src/share/vm/opto/cfgnode.cpp

Sat, 01 Dec 2007 00:00:00 +0000

author
duke
date
Sat, 01 Dec 2007 00:00:00 +0000
changeset 435
a61af66fc99e
child 509
2a9af0b9cb1c
permissions
-rw-r--r--

Initial load

     1 /*
     2  * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // Portions of code courtesy of Clifford Click
    27 // Optimization - Graph Style
    29 #include "incls/_precompiled.incl"
    30 #include "incls/_cfgnode.cpp.incl"
    32 //=============================================================================
    33 //------------------------------Value------------------------------------------
    34 // Compute the type of the RegionNode.
    35 const Type *RegionNode::Value( PhaseTransform *phase ) const {
    36   for( uint i=1; i<req(); ++i ) {       // For all paths in
    37     Node *n = in(i);            // Get Control source
    38     if( !n ) continue;          // Missing inputs are TOP
    39     if( phase->type(n) == Type::CONTROL )
    40       return Type::CONTROL;
    41   }
    42   return Type::TOP;             // All paths dead?  Then so are we
    43 }
    45 //------------------------------Identity---------------------------------------
    46 // Check for Region being Identity.
    47 Node *RegionNode::Identity( PhaseTransform *phase ) {
    48   // Cannot have Region be an identity, even if it has only 1 input.
    49   // Phi users cannot have their Region input folded away for them,
    50   // since they need to select the proper data input
    51   return this;
    52 }
    54 //------------------------------merge_region-----------------------------------
    55 // If a Region flows into a Region, merge into one big happy merge.  This is
    56 // hard to do if there is stuff that has to happen
    57 static Node *merge_region(RegionNode *region, PhaseGVN *phase) {
    58   if( region->Opcode() != Op_Region ) // Do not do to LoopNodes
    59     return NULL;
    60   Node *progress = NULL;        // Progress flag
    61   PhaseIterGVN *igvn = phase->is_IterGVN();
    63   uint rreq = region->req();
    64   for( uint i = 1; i < rreq; i++ ) {
    65     Node *r = region->in(i);
    66     if( r && r->Opcode() == Op_Region && // Found a region?
    67         r->in(0) == r &&        // Not already collapsed?
    68         r != region &&          // Avoid stupid situations
    69         r->outcnt() == 2 ) {    // Self user and 'region' user only?
    70       assert(!r->as_Region()->has_phi(), "no phi users");
    71       if( !progress ) {         // No progress
    72         if (region->has_phi()) {
    73           return NULL;        // Only flatten if no Phi users
    74           // igvn->hash_delete( phi );
    75         }
    76         igvn->hash_delete( region );
    77         progress = region;      // Making progress
    78       }
    79       igvn->hash_delete( r );
    81       // Append inputs to 'r' onto 'region'
    82       for( uint j = 1; j < r->req(); j++ ) {
    83         // Move an input from 'r' to 'region'
    84         region->add_req(r->in(j));
    85         r->set_req(j, phase->C->top());
    86         // Update phis of 'region'
    87         //for( uint k = 0; k < max; k++ ) {
    88         //  Node *phi = region->out(k);
    89         //  if( phi->is_Phi() ) {
    90         //    phi->add_req(phi->in(i));
    91         //  }
    92         //}
    94         rreq++;                 // One more input to Region
    95       } // Found a region to merge into Region
    96       // Clobber pointer to the now dead 'r'
    97       region->set_req(i, phase->C->top());
    98     }
    99   }
   101   return progress;
   102 }
   106 //--------------------------------has_phi--------------------------------------
   107 // Helper function: Return any PhiNode that uses this region or NULL
   108 PhiNode* RegionNode::has_phi() const {
   109   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
   110     Node* phi = fast_out(i);
   111     if (phi->is_Phi()) {   // Check for Phi users
   112       assert(phi->in(0) == (Node*)this, "phi uses region only via in(0)");
   113       return phi->as_Phi();  // this one is good enough
   114     }
   115   }
   117   return NULL;
   118 }
   121 //-----------------------------has_unique_phi----------------------------------
   122 // Helper function: Return the only PhiNode that uses this region or NULL
   123 PhiNode* RegionNode::has_unique_phi() const {
   124   // Check that only one use is a Phi
   125   PhiNode* only_phi = NULL;
   126   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
   127     Node* phi = fast_out(i);
   128     if (phi->is_Phi()) {   // Check for Phi users
   129       assert(phi->in(0) == (Node*)this, "phi uses region only via in(0)");
   130       if (only_phi == NULL) {
   131         only_phi = phi->as_Phi();
   132       } else {
   133         return NULL;  // multiple phis
   134       }
   135     }
   136   }
   138   return only_phi;
   139 }
   142 //------------------------------check_phi_clipping-----------------------------
   143 // Helper function for RegionNode's identification of FP clipping
   144 // Check inputs to the Phi
   145 static bool check_phi_clipping( PhiNode *phi, ConNode * &min, uint &min_idx, ConNode * &max, uint &max_idx, Node * &val, uint &val_idx ) {
   146   min     = NULL;
   147   max     = NULL;
   148   val     = NULL;
   149   min_idx = 0;
   150   max_idx = 0;
   151   val_idx = 0;
   152   uint  phi_max = phi->req();
   153   if( phi_max == 4 ) {
   154     for( uint j = 1; j < phi_max; ++j ) {
   155       Node *n = phi->in(j);
   156       int opcode = n->Opcode();
   157       switch( opcode ) {
   158       case Op_ConI:
   159         {
   160           if( min == NULL ) {
   161             min     = n->Opcode() == Op_ConI ? (ConNode*)n : NULL;
   162             min_idx = j;
   163           } else {
   164             max     = n->Opcode() == Op_ConI ? (ConNode*)n : NULL;
   165             max_idx = j;
   166             if( min->get_int() > max->get_int() ) {
   167               // Swap min and max
   168               ConNode *temp;
   169               uint     temp_idx;
   170               temp     = min;     min     = max;     max     = temp;
   171               temp_idx = min_idx; min_idx = max_idx; max_idx = temp_idx;
   172             }
   173           }
   174         }
   175         break;
   176       default:
   177         {
   178           val = n;
   179           val_idx = j;
   180         }
   181         break;
   182       }
   183     }
   184   }
   185   return ( min && max && val && (min->get_int() <= 0) && (max->get_int() >=0) );
   186 }
   189 //------------------------------check_if_clipping------------------------------
   190 // Helper function for RegionNode's identification of FP clipping
   191 // Check that inputs to Region come from two IfNodes,
   192 //
   193 //            If
   194 //      False    True
   195 //       If        |
   196 //  False  True    |
   197 //    |      |     |
   198 //  RegionNode_inputs
   199 //
   200 static bool check_if_clipping( const RegionNode *region, IfNode * &bot_if, IfNode * &top_if ) {
   201   top_if = NULL;
   202   bot_if = NULL;
   204   // Check control structure above RegionNode for (if  ( if  ) )
   205   Node *in1 = region->in(1);
   206   Node *in2 = region->in(2);
   207   Node *in3 = region->in(3);
   208   // Check that all inputs are projections
   209   if( in1->is_Proj() && in2->is_Proj() && in3->is_Proj() ) {
   210     Node *in10 = in1->in(0);
   211     Node *in20 = in2->in(0);
   212     Node *in30 = in3->in(0);
   213     // Check that #1 and #2 are ifTrue and ifFalse from same If
   214     if( in10 != NULL && in10->is_If() &&
   215         in20 != NULL && in20->is_If() &&
   216         in30 != NULL && in30->is_If() && in10 == in20 &&
   217         (in1->Opcode() != in2->Opcode()) ) {
   218       Node  *in100 = in10->in(0);
   219       Node *in1000 = (in100 != NULL && in100->is_Proj()) ? in100->in(0) : NULL;
   220       // Check that control for in10 comes from other branch of IF from in3
   221       if( in1000 != NULL && in1000->is_If() &&
   222           in30 == in1000 && (in3->Opcode() != in100->Opcode()) ) {
   223         // Control pattern checks
   224         top_if = (IfNode*)in1000;
   225         bot_if = (IfNode*)in10;
   226       }
   227     }
   228   }
   230   return (top_if != NULL);
   231 }
   234 //------------------------------check_convf2i_clipping-------------------------
   235 // Helper function for RegionNode's identification of FP clipping
   236 // Verify that the value input to the phi comes from "ConvF2I; LShift; RShift"
   237 static bool check_convf2i_clipping( PhiNode *phi, uint idx, ConvF2INode * &convf2i, Node *min, Node *max) {
   238   convf2i = NULL;
   240   // Check for the RShiftNode
   241   Node *rshift = phi->in(idx);
   242   assert( rshift, "Previous checks ensure phi input is present");
   243   if( rshift->Opcode() != Op_RShiftI )  { return false; }
   245   // Check for the LShiftNode
   246   Node *lshift = rshift->in(1);
   247   assert( lshift, "Previous checks ensure phi input is present");
   248   if( lshift->Opcode() != Op_LShiftI )  { return false; }
   250   // Check for the ConvF2INode
   251   Node *conv = lshift->in(1);
   252   if( conv->Opcode() != Op_ConvF2I ) { return false; }
   254   // Check that shift amounts are only to get sign bits set after F2I
   255   jint max_cutoff     = max->get_int();
   256   jint min_cutoff     = min->get_int();
   257   jint left_shift     = lshift->in(2)->get_int();
   258   jint right_shift    = rshift->in(2)->get_int();
   259   jint max_post_shift = nth_bit(BitsPerJavaInteger - left_shift - 1);
   260   if( left_shift != right_shift ||
   261       0 > left_shift || left_shift >= BitsPerJavaInteger ||
   262       max_post_shift < max_cutoff ||
   263       max_post_shift < -min_cutoff ) {
   264     // Shifts are necessary but current transformation eliminates them
   265     return false;
   266   }
   268   // OK to return the result of ConvF2I without shifting
   269   convf2i = (ConvF2INode*)conv;
   270   return true;
   271 }
   274 //------------------------------check_compare_clipping-------------------------
   275 // Helper function for RegionNode's identification of FP clipping
   276 static bool check_compare_clipping( bool less_than, IfNode *iff, ConNode *limit, Node * & input ) {
   277   Node *i1 = iff->in(1);
   278   if ( !i1->is_Bool() ) { return false; }
   279   BoolNode *bool1 = i1->as_Bool();
   280   if(       less_than && bool1->_test._test != BoolTest::le ) { return false; }
   281   else if( !less_than && bool1->_test._test != BoolTest::lt ) { return false; }
   282   const Node *cmpF = bool1->in(1);
   283   if( cmpF->Opcode() != Op_CmpF )      { return false; }
   284   // Test that the float value being compared against
   285   // is equivalent to the int value used as a limit
   286   Node *nodef = cmpF->in(2);
   287   if( nodef->Opcode() != Op_ConF ) { return false; }
   288   jfloat conf = nodef->getf();
   289   jint   coni = limit->get_int();
   290   if( ((int)conf) != coni )        { return false; }
   291   input = cmpF->in(1);
   292   return true;
   293 }
   295 //------------------------------is_unreachable_region--------------------------
   296 // Find if the Region node is reachable from the root.
