgc_false = new (C, 1) IfFalseNode( needgc_iff );
   400     transform_later(needgc_false);
   402     // Grab regular I/O before optional prefetch may change it.
   403     // Slow-path does no I/O so just set it to the original I/O.
   404     result_phi_i_o->init_req( slow_result_path, i_o );
   406     i_o = prefetch_allocation(i_o, needgc_false, contended_phi_rawmem,
   407                               old_eden_top, new_eden_top, length);
   409     // Store (-conditional) the modified eden top back down.
   410     // StorePConditional produces flags for a test PLUS a modified raw
   411     // memory state.
   412     Node *store_eden_top;
   413     Node *fast_oop_ctrl;
   414     if( UseTLAB ) {
   415       store_eden_top = new (C, 4) StorePNode( needgc_false, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, new_eden_top );
   416       transform_later(store_eden_top);
   417       fast_oop_ctrl = needgc_false; // No contention, so this is the fast path
   418     } else {
   419       store_eden_top = new (C, 5) StorePConditionalNode( needgc_false, contended_phi_rawmem, eden_top_adr, new_eden_top, old_eden_top );
   420       transform_later(store_eden_top);
   421       Node *contention_check = new (C, 2) BoolNode( store_eden_top, BoolTest::ne );
   422       transform_later(contention_check);
   423       store_eden_top = new (C, 1) SCMemProjNode(store_eden_top);
   424       transform_later(store_eden_top);
   426       // If not using TLABs, check to see if there was contention.
   427       IfNode *contention_iff = new (C, 2) IfNode ( needgc_false, contention_check, PROB_MIN, COUNT_UNKNOWN );
   428       transform_later(contention_iff);
   429       Node *contention_true = new (C, 1) IfTrueNode( contention_iff );
   430       transform_later(contention_true);
   431       // If contention, loopback and try again.
   432       contended_region->init_req( contended_loopback_path, contention_true );
   433       contended_phi_rawmem->init_req( contended_loopback_path, store_eden_top );
   435       // Fast-path succeeded with no contention!
   436       Node *contention_false = new (C, 1) IfFalseNode( contention_iff );
   437       transform_later(contention_false);
   438       fast_oop_ctrl = contention_false;
   439     }
   441     // Rename successful fast-path variables to make meaning more obvious
   442     Node* fast_oop        = old_eden_top;
   443     Node* fast_oop_rawmem = store_eden_top;
   444     fast_oop_rawmem = initialize_object(alloc,
   445                                         fast_oop_ctrl, fast_oop_rawmem, fast_oop,
   446                                         klass_node, length, size_in_bytes);
   448     if (ExtendedDTraceProbes) {
   449       // Slow-path call
   450       int size = TypeFunc::Parms + 2;
   451       CallLeafNode *call = new (C, size) CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(),
   452                                                       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc_base),
   453                                                       "dtrace_object_alloc",
   454                                                       TypeRawPtr::BOTTOM);
   456       // Get base of thread-local storage area
   457       Node* thread = new (C, 1) ThreadLocalNode();
   458       transform_later(thread);
   460       call->init_req(TypeFunc::Parms+0, thread);
   461       call->init_req(TypeFunc::Parms+1, fast_oop);
   462       call->init_req( TypeFunc::Control, fast_oop_ctrl );
   463       call->init_req( TypeFunc::I_O    , top() )        ;   // does no i/o
   464       call->init_req( TypeFunc::Memory , fast_oop_rawmem );
   465       call->init_req( TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr) );
   466       call->init_req( TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr) );
   467       transform_later(call);
   468       fast_oop_ctrl = new (C, 1) ProjNode(call,TypeFunc::Control);
   469       transform_later(fast_oop_ctrl);
   470       fast_oop_rawmem = new (C, 1) ProjNode(call,TypeFunc::Memory);
   471       transform_later(fast_oop_rawmem);
   472     }
   474     // Plug in the successful fast-path into the result merge point
   475     result_region    ->init_req( fast_result_path, fast_oop_ctrl );
   476     result_phi_rawoop->init_req( fast_result_path, fast_oop );
   477     result_phi_i_o   ->init_req( fast_result_path, i_o );
   478     result_phi_rawmem->init_req( fast_result_path, fast_oop_rawmem );
   479   } else {
   480     slow_region = ctrl;
   481   }
   483   // Generate slow-path call
   484   CallNode *call = new (C, slow_call_type->domain()->cnt())
   485     CallStaticJavaNode(slow_call_type, slow_call_address,
   486                        OptoRuntime::stub_name(slow_call_address),
   487                        alloc->jvms()->bci(),
   488                        TypePtr::BOTTOM);
   489   call->init_req( TypeFunc::Control, slow_region );
   490   call->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
   491   call->init_req( TypeFunc::Memory , slow_mem ); // may gc ptrs
   492   call->init_req( TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr) );
   493   call->init_req( TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr) );
   495   call->init_req(TypeFunc::Parms+0, klass_node);
   496   if (length != NULL) {
   497     call->init_req(TypeFunc::Parms+1, length);
   498   }
   500   // Copy debug information and adjust JVMState information, then replace
   501   // allocate node with the call
   502   copy_call_debug_info((CallNode *) alloc,  call);
   503   if (!always_slow) {
   504     call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
   505   }
   506   _igvn.hash_delete(alloc);
   507   _igvn.subsume_node(alloc, call);
   508   transform_later(call);
   510   // Identify the output projections from the allocate node and
   511   // adjust any references to them.
