src/share/vm/gc_implementation/parallelScavenge/parMarkBitMap.cpp

Sat, 01 Dec 2007 00:00:00 +0000

author
duke
date
Sat, 01 Dec 2007 00:00:00 +0000
changeset 435
a61af66fc99e
child 514
82db0859acbe
permissions
-rw-r--r--

Initial load

     1 /*
     2  * Copyright 2005-2006 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_parMarkBitMap.cpp.incl"
    28 bool
    29 ParMarkBitMap::initialize(MemRegion covered_region)
    30 {
    31   const idx_t bits = bits_required(covered_region);
    32   // The bits will be divided evenly between two bitmaps; each of them should be
    33   // an integral number of words.
    34   assert(bits % (BitsPerWord * 2) == 0, "region size unaligned");
    36   const size_t words = bits / BitsPerWord;
    37   const size_t raw_bytes = words * sizeof(idx_t);
    38   const size_t page_sz = os::page_size_for_region(raw_bytes, raw_bytes, 10);
    39   const size_t granularity = os::vm_allocation_granularity();
    40   const size_t bytes = align_size_up(raw_bytes, MAX2(page_sz, granularity));
    42   const size_t rs_align = page_sz == (size_t) os::vm_page_size() ? 0 :
    43     MAX2(page_sz, granularity);
    44   ReservedSpace rs(bytes, rs_align, false);
    45   os::trace_page_sizes("par bitmap", raw_bytes, raw_bytes, page_sz,
    46                        rs.base(), rs.size());
    47   _virtual_space = new PSVirtualSpace(rs, page_sz);
    48   if (_virtual_space != NULL && _virtual_space->expand_by(bytes)) {
    49     _region_start = covered_region.start();
    50     _region_size = covered_region.word_size();
    51     idx_t* map = (idx_t*)_virtual_space->reserved_low_addr();
    52     _beg_bits.set_map(map);
    53     _beg_bits.set_size(bits / 2);
    54     _end_bits.set_map(map + words / 2);
    55     _end_bits.set_size(bits / 2);
    56     return true;
    57   }
    59   _region_start = 0;
    60   _region_size = 0;
    61   if (_virtual_space != NULL) {
    62     delete _virtual_space;
    63     _virtual_space = NULL;
    64   }
    65   return false;
    66 }
    68 #ifdef ASSERT
    69 extern size_t mark_bitmap_count;
    70 extern size_t mark_bitmap_size;
    71 #endif  // #ifdef ASSERT
    73 bool
    74 ParMarkBitMap::mark_obj(HeapWord* addr, size_t size)
    75 {
    76   const idx_t beg_bit = addr_to_bit(addr);
    77   if (_beg_bits.par_set_bit(beg_bit)) {
    78     const idx_t end_bit = addr_to_bit(addr + size - 1);
    79     bool end_bit_ok = _end_bits.par_set_bit(end_bit);
    80     assert(end_bit_ok, "concurrency problem");
    81     DEBUG_ONLY(Atomic::inc_ptr(&mark_bitmap_count));
    82     DEBUG_ONLY(Atomic::add_ptr(size, &mark_bitmap_size));
    83     return true;
    84   }
    85   return false;
    86 }
    88 size_t
    89 ParMarkBitMap::live_words_in_range(HeapWord* beg_addr, HeapWord* end_addr) const
    90 {
    91   assert(beg_addr <= end_addr, "bad range");
    93   idx_t live_bits = 0;
    95   // The bitmap routines require the right boundary to be word-aligned.
    96   const idx_t end_bit = addr_to_bit(end_addr);
    97   const idx_t range_end = BitMap::word_align_up(end_bit);
    99   idx_t beg_bit = find_obj_beg(addr_to_bit(beg_addr), range_end);
   100   while (beg_bit < end_bit) {
   101     idx_t tmp_end = find_obj_end(beg_bit, range_end);
   102     if (tmp_end < end_bit) {
   103       live_bits += tmp_end - beg_bit + 1;
   104       beg_bit = find_obj_beg(tmp_end + 1, range_end);
   105     } else {
   106       live_bits += end_bit - beg_bit;  // No + 1 here; end_bit is not counted.
   107       return bits_to_words(live_bits);
   108     }
   109   }
   110   return bits_to_words(live_bits);
   111 }
   113 size_t ParMarkBitMap::live_words_in_range(HeapWord* beg_addr, oop end_obj) const
   114 {
   115   assert(beg_addr <= (HeapWord*)end_obj, "bad range");
   116   assert(is_marked(end_obj), "end_obj must be live");
   118   idx_t live_bits = 0;
   120   // The bitmap routines require the right boundary to be word-aligned.
   121   const idx_t end_bit = addr_to_bit((HeapWord*)end_obj);
   122   const idx_t range_end = BitMap::word_align_up(end_bit);
   124   idx_t beg_bit = find_obj_beg(addr_to_bit(beg_addr), range_end);
   125   while (beg_bit < end_bit) {
   126     idx_t tmp_end = find_obj_end(beg_bit, range_end);
   127     assert(tmp_end < end_bit, "missing end bit");
   128     live_bits += tmp_end - beg_bit + 1;
   129     beg_bit = find_obj_beg(tmp_end + 1, range_end);
   130   }
   131   return bits_to_words(live_bits);
