src/share/vm/c1/c1_LinearScan.cpp

Sat, 01 Dec 2007 00:00:00 +0000

author
duke
date
Sat, 01 Dec 2007 00:00:00 +0000
changeset 435
a61af66fc99e
child 739
dc7f315e41f7
permissions
-rw-r--r--

Initial load

     1 /*
     2  * Copyright 2005-2006 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_c1_LinearScan.cpp.incl"
    29 #ifndef PRODUCT
    31   static LinearScanStatistic _stat_before_alloc;
    32   static LinearScanStatistic _stat_after_asign;
    33   static LinearScanStatistic _stat_final;
    35   static LinearScanTimers _total_timer;
    37   // helper macro for short definition of timer
    38   #define TIME_LINEAR_SCAN(timer_name)  TraceTime _block_timer("", _total_timer.timer(LinearScanTimers::timer_name), TimeLinearScan || TimeEachLinearScan, Verbose);
    40   // helper macro for short definition of trace-output inside code
    41   #define TRACE_LINEAR_SCAN(level, code)       \
    42     if (TraceLinearScanLevel >= level) {       \
    43       code;                                    \
    44     }
    46 #else
    48   #define TIME_LINEAR_SCAN(timer_name)
    49   #define TRACE_LINEAR_SCAN(level, code)
    51 #endif
    53 // Map BasicType to spill size in 32-bit words, matching VMReg's notion of words
    54 #ifdef _LP64
    55 static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 0, 1, -1};
    56 #else
    57 static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 0, 1, -1};
    58 #endif
    61 // Implementation of LinearScan
    63 LinearScan::LinearScan(IR* ir, LIRGenerator* gen, FrameMap* frame_map)
    64  : _compilation(ir->compilation())
    65  , _ir(ir)
    66  , _gen(gen)
    67  , _frame_map(frame_map)
    68  , _num_virtual_regs(gen->max_virtual_register_number())
    69  , _has_fpu_registers(false)
    70  , _num_calls(-1)
    71  , _max_spills(0)
    72  , _unused_spill_slot(-1)
    73  , _intervals(0)   // initialized later with correct length
    74  , _new_intervals_from_allocation(new IntervalList())
    75  , _sorted_intervals(NULL)
    76  , _lir_ops(0)     // initialized later with correct length
    77  , _block_of_op(0) // initialized later with correct length
    78  , _has_info(0)
    79  , _has_call(0)
    80  , _scope_value_cache(0) // initialized later with correct length
    81  , _interval_in_loop(0, 0) // initialized later with correct length
    82  , _cached_blocks(*ir->linear_scan_order())
    83 #ifdef IA32
    84  , _fpu_stack_allocator(NULL)
    85 #endif
    86 {
    87   // note: to use more than on instance of LinearScan at a time this function call has to
    88   //       be moved somewhere outside of this constructor:
    89   Interval::initialize();
    91   assert(this->ir() != NULL,          "check if valid");
    92   assert(this->compilation() != NULL, "check if valid");
    93   assert(this->gen() != NULL,         "check if valid");
    94   assert(this->frame_map() != NULL,   "check if valid");
    95 }
    98 // ********** functions for converting LIR-Operands to register numbers
    99 //
   100 // Emulate a flat register file comprising physical integer registers,
   101 // physical floating-point registers and virtual registers, in that order.
   102 // Virtual registers already have appropriate numbers, since V0 is
   103 // the number of physical registers.
   104 // Returns -1 for hi word if opr is a single word operand.
   105 //
   106 // Note: the inverse operation (calculating an operand for register numbers)
   107 //       is done in calc_operand_for_interval()
   109 int LinearScan::reg_num(LIR_Opr opr) {
   110   assert(opr->is_register(), "should not call this otherwise");
   112   if (opr->is_virtual_register()) {
   113     assert(opr->vreg_number() >= nof_regs, "found a virtual register with a fixed-register number");
   114     return opr->vreg_number();
   115   } else if (opr->is_single_cpu()) {
   116     return opr->cpu_regnr();
   117   } else if (opr->is_double_cpu()) {
   118     return opr->cpu_regnrLo();
   119 #ifdef IA32
   120   } else if (opr->is_single_xmm()) {
   121     return opr->fpu_regnr() + pd_first_xmm_reg;
   122   } else if (opr->is_double_xmm()) {
   123     return opr->fpu_regnrLo() + pd_first_xmm_reg;
   124 #endif
   125   } else if (opr->is_single_fpu()) {
   126     return opr->fpu_regnr() + pd_first_fpu_reg;
   127   } else if (opr->is_double_fpu()) {
   128     return opr->fpu_regnrLo() + pd_first_fpu_reg;
   129   } else {
   130     ShouldNotReachHere();
   131   }
   132 }
   134 int LinearScan::reg_numHi(LIR_Opr opr) {
   135   assert(opr->is_register(), "should not call this otherwise");
   137   if (opr->is_virtual_register()) {
   138     return -1;
   139   } else if (opr->is_single_cpu()) {
   140     return -1;
   141   } else if (opr->is_double_cpu()) {
   142     return opr->cpu_regnrHi();
   143 #ifdef IA32
   144   } else if (opr->is_single_xmm()) {
   145     return -1;
   146   } else if (opr->is_double_xmm()) {
   147     return -1;
   148 #endif
   149   } else if (opr->is_single_fpu()) {
   150     return -1;
   151   } else if (opr->is_double_fpu()) {
   152     return opr->fpu_regnrHi() + pd_first_fpu_reg;
   153   } else {
   154     ShouldNotReachHere();
   155   }
   156 }
   159 // ********** functions for classification of intervals
   161 bool LinearScan::is_precolored_interval(const Interval* i) {
   162   return i->reg_num() < LinearScan::nof_regs;
   163 }
   165 bool LinearScan::is_virtual_interval(const Interval* i) {
   166   return i->reg_num() >= LIR_OprDesc::vreg_base;
   167 }
   169 bool LinearScan::is_precolored_cpu_interval(const Interval* i) {
   170   return i->reg_num() < LinearScan::nof_cpu_regs;
   171 }
   173 bool LinearScan::is_virtual_cpu_interval(const Interval* i) {
   174   return i->reg_num() >= LIR_OprDesc::vreg_base && (i->type() != T_FLOAT && i->type() != T_DOUBLE);
   175 }
   177 bool LinearScan::is_precolored_fpu_interval(const Interval* i) {
   178   return i->reg_num() >= LinearScan::nof_cpu_regs && i->reg_num() < LinearScan::nof_regs;
   179 }
   181 bool LinearScan::is_virtual_fpu_interval(const Interval* i) {
   182   return i->reg_num() >= LIR_OprDesc::vreg_base && (i->type() == T_FLOAT || i->type() == T_DOUBLE);
   183 }
   185 bool LinearScan::is_in_fpu_register(const Interval* i) {
   186   // fixed intervals not needed for FPU stack allocation
   187   return i->reg_num() >= nof_regs && pd_first_fpu_reg <= i->assigned_reg() && i->assigned_reg() <= pd_last_fpu_reg;
   188 }
   190 bool LinearScan::is_oop_interval(const Interval* i) {
   191   // fixed intervals never contain oops
   192   return i->reg_num() >= nof_regs && i->type() == T_OBJECT;
   193 }
   196 // ********** General helper functions
   198 // compute next unused stack index that can be used for spilling
   199 int LinearScan::allocate_spill_slot(bool double_word) {
   200   int spill_slot;
   201   if (double_word) {
   202     if ((_max_spills & 1) == 1) {
   203       // alignment of double-word values