   512   // The control and io projections look like:
   513   //
   514   //        v---Proj(ctrl) <-----+   v---CatchProj(ctrl)
   515   //  Allocate                   Catch
   516   //        ^---Proj(io) <-------+   ^---CatchProj(io)
   517   //
   518   //  We are interested in the CatchProj nodes.
   519   //
   520   extract_call_projections(call);
   522   // An allocate node has separate memory projections for the uses on the control and i_o paths
   523   // Replace uses of the control memory projection with result_phi_rawmem (unless we are only generating a slow call)
   524   if (!always_slow && _memproj_fallthrough != NULL) {
   525     for (DUIterator_Fast imax, i = _memproj_fallthrough->fast_outs(imax); i < imax; i++) {
   526       Node *use = _memproj_fallthrough->fast_out(i);
   527       _igvn.hash_delete(use);
   528       imax -= replace_input(use, _memproj_fallthrough, result_phi_rawmem);
   529       _igvn._worklist.push(use);
   530       // back up iterator
   531       --i;
   532     }
   533   }
   534   // Now change uses of _memproj_catchall to use _memproj_fallthrough and delete _memproj_catchall so
   535   // we end up with a call that has only 1 memory projection
   536   if (_memproj_catchall != NULL ) {
   537     if (_memproj_fallthrough == NULL) {
   538       _memproj_fallthrough = new (C, 1) ProjNode(call, TypeFunc::Memory);
   539       transform_later(_memproj_fallthrough);
   540     }
   541     for (DUIterator_Fast imax, i = _memproj_catchall->fast_outs(imax); i < imax; i++) {
   542       Node *use = _memproj_catchall->fast_out(i);
   543       _igvn.hash_delete(use);
   544       imax -= replace_input(use, _memproj_catchall, _memproj_fallthrough);
   545       _igvn._worklist.push(use);
   546       // back up iterator
   547       --i;
   548     }
   549   }
   551   mem = result_phi_rawmem;
   553   // An allocate node has separate i_o projections for the uses on the control and i_o paths
   554   // Replace uses of the control i_o projection with result_phi_i_o (unless we are only generating a slow call)
   555   if (_ioproj_fallthrough == NULL) {
   556     _ioproj_fallthrough = new (C, 1) ProjNode(call, TypeFunc::I_O);
   557     transform_later(_ioproj_fallthrough);
   558   } else if (!always_slow) {
   559     for (DUIterator_Fast imax, i = _ioproj_fallthrough->fast_outs(imax); i < imax; i++) {
   560       Node *use = _ioproj_fallthrough->fast_out(i);
   562       _igvn.hash_delete(use);
   563       imax -= replace_input(use, _ioproj_fallthrough, result_phi_i_o);
   564       _igvn._worklist.push(use);
   565       // back up iterator
   566       --i;
   567     }
   568   }
   569   // Now change uses of _ioproj_catchall to use _ioproj_fallthrough and delete _ioproj_catchall so
   570   // we end up with a call that has only 1 control projection
   571   if (_ioproj_catchall != NULL ) {
   572     for (DUIterator_Fast imax, i = _ioproj_catchall->fast_outs(imax); i < imax; i++) {
   573       Node *use = _ioproj_catchall->fast_out(i);
   574       _igvn.hash_delete(use);
   575       imax -= replace_input(use, _ioproj_catchall, _ioproj_fallthrough);
   576       _igvn._worklist.push(use);
   577       // back up iterator
   578       --i;
   579     }
   580   }
   582   // if we generated only a slow call, we are done
   583   if (always_slow)
   584     return;
   587   if (_fallthroughcatchproj != NULL) {
   588     ctrl = _fallthroughcatchproj->clone();
   589     transform_later(ctrl);
   590     _igvn.hash_delete(_fallthroughcatchproj);
   591     _igvn.subsume_node(_fallthroughcatchproj, result_region);
   592   } else {
   593     ctrl = top();
   594   }
   595   Node *slow_result;
   596   if (_resproj == NULL) {
   597     // no uses of the allocation result
   598     slow_result = top();
   599   } else {
   600     slow_result = _resproj->clone();
   601     transform_later(slow_result);
   602     _igvn.hash_delete(_resproj);
   603     _igvn.subsume_node(_resproj, result_phi_rawoop);