   132 }
   134 ParMarkBitMap::IterationStatus
   135 ParMarkBitMap::iterate(ParMarkBitMapClosure* live_closure,
   136                        idx_t range_beg, idx_t range_end) const
   137 {
   138   DEBUG_ONLY(verify_bit(range_beg);)
   139   DEBUG_ONLY(verify_bit(range_end);)
   140   assert(range_beg <= range_end, "live range invalid");
   142   // The bitmap routines require the right boundary to be word-aligned.
   143   const idx_t search_end = BitMap::word_align_up(range_end);
   145   idx_t cur_beg = find_obj_beg(range_beg, search_end);
   146   while (cur_beg < range_end) {
   147     const idx_t cur_end = find_obj_end(cur_beg, search_end);
   148     if (cur_end >= range_end) {
   149       // The obj ends outside the range.
   150       live_closure->set_source(bit_to_addr(cur_beg));
   151       return incomplete;
   152     }
   154     const size_t size = obj_size(cur_beg, cur_end);
   155     IterationStatus status = live_closure->do_addr(bit_to_addr(cur_beg), size);
   156     if (status != incomplete) {
   157       assert(status == would_overflow || status == full, "sanity");
   158       return status;
   159     }
   161     // Successfully processed the object; look for the next object.
   162     cur_beg = find_obj_beg(cur_end + 1, search_end);
   163   }
   165   live_closure->set_source(bit_to_addr(range_end));
   166   return complete;
   167 }
   169 ParMarkBitMap::IterationStatus
   170 ParMarkBitMap::iterate(ParMarkBitMapClosure* live_closure,
   171                        ParMarkBitMapClosure* dead_closure,
   172                        idx_t range_beg, idx_t range_end,
   173                        idx_t dead_range_end) const
   174 {
   175   DEBUG_ONLY(verify_bit(range_beg);)
   176   DEBUG_ONLY(verify_bit(range_end);)
   177   DEBUG_ONLY(verify_bit(dead_range_end);)
   178   assert(range_beg <= range_end, "live range invalid");
   179   assert(range_end <= dead_range_end, "dead range invalid");
   181   // The bitmap routines require the right boundary to be word-aligned.
   182   const idx_t live_search_end = BitMap::word_align_up(range_end);
   183   const idx_t dead_search_end = BitMap::word_align_up(dead_range_end);
   185   idx_t cur_beg = range_beg;
   186   if (range_beg < range_end && is_unmarked(range_beg)) {
   187     // The range starts with dead space.  Look for the next object, then fill.
   188     cur_beg = find_obj_beg(range_beg + 1, dead_search_end);
   189     const idx_t dead_space_end = MIN2(cur_beg - 1, dead_range_end - 1);
   190     const size_t size = obj_size(range_beg, dead_space_end);
   191     dead_closure->do_addr(bit_to_addr(range_beg), size);
   192   }
   194   while (cur_beg < range_end) {
   195     const idx_t cur_end = find_obj_end(cur_beg, live_search_end);
   196     if (cur_end >= range_end) {
   197       // The obj ends outside the range.
   198       live_closure->set_source(bit_to_addr(cur_beg));
   199       return incomplete;
   200     }
   202     const size_t size = obj_size(cur_beg, cur_end);
   203     IterationStatus status = live_closure->do_addr(bit_to_addr(cur_beg), size);
   204     if (status != incomplete) {
   205       assert(status == would_overflow || status == full, "sanity");
   206       return status;
   207     }
   209     // Look for the start of the next object.
   210     const idx_t dead_space_beg = cur_end + 1;
   211     cur_beg = find_obj_beg(dead_space_beg, dead_search_end);
   212     if (cur_beg > dead_space_beg) {
   213       // Found dead space; compute the size and invoke the dead closure.
   214       const idx_t dead_space_end = MIN2(cur_beg - 1, dead_range_end - 1);
   215       const size_t size = obj_size(dead_space_beg, dead_space_end);
   216       dead_closure->do_addr(bit_to_addr(dead_space_beg), size);
   217     }
   218   }
   220   live_closure->set_source(bit_to_addr(range_end));
   221   return complete;
   222 }
   224 #ifndef PRODUCT
   225 void ParMarkBitMap::reset_counters()
   226 {
   227   _cas_tries = _cas_retries = _cas_by_another = 0;
   228 }
   229 #endif  // #ifndef PRODUCT
   231 #ifdef ASSERT
   232 void ParMarkBitMap::verify_clear() const
   233 {
   234   const idx_t* const beg = (const idx_t*)_virtual_space->committed_low_addr();
   235   const idx_t* const end = (const idx_t*)_virtual_space->committed_high_addr();
   236   for (const idx_t* p = beg; p < end; ++p) {
   237     assert(*p == 0, "bitmap not clear");
   238   }
   239 }
   240 #endif  // #ifdef ASSERT

mercurial