   204       // the hole because of the alignment is filled with the next single-word value
   205       assert(_unused_spill_slot == -1, "wasting a spill slot");
   206       _unused_spill_slot = _max_spills;
   207       _max_spills++;
   208     }
   209     spill_slot = _max_spills;
   210     _max_spills += 2;
   212   } else if (_unused_spill_slot != -1) {
   213     // re-use hole that was the result of a previous double-word alignment
   214     spill_slot = _unused_spill_slot;
   215     _unused_spill_slot = -1;
   217   } else {
   218     spill_slot = _max_spills;
   219     _max_spills++;
   220   }
   222   int result = spill_slot + LinearScan::nof_regs + frame_map()->argcount();
   224   // the class OopMapValue uses only 11 bits for storing the name of the
   225   // oop location. So a stack slot bigger than 2^11 leads to an overflow
   226   // that is not reported in product builds. Prevent this by checking the
   227   // spill slot here (altough this value and the later used location name
   228   // are slightly different)
   229   if (result > 2000) {
   230     bailout("too many stack slots used");
   231   }
   233   return result;
   234 }
   236 void LinearScan::assign_spill_slot(Interval* it) {
   237   // assign the canonical spill slot of the parent (if a part of the interval
   238   // is already spilled) or allocate a new spill slot
   239   if (it->canonical_spill_slot() >= 0) {
   240     it->assign_reg(it->canonical_spill_slot());
   241   } else {
   242     int spill = allocate_spill_slot(type2spill_size[it->type()] == 2);
   243     it->set_canonical_spill_slot(spill);
   244     it->assign_reg(spill);
   245   }
   246 }
   248 void LinearScan::propagate_spill_slots() {
   249   if (!frame_map()->finalize_frame(max_spills())) {
   250     bailout("frame too large");
   251   }
   252 }
   254 // create a new interval with a predefined reg_num
   255 // (only used for parent intervals that are created during the building phase)
   256 Interval* LinearScan::create_interval(int reg_num) {
   257   assert(_intervals.at(reg_num) == NULL, "overwriting exisiting interval");
   259   Interval* interval = new Interval(reg_num);
   260   _intervals.at_put(reg_num, interval);
   262   // assign register number for precolored intervals
   263   if (reg_num < LIR_OprDesc::vreg_base) {
   264     interval->assign_reg(reg_num);
   265   }
   266   return interval;
   267 }
   269 // assign a new reg_num to the interval and append it to the list of intervals
   270 // (only used for child intervals that are created during register allocation)
   271 void LinearScan::append_interval(Interval* it) {
   272   it->set_reg_num(_intervals.length());
   273   _intervals.append(it);
   274   _new_intervals_from_allocation->append(it);
   275 }
   277 // copy the vreg-flags if an interval is split
   278 void LinearScan::copy_register_flags(Interval* from, Interval* to) {
   279   if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::byte_reg)) {
   280     gen()->set_vreg_flag(to->reg_num(), LIRGenerator::byte_reg);
   281   }
   282   if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::callee_saved)) {
   283     gen()->set_vreg_flag(to->reg_num(), LIRGenerator::callee_saved);
   284   }
   286   // Note: do not copy the must_start_in_memory flag because it is not necessary for child
   287   //       intervals (only the very beginning of the interval must be in memory)
   288 }
   291 // ********** spill move optimization
   292 // eliminate moves from register to stack if stack slot is known to be correct
   294 // called during building of intervals
   295 void LinearScan::change_spill_definition_pos(Interval* interval, int def_pos) {
   296   assert(interval->is_split_parent(), "can only be called for split parents");
   298   switch (interval->spill_state()) {
   299     case noDefinitionFound:
   300       assert(interval->spill_definition_pos() == -1, "must no be set before");
   301       interval->set_spill_definition_pos(def_pos);
   302       interval->set_spill_state(oneDefinitionFound);
   303       break;
   305     case oneDefinitionFound:
   306       assert(def_pos <= interval->spill_definition_pos(), "positions are processed in reverse order when intervals are created");
   307       if (def_pos < interval->spill_definition_pos() - 2) {
   308         // second definition found, so no spill optimization possible for this interval
   309         interval->set_spill_state(noOptimization);
   310       } else {
   311         // two consecutive definitions (because of two-operand LIR form)
   312         assert(block_of_op_with_id(def_pos) == block_of_op_with_id(interval->spill_definition_pos()), "block must be equal");
   313       }
   314       break;
   316     case noOptimization:
   317       // nothing to do
   318       break;
   320     default:
   321       assert(false, "other states not allowed at this time");
   322   }
   323 }
   325 // called during register allocation
   326 void LinearScan::change_spill_state(Interval* interval, int spill_pos) {
   327   switch (interval->spill_state()) {
   328     case oneDefinitionFound: {
   329       int def_loop_depth = block_of_op_with_id(interval->spill_definition_pos())->loop_depth();
   330       int spill_loop_depth = block_of_op_with_id(spill_pos)->loop_depth();
   332       if (def_loop_depth < spill_loop_depth) {
   333         // the loop depth of the spilling position is higher then the loop depth
   334         // at the definition of the interval -> move write to memory out of loop
   335         // by storing at definitin of the interval
   336         interval->set_spill_state(storeAtDefinition);
   337       } else {
   338         // the interval is currently spilled only once, so for now there is no
   339         // reason to store the interval at the definition
   340         interval->set_spill_state(oneMoveInserted);
   341       }
   342       break;
   343     }
   345     case oneMoveInserted: {
   346       // the interval is spilled more then once, so it is better to store it to
   347       // memory at the definition
   348       interval->set_spill_state(storeAtDefinition);
   349       break;
   350     }
   352     case storeAtDefinition:
   353     case startInMemory:
   354     case noOptimization:
   355     case noDefinitionFound:
   356       // nothing to do
   357       break;
   359     default:
   360       assert(false, "other states not allowed at this time");
   361   }
   362 }
   365 bool LinearScan::must_store_at_definition(const Interval* i) {
   366   return i->is_split_parent() && i->spill_state() == storeAtDefinition;
   367 }
   369 // called once before asignment of register numbers
   370 void LinearScan::eliminate_spill_moves() {
   371   TIME_LINEAR_SCAN(timer_eliminate_spill_moves);
   372   TRACE_LINEAR_SCAN(3, tty->print_cr("***** Eliminating unnecessary spill moves"));
   374   // collect all intervals that must be stored after their definion.