   297 bool RegionNode::is_unreachable_region(PhaseGVN *phase) const {
   298   assert(req() == 2, "");
   300   // First, cut the simple case of fallthrough region when NONE of
   301   // region's phis references itself directly or through a data node.
   302   uint max = outcnt();
   303   uint i;
   304   for (i = 0; i < max; i++) {
   305     Node* phi = raw_out(i);
   306     if (phi != NULL && phi->is_Phi()) {
   307       assert(phase->eqv(phi->in(0), this) && phi->req() == 2, "");
   308       if (phi->outcnt() == 0)
   309         continue; // Safe case - no loops
   310       if (phi->outcnt() == 1) {
   311         Node* u = phi->raw_out(0);
   312         // Skip if only one use is an other Phi or Call or Uncommon trap.
   313         // It is safe to consider this case as fallthrough.
   314         if (u != NULL && (u->is_Phi() || u->is_CFG()))
   315           continue;
   316       }
   317       // Check when phi references itself directly or through an other node.
   318       if (phi->as_Phi()->simple_data_loop_check(phi->in(1)) >= PhiNode::Unsafe)
   319         break; // Found possible unsafe data loop.
   320     }
   321   }
   322   if (i >= max)
   323     return false; // An unsafe case was NOT found - don't need graph walk.
   325   // Unsafe case - check if the Region node is reachable from root.
   326   ResourceMark rm;
   328   Arena *a = Thread::current()->resource_area();
   329   Node_List nstack(a);
   330   VectorSet visited(a);
   332   // Mark all control nodes reachable from root outputs
   333   Node *n = (Node*)phase->C->root();
   334   nstack.push(n);
   335   visited.set(n->_idx);
   336   while (nstack.size() != 0) {
   337     n = nstack.pop();
   338     uint max = n->outcnt();
   339     for (uint i = 0; i < max; i++) {
   340       Node* m = n->raw_out(i);
   341       if (m != NULL && m->is_CFG()) {
   342         if (phase->eqv(m, this)) {
   343           return false; // We reached the Region node - it is not dead.
   344         }
   345         if (!visited.test_set(m->_idx))
   346           nstack.push(m);
   347       }
   348     }
   349   }
   351   return true; // The Region node is unreachable - it is dead.
   352 }
   354 //------------------------------Ideal------------------------------------------
   355 // Return a node which is more "ideal" than the current node.  Must preserve
   356 // the CFG, but we can still strip out dead paths.
   357 Node *RegionNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   358   if( !can_reshape && !in(0) ) return NULL;     // Already degraded to a Copy
   359   assert(!in(0) || !in(0)->is_Root(), "not a specially hidden merge");
   361   // Check for RegionNode with no Phi users and both inputs come from either
   362   // arm of the same IF.  If found, then the control-flow split is useless.
   363   bool has_phis = false;
   364   if (can_reshape) {            // Need DU info to check for Phi users
   365     has_phis = (has_phi() != NULL);       // Cache result
   366     if (!has_phis) {            // No Phi users?  Nothing merging?
   367       for (uint i = 1; i < req()-1; i++) {
   368         Node *if1 = in(i);
   369         if( !if1 ) continue;
   370         Node *iff = if1->in(0);
   371         if( !iff || !iff->is_If() ) continue;
   372         for( uint j=i+1; j<req(); j++ ) {
   373           if( in(j) && in(j)->in(0) == iff &&
   374               if1->Opcode() != in(j)->Opcode() ) {
   375             // Add the IF Projections to the worklist. They (and the IF itself)
   376             // will be eliminated if dead.
   377             phase->is_IterGVN()->add_users_to_worklist(iff);
   378             set_req(i, iff->in(0));// Skip around the useless IF diamond
   379             set_req(j, NULL);
   380             return this;      // Record progress
   381           }
   382         }
   383       }
   384     }
   385   }
   387   // Remove TOP or NULL input paths. If only 1 input path remains, this Region
   388   // degrades to a copy.
   389   bool add_to_worklist = false;
   390   int cnt = 0;                  // Count of values merging
   391   DEBUG_ONLY( int cnt_orig = req(); ) // Save original inputs count
   392   int del_it = 0;               // The last input path we delete
   393   // For all inputs...
   394   for( uint i=1; i<req(); ++i ){// For all paths in
   395     Node *n = in(i);            // Get the input
   396     if( n != NULL ) {
   397       // Remove useless control copy inputs
   398       if( n->is_Region() && n->as_Region()->is_copy() ) {
   399         set_req(i, n->nonnull_req());
   400         i--;
   401         continue;
   402       }
   403       if( n->is_Proj() ) {      // Remove useless rethrows
   404         Node *call = n->in(0);
   405         if (call->is_Call() && call->as_Call()->entry_point() == OptoRuntime::rethrow_stub()) {
   406           set_req(i, call->in(0));
   407           i--;
   408           continue;
   409         }
   410       }
   411       if( phase->type(n) == Type::TOP ) {
   412         set_req(i, NULL);       // Ignore TOP inputs
   413         i--;
   414         continue;
   415       }
   416       cnt++;                    // One more value merging
   418     } else if (can_reshape) {   // Else found dead path with DU info
   419       PhaseIterGVN *igvn = phase->is_IterGVN();
   420       del_req(i);               // Yank path from self
   421       del_it = i;
   422       uint max = outcnt();
   423       DUIterator j;
   424       bool progress = true;
   425       while(progress) {         // Need to establish property over all users
   426         progress = false;
   427         for (j = outs(); has_out(j); j++) {
   428           Node *n = out(j);
   429           if( n->req() != req() && n->is_Phi() ) {
   430             assert( n->in(0) == this, "" );
   431             igvn->hash_delete(n); // Yank from hash before hacking edges
   432             n->set_req_X(i,NULL,igvn);// Correct DU info
   433             n->del_req(i);        // Yank path from Phis
   434             if( max != outcnt() ) {
   435               progress = true;
   436               j = refresh_out_pos(j);
   437               max = outcnt();
   438             }
   439           }
   440         }
   441       }
   442       add_to_worklist = true;
   443       i--;
   444     }
   445   }
   447   if (can_reshape && cnt == 1) {
   448     // Is it dead loop?
   449     // If it is LoopNopde it had 2 (+1 itself) inputs and
   450     // one of them was cut. The loop is dead if it was EntryContol.
   451     assert(!this->is_Loop() || cnt_orig == 3, "Loop node should have 3 inputs");
   452     if (this->is_Loop() && del_it == LoopNode::EntryControl ||
   453        !this->is_Loop() && has_phis && is_unreachable_region(phase)) {
   454       // Yes,  the region will be removed during the next step below.
   455       // Cut the backedge input and remove phis since no data paths left.
   456       // We don't cut outputs to other nodes here since we need to put them
   457       // on the worklist.
   458       del_req(1);
   459       cnt = 0;
   460       assert( req() == 1, "no more inputs expected" );
   461       uint max = outcnt();
   462       bool progress = true;
   463       Node *top = phase->C->top();
   464       PhaseIterGVN *igvn = phase->is_IterGVN();
   465       DUIterator j;
   466       while(progress) {
   467         progress = false;
   468         for (j = outs(); has_out(j); j++) {
   469           Node *n = out(j);
   470           if( n->is_Phi() ) {
   471             assert( igvn->eqv(n->in(0), this), "" );
   472             assert( n->req() == 2 &&  n->in(1) != NULL, "Only one data input expected" );
   473             // Break dead loop data path.
   474             // Eagerly replace phis with top to avoid phis copies generation.
   475             igvn->add_users_to_worklist(n);
   476             igvn->hash_delete(n); // Yank from hash before hacking edges
   477             igvn->subsume_node(n, top);
   478             if( max != outcnt() ) {
   479               progress = true;
   480               j = refresh_out_pos(j);
   481               max = outcnt();
   482             }
   483           }
   484         }
   485       }
   486       add_to_worklist = true;
   487     }
   488   }
   489   if (add_to_worklist) {
   490     phase->is_IterGVN()->add_users_to_worklist(this); // Revisit collapsed Phis
   491   }
   493   if( cnt <= 1 ) {              // Only 1 path in?
   494     set_req(0, NULL);           // Null control input for region copy
   495     if( cnt == 0 && !can_reshape) { // Parse phase - leave the node as it is.
   496       // No inputs or all inputs are NULL.
   497       return NULL;
   498     } else if (can_reshape) {   // Optimization phase - remove the node
   499       PhaseIterGVN *igvn = phase->is_IterGVN();
   500       Node *parent_ctrl;
   501       if( cnt == 0 ) {
   502         assert( req() == 1, "no inputs expected" );
   503         // During IGVN phase such region will be subsumed by TOP node
   504         // so region's phis will have TOP as control node.
   505         // Kill phis here to avoid it. PhiNode::is_copy() will be always false.
   506         // Also set other user's input to top.
   507         parent_ctrl = phase->C->top();
   508       } else {
   509         // The fallthrough case since we already checked dead loops above.
   510         parent_ctrl = in(1);
   511         assert(parent_ctrl != NULL, "Region is a copy of some non-null control");
   512         assert(!igvn->eqv(parent_ctrl, this), "Close dead loop");
   513       }
   514       if (!add_to_worklist)
   515         igvn->add_users_to_worklist(this); // Check for further allowed opts
   516       for (DUIterator_Last imin, i = last_outs(imin); i >= imin; --i) {
   517         Node* n = last_out(i);
   518         igvn->hash_delete(n); // Remove from worklist before modifying edges
   519         if( n->is_Phi() ) {   // Collapse all Phis
   520           // Eagerly replace phis to avoid copies generation.