   604   }
   606   // Plug slow-path into result merge point
   607   result_region    ->init_req( slow_result_path, ctrl );
   608   result_phi_rawoop->init_req( slow_result_path, slow_result);
   609   result_phi_rawmem->init_req( slow_result_path, _memproj_fallthrough );
   610   transform_later(result_region);
   611   transform_later(result_phi_rawoop);
   612   transform_later(result_phi_rawmem);
   613   transform_later(result_phi_i_o);
   614   // This completes all paths into the result merge point
   615 }
   618 // Helper for PhaseMacroExpand::expand_allocate_common.
   619 // Initializes the newly-allocated storage.
   620 Node*
   621 PhaseMacroExpand::initialize_object(AllocateNode* alloc,
   622                                     Node* control, Node* rawmem, Node* object,
   623                                     Node* klass_node, Node* length,
   624                                     Node* size_in_bytes) {
   625   InitializeNode* init = alloc->initialization();
   626   // Store the klass & mark bits
   627   Node* mark_node = NULL;
   628   // For now only enable fast locking for non-array types
   629   if (UseBiasedLocking && (length == NULL)) {
   630     mark_node = make_load(NULL, rawmem, klass_node, Klass::prototype_header_offset_in_bytes() + sizeof(oopDesc), TypeRawPtr::BOTTOM, T_ADDRESS);
   631   } else {
   632     mark_node = makecon(TypeRawPtr::make((address)markOopDesc::prototype()));
   633   }
   634   rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, T_ADDRESS);
   635   rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_OBJECT);
   636   int header_size = alloc->minimum_header_size();  // conservatively small
   638   // Array length
   639   if (length != NULL) {         // Arrays need length field
   640     rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT);
   641     // conservatively small header size:
   642     header_size = sizeof(arrayOopDesc);
   643     ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
   644     if (k->is_array_klass())    // we know the exact header size in most cases:
   645       header_size = Klass::layout_helper_header_size(k->layout_helper());
   646   }
   648   // Clear the object body, if necessary.
   649   if (init == NULL) {
   650     // The init has somehow disappeared; be cautious and clear everything.
   651     //
   652     // This can happen if a node is allocated but an uncommon trap occurs
   653     // immediately.  In this case, the Initialize gets associated with the
   654     // trap, and may be placed in a different (outer) loop, if the Allocate
   655     // is in a loop.  If (this is rare) the inner loop gets unrolled, then
   656     // there can be two Allocates to one Initialize.  The answer in all these
   657     // edge cases is safety first.  It is always safe to clear immediately
   658     // within an Allocate, and then (maybe or maybe not) clear some more later.
   659     if (!ZeroTLAB)
   660       rawmem = ClearArrayNode::clear_memory(control, rawmem, object,
   661                                             header_size, size_in_bytes,
   662                                             &_igvn);
   663   } else {
   664     if (!init->is_complete()) {
   665       // Try to win by zeroing only what the init does not store.
   666       // We can also try to do some peephole optimizations,
   667       // such as combining some adjacent subword stores.
   668       rawmem = init->complete_stores(control, rawmem, object,
   669                                      header_size, size_in_bytes, &_igvn);
   670     }
   672     // We have no more use for this link, since the AllocateNode goes away:
   673     init->set_req(InitializeNode::RawAddress, top());
   674     // (If we keep the link, it just confuses the register allocator,
   675     // who thinks he sees a real use of the address by the membar.)
   676   }
   678   return rawmem;
   679 }
   681 // Generate prefetch instructions for next allocations.