   375   // the list is sorted by Interval::spill_definition_pos
   376   Interval* interval;
   377   Interval* temp_list;
   378   create_unhandled_lists(&interval, &temp_list, must_store_at_definition, NULL);
   380 #ifdef ASSERT
   381   Interval* prev = NULL;
   382   Interval* temp = interval;
   383   while (temp != Interval::end()) {
   384     assert(temp->spill_definition_pos() > 0, "invalid spill definition pos");
   385     if (prev != NULL) {
   386       assert(temp->from() >= prev->from(), "intervals not sorted");
   387       assert(temp->spill_definition_pos() >= prev->spill_definition_pos(), "when intervals are sorted by from, then they must also be sorted by spill_definition_pos");
   388     }
   390     assert(temp->canonical_spill_slot() >= LinearScan::nof_regs, "interval has no spill slot assigned");
   391     assert(temp->spill_definition_pos() >= temp->from(), "invalid order");
   392     assert(temp->spill_definition_pos() <= temp->from() + 2, "only intervals defined once at their start-pos can be optimized");
   394     TRACE_LINEAR_SCAN(4, tty->print_cr("interval %d (from %d to %d) must be stored at %d", temp->reg_num(), temp->from(), temp->to(), temp->spill_definition_pos()));
   396     temp = temp->next();
   397   }
   398 #endif
   400   LIR_InsertionBuffer insertion_buffer;
   401   int num_blocks = block_count();
   402   for (int i = 0; i < num_blocks; i++) {
   403     BlockBegin* block = block_at(i);
   404     LIR_OpList* instructions = block->lir()->instructions_list();
   405     int         num_inst = instructions->length();
   406     bool        has_new = false;
   408     // iterate all instructions of the block. skip the first because it is always a label
   409     for (int j = 1; j < num_inst; j++) {
   410       LIR_Op* op = instructions->at(j);
   411       int op_id = op->id();
   413       if (op_id == -1) {
   414         // remove move from register to stack if the stack slot is guaranteed to be correct.
   415         // only moves that have been inserted by LinearScan can be removed.
   416         assert(op->code() == lir_move, "only moves can have a op_id of -1");
   417         assert(op->as_Op1() != NULL, "move must be LIR_Op1");
   418         assert(op->as_Op1()->result_opr()->is_virtual(), "LinearScan inserts only moves to virtual registers");
   420         LIR_Op1* op1 = (LIR_Op1*)op;
   421         Interval* interval = interval_at(op1->result_opr()->vreg_number());
   423         if (interval->assigned_reg() >= LinearScan::nof_regs && interval->always_in_memory()) {
   424           // move target is a stack slot that is always correct, so eliminate instruction
   425           TRACE_LINEAR_SCAN(4, tty->print_cr("eliminating move from interval %d to %d", op1->in_opr()->vreg_number(), op1->result_opr()->vreg_number()));
   426           instructions->at_put(j, NULL); // NULL-instructions are deleted by assign_reg_num
   427         }
   429       } else {
   430         // insert move from register to stack just after the beginning of the interval
   431         assert(interval == Interval::end() || interval->spill_definition_pos() >= op_id, "invalid order");
   432         assert(interval == Interval::end() || (interval->is_split_parent() && interval->spill_state() == storeAtDefinition), "invalid interval");
   434         while (interval != Interval::end() && interval->spill_definition_pos() == op_id) {
   435           if (!has_new) {
   436             // prepare insertion buffer (appended when all instructions of the block are processed)
   437             insertion_buffer.init(block->lir());
   438             has_new = true;
   439           }
   441           LIR_Opr from_opr = operand_for_interval(interval);
   442           LIR_Opr to_opr = canonical_spill_opr(interval);
   443           assert(from_opr->is_fixed_cpu() || from_opr->is_fixed_fpu(), "from operand must be a register");
   444           assert(to_opr->is_stack(), "to operand must be a stack slot");
   446           insertion_buffer.move(j, from_opr, to_opr);
   447           TRACE_LINEAR_SCAN(4, tty->print_cr("inserting move after definition of interval %d to stack slot %d at op_id %d", interval->reg_num(), interval->canonical_spill_slot() - LinearScan::nof_regs, op_id));
   449           interval = interval->next();
   450         }
   451       }
   452     } // end of instruction iteration
   454     if (has_new) {
   455       block->lir()->append(&insertion_buffer);
   456     }
   457   } // end of block iteration
   459   assert(interval == Interval::end(), "missed an interval");
   460 }
   463 // ********** Phase 1: number all instructions in all blocks
   464 // Compute depth-first and linear scan block orders, and number LIR_Op nodes for linear scan.
   466 void LinearScan::number_instructions() {
   467   {
   468     // dummy-timer to measure the cost of the timer itself
   469     // (this time is then subtracted from all other timers to get the real value)
   470     TIME_LINEAR_SCAN(timer_do_nothing);
   471   }
   472   TIME_LINEAR_SCAN(timer_number_instructions);
   474   // Assign IDs to LIR nodes and build a mapping, lir_ops, from ID to LIR_Op node.
   475   int num_blocks = block_count();
   476   int num_instructions = 0;
   477   int i;
   478   for (i = 0; i < num_blocks; i++) {
   479     num_instructions += block_at(i)->lir()->instructions_list()->length();
   480   }
   482   // initialize with correct length
   483   _lir_ops = LIR_OpArray(num_instructions);
   484   _block_of_op = BlockBeginArray(num_instructions);
   486   int op_id = 0;
   487   int idx = 0;
   489   for (i = 0; i < num_blocks; i++) {
   490     BlockBegin* block = block_at(i);
   491     block->set_first_lir_instruction_id(op_id);
   492     LIR_OpList* instructions = block->lir()->instructions_list();
   494     int num_inst = instructions->length();
   495     for (int j = 0; j < num_inst; j++) {
   496       LIR_Op* op = instructions->at(j);
   497       op->set_id(op_id);
   499       _lir_ops.at_put(idx, op);
   500       _block_of_op.at_put(idx, block);
   501       assert(lir_op_with_id(op_id) == op, "must match");
   503       idx++;
   504       op_id += 2; // numbering of lir_ops by two
   505     }
   506     block->set_last_lir_instruction_id(op_id - 2);
   507   }
   508   assert(idx == num_instructions, "must match");
   509   assert(idx * 2 == op_id, "must match");
   511   _has_call = BitMap(num_instructions); _has_call.clear();
   512   _has_info = BitMap(num_instructions); _has_info.clear();
   513 }
   516 // ********** Phase 2: compute local live sets separately for each block
   517 // (sets live_gen and live_kill for each block)
   519 void LinearScan::set_live_gen_kill(Value value, LIR_Op* op, BitMap& live_gen, BitMap& live_kill) {
   520   LIR_Opr opr = value->operand();
   521   Constant* con = value->as_Constant();
   523   // check some asumptions about debug information
   524   assert(!value->type()->is_illegal(), "if this local is used by the interpreter it shouldn't be of indeterminate type");
   525   assert(con == NULL || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "asumption: Constant instructions have only constant operands");
   526   assert(con != NULL || opr->is_virtual(), "asumption: non-Constant instructions have only virtual operands");
   528   if ((con == NULL || con->is_pinned()) && opr->is_register()) {
   529     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
   530     int reg = opr->vreg_number();
   531     if (!live_kill.at(reg)) {
   532       live_gen.set_bit(reg);
   533       TRACE_LINEAR_SCAN(4, tty->print_cr("  Setting live_gen for value %c%d, LIR op_id %d, register number %d", value->type()->tchar(), value->id(), op->id(), reg));
   534     }
   535   }
   536 }
   539 void LinearScan::compute_local_live_sets() {
   540   TIME_LINEAR_SCAN(timer_compute_local_live_sets);
   542   int  num_blocks = block_count();
   543   int  live_size = live_set_size();
   544   bool local_has_fpu_registers = false;
   545   int  local_num_calls = 0;
   546   LIR_OpVisitState visitor;
   548   BitMap2D local_interval_in_loop = BitMap2D(_num_virtual_regs, num_loops());
   549   local_interval_in_loop.clear();
   551   // iterate all blocks
   552   for (int i = 0; i < num_blocks; i++) {
   553     BlockBegin* block = block_at(i);
   555     BitMap live_gen(live_size);  live_gen.clear();
   556     BitMap live_kill(live_size); live_kill.clear();
   558     if (block->is_set(BlockBegin::exception_entry_flag)) {
   559       // Phi functions at the begin of an exception handler are
   560       // implicitly defined (= killed) at the beginning of the block.