   521           igvn->add_users_to_worklist(n);
   522           igvn->hash_delete(n); // Yank from hash before hacking edges
   523           if( cnt == 0 ) {
   524             assert( n->req() == 1, "No data inputs expected" );
   525             igvn->subsume_node(n, parent_ctrl); // replaced by top
   526           } else {
   527             assert( n->req() == 2 &&  n->in(1) != NULL, "Only one data input expected" );
   528             Node* in1 = n->in(1);               // replaced by unique input
   529             if( n->as_Phi()->is_unsafe_data_reference(in1) )
   530               in1 = phase->C->top();            // replaced by top
   531             igvn->subsume_node(n, in1);
   532           }
   533         }
   534         else if( n->is_Region() ) { // Update all incoming edges
   535           assert( !igvn->eqv(n, this), "Must be removed from DefUse edges");
   536           uint uses_found = 0;
   537           for( uint k=1; k < n->req(); k++ ) {
   538             if( n->in(k) == this ) {
   539               n->set_req(k, parent_ctrl);
   540               uses_found++;
   541             }
   542           }
   543           if( uses_found > 1 ) { // (--i) done at the end of the loop.
   544             i -= (uses_found - 1);
   545           }
   546         }
   547         else {
   548           assert( igvn->eqv(n->in(0), this), "Expect RegionNode to be control parent");
   549           n->set_req(0, parent_ctrl);
   550         }
   551 #ifdef ASSERT
   552         for( uint k=0; k < n->req(); k++ ) {
   553           assert( !igvn->eqv(n->in(k), this), "All uses of RegionNode should be gone");
   554         }
   555 #endif
   556       }
   557       // Remove the RegionNode itself from DefUse info
   558       igvn->remove_dead_node(this);
   559       return NULL;
   560     }
   561     return this;                // Record progress
   562   }
   565   // If a Region flows into a Region, merge into one big happy merge.
   566   if (can_reshape) {
   567     Node *m = merge_region(this, phase);
   568     if (m != NULL)  return m;
   569   }
   571   // Check if this region is the root of a clipping idiom on floats
   572   if( ConvertFloat2IntClipping && can_reshape && req() == 4 ) {
   573     // Check that only one use is a Phi and that it simplifies to two constants +
   574     PhiNode* phi = has_unique_phi();
   575     if (phi != NULL) {          // One Phi user
   576       // Check inputs to the Phi
   577       ConNode *min;
   578       ConNode *max;
   579       Node    *val;
   580       uint     min_idx;
   581       uint     max_idx;
   582       uint     val_idx;
   583       if( check_phi_clipping( phi, min, min_idx, max, max_idx, val, val_idx )  ) {
   584         IfNode *top_if;
   585         IfNode *bot_if;
   586         if( check_if_clipping( this, bot_if, top_if ) ) {
   587           // Control pattern checks, now verify compares
   588           Node   *top_in = NULL;   // value being compared against
   589           Node   *bot_in = NULL;
   590           if( check_compare_clipping( true,  bot_if, min, bot_in ) &&
   591               check_compare_clipping( false, top_if, max, top_in ) ) {
   592             if( bot_in == top_in ) {
   593               PhaseIterGVN *gvn = phase->is_IterGVN();
   594               assert( gvn != NULL, "Only had DefUse info in IterGVN");
   595               // Only remaining check is that bot_in == top_in == (Phi's val + mods)
   597               // Check for the ConvF2INode
   598               ConvF2INode *convf2i;
   599               if( check_convf2i_clipping( phi, val_idx, convf2i, min, max ) &&
   600                 convf2i->in(1) == bot_in ) {
   601                 // Matched pattern, including LShiftI; RShiftI, replace with integer compares
   602                 // max test
   603                 Node *cmp   = gvn->register_new_node_with_optimizer(new (phase->C, 3) CmpINode( convf2i, min ));
   604                 Node *boo   = gvn->register_new_node_with_optimizer(new (phase->C, 2) BoolNode( cmp, BoolTest::lt ));
   605                 IfNode *iff = (IfNode*)gvn->register_new_node_with_optimizer(new (phase->C, 2) IfNode( top_if->in(0), boo, PROB_UNLIKELY_MAG(5), top_if->_fcnt ));
   606                 Node *if_min= gvn->register_new_node_with_optimizer(new (phase->C, 1) IfTrueNode (iff));
   607                 Node *ifF   = gvn->register_new_node_with_optimizer(new (phase->C, 1) IfFalseNode(iff));
   608                 // min test
   609                 cmp         = gvn->register_new_node_with_optimizer(new (phase->C, 3) CmpINode( convf2i, max ));
   610                 boo         = gvn->register_new_node_with_optimizer(new (phase->C, 2) BoolNode( cmp, BoolTest::gt ));
   611                 iff         = (IfNode*)gvn->register_new_node_with_optimizer(new (phase->C, 2) IfNode( ifF, boo, PROB_UNLIKELY_MAG(5), bot_if->_fcnt ));
   612                 Node *if_max= gvn->register_new_node_with_optimizer(new (phase->C, 1) IfTrueNode (iff));
   613                 ifF         = gvn->register_new_node_with_optimizer(new (phase->C, 1) IfFalseNode(iff));
   614                 // update input edges to region node
   615                 set_req_X( min_idx, if_min, gvn );
   616                 set_req_X( max_idx, if_max, gvn );
   617                 set_req_X( val_idx, ifF,    gvn );
   618                 // remove unnecessary 'LShiftI; RShiftI' idiom
   619                 gvn->hash_delete(phi);
   620                 phi->set_req_X( val_idx, convf2i, gvn );
   621                 gvn->hash_find_insert(phi);
   622                 // Return transformed region node
   623                 return this;
   624               }
   625             }
   626           }
   627         }
   628       }
   629     }
   630   }
   632   return NULL;
   633 }
   637 const RegMask &RegionNode::out_RegMask() const {
   638   return RegMask::Empty;
   639 }
   641 // Find the one non-null required input.  RegionNode only
   642 Node *Node::nonnull_req() const {
   643   assert( is_Region(), "" );
   644   for( uint i = 1; i < _cnt; i++ )
   645     if( in(i) )
   646       return in(i);
   647   ShouldNotReachHere();
   648   return NULL;
   649 }
   652 //=============================================================================
   653 // note that these functions assume that the _adr_type field is flattened
   654 uint PhiNode::hash() const {
   655   const Type* at = _adr_type;
   656   return TypeNode::hash() + (at ? at->hash() : 0);
   657 }
   658 uint PhiNode::cmp( const Node &n ) const {
   659   return TypeNode::cmp(n) && _adr_type == ((PhiNode&)n)._adr_type;
   660 }
   661 static inline
   662 const TypePtr* flatten_phi_adr_type(const TypePtr* at) {
   663   if (at == NULL || at == TypePtr::BOTTOM)  return at;
   664   return Compile::current()->alias_type(at)->adr_type();
   665 }
   667 //----------------------------make---------------------------------------------
   668 // create a new phi with edges matching r and set (initially) to x
   669 PhiNode* PhiNode::make(Node* r, Node* x, const Type *t, const TypePtr* at) {
   670   uint preds = r->req();   // Number of predecessor paths
   671   assert(t != Type::MEMORY || at == flatten_phi_adr_type(at), "flatten at");
   672   PhiNode* p = new (Compile::current(), preds) PhiNode(r, t, at);
   673   for (uint j = 1; j < preds; j++) {
   674     // Fill in all inputs, except those which the region does not yet have
   675     if (r->in(j) != NULL)
   676       p->init_req(j, x);
   677   }
   678   return p;
   679 }
   680 PhiNode* PhiNode::make(Node* r, Node* x) {
   681   const Type*    t  = x->bottom_type();
   682   const TypePtr* at = NULL;
   683   if (t == Type::MEMORY)  at = flatten_phi_adr_type(x->adr_type());
   684   return make(r, x, t, at);
   685 }
   686 PhiNode* PhiNode::make_blank(Node* r, Node* x) {
   687   const Type*    t  = x->bottom_type();
   688   const TypePtr* at = NULL;
   689   if (t == Type::MEMORY)  at = flatten_phi_adr_type(x->adr_type());
   690   return new (Compile::current(), r->req()) PhiNode(r, t, at);
   691 }
   694 //------------------------slice_memory-----------------------------------------
   695 // create a new phi with narrowed memory type
   696 PhiNode* PhiNode::slice_memory(const TypePtr* adr_type) const {
   697   PhiNode* mem = (PhiNode*) clone();
   698   *(const TypePtr**)&mem->_adr_type = adr_type;
   699   // convert self-loops, or else we get a bad graph
   700   for (uint i = 1; i < req(); i++) {
   701     if ((const Node*)in(i) == this)  mem->set_req(i, mem);
   702   }
   703   mem->verify_adr_type();
   704   return mem;
   705 }
   707 //------------------------verify_adr_type--------------------------------------
   708 #ifdef ASSERT
   709 void PhiNode::verify_adr_type(VectorSet& visited, const TypePtr* at) const {
   710   if (visited.test_set(_idx))  return;  //already visited
   712   // recheck constructor invariants:
   713   verify_adr_type(false);
   715   // recheck local phi/phi consistency:
   716   assert(_adr_type == at || _adr_type == TypePtr::BOTTOM,
   717          "adr_type must be consistent across phi nest");
   719   // walk around
   720   for (uint i = 1; i < req(); i++) {
   721     Node* n = in(i);
   722     if (n == NULL)  continue;
   723     const Node* np = in(i);
   724     if (np->is_Phi()) {
   725       np->as_Phi()->verify_adr_type(visited, at);
   726     } else if (n->bottom_type() == Type::TOP
   727                || (n->is_Mem() && n->in(MemNode::Address)->bottom_type() == Type::TOP)) {
   728       // ignore top inputs
   729     } else {
   730       const TypePtr* nat = flatten_phi_adr_type(n->adr_type());
   731       // recheck phi/non-phi consistency at leaves:
   732       assert((nat != NULL) == (at != NULL), "");
   733       assert(nat == at || nat == TypePtr::BOTTOM,
   734              "adr_type must be consistent at leaves of phi nest");
   735     }
   736   }
   737 }
   739 // Verify a whole nest of phis rooted at this one.
