src/share/vm/gc_interface/collectedHeap.hpp

Sat, 01 Dec 2007 00:00:00 +0000

author
duke
date
Sat, 01 Dec 2007 00:00:00 +0000
changeset 435
a61af66fc99e
child 548
ba764ed4b6f2
permissions
-rw-r--r--

Initial load

     1 /*
     2  * Copyright 2001-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // A "CollectedHeap" is an implementation of a java heap for HotSpot.  This
    26 // is an abstract class: there may be many different kinds of heaps.  This
    27 // class defines the functions that a heap must implement, and contains
    28 // infrastructure common to all heaps.
    30 class BarrierSet;
    31 class ThreadClosure;
    32 class AdaptiveSizePolicy;
    33 class Thread;
    35 //
    36 // CollectedHeap
    37 //   SharedHeap
    38 //     GenCollectedHeap
    39 //     G1CollectedHeap
    40 //   ParallelScavengeHeap
    41 //
    42 class CollectedHeap : public CHeapObj {
    43   friend class VMStructs;
    44   friend class IsGCActiveMark; // Block structured external access to _is_gc_active
    46 #ifdef ASSERT
    47   static int       _fire_out_of_memory_count;
    48 #endif
    50  protected:
    51   MemRegion _reserved;
    52   BarrierSet* _barrier_set;
    53   bool _is_gc_active;
    54   unsigned int _total_collections;          // ... started
    55   unsigned int _total_full_collections;     // ... started
    56   size_t _max_heap_capacity;
    57   NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;)
    58   NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;)
    60   // Reason for current garbage collection.  Should be set to
    61   // a value reflecting no collection between collections.
    62   GCCause::Cause _gc_cause;
    63   GCCause::Cause _gc_lastcause;
    64   PerfStringVariable* _perf_gc_cause;
    65   PerfStringVariable* _perf_gc_lastcause;
    67   // Constructor
    68   CollectedHeap();
    70   // Create a new tlab
    71   virtual HeapWord* allocate_new_tlab(size_t size);
    73   // Fix up tlabs to make the heap well-formed again,
    74   // optionally retiring the tlabs.
    75   virtual void fill_all_tlabs(bool retire);
    77   // Accumulate statistics on all tlabs.
    78   virtual void accumulate_statistics_all_tlabs();
    80   // Reinitialize tlabs before resuming mutators.
    81   virtual void resize_all_tlabs();
    83   debug_only(static void check_for_valid_allocation_state();)
    85  protected:
    86   // Allocate from the current thread's TLAB, with broken-out slow path.
    87   inline static HeapWord* allocate_from_tlab(Thread* thread, size_t size);
    88   static HeapWord* allocate_from_tlab_slow(Thread* thread, size_t size);
    90   // Allocate an uninitialized block of the given size, or returns NULL if
    91   // this is impossible.
    92   inline static HeapWord* common_mem_allocate_noinit(size_t size, bool is_noref, TRAPS);
    94   // Like allocate_init, but the block returned by a successful allocation
    95   // is guaranteed initialized to zeros.
    96   inline static HeapWord* common_mem_allocate_init(size_t size, bool is_noref, TRAPS);
    98   // Same as common_mem version, except memory is allocated in the permanent area
    99   // If there is no permanent area, revert to common_mem_allocate_noinit
   100   inline static HeapWord* common_permanent_mem_allocate_noinit(size_t size, TRAPS);
   102   // Same as common_mem version, except memory is allocated in the permanent area
   103   // If there is no permanent area, revert to common_mem_allocate_init
   104   inline static HeapWord* common_permanent_mem_allocate_init(size_t size, TRAPS);
   106   // Helper functions for (VM) allocation.
   107   inline static void post_allocation_setup_common(KlassHandle klass,
   108                                                   HeapWord* obj, size_t size);
   109   inline static void post_allocation_setup_no_klass_install(KlassHandle klass,
   110                                                             HeapWord* objPtr,
   111                                                             size_t size);
   113   inline static void post_allocation_setup_obj(KlassHandle klass,
   114                                                HeapWord* obj, size_t size);
   116   inline static void post_allocation_setup_array(KlassHandle klass,
   117                                                  HeapWord* obj, size_t size,
   118                                                  int length);
   120   // Clears an allocated object.
