src/share/vm/opto/loopnode.cpp

Sat, 01 Dec 2007 00:00:00 +0000

author
duke
date
Sat, 01 Dec 2007 00:00:00 +0000
changeset 435
a61af66fc99e
child 452
ff5961f4c095
permissions
-rw-r--r--

Initial load

     1 /*
     2  * Copyright 1998-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_loopnode.cpp.incl"
    28 //=============================================================================
    29 //------------------------------is_loop_iv-------------------------------------
    30 // Determine if a node is Counted loop induction variable.
    31 // The method is declared in node.hpp.
    32 const Node* Node::is_loop_iv() const {
    33   if (this->is_Phi() && !this->as_Phi()->is_copy() &&
    34       this->as_Phi()->region()->is_CountedLoop() &&
    35       this->as_Phi()->region()->as_CountedLoop()->phi() == this) {
    36     return this;
    37   } else {
    38     return NULL;
    39   }
    40 }
    42 //=============================================================================
    43 //------------------------------dump_spec--------------------------------------
    44 // Dump special per-node info
    45 #ifndef PRODUCT
    46 void LoopNode::dump_spec(outputStream *st) const {
    47   if( is_inner_loop () ) st->print( "inner " );
    48   if( is_partial_peel_loop () ) st->print( "partial_peel " );
    49   if( partial_peel_has_failed () ) st->print( "partial_peel_failed " );
    50 }
    51 #endif
    53 //------------------------------get_early_ctrl---------------------------------
    54 // Compute earliest legal control
    55 Node *PhaseIdealLoop::get_early_ctrl( Node *n ) {
    56   assert( !n->is_Phi() && !n->is_CFG(), "this code only handles data nodes" );
    57   uint i;
    58   Node *early;
    59   if( n->in(0) ) {
    60     early = n->in(0);
    61     if( !early->is_CFG() ) // Might be a non-CFG multi-def
    62       early = get_ctrl(early);        // So treat input as a straight data input
    63     i = 1;
    64   } else {
    65     early = get_ctrl(n->in(1));
    66     i = 2;
    67   }
    68   uint e_d = dom_depth(early);
    69   assert( early, "" );
    70   for( ; i < n->req(); i++ ) {
    71     Node *cin = get_ctrl(n->in(i));
    72     assert( cin, "" );
    73     // Keep deepest dominator depth
    74     uint c_d = dom_depth(cin);
    75     if( c_d > e_d ) {           // Deeper guy?
    76       early = cin;              // Keep deepest found so far
    77       e_d = c_d;
    78     } else if( c_d == e_d &&    // Same depth?
    79                early != cin ) { // If not equal, must use slower algorithm
    80       // If same depth but not equal, one _must_ dominate the other
    81       // and we want the deeper (i.e., dominated) guy.
    82       Node *n1 = early;
    83       Node *n2 = cin;
    84       while( 1 ) {
    85         n1 = idom(n1);          // Walk up until break cycle
    86         n2 = idom(n2);
    87         if( n1 == cin ||        // Walked early up to cin
    88             dom_depth(n2) < c_d )
    89           break;                // early is deeper; keep him
    90         if( n2 == early ||      // Walked cin up to early
    91             dom_depth(n1) < c_d ) {
    92           early = cin;          // cin is deeper; keep him
    93           break;
    94         }
    95       }
    96       e_d = dom_depth(early);   // Reset depth register cache
    97     }
    98   }
   100   // Return earliest legal location
   101   assert(early == find_non_split_ctrl(early), "unexpected early control");
   103   return early;
   104 }
   106 //------------------------------set_early_ctrl---------------------------------
   107 // Set earliest legal control
   108 void PhaseIdealLoop::set_early_ctrl( Node *n ) {
   109   Node *early = get_early_ctrl(n);
   111   // Record earliest legal location
   112   set_ctrl(n, early);
   113 }
   115 //------------------------------set_subtree_ctrl-------------------------------
   116 // set missing _ctrl entries on new nodes
   117 void PhaseIdealLoop::set_subtree_ctrl( Node *n ) {
   118   // Already set?  Get out.
   119   if( _nodes[n->_idx] ) return;
   120   // Recursively set _nodes array to indicate where the Node goes
   121   uint i;
   122   for( i = 0; i < n->req(); ++i ) {
   123     Node *m = n->in(i);
   124     if( m && m != C->root() )
   125       set_subtree_ctrl( m );
   126   }
   128   // Fixup self
   129   set_early_ctrl( n );
   130 }
   132 //------------------------------is_counted_loop--------------------------------
   133 Node *PhaseIdealLoop::is_counted_loop( Node *x, IdealLoopTree *loop ) {
   134   PhaseGVN *gvn = &_igvn;
   136   // Counted loop head must be a good RegionNode with only 3 not NULL
   137   // control input edges: Self, Entry, LoopBack.
   138   if ( x->in(LoopNode::Self) == NULL || x->req() != 3 )
   139     return NULL;
   141   Node *init_control = x->in(LoopNode::EntryControl);
   142   Node *back_control = x->in(LoopNode::LoopBackControl);
   143   if( init_control == NULL || back_control == NULL )    // Partially dead
   144     return NULL;
   145   // Must also check for TOP when looking for a dead loop
   146   if( init_control->is_top() || back_control->is_top() )
   147     return NULL;
   149   // Allow funny placement of Safepoint
   150   if( back_control->Opcode() == Op_SafePoint )
   151     back_control = back_control->in(TypeFunc::Control);
   153   // Controlling test for loop
   154   Node *iftrue = back_control;
   155   uint iftrue_op = iftrue->Opcode();
   156   if( iftrue_op != Op_IfTrue &&
   157       iftrue_op != Op_IfFalse )
   158     // I have a weird back-control.  Probably the loop-exit test is in
   159     // the middle of the loop and I am looking at some trailing control-flow
   160     // merge point.  To fix this I would have to partially peel the loop.
   161     return NULL; // Obscure back-control
   163   // Get boolean guarding loop-back test
   164   Node *iff = iftrue->in(0);
   165   if( get_loop(iff) != loop || !iff->in(1)->is_Bool() ) return NULL;
   166   BoolNode *test = iff->in(1)->as_Bool();
   167   BoolTest::mask bt = test->_test._test;
   168   float cl_prob = iff->as_If()->_prob;
   169   if( iftrue_op == Op_IfFalse ) {
   170     bt = BoolTest(bt).negate();
   171     cl_prob = 1.0 - cl_prob;
   172   }
   173   // Get backedge compare
   174   Node *cmp = test->in(1);
   175   int cmp_op = cmp->Opcode();
   176   if( cmp_op != Op_CmpI )
   177     return NULL;                // Avoid pointer & float compares
   179   // Find the trip-counter increment & limit.  Limit must be loop invariant.
   180   Node *incr  = cmp->in(1);
   181   Node *limit = cmp->in(2);
   183   // ---------
   184   // need 'loop()' test to tell if limit is loop invariant
   185   // ---------
   187   if( !is_member( loop, get_ctrl(incr) ) ) { // Swapped trip counter and limit?
   188     Node *tmp = incr;           // Then reverse order into the CmpI
   189     incr = limit;
   190     limit = tmp;
   191     bt = BoolTest(bt).commute(); // And commute the exit test
   192   }
   193   if( is_member( loop, get_ctrl(limit) ) ) // Limit must loop-invariant
   194     return NULL;
   196   // Trip-counter increment must be commutative & associative.
   197   uint incr_op = incr->Opcode();
   198   if( incr_op == Op_Phi && incr->req() == 3 ) {
   199     incr = incr->in(2);         // Assume incr is on backedge of Phi
   200     incr_op = incr->Opcode();
   201   }
   202   Node* trunc1 = NULL;
   203   Node* trunc2 = NULL;
   204   const TypeInt* iv_trunc_t = NULL;
   205   if (!(incr = CountedLoopNode::match_incr_with_optional_truncation(incr, &trunc1, &trunc2, &iv_trunc_t))) {
   206     return NULL; // Funny increment opcode
   207   }
   209   // Get merge point
   210   Node *xphi = incr->in(1);
   211   Node *stride = incr->in(2);
   212   if( !stride->is_Con() ) {     // Oops, swap these
   213     if( !xphi->is_Con() )       // Is the other guy a constant?
   214       return NULL;              // Nope, unknown stride, bail out
   215     Node *tmp = xphi;           // 'incr' is commutative, so ok to swap
   216     xphi = stride;
   217     stride = tmp;
   218   }
   219   //if( loop(xphi) != l) return NULL;// Merge point is in inner loop??
   220   if( !xphi->is_Phi() ) return NULL; // Too much math on the trip counter
   221   PhiNode *phi = xphi->as_Phi();
   223   // Stride must be constant
   224   const Type *stride_t = stride->bottom_type();
   225   int stride_con = stride_t->is_int()->get_con();
   226   assert( stride_con, "missed some peephole opt" );
   228   // Phi must be of loop header; backedge must wrap to increment
   229   if( phi->region() != x ) return NULL;
   230   if( trunc1 == NULL && phi->in(LoopNode::LoopBackControl) != incr ||
   231       trunc1 != NULL && phi->in(LoopNode::LoopBackControl) != trunc1 ) {
   232     return NULL;
   233   }
   234   Node *init_trip = phi->in(LoopNode::EntryControl);
   235   //if (!init_trip->is_Con()) return NULL; // avoid rolling over MAXINT/MININT
   237   // If iv trunc type is smaller than int, check for possible wrap.
   238   if (!TypeInt::INT->higher_equal(iv_trunc_t)) {
   239     assert(trunc1 != NULL, "must have found some truncation");
   241     // Get a better type for the phi (filtered thru if's)
   242     const TypeInt* phi_ft = filtered_type(phi);
   244     // Can iv take on a value that will wrap?
   245     //
   246     // Ensure iv's limit is not within "stride" of the wrap value.
   247     //
   248     // Example for "short" type
   249     //    Truncation ensures value is in the range -32768..32767 (iv_trunc_t)
   250     //    If the stride is +10, then the last value of the induction
   251     //    variable before the increment (phi_ft->_hi) must be
   252     //    <= 32767 - 10 and (phi_ft->_lo) must be >= -32768 to
   253     //    ensure no truncation occurs after the increment.
   255     if (stride_con > 0) {
   256       if (iv_trunc_t->_hi - phi_ft->_hi < stride_con ||
   257           iv_trunc_t->_lo > phi_ft->_lo) {
   258         return NULL;  // truncation may occur
   259       }
   260     } else if (stride_con < 0) {
   261       if (iv_trunc_t->_lo - phi_ft->_lo > stride_con ||
   262           iv_trunc_t->_hi < phi_ft->_hi) {
   263         return NULL;  // truncation may occur
   264       }
   265     }
   266     // No possibility of wrap so truncation can be discarded
   267     // Promote iv type to Int
   268   } else {
   269     assert(trunc1 == NULL && trunc2 == NULL, "no truncation for int");
   270   }
   272   // =================================================
   273   // ---- SUCCESS!   Found A Trip-Counted Loop!  -----
   274   //
   275   // Canonicalize the condition on the test.  If we can exactly determine
   276   // the trip-counter exit value, then set limit to that value and use
   277   // a '!=' test.  Otherwise use conditon '<' for count-up loops and
   278   // '>' for count-down loops.  If the condition is inverted and we will
   279   // be rolling through MININT to MAXINT, then bail out.
   281   C->print_method("Before CountedLoop", 3);
   283   // Check for SafePoint on backedge and remove
   284   Node *sfpt = x->in(LoopNode::LoopBackControl);
   285   if( sfpt->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt)) {
   286     lazy_replace( sfpt, iftrue );
   287     loop->_tail = iftrue;
   288   }
   291   // If compare points to incr, we are ok.  Otherwise the compare
   292   // can directly point to the phi; in this case adjust the compare so that
   293   // it points to the incr by adusting the limit.
   294   if( cmp->in(1) == phi || cmp->in(2) == phi )
   295     limit = gvn->transform(new (C, 3) AddINode(limit,stride));
   297   // trip-count for +-tive stride should be: (limit - init_trip + stride - 1)/stride.
   298   // Final value for iterator should be: trip_count * stride + init_trip.
   299   const Type *limit_t = limit->bottom_type();
   300   const Type *init_t = init_trip->bottom_type();
   301   Node *one_p = gvn->intcon( 1);
   302   Node *one_m = gvn->intcon(-1);
   304   Node *trip_count = NULL;
   305   Node *hook = new (C, 6) Node(6);
   306   switch( bt ) {
   307   case BoolTest::eq:
   308     return NULL;                // Bail out, but this loop trips at most twice!
   309   case BoolTest::ne:            // Ahh, the case we desire
   310     if( stride_con == 1 )
   311       trip_count = gvn->transform(new (C, 3) SubINode(limit,init_trip));
   312     else if( stride_con == -1 )
   313       trip_count = gvn->transform(new (C, 3) SubINode(init_trip,limit));
   314     else
   315       return NULL;              // Odd stride; must prove we hit limit exactly
   316     set_subtree_ctrl( trip_count );
   317     //_loop.map(trip_count->_idx,loop(limit));
   318     break;
   319   case BoolTest::le:            // Maybe convert to '<' case
   320     limit = gvn->transform(new (C, 3) AddINode(limit,one_p));
   321     set_subtree_ctrl( limit );
   322     hook->init_req(4, limit);
   324     bt = BoolTest::lt;
   325     // Make the new limit be in the same loop nest as the old limit
   326     //_loop.map(limit->_idx,limit_loop);
   327     // Fall into next case
   328   case BoolTest::lt: {          // Maybe convert to '!=' case
   329     if( stride_con < 0 ) return NULL; // Count down loop rolls through MAXINT
   330     Node *range = gvn->transform(new (C, 3) SubINode(limit,init_trip));
   331     set_subtree_ctrl( range );
   332     hook->init_req(0, range);
   334     Node *bias  = gvn->transform(new (C, 3) AddINode(range,stride));
   335     set_subtree_ctrl( bias );
   336     hook->init_req(1, bias);
   338     Node *bias1 = gvn->transform(new (C, 3) AddINode(bias,one_m));
   339     set_subtree_ctrl( bias1 );
   340     hook->init_req(2, bias1);
   342     trip_count  = gvn->transform(new (C, 3) DivINode(0,bias1,stride));
   343     set_subtree_ctrl( trip_count );
   344     hook->init_req(3, trip_count);
   345     break;
   346   }
   348   case BoolTest::ge:            // Maybe convert to '>' case
   349     limit = gvn->transform(new (C, 3) AddINode(limit,one_m));
   350     set_subtree_ctrl( limit );
   351     hook->init_req(4 ,limit);
   353     bt = BoolTest::gt;
   354     // Make the new limit be in the same loop nest as the old limit
   355     //_loop.map(limit->_idx,limit_loop);
   356     // Fall into next case
   357   case BoolTest::gt: {          // Maybe convert to '!=' case
   358     if( stride_con > 0 ) return NULL; // count up loop rolls through MININT
   359     Node *range = gvn->transform(new (C, 3) SubINode(limit,init_trip));
   360     set_subtree_ctrl( range );
   361     hook->init_req(0, range);
   363     Node *bias  = gvn->transform(new (C, 3) AddINode(range,stride));
   364     set_subtree_ctrl( bias );
   365     hook->init_req(1, bias);
   367     Node *bias1 = gvn->transform(new (C, 3) AddINode(bias,one_p));
   368     set_subtree_ctrl( bias1 );
   369     hook->init_req(2, bias1);
   371     trip_count  = gvn->transform(new (C, 3) DivINode(0,bias1,stride));
   372     set_subtree_ctrl( trip_count );
   373     hook->init_req(3, trip_count);
   374     break;
   375   }
   376   }
   378   Node *span = gvn->transform(new (C, 3) MulINode(trip_count,stride));
   379   set_subtree_ctrl( span );
   380   hook->init_req(5, span);
   382   limit = gvn->transform(new (C, 3) AddINode(span,init_trip));
   383   set_subtree_ctrl( limit );
   385   // Build a canonical trip test.