   561       for_each_phi_fun(block, phi,
   562         live_kill.set_bit(phi->operand()->vreg_number())
   563       );
   564     }
   566     LIR_OpList* instructions = block->lir()->instructions_list();
   567     int num_inst = instructions->length();
   569     // iterate all instructions of the block. skip the first because it is always a label
   570     assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label");
   571     for (int j = 1; j < num_inst; j++) {
   572       LIR_Op* op = instructions->at(j);
   574       // visit operation to collect all operands
   575       visitor.visit(op);
   577       if (visitor.has_call()) {
   578         _has_call.set_bit(op->id() >> 1);
   579         local_num_calls++;
   580       }
   581       if (visitor.info_count() > 0) {
   582         _has_info.set_bit(op->id() >> 1);
   583       }
   585       // iterate input operands of instruction
   586       int k, n, reg;
   587       n = visitor.opr_count(LIR_OpVisitState::inputMode);
   588       for (k = 0; k < n; k++) {
   589         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k);
   590         assert(opr->is_register(), "visitor should only return register operands");
   592         if (opr->is_virtual_register()) {
   593           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
   594           reg = opr->vreg_number();
   595           if (!live_kill.at(reg)) {
   596             live_gen.set_bit(reg);
   597             TRACE_LINEAR_SCAN(4, tty->print_cr("  Setting live_gen for register %d at instruction %d", reg, op->id()));
   598           }
   599           if (block->loop_index() >= 0) {
   600             local_interval_in_loop.set_bit(reg, block->loop_index());
   601           }
   602           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
   603         }
   605 #ifdef ASSERT
   606         // fixed intervals are never live at block boundaries, so
   607         // they need not be processed in live sets.
   608         // this is checked by these assertions to be sure about it.
   609         // the entry block may have incoming values in registers, which is ok.
   610         if (!opr->is_virtual_register() && block != ir()->start()) {
   611           reg = reg_num(opr);
   612           if (is_processed_reg_num(reg)) {
   613             assert(live_kill.at(reg), "using fixed register that is not defined in this block");
   614           }
   615           reg = reg_numHi(opr);
   616           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
   617             assert(live_kill.at(reg), "using fixed register that is not defined in this block");
   618           }
   619         }
   620 #endif
   621       }
   623       // Add uses of live locals from interpreter's point of view for proper debug information generation
   624       n = visitor.info_count();
   625       for (k = 0; k < n; k++) {
   626         CodeEmitInfo* info = visitor.info_at(k);
   627         ValueStack* stack = info->stack();
   628         for_each_state_value(stack, value,
   629           set_live_gen_kill(value, op, live_gen, live_kill)
   630         );
   631       }
   633       // iterate temp operands of instruction
   634       n = visitor.opr_count(LIR_OpVisitState::tempMode);
   635       for (k = 0; k < n; k++) {
   636         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k);
   637         assert(opr->is_register(), "visitor should only return register operands");
   639         if (opr->is_virtual_register()) {
   640           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
   641           reg = opr->vreg_number();
   642           live_kill.set_bit(reg);
   643           if (block->loop_index() >= 0) {
   644             local_interval_in_loop.set_bit(reg, block->loop_index());
   645           }
   646           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
   647         }
   649 #ifdef ASSERT
   650         // fixed intervals are never live at block boundaries, so
   651         // they need not be processed in live sets
   652         // process them only in debug mode so that this can be checked
   653         if (!opr->is_virtual_register()) {
   654           reg = reg_num(opr);
   655           if (is_processed_reg_num(reg)) {
   656             live_kill.set_bit(reg_num(opr));
   657           }
   658           reg = reg_numHi(opr);
   659           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
   660             live_kill.set_bit(reg);
   661           }
   662         }
   663 #endif
   664       }
   666       // iterate output operands of instruction
   667       n = visitor.opr_count(LIR_OpVisitState::outputMode);
   668       for (k = 0; k < n; k++) {
   669         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k);
   670         assert(opr->is_register(), "visitor should only return register operands");
   672         if (opr->is_virtual_register()) {
   673           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
   674           reg = opr->vreg_number();
   675           live_kill.set_bit(reg);
   676           if (block->loop_index() >= 0) {
   677             local_interval_in_loop.set_bit(reg, block->loop_index());
   678           }
   679           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
   680         }
   682 #ifdef ASSERT
   683         // fixed intervals are never live at block boundaries, so
   684         // they need not be processed in live sets
   685         // process them only in debug mode so that this can be checked
   686         if (!opr->is_virtual_register()) {
   687           reg = reg_num(opr);
   688           if (is_processed_reg_num(reg)) {
   689             live_kill.set_bit(reg_num(opr));
   690           }
   691           reg = reg_numHi(opr);
   692           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
   693             live_kill.set_bit(reg);
   694           }
   695         }
   696 #endif
   697       }
   698     } // end of instruction iteration
   700     block->set_live_gen (live_gen);
   701     block->set_live_kill(live_kill);
   702     block->set_live_in  (BitMap(live_size)); block->live_in().clear();
   703     block->set_live_out (BitMap(live_size)); block->live_out().clear();
   705     TRACE_LINEAR_SCAN(4, tty->print("live_gen  B%d ", block->block_id()); print_bitmap(block->live_gen()));
   706     TRACE_LINEAR_SCAN(4, tty->print("live_kill B%d ", block->block_id()); print_bitmap(block->live_kill()));
   707   } // end of block iteration
   709   // propagate local calculated information into LinearScan object
   710   _has_fpu_registers = local_has_fpu_registers;
   711   compilation()->set_has_fpu_code(local_has_fpu_registers);
   713   _num_calls = local_num_calls;
   714   _interval_in_loop = local_interval_in_loop;
   715 }
   718 // ********** Phase 3: perform a backward dataflow analysis to compute global live sets
   719 // (sets live_in and live_out for each block)
   721 void LinearScan::compute_global_live_sets() {
   722   TIME_LINEAR_SCAN(timer_compute_global_live_sets);
   724   int  num_blocks = block_count();
   725   bool change_occurred;
   726   bool change_occurred_in_block;
   727   int  iteration_count = 0;
   728   BitMap live_out(live_set_size()); live_out.clear(); // scratch set for calculations
   730   // Perform a backward dataflow analysis to compute live_out and live_in for each block.