   121   inline static void init_obj(HeapWord* obj, size_t size);
   123   // Verification functions
   124   virtual void check_for_bad_heap_word_value(HeapWord* addr, size_t size)
   125     PRODUCT_RETURN;
   126   virtual void check_for_non_bad_heap_word_value(HeapWord* addr, size_t size)
   127     PRODUCT_RETURN;
   129  public:
   130   enum Name {
   131     Abstract,
   132     SharedHeap,
   133     GenCollectedHeap,
   134     ParallelScavengeHeap,
   135     G1CollectedHeap
   136   };
   138   virtual CollectedHeap::Name kind() const { return CollectedHeap::Abstract; }
   140   /**
   141    * Returns JNI error code JNI_ENOMEM if memory could not be allocated,
   142    * and JNI_OK on success.
   143    */
   144   virtual jint initialize() = 0;
   146   // In many heaps, there will be a need to perform some initialization activities
   147   // after the Universe is fully formed, but before general heap allocation is allowed.
   148   // This is the correct place to place such initialization methods.
   149   virtual void post_initialize() = 0;
   151   MemRegion reserved_region() const { return _reserved; }
   153   // Return the number of bytes currently reserved, committed, and used,
   154   // respectively, for holding objects.
   155   size_t reserved_obj_bytes() const { return _reserved.byte_size(); }
   157   // Future cleanup here. The following functions should specify bytes or
   158   // heapwords as part of their signature.
   159   virtual size_t capacity() const = 0;
   160   virtual size_t used() const = 0;
   162   // Return "true" if the part of the heap that allocates Java
   163   // objects has reached the maximal committed limit that it can
   164   // reach, without a garbage collection.
   165   virtual bool is_maximal_no_gc() const = 0;
   167   virtual size_t permanent_capacity() const = 0;
   168   virtual size_t permanent_used() const = 0;
   170   // Support for java.lang.Runtime.maxMemory():  return the maximum amount of
   171   // memory that the vm could make available for storing 'normal' java objects.
   172   // This is based on the reserved address space, but should not include space
   173   // that the vm uses internally for bookkeeping or temporary storage (e.g.,
   174   // perm gen space or, in the case of the young gen, one of the survivor
   175   // spaces).
   176   virtual size_t max_capacity() const = 0;
   178   // Returns "TRUE" if "p" points into the reserved area of the heap.
   179   bool is_in_reserved(const void* p) const {
   180     return _reserved.contains(p);
   181   }
   183   bool is_in_reserved_or_null(const void* p) const {
   184     return p == NULL || is_in_reserved(p);
   185   }
   187   // Returns "TRUE" if "p" points to the head of an allocated object in the
   188   // heap. Since this method can be expensive in general, we restrict its
   189   // use to assertion checking only.
   190   virtual bool is_in(const void* p) const = 0;
   192   bool is_in_or_null(const void* p) const {
   193     return p == NULL || is_in(p);
   194   }
   196   // Let's define some terms: a "closed" subset of a heap is one that
   197   //
   198   // 1) contains all currently-allocated objects, and
   199   //
   200   // 2) is closed under reference: no object in the closed subset
   201   //    references one outside the closed subset.
   202   //
   203   // Membership in a heap's closed subset is useful for assertions.
   204   // Clearly, the entire heap is a closed subset, so the default
   205   // implementation is to use "is_in_reserved".  But this may not be too
   206   // liberal to perform useful checking.  Also, the "is_in" predicate
   207   // defines a closed subset, but may be too expensive, since "is_in"
   208   // verifies that its argument points to an object head.  The
   209   // "closed_subset" method allows a heap to define an intermediate
   210   // predicate, allowing more precise checking than "is_in_reserved" at
   211   // lower cost than "is_in."
   213   // One important case is a heap composed of disjoint contiguous spaces,
   214   // such as the Garbage-First collector.  Such heaps have a convenient
   215   // closed subset consisting of the allocated portions of those
   216   // contiguous spaces.
   218   // Return "TRUE" iff the given pointer points into the heap's defined
   219   // closed subset (which defaults to the entire heap).
   220   virtual bool is_in_closed_subset(const void* p) const {
   221     return is_in_reserved(p);
   222   }
   224   bool is_in_closed_subset_or_null(const void* p) const {
   225     return p == NULL || is_in_closed_subset(p);
   226   }
   228   // Returns "TRUE" if "p" is allocated as "permanent" data.
   229   // If the heap does not use "permanent" data, returns the same
   230   // value is_in_reserved() would return.
   231   // NOTE: this actually returns true if "p" is in reserved space
   232   // for the space not that it is actually allocated (i.e. in committed
   233   // space). If you need the more conservative answer use is_permanent().
   234   virtual bool is_in_permanent(const void *p) const = 0;
   236   // Returns "TRUE" if "p" is in the committed area of  "permanent" data.