   740 void PhiNode::verify_adr_type(bool recursive) const {
   741   if (is_error_reported())  return;  // muzzle asserts when debugging an error
   742   if (Node::in_dump())      return;  // muzzle asserts when printing
   744   assert((_type == Type::MEMORY) == (_adr_type != NULL), "adr_type for memory phis only");
   746   if (!VerifyAliases)       return;  // verify thoroughly only if requested
   748   assert(_adr_type == flatten_phi_adr_type(_adr_type),
   749          "Phi::adr_type must be pre-normalized");
   751   if (recursive) {
   752     VectorSet visited(Thread::current()->resource_area());
   753     verify_adr_type(visited, _adr_type);
   754   }
   755 }
   756 #endif
   759 //------------------------------Value------------------------------------------
   760 // Compute the type of the PhiNode
   761 const Type *PhiNode::Value( PhaseTransform *phase ) const {
   762   Node *r = in(0);              // RegionNode
   763   if( !r )                      // Copy or dead
   764     return in(1) ? phase->type(in(1)) : Type::TOP;
   766   // Note: During parsing, phis are often transformed before their regions.
   767   // This means we have to use type_or_null to defend against untyped regions.
   768   if( phase->type_or_null(r) == Type::TOP )  // Dead code?
   769     return Type::TOP;
   771   // Check for trip-counted loop.  If so, be smarter.
   772   CountedLoopNode *l = r->is_CountedLoop() ? r->as_CountedLoop() : NULL;
   773   if( l && l->can_be_counted_loop(phase) &&
   774       ((const Node*)l->phi() == this) ) { // Trip counted loop!
   775     // protect against init_trip() or limit() returning NULL
   776     const Node *init   = l->init_trip();
   777     const Node *limit  = l->limit();
   778     if( init != NULL && limit != NULL && l->stride_is_con() ) {
   779       const TypeInt *lo = init ->bottom_type()->isa_int();
   780       const TypeInt *hi = limit->bottom_type()->isa_int();
   781       if( lo && hi ) {            // Dying loops might have TOP here
   782         int stride = l->stride_con();
   783         if( stride < 0 ) {          // Down-counter loop
   784           const TypeInt *tmp = lo; lo = hi; hi = tmp;
   785           stride = -stride;
   786         }
   787         if( lo->_hi < hi->_lo )     // Reversed endpoints are well defined :-(
   788           return TypeInt::make(lo->_lo,hi->_hi,3);
   789       }
   790     }
   791   }
   793   // Until we have harmony between classes and interfaces in the type
   794   // lattice, we must tread carefully around phis which implicitly
   795   // convert the one to the other.
   796   const TypeInstPtr* ttip = _type->isa_instptr();
   797   bool is_intf = false;
   798   if (ttip != NULL) {
   799     ciKlass* k = ttip->klass();
   800     if (k->is_loaded() && k->is_interface())
   801       is_intf = true;
   802   }
   804   // Default case: merge all inputs
   805   const Type *t = Type::TOP;        // Merged type starting value
   806   for (uint i = 1; i < req(); ++i) {// For all paths in
   807     // Reachable control path?
   808     if (r->in(i) && phase->type(r->in(i)) == Type::CONTROL) {
   809       const Type* ti = phase->type(in(i));
   810       // We assume that each input of an interface-valued Phi is a true
   811       // subtype of that interface.  This might not be true of the meet
   812       // of all the input types.  The lattice is not distributive in
   813       // such cases.  Ward off asserts in type.cpp by refusing to do
   814       // meets between interfaces and proper classes.
   815       const TypeInstPtr* tiip = ti->isa_instptr();
   816       if (tiip) {
   817         bool ti_is_intf = false;
   818         ciKlass* k = tiip->klass();
   819         if (k->is_loaded() && k->is_interface())
   820           ti_is_intf = true;
   821         if (is_intf != ti_is_intf)
   822           { t = _type; break; }
   823       }
   824       t = t->meet(ti);
   825     }
   826   }
   828   // The worst-case type (from ciTypeFlow) should be consistent with "t".
   829   // That is, we expect that "t->higher_equal(_type)" holds true.
   830   // There are various exceptions:
   831   // - Inputs which are phis might in fact be widened unnecessarily.
   832   //   For example, an input might be a widened int while the phi is a short.
   833   // - Inputs might be BotPtrs but this phi is dependent on a null check,
   834   //   and postCCP has removed the cast which encodes the result of the check.
   835   // - The type of this phi is an interface, and the inputs are classes.
   836   // - Value calls on inputs might produce fuzzy results.
   837   //   (Occurrences of this case suggest improvements to Value methods.)
   838   //
   839   // It is not possible to see Type::BOTTOM values as phi inputs,
   840   // because the ciTypeFlow pre-pass produces verifier-quality types.
   841   const Type* ft = t->filter(_type);  // Worst case type
   843 #ifdef ASSERT
   844   // The following logic has been moved into TypeOopPtr::filter.
   845   const Type* jt = t->join(_type);
   846   if( jt->empty() ) {           // Emptied out???
   848     // Check for evil case of 't' being a class and '_type' expecting an
   849     // interface.  This can happen because the bytecodes do not contain
   850     // enough type info to distinguish a Java-level interface variable
   851     // from a Java-level object variable.  If we meet 2 classes which
   852     // both implement interface I, but their meet is at 'j/l/O' which
   853     // doesn't implement I, we have no way to tell if the result should
   854     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
   855     // into a Phi which "knows" it's an Interface type we'll have to
   856     // uplift the type.
   857     if( !t->empty() && ttip && ttip->is_loaded() && ttip->klass()->is_interface() )
   858       { assert(ft == _type, ""); } // Uplift to interface
   859     // Otherwise it's something stupid like non-overlapping int ranges
   860     // found on dying counted loops.
   861     else
   862       { assert(ft == Type::TOP, ""); } // Canonical empty value
   863   }
   865   else {
   867     // If we have an interface-typed Phi and we narrow to a class type, the join
   868     // should report back the class.  However, if we have a J/L/Object
   869     // class-typed Phi and an interface flows in, it's possible that the meet &
   870     // join report an interface back out.  This isn't possible but happens
   871     // because the type system doesn't interact well with interfaces.
   872     const TypeInstPtr *jtip = jt->isa_instptr();
   873     if( jtip && ttip ) {
   874       if( jtip->is_loaded() &&  jtip->klass()->is_interface() &&
   875           ttip->is_loaded() && !ttip->klass()->is_interface() )
   876         // Happens in a CTW of rt.jar, 320-341, no extra flags
   877         { assert(ft == ttip->cast_to_ptr_type(jtip->ptr()), ""); jt = ft; }
   878     }
   879     if (jt != ft && jt->base() == ft->base()) {
   880       if (jt->isa_int() &&
   881           jt->is_int()->_lo == ft->is_int()->_lo &&
   882           jt->is_int()->_hi == ft->is_int()->_hi)
   883         jt = ft;
   884       if (jt->isa_long() &&
   885           jt->is_long()->_lo == ft->is_long()->_lo &&
   886           jt->is_long()->_hi == ft->is_long()->_hi)
   887         jt = ft;
   888     }
   889     if (jt != ft) {
   890       tty->print("merge type:  "); t->dump(); tty->cr();
   891       tty->print("kill type:   "); _type->dump(); tty->cr();
   892       tty->print("join type:   "); jt->dump(); tty->cr();
   893       tty->print("filter type: "); ft->dump(); tty->cr();
   894     }
   895     assert(jt == ft, "");
   896   }
   897 #endif //ASSERT
   899   // Deal with conversion problems found in data loops.
   900   ft = phase->saturate(ft, phase->type_or_null(this), _type);
   902   return ft;
   903 }
   906 //------------------------------is_diamond_phi---------------------------------
   907 // Does this Phi represent a simple well-shaped diamond merge?  Return the
   908 // index of the true path or 0 otherwise.
   909 int PhiNode::is_diamond_phi() const {
   910   // Check for a 2-path merge
   911   Node *region = in(0);
   912   if( !region ) return 0;
   913   if( region->req() != 3 ) return 0;
   914   if(         req() != 3 ) return 0;
   915   // Check that both paths come from the same If
   916   Node *ifp1 = region->in(1);
   917   Node *ifp2 = region->in(2);
   918   if( !ifp1 || !ifp2 ) return 0;
   919   Node *iff = ifp1->in(0);
   920   if( !iff || !iff->is_If() ) return 0;
   921   if( iff != ifp2->in(0) ) return 0;
   922   // Check for a proper bool/cmp
   923   const Node *b = iff->in(1);
   924   if( !b->is_Bool() ) return 0;
   925   const Node *cmp = b->in(1);
   926   if( !cmp->is_Cmp() ) return 0;
   928   // Check for branching opposite expected
   929   if( ifp2->Opcode() == Op_IfTrue ) {
   930     assert( ifp1->Opcode() == Op_IfFalse, "" );
   931     return 2;
   932   } else {
   933     assert( ifp1->Opcode() == Op_IfTrue, "" );
   934     return 1;
   935   }
   936 }
   938 //----------------------------check_cmove_id-----------------------------------
   939 // Check for CMove'ing a constant after comparing against the constant.
   940 // Happens all the time now, since if we compare equality vs a constant in
   941 // the parser, we "know" the variable is constant on one path and we force
   942 // it.  Thus code like "if( x==0 ) {/*EMPTY*/}" ends up inserting a
   943 // conditional move: "x = (x==0)?0:x;".  Yucko.  This fix is slightly more
   944 // general in that we don't need constants.  Since CMove's are only inserted
   945 // in very special circumstances, we do it here on generic Phi's.
   946 Node* PhiNode::is_cmove_id(PhaseTransform* phase, int true_path) {
   947   assert(true_path !=0, "only diamond shape graph expected");
   949   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
   950   // phi->region->if_proj->ifnode->bool->cmp
   951   Node*     region = in(0);
   952   Node*     iff    = region->in(1)->in(0);
   953   BoolNode* b      = iff->in(1)->as_Bool();
   954   Node*     cmp    = b->in(1);
   955   Node*     tval   = in(true_path);
   956   Node*     fval   = in(3-true_path);
   957   Node*     id     = CMoveNode::is_cmove_id(phase, cmp, tval, fval, b);
   958   if (id == NULL)
   959     return NULL;
   961   // Either value might be a cast that depends on a branch of 'iff'.
   962   // Since the 'id' value will float free of the diamond, either
   963   // decast or return failure.
   964   Node* ctl = id->in(0);
   965   if (ctl != NULL && ctl->in(0) == iff) {
   966     if (id->is_ConstraintCast()) {
   967       return id->in(1);
   968     } else {
   969       // Don't know how to disentangle this value.
   970       return NULL;
   971     }
   972   }
   974   return id;
   975 }
   977 //------------------------------Identity---------------------------------------
   978 // Check for Region being Identity.