   731   // The loop is executed until a fixpoint is reached (no changes in an iteration)
   732   // Exception handlers must be processed because not all live values are
   733   // present in the state array, e.g. because of global value numbering
   734   do {
   735     change_occurred = false;
   737     // iterate all blocks in reverse order
   738     for (int i = num_blocks - 1; i >= 0; i--) {
   739       BlockBegin* block = block_at(i);
   741       change_occurred_in_block = false;
   743       // live_out(block) is the union of live_in(sux), for successors sux of block
   744       int n = block->number_of_sux();
   745       int e = block->number_of_exception_handlers();
   746       if (n + e > 0) {
   747         // block has successors
   748         if (n > 0) {
   749           live_out.set_from(block->sux_at(0)->live_in());
   750           for (int j = 1; j < n; j++) {
   751             live_out.set_union(block->sux_at(j)->live_in());
   752           }
   753         } else {
   754           live_out.clear();
   755         }
   756         for (int j = 0; j < e; j++) {
   757           live_out.set_union(block->exception_handler_at(j)->live_in());
   758         }
   760         if (!block->live_out().is_same(live_out)) {
   761           // A change occurred.  Swap the old and new live out sets to avoid copying.
   762           BitMap temp = block->live_out();
   763           block->set_live_out(live_out);
   764           live_out = temp;
   766           change_occurred = true;
   767           change_occurred_in_block = true;
   768         }
   769       }
   771       if (iteration_count == 0 || change_occurred_in_block) {
   772         // live_in(block) is the union of live_gen(block) with (live_out(block) & !live_kill(block))
   773         // note: live_in has to be computed only in first iteration or if live_out has changed!
   774         BitMap live_in = block->live_in();
   775         live_in.set_from(block->live_out());
   776         live_in.set_difference(block->live_kill());
   777         live_in.set_union(block->live_gen());
   778       }
   780 #ifndef PRODUCT
   781       if (TraceLinearScanLevel >= 4) {
   782         char c = ' ';
   783         if (iteration_count == 0 || change_occurred_in_block) {
   784           c = '*';
   785         }
   786         tty->print("(%d) live_in%c  B%d ", iteration_count, c, block->block_id()); print_bitmap(block->live_in());
   787         tty->print("(%d) live_out%c B%d ", iteration_count, c, block->block_id()); print_bitmap(block->live_out());
   788       }
   789 #endif
   790     }
   791     iteration_count++;
   793     if (change_occurred && iteration_count > 50) {
   794       BAILOUT("too many iterations in compute_global_live_sets");
   795     }
   796   } while (change_occurred);
   799 #ifdef ASSERT
   800   // check that fixed intervals are not live at block boundaries
   801   // (live set must be empty at fixed intervals)
   802   for (int i = 0; i < num_blocks; i++) {
   803     BlockBegin* block = block_at(i);
   804     for (int j = 0; j < LIR_OprDesc::vreg_base; j++) {
   805       assert(block->live_in().at(j)  == false, "live_in  set of fixed register must be empty");
   806       assert(block->live_out().at(j) == false, "live_out set of fixed register must be empty");
   807       assert(block->live_gen().at(j) == false, "live_gen set of fixed register must be empty");
   808     }
   809   }
   810 #endif
   812   // check that the live_in set of the first block is empty
   813   BitMap live_in_args(ir()->start()->live_in().size());
   814   live_in_args.clear();
   815   if (!ir()->start()->live_in().is_same(live_in_args)) {
   816 #ifdef ASSERT
   817     tty->print_cr("Error: live_in set of first block must be empty (when this fails, virtual registers are used before they are defined)");
   818     tty->print_cr("affected registers:");
   819     print_bitmap(ir()->start()->live_in());
   821     // print some additional information to simplify debugging
   822     for (unsigned int i = 0; i < ir()->start()->live_in().size(); i++) {
   823       if (ir()->start()->live_in().at(i)) {
   824         Instruction* instr = gen()->instruction_for_vreg(i);
   825         tty->print_cr("* vreg %d (HIR instruction %c%d)", i, instr == NULL ? ' ' : instr->type()->tchar(), instr == NULL ? 0 : instr->id());
   827         for (int j = 0; j < num_blocks; j++) {
   828           BlockBegin* block = block_at(j);
   829           if (block->live_gen().at(i)) {
   830             tty->print_cr("  used in block B%d", block->block_id());
   831           }
   832           if (block->live_kill().at(i)) {
   833             tty->print_cr("  defined in block B%d", block->block_id());
   834           }
   835         }
   836       }
   837     }
   839 #endif
   840     // when this fails, virtual registers are used before they are defined.
   841     assert(false, "live_in set of first block must be empty");
   842     // bailout of if this occurs in product mode.