   237   // If the heap does not use "permanent" data, returns the same
   238   // value is_in() would return.
   239   virtual bool is_permanent(const void *p) const = 0;
   241   bool is_in_permanent_or_null(const void *p) const {
   242     return p == NULL || is_in_permanent(p);
   243   }
   245   // Returns "TRUE" if "p" is a method oop in the
   246   // current heap, with high probability. This predicate
   247   // is not stable, in general.
   248   bool is_valid_method(oop p) const;
   250   void set_gc_cause(GCCause::Cause v) {
   251      if (UsePerfData) {
   252        _gc_lastcause = _gc_cause;
   253        _perf_gc_lastcause->set_value(GCCause::to_string(_gc_lastcause));
   254        _perf_gc_cause->set_value(GCCause::to_string(v));
   255      }
   256     _gc_cause = v;
   257   }
   258   GCCause::Cause gc_cause() { return _gc_cause; }
   260   // Preload classes into the shared portion of the heap, and then dump
   261   // that data to a file so that it can be loaded directly by another
   262   // VM (then terminate).
   263   virtual void preload_and_dump(TRAPS) { ShouldNotReachHere(); }
   265   // General obj/array allocation facilities.
   266   inline static oop obj_allocate(KlassHandle klass, int size, TRAPS);
   267   inline static oop array_allocate(KlassHandle klass, int size, int length, TRAPS);
   268   inline static oop large_typearray_allocate(KlassHandle klass, int size, int length, TRAPS);
   270   // Special obj/array allocation facilities.
   271   // Some heaps may want to manage "permanent" data uniquely. These default
   272   // to the general routines if the heap does not support such handling.
   273   inline static oop permanent_obj_allocate(KlassHandle klass, int size, TRAPS);
   274   // permanent_obj_allocate_no_klass_install() does not do the installation of
   275   // the klass pointer in the newly created object (as permanent_obj_allocate()
   276   // above does).  This allows for a delay in the installation of the klass
   277   // pointer that is needed during the create of klassKlass's.  The
   278   // method post_allocation_install_obj_klass() is used to install the
   279   // klass pointer.
   280   inline static oop permanent_obj_allocate_no_klass_install(KlassHandle klass,
   281                                                             int size,
   282                                                             TRAPS);
   283   inline static void post_allocation_install_obj_klass(KlassHandle klass,
   284                                                        oop obj,
   285                                                        int size);
   286   inline static oop permanent_array_allocate(KlassHandle klass, int size, int length, TRAPS);
   288   // Raw memory allocation facilities
   289   // The obj and array allocate methods are covers for these methods.
   290   // The permanent allocation method should default to mem_allocate if
   291   // permanent memory isn't supported.
   292   virtual HeapWord* mem_allocate(size_t size,
   293                                  bool is_noref,
   294                                  bool is_tlab,
   295                                  bool* gc_overhead_limit_was_exceeded) = 0;
   296   virtual HeapWord* permanent_mem_allocate(size_t size) = 0;
   298   // The boundary between a "large" and "small" array of primitives, in words.
   299   virtual size_t large_typearray_limit() = 0;
   301   // Some heaps may offer a contiguous region for shared non-blocking
   302   // allocation, via inlined code (by exporting the address of the top and
   303   // end fields defining the extent of the contiguous allocation region.)
   305   // This function returns "true" iff the heap supports this kind of
   306   // allocation.  (Default is "no".)
   307   virtual bool supports_inline_contig_alloc() const {
   308     return false;
   309   }
   310   // These functions return the addresses of the fields that define the
   311   // boundaries of the contiguous allocation area.  (These fields should be
   312   // physically near to one another.)
   313   virtual HeapWord** top_addr() const {
   314     guarantee(false, "inline contiguous allocation not supported");
   315     return NULL;
   316   }
   317   virtual HeapWord** end_addr() const {
   318     guarantee(false, "inline contiguous allocation not supported");
   319     return NULL;
   320   }
   322   // Some heaps may be in an unparseable state at certain times between
   323   // collections. This may be necessary for efficient implementation of
   324   // certain allocation-related activities. Calling this function before
   325   // attempting to parse a heap ensures that the heap is in a parsable
   326   // state (provided other concurrent activity does not introduce
   327   // unparsability). It is normally expected, therefore, that this
   328   // method is invoked with the world stopped.
   329   // NOTE: if you override this method, make sure you call
   330   // super::ensure_parsability so that the non-generational
   331   // part of the work gets done. See implementation of
   332   // CollectedHeap::ensure_parsability and, for instance,
   333   // that of GenCollectedHeap::ensure_parsability().