   979 Node *PhiNode::Identity( PhaseTransform *phase ) {
   980   // Check for no merging going on
   981   // (There used to be special-case code here when this->region->is_Loop.
   982   // It would check for a tributary phi on the backedge that the main phi
   983   // trivially, perhaps with a single cast.  The unique_input method
   984   // does all this and more, by reducing such tributaries to 'this'.)
   985   Node* uin = unique_input(phase);
   986   if (uin != NULL) {
   987     return uin;
   988   }
   990   int true_path = is_diamond_phi();
   991   if (true_path != 0) {
   992     Node* id = is_cmove_id(phase, true_path);
   993     if (id != NULL)  return id;
   994   }
   996   return this;                     // No identity
   997 }
   999 //-----------------------------unique_input------------------------------------
  1000 // Find the unique value, discounting top, self-loops, and casts.
  1001 // Return top if there are no inputs, and self if there are multiple.
  1002 Node* PhiNode::unique_input(PhaseTransform* phase) {
  1003   //  1) One unique direct input, or
  1004   //  2) some of the inputs have an intervening ConstraintCast and
  1005   //     the type of input is the same or sharper (more specific)
  1006   //     than the phi's type.
  1007   //  3) an input is a self loop
  1008   //
  1009   //  1) input   or   2) input     or   3) input __
  1010   //     /   \           /   \               \  /  \
  1011   //     \   /          |    cast             phi  cast
  1012   //      phi            \   /               /  \  /
  1013   //                      phi               /    --
  1015   Node* r = in(0);                      // RegionNode
  1016   if (r == NULL)  return in(1);         // Already degraded to a Copy
  1017   Node* uncasted_input = NULL; // The unique uncasted input (ConstraintCasts removed)
  1018   Node* direct_input   = NULL; // The unique direct input
  1020   for (uint i = 1, cnt = req(); i < cnt; ++i) {
  1021     Node* rc = r->in(i);
  1022     if (rc == NULL || phase->type(rc) == Type::TOP)
  1023       continue;                 // ignore unreachable control path
  1024     Node* n = in(i);
  1025     Node* un = n->uncast();
  1026     if (un == NULL || un == this || phase->type(un) == Type::TOP) {
  1027       continue; // ignore if top, or in(i) and "this" are in a data cycle
  1029     // Check for a unique uncasted input
  1030     if (uncasted_input == NULL) {
  1031       uncasted_input = un;
  1032     } else if (uncasted_input != un) {
  1033       uncasted_input = NodeSentinel; // no unique uncasted input
  1035     // Check for a unique direct input
  1036     if (direct_input == NULL) {
  1037       direct_input = n;
  1038     } else if (direct_input != n) {
  1039       direct_input = NodeSentinel; // no unique direct input
  1042   if (direct_input == NULL) {
  1043     return phase->C->top();        // no inputs
  1045   assert(uncasted_input != NULL,"");
  1047   if (direct_input != NodeSentinel) {
  1048     return direct_input;           // one unique direct input
  1050   if (uncasted_input != NodeSentinel &&
  1051       phase->type(uncasted_input)->higher_equal(type())) {
  1052     return uncasted_input;         // one unique uncasted input
  1055   // Nothing.
  1056   return NULL;
  1059 //------------------------------is_x2logic-------------------------------------
  1060 // Check for simple convert-to-boolean pattern
  1061 // If:(C Bool) Region:(IfF IfT) Phi:(Region 0 1)
  1062 // Convert Phi to an ConvIB.
  1063 static Node *is_x2logic( PhaseGVN *phase, PhiNode *phi, int true_path ) {
  1064   assert(true_path !=0, "only diamond shape graph expected");
  1065   // Convert the true/false index into an expected 0/1 return.
  1066   // Map 2->0 and 1->1.
  1067   int flipped = 2-true_path;
  1069   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
  1070   // phi->region->if_proj->ifnode->bool->cmp
  1071   Node *region = phi->in(0);
  1072   Node *iff = region->in(1)->in(0);
  1073   BoolNode *b = (BoolNode*)iff->in(1);
  1074   const CmpNode *cmp = (CmpNode*)b->in(1);
  1076   Node *zero = phi->in(1);
  1077   Node *one  = phi->in(2);
  1078   const Type *tzero = phase->type( zero );
  1079   const Type *tone  = phase->type( one  );
  1081   // Check for compare vs 0
  1082   const Type *tcmp = phase->type(cmp->in(2));
  1083   if( tcmp != TypeInt::ZERO && tcmp != TypePtr::NULL_PTR ) {
  1084     // Allow cmp-vs-1 if the other input is bounded by 0-1
  1085     if( !(tcmp == TypeInt::ONE && phase->type(cmp->in(1)) == TypeInt::BOOL) )
  1086       return NULL;
  1087     flipped = 1-flipped;        // Test is vs 1 instead of 0!
  1090   // Check for setting zero/one opposite expected
  1091   if( tzero == TypeInt::ZERO ) {
  1092     if( tone == TypeInt::ONE ) {
  1093     } else return NULL;
  1094   } else if( tzero == TypeInt::ONE ) {
  1095     if( tone == TypeInt::ZERO ) {
  1096       flipped = 1-flipped;
  1097     } else return NULL;
  1098   } else return NULL;
  1100   // Check for boolean test backwards
  1101   if( b->_test._test == BoolTest::ne ) {
  1102   } else if( b->_test._test == BoolTest::eq ) {
  1103     flipped = 1-flipped;
  1104   } else return NULL;
  1106   // Build int->bool conversion
  1107   Node *n = new (phase->C, 2) Conv2BNode( cmp->in(1) );
  1108   if( flipped )
  1109     n = new (phase->C, 3) XorINode( phase->transform(n), phase->intcon(1) );
  1111   return n;
  1114 //------------------------------is_cond_add------------------------------------
  1115 // Check for simple conditional add pattern:  "(P < Q) ? X+Y : X;"
  1116 // To be profitable the control flow has to disappear; there can be no other
  1117 // values merging here.  We replace the test-and-branch with:
  1118 // "(sgn(P-Q))&Y) + X".  Basically, convert "(P < Q)" into 0 or -1 by
  1119 // moving the carry bit from (P-Q) into a register with 'sbb EAX,EAX'.
  1120 // Then convert Y to 0-or-Y and finally add.
  1121 // This is a key transform for SpecJava _201_compress.
  1122 static Node* is_cond_add(PhaseGVN *phase, PhiNode *phi, int true_path) {
  1123   assert(true_path !=0, "only diamond shape graph expected");
  1125   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
  1126   // phi->region->if_proj->ifnode->bool->cmp
  1127   RegionNode *region = (RegionNode*)phi->in(0);
  1128   Node *iff = region->in(1)->in(0);
  1129   BoolNode* b = iff->in(1)->as_Bool();
  1130   const CmpNode *cmp = (CmpNode*)b->in(1);
  1132   // Make sure only merging this one phi here
  1133   if (region->has_unique_phi() != phi)  return NULL;
  1135   // Make sure each arm of the diamond has exactly one output, which we assume
  1136   // is the region.  Otherwise, the control flow won't disappear.
  1137   if (region->in(1)->outcnt() != 1) return NULL;
  1138   if (region->in(2)->outcnt() != 1) return NULL;
  1140   // Check for "(P < Q)" of type signed int
  1141   if (b->_test._test != BoolTest::lt)  return NULL;
  1142   if (cmp->Opcode() != Op_CmpI)        return NULL;
  1144   Node *p = cmp->in(1);
  1145   Node *q = cmp->in(2);
  1146   Node *n1 = phi->in(  true_path);
  1147   Node *n2 = phi->in(3-true_path);
  1149   int op = n1->Opcode();
  1150   if( op != Op_AddI           // Need zero as additive identity
  1151       /*&&op != Op_SubI &&
  1152       op != Op_AddP &&
  1153       op != Op_XorI &&
  1154       op != Op_OrI*/ )
  1155     return NULL;
  1157   Node *x = n2;
  1158   Node *y = n1->in(1);
  1159   if( n2 == n1->in(1) ) {
  1160     y = n1->in(2);
  1161   } else if( n2 == n1->in(1) ) {
  1162   } else return NULL;
  1164   // Not so profitable if compare and add are constants
  1165   if( q->is_Con() && phase->type(q) != TypeInt::ZERO && y->is_Con() )
  1166     return NULL;
  1168   Node *cmplt = phase->transform( new (phase->C, 3) CmpLTMaskNode(p,q) );
  1169   Node *j_and   = phase->transform( new (phase->C, 3) AndINode(cmplt,y) );
  1170   return new (phase->C, 3) AddINode(j_and,x);
  1173 //------------------------------is_absolute------------------------------------
  1174 // Check for absolute value.
  1175 static Node* is_absolute( PhaseGVN *phase, PhiNode *phi_root, int true_path) {
  1176   assert(true_path !=0, "only diamond shape graph expected");
  1178   int  cmp_zero_idx = 0;        // Index of compare input where to look for zero
  1179   int  phi_x_idx = 0;           // Index of phi input where to find naked x
  1181   // ABS ends with the merge of 2 control flow paths.
  1182   // Find the false path from the true path. With only 2 inputs, 3 - x works nicely.
  1183   int false_path = 3 - true_path;
  1185   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
  1186   // phi->region->if_proj->ifnode->bool->cmp
  1187   BoolNode *bol = phi_root->in(0)->in(1)->in(0)->in(1)->as_Bool();
  1189   // Check bool sense
  1190   switch( bol->_test._test ) {
  1191   case BoolTest::lt: cmp_zero_idx = 1; phi_x_idx = true_path;  break;
  1192   case BoolTest::le: cmp_zero_idx = 2; phi_x_idx = false_path; break;
  1193   case BoolTest::gt: cmp_zero_idx = 2; phi_x_idx = true_path;  break;
  1194   case BoolTest::ge: cmp_zero_idx = 1; phi_x_idx = false_path; break;
  1195   default:           return NULL;                              break;
  1198   // Test is next
  1199   Node *cmp = bol->in(1);
  1200   const Type *tzero = NULL;
  1201   switch( cmp->Opcode() ) {
  1202   case Op_CmpF:    tzero = TypeF::ZERO; break; // Float ABS
  1203   case Op_CmpD:    tzero = TypeD::ZERO; break; // Double ABS
  1204   default: return NULL;
  1207   // Find zero input of compare; the other input is being abs'd
  1208   Node *x = NULL;
  1209   bool flip = false;
  1210   if( phase->type(cmp->in(cmp_zero_idx)) == tzero ) {
  1211     x = cmp->in(3 - cmp_zero_idx);
  1212   } else if( phase->type(cmp->in(3 - cmp_zero_idx)) == tzero ) {
  1213     // The test is inverted, we should invert the result...