   843     bailout("live_in set of first block not empty");
   844   }
   845 }
   848 // ********** Phase 4: build intervals
   849 // (fills the list _intervals)
   851 void LinearScan::add_use(Value value, int from, int to, IntervalUseKind use_kind) {
   852   assert(!value->type()->is_illegal(), "if this value is used by the interpreter it shouldn't be of indeterminate type");
   853   LIR_Opr opr = value->operand();
   854   Constant* con = value->as_Constant();
   856   if ((con == NULL || con->is_pinned()) && opr->is_register()) {
   857     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
   858     add_use(opr, from, to, use_kind);
   859   }
   860 }
   863 void LinearScan::add_def(LIR_Opr opr, int def_pos, IntervalUseKind use_kind) {
   864   TRACE_LINEAR_SCAN(2, tty->print(" def "); opr->print(tty); tty->print_cr(" def_pos %d (%d)", def_pos, use_kind));
   865   assert(opr->is_register(), "should not be called otherwise");
   867   if (opr->is_virtual_register()) {
   868     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
   869     add_def(opr->vreg_number(), def_pos, use_kind, opr->type_register());
   871   } else {
   872     int reg = reg_num(opr);
   873     if (is_processed_reg_num(reg)) {
   874       add_def(reg, def_pos, use_kind, opr->type_register());
   875     }
   876     reg = reg_numHi(opr);
   877     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
   878       add_def(reg, def_pos, use_kind, opr->type_register());
   879     }
   880   }
   881 }
   883 void LinearScan::add_use(LIR_Opr opr, int from, int to, IntervalUseKind use_kind) {
   884   TRACE_LINEAR_SCAN(2, tty->print(" use "); opr->print(tty); tty->print_cr(" from %d to %d (%d)", from, to, use_kind));
   885   assert(opr->is_register(), "should not be called otherwise");
   887   if (opr->is_virtual_register()) {
   888     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
   889     add_use(opr->vreg_number(), from, to, use_kind, opr->type_register());
   891   } else {
   892     int reg = reg_num(opr);
   893     if (is_processed_reg_num(reg)) {
   894       add_use(reg, from, to, use_kind, opr->type_register());
   895     }
   896     reg = reg_numHi(opr);
   897     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
   898       add_use(reg, from, to, use_kind, opr->type_register());
   899     }
   900   }
   901 }
   903 void LinearScan::add_temp(LIR_Opr opr, int temp_pos, IntervalUseKind use_kind) {
   904   TRACE_LINEAR_SCAN(2, tty->print(" temp "); opr->print(tty); tty->print_cr(" temp_pos %d (%d)", temp_pos, use_kind));
   905   assert(opr->is_register(), "should not be called otherwise");
   907   if (opr->is_virtual_register()) {
   908     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
   909     add_temp(opr->vreg_number(), temp_pos, use_kind, opr->type_register());
   911   } else {
   912     int reg = reg_num(opr);
   913     if (is_processed_reg_num(reg)) {
   914       add_temp(reg, temp_pos, use_kind, opr->type_register());
   915     }
   916     reg = reg_numHi(opr);
   917     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
   918       add_temp(reg, temp_pos, use_kind, opr->type_register());
   919     }
   920   }
   921 }
   924 void LinearScan::add_def(int reg_num, int def_pos, IntervalUseKind use_kind, BasicType type) {
   925   Interval* interval = interval_at(reg_num);
   926   if (interval != NULL) {
   927     assert(interval->reg_num() == reg_num, "wrong interval");
   929     if (type != T_ILLEGAL) {
   930       interval->set_type(type);
   931     }
   933     Range* r = interval->first();
   934     if (r->from() <= def_pos) {
   935       // Update the starting point (when a range is first created for a use, its
   936       // start is the beginning of the current block until a def is encountered.)
   937       r->set_from(def_pos);
   938       interval->add_use_pos(def_pos, use_kind);
   940     } else {
   941       // Dead value - make vacuous interval
   942       // also add use_kind for dead intervals
   943       interval->add_range(def_pos, def_pos + 1);
   944       interval->add_use_pos(def_pos, use_kind);
   945       TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: def of reg %d at %d occurs without use", reg_num, def_pos));
   946     }
   948   } else {
   949     // Dead value - make vacuous interval
   950     // also add use_kind for dead intervals
   951     interval = create_interval(reg_num);
   952     if (type != T_ILLEGAL) {
   953       interval->set_type(type);
   954     }
   956     interval->add_range(def_pos, def_pos + 1);
   957     interval->add_use_pos(def_pos, use_kind);
   958     TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: dead value %d at %d in live intervals", reg_num, def_pos));
   959   }
   961   change_spill_definition_pos(interval, def_pos);
   962   if (use_kind == noUse && interval->spill_state() <= startInMemory) {
   963         // detection of method-parameters and roundfp-results
   964         // TODO: move this directly to position where use-kind is computed
   965     interval->set_spill_state(startInMemory);
   966   }
   967 }
   969 void LinearScan::add_use(int reg_num, int from, int to, IntervalUseKind use_kind, BasicType type) {
   970   Interval* interval = interval_at(reg_num);
   971   if (interval == NULL) {
   972     interval = create_interval(reg_num);
   973   }
   974   assert(interval->reg_num() == reg_num, "wrong interval");
   976   if (type != T_ILLEGAL) {
   977     interval->set_type(type);
   978   }
   980   interval->add_range(from, to);
   981   interval->add_use_pos(to, use_kind);
   982 }
   984 void LinearScan::add_temp(int reg_num, int temp_pos, IntervalUseKind use_kind, BasicType type) {
   985   Interval* interval = interval_at(reg_num);
   986   if (interval == NULL) {
   987     interval = create_interval(reg_num);
   988   }
   989   assert(interval->reg_num() == reg_num, "wrong interval");
   991   if (type != T_ILLEGAL) {
   992     interval->set_type(type);
   993   }
   995   interval->add_range(temp_pos, temp_pos + 1);
   996   interval->add_use_pos(temp_pos, use_kind);
   997 }
  1000 // the results of this functions are used for optimizing spilling and reloading
  1001 // if the functions return shouldHaveRegister and the interval is spilled,
  1002 // it is not reloaded to a register.
  1003 IntervalUseKind LinearScan::use_kind_of_output_operand(LIR_Op* op, LIR_Opr opr) {
  1004   if (op->code() == lir_move) {
  1005     assert(op->as_Op1() != NULL, "lir_move must be LIR_Op1");
  1006     LIR_Op1* move = (LIR_Op1*)op;
  1007     LIR_Opr res = move->result_opr();
  1008     bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory);
  1010     if (result_in_memory) {
  1011       // Begin of an interval with must_start_in_memory set.
  1012       // This interval will always get a stack slot first, so return noUse.
  1013       return noUse;
  1015     } else if (move->in_opr()->is_stack()) {
  1016       // method argument (condition must be equal to handle_method_arguments)
  1017       return noUse;
  1019     } else if (move->in_opr()->is_register() && move->result_opr()->is_register()) {
  1020       // Move from register to register
  1021       if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) {
  1022         // special handling of phi-function moves inside osr-entry blocks
  1023         // input operand must have a register instead of output operand (leads to better register allocation)
  1024         return shouldHaveRegister;
  1029   if (opr->is_virtual() &&
  1030       gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::must_start_in_memory)) {
  1031     // result is a stack-slot, so prevent immediate reloading
  1032     return noUse;
  1035   // all other operands require a register
  1036   return mustHaveRegister;
  1039 IntervalUseKind LinearScan::use_kind_of_input_operand(LIR_Op* op, LIR_Opr opr) {
  1040   if (op->code() == lir_move) {
  1041     assert(op->as_Op1() != NULL, "lir_move must be LIR_Op1");
  1042     LIR_Op1* move = (LIR_Op1*)op;
  1043     LIR_Opr res = move->result_opr();
  1044     bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory);
  1046     if (result_in_memory) {
  1047       // Move to an interval with must_start_in_memory set.