   334   // The argument "retire_tlabs" controls whether existing TLABs
   335   // are merely filled or also retired, thus preventing further
   336   // allocation from them and necessitating allocation of new TLABs.
   337   virtual void ensure_parsability(bool retire_tlabs);
   339   // Return an estimate of the maximum allocation that could be performed
   340   // without triggering any collection or expansion activity.  In a
   341   // generational collector, for example, this is probably the largest
   342   // allocation that could be supported (without expansion) in the youngest
   343   // generation.  It is "unsafe" because no locks are taken; the result
   344   // should be treated as an approximation, not a guarantee, for use in
   345   // heuristic resizing decisions.
   346   virtual size_t unsafe_max_alloc() = 0;
   348   // Section on thread-local allocation buffers (TLABs)
   349   // If the heap supports thread-local allocation buffers, it should override
   350   // the following methods:
   351   // Returns "true" iff the heap supports thread-local allocation buffers.
   352   // The default is "no".
   353   virtual bool supports_tlab_allocation() const {
   354     return false;
   355   }
   356   // The amount of space available for thread-local allocation buffers.
   357   virtual size_t tlab_capacity(Thread *thr) const {
   358     guarantee(false, "thread-local allocation buffers not supported");
   359     return 0;
   360   }
   361   // An estimate of the maximum allocation that could be performed
   362   // for thread-local allocation buffers without triggering any
   363   // collection or expansion activity.
   364   virtual size_t unsafe_max_tlab_alloc(Thread *thr) const {
   365     guarantee(false, "thread-local allocation buffers not supported");
   366     return 0;
   367   }
   368   // Can a compiler initialize a new object without store barriers?
   369   // This permission only extends from the creation of a new object
   370   // via a TLAB up to the first subsequent safepoint.
   371   virtual bool can_elide_tlab_store_barriers() const {
   372     guarantee(kind() < CollectedHeap::G1CollectedHeap, "else change or refactor this");
   373     return true;
   374   }
   375   // If a compiler is eliding store barriers for TLAB-allocated objects,
   376   // there is probably a corresponding slow path which can produce
   377   // an object allocated anywhere.  The compiler's runtime support
   378   // promises to call this function on such a slow-path-allocated
   379   // object before performing initializations that have elided
   380   // store barriers.  Returns new_obj, or maybe a safer copy thereof.
   381   virtual oop new_store_barrier(oop new_obj);
   383   // Can a compiler elide a store barrier when it writes
   384   // a permanent oop into the heap?  Applies when the compiler
   385   // is storing x to the heap, where x->is_perm() is true.
   386   virtual bool can_elide_permanent_oop_store_barriers() const;
   388   // Does this heap support heap inspection (+PrintClassHistogram?)
   389   virtual bool supports_heap_inspection() const {
   390     return false;   // Until RFE 5023697 is implemented
   391   }
   393   // Perform a collection of the heap; intended for use in implementing
   394   // "System.gc".  This probably implies as full a collection as the
   395   // "CollectedHeap" supports.
   396   virtual void collect(GCCause::Cause cause) = 0;
   398   // This interface assumes that it's being called by the
   399   // vm thread. It collects the heap assuming that the
   400   // heap lock is already held and that we are executing in
   401   // the context of the vm thread.
   402   virtual void collect_as_vm_thread(GCCause::Cause cause) = 0;
   404   // Returns the barrier set for this heap
   405   BarrierSet* barrier_set() { return _barrier_set; }
   407   // Returns "true" iff there is a stop-world GC in progress.  (I assume
   408   // that it should answer "false" for the concurrent part of a concurrent
   409   // collector -- dld).
   410   bool is_gc_active() const { return _is_gc_active; }
   412   // Total number of GC collections (started)
   413   unsigned int total_collections() const { return _total_collections; }
   414   unsigned int total_full_collections() const { return _total_full_collections;}
   416   // Increment total number of GC collections (started)
   417   // Should be protected but used by PSMarkSweep - cleanup for 1.4.2
   418   void increment_total_collections(bool full = false) {
   419     _total_collections++;
   420     if (full) {
   421       increment_total_full_collections();
   422     }
   423   }
   425   void increment_total_full_collections() { _total_full_collections++; }
   427   // Return the AdaptiveSizePolicy for the heap.
   428   virtual AdaptiveSizePolicy* size_policy() = 0;
   430   // Iterate over all the ref-containing fields of all objects, calling
   431   // "cl.do_oop" on each. This includes objects in permanent memory.
   432   virtual void oop_iterate(OopClosure* cl) = 0;
   434   // Iterate over all objects, calling "cl.do_object" on each.