   386   // Clone code, as old values may be in use.
   387   incr = incr->clone();
   388   incr->set_req(1,phi);
   389   incr->set_req(2,stride);
   390   incr = _igvn.register_new_node_with_optimizer(incr);
   391   set_early_ctrl( incr );
   392   _igvn.hash_delete(phi);
   393   phi->set_req_X( LoopNode::LoopBackControl, incr, &_igvn );
   395   // If phi type is more restrictive than Int, raise to
   396   // Int to prevent (almost) infinite recursion in igvn
   397   // which can only handle integer types for constants or minint..maxint.
   398   if (!TypeInt::INT->higher_equal(phi->bottom_type())) {
   399     Node* nphi = PhiNode::make(phi->in(0), phi->in(LoopNode::EntryControl), TypeInt::INT);
   400     nphi->set_req(LoopNode::LoopBackControl, phi->in(LoopNode::LoopBackControl));
   401     nphi = _igvn.register_new_node_with_optimizer(nphi);
   402     set_ctrl(nphi, get_ctrl(phi));
   403     _igvn.subsume_node(phi, nphi);
   404     phi = nphi->as_Phi();
   405   }
   406   cmp = cmp->clone();
   407   cmp->set_req(1,incr);
   408   cmp->set_req(2,limit);
   409   cmp = _igvn.register_new_node_with_optimizer(cmp);
   410   set_ctrl(cmp, iff->in(0));
   412   Node *tmp = test->clone();
   413   assert( tmp->is_Bool(), "" );
   414   test = (BoolNode*)tmp;
   415   (*(BoolTest*)&test->_test)._test = bt; //BoolTest::ne;
   416   test->set_req(1,cmp);
   417   _igvn.register_new_node_with_optimizer(test);
   418   set_ctrl(test, iff->in(0));
   419   // If the exit test is dead, STOP!
   420   if( test == NULL ) return NULL;
   421   _igvn.hash_delete(iff);
   422   iff->set_req_X( 1, test, &_igvn );
   424   // Replace the old IfNode with a new LoopEndNode
   425   Node *lex = _igvn.register_new_node_with_optimizer(new (C, 2) CountedLoopEndNode( iff->in(0), iff->in(1), cl_prob, iff->as_If()->_fcnt ));
   426   IfNode *le = lex->as_If();
   427   uint dd = dom_depth(iff);
   428   set_idom(le, le->in(0), dd); // Update dominance for loop exit
   429   set_loop(le, loop);
   431   // Get the loop-exit control
   432   Node *if_f = iff->as_If()->proj_out(!(iftrue_op == Op_IfTrue));
   434   // Need to swap loop-exit and loop-back control?
   435   if( iftrue_op == Op_IfFalse ) {
   436     Node *ift2=_igvn.register_new_node_with_optimizer(new (C, 1) IfTrueNode (le));
   437     Node *iff2=_igvn.register_new_node_with_optimizer(new (C, 1) IfFalseNode(le));
   439     loop->_tail = back_control = ift2;
   440     set_loop(ift2, loop);
   441     set_loop(iff2, get_loop(if_f));
   443     // Lazy update of 'get_ctrl' mechanism.
   444     lazy_replace_proj( if_f  , iff2 );
   445     lazy_replace_proj( iftrue, ift2 );
   447     // Swap names
   448     if_f   = iff2;
   449     iftrue = ift2;
   450   } else {
   451     _igvn.hash_delete(if_f  );
   452     _igvn.hash_delete(iftrue);
   453     if_f  ->set_req_X( 0, le, &_igvn );
   454     iftrue->set_req_X( 0, le, &_igvn );
   455   }
   457   set_idom(iftrue, le, dd+1);
   458   set_idom(if_f,   le, dd+1);
   460   // Now setup a new CountedLoopNode to replace the existing LoopNode
   461   CountedLoopNode *l = new (C, 3) CountedLoopNode(init_control, back_control);
   462   // The following assert is approximately true, and defines the intention
   463   // of can_be_counted_loop.  It fails, however, because phase->type
   464   // is not yet initialized for this loop and its parts.
   465   //assert(l->can_be_counted_loop(this), "sanity");
   466   _igvn.register_new_node_with_optimizer(l);
   467   set_loop(l, loop);
   468   loop->_head = l;
   469   // Fix all data nodes placed at the old loop head.
   470   // Uses the lazy-update mechanism of 'get_ctrl'.
   471   lazy_replace( x, l );
   472   set_idom(l, init_control, dom_depth(x));
   474   // Check for immediately preceeding SafePoint and remove
   475   Node *sfpt2 = le->in(0);
   476   if( sfpt2->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt2))
   477     lazy_replace( sfpt2, sfpt2->in(TypeFunc::Control));
   479   // Free up intermediate goo
   480   _igvn.remove_dead_node(hook);
   482   C->print_method("After CountedLoop", 3);
   484   // Return trip counter
   485   return trip_count;
   486 }
   489 //------------------------------Ideal------------------------------------------
   490 // Return a node which is more "ideal" than the current node.
   491 // Attempt to convert into a counted-loop.
   492 Node *LoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   493   if (!can_be_counted_loop(phase)) {
   494     phase->C->set_major_progress();
   495   }
   496   return RegionNode::Ideal(phase, can_reshape);
   497 }
   500 //=============================================================================
   501 //------------------------------Ideal------------------------------------------
   502 // Return a node which is more "ideal" than the current node.
   503 // Attempt to convert into a counted-loop.
   504 Node *CountedLoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   505   return RegionNode::Ideal(phase, can_reshape);
   506 }
   508 //------------------------------dump_spec--------------------------------------
   509 // Dump special per-node info
   510 #ifndef PRODUCT
   511 void CountedLoopNode::dump_spec(outputStream *st) const {
   512   LoopNode::dump_spec(st);
   513   if( stride_is_con() ) {
   514     st->print("stride: %d ",stride_con());
   515   } else {
   516     st->print("stride: not constant ");
   517   }
   518   if( is_pre_loop () ) st->print("pre of N%d" , _main_idx );
   519   if( is_main_loop() ) st->print("main of N%d", _idx );
   520   if( is_post_loop() ) st->print("post of N%d", _main_idx );
   521 }
   522 #endif
   524 //=============================================================================
   525 int CountedLoopEndNode::stride_con() const {
   526   return stride()->bottom_type()->is_int()->get_con();
   527 }
   530 //----------------------match_incr_with_optional_truncation--------------------
   531 // Match increment with optional truncation:
   532 // CHAR: (i+1)&0x7fff, BYTE: ((i+1)<<8)>>8, or SHORT: ((i+1)<<16)>>16
   533 // Return NULL for failure. Success returns the increment node.
   534 Node* CountedLoopNode::match_incr_with_optional_truncation(
   535                       Node* expr, Node** trunc1, Node** trunc2, const TypeInt** trunc_type) {
   536   // Quick cutouts:
   537   if (expr == NULL || expr->req() != 3)  return false;
   539   Node *t1 = NULL;
   540   Node *t2 = NULL;
   541   const TypeInt* trunc_t = TypeInt::INT;
   542   Node* n1 = expr;
   543   int   n1op = n1->Opcode();
   545   // Try to strip (n1 & M) or (n1 << N >> N) from n1.
   546   if (n1op == Op_AndI &&
   547       n1->in(2)->is_Con() &&
   548       n1->in(2)->bottom_type()->is_int()->get_con() == 0x7fff) {
   549     // %%% This check should match any mask of 2**K-1.
   550     t1 = n1;
   551     n1 = t1->in(1);
   552     n1op = n1->Opcode();
   553     trunc_t = TypeInt::CHAR;
   554   } else if (n1op == Op_RShiftI &&
   555              n1->in(1) != NULL &&
   556              n1->in(1)->Opcode() == Op_LShiftI &&
   557              n1->in(2) == n1->in(1)->in(2) &&
   558              n1->in(2)->is_Con()) {
   559     jint shift = n1->in(2)->bottom_type()->is_int()->get_con();
   560     // %%% This check should match any shift in [1..31].
   561     if (shift == 16 || shift == 8) {
   562       t1 = n1;
   563       t2 = t1->in(1);
   564       n1 = t2->in(1);
   565       n1op = n1->Opcode();
   566       if (shift == 16) {
   567         trunc_t = TypeInt::SHORT;
   568       } else if (shift == 8) {
   569         trunc_t = TypeInt::BYTE;
   570       }
   571     }
   572   }
   574   // If (maybe after stripping) it is an AddI, we won:
   575   if (n1op == Op_AddI) {
   576     *trunc1 = t1;
   577     *trunc2 = t2;
   578     *trunc_type = trunc_t;
   579     return n1;
   580   }
   582   // failed
   583   return NULL;
   584 }
   587 //------------------------------filtered_type--------------------------------
   588 // Return a type based on condition control flow
   589 // A successful return will be a type that is restricted due
   590 // to a series of dominating if-tests, such as:
   591 //    if (i < 10) {
   592 //       if (i > 0) {
   593 //          here: "i" type is [1..10)
   594 //       }
   595 //    }
   596 // or a control flow merge
   597 //    if (i < 10) {
   598 //       do {
   599 //          phi( , ) -- at top of loop type is [min_int..10)
   600 //         i = ?
   601 //       } while ( i < 10)
   602 //
   603 const TypeInt* PhaseIdealLoop::filtered_type( Node *n, Node* n_ctrl) {
   604   assert(n && n->bottom_type()->is_int(), "must be int");
   605   const TypeInt* filtered_t = NULL;
   606   if (!n->is_Phi()) {
   607     assert(n_ctrl != NULL || n_ctrl == C->top(), "valid control");
   608     filtered_t = filtered_type_from_dominators(n, n_ctrl);
   610   } else {
   611     Node* phi    = n->as_Phi();
   612     Node* region = phi->in(0);
   613     assert(n_ctrl == NULL || n_ctrl == region, "ctrl parameter must be region");
   614     if (region && region != C->top()) {
   615       for (uint i = 1; i < phi->req(); i++) {
   616         Node* val   = phi->in(i);
   617         Node* use_c = region->in(i);
   618         const TypeInt* val_t = filtered_type_from_dominators(val, use_c);
   619         if (val_t != NULL) {
   620           if (filtered_t == NULL) {
   621             filtered_t = val_t;
   622           } else {
   623             filtered_t = filtered_t->meet(val_t)->is_int();
   624           }
   625         }
   626       }
   627     }
   628   }
   629   const TypeInt* n_t = _igvn.type(n)->is_int();
   630   if (filtered_t != NULL) {
   631     n_t = n_t->join(filtered_t)->is_int();
   632   }
   633   return n_t;
   634 }
   637 //------------------------------filtered_type_from_dominators--------------------------------
   638 // Return a possibly more restrictive type for val based on condition control flow of dominators
   639 const TypeInt* PhaseIdealLoop::filtered_type_from_dominators( Node* val, Node *use_ctrl) {
   640   if (val->is_Con()) {
   641      return val->bottom_type()->is_int();
   642   }
   643   uint if_limit = 10; // Max number of dominating if's visited
   644   const TypeInt* rtn_t = NULL;
   646   if (use_ctrl && use_ctrl != C->top()) {
   647     Node* val_ctrl = get_ctrl(val);
   648     uint val_dom_depth = dom_depth(val_ctrl);
   649     Node* pred = use_ctrl;
   650     uint if_cnt = 0;
   651     while (if_cnt < if_limit) {
   652       if ((pred->Opcode() == Op_IfTrue || pred->Opcode() == Op_IfFalse)) {
   653         if_cnt++;
   654         const TypeInt* if_t = filtered_type_at_if(val, pred);
   655         if (if_t != NULL) {
   656           if (rtn_t == NULL) {
   657             rtn_t = if_t;
   658           } else {
   659             rtn_t = rtn_t->join(if_t)->is_int();
   660           }
   661         }
   662       }
   663       pred = idom(pred);
   664       if (pred == NULL || pred == C->top()) {
   665         break;
   666       }
   667       // Stop if going beyond definition block of val
   668       if (dom_depth(pred) < val_dom_depth) {
   669         break;
   670       }
   671     }
   672   }
   673   return rtn_t;
   674 }
   677 //------------------------------filtered_type_at_if--------------------------------
   678 // Return a possibly more restrictive type for val based on condition control flow for an if
   679 const TypeInt* PhaseIdealLoop::filtered_type_at_if( Node* val, Node *if_proj) {
   680   assert(if_proj &&
   681          (if_proj->Opcode() == Op_IfTrue || if_proj->Opcode() == Op_IfFalse), "expecting an if projection");
   682   if (if_proj->in(0) && if_proj->in(0)->is_If()) {
   683     IfNode* iff = if_proj->in(0)->as_If();
   684     if (iff->in(1) && iff->in(1)->is_Bool()) {
   685       BoolNode* bol = iff->in(1)->as_Bool();
   686       if (bol->in(1) && bol->in(1)->is_Cmp()) {
   687         const CmpNode* cmp  = bol->in(1)->as_Cmp();
   688         if (cmp->in(1) == val) {
   689           const TypeInt* cmp2_t = _igvn.type(cmp->in(2))->isa_int();
   690           if (cmp2_t != NULL) {
   691             jint lo = cmp2_t->_lo;
   692             jint hi = cmp2_t->_hi;
   693             BoolTest::mask msk = if_proj->Opcode() == Op_IfTrue ? bol->_test._test : bol->_test.negate();
   694             switch (msk) {
   695             case BoolTest::ne:
   696               // Can't refine type
   697               return NULL;
   698             case BoolTest::eq:
   699               return cmp2_t;
   700             case BoolTest::lt:
   701               lo = TypeInt::INT->_lo;
   702               if (hi - 1 < hi) {
   703                 hi = hi - 1;
   704               }
   705               break;
   706             case BoolTest::le:
   707               lo = TypeInt::INT->_lo;
   708               break;
   709             case BoolTest::gt:
   710               if (lo + 1 > lo) {
   711                 lo = lo + 1;
   712               }
   713               hi = TypeInt::INT->_hi;
   714               break;
   715             case BoolTest::ge:
   716               // lo unchanged
   717               hi = TypeInt::INT->_hi;
   718               break;
   719             }
   720             const TypeInt* rtn_t = TypeInt::make(lo, hi, cmp2_t->_widen);
   721             return rtn_t;
   722           }
   723         }
   724       }
   725     }
   726   }
   727   return NULL;
   728 }
   730 //------------------------------dump_spec--------------------------------------
   731 // Dump special per-node info
   732 #ifndef PRODUCT
   733 void CountedLoopEndNode::dump_spec(outputStream *st) const {
   734   if( in(TestValue)->is_Bool() ) {
   735     BoolTest bt( test_trip()); // Added this for g++.
   737     st->print("[");
   738     bt.dump_on(st);
   739     st->print("]");
   740   }
   741   st->print(" ");
   742   IfNode::dump_spec(st);
   743 }
   744 #endif
   746 //=============================================================================
   747 //------------------------------is_member--------------------------------------
   748 // Is 'l' a member of 'this'?
   749 int IdealLoopTree::is_member( const IdealLoopTree *l ) const {
   750   while( l->_nest > _nest ) l = l->_parent;
   751   return l == this;
   752 }
   754 //------------------------------set_nest---------------------------------------
   755 // Set loop tree nesting depth.  Accumulate _has_call bits.