  1048       // To avoid moves from stack to stack (not allowed) force the input operand to a register
  1049       return mustHaveRegister;
  1051     } else if (move->in_opr()->is_register() && move->result_opr()->is_register()) {
  1052       // Move from register to register
  1053       if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) {
  1054         // special handling of phi-function moves inside osr-entry blocks
  1055         // input operand must have a register instead of output operand (leads to better register allocation)
  1056         return mustHaveRegister;
  1059       // The input operand is not forced to a register (moves from stack to register are allowed),
  1060       // but it is faster if the input operand is in a register
  1061       return shouldHaveRegister;
  1066 #ifdef IA32
  1067   if (op->code() == lir_cmove) {
  1068     // conditional moves can handle stack operands
  1069     assert(op->result_opr()->is_register(), "result must always be in a register");
  1070     return shouldHaveRegister;
  1073   // optimizations for second input operand of arithmehtic operations on Intel
  1074   // this operand is allowed to be on the stack in some cases
  1075   BasicType opr_type = opr->type_register();
  1076   if (opr_type == T_FLOAT || opr_type == T_DOUBLE) {
  1077     if ((UseSSE == 1 && opr_type == T_FLOAT) || UseSSE >= 2) {
  1078       // SSE float instruction (T_DOUBLE only supported with SSE2)
  1079       switch (op->code()) {
  1080         case lir_cmp:
  1081         case lir_add:
  1082         case lir_sub:
  1083         case lir_mul:
  1084         case lir_div:
  1086           assert(op->as_Op2() != NULL, "must be LIR_Op2");
  1087           LIR_Op2* op2 = (LIR_Op2*)op;
  1088           if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
  1089             assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
  1090             return shouldHaveRegister;
  1094     } else {
  1095       // FPU stack float instruction
  1096       switch (op->code()) {
  1097         case lir_add:
  1098         case lir_sub:
  1099         case lir_mul:
  1100         case lir_div:
  1102           assert(op->as_Op2() != NULL, "must be LIR_Op2");
  1103           LIR_Op2* op2 = (LIR_Op2*)op;
  1104           if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
  1105             assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
  1106             return shouldHaveRegister;
  1112   } else if (opr_type != T_LONG) {
  1113     // integer instruction (note: long operands must always be in register)
  1114     switch (op->code()) {
  1115       case lir_cmp:
  1116       case lir_add:
  1117       case lir_sub:
  1118       case lir_logic_and:
  1119       case lir_logic_or:
  1120       case lir_logic_xor:
  1122         assert(op->as_Op2() != NULL, "must be LIR_Op2");
  1123         LIR_Op2* op2 = (LIR_Op2*)op;
  1124         if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
  1125           assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
  1126           return shouldHaveRegister;
  1131 #endif // IA32
  1133   // all other operands require a register
  1134   return mustHaveRegister;
  1138 void LinearScan::handle_method_arguments(LIR_Op* op) {
  1139   // special handling for method arguments (moves from stack to virtual register):
  1140   // the interval gets no register assigned, but the stack slot.
  1141   // it is split before the first use by the register allocator.
  1143   if (op->code() == lir_move) {
  1144     assert(op->as_Op1() != NULL, "must be LIR_Op1");
  1145     LIR_Op1* move = (LIR_Op1*)op;
  1147     if (move->in_opr()->is_stack()) {
  1148 #ifdef ASSERT
  1149       int arg_size = compilation()->method()->arg_size();
  1150       LIR_Opr o = move->in_opr();
  1151       if (o->is_single_stack()) {
  1152         assert(o->single_stack_ix() >= 0 && o->single_stack_ix() < arg_size, "out of range");
  1153       } else if (o->is_double_stack()) {
  1154         assert(o->double_stack_ix() >= 0 && o->double_stack_ix() < arg_size, "out of range");
  1155       } else {
  1156         ShouldNotReachHere();
  1159       assert(move->id() > 0, "invalid id");
  1160       assert(block_of_op_with_id(move->id())->number_of_preds() == 0, "move from stack must be in first block");
  1161       assert(move->result_opr()->is_virtual(), "result of move must be a virtual register");
  1163       TRACE_LINEAR_SCAN(4, tty->print_cr("found move from stack slot %d to vreg %d", o->is_single_stack() ? o->single_stack_ix() : o->double_stack_ix(), reg_num(move->result_opr())));
  1164 #endif
  1166       Interval* interval = interval_at(reg_num(move->result_opr()));
  1168       int stack_slot = LinearScan::nof_regs + (move->in_opr()->is_single_stack() ? move->in_opr()->single_stack_ix() : move->in_opr()->double_stack_ix());
  1169       interval->set_canonical_spill_slot(stack_slot);
  1170       interval->assign_reg(stack_slot);
  1175 void LinearScan::handle_doubleword_moves(LIR_Op* op) {
  1176   // special handling for doubleword move from memory to register:
  1177   // in this case the registers of the input address and the result
  1178   // registers must not overlap -> add a temp range for the input registers
  1179   if (op->code() == lir_move) {
  1180     assert(op->as_Op1() != NULL, "must be LIR_Op1");
  1181     LIR_Op1* move = (LIR_Op1*)op;
  1183     if (move->result_opr()->is_double_cpu() && move->in_opr()->is_pointer()) {
  1184       LIR_Address* address = move->in_opr()->as_address_ptr();
  1185       if (address != NULL) {
  1186         if (address->base()->is_valid()) {
  1187           add_temp(address->base(), op->id(), noUse);
  1189         if (address->index()->is_valid()) {
  1190           add_temp(address->index(), op->id(), noUse);
  1197 void LinearScan::add_register_hints(LIR_Op* op) {
  1198   switch (op->code()) {
  1199     case lir_move:      // fall through
  1200     case lir_convert: {
  1201       assert(op->as_Op1() != NULL, "lir_move, lir_convert must be LIR_Op1");
  1202       LIR_Op1* move = (LIR_Op1*)op;
  1204       LIR_Opr move_from = move->in_opr();
  1205       LIR_Opr move_to = move->result_opr();
  1207       if (move_to->is_register() && move_from->is_register()) {
  1208         Interval* from = interval_at(reg_num(move_from));
  1209         Interval* to = interval_at(reg_num(move_to));
  1210         if (from != NULL && to != NULL) {
  1211           to->set_register_hint(from);
  1212           TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d", move->id(), from->reg_num(), to->reg_num()));
  1215       break;
  1217     case lir_cmove: {
  1218       assert(op->as_Op2() != NULL, "lir_cmove must be LIR_Op2");
  1219       LIR_Op2* cmove = (LIR_Op2*)op;
  1221       LIR_Opr move_from = cmove->in_opr1();
  1222       LIR_Opr move_to = cmove->result_opr();
  1224       if (move_to->is_register() && move_from->is_register()) {
  1225         Interval* from = interval_at(reg_num(move_from));
  1226         Interval* to = interval_at(reg_num(move_to));
  1227         if (from != NULL && to != NULL) {
  1228           to->set_register_hint(from);
  1229           TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d", cmove->id(), from->reg_num(), to->reg_num()));
  1232       break;
  1238 void LinearScan::build_intervals() {
  1239   TIME_LINEAR_SCAN(timer_build_intervals);
  1241   // initialize interval list with expected number of intervals