  1214     x = cmp->in(cmp_zero_idx);
  1215     flip = true;
  1216   } else {
  1217     return NULL;
  1220   // Next get the 2 pieces being selected, one is the original value
  1221   // and the other is the negated value.
  1222   if( phi_root->in(phi_x_idx) != x ) return NULL;
  1224   // Check other phi input for subtract node
  1225   Node *sub = phi_root->in(3 - phi_x_idx);
  1227   // Allow only Sub(0,X) and fail out for all others; Neg is not OK
  1228   if( tzero == TypeF::ZERO ) {
  1229     if( sub->Opcode() != Op_SubF ||
  1230         sub->in(2) != x ||
  1231         phase->type(sub->in(1)) != tzero ) return NULL;
  1232     x = new (phase->C, 2) AbsFNode(x);
  1233     if (flip) {
  1234       x = new (phase->C, 3) SubFNode(sub->in(1), phase->transform(x));
  1236   } else {
  1237     if( sub->Opcode() != Op_SubD ||
  1238         sub->in(2) != x ||
  1239         phase->type(sub->in(1)) != tzero ) return NULL;
  1240     x = new (phase->C, 2) AbsDNode(x);
  1241     if (flip) {
  1242       x = new (phase->C, 3) SubDNode(sub->in(1), phase->transform(x));
  1246   return x;
  1249 //------------------------------split_once-------------------------------------
  1250 // Helper for split_flow_path
  1251 static void split_once(PhaseIterGVN *igvn, Node *phi, Node *val, Node *n, Node *newn) {
  1252   igvn->hash_delete(n);         // Remove from hash before hacking edges
  1254   uint j = 1;
  1255   for( uint i = phi->req()-1; i > 0; i-- ) {
  1256     if( phi->in(i) == val ) {   // Found a path with val?
  1257       // Add to NEW Region/Phi, no DU info
  1258       newn->set_req( j++, n->in(i) );
  1259       // Remove from OLD Region/Phi
  1260       n->del_req(i);
  1264   // Register the new node but do not transform it.  Cannot transform until the
  1265   // entire Region/Phi conglerate has been hacked as a single huge transform.
  1266   igvn->register_new_node_with_optimizer( newn );
  1267   // Now I can point to the new node.
  1268   n->add_req(newn);
  1269   igvn->_worklist.push(n);
  1272 //------------------------------split_flow_path--------------------------------
  1273 // Check for merging identical values and split flow paths
  1274 static Node* split_flow_path(PhaseGVN *phase, PhiNode *phi) {
  1275   BasicType bt = phi->type()->basic_type();
  1276   if( bt == T_ILLEGAL || type2size[bt] <= 0 )
  1277     return NULL;                // Bail out on funny non-value stuff
  1278   if( phi->req() <= 3 )         // Need at least 2 matched inputs and a
  1279     return NULL;                // third unequal input to be worth doing
  1281   // Scan for a constant
  1282   uint i;
  1283   for( i = 1; i < phi->req()-1; i++ ) {
  1284     Node *n = phi->in(i);
  1285     if( !n ) return NULL;
  1286     if( phase->type(n) == Type::TOP ) return NULL;
  1287     if( n->Opcode() == Op_ConP )
  1288       break;
  1290   if( i >= phi->req() )         // Only split for constants
  1291     return NULL;
  1293   Node *val = phi->in(i);       // Constant to split for
  1294   uint hit = 0;                 // Number of times it occurs
  1296   for( ; i < phi->req(); i++ ){ // Count occurances of constant
  1297     Node *n = phi->in(i);
  1298     if( !n ) return NULL;
  1299     if( phase->type(n) == Type::TOP ) return NULL;
  1300     if( phi->in(i) == val )
  1301       hit++;
  1304   if( hit <= 1 ||               // Make sure we find 2 or more
  1305       hit == phi->req()-1 )     // and not ALL the same value
  1306     return NULL;
  1308   // Now start splitting out the flow paths that merge the same value.
  1309   // Split first the RegionNode.
  1310   PhaseIterGVN *igvn = phase->is_IterGVN();
  1311   Node *r = phi->region();
  1312   RegionNode *newr = new (phase->C, hit+1) RegionNode(hit+1);
  1313   split_once(igvn, phi, val, r, newr);
  1315   // Now split all other Phis than this one
  1316   for (DUIterator_Fast kmax, k = r->fast_outs(kmax); k < kmax; k++) {
  1317     Node* phi2 = r->fast_out(k);
  1318     if( phi2->is_Phi() && phi2->as_Phi() != phi ) {
  1319       PhiNode *newphi = PhiNode::make_blank(newr, phi2);
  1320       split_once(igvn, phi, val, phi2, newphi);
  1324   // Clean up this guy
  1325   igvn->hash_delete(phi);
  1326   for( i = phi->req()-1; i > 0; i-- ) {
  1327     if( phi->in(i) == val ) {
  1328       phi->del_req(i);
  1331   phi->add_req(val);
  1333   return phi;
  1336 //=============================================================================
  1337 //------------------------------simple_data_loop_check-------------------------
  1338 //  Try to determing if the phi node in a simple safe/unsafe data loop.
  1339 //  Returns:
  1340 // enum LoopSafety { Safe = 0, Unsafe, UnsafeLoop };
  1341 // Safe       - safe case when the phi and it's inputs reference only safe data
  1342 //              nodes;
  1343 // Unsafe     - the phi and it's inputs reference unsafe data nodes but there
  1344 //              is no reference back to the phi - need a graph walk
  1345 //              to determine if it is in a loop;
  1346 // UnsafeLoop - unsafe case when the phi references itself directly or through
  1347 //              unsafe data node.
  1348 //  Note: a safe data node is a node which could/never reference itself during
  1349 //  GVN transformations. For now it is Con, Proj, Phi, CastPP, CheckCastPP.
  1350 //  I mark Phi nodes as safe node not only because they can reference itself
  1351 //  but also to prevent mistaking the fallthrough case inside an outer loop
  1352 //  as dead loop when the phi references itselfs through an other phi.
  1353 PhiNode::LoopSafety PhiNode::simple_data_loop_check(Node *in) const {
  1354   // It is unsafe loop if the phi node references itself directly.
  1355   if (in == (Node*)this)
  1356     return UnsafeLoop; // Unsafe loop
  1357   // Unsafe loop if the phi node references itself through an unsafe data node.
  1358   // Exclude cases with null inputs or data nodes which could reference
  1359   // itself (safe for dead loops).
  1360   if (in != NULL && !in->is_dead_loop_safe()) {
  1361     // Check inputs of phi's inputs also.
  1362     // It is much less expensive then full graph walk.
  1363     uint cnt = in->req();
  1364     for (uint i = 1; i < cnt; ++i) {
  1365       Node* m = in->in(i);
  1366       if (m == (Node*)this)
  1367         return UnsafeLoop; // Unsafe loop
  1368       if (m != NULL && !m->is_dead_loop_safe()) {
  1369         // Check the most common case (about 30% of all cases):
  1370         // phi->Load/Store->AddP->(ConP ConP Con)/(Parm Parm Con).
  1371         Node *m1 = (m->is_AddP() && m->req() > 3) ? m->in(1) : NULL;
  1372         if (m1 == (Node*)this)
  1373           return UnsafeLoop; // Unsafe loop
  1374         if (m1 != NULL && m1 == m->in(2) &&
  1375             m1->is_dead_loop_safe() && m->in(3)->is_Con()) {
  1376           continue; // Safe case
  1378         // The phi references an unsafe node - need full analysis.
  1379         return Unsafe;
  1383   return Safe; // Safe case - we can optimize the phi node.
  1386 //------------------------------is_unsafe_data_reference-----------------------
  1387 // If phi can be reached through the data input - it is data loop.
  1388 bool PhiNode::is_unsafe_data_reference(Node *in) const {
  1389   assert(req() > 1, "");
  1390   // First, check simple cases when phi references itself directly or
  1391   // through an other node.
  1392   LoopSafety safety = simple_data_loop_check(in);
  1393   if (safety == UnsafeLoop)
  1394     return true;  // phi references itself - unsafe loop
  1395   else if (safety == Safe)
  1396     return false; // Safe case - phi could be replaced with the unique input.
  1398   // Unsafe case when we should go through data graph to determine
  1399   // if the phi references itself.
  1401   ResourceMark rm;
  1403   Arena *a = Thread::current()->resource_area();
  1404   Node_List nstack(a);
  1405   VectorSet visited(a);
  1407   nstack.push(in); // Start with unique input.
  1408   visited.set(in->_idx);
  1409   while (nstack.size() != 0) {
  1410     Node* n = nstack.pop();
  1411     uint cnt = n->req();
  1412     for (uint i = 1; i < cnt; i++) { // Only data paths
  1413       Node* m = n->in(i);
  1414       if (m == (Node*)this) {
  1415         return true;    // Data loop
  1417       if (m != NULL && !m->is_dead_loop_safe()) { // Only look for unsafe cases.
  1418         if (!visited.test_set(m->_idx))
  1419           nstack.push(m);
  1423   return false; // The phi is not reachable from its inputs
  1427 //------------------------------Ideal------------------------------------------
  1428 // Return a node which is more "ideal" than the current node.  Must preserve
  1429 // the CFG, but we can still strip out dead paths.
  1430 Node *PhiNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1431   // The next should never happen after 6297035 fix.
  1432   if( is_copy() )               // Already degraded to a Copy ?
  1433     return NULL;                // No change
  1435   Node *r = in(0);              // RegionNode
  1436   assert(r->in(0) == NULL || !r->in(0)->is_Root(), "not a specially hidden merge");
  1438   // Note: During parsing, phis are often transformed before their regions.
  1439   // This means we have to use type_or_null to defend against untyped regions.
  1440   if( phase->type_or_null(r) == Type::TOP ) // Dead code?
  1441     return NULL;                // No change
  1443   Node *top = phase->C->top();
  1445   // The are 2 situations when only one valid phi's input is left
  1446   // (in addition to Region input).
  1447   // One: region is not loop - replace phi with this input.
  1448   // Two: region is loop - replace phi with top since this data path is dead
  1449   //                       and we need to break the dead data loop.