   756 int IdealLoopTree::set_nest( uint depth ) {
   757   _nest = depth;
   758   int bits = _has_call;
   759   if( _child ) bits |= _child->set_nest(depth+1);
   760   if( bits ) _has_call = 1;
   761   if( _next  ) bits |= _next ->set_nest(depth  );
   762   return bits;
   763 }
   765 //------------------------------split_fall_in----------------------------------
   766 // Split out multiple fall-in edges from the loop header.  Move them to a
   767 // private RegionNode before the loop.  This becomes the loop landing pad.
   768 void IdealLoopTree::split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt ) {
   769   PhaseIterGVN &igvn = phase->_igvn;
   770   uint i;
   772   // Make a new RegionNode to be the landing pad.
   773   Node *landing_pad = new (phase->C, fall_in_cnt+1) RegionNode( fall_in_cnt+1 );
   774   phase->set_loop(landing_pad,_parent);
   775   // Gather all the fall-in control paths into the landing pad
   776   uint icnt = fall_in_cnt;
   777   uint oreq = _head->req();
   778   for( i = oreq-1; i>0; i-- )
   779     if( !phase->is_member( this, _head->in(i) ) )
   780       landing_pad->set_req(icnt--,_head->in(i));
   782   // Peel off PhiNode edges as well
   783   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
   784     Node *oj = _head->fast_out(j);
   785     if( oj->is_Phi() ) {
   786       PhiNode* old_phi = oj->as_Phi();
   787       assert( old_phi->region() == _head, "" );
   788       igvn.hash_delete(old_phi);   // Yank from hash before hacking edges
   789       Node *p = PhiNode::make_blank(landing_pad, old_phi);
   790       uint icnt = fall_in_cnt;
   791       for( i = oreq-1; i>0; i-- ) {
   792         if( !phase->is_member( this, _head->in(i) ) ) {
   793           p->init_req(icnt--, old_phi->in(i));
   794           // Go ahead and clean out old edges from old phi
   795           old_phi->del_req(i);
   796         }
   797       }
   798       // Search for CSE's here, because ZKM.jar does a lot of
   799       // loop hackery and we need to be a little incremental
   800       // with the CSE to avoid O(N^2) node blow-up.
   801       Node *p2 = igvn.hash_find_insert(p); // Look for a CSE
   802       if( p2 ) {                // Found CSE
   803         p->destruct();          // Recover useless new node
   804         p = p2;                 // Use old node
   805       } else {
   806         igvn.register_new_node_with_optimizer(p, old_phi);
   807       }
   808       // Make old Phi refer to new Phi.
   809       old_phi->add_req(p);
   810       // Check for the special case of making the old phi useless and
   811       // disappear it.  In JavaGrande I have a case where this useless
   812       // Phi is the loop limit and prevents recognizing a CountedLoop
   813       // which in turn prevents removing an empty loop.
   814       Node *id_old_phi = old_phi->Identity( &igvn );
   815       if( id_old_phi != old_phi ) { // Found a simple identity?
   816         // Note that I cannot call 'subsume_node' here, because
   817         // that will yank the edge from old_phi to the Region and
   818         // I'm mid-iteration over the Region's uses.
   819         for (DUIterator_Last imin, i = old_phi->last_outs(imin); i >= imin; ) {
   820           Node* use = old_phi->last_out(i);
   821           igvn.hash_delete(use);
   822           igvn._worklist.push(use);
   823           uint uses_found = 0;
   824           for (uint j = 0; j < use->len(); j++) {
   825             if (use->in(j) == old_phi) {
   826               if (j < use->req()) use->set_req (j, id_old_phi);
   827               else                use->set_prec(j, id_old_phi);
   828               uses_found++;
   829             }
   830           }
   831           i -= uses_found;    // we deleted 1 or more copies of this edge
   832         }
   833       }
   834       igvn._worklist.push(old_phi);
   835     }
   836   }
   837   // Finally clean out the fall-in edges from the RegionNode
   838   for( i = oreq-1; i>0; i-- ) {
   839     if( !phase->is_member( this, _head->in(i) ) ) {
   840       _head->del_req(i);
   841     }
   842   }
   843   // Transform landing pad
   844   igvn.register_new_node_with_optimizer(landing_pad, _head);
   845   // Insert landing pad into the header
   846   _head->add_req(landing_pad);
   847 }
   849 //------------------------------split_outer_loop-------------------------------
   850 // Split out the outermost loop from this shared header.
   851 void IdealLoopTree::split_outer_loop( PhaseIdealLoop *phase ) {
   852   PhaseIterGVN &igvn = phase->_igvn;
   854   // Find index of outermost loop; it should also be my tail.
   855   uint outer_idx = 1;
   856   while( _head->in(outer_idx) != _tail ) outer_idx++;
   858   // Make a LoopNode for the outermost loop.
   859   Node *ctl = _head->in(LoopNode::EntryControl);
   860   Node *outer = new (phase->C, 3) LoopNode( ctl, _head->in(outer_idx) );
   861   outer = igvn.register_new_node_with_optimizer(outer, _head);
   862   phase->set_created_loop_node();
   863   // Outermost loop falls into '_head' loop
   864   _head->set_req(LoopNode::EntryControl, outer);
   865   _head->del_req(outer_idx);
   866   // Split all the Phis up between '_head' loop and 'outer' loop.
   867   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
   868     Node *out = _head->fast_out(j);
   869     if( out->is_Phi() ) {
   870       PhiNode *old_phi = out->as_Phi();
   871       assert( old_phi->region() == _head, "" );
   872       Node *phi = PhiNode::make_blank(outer, old_phi);
   873       phi->init_req(LoopNode::EntryControl,    old_phi->in(LoopNode::EntryControl));
   874       phi->init_req(LoopNode::LoopBackControl, old_phi->in(outer_idx));
   875       phi = igvn.register_new_node_with_optimizer(phi, old_phi);
   876       // Make old Phi point to new Phi on the fall-in path
   877       igvn.hash_delete(old_phi);
   878       old_phi->set_req(LoopNode::EntryControl, phi);
   879       old_phi->del_req(outer_idx);
   880       igvn._worklist.push(old_phi);
   881     }
   882   }
   884   // Use the new loop head instead of the old shared one
   885   _head = outer;
   886   phase->set_loop(_head, this);
   887 }
   889 //------------------------------fix_parent-------------------------------------
   890 static void fix_parent( IdealLoopTree *loop, IdealLoopTree *parent ) {
   891   loop->_parent = parent;
   892   if( loop->_child ) fix_parent( loop->_child, loop   );
   893   if( loop->_next  ) fix_parent( loop->_next , parent );
   894 }
   896 //------------------------------estimate_path_freq-----------------------------
   897 static float estimate_path_freq( Node *n ) {
   898   // Try to extract some path frequency info
   899   IfNode *iff;
   900   for( int i = 0; i < 50; i++ ) { // Skip through a bunch of uncommon tests
   901     uint nop = n->Opcode();
   902     if( nop == Op_SafePoint ) {   // Skip any safepoint
   903       n = n->in(0);
   904       continue;
   905     }
   906     if( nop == Op_CatchProj ) {   // Get count from a prior call
   907       // Assume call does not always throw exceptions: means the call-site
   908       // count is also the frequency of the fall-through path.
   909       assert( n->is_CatchProj(), "" );
   910       if( ((CatchProjNode*)n)->_con != CatchProjNode::fall_through_index )
   911         return 0.0f;            // Assume call exception path is rare
   912       Node *call = n->in(0)->in(0)->in(0);
   913       assert( call->is_Call(), "expect a call here" );
   914       const JVMState *jvms = ((CallNode*)call)->jvms();
   915       ciMethodData* methodData = jvms->method()->method_data();
   916       if (!methodData->is_mature())  return 0.0f; // No call-site data
   917       ciProfileData* data = methodData->bci_to_data(jvms->bci());
   918       if ((data == NULL) || !data->is_CounterData()) {
   919         // no call profile available, try call's control input
   920         n = n->in(0);
   921         continue;
   922       }
   923       return data->as_CounterData()->count()/FreqCountInvocations;
   924     }
   925     // See if there's a gating IF test
   926     Node *n_c = n->in(0);
   927     if( !n_c->is_If() ) break;       // No estimate available
   928     iff = n_c->as_If();
   929     if( iff->_fcnt != COUNT_UNKNOWN )   // Have a valid count?
   930       // Compute how much count comes on this path
   931       return ((nop == Op_IfTrue) ? iff->_prob : 1.0f - iff->_prob) * iff->_fcnt;
   932     // Have no count info.  Skip dull uncommon-trap like branches.
   933     if( (nop == Op_IfTrue  && iff->_prob < PROB_LIKELY_MAG(5)) ||
   934         (nop == Op_IfFalse && iff->_prob > PROB_UNLIKELY_MAG(5)) )
   935       break;
   936     // Skip through never-taken branch; look for a real loop exit.
   937     n = iff->in(0);
   938   }
   939   return 0.0f;                  // No estimate available
   940 }
   942 //------------------------------merge_many_backedges---------------------------
   943 // Merge all the backedges from the shared header into a private Region.
   944 // Feed that region as the one backedge to this loop.
   945 void IdealLoopTree::merge_many_backedges( PhaseIdealLoop *phase ) {
   946   uint i;
   948   // Scan for the top 2 hottest backedges
   949   float hotcnt = 0.0f;
   950   float warmcnt = 0.0f;
   951   uint hot_idx = 0;
   952   // Loop starts at 2 because slot 1 is the fall-in path
   953   for( i = 2; i < _head->req(); i++ ) {
   954     float cnt = estimate_path_freq(_head->in(i));
   955     if( cnt > hotcnt ) {       // Grab hottest path
   956       warmcnt = hotcnt;
   957       hotcnt = cnt;
   958       hot_idx = i;
   959     } else if( cnt > warmcnt ) { // And 2nd hottest path
   960       warmcnt = cnt;
   961     }
   962   }
   964   // See if the hottest backedge is worthy of being an inner loop
   965   // by being much hotter than the next hottest backedge.
   966   if( hotcnt <= 0.0001 ||
   967       hotcnt < 2.0*warmcnt ) hot_idx = 0;// No hot backedge
   969   // Peel out the backedges into a private merge point; peel
   970   // them all except optionally hot_idx.
   971   PhaseIterGVN &igvn = phase->_igvn;
   973   Node *hot_tail = NULL;
   974   // Make a Region for the merge point
   975   Node *r = new (phase->C, 1) RegionNode(1);
   976   for( i = 2; i < _head->req(); i++ ) {
   977     if( i != hot_idx )
   978       r->add_req( _head->in(i) );
   979     else hot_tail = _head->in(i);
   980   }
   981   igvn.register_new_node_with_optimizer(r, _head);
   982   // Plug region into end of loop _head, followed by hot_tail
   983   while( _head->req() > 3 ) _head->del_req( _head->req()-1 );
   984   _head->set_req(2, r);
   985   if( hot_idx ) _head->add_req(hot_tail);
   987   // Split all the Phis up between '_head' loop and the Region 'r'
   988   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
   989     Node *out = _head->fast_out(j);
   990     if( out->is_Phi() ) {
   991       PhiNode* n = out->as_Phi();
   992       igvn.hash_delete(n);      // Delete from hash before hacking edges
   993       Node *hot_phi = NULL;
   994       Node *phi = new (phase->C, r->req()) PhiNode(r, n->type(), n->adr_type());
   995       // Check all inputs for the ones to peel out
   996       uint j = 1;
   997       for( uint i = 2; i < n->req(); i++ ) {
   998         if( i != hot_idx )
   999           phi->set_req( j++, n->in(i) );
  1000         else hot_phi = n->in(i);
  1002       // Register the phi but do not transform until whole place transforms
  1003       igvn.register_new_node_with_optimizer(phi, n);
  1004       // Add the merge phi to the old Phi
  1005       while( n->req() > 3 ) n->del_req( n->req()-1 );
  1006       n->set_req(2, phi);
  1007       if( hot_idx ) n->add_req(hot_phi);
  1012   // Insert a new IdealLoopTree inserted below me.  Turn it into a clone
  1013   // of self loop tree.  Turn self into a loop headed by _head and with
  1014   // tail being the new merge point.
  1015   IdealLoopTree *ilt = new IdealLoopTree( phase, _head, _tail );
  1016   phase->set_loop(_tail,ilt);   // Adjust tail
  1017   _tail = r;                    // Self's tail is new merge point
  1018   phase->set_loop(r,this);
  1019   ilt->_child = _child;         // New guy has my children
  1020   _child = ilt;                 // Self has new guy as only child
  1021   ilt->_parent = this;          // new guy has self for parent
  1022   ilt->_nest = _nest;           // Same nesting depth (for now)
  1024   // Starting with 'ilt', look for child loop trees using the same shared
  1025   // header.  Flatten these out; they will no longer be loops in the end.
  1026   IdealLoopTree **pilt = &_child;
  1027   while( ilt ) {
  1028     if( ilt->_head == _head ) {
  1029       uint i;
  1030       for( i = 2; i < _head->req(); i++ )
  1031         if( _head->in(i) == ilt->_tail )
  1032           break;                // Still a loop
  1033       if( i == _head->req() ) { // No longer a loop
  1034         // Flatten ilt.  Hang ilt's "_next" list from the end of
  1035         // ilt's '_child' list.  Move the ilt's _child up to replace ilt.
  1036         IdealLoopTree **cp = &ilt->_child;
  1037         while( *cp ) cp = &(*cp)->_next;   // Find end of child list
  1038         *cp = ilt->_next;       // Hang next list at end of child list
  1039         *pilt = ilt->_child;    // Move child up to replace ilt
  1040         ilt->_head = NULL;      // Flag as a loop UNIONED into parent
  1041         ilt = ilt->_child;      // Repeat using new ilt
  1042         continue;               // do not advance over ilt->_child
  1044       assert( ilt->_tail == hot_tail, "expected to only find the hot inner loop here" );
  1045       phase->set_loop(_head,ilt);
  1047     pilt = &ilt->_child;        // Advance to next
  1048     ilt = *pilt;
  1051   if( _child ) fix_parent( _child, this );
  1054 //------------------------------beautify_loops---------------------------------
  1055 // Split shared headers and insert loop landing pads.
  1056 // Insert a LoopNode to replace the RegionNode.
  1057 // Return TRUE if loop tree is structurally changed.
  1058 bool IdealLoopTree::beautify_loops( PhaseIdealLoop *phase ) {
  1059   bool result = false;
  1060   // Cache parts in locals for easy
  1061   PhaseIterGVN &igvn = phase->_igvn;
  1063   phase->C->print_method("Before beautify loops", 3);
  1065   igvn.hash_delete(_head);      // Yank from hash before hacking edges
  1067   // Check for multiple fall-in paths.  Peel off a landing pad if need be.
  1068   int fall_in_cnt = 0;
  1069   for( uint i = 1; i < _head->req(); i++ )
  1070     if( !phase->is_member( this, _head->in(i) ) )
  1071       fall_in_cnt++;
  1072   assert( fall_in_cnt, "at least 1 fall-in path" );
  1073   if( fall_in_cnt > 1 )         // Need a loop landing pad to merge fall-ins
  1074     split_fall_in( phase, fall_in_cnt );
  1076   // Swap inputs to the _head and all Phis to move the fall-in edge to
  1077   // the left.