   682 Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false,
   683                                         Node*& contended_phi_rawmem,
   684                                         Node* old_eden_top, Node* new_eden_top,
   685                                         Node* length) {
   686    if( UseTLAB && AllocatePrefetchStyle == 2 ) {
   687       // Generate prefetch allocation with watermark check.
   688       // As an allocation hits the watermark, we will prefetch starting
   689       // at a "distance" away from watermark.
   690       enum { fall_in_path = 1, pf_path = 2 };
   692       Node *pf_region = new (C, 3) RegionNode(3);
   693       Node *pf_phi_rawmem = new (C, 3) PhiNode( pf_region, Type::MEMORY,
   694                                                 TypeRawPtr::BOTTOM );
   695       // I/O is used for Prefetch
   696       Node *pf_phi_abio = new (C, 3) PhiNode( pf_region, Type::ABIO );
   698       Node *thread = new (C, 1) ThreadLocalNode();
   699       transform_later(thread);
   701       Node *eden_pf_adr = new (C, 4) AddPNode( top()/*not oop*/, thread,
   702                    _igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) );
   703       transform_later(eden_pf_adr);
   705       Node *old_pf_wm = new (C, 3) LoadPNode( needgc_false,
   706                                    contended_phi_rawmem, eden_pf_adr,
   707                                    TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM );
   708       transform_later(old_pf_wm);
   710       // check against new_eden_top
   711       Node *need_pf_cmp = new (C, 3) CmpPNode( new_eden_top, old_pf_wm );
   712       transform_later(need_pf_cmp);
   713       Node *need_pf_bol = new (C, 2) BoolNode( need_pf_cmp, BoolTest::ge );
   714       transform_later(need_pf_bol);
   715       IfNode *need_pf_iff = new (C, 2) IfNode( needgc_false, need_pf_bol,
   716                                        PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
   717       transform_later(need_pf_iff);
   719       // true node, add prefetchdistance
   720       Node *need_pf_true = new (C, 1) IfTrueNode( need_pf_iff );
   721       transform_later(need_pf_true);
   723       Node *need_pf_false = new (C, 1) IfFalseNode( need_pf_iff );
   724       transform_later(need_pf_false);
   726       Node *new_pf_wmt = new (C, 4) AddPNode( top(), old_pf_wm,
   727                                     _igvn.MakeConX(AllocatePrefetchDistance) );
   728       transform_later(new_pf_wmt );
   729       new_pf_wmt->set_req(0, need_pf_true);
   731       Node *store_new_wmt = new (C, 4) StorePNode( need_pf_true,
   732                                        contended_phi_rawmem, eden_pf_adr,
   733                                        TypeRawPtr::BOTTOM, new_pf_wmt );
   734       transform_later(store_new_wmt);
   736       // adding prefetches
   737       pf_phi_abio->init_req( fall_in_path, i_o );
   739       Node *prefetch_adr;
   740       Node *prefetch;
   741       uint lines = AllocatePrefetchDistance / AllocatePrefetchStepSize;
   742       uint step_size = AllocatePrefetchStepSize;
   743       uint distance = 0;
   745       for ( uint i = 0; i < lines; i++ ) {
   746         prefetch_adr = new (C, 4) AddPNode( old_pf_wm, new_pf_wmt,
   747                                             _igvn.MakeConX(distance) );
   748         transform_later(prefetch_adr);
   749         prefetch = new (C, 3) PrefetchWriteNode( i_o, prefetch_adr );
   750         transform_later(prefetch);
   751         distance += step_size;
   752         i_o = prefetch;
   753       }
   754       pf_phi_abio->set_req( pf_path, i_o );
   756       pf_region->init_req( fall_in_path, need_pf_false );
   757       pf_region->init_req( pf_path, need_pf_true );
   759       pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem );
   760       pf_phi_rawmem->init_req( pf_path, store_new_wmt );
   762       transform_later(pf_region);
   763       transform_later(pf_phi_rawmem);
   764       transform_later(pf_phi_abio);
   766       needgc_false = pf_region;
   767       contended_phi_rawmem = pf_phi_rawmem;
   768       i_o = pf_phi_abio;
   769    } else if( AllocatePrefetchStyle > 0 ) {
   770       // Insert a prefetch for each allocation only on the fast-path
   771       Node *prefetch_adr;
   772       Node *prefetch;
   773       // Generate several prefetch instructions only for arrays.