  1242   // (32 is added to have some space for split children without having to resize the list)
  1243   _intervals = IntervalList(num_virtual_regs() + 32);
  1244   // initialize all slots that are used by build_intervals
  1245   _intervals.at_put_grow(num_virtual_regs() - 1, NULL, NULL);
  1247   // create a list with all caller-save registers (cpu, fpu, xmm)
  1248   // when an instruction is a call, a temp range is created for all these registers
  1249   int num_caller_save_registers = 0;
  1250   int caller_save_registers[LinearScan::nof_regs];
  1252   int i;
  1253   for (i = 0; i < FrameMap::nof_caller_save_cpu_regs; i++) {
  1254     LIR_Opr opr = FrameMap::caller_save_cpu_reg_at(i);
  1255     assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
  1256     assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
  1257     caller_save_registers[num_caller_save_registers++] = reg_num(opr);
  1260   // temp ranges for fpu registers are only created when the method has
  1261   // virtual fpu operands. Otherwise no allocation for fpu registers is
  1262   // perfomed and so the temp ranges would be useless
  1263   if (has_fpu_registers()) {
  1264 #ifdef IA32
  1265     if (UseSSE < 2) {
  1266 #endif
  1267       for (i = 0; i < FrameMap::nof_caller_save_fpu_regs; i++) {
  1268         LIR_Opr opr = FrameMap::caller_save_fpu_reg_at(i);
  1269         assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
  1270         assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
  1271         caller_save_registers[num_caller_save_registers++] = reg_num(opr);
  1273 #ifdef IA32
  1275     if (UseSSE > 0) {
  1276       for (i = 0; i < FrameMap::nof_caller_save_xmm_regs; i++) {
  1277         LIR_Opr opr = FrameMap::caller_save_xmm_reg_at(i);
  1278         assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
  1279         assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
  1280         caller_save_registers[num_caller_save_registers++] = reg_num(opr);
  1283 #endif
  1285   assert(num_caller_save_registers <= LinearScan::nof_regs, "out of bounds");
  1288   LIR_OpVisitState visitor;
  1290   // iterate all blocks in reverse order
  1291   for (i = block_count() - 1; i >= 0; i--) {
  1292     BlockBegin* block = block_at(i);
  1293     LIR_OpList* instructions = block->lir()->instructions_list();
  1294     int         block_from =   block->first_lir_instruction_id();
  1295     int         block_to =     block->last_lir_instruction_id();
  1297     assert(block_from == instructions->at(0)->id(), "must be");
  1298     assert(block_to   == instructions->at(instructions->length() - 1)->id(), "must be");
  1300     // Update intervals for registers live at the end of this block;
  1301     BitMap live = block->live_out();
  1302     int size = live.size();
  1303     for (int number = live.get_next_one_offset(0, size); number < size; number = live.get_next_one_offset(number + 1, size)) {
  1304       assert(live.at(number), "should not stop here otherwise");
  1305       assert(number >= LIR_OprDesc::vreg_base, "fixed intervals must not be live on block bounds");
  1306       TRACE_LINEAR_SCAN(2, tty->print_cr("live in %d to %d", number, block_to + 2));
  1308       add_use(number, block_from, block_to + 2, noUse, T_ILLEGAL);
  1310       // add special use positions for loop-end blocks when the
  1311       // interval is used anywhere inside this loop.  It's possible
  1312       // that the block was part of a non-natural loop, so it might
  1313       // have an invalid loop index.
  1314       if (block->is_set(BlockBegin::linear_scan_loop_end_flag) &&
  1315           block->loop_index() != -1 &&
  1316           is_interval_in_loop(number, block->loop_index())) {
  1317         interval_at(number)->add_use_pos(block_to + 1, loopEndMarker);
  1321     // iterate all instructions of the block in reverse order.
  1322     // skip the first instruction because it is always a label
  1323     // definitions of intervals are processed before uses
  1324     assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label");
  1325     for (int j = instructions->length() - 1; j >= 1; j--) {
  1326       LIR_Op* op = instructions->at(j);
  1327       int op_id = op->id();
  1329       // visit operation to collect all operands
  1330       visitor.visit(op);
  1332       // add a temp range for each register if operation destroys caller-save registers
  1333       if (visitor.has_call()) {
  1334         for (int k = 0; k < num_caller_save_registers; k++) {
  1335           add_temp(caller_save_registers[k], op_id, noUse, T_ILLEGAL);
  1337         TRACE_LINEAR_SCAN(4, tty->print_cr("operation destroys all caller-save registers"));
  1340       // Add any platform dependent temps
  1341       pd_add_temps(op);
  1343       // visit definitions (output and temp operands)
  1344       int k, n;
  1345       n = visitor.opr_count(LIR_OpVisitState::outputMode);
  1346       for (k = 0; k < n; k++) {
  1347         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k);
  1348         assert(opr->is_register(), "visitor should only return register operands");
  1349         add_def(opr, op_id, use_kind_of_output_operand(op, opr));
  1352       n = visitor.opr_count(LIR_OpVisitState::tempMode);
  1353       for (k = 0; k < n; k++) {
  1354         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k);
  1355         assert(opr->is_register(), "visitor should only return register operands");
  1356         add_temp(opr, op_id, mustHaveRegister);
  1359       // visit uses (input operands)
  1360       n = visitor.opr_count(LIR_OpVisitState::inputMode);
  1361       for (k = 0; k < n; k++) {
  1362         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k);
  1363         assert(opr->is_register(), "visitor should only return register operands");
  1364         add_use(opr, block_from, op_id, use_kind_of_input_operand(op, opr));
  1367       // Add uses of live locals from interpreter's point of view for proper
  1368       // debug information generation
  1369       // Treat these operands as temp values (if the life range is extended
  1370       // to a call site, the value would be in a register at the call otherwise)
  1371       n = visitor.info_count();
  1372       for (k = 0; k < n; k++) {
  1373         CodeEmitInfo* info = visitor.info_at(k);
  1374         ValueStack* stack = info->stack();
  1375         for_each_state_value(stack, value,
  1376           add_use(value, block_from, op_id + 1, noUse);
  1377         );
  1380       // special steps for some instructions (especially moves)
  1381       handle_method_arguments(op);
  1382       handle_doubleword_moves(op);
  1383       add_register_hints(op);
  1385     } // end of instruction iteration
  1386   } // end of block iteration
  1389   // add the range [0, 1[ to all fixed intervals
  1390   // -> the register allocator need not handle unhandled fixed intervals
  1391   for (int n = 0; n < LinearScan::nof_regs; n++) {
  1392     Interval* interval = interval_at(n);
  1393     if (interval != NULL) {
  1394       interval->add_range(0, 1);
  1400 // ********** Phase 5: actual register allocation
  1402 int LinearScan::interval_cmp(Interval** a, Interval** b) {
  1403   if (*a != NULL) {
  1404     if (*b != NULL) {
  1405       return (*a)->from() - (*b)->from();
  1406     } else {
  1407       return -1;
  1409   } else {
  1410     if (*b != NULL) {
  1411