  1078   fall_in_cnt = 1;
  1079   while( phase->is_member( this, _head->in(fall_in_cnt) ) )
  1080     fall_in_cnt++;
  1081   if( fall_in_cnt > 1 ) {
  1082     // Since I am just swapping inputs I do not need to update def-use info
  1083     Node *tmp = _head->in(1);
  1084     _head->set_req( 1, _head->in(fall_in_cnt) );
  1085     _head->set_req( fall_in_cnt, tmp );
  1086     // Swap also all Phis
  1087     for (DUIterator_Fast imax, i = _head->fast_outs(imax); i < imax; i++) {
  1088       Node* phi = _head->fast_out(i);
  1089       if( phi->is_Phi() ) {
  1090         igvn.hash_delete(phi); // Yank from hash before hacking edges
  1091         tmp = phi->in(1);
  1092         phi->set_req( 1, phi->in(fall_in_cnt) );
  1093         phi->set_req( fall_in_cnt, tmp );
  1097   assert( !phase->is_member( this, _head->in(1) ), "left edge is fall-in" );
  1098   assert(  phase->is_member( this, _head->in(2) ), "right edge is loop" );
  1100   // If I am a shared header (multiple backedges), peel off the many
  1101   // backedges into a private merge point and use the merge point as
  1102   // the one true backedge.
  1103   if( _head->req() > 3 ) {
  1104     // Merge the many backedges into a single backedge.
  1105     merge_many_backedges( phase );
  1106     result = true;
  1109   // If I am a shared header (multiple backedges), peel off myself loop.
  1110   // I better be the outermost loop.
  1111   if( _head->req() > 3 ) {
  1112     split_outer_loop( phase );
  1113     result = true;
  1115   } else if( !_head->is_Loop() && !_irreducible ) {
  1116     // Make a new LoopNode to replace the old loop head
  1117     Node *l = new (phase->C, 3) LoopNode( _head->in(1), _head->in(2) );
  1118     l = igvn.register_new_node_with_optimizer(l, _head);
  1119     phase->set_created_loop_node();
  1120     // Go ahead and replace _head
  1121     phase->_igvn.subsume_node( _head, l );
  1122     _head = l;
  1123     phase->set_loop(_head, this);
  1124     for (DUIterator_Fast imax, i = l->fast_outs(imax); i < imax; i++)
  1125       phase->_igvn.add_users_to_worklist(l->fast_out(i));
  1128   phase->C->print_method("After beautify loops", 3);
  1130   // Now recursively beautify nested loops
  1131   if( _child ) result |= _child->beautify_loops( phase );
  1132   if( _next  ) result |= _next ->beautify_loops( phase );
  1133   return result;
  1136 //------------------------------allpaths_check_safepts----------------------------
  1137 // Allpaths backwards scan from loop tail, terminating each path at first safepoint
  1138 // encountered.  Helper for check_safepts.
  1139 void IdealLoopTree::allpaths_check_safepts(VectorSet &visited, Node_List &stack) {
  1140   assert(stack.size() == 0, "empty stack");
  1141   stack.push(_tail);
  1142   visited.Clear();
  1143   visited.set(_tail->_idx);
  1144   while (stack.size() > 0) {
  1145     Node* n = stack.pop();
  1146     if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
  1147       // Terminate this path
  1148     } else if (n->Opcode() == Op_SafePoint) {
  1149       if (_phase->get_loop(n) != this) {
  1150         if (_required_safept == NULL) _required_safept = new Node_List();
  1151         _required_safept->push(n);  // save the one closest to the tail
  1153       // Terminate this path
  1154     } else {
  1155       uint start = n->is_Region() ? 1 : 0;
  1156       uint end   = n->is_Region() && !n->is_Loop() ? n->req() : start + 1;
  1157       for (uint i = start; i < end; i++) {
  1158         Node* in = n->in(i);
  1159         assert(in->is_CFG(), "must be");
  1160         if (!visited.test_set(in->_idx) && is_member(_phase->get_loop(in))) {
  1161           stack.push(in);
  1168 //------------------------------check_safepts----------------------------
  1169 // Given dominators, try to find loops with calls that must always be
  1170 // executed (call dominates loop tail).  These loops do not need non-call
  1171 // safepoints (ncsfpt).
  1172 //
  1173 // A complication is that a safepoint in a inner loop may be needed
  1174 // by an outer loop. In the following, the inner loop sees it has a
  1175 // call (block 3) on every path from the head (block 2) to the
  1176 // backedge (arc 3->2).  So it deletes the ncsfpt (non-call safepoint)
  1177 // in block 2, _but_ this leaves the outer loop without a safepoint.
  1178 //
  1179 //          entry  0
  1180 //                 |
  1181 //                 v
  1182 // outer 1,2    +->1
  1183 //              |  |
  1184 //              |  v
  1185 //              |  2<---+  ncsfpt in 2
  1186 //              |_/|\   |
  1187 //                 | v  |
  1188 // inner 2,3      /  3  |  call in 3
  1189 //               /   |  |
  1190 //              v    +--+
  1191 //        exit  4
  1192 //
  1193 //
  1194 // This method creates a list (_required_safept) of ncsfpt nodes that must
  1195 // be protected is created for each loop. When a ncsfpt maybe deleted, it
  1196 // is first looked for in the lists for the outer loops of the current loop.
  1197 //
  1198 // The insights into the problem:
  1199 //  A) counted loops are okay
  1200 //  B) innermost loops are okay (only an inner loop can delete
  1201 //     a ncsfpt needed by an outer loop)
  1202 //  C) a loop is immune from an inner loop deleting a safepoint
  1203 //     if the loop has a call on the idom-path
  1204 //  D) a loop is also immune if it has a ncsfpt (non-call safepoint) on the
  1205 //     idom-path that is not in a nested loop
  1206 //  E) otherwise, an ncsfpt on the idom-path that is nested in an inner
  1207 //     loop needs to be prevented from deletion by an inner loop
  1208 //
  1209 // There are two analyses:
  1210 //  1) The first, and cheaper one, scans the loop body from
  1211 //     tail to head following the idom (immediate dominator)
  1212 //     chain, looking for the cases (C,D,E) above.
  1213 //     Since inner loops are scanned before outer loops, there is summary
  1214 //     information about inner loops.  Inner loops can be skipped over
  1215 //     when the tail of an inner loop is encountered.
  1216 //
  1217 //  2) The second, invoked if the first fails to find a call or ncsfpt on
  1218 //     the idom path (which is rare), scans all predecessor control paths
  1219 //     from the tail to the head, terminating a path when a call or sfpt
  1220 //     is encountered, to find the ncsfpt's that are closest to the tail.
  1221 //
  1222 void IdealLoopTree::check_safepts(VectorSet &visited, Node_List &stack) {
  1223   // Bottom up traversal
  1224   IdealLoopTree* ch = _child;
  1225   while (ch != NULL) {
  1226     ch->check_safepts(visited, stack);
  1227     ch = ch->_next;
  1230   if (!_head->is_CountedLoop() && !_has_sfpt && _parent != NULL && !_irreducible) {
  1231     bool  has_call         = false; // call on dom-path
  1232     bool  has_local_ncsfpt = false; // ncsfpt on dom-path at this loop depth
  1233     Node* nonlocal_ncsfpt  = NULL;  // ncsfpt on dom-path at a deeper depth
  1234     // Scan the dom-path nodes from tail to head
  1235     for (Node* n = tail(); n != _head; n = _phase->idom(n)) {
  1236       if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
  1237         has_call = true;
  1238         _has_sfpt = 1;          // Then no need for a safept!
  1239         break;
  1240       } else if (n->Opcode() == Op_SafePoint) {
  1241         if (_phase->get_loop(n) == this) {
  1242           has_local_ncsfpt = true;
  1243           break;
  1245         if (nonlocal_ncsfpt == NULL) {
  1246           nonlocal_ncsfpt = n; // save the one closest to the tail
  1248       } else {
  1249         IdealLoopTree* nlpt = _phase->get_loop(n);
  1250         if (this != nlpt) {
  1251           // If at an inner loop tail, see if the inner loop has already
  1252           // recorded seeing a call on the dom-path (and stop.)  If not,
  1253           // jump to the head of the inner loop.
  1254           assert(is_member(nlpt), "nested loop");
  1255           Node* tail = nlpt->_tail;
  1256           if (tail->in(0)->is_If()) tail = tail->in(0);
  1257           if (n == tail) {
  1258             // If inner loop has call on dom-path, so does outer loop
  1259             if (nlpt->_has_sfpt) {
  1260               has_call = true;
  1261               _has_sfpt = 1;
  1262               break;
  1264             // Skip to head of inner loop
  1265             assert(_phase->is_dominator(_head, nlpt->_head), "inner head dominated by outer head");
  1266             n = nlpt->_head;
  1271     // Record safept's that this loop needs preserved when an
  1272     // inner loop attempts to delete it's safepoints.
  1273     if (_child != NULL && !has_call && !has_local_ncsfpt) {
  1274       if (nonlocal_ncsfpt != NULL) {
  1275         if (_required_safept == NULL) _required_safept = new Node_List();
  1276         _required_safept->push(nonlocal_ncsfpt);
  1277       } else {
  1278         // Failed to find a suitable safept on the dom-path.  Now use
  1279         // an all paths walk from tail to head, looking for safepoints to preserve.
  1280         allpaths_check_safepts(visited, stack);
  1286 //---------------------------is_deleteable_safept----------------------------
  1287 // Is safept not required by an outer loop?
  1288 bool PhaseIdealLoop::is_deleteable_safept(Node* sfpt) {
  1289   assert(sfpt->Opcode() == Op_SafePoint, "");
  1290   IdealLoopTree* lp = get_loop(sfpt)->_parent;
  1291   while (lp != NULL) {
  1292     Node_List* sfpts = lp->_required_safept;
  1293     if (sfpts != NULL) {
  1294       for (uint i = 0; i < sfpts->size(); i++) {
  1295         if (sfpt == sfpts->at(i))
  1296           return false;
  1299     lp = lp->_parent;
  1301   return true;
  1304 //------------------------------counted_loop-----------------------------------
  1305 // Convert to counted loops where possible
  1306 void IdealLoopTree::counted_loop( PhaseIdealLoop *phase ) {
  1308   // For grins, set the inner-loop flag here
  1309   if( !_child ) {
  1310     if( _head->is_Loop() ) _head->as_Loop()->set_inner_loop();
  1313   if( _head->is_CountedLoop() ||
  1314       phase->is_counted_loop( _head, this ) ) {
  1315     _has_sfpt = 1;              // Indicate we do not need a safepoint here
  1317     // Look for a safepoint to remove
  1318     for (Node* n = tail(); n != _head; n = phase->idom(n))
  1319       if (n->Opcode() == Op_SafePoint && phase->get_loop(n) == this &&
  1320           phase->is_deleteable_safept(n))
  1321         phase->lazy_replace(n,n->in(TypeFunc::Control));
  1323     CountedLoopNode *cl = _head->as_CountedLoop();
  1324     Node *incr = cl->incr();
  1325     if( !incr ) return;         // Dead loop?
  1326     Node *init = cl->init_trip();
  1327     Node *phi  = cl->phi();
  1328     // protect against stride not being a constant
  1329     if( !cl->stride_is_con() ) return;
  1330     int stride_con = cl->stride_con();
  1332     // Look for induction variables
  1334     // Visit all children, looking for Phis
  1335     for (DUIterator i = cl->outs(); cl->has_out(i); i++) {
  1336       Node *out = cl->out(i);
  1337       if (!out->is_Phi())  continue; // Looking for phis
  1338       PhiNode* phi2 = out->as_Phi();
  1339       Node *incr2 = phi2->in( LoopNode::LoopBackControl );
  1340       // Look for induction variables of the form:  X += constant
  1341       if( phi2->region() != _head ||
  1342           incr2->req() != 3 ||
  1343           incr2->in(1) != phi2 ||
  1344           incr2 == incr ||
  1345           incr2->Opcode() != Op_AddI ||
  1346           !incr2->in(2)->is_Con() )
  1347         continue;
  1349       // Check for parallel induction variable (parallel to trip counter)
  1350       // via an affine function.  In particular, count-down loops with
  1351       // count-up array indices are common. We only RCE references off
  1352       // the trip-counter, so we need to convert all these to trip-counter
  1353       // expressions.
  1354       Node *init2 = phi2->in( LoopNode::EntryControl );
  1355       int stride_con2 = incr2->in(2)->get_int();
  1357       // The general case here gets a little tricky.  We want to find the
  1358       // GCD of all possible parallel IV's and make a new IV using this
  1359       // GCD for the loop.  Then all possible IVs are simple multiples of
  1360       // the GCD.  In practice, this will cover very few extra loops.
  1361       // Instead we require 'stride_con2' to be a multiple of 'stride_con',
  1362       // where +/-1 is the common case, but other integer multiples are
  1363       // also easy to handle.
  1364       int ratio_con = stride_con2/stride_con;
  1366       if( ratio_con * stride_con == stride_con2 ) { // Check for exact
  1367         // Convert to using the trip counter.  The parallel induction
  1368         // variable differs from the trip counter by a loop-invariant
  1369         // amount, the difference between their respective initial values.
  1370         // It is scaled by the 'ratio_con'.
  1371         Compile* C = phase->C;
  1372         Node* ratio = phase->_igvn.intcon(ratio_con);
  1373         phase->set_ctrl(ratio, C->root());
  1374         Node* ratio_init = new (C, 3) MulINode(init, ratio);
  1375         phase->_igvn.register_new_node_with_optimizer(ratio_init, init);
  1376         phase->set_early_ctrl(ratio_init);
  1377         Node* diff = new (C, 3) SubINode(init2, ratio_init);
  1378         phase->_igvn.register_new_node_with_optimizer(diff, init2);
  1379         phase->set_early_ctrl(diff);
  1380         Node* ratio_idx = new (C, 3) MulINode(phi, ratio);
  1381         phase->_igvn.register_new_node_with_optimizer(ratio_idx, phi);
  1382         phase->set_ctrl(ratio_idx, cl);
  1383         Node* add  = new (C, 3) AddINode(ratio_idx, diff);
  1384         phase->_igvn.register_new_node_with_optimizer(add);
  1385         phase->set_ctrl(add, cl);
  1386         phase->_igvn.hash_delete( phi2 );
  1387         phase->_igvn.subsume_node( phi2, add );
  1388         // Sometimes an induction variable is unused
  1389         if (add->outcnt() == 0) {
  1390           phase->_igvn.remove_dead_node(add);
  1392         --i; // deleted this phi; rescan starting with next position
  1393         continue;
  1396   } else if (_parent != NULL && !_irreducible) {
  1397     // Not a counted loop.