   774       uint lines = (length != NULL) ? AllocatePrefetchLines : 1;
   775       uint step_size = AllocatePrefetchStepSize;
   776       uint distance = AllocatePrefetchDistance;
   777       for ( uint i = 0; i < lines; i++ ) {
   778         prefetch_adr = new (C, 4) AddPNode( old_eden_top, new_eden_top,
   779                                             _igvn.MakeConX(distance) );
   780         transform_later(prefetch_adr);
   781         prefetch = new (C, 3) PrefetchWriteNode( i_o, prefetch_adr );
   782         // Do not let it float too high, since if eden_top == eden_end,
   783         // both might be null.
   784         if( i == 0 ) { // Set control for first prefetch, next follows it
   785           prefetch->init_req(0, needgc_false);
   786         }
   787         transform_later(prefetch);
   788         distance += step_size;
   789         i_o = prefetch;
   790       }
   791    }
   792    return i_o;
   793 }
   796 void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) {
   797   expand_allocate_common(alloc, NULL,
   798                          OptoRuntime::new_instance_Type(),
   799                          OptoRuntime::new_instance_Java());
   800 }
   802 void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) {
   803   Node* length = alloc->in(AllocateNode::ALength);
   804   expand_allocate_common(alloc, length,
   805                          OptoRuntime::new_array_Type(),
   806                          OptoRuntime::new_array_Java());
   807 }
   810 // we have determined that this lock/unlock can be eliminated, we simply
   811 // eliminate the node without expanding it.
   812 //
   813 // Note:  The membar's associated with the lock/unlock are currently not
   814 //        eliminated.  This should be investigated as a future enhancement.
   815 //
   816 void PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) {
   817   Node* mem = alock->in(TypeFunc::Memory);
   819   // The memory projection from a lock/unlock is RawMem
   820   // The input to a Lock is merged memory, so extract its RawMem input
   821   // (unless the MergeMem has been optimized away.)
   822   if (alock->is_Lock()) {
   823     if (mem->is_MergeMem())
   824       mem = mem->as_MergeMem()->in(Compile::AliasIdxRaw);
   825   }
   827   extract_call_projections(alock);
   828   // There are 2 projections from the lock.  The lock node will
   829   // be deleted when its last use is subsumed below.
   830   assert(alock->outcnt() == 2 && _fallthroughproj != NULL &&
   831           _memproj_fallthrough != NULL, "Unexpected projections from Lock/Unlock");
   832   _igvn.hash_delete(_fallthroughproj);
   833   _igvn.subsume_node(_fallthroughproj, alock->in(TypeFunc::Control));
   834   _igvn.hash_delete(_memproj_fallthrough);
   835   _igvn.subsume_node(_memproj_fallthrough, mem);
   836   return;
   837 }
   840 //------------------------------expand_lock_node----------------------
   841 void PhaseMacroExpand::expand_lock_node(LockNode *lock) {
   843   Node* ctrl = lock->in(TypeFunc::Control);
   844   Node* mem = lock->in(TypeFunc::Memory);
   845   Node* obj = lock->obj_node();
   846   Node* box = lock->box_node();
   847   Node *flock = lock->fastlock_node();
   849   if (lock->is_eliminated()) {
   850     eliminate_locking_node(lock);
   851     return;
   852   }
   854   // Make the merge point
   855   Node *region = new (C, 3) RegionNode(3);
   857   Node *bol = transform_later(new (C, 2) BoolNode(flock,BoolTest::ne));
   858   Node *iff = new (C, 2) IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN );
   859   // Optimize test; set region slot 2
   860   Node *slow_path = opt_iff(region,iff);
   862   // Make slow path call
   863   CallNode *call = make_slow_call( (CallNode *) lock, OptoRuntime::complete_monitor_enter_Type(), OptoRuntime::complete_monitor_locking_Java(), NULL, slow_path, obj, box );
   865   extract_call_projections(call);
   867   // Slow path can only throw asynchronous exceptions, which are always
   868   // de-opted.  So the compiler thinks the slow-call can never throw an
   869   // exception.  If it DOES throw an exception we would need the debug
   870   // info removed first (since if it throws there is no monitor).