   435   // This includes objects in permanent memory.
   436   virtual void object_iterate(ObjectClosure* cl) = 0;
   438   // Behaves the same as oop_iterate, except only traverses
   439   // interior pointers contained in permanent memory. If there
   440   // is no permanent memory, does nothing.
   441   virtual void permanent_oop_iterate(OopClosure* cl) = 0;
   443   // Behaves the same as object_iterate, except only traverses
   444   // object contained in permanent memory. If there is no
   445   // permanent memory, does nothing.
   446   virtual void permanent_object_iterate(ObjectClosure* cl) = 0;
   448   // NOTE! There is no requirement that a collector implement these
   449   // functions.
   450   //
   451   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
   452   // each address in the (reserved) heap is a member of exactly
   453   // one block.  The defining characteristic of a block is that it is
   454   // possible to find its size, and thus to progress forward to the next
   455   // block.  (Blocks may be of different sizes.)  Thus, blocks may
   456   // represent Java objects, or they might be free blocks in a
   457   // free-list-based heap (or subheap), as long as the two kinds are
   458   // distinguishable and the size of each is determinable.
   460   // Returns the address of the start of the "block" that contains the
   461   // address "addr".  We say "blocks" instead of "object" since some heaps
   462   // may not pack objects densely; a chunk may either be an object or a
   463   // non-object.
   464   virtual HeapWord* block_start(const void* addr) const = 0;
   466   // Requires "addr" to be the start of a chunk, and returns its size.
   467   // "addr + size" is required to be the start of a new chunk, or the end
   468   // of the active area of the heap.
   469   virtual size_t block_size(const HeapWord* addr) const = 0;
   471   // Requires "addr" to be the start of a block, and returns "TRUE" iff
   472   // the block is an object.
   473   virtual bool block_is_obj(const HeapWord* addr) const = 0;
   475   // Returns the longest time (in ms) that has elapsed since the last
   476   // time that any part of the heap was examined by a garbage collection.
   477   virtual jlong millis_since_last_gc() = 0;
   479   // Perform any cleanup actions necessary before allowing a verification.
   480   virtual void prepare_for_verify() = 0;
   482   virtual void print() const = 0;
   483   virtual void print_on(outputStream* st) const = 0;
   485   // Print all GC threads (other than the VM thread)
   486   // used by this heap.
   487   virtual void print_gc_threads_on(outputStream* st) const = 0;
   488   void print_gc_threads() { print_gc_threads_on(tty); }
   489   // Iterator for all GC threads (other than VM thread)
   490   virtual void gc_threads_do(ThreadClosure* tc) const = 0;
   492   // Print any relevant tracing info that flags imply.
   493   // Default implementation does nothing.
   494   virtual void print_tracing_info() const = 0;
   496   // Heap verification
   497   virtual void verify(bool allow_dirty, bool silent) = 0;
   499   // Non product verification and debugging.
   500 #ifndef PRODUCT
   501   // Support for PromotionFailureALot.  Return true if it's time to cause a
   502   // promotion failure.  The no-argument version uses
   503   // this->_promotion_failure_alot_count as the counter.
   504   inline bool promotion_should_fail(volatile size_t* count);
   505   inline bool promotion_should_fail();
   507   // Reset the PromotionFailureALot counters.  Should be called at the end of a
   508   // GC in which promotion failure ocurred.
   509   inline void reset_promotion_should_fail(volatile size_t* count);
   510   inline void reset_promotion_should_fail();
   511 #endif  // #ifndef PRODUCT
   513 #ifdef ASSERT
   514   static int fired_fake_oom() {
   515     return (CIFireOOMAt > 1 && _fire_out_of_memory_count >= CIFireOOMAt);
   516   }
   517 #endif
   518 };
   520 // Class to set and reset the GC cause for a CollectedHeap.
   522 class GCCauseSetter : StackObj {
   523   CollectedHeap* _heap;
   524   GCCause::Cause _previous_cause;
   525  public:
   526   GCCauseSetter(CollectedHeap* heap, GCCause::Cause cause) {
   527     assert(SafepointSynchronize::is_at_safepoint(),
   528            "This method manipulates heap state without locking");
   529     _heap = heap;
   530     _previous_cause = _heap->gc_cause();
   531     _heap->set_gc_cause(cause);
   532   }
   534   ~GCCauseSetter() {
   535     assert(SafepointSynchronize::is_at_safepoint(),
   536           "This method manipulates heap state without locking");
   537     _heap->set_gc_cause(_previous_cause);
   538   }
   539 };

mercurial