  1398     // Look for a safepoint on the idom-path to remove, preserving the first one
  1399     bool found = false;
  1400     Node* n = tail();
  1401     for (; n != _head && !found; n = phase->idom(n)) {
  1402       if (n->Opcode() == Op_SafePoint && phase->get_loop(n) == this)
  1403         found = true; // Found one
  1405     // Skip past it and delete the others
  1406     for (; n != _head; n = phase->idom(n)) {
  1407       if (n->Opcode() == Op_SafePoint && phase->get_loop(n) == this &&
  1408           phase->is_deleteable_safept(n))
  1409         phase->lazy_replace(n,n->in(TypeFunc::Control));
  1413   // Recursively
  1414   if( _child ) _child->counted_loop( phase );
  1415   if( _next  ) _next ->counted_loop( phase );
  1418 #ifndef PRODUCT
  1419 //------------------------------dump_head--------------------------------------
  1420 // Dump 1 liner for loop header info
  1421 void IdealLoopTree::dump_head( ) const {
  1422   for( uint i=0; i<_nest; i++ )
  1423     tty->print("  ");
  1424   tty->print("Loop: N%d/N%d ",_head->_idx,_tail->_idx);
  1425   if( _irreducible ) tty->print(" IRREDUCIBLE");
  1426   if( _head->is_CountedLoop() ) {
  1427     CountedLoopNode *cl = _head->as_CountedLoop();
  1428     tty->print(" counted");
  1429     if( cl->is_pre_loop () ) tty->print(" pre" );
  1430     if( cl->is_main_loop() ) tty->print(" main");
  1431     if( cl->is_post_loop() ) tty->print(" post");
  1433   tty->cr();
  1436 //------------------------------dump-------------------------------------------
  1437 // Dump loops by loop tree
  1438 void IdealLoopTree::dump( ) const {
  1439   dump_head();
  1440   if( _child ) _child->dump();
  1441   if( _next  ) _next ->dump();
  1444 #endif
  1446 //=============================================================================
  1447 //------------------------------PhaseIdealLoop---------------------------------
  1448 // Create a PhaseLoop.  Build the ideal Loop tree.  Map each Ideal Node to
  1449 // its corresponding LoopNode.  If 'optimize' is true, do some loop cleanups.
  1450 PhaseIdealLoop::PhaseIdealLoop( PhaseIterGVN &igvn, const PhaseIdealLoop *verify_me, bool do_split_ifs )
  1451   : PhaseTransform(Ideal_Loop),
  1452     _igvn(igvn),
  1453     _dom_lca_tags(C->comp_arena()) {
  1454   // Reset major-progress flag for the driver's heuristics
  1455   C->clear_major_progress();
  1457 #ifndef PRODUCT
  1458   // Capture for later assert
  1459   uint unique = C->unique();
  1460   _loop_invokes++;
  1461   _loop_work += unique;
  1462 #endif
  1464   // True if the method has at least 1 irreducible loop
  1465   _has_irreducible_loops = false;
  1467   _created_loop_node = false;
  1469   Arena *a = Thread::current()->resource_area();
  1470   VectorSet visited(a);
  1471   // Pre-grow the mapping from Nodes to IdealLoopTrees.
  1472   _nodes.map(C->unique(), NULL);
  1473   memset(_nodes.adr(), 0, wordSize * C->unique());
  1475   // Pre-build the top-level outermost loop tree entry
  1476   _ltree_root = new IdealLoopTree( this, C->root(), C->root() );
  1477   // Do not need a safepoint at the top level
  1478   _ltree_root->_has_sfpt = 1;
  1480   // Empty pre-order array
  1481   allocate_preorders();
  1483   // Build a loop tree on the fly.  Build a mapping from CFG nodes to
  1484   // IdealLoopTree entries.  Data nodes are NOT walked.
  1485   build_loop_tree();
  1486   // Check for bailout, and return
  1487   if (C->failing()) {
  1488     return;
  1491   // No loops after all
  1492   if( !_ltree_root->_child ) C->set_has_loops(false);
  1494   // There should always be an outer loop containing the Root and Return nodes.
  1495   // If not, we have a degenerate empty program.  Bail out in this case.
  1496   if (!has_node(C->root())) {
  1497     C->clear_major_progress();
  1498     C->record_method_not_compilable("empty program detected during loop optimization");
  1499     return;
  1502   // Nothing to do, so get out
  1503   if( !C->has_loops() && !do_split_ifs && !verify_me) {
  1504     _igvn.optimize();           // Cleanup NeverBranches
  1505     return;
  1508   // Set loop nesting depth
  1509   _ltree_root->set_nest( 0 );
  1511   // Split shared headers and insert loop landing pads.
  1512   // Do not bother doing this on the Root loop of course.
  1513   if( !verify_me && _ltree_root->_child ) {
  1514     if( _ltree_root->_child->beautify_loops( this ) ) {
  1515       // Re-build loop tree!
  1516       _ltree_root->_child = NULL;
  1517       _nodes.clear();
  1518       reallocate_preorders();
  1519       build_loop_tree();
  1520       // Check for bailout, and return
  1521       if (C->failing()) {
  1522         return;
  1524       // Reset loop nesting depth
  1525       _ltree_root->set_nest( 0 );
  1529   // Build Dominators for elision of NULL checks & loop finding.
  1530   // Since nodes do not have a slot for immediate dominator, make
  1531   // a persistant side array for that info indexed on node->_idx.
  1532   _idom_size = C->unique();
  1533   _idom      = NEW_RESOURCE_ARRAY( Node*, _idom_size );
  1534   _dom_depth = NEW_RESOURCE_ARRAY( uint,  _idom_size );
  1535   _dom_stk   = NULL; // Allocated on demand in recompute_dom_depth
  1536   memset( _dom_depth, 0, _idom_size * sizeof(uint) );
  1538   Dominators();
  1540   // As a side effect, Dominators removed any unreachable CFG paths
  1541   // into RegionNodes.  It doesn't do this test against Root, so
  1542   // we do it here.
  1543   for( uint i = 1; i < C->root()->req(); i++ ) {
  1544     if( !_nodes[C->root()->in(i)->_idx] ) {    // Dead path into Root?
  1545       _igvn.hash_delete(C->root());
  1546       C->root()->del_req(i);
  1547       _igvn._worklist.push(C->root());
  1548       i--;                      // Rerun same iteration on compressed edges
  1552   // Given dominators, try to find inner loops with calls that must
  1553   // always be executed (call dominates loop tail).  These loops do
  1554   // not need a seperate safepoint.
  1555   Node_List cisstack(a);
  1556   _ltree_root->check_safepts(visited, cisstack);
  1558   // Walk the DATA nodes and place into loops.  Find earliest control
  1559   // node.  For CFG nodes, the _nodes array starts out and remains
  1560   // holding the associated IdealLoopTree pointer.  For DATA nodes, the
  1561   // _nodes array holds the earliest legal controlling CFG node.
  1563   // Allocate stack with enough space to avoid frequent realloc
  1564   int stack_size = (C->unique() >> 1) + 16; // (unique>>1)+16 from Java2D stats
  1565   Node_Stack nstack( a, stack_size );
  1567   visited.Clear();
  1568   Node_List worklist(a);
  1569   // Don't need C->root() on worklist since
  1570   // it will be processed among C->top() inputs
  1571   worklist.push( C->top() );
  1572   visited.set( C->top()->_idx ); // Set C->top() as visited now
  1573   build_loop_early( visited, worklist, nstack, verify_me );
  1575   // Given early legal placement, try finding counted loops.  This placement
  1576   // is good enough to discover most loop invariants.
  1577   if( !verify_me )
  1578     _ltree_root->counted_loop( this );
  1580   // Find latest loop placement.  Find ideal loop placement.
  1581   visited.Clear();
  1582   init_dom_lca_tags();
  1583   // Need C->root() on worklist when processing outs
  1584   worklist.push( C->root() );
  1585   NOT_PRODUCT( C->verify_graph_edges(); )
  1586   worklist.push( C->top() );
  1587   build_loop_late( visited, worklist, nstack, verify_me );
  1589   // clear out the dead code
  1590   while(_deadlist.size()) {
  1591     igvn.remove_globally_dead_node(_deadlist.pop());
  1594 #ifndef PRODUCT
  1595   C->verify_graph_edges();
  1596   if( verify_me ) {             // Nested verify pass?
  1597     // Check to see if the verify mode is broken
  1598     assert(C->unique() == unique, "non-optimize mode made Nodes? ? ?");
  1599     return;
  1601   if( VerifyLoopOptimizations ) verify();
  1602 #endif
  1604   if (ReassociateInvariants) {
  1605     // Reassociate invariants and prep for split_thru_phi
  1606     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
  1607       IdealLoopTree* lpt = iter.current();
  1608       if (!lpt->is_counted() || !lpt->is_inner()) continue;
  1610       lpt->reassociate_invariants(this);
  1612       // Because RCE opportunities can be masked by split_thru_phi,
  1613       // look for RCE candidates and inhibit split_thru_phi
  1614       // on just their loop-phi's for this pass of loop opts
  1615       if( SplitIfBlocks && do_split_ifs ) {
  1616         if (lpt->policy_range_check(this)) {
  1617           lpt->_rce_candidate = true;
  1623   // Check for aggressive application of split-if and other transforms
  1624   // that require basic-block info (like cloning through Phi's)
  1625   if( SplitIfBlocks && do_split_ifs ) {
  1626     visited.Clear();
  1627     split_if_with_blocks( visited, nstack );
  1628     NOT_PRODUCT( if( VerifyLoopOptimizations ) verify(); );
  1631   // Perform iteration-splitting on inner loops.  Split iterations to avoid
  1632   // range checks or one-shot null checks.
  1634   // If split-if's didn't hack the graph too bad (no CFG changes)
  1635   // then do loop opts.
  1636   if( C->has_loops() && !C->major_progress() ) {
  1637     memset( worklist.adr(), 0, worklist.Size()*sizeof(Node*) );
  1638     _ltree_root->_child->iteration_split( this, worklist );
  1639     // No verify after peeling!  GCM has hoisted code out of the loop.
  1640     // After peeling, the hoisted code could sink inside the peeled area.
  1641     // The peeling code does not try to recompute the best location for
  1642     // all the code before the peeled area, so the verify pass will always
  1643     // complain about it.
  1645   // Do verify graph edges in any case
  1646   NOT_PRODUCT( C->verify_graph_edges(); );
  1648   if( !do_split_ifs ) {
  1649     // We saw major progress in Split-If to get here.  We forced a
  1650     // pass with unrolling and not split-if, however more split-if's
  1651     // might make progress.  If the unrolling didn't make progress
  1652     // then the major-progress flag got cleared and we won't try
  1653     // another round of Split-If.  In particular the ever-common
  1654     // instance-of/check-cast pattern requires at least 2 rounds of
  1655     // Split-If to clear out.
  1656     C->set_major_progress();
  1659   // Repeat loop optimizations if new loops were seen
  1660   if (created_loop_node()) {
  1661     C->set_major_progress();
  1664   // Convert scalar to superword operations
  1666   if (UseSuperWord && C->has_loops() && !C->major_progress()) {
  1667     // SuperWord transform
  1668     SuperWord sw(this);
  1669     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
  1670       IdealLoopTree* lpt = iter.current();
  1671       if (lpt->is_counted()) {
  1672         sw.transform_loop(lpt);
  1677   // Cleanup any modified bits
  1678   _igvn.optimize();
  1680   // Do not repeat loop optimizations if irreducible loops are present
  1681   // by claiming no-progress.
  1682   if( _has_irreducible_loops )
  1683     C->clear_major_progress();
  1686 #ifndef PRODUCT
  1687 //------------------------------print_statistics-------------------------------
  1688 int PhaseIdealLoop::_loop_invokes=0;// Count of PhaseIdealLoop invokes
  1689 int PhaseIdealLoop::_loop_work=0; // Sum of PhaseIdealLoop x unique
  1690 void PhaseIdealLoop::print_statistics() {
  1691   tty->print_cr("PhaseIdealLoop=%d, sum _unique=%d", _loop_invokes, _loop_work);
  1694 //------------------------------verify-----------------------------------------
  1695 // Build a verify-only PhaseIdealLoop, and see that it agrees with me.
  1696 static int fail;                // debug only, so its multi-thread dont care
  1697 void PhaseIdealLoop::verify() const {
  1698   int old_progress = C->major_progress();
  1699   ResourceMark rm;
  1700   PhaseIdealLoop loop_verify( _igvn, this, false );
  1701   VectorSet visited(Thread::current()->resource_area());
  1703   fail = 0;
  1704   verify_compare( C->root(), &loop_verify, visited );
  1705   assert( fail == 0, "verify loops failed" );
  1706   // Verify loop structure is the same
  1707   _ltree_root->verify_tree(loop_verify._ltree_root, NULL);
  1708   // Reset major-progress.  It was cleared by creating a verify version of
  1709   // PhaseIdealLoop.
  1710   for( int i=0; i<old_progress; i++ )
  1711     C->set_major_progress();
  1714 //------------------------------verify_compare---------------------------------
  1715 // Make sure me and the given PhaseIdealLoop agree on key data structures
  1716 void PhaseIdealLoop::verify_compare( Node *n, const PhaseIdealLoop *loop_verify, VectorSet &visited ) const {
  1717   if( !n ) return;
  1718   if( visited.test_set( n->_idx ) ) return;
  1719   if( !_nodes[n->_idx] ) {      // Unreachable
  1720     assert( !loop_verify->_nodes[n->_idx], "both should be unreachable" );
  1721     return;
  1724   uint i;
  1725   for( i = 0; i < n->req(); i++ )
  1726     verify_compare( n->in(i), loop_verify, visited );
  1728   // Check the '_nodes' block/loop structure
  1729   i = n->_idx;
  1730   if( has_ctrl(n) ) {           // We have control; verify has loop or ctrl
  1731     if( _nodes[i] != loop_verify->_nodes[i] &&
  1732         get_ctrl_no_update(n) != loop_verify->get_ctrl_no_update(n) ) {
  1733       tty->print("Mismatched control setting for: ");
  1734       n->dump();
  1735       if( fail++ > 10 ) return;
  1736       Node *c = get_ctrl_no_update(n);
  1737       tty->print("We have it as: ");
  1738       if( c->in(0) ) c->dump();
  1739         else tty->print_cr("N%d",c->_idx);
  1740       tty->print("Verify thinks: ");
  1741       if( loop_verify->has_ctrl(n) )
  1742         loop_verify->get_ctrl_no_update(n)->dump();
  1743       else
  1744         loop_verify->get_loop_idx(n)->dump();
  1745       tty->cr();
  1747   } else {                    // We have a loop
  1748     IdealLoopTree *us = get_loop_idx(n);
  1749     if( loop_verify->has_ctrl(n) ) {
  1750       tty->print("Mismatched loop setting for: ");
  1751       n->dump();
  1752       if( fail++ > 10 ) return;
  1753       tty->print("We have it as: ");
  1754       us->dump();
  1755       tty->print("Verify thinks: ");
  1756       loop_verify->get_ctrl_no_update(n)->dump();
  1757       tty->cr();
  1758     } else if (!C->major_progress()) {
  1759       // Loop selection can be messed up if we did a major progress
  1760       // operation, like split-if.  Do not verify in that case.
  1761       IdealLoopTree *them = loop_verify->get_loop_idx(n);
  1762       if( us->_head != them->_head ||  us->_tail != them->_tail ) {
  1763         tty->print("Unequals loops for: ");
  1764         n->dump();
  1765         if( fail++ > 10 ) return;
  1766         tty->print("We have it as: ");
  1767         us->dump();
  1768         tty->print("Verify thinks: ");
  1769         them->dump();
  1770         tty->cr();
  1775   // Check for immediate dominators being equal
  1776   if( i >= _idom_size ) {
  1777     if( !n->is_CFG() ) return;
  1778     tty->print("CFG Node with no idom: ");
  1779     n->dump();
  1780     return;
  1782   if( !n->is_CFG() ) return;
  1783   if( n == C->root() ) return; // No IDOM here
  1785   assert(n->_idx == i, "sanity");
  1786   Node *id = idom_no_update(n);
  1787   if( id != loop_verify->idom_no_update(n) ) {
  1788     tty->print("Unequals idoms for: ");
  1789     n->dump();
  1790     if( fail++ > 10 ) return;
  1791     tty->print("We have it as: ");
  1792     id->dump();
  1793     tty->print("Verify thinks: ");
  1794     loop_verify->idom_no_update(n)->dump();
  1795     tty->cr();
  1800 //------------------------------verify_tree------------------------------------
  1801 // Verify that tree structures match.  Because the CFG can change, siblings
  1802 // within the loop tree can be reordered.  We attempt to deal with that by
  1803 // reordering the verify's loop tree if possible.