   871   assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
   872            _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
   874   // Capture slow path
   875   // disconnect fall-through projection from call and create a new one
   876   // hook up users of fall-through projection to region
   877   Node *slow_ctrl = _fallthroughproj->clone();
   878   transform_later(slow_ctrl);
   879   _igvn.hash_delete(_fallthroughproj);
   880   _fallthroughproj->disconnect_inputs(NULL);
   881   region->init_req(1, slow_ctrl);
   882   // region inputs are now complete
   883   transform_later(region);
   884   _igvn.subsume_node(_fallthroughproj, region);
   886   // create a Phi for the memory state
   887   Node *mem_phi = new (C, 3) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
   888   Node *memproj = transform_later( new (C, 1) ProjNode(call, TypeFunc::Memory) );
   889   mem_phi->init_req(1, memproj );
   890   mem_phi->init_req(2, mem);
   891   transform_later(mem_phi);
   892     _igvn.hash_delete(_memproj_fallthrough);
   893   _igvn.subsume_node(_memproj_fallthrough, mem_phi);
   896 }
   898 //------------------------------expand_unlock_node----------------------
   899 void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) {
   901   Node *ctrl = unlock->in(TypeFunc::Control);
   902   Node* mem = unlock->in(TypeFunc::Memory);
   903   Node* obj = unlock->obj_node();
   904   Node* box = unlock->box_node();
   907   if (unlock->is_eliminated()) {
   908     eliminate_locking_node(unlock);
   909     return;
   910   }
   912   // No need for a null check on unlock
   914   // Make the merge point
   915   RegionNode *region = new (C, 3) RegionNode(3);
   917   FastUnlockNode *funlock = new (C, 3) FastUnlockNode( ctrl, obj, box );
   918   funlock = transform_later( funlock )->as_FastUnlock();
   919   Node *bol = transform_later(new (C, 2) BoolNode(funlock,BoolTest::ne));
   920   Node *iff = new (C, 2) IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN );
   921   // Optimize test; set region slot 2
   922   Node *slow_path = opt_iff(region,iff);
   924   CallNode *call = make_slow_call( (CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), "complete_monitor_unlocking_C", slow_path, obj, box );
   926   extract_call_projections(call);
   928   assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
   929            _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
   931   // No exceptions for unlocking
   932   // Capture slow path
   933   // disconnect fall-through projection from call and create a new one
   934   // hook up users of fall-through projection to region
   935   Node *slow_ctrl = _fallthroughproj->clone();
   936   transform_later(slow_ctrl);
   937   _igvn.hash_delete(_fallthroughproj);
   938   _fallthroughproj->disconnect_inputs(NULL);
   939   region->init_req(1, slow_ctrl);
   940   // region inputs are now complete
   941   transform_later(region);
   942   _igvn.subsume_node(_fallthroughproj, region);
   944   // create a Phi for the memory state
   945   Node *mem_phi = new (C, 3) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
   946   Node *memproj = transform_later( new(C, 1) ProjNode(call, TypeFunc::Memory) );
   947   mem_phi->init_req(1, memproj );
   948   mem_phi->init_req(2, mem);
   949   transform_later(mem_phi);
   950     _igvn.hash_delete(_memproj_fallthrough);
   951   _igvn.subsume_node(_memproj_fallthrough, mem_phi);
   954 }
   956 //------------------------------expand_macro_nodes----------------------
   957 //  Returns true if a failure occurred.
   958 bool PhaseMacroExpand::expand_macro_nodes() {
   959   if (C->macro_count() == 0)
   960     return false;
   961   // Make sure expansion will not cause node limit to be exceeded.  Worst case is a
   962   // macro node gets expanded into about 50 nodes.  Allow 50% more for optimization
   963   if (C->check_node_count(C->macro_count() * 75, "out of nodes before macro expansion" ) )
   964     return true;
   965   // expand "macro" nodes
   966   // nodes are removed from the macro list as they are processed
   967   while (C->macro_count() > 0) {
   968     Node * n = C->macro_node(0);
   969     assert(n->is_macro(), "only macro nodes expected here");
   970     if (_igvn.type(n) == Type::TOP || n->in(0)->is_top() ) {
   971       // node is unreachable, so don't try to expand it
   972       C->remove_macro_node(n);
   973       continue;
   974     }
   975     switch (n->class_id()) {
   976     case Node::Class_Allocate:
   977       expand_allocate(n->as_Allocate());
   978       break;
   979     case Node::Class_AllocateArray:
   980       expand_allocate_array(n->as_AllocateArray());
   981       break;
   982     case Node::Class_Lock:
   983       expand_lock_node(n->as_Lock());
   984       break;
   985     case Node::Class_Unlock:
   986       expand_unlock_node(n->as_Unlock());
   987       break;
   988     default:
   989       assert(false, "unknown node type in macro list");
   990     }
   991     if (C->failing())  return true;
   992   }
   993   _igvn.optimize();
   994   return false;
   995 }

mercurial