  1450   Node* progress = NULL;        // Record if any progress made
  1451   for( uint j = 1; j < req(); ++j ){ // For all paths in
  1452     // Check unreachable control paths
  1453     Node* rc = r->in(j);
  1454     Node* n = in(j);            // Get the input
  1455     if (rc == NULL || phase->type(rc) == Type::TOP) {
  1456       if (n != top) {           // Not already top?
  1457         set_req(j, top);        // Nuke it down
  1458         progress = this;        // Record progress
  1463   Node* uin = unique_input(phase);
  1464   if (uin == top) {             // Simplest case: no alive inputs.
  1465     if (can_reshape)            // IGVN transformation
  1466       return top;
  1467     else
  1468       return NULL;              // Identity will return TOP
  1469   } else if (uin != NULL) {
  1470     // Only one not-NULL unique input path is left.
  1471     // Determine if this input is backedge of a loop.
  1472     // (Skip new phis which have no uses and dead regions).
  1473     if( outcnt() > 0 && r->in(0) != NULL ) {
  1474       // First, take the short cut when we know it is a loop and
  1475       // the EntryControl data path is dead.
  1476       assert(!r->is_Loop() || r->req() == 3, "Loop node should have 3 inputs");
  1477       // Then, check if there is a data loop when phi references itself directly
  1478       // or through other data nodes.
  1479       if( r->is_Loop() && !phase->eqv_uncast(uin, in(LoopNode::EntryControl)) ||
  1480          !r->is_Loop() && is_unsafe_data_reference(uin) ) {
  1481         // Break this data loop to avoid creation of a dead loop.
  1482         if (can_reshape) {
  1483           return top;
  1484         } else {
  1485           // We can't return top if we are in Parse phase - cut inputs only
  1486           // let Identity to handle the case.
  1487           replace_edge(uin, top);
  1488           return NULL;
  1493     // One unique input.
  1494     debug_only(Node* ident = Identity(phase));
  1495     // The unique input must eventually be detected by the Identity call.
  1496 #ifdef ASSERT
  1497     if (ident != uin && !ident->is_top()) {
  1498       // print this output before failing assert
  1499       r->dump(3);
  1500       this->dump(3);
  1501       ident->dump();
  1502       uin->dump();
  1504 #endif
  1505     assert(ident == uin || ident->is_top(), "Identity must clean this up");
  1506     return NULL;
  1510   Node* opt = NULL;
  1511   int true_path = is_diamond_phi();
  1512   if( true_path != 0 ) {
  1513     // Check for CMove'ing identity. If it would be unsafe,
  1514     // handle it here. In the safe case, let Identity handle it.
  1515     Node* unsafe_id = is_cmove_id(phase, true_path);
  1516     if( unsafe_id != NULL && is_unsafe_data_reference(unsafe_id) )
  1517       opt = unsafe_id;
  1519     // Check for simple convert-to-boolean pattern
  1520     if( opt == NULL )
  1521       opt = is_x2logic(phase, this, true_path);
  1523     // Check for absolute value
  1524     if( opt == NULL )
  1525       opt = is_absolute(phase, this, true_path);
  1527     // Check for conditional add
  1528     if( opt == NULL && can_reshape )
  1529       opt = is_cond_add(phase, this, true_path);
  1531     // These 4 optimizations could subsume the phi:
  1532     // have to check for a dead data loop creation.
  1533     if( opt != NULL ) {
  1534       if( opt == unsafe_id || is_unsafe_data_reference(opt) ) {
  1535         // Found dead loop.
  1536         if( can_reshape )
  1537           return top;
  1538         // We can't return top if we are in Parse phase - cut inputs only
  1539         // to stop further optimizations for this phi. Identity will return TOP.
  1540         assert(req() == 3, "only diamond merge phi here");
  1541         set_req(1, top);
  1542         set_req(2, top);
  1543         return NULL;
  1544       } else {
  1545         return opt;
  1550   // Check for merging identical values and split flow paths
  1551   if (can_reshape) {
  1552     opt = split_flow_path(phase, this);
  1553     // This optimization only modifies phi - don't need to check for dead loop.
  1554     assert(opt == NULL || phase->eqv(opt, this), "do not elide phi");
  1555     if (opt != NULL)  return opt;
  1558   if (in(1) != NULL && in(1)->Opcode() == Op_AddP && can_reshape) {
  1559     // Try to undo Phi of AddP:
  1560     //   (Phi (AddP base base y) (AddP base2 base2 y))
  1561     // becomes:
  1562     //   newbase := (Phi base base2)
  1563     //   (AddP newbase newbase y)
  1564     //
  1565     // This occurs as a result of unsuccessful split_thru_phi and
  1566     // interferes with taking advantage of addressing modes.  See the
  1567     // clone_shift_expressions code in matcher.cpp
  1568     Node* addp = in(1);
  1569     const Type* type = addp->in(AddPNode::Base)->bottom_type();
  1570     Node* y = addp->in(AddPNode::Offset);
  1571     if (y != NULL && addp->in(AddPNode::Base) == addp->in(AddPNode::Address)) {
  1572       // make sure that all the inputs are similar to the first one,
  1573       // i.e. AddP with base == address and same offset as first AddP
  1574       bool doit = true;
  1575       for (uint i = 2; i < req(); i++) {
  1576         if (in(i) == NULL ||
  1577             in(i)->Opcode() != Op_AddP ||
  1578             in(i)->in(AddPNode::Base) != in(i)->in(AddPNode::Address) ||
  1579             in(i)->in(AddPNode::Offset) != y) {
  1580           doit = false;
  1581           break;
  1583         // Accumulate type for resulting Phi
  1584         type = type->meet(in(i)->in(AddPNode::Base)->bottom_type());
  1586       Node* base = NULL;
  1587       if (doit) {
  1588         // Check for neighboring AddP nodes in a tree.
  1589         // If they have a base, use that it.
  1590         for (DUIterator_Fast kmax, k = this->fast_outs(kmax); k < kmax; k++) {
  1591           Node* u = this->fast_out(k);
  1592           if (u->is_AddP()) {
  1593             Node* base2 = u->in(AddPNode::Base);
  1594             if (base2 != NULL && !base2->is_top()) {
  1595               if (base == NULL)
  1596                 base = base2;
  1597               else if (base != base2)
  1598                 { doit = false; break; }
  1603       if (doit) {
  1604         if (base == NULL) {
  1605           base = new (phase->C, in(0)->req()) PhiNode(in(0), type, NULL);
  1606           for (uint i = 1; i < req(); i++) {
  1607             base->init_req(i, in(i)->in(AddPNode::Base));
  1609           phase->is_IterGVN()->register_new_node_with_optimizer(base);
  1611         return new (phase->C, 4) AddPNode(base, base, y);
  1616   // Split phis through memory merges, so that the memory merges will go away.
  1617   // Piggy-back this transformation on the search for a unique input....
  1618   // It will be as if the merged memory is the unique value of the phi.
  1619   // (Do not attempt this optimization unless parsing is complete.
  1620   // It would make the parser's memory-merge logic sick.)
  1621   // (MergeMemNode is not dead_loop_safe - need to check for dead loop.)
  1622   if (progress == NULL && can_reshape && type() == Type::MEMORY) {
  1623     // see if this phi should be sliced
  1624     uint merge_width = 0;
  1625     bool saw_self = false;
  1626     for( uint i=1; i<req(); ++i ) {// For all paths in
  1627       Node *ii = in(i);
  1628       if (ii->is_MergeMem()) {
  1629         MergeMemNode* n = ii->as_MergeMem();
  1630         merge_width = MAX2(merge_width, n->req());
  1631         saw_self = saw_self || phase->eqv(n->base_memory(), this);
  1635     // This restriction is temporarily necessary to ensure termination:
  1636     if (!saw_self && adr_type() == TypePtr::BOTTOM)  merge_width = 0;
  1638     if (merge_width > Compile::AliasIdxRaw) {
  1639       // found at least one non-empty MergeMem
  1640       const TypePtr* at = adr_type();
  1641       if (at != TypePtr::BOTTOM) {
  1642         // Patch the existing phi to select an input from the merge:
  1643         // Phi:AT1(...MergeMem(m0, m1, m2)...) into
  1644         //     Phi:AT1(...m1...)
  1645         int alias_idx = phase->C->get_alias_index(at);
  1646         for (uint i=1; i<req(); ++i) {
  1647           Node *ii = in(i);
  1648           if (ii->is_MergeMem()) {
  1649             MergeMemNode* n = ii->as_MergeMem();
  1650             // compress paths and change unreachable cycles to TOP
  1651             // If not, we can update the input infinitely along a MergeMem cycle
  1652             // Equivalent code is in MemNode::Ideal_common
  1653             Node         *m  = phase->transform(n);
  1654             // If tranformed to a MergeMem, get the desired slice
  1655             // Otherwise the returned node represents memory for every slice
  1656             Node *new_mem = (m->is_MergeMem()) ?
  1657                              m->as_MergeMem()->memory_at(alias_idx) : m;
  1658             // Update input if it is progress over what we have now
  1659             if (new_mem != ii) {
  1660               set_req(i, new_mem);
  1661               progress = this;
  1665       } else {
  1666         // We know that at least one MergeMem->base_memory() == this
  1667         // (saw_self == true). If all other inputs also references this phi
  1668         // (directly or through data nodes) - it is dead loop.
  1669         bool saw_safe_input = false;
  1670         for (uint j = 1; j < req(); ++j) {
  1671           Node *n = in(j);
  1672           if (n->is_MergeMem() && n->as_MergeMem()->base_memory() == this)
  1673             continue;              // skip known cases
  1674           if (!is_unsafe_data_reference(n)) {
  1675             saw_safe_input = true; // found safe input
  1676             break;
  1679         if (!saw_safe_input)
  1680           return top; // all inputs reference back to this phi - dead loop
  1682         // Phi(...MergeMem(m0, m1:AT1, m2:AT2)...) into
  1683         //     MergeMem(Phi(...m0...), Phi:AT1(...m1...), Phi:AT2(...m2...))
  1684         PhaseIterGVN *igvn = phase->is_IterGVN();
  1685         Node* hook = new (phase->C, 1) Node(1);
  1686         PhiNode* new_base = (PhiNode*) clone();
  1687         // Must eagerly register phis, since they participate in loops.
  1688         if (igvn) {
  1689           igvn->register_new_node_with_optimizer(new_base);
  1690           hook->add_req(new_base);
  1692         MergeMemNode* result = MergeMemNode::make(phase->C, new_base);
  1693         for (uint i = 1; i < req(); ++i) {
  1694           Node *ii = in(i);
  1695           if (ii->is_MergeMem()) {
  1696             MergeMemNode* n = ii->as_MergeMem();
  1697             for (MergeMemStream mms(result, n); mms.next_non_empty2(); ) {
  1698               // If we have not seen this slice yet, make a phi for it.