  1804 void IdealLoopTree::verify_tree(IdealLoopTree *loop, const IdealLoopTree *parent) const {
  1805   assert( _parent == parent, "Badly formed loop tree" );
  1807   // Siblings not in same order?  Attempt to re-order.
  1808   if( _head != loop->_head ) {
  1809     // Find _next pointer to update
  1810     IdealLoopTree **pp = &loop->_parent->_child;
  1811     while( *pp != loop )
  1812       pp = &((*pp)->_next);
  1813     // Find proper sibling to be next
  1814     IdealLoopTree **nn = &loop->_next;
  1815     while( (*nn) && (*nn)->_head != _head )
  1816       nn = &((*nn)->_next);
  1818     // Check for no match.
  1819     if( !(*nn) ) {
  1820       // Annoyingly, irreducible loops can pick different headers
  1821       // after a major_progress operation, so the rest of the loop
  1822       // tree cannot be matched.
  1823       if (_irreducible && Compile::current()->major_progress())  return;
  1824       assert( 0, "failed to match loop tree" );
  1827     // Move (*nn) to (*pp)
  1828     IdealLoopTree *hit = *nn;
  1829     *nn = hit->_next;
  1830     hit->_next = loop;
  1831     *pp = loop;
  1832     loop = hit;
  1833     // Now try again to verify
  1836   assert( _head  == loop->_head , "mismatched loop head" );
  1837   Node *tail = _tail;           // Inline a non-updating version of
  1838   while( !tail->in(0) )         // the 'tail()' call.
  1839     tail = tail->in(1);
  1840   assert( tail == loop->_tail, "mismatched loop tail" );
  1842   // Counted loops that are guarded should be able to find their guards
  1843   if( _head->is_CountedLoop() && _head->as_CountedLoop()->is_main_loop() ) {
  1844     CountedLoopNode *cl = _head->as_CountedLoop();
  1845     Node *init = cl->init_trip();
  1846     Node *ctrl = cl->in(LoopNode::EntryControl);
  1847     assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
  1848     Node *iff  = ctrl->in(0);
  1849     assert( iff->Opcode() == Op_If, "" );
  1850     Node *bol  = iff->in(1);
  1851     assert( bol->Opcode() == Op_Bool, "" );
  1852     Node *cmp  = bol->in(1);
  1853     assert( cmp->Opcode() == Op_CmpI, "" );
  1854     Node *add  = cmp->in(1);
  1855     Node *opaq;
  1856     if( add->Opcode() == Op_Opaque1 ) {
  1857       opaq = add;
  1858     } else {
  1859       assert( add->Opcode() == Op_AddI || add->Opcode() == Op_ConI , "" );
  1860       assert( add == init, "" );
  1861       opaq = cmp->in(2);
  1863     assert( opaq->Opcode() == Op_Opaque1, "" );
  1867   if (_child != NULL)  _child->verify_tree(loop->_child, this);
  1868   if (_next  != NULL)  _next ->verify_tree(loop->_next,  parent);
  1869   // Innermost loops need to verify loop bodies,
  1870   // but only if no 'major_progress'
  1871   int fail = 0;
  1872   if (!Compile::current()->major_progress() && _child == NULL) {
  1873     for( uint i = 0; i < _body.size(); i++ ) {
  1874       Node *n = _body.at(i);
  1875       if (n->outcnt() == 0)  continue; // Ignore dead
  1876       uint j;
  1877       for( j = 0; j < loop->_body.size(); j++ )
  1878         if( loop->_body.at(j) == n )
  1879           break;
  1880       if( j == loop->_body.size() ) { // Not found in loop body
  1881         // Last ditch effort to avoid assertion: Its possible that we
  1882         // have some users (so outcnt not zero) but are still dead.
  1883         // Try to find from root.
  1884         if (Compile::current()->root()->find(n->_idx)) {
  1885           fail++;
  1886           tty->print("We have that verify does not: ");
  1887           n->dump();
  1891     for( uint i2 = 0; i2 < loop->_body.size(); i2++ ) {
  1892       Node *n = loop->_body.at(i2);
  1893       if (n->outcnt() == 0)  continue; // Ignore dead
  1894       uint j;
  1895       for( j = 0; j < _body.size(); j++ )
  1896         if( _body.at(j) == n )
  1897           break;
  1898       if( j == _body.size() ) { // Not found in loop body
  1899         // Last ditch effort to avoid assertion: Its possible that we
  1900         // have some users (so outcnt not zero) but are still dead.
  1901         // Try to find from root.
  1902         if (Compile::current()->root()->find(n->_idx)) {
  1903           fail++;
  1904           tty->print("Verify has that we do not: ");
  1905           n->dump();
  1909     assert( !fail, "loop body mismatch" );
  1913 #endif
  1915 //------------------------------set_idom---------------------------------------
  1916 void PhaseIdealLoop::set_idom(Node* d, Node* n, uint dom_depth) {
  1917   uint idx = d->_idx;
  1918   if (idx >= _idom_size) {
  1919     uint newsize = _idom_size<<1;
  1920     while( idx >= newsize ) {
  1921       newsize <<= 1;
  1923     _idom      = REALLOC_RESOURCE_ARRAY( Node*,     _idom,_idom_size,newsize);
  1924     _dom_depth = REALLOC_RESOURCE_ARRAY( uint, _dom_depth,_idom_size,newsize);
  1925     memset( _dom_depth + _idom_size, 0, (newsize - _idom_size) * sizeof(uint) );
  1926     _idom_size = newsize;
  1928   _idom[idx] = n;
  1929   _dom_depth[idx] = dom_depth;
  1932 //------------------------------recompute_dom_depth---------------------------------------
  1933 // The dominator tree is constructed with only parent pointers.
  1934 // This recomputes the depth in the tree by first tagging all
  1935 // nodes as "no depth yet" marker.  The next pass then runs up
  1936 // the dom tree from each node marked "no depth yet", and computes
  1937 // the depth on the way back down.
  1938 void PhaseIdealLoop::recompute_dom_depth() {
  1939   uint no_depth_marker = C->unique();
  1940   uint i;
  1941   // Initialize depth to "no depth yet"
  1942   for (i = 0; i < _idom_size; i++) {
  1943     if (_dom_depth[i] > 0 && _idom[i] != NULL) {
  1944      _dom_depth[i] = no_depth_marker;
  1947   if (_dom_stk == NULL) {
  1948     uint init_size = C->unique() / 100; // Guess that 1/100 is a reasonable initial size.
  1949     if (init_size < 10) init_size = 10;
  1950     _dom_stk = new (C->node_arena()) GrowableArray<uint>(C->node_arena(), init_size, 0, 0);
  1952   // Compute new depth for each node.
  1953   for (i = 0; i < _idom_size; i++) {
  1954     uint j = i;
  1955     // Run up the dom tree to find a node with a depth
  1956     while (_dom_depth[j] == no_depth_marker) {
  1957       _dom_stk->push(j);
  1958       j = _idom[j]->_idx;
  1960     // Compute the depth on the way back down this tree branch
  1961     uint dd = _dom_depth[j] + 1;
  1962     while (_dom_stk->length() > 0) {
  1963       uint j = _dom_stk->pop();
  1964       _dom_depth[j] = dd;
  1965       dd++;
  1970 //------------------------------sort-------------------------------------------
  1971 // Insert 'loop' into the existing loop tree.  'innermost' is a leaf of the
  1972 // loop tree, not the root.
  1973 IdealLoopTree *PhaseIdealLoop::sort( IdealLoopTree *loop, IdealLoopTree *innermost ) {
  1974   if( !innermost ) return loop; // New innermost loop
  1976   int loop_preorder = get_preorder(loop->_head); // Cache pre-order number
  1977   assert( loop_preorder, "not yet post-walked loop" );
  1978   IdealLoopTree **pp = &innermost;      // Pointer to previous next-pointer
  1979   IdealLoopTree *l = *pp;               // Do I go before or after 'l'?
  1981   // Insert at start of list
  1982   while( l ) {                  // Insertion sort based on pre-order
  1983     if( l == loop ) return innermost; // Already on list!
  1984     int l_preorder = get_preorder(l->_head); // Cache pre-order number
  1985     assert( l_preorder, "not yet post-walked l" );
  1986     // Check header pre-order number to figure proper nesting
  1987     if( loop_preorder > l_preorder )
  1988       break;                    // End of insertion
  1989     // If headers tie (e.g., shared headers) check tail pre-order numbers.
  1990     // Since I split shared headers, you'd think this could not happen.
  1991     // BUT: I must first do the preorder numbering before I can discover I
  1992     // have shared headers, so the split headers all get the same preorder
  1993     // number as the RegionNode they split from.
  1994     if( loop_preorder == l_preorder &&
  1995         get_preorder(loop->_tail) < get_preorder(l->_tail) )
  1996       break;                    // Also check for shared headers (same pre#)
  1997     pp = &l->_parent;           // Chain up list
  1998     l = *pp;
  2000   // Link into list
  2001   // Point predecessor to me
  2002   *pp = loop;
  2003   // Point me to successor
  2004   IdealLoopTree *p = loop->_parent;
  2005   loop->_parent = l;            // Point me to successor
  2006   if( p ) sort( p, innermost ); // Insert my parents into list as well
  2007   return innermost;
  2010 //------------------------------build_loop_tree--------------------------------
  2011 // I use a modified Vick/Tarjan algorithm.  I need pre- and a post- visit
  2012 // bits.  The _nodes[] array is mapped by Node index and holds a NULL for
  2013 // not-yet-pre-walked, pre-order # for pre-but-not-post-walked and holds the
  2014 // tightest enclosing IdealLoopTree for post-walked.
  2015 //
  2016 // During my forward walk I do a short 1-layer lookahead to see if I can find
  2017 // a loop backedge with that doesn't have any work on the backedge.  This
  2018 // helps me construct nested loops with shared headers better.
  2019 //
  2020 // Once I've done the forward recursion, I do the post-work.  For each child
  2021 // I check to see if there is a backedge.  Backedges define a loop!  I
  2022 // insert an IdealLoopTree at the target of the backedge.
  2023 //
  2024 // During the post-work I also check to see if I have several children
  2025 // belonging to different loops.  If so, then this Node is a decision point
  2026 // where control flow can choose to change loop nests.  It is at this
  2027 // decision point where I can figure out how loops are nested.  At this
  2028 // time I can properly order the different loop nests from my children.
  2029 // Note that there may not be any backedges at the decision point!
  2030 //
  2031 // Since the decision point can be far removed from the backedges, I can't
  2032 // order my loops at the time I discover them.  Thus at the decision point
  2033 // I need to inspect loop header pre-order numbers to properly nest my
  2034 // loops.  This means I need to sort my childrens' loops by pre-order.
  2035 // The sort is of size number-of-control-children, which generally limits
  2036 // it to size 2 (i.e., I just choose between my 2 target loops).
  2037 void PhaseIdealLoop::build_loop_tree() {
  2038   // Allocate stack of size C->unique()/2 to avoid frequent realloc
  2039   GrowableArray <Node *> bltstack(C->unique() >> 1);
  2040   Node *n = C->root();
  2041   bltstack.push(n);
  2042   int pre_order = 1;
  2043   int stack_size;
  2045   while ( ( stack_size = bltstack.length() ) != 0 ) {
  2046     n = bltstack.top(); // Leave node on stack
  2047     if ( !is_visited(n) ) {
  2048       // ---- Pre-pass Work ----
  2049       // Pre-walked but not post-walked nodes need a pre_order number.
  2051       set_preorder_visited( n, pre_order ); // set as visited
  2053       // ---- Scan over children ----
  2054       // Scan first over control projections that lead to loop headers.
  2055       // This helps us find inner-to-outer loops with shared headers better.
  2057       // Scan children's children for loop headers.
  2058       for ( int i = n->outcnt() - 1; i >= 0; --i ) {
  2059         Node* m = n->raw_out(i);       // Child
  2060         if( m->is_CFG() && !is_visited(m) ) { // Only for CFG children
  2061           // Scan over children's children to find loop
  2062           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
  2063             Node* l = m->fast_out(j);
  2064             if( is_visited(l) &&       // Been visited?
  2065                 !is_postvisited(l) &&  // But not post-visited
  2066                 get_preorder(l) < pre_order ) { // And smaller pre-order
  2067               // Found!  Scan the DFS down this path before doing other paths
  2068               bltstack.push(m);
  2069               break;
  2074       pre_order++;
  2076     else if ( !is_postvisited(n) ) {
  2077       // Note: build_loop_tree_impl() adds out edges on rare occasions,
  2078       // such as com.sun.rsasign.am::a.
  2079       // For non-recursive version, first, process current children.
  2080       // On next iteration, check if additional children were added.
  2081       for ( int k = n->outcnt() - 1; k >= 0; --k ) {
  2082         Node* u = n->raw_out(k);
  2083         if ( u->is_CFG() && !is_visited(u) ) {
  2084           bltstack.push(u);
  2087       if ( bltstack.length() == stack_size ) {
  2088         // There were no additional children, post visit node now
  2089         (void)bltstack.pop(); // Remove node from stack
  2090         pre_order = build_loop_tree_impl( n, pre_order );
  2091         // Check for bailout
  2092         if (C->failing()) {
  2093           return;
  2095         // Check to grow _preorders[] array for the case when
  2096         // build_loop_tree_impl() adds new nodes.
  2097         check_grow_preorders();
  2100     else {
  2101       (void)bltstack.pop(); // Remove post-visited node from stack
  2106 //------------------------------build_loop_tree_impl---------------------------
  2107 int PhaseIdealLoop::build_loop_tree_impl( Node *n, int pre_order ) {
  2108   // ---- Post-pass Work ----
  2109   // Pre-walked but not post-walked nodes need a pre_order number.
  2111   // Tightest enclosing loop for this Node
  2112   IdealLoopTree *innermost = NULL;
  2114   // For all children, see if any edge is a backedge.  If so, make a loop
  2115   // for it.  Then find the tightest enclosing loop for the self Node.
  2116   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  2117     Node* m = n->fast_out(i);   // Child
  2118     if( n == m ) continue;      // Ignore control self-cycles
  2119     if( !m->is_CFG() ) continue;// Ignore non-CFG edges
  2121     IdealLoopTree *l;           // Child's loop
  2122     if( !is_postvisited(m) ) {  // Child visited but not post-visited?
  2123       // Found a backedge
  2124       assert( get_preorder(m) < pre_order, "should be backedge" );
  2125       // Check for the RootNode, which is already a LoopNode and is allowed
  2126       // to have multiple "backedges".
  2127       if( m == C->root()) {     // Found the root?
  2128         l = _ltree_root;        // Root is the outermost LoopNode
  2129       } else {                  // Else found a nested loop
  2130         // Insert a LoopNode to mark this loop.
  2131         l = new IdealLoopTree(this, m, n);
  2132       } // End of Else found a nested loop
  2133       if( !has_loop(m) )        // If 'm' does not already have a loop set
  2134         set_loop(m, l);         // Set loop header to loop now
  2136     } else {                    // Else not a nested loop
  2137       if( !_nodes[m->_idx] ) continue; // Dead code has no loop
  2138       l = get_loop(m);          // Get previously determined loop
  2139       // If successor is header of a loop (nest), move up-loop till it
  2140       // is a member of some outer enclosing loop.  Since there are no
  2141       // shared headers (I've split them already) I only need to go up
  2142       // at most 1 level.
  2143       while( l && l->_head == m ) // Successor heads loop?
  2144         l = l->_parent;         // Move up 1 for me
  2145       // If this loop is not properly parented, then this loop
  2146       // has no exit path out, i.e. its an infinite loop.
  2147       if( !l ) {
  2148         // Make loop "reachable" from root so the CFG is reachable.  Basically
  2149         // insert a bogus loop exit that is never taken.  'm', the loop head,
  2150         // points to 'n', one (of possibly many) fall-in paths.  There may be
  2151         // many backedges as well.
  2153         // Here I set the loop to be the root loop.  I could have, after
  2154         // inserting a bogus loop exit, restarted the recursion and found my
  2155         // new loop exit.  This would make the infinite loop a first-class
  2156         // loop and it would then get properly optimized.  What's the use of
  2157         // optimizing an infinite loop?
  2158         l = _ltree_root;        // Oops, found infinite loop
  2160         // Insert the NeverBranch between 'm' and it's control user.
  2161         NeverBranchNode *iff = new (C, 1) NeverBranchNode( m );
  2162         _igvn.register_new_node_with_optimizer(iff);
  2163         set_loop(iff, l);
  2164         Node *if_t = new (C, 1) CProjNode( iff, 0 );
  2165         _igvn.register_new_node_with_optimizer(if_t);
  2166         set_loop(if_t, l);
  2168         Node* cfg = NULL;       // Find the One True Control User of m
  2169         for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
  2170           Node* x = m->fast_out(j);
  2171           if (x->is_CFG() && x != m && x != iff)
  2172             { cfg = x; break; }
  2174         assert(cfg != NULL, "must find the control user of m");
  2175         uint k = 0;             // Probably cfg->in(0)
  2176         while( cfg->in(k) != m ) k++; // But check incase cfg is a Region
  2177         cfg->set_req( k, if_t ); // Now point to NeverBranch
  2179         // Now create the never-taken loop exit
  2180         Node *if_f = new (C, 1) CProjNode( iff, 1 );
  2181         _igvn.register_new_node_with_optimizer(if_f);
  2182         set_loop(if_f, l);
  2183         // Find frame ptr for Halt.  Relies on the optimizer
  2184         // V-N'ing.  Easier and quicker than searching through
  2185         // the program structure.
  2186         Node *frame = new (C, 1) ParmNode( C->start(), TypeFunc::FramePtr );
  2187         _igvn.register_new_node_with_optimizer(frame);
  2188         // Halt & Catch Fire
  2189         Node *halt = new (C, TypeFunc::Parms) HaltNode( if_f, frame );
  2190         _igvn.register_new_node_with_optimizer(halt);
  2191         set_loop(halt, l);
  2192         C->root()->add_req(halt);
  2193         set_loop(C->root(), _ltree_root);
  2196     // Weeny check for irreducible.  This child was already visited (this
  2197     // IS the post-work phase).  Is this child's loop header post-visited
  2198     // as well?  If so, then I found another entry into the loop.
  2199     while( is_postvisited(l->_head) ) {
  2200       // found irreducible
  2201       l->_irreducible = true;
  2202       l = l->_parent;
  2203       _has_irreducible_loops = true;
  2204       // Check for bad CFG here to prevent crash, and bailout of compile
  2205       if (l == NULL) {
  2206         C->record_method_not_compilable("unhandled CFG detected during loop optimization");
  2207         return pre_order;
  2211     // This Node might be a decision point for loops.  It is only if
  2212     // it's children belong to several different loops.  The sort call
  2213     // does a trivial amount of work if there is only 1 child or all
  2214     // children belong to the same loop.  If however, the children
  2215     // belong to different loops, the sort call will properly set the
  2216     // _parent pointers to show how the loops nest.
  2217     //
  2218     // In any case, it returns the tightest enclosing loop.
  2219     innermost = sort( l, innermost );
  2222   // Def-use info will have some dead stuff; dead stuff will have no
  2223   // loop decided on.
  2225   // Am I a loop header?  If so fix up my parent's child and next ptrs.
  2226   if( innermost && innermost->_head == n ) {
  2227     assert( get_loop(n) == innermost, "" );
  2228     IdealLoopTree *p = innermost->_parent;
  2229     IdealLoopTree *l = innermost;
  2230     while( p && l->_head == n ) {
  2231       l->_next = p->_child;     // Put self on parents 'next child'
  2232       p->_child = l;            // Make self as first child of parent
  2233       l = p;                    // Now walk up the parent chain
  2234       p = l->_parent;
  2236   } else {
  2237     // Note that it is possible for a LoopNode to reach here, if the
  2238     // backedge has been made unreachable (hence the LoopNode no longer
  2239     // denotes a Loop, and will eventually be removed).
  2241     // Record tightest enclosing loop for self.  Mark as post-visited.
  2242     set_loop(n, innermost);
  2243     // Also record has_call flag early on
  2244     if( innermost ) {
  2245       if( n->is_Call() && !n->is_CallLeaf() && !n->is_macro() ) {
  2246         // Do not count uncommon calls
  2247         if( !n->is_CallStaticJava() || !n->as_CallStaticJava()->_name ) {
  2248           Node *iff = n->in(0)->in(0);
  2249           if( !iff->is_If() ||
  2250               (n->in(0)->Opcode() == Op_IfFalse &&
  2251                (1.0 - iff->as_If()->_prob) >= 0.01) ||
  2252               (iff->as_If()->_prob >= 0.01) )
  2253             innermost->_has_call = 1;
  2259   // Flag as post-visited now
  2260   set_postvisited(n);
  2261   return pre_order;
  2265 //------------------------------build_loop_early-------------------------------
  2266 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
  2267 // First pass computes the earliest controlling node possible.  This is the
  2268 // controlling input with the deepest dominating depth.
  2269 void PhaseIdealLoop::build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack, const PhaseIdealLoop *verify_me ) {
  2270   while (worklist.size() != 0) {
  2271     // Use local variables nstack_top_n & nstack_top_i to cache values
  2272     // on nstack's top.
  2273     Node *nstack_top_n = worklist.pop();
  2274     uint  nstack_top_i = 0;
  2275 //while_nstack_nonempty:
  2276     while (true) {
  2277       // Get parent node and next input's index from stack's top.
  2278       Node  *n = nstack_top_n;
  2279       uint   i = nstack_top_i;
  2280       uint cnt = n->req(); // Count of inputs
  2281       if (i == 0) {        // Pre-process the node.
  2282         if( has_node(n) &&            // Have either loop or control already?
  2283             !has_ctrl(n) ) {          // Have loop picked out already?
  2284           // During "merge_many_backedges" we fold up several nested loops
  2285           // into a single loop.  This makes the members of the original
  2286           // loop bodies pointing to dead loops; they need to move up
  2287           // to the new UNION'd larger loop.  I set the _head field of these
  2288           // dead loops to NULL and the _parent field points to the owning
  2289           // loop.  Shades of UNION-FIND algorithm.
  2290           IdealLoopTree *ilt;
  2291           while( !(ilt = get_loop(n))->_head ) {
  2292             // Normally I would use a set_loop here.  But in this one special
  2293             // case, it is legal (and expected) to change what loop a Node
  2294             // belongs to.
  2295             _nodes.map(n->_idx, (Node*)(ilt->_parent) );
  2297           // Remove safepoints ONLY if I've already seen I don't need one.
  2298           // (the old code here would yank a 2nd safepoint after seeing a
  2299           // first one, even though the 1st did not dominate in the loop body
  2300           // and thus could be avoided indefinitely)
  2301           if( !verify_me && ilt->_has_sfpt && n->Opcode() == Op_SafePoint &&
  2302               is_deleteable_safept(n)) {
  2303             Node *in = n->in(TypeFunc::Control);
  2304             lazy_replace(n,in);       // Pull safepoint now
  2305             // Carry on with the recursion "as if" we are walking
  2306             // only the control input
  2307             if( !visited.test_set( in->_idx ) ) {
  2308               worklist.push(in);      // Visit this guy later, using worklist
  2310             // Get next node from nstack:
  2311             // - skip n's inputs processing by setting i > cnt;
  2312             // - we also will not call set_early_ctrl(n) since
  2313             //   has_node(n) == true (see the condition above).
  2314             i = cnt + 1;
  2317       } // if (i == 0)
  2319       // Visit all inputs
  2320       bool done = true;       // Assume all n's inputs will be processed
  2321       while (i < cnt) {
  2322         Node *in = n->in(i);
  2323         ++i;
  2324         if (in == NULL) continue;
  2325         if (in->pinned() && !in->is_CFG())
  2326           set_ctrl(in, in->in(0));
  2327         int is_visited = visited.test_set( in->_idx );
  2328         if (!has_node(in)) {  // No controlling input yet?
  2329           assert( !in->is_CFG(), "CFG Node with no controlling input?" );
  2330           assert( !is_visited, "visit only once" );
  2331           nstack.push(n, i);  // Save parent node and next input's index.
  2332           nstack_top_n = in;  // Process current input now.
  2333           nstack_top_i = 0;
  2334           done = false;       // Not all n's inputs processed.
  2335           break; // continue while_nstack_nonempty;
  2336         } else if (!is_visited) {
  2337           // This guy has a location picked out for him, but has not yet
  2338           // been visited.  Happens to all CFG nodes, for instance.
  2339           // Visit him using the worklist instead of recursion, to break
  2340           // cycles.  Since he has a location already we do not need to
  2341           // find his location before proceeding with the current Node.
  2342           worklist.push(in);  // Visit this guy later, using worklist
  2345       if (done) {
  2346         // All of n's inputs have been processed, complete post-processing.
  2348         // Compute earilest point this Node can go.
  2349         // CFG, Phi, pinned nodes already know their controlling input.
  2350         if (!has_node(n)) {
  2351           // Record earliest legal location
  2352           set_early_ctrl( n );
  2354         if (nstack.is_empty()) {
  2355           // Finished all nodes on stack.
  2356           // Process next node on the worklist.
  2357           break;
  2359         // Get saved parent node and next input's index.
  2360         nstack_top_n = nstack.node();
  2361         nstack_top_i = nstack.index();
  2362         nstack.pop();
  2364     } // while (true)
  2368 //------------------------------dom_lca_internal--------------------------------
  2369 // Pair-wise LCA
  2370 Node *PhaseIdealLoop::dom_lca_internal( Node *n1, Node *n2 ) const {
  2371   if( !n1 ) return n2;          // Handle NULL original LCA
  2372   assert( n1->is_CFG(), "" );
  2373   assert( n2->is_CFG(), "" );
  2374   // find LCA of all uses
  2375   uint d1 = dom_depth(n1);
  2376   uint d2 = dom_depth(n2);
  2377   while (n1 != n2) {
  2378     if (d1 > d2) {
  2379       n1 =      idom(n1);
  2380       d1 = dom_depth(n1);
  2381     } else if (d1 < d2) {
  2382       n2 =      idom(n2);
  2383       d2 = dom_depth(n2);
  2384     } else {
  2385       // Here d1 == d2.  Due to edits of the dominator-tree, sections
  2386       // of the tree might have the same depth.  These sections have
  2387       // to be searched more carefully.
  2389       // Scan up all the n1's with equal depth, looking for n2.
  2390       Node *t1 = idom(n1);
  2391       while (dom_depth(t1) == d1) {
  2392         if (t1 == n2)  return n2;
  2393         t1 = idom(t1);
  2395       // Scan up all the n2's with equal depth, looking for n1.
  2396       Node *t2 = idom(n2);
  2397       while (dom_depth(t2) == d2) {
  2398         if (t2 == n1)  return n1;
  2399         t2 = idom(t2);
  2401       // Move up to a new dominator-depth value as well as up the dom-tree.
  2402       n1 = t1;
  2403       n2 = t2;
  2404       d1 = dom_depth(n1);
  2405       d2 = dom_depth(n2);
  2408   return n1;
  2411 //------------------------------compute_idom-----------------------------------
  2412 // Locally compute IDOM using dom_lca call.  Correct only if the incoming
  2413 // IDOMs are correct.
  2414 Node *PhaseIdealLoop::compute_idom( Node *region ) const {
  2415   assert( region->is_Region(), "" );
  2416   Node *LCA = NULL;
  2417   for( uint i = 1; i < region->req(); i++ ) {
  2418     if( region->in(i) != C->top() )
  2419       LCA = dom_lca( LCA, region->in(i) );
  2421   return LCA;
  2424 //------------------------------get_late_ctrl----------------------------------
  2425 // Compute latest legal control.
  2426 Node *PhaseIdealLoop::get_late_ctrl( Node *n, Node *early ) {
  2427   assert(early != NULL, "early control should not be NULL");
  2429   // Compute LCA over list of uses
  2430   Node *LCA = NULL;
  2431   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax && LCA != early; i++) {
  2432     Node* c = n->fast_out(i);
  2433     if (_nodes[c->_idx] == NULL)
  2434       continue;                 // Skip the occasional dead node
  2435     if( c->is_Phi() ) {         // For Phis, we must land above on the path
  2436       for( uint j=1; j<c->req(); j++ ) {// For all inputs
  2437         if( c->in(j) == n ) {   // Found matching input?
  2438           Node *use = c->in(0)->in(j);
  2439           LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
  2442     } else {
  2443       // For CFG data-users, use is in the block just prior
  2444       Node *use = has_ctrl(c) ? get_ctrl(c) : c->in(0);
  2445       LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
  2449   // if this is a load, check for anti-dependent stores
  2450   // We use a conservative algorithm to identify potential interfering
  2451   // instructions and for rescheduling the load.  The users of the memory
  2452   // input of this load are examined.  Any use which is not a load and is
  2453   // dominated by early is considered a potentially interfering store.
  2454   // This can produce false positives.
  2455   if (n->is_Load() && LCA != early) {
  2456     Node_List worklist;
  2458     Node *mem = n->in(MemNode::Memory);
  2459     for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
  2460       Node* s = mem->fast_out(i);
  2461       worklist.push(s);
  2463     while(worklist.size() != 0 && LCA != early) {
  2464       Node* s = worklist.pop();
  2465       if (s->is_Load()) {
  2466         continue;
  2467       } else if (s->is_MergeMem()) {
  2468         for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) {
  2469           Node* s1 = s->fast_out(i);
  2470           worklist.push(s1);
  2472       } else {
  2473         Node *sctrl = has_ctrl(s) ? get_ctrl(s) : s->in(0);
  2474         assert(sctrl != NULL || s->outcnt() == 0, "must have control");
  2475         if (sctrl != NULL && !sctrl->is_top() && is_dominator(early, sctrl)) {
  2476           LCA = dom_lca_for_get_late_ctrl(LCA, sctrl, n);
  2482   assert(LCA == find_non_split_ctrl(LCA), "unexpected late control");
  2483   return LCA;
  2486 // true if CFG node d dominates CFG node n
  2487 bool PhaseIdealLoop::is_dominator(Node *d, Node *n) {
  2488   if (d == n)
  2489     return true;
  2490   assert(d->is_CFG() && n->is_CFG(), "must have CFG nodes");
  2491   uint dd = dom_depth(d);
  2492   while (dom_depth(n) >= dd) {
  2493     if (n == d)
  2494       return true;
  2495     n = idom(n);
  2497   return false;
  2500 //------------------------------dom_lca_for_get_late_ctrl_internal-------------
  2501 // Pair-wise LCA with tags.
  2502 // Tag each index with the node 'tag' currently being processed
  2503 // before advancing up the dominator chain using idom().
  2504 // Later calls that find a match to 'tag' know that this path has already
  2505 // been considered in the current LCA (which is input 'n1' by convention).
  2506 // Since get_late_ctrl() is only called once for each node, the tag array
  2507 // does not need to be cleared between calls to get_late_ctrl().