  1699               bool made_new_phi = false;
  1700               if (mms.is_empty()) {
  1701                 Node* new_phi = new_base->slice_memory(mms.adr_type(phase->C));
  1702                 made_new_phi = true;
  1703                 if (igvn) {
  1704                   igvn->register_new_node_with_optimizer(new_phi);
  1705                   hook->add_req(new_phi);
  1707                 mms.set_memory(new_phi);
  1709               Node* phi = mms.memory();
  1710               assert(made_new_phi || phi->in(i) == n, "replace the i-th merge by a slice");
  1711               phi->set_req(i, mms.memory2());
  1715         // Distribute all self-loops.
  1716         { // (Extra braces to hide mms.)
  1717           for (MergeMemStream mms(result); mms.next_non_empty(); ) {
  1718             Node* phi = mms.memory();
  1719             for (uint i = 1; i < req(); ++i) {
  1720               if (phi->in(i) == this)  phi->set_req(i, phi);
  1724         // now transform the new nodes, and return the mergemem
  1725         for (MergeMemStream mms(result); mms.next_non_empty(); ) {
  1726           Node* phi = mms.memory();
  1727           mms.set_memory(phase->transform(phi));
  1729         if (igvn) { // Unhook.
  1730           igvn->hash_delete(hook);
  1731           for (uint i = 1; i < hook->req(); i++) {
  1732             hook->set_req(i, NULL);
  1735         // Replace self with the result.
  1736         return result;
  1741   return progress;              // Return any progress
  1744 //------------------------------out_RegMask------------------------------------
  1745 const RegMask &PhiNode::in_RegMask(uint i) const {
  1746   return i ? out_RegMask() : RegMask::Empty;
  1749 const RegMask &PhiNode::out_RegMask() const {
  1750   uint ideal_reg = Matcher::base2reg[_type->base()];
  1751   assert( ideal_reg != Node::NotAMachineReg, "invalid type at Phi" );
  1752   if( ideal_reg == 0 ) return RegMask::Empty;
  1753   return *(Compile::current()->matcher()->idealreg2spillmask[ideal_reg]);
  1756 #ifndef PRODUCT
  1757 void PhiNode::dump_spec(outputStream *st) const {
  1758   TypeNode::dump_spec(st);
  1759   if (in(0) != NULL &&
  1760       in(0)->is_CountedLoop() &&
  1761       in(0)->as_CountedLoop()->phi() == this) {
  1762     st->print(" #tripcount");
  1765 #endif
  1768 //=============================================================================
  1769 const Type *GotoNode::Value( PhaseTransform *phase ) const {
  1770   // If the input is reachable, then we are executed.
  1771   // If the input is not reachable, then we are not executed.
  1772   return phase->type(in(0));
  1775 Node *GotoNode::Identity( PhaseTransform *phase ) {
  1776   return in(0);                // Simple copy of incoming control
  1779 const RegMask &GotoNode::out_RegMask() const {
  1780   return RegMask::Empty;
  1783 //=============================================================================
  1784 const RegMask &JumpNode::out_RegMask() const {
  1785   return RegMask::Empty;
  1788 //=============================================================================
  1789 const RegMask &JProjNode::out_RegMask() const {
  1790   return RegMask::Empty;
  1793 //=============================================================================
  1794 const RegMask &CProjNode::out_RegMask() const {
  1795   return RegMask::Empty;
  1800 //=============================================================================
  1802 uint PCTableNode::hash() const { return Node::hash() + _size; }
  1803 uint PCTableNode::cmp( const Node &n ) const
  1804 { return _size == ((PCTableNode&)n)._size; }
  1806 const Type *PCTableNode::bottom_type() const {
  1807   const Type** f = TypeTuple::fields(_size);
  1808   for( uint i = 0; i < _size; i++ ) f[i] = Type::CONTROL;
  1809   return TypeTuple::make(_size, f);
  1812 //------------------------------Value------------------------------------------
  1813 // Compute the type of the PCTableNode.  If reachable it is a tuple of
  1814 // Control, otherwise the table targets are not reachable
  1815 const Type *PCTableNode::Value( PhaseTransform *phase ) const {
  1816   if( phase->type(in(0)) == Type::CONTROL )
  1817     return bottom_type();
  1818   return Type::TOP;             // All paths dead?  Then so are we
  1821 //------------------------------Ideal------------------------------------------
  1822 // Return a node which is more "ideal" than the current node.  Strip out
  1823 // control copies
  1824 Node *PCTableNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1825   return remove_dead_region(phase, can_reshape) ? this : NULL;
  1828 //=============================================================================
  1829 uint JumpProjNode::hash() const {
  1830   return Node::hash() + _dest_bci;
  1833 uint JumpProjNode::cmp( const Node &n ) const {
  1834   return ProjNode::cmp(n) &&
  1835     _dest_bci == ((JumpProjNode&)n)._dest_bci;
  1838 #ifndef PRODUCT
  1839 void JumpProjNode::dump_spec(outputStream *st) const {
  1840   ProjNode::dump_spec(st);
  1841    st->print("@bci %d ",_dest_bci);
  1843 #endif
  1845 //=============================================================================
  1846 //------------------------------Value------------------------------------------
  1847 // Check for being unreachable, or for coming from a Rethrow.  Rethrow's cannot
  1848 // have the default "fall_through_index" path.
  1849 const Type *CatchNode::Value( PhaseTransform *phase ) const {
  1850   // Unreachable?  Then so are all paths from here.
  1851   if( phase->type(in(0)) == Type::TOP ) return Type::TOP;
  1852   // First assume all paths are reachable
  1853   const Type** f = TypeTuple::fields(_size);
  1854   for( uint i = 0; i < _size; i++ ) f[i] = Type::CONTROL;
  1855   // Identify cases that will always throw an exception
  1856   // () rethrow call
  1857   // () virtual or interface call with NULL receiver
  1858   // () call is a check cast with incompatible arguments
  1859   if( in(1)->is_Proj() ) {
  1860     Node *i10 = in(1)->in(0);
  1861     if( i10->is_Call() ) {
  1862       CallNode *call = i10->as_Call();
  1863       // Rethrows always throw exceptions, never return
  1864       if (call->entry_point() == OptoRuntime::rethrow_stub()) {
  1865         f[CatchProjNode::fall_through_index] = Type::TOP;
  1866       } else if( call->req() > TypeFunc::Parms ) {
  1867         const Type *arg0 = phase->type( call->in(TypeFunc::Parms) );
  1868         // Check for null reciever to virtual or interface calls
  1869         if( call->is_CallDynamicJava() &&
  1870             arg0->higher_equal(TypePtr::NULL_PTR) ) {
  1871           f[CatchProjNode::fall_through_index] = Type::TOP;
  1873       } // End of if not a runtime stub
  1874     } // End of if have call above me
  1875   } // End of slot 1 is not a projection
  1876   return TypeTuple::make(_size, f);
  1879 //=============================================================================
  1880 uint CatchProjNode::hash() const {
  1881   return Node::hash() + _handler_bci;
  1885 uint CatchProjNode::cmp( const Node &n ) const {
  1886   return ProjNode::cmp(n) &&
  1887     _handler_bci == ((CatchProjNode&)n)._handler_bci;
  1891 //------------------------------Identity---------------------------------------
  1892 // If only 1 target is possible, choose it if it is the main control
  1893 Node *CatchProjNode::Identity( PhaseTransform *phase ) {
  1894   // If my value is control and no other value is, then treat as ID
  1895   const TypeTuple *t = phase->type(in(0))->is_tuple();
  1896   if (t->field_at(_con) != Type::CONTROL)  return this;
  1897   // If we remove the last CatchProj and elide the Catch/CatchProj, then we
  1898   // also remove any exception table entry.  Thus we must know the call
  1899   // feeding the Catch will not really throw an exception.  This is ok for
  1900   // the main fall-thru control (happens when we know a call can never throw
  1901   // an exception) or for "rethrow", because a further optimnization will
  1902   // yank the rethrow (happens when we inline a function that can throw an
  1903   // exception and the caller has no handler).  Not legal, e.g., for passing
  1904   // a NULL receiver to a v-call, or passing bad types to a slow-check-cast.
  1905   // These cases MUST throw an exception via the runtime system, so the VM
  1906   // will be looking for a table entry.
  1907   Node *proj = in(0)->in(1);    // Expect a proj feeding CatchNode
  1908   CallNode *call;
  1909   if (_con != TypeFunc::Control && // Bail out if not the main control.
  1910       !(proj->is_Proj() &&      // AND NOT a rethrow
  1911         proj->in(0)->is_Call() &&
  1912         (call = proj->in(0)->as_Call()) &&
  1913         call->entry_point() == OptoRuntime::rethrow_stub()))
  1914     return this;
  1916   // Search for any other path being control
  1917   for (uint i = 0; i < t->cnt(); i++) {
  1918     if (i != _con && t->field_at(i) == Type::CONTROL)
  1919       return this;
  1921   // Only my path is possible; I am identity on control to the jump
  1922   return in(0)->in(0);
  1926 #ifndef PRODUCT
  1927 void CatchProjNode::dump_spec(outputStream *st) const {
  1928   ProjNode::dump_spec(st);
  1929   st->print("@bci %d ",_handler_bci);
  1931 #endif
  1933 //=============================================================================
  1934 //------------------------------Identity---------------------------------------
  1935 // Check for CreateEx being Identity.
  1936 Node *CreateExNode::Identity( PhaseTransform *phase ) {
  1937   if( phase->type(in(1)) == Type::TOP ) return in(1);
  1938   if( phase->type(in(0)) == Type::TOP ) return in(0);
  1939   // We only come from CatchProj, unless the CatchProj goes away.
  1940   // If the CatchProj is optimized away, then we just carry the
  1941   // exception oop through.
  1942   CallNode *call = in(1)->in(0)->as_Call();
  1944   return ( in(0)->is_CatchProj() && in(0)->in(0)->in(1) == in(1) )
  1945     ? this
  1946     : call->in(TypeFunc::Parms);
  1949 //=============================================================================
  1950 #ifndef PRODUCT
  1951 void NeverBranchNode::format( PhaseRegAlloc *ra_, outputStream *st) const {
  1952   st->print("%s", Name());
  1954 #endif

mercurial