  2508 // Algorithm trades a larger constant factor for better asymptotic behavior
  2509 //
  2510 Node *PhaseIdealLoop::dom_lca_for_get_late_ctrl_internal( Node *n1, Node *n2, Node *tag ) {
  2511   uint d1 = dom_depth(n1);
  2512   uint d2 = dom_depth(n2);
  2514   do {
  2515     if (d1 > d2) {
  2516       // current lca is deeper than n2
  2517       _dom_lca_tags.map(n1->_idx, tag);
  2518       n1 =      idom(n1);
  2519       d1 = dom_depth(n1);
  2520     } else if (d1 < d2) {
  2521       // n2 is deeper than current lca
  2522       Node *memo = _dom_lca_tags[n2->_idx];
  2523       if( memo == tag ) {
  2524         return n1;    // Return the current LCA
  2526       _dom_lca_tags.map(n2->_idx, tag);
  2527       n2 =      idom(n2);
  2528       d2 = dom_depth(n2);
  2529     } else {
  2530       // Here d1 == d2.  Due to edits of the dominator-tree, sections
  2531       // of the tree might have the same depth.  These sections have
  2532       // to be searched more carefully.
  2534       // Scan up all the n1's with equal depth, looking for n2.
  2535       _dom_lca_tags.map(n1->_idx, tag);
  2536       Node *t1 = idom(n1);
  2537       while (dom_depth(t1) == d1) {
  2538         if (t1 == n2)  return n2;
  2539         _dom_lca_tags.map(t1->_idx, tag);
  2540         t1 = idom(t1);
  2542       // Scan up all the n2's with equal depth, looking for n1.
  2543       _dom_lca_tags.map(n2->_idx, tag);
  2544       Node *t2 = idom(n2);
  2545       while (dom_depth(t2) == d2) {
  2546         if (t2 == n1)  return n1;
  2547         _dom_lca_tags.map(t2->_idx, tag);
  2548         t2 = idom(t2);
  2550       // Move up to a new dominator-depth value as well as up the dom-tree.
  2551       n1 = t1;
  2552       n2 = t2;
  2553       d1 = dom_depth(n1);
  2554       d2 = dom_depth(n2);
  2556   } while (n1 != n2);
  2557   return n1;
  2560 //------------------------------init_dom_lca_tags------------------------------
  2561 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
  2562 // Intended use does not involve any growth for the array, so it could
  2563 // be of fixed size.
  2564 void PhaseIdealLoop::init_dom_lca_tags() {
  2565   uint limit = C->unique() + 1;
  2566   _dom_lca_tags.map( limit, NULL );
  2567 #ifdef ASSERT
  2568   for( uint i = 0; i < limit; ++i ) {
  2569     assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
  2571 #endif // ASSERT
  2574 //------------------------------clear_dom_lca_tags------------------------------
  2575 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
  2576 // Intended use does not involve any growth for the array, so it could
  2577 // be of fixed size.
  2578 void PhaseIdealLoop::clear_dom_lca_tags() {
  2579   uint limit = C->unique() + 1;
  2580   _dom_lca_tags.map( limit, NULL );
  2581   _dom_lca_tags.clear();
  2582 #ifdef ASSERT
  2583   for( uint i = 0; i < limit; ++i ) {
  2584     assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
  2586 #endif // ASSERT
  2589 //------------------------------build_loop_late--------------------------------
  2590 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
  2591 // Second pass finds latest legal placement, and ideal loop placement.
  2592 void PhaseIdealLoop::build_loop_late( VectorSet &visited, Node_List &worklist, Node_Stack &nstack, const PhaseIdealLoop *verify_me ) {
  2593   while (worklist.size() != 0) {
  2594     Node *n = worklist.pop();
  2595     // Only visit once
  2596     if (visited.test_set(n->_idx)) continue;
  2597     uint cnt = n->outcnt();
  2598     uint   i = 0;
  2599     while (true) {
  2600       assert( _nodes[n->_idx], "no dead nodes" );
  2601       // Visit all children
  2602       if (i < cnt) {
  2603         Node* use = n->raw_out(i);
  2604         ++i;
  2605         // Check for dead uses.  Aggressively prune such junk.  It might be
  2606         // dead in the global sense, but still have local uses so I cannot
  2607         // easily call 'remove_dead_node'.
  2608         if( _nodes[use->_idx] != NULL || use->is_top() ) { // Not dead?
  2609           // Due to cycles, we might not hit the same fixed point in the verify
  2610           // pass as we do in the regular pass.  Instead, visit such phis as
  2611           // simple uses of the loop head.
  2612           if( use->in(0) && (use->is_CFG() || use->is_Phi()) ) {
  2613             if( !visited.test(use->_idx) )
  2614               worklist.push(use);
  2615           } else if( !visited.test_set(use->_idx) ) {
  2616             nstack.push(n, i); // Save parent and next use's index.
  2617             n   = use;         // Process all children of current use.
  2618             cnt = use->outcnt();
  2619             i   = 0;
  2621         } else {
  2622           // Do not visit around the backedge of loops via data edges.
  2623           // push dead code onto a worklist
  2624           _deadlist.push(use);
  2626       } else {
  2627         // All of n's children have been processed, complete post-processing.
  2628         build_loop_late_post(n, verify_me);
  2629         if (nstack.is_empty()) {
  2630           // Finished all nodes on stack.
  2631           // Process next node on the worklist.
  2632           break;
  2634         // Get saved parent node and next use's index. Visit the rest of uses.
  2635         n   = nstack.node();
  2636         cnt = n->outcnt();
  2637         i   = nstack.index();
  2638         nstack.pop();
  2644 //------------------------------build_loop_late_post---------------------------
  2645 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
  2646 // Second pass finds latest legal placement, and ideal loop placement.
  2647 void PhaseIdealLoop::build_loop_late_post( Node *n, const PhaseIdealLoop *verify_me ) {
  2649   if (n->req() == 2 && n->Opcode() == Op_ConvI2L && !C->major_progress()) {
  2650     _igvn._worklist.push(n);  // Maybe we'll normalize it, if no more loops.
  2653   // CFG and pinned nodes already handled
  2654   if( n->in(0) ) {
  2655     if( n->in(0)->is_top() ) return; // Dead?
  2657     // We'd like +VerifyLoopOptimizations to not believe that Mod's/Loads
  2658     // _must_ be pinned (they have to observe their control edge of course).
  2659     // Unlike Stores (which modify an unallocable resource, the memory
  2660     // state), Mods/Loads can float around.  So free them up.
  2661     bool pinned = true;
  2662     switch( n->Opcode() ) {
  2663     case Op_DivI:
  2664     case Op_DivF:
  2665     case Op_DivD:
  2666     case Op_ModI:
  2667     case Op_ModF:
  2668     case Op_ModD:
  2669     case Op_LoadB:              // Same with Loads; they can sink
  2670     case Op_LoadC:              // during loop optimizations.
  2671     case Op_LoadD:
  2672     case Op_LoadF:
  2673     case Op_LoadI:
  2674     case Op_LoadKlass:
  2675     case Op_LoadL:
  2676     case Op_LoadS:
  2677     case Op_LoadP:
  2678     case Op_LoadRange:
  2679     case Op_LoadD_unaligned:
  2680     case Op_LoadL_unaligned:
  2681     case Op_StrComp:            // Does a bunch of load-like effects
  2682       pinned = false;
  2684     if( pinned ) {
  2685       IdealLoopTree *choosen_loop = get_loop(n->is_CFG() ? n : get_ctrl(n));
  2686       if( !choosen_loop->_child )       // Inner loop?
  2687         choosen_loop->_body.push(n); // Collect inner loops
  2688       return;
  2690   } else {                      // No slot zero
  2691     if( n->is_CFG() ) {         // CFG with no slot 0 is dead
  2692       _nodes.map(n->_idx,0);    // No block setting, it's globally dead
  2693       return;
  2695     assert(!n->is_CFG() || n->outcnt() == 0, "");
  2698   // Do I have a "safe range" I can select over?
  2699   Node *early = get_ctrl(n);// Early location already computed
  2701   // Compute latest point this Node can go
  2702   Node *LCA = get_late_ctrl( n, early );
  2703   // LCA is NULL due to uses being dead
  2704   if( LCA == NULL ) {
  2705 #ifdef ASSERT
  2706     for (DUIterator i1 = n->outs(); n->has_out(i1); i1++) {
  2707       assert( _nodes[n->out(i1)->_idx] == NULL, "all uses must also be dead");
  2709 #endif
  2710     _nodes.map(n->_idx, 0);     // This node is useless
  2711     _deadlist.push(n);
  2712     return;
  2714   assert(LCA != NULL && !LCA->is_top(), "no dead nodes");
  2716   Node *legal = LCA;            // Walk 'legal' up the IDOM chain
  2717   Node *least = legal;          // Best legal position so far
  2718   while( early != legal ) {     // While not at earliest legal
  2719     // Find least loop nesting depth
  2720     legal = idom(legal);        // Bump up the IDOM tree
  2721     // Check for lower nesting depth
  2722     if( get_loop(legal)->_nest < get_loop(least)->_nest )
  2723       least = legal;
  2726   // Try not to place code on a loop entry projection
  2727   // which can inhibit range check elimination.
  2728   if (least != early) {
  2729     Node* ctrl_out = least->unique_ctrl_out();
  2730     if (ctrl_out && ctrl_out->is_CountedLoop() &&
  2731         least == ctrl_out->in(LoopNode::EntryControl)) {
  2732       Node* least_dom = idom(least);
  2733       if (get_loop(least_dom)->is_member(get_loop(least))) {
  2734         least = least_dom;
  2739 #ifdef ASSERT
  2740   // If verifying, verify that 'verify_me' has a legal location
  2741   // and choose it as our location.
  2742   if( verify_me ) {
  2743     Node *v_ctrl = verify_me->get_ctrl_no_update(n);
  2744     Node *legal = LCA;
  2745     while( early != legal ) {   // While not at earliest legal
  2746       if( legal == v_ctrl ) break;  // Check for prior good location
  2747       legal = idom(legal)      ;// Bump up the IDOM tree
  2749     // Check for prior good location
  2750     if( legal == v_ctrl ) least = legal; // Keep prior if found
  2752 #endif
  2754   // Assign discovered "here or above" point
  2755   least = find_non_split_ctrl(least);
  2756   set_ctrl(n, least);
  2758   // Collect inner loop bodies
  2759   IdealLoopTree *choosen_loop = get_loop(least);
  2760   if( !choosen_loop->_child )   // Inner loop?
  2761     choosen_loop->_body.push(n);// Collect inner loops
  2764 #ifndef PRODUCT
  2765 //------------------------------dump-------------------------------------------
  2766 void PhaseIdealLoop::dump( ) const {
  2767   ResourceMark rm;
  2768   Arena* arena = Thread::current()->resource_area();
  2769   Node_Stack stack(arena, C->unique() >> 2);
  2770   Node_List rpo_list;
  2771   VectorSet visited(arena);
  2772   visited.set(C->top()->_idx);
  2773   rpo( C->root(), stack, visited, rpo_list );
  2774   // Dump root loop indexed by last element in PO order
  2775   dump( _ltree_root, rpo_list.size(), rpo_list );
  2778 void PhaseIdealLoop::dump( IdealLoopTree *loop, uint idx, Node_List &rpo_list ) const {
  2780   // Indent by loop nesting depth
  2781   for( uint x = 0; x < loop->_nest; x++ )
  2782     tty->print("  ");
  2783   tty->print_cr("---- Loop N%d-N%d ----", loop->_head->_idx,loop->_tail->_idx);
  2785   // Now scan for CFG nodes in the same loop
  2786   for( uint j=idx; j > 0;  j-- ) {
  2787     Node *n = rpo_list[j-1];
  2788     if( !_nodes[n->_idx] )      // Skip dead nodes
  2789       continue;
  2790     if( get_loop(n) != loop ) { // Wrong loop nest
  2791       if( get_loop(n)->_head == n &&    // Found nested loop?
  2792           get_loop(n)->_parent == loop )
  2793         dump(get_loop(n),rpo_list.size(),rpo_list);     // Print it nested-ly
  2794       continue;
  2797     // Dump controlling node
  2798     for( uint x = 0; x < loop->_nest; x++ )
  2799       tty->print("  ");
  2800     tty->print("C");
  2801     if( n == C->root() ) {
  2802       n->dump();
  2803     } else {
  2804       Node* cached_idom   = idom_no_update(n);
  2805       Node *computed_idom = n->in(0);
  2806       if( n->is_Region() ) {
  2807         computed_idom = compute_idom(n);
  2808         // computed_idom() will return n->in(0) when idom(n) is an IfNode (or
  2809         // any MultiBranch ctrl node), so apply a similar transform to
  2810         // the cached idom returned from idom_no_update.
  2811         cached_idom = find_non_split_ctrl(cached_idom);
  2813       tty->print(" ID:%d",computed_idom->_idx);
  2814       n->dump();
  2815       if( cached_idom != computed_idom ) {
  2816         tty->print_cr("*** BROKEN IDOM!  Computed as: %d, cached as: %d",
  2817                       computed_idom->_idx, cached_idom->_idx);
  2820     // Dump nodes it controls
  2821     for( uint k = 0; k < _nodes.Size(); k++ ) {
  2822       // (k < C->unique() && get_ctrl(find(k)) == n)
  2823       if (k < C->unique() && _nodes[k] == (Node*)((intptr_t)n + 1)) {
  2824         Node *m = C->root()->find(k);
  2825         if( m && m->outcnt() > 0 ) {
  2826           if (!(has_ctrl(m) && get_ctrl_no_update(m) == n)) {
  2827             tty->print_cr("*** BROKEN CTRL ACCESSOR!  _nodes[k] is %p, ctrl is %p",
  2828                           _nodes[k], has_ctrl(m) ? get_ctrl_no_update(m) : NULL);
  2830           for( uint j = 0; j < loop->_nest; j++ )
  2831             tty->print("  ");
  2832           tty->print(" ");
  2833           m->dump();
  2840 // Collect a R-P-O for the whole CFG.
  2841 // Result list is in post-order (scan backwards for RPO)
  2842 void PhaseIdealLoop::rpo( Node *start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list ) const {
  2843   stk.push(start, 0);
  2844   visited.set(start->_idx);
  2846   while (stk.is_nonempty()) {
  2847     Node* m   = stk.node();
  2848     uint  idx = stk.index();
  2849     if (idx < m->outcnt()) {
  2850       stk.set_index(idx + 1);
  2851       Node* n = m->raw_out(idx);
  2852       if (n->is_CFG() && !visited.test_set(n->_idx)) {
  2853         stk.push(n, 0);
  2855     } else {
  2856       rpo_list.push(m);
  2857       stk.pop();
  2861 #endif
  2864 //=============================================================================
  2865 //------------------------------LoopTreeIterator-----------------------------------
  2867 // Advance to next loop tree using a preorder, left-to-right traversal.
  2868 void LoopTreeIterator::next() {
  2869   assert(!done(), "must not be done.");
  2870   if (_curnt->_child != NULL) {
  2871     _curnt = _curnt->_child;
  2872   } else if (_curnt->_next != NULL) {
  2873     _curnt = _curnt->_next;
  2874   } else {
  2875     while (_curnt != _root && _curnt->_next == NULL) {
  2876       _curnt = _curnt->_parent;
  2878     if (_curnt == _root) {
  2879       _curnt = NULL;
  2880       assert(done(), "must be done.");
  2881     } else {
  2882       assert(_curnt->_next != NULL, "must be more to do");
  2883       _curnt = _curnt->_next;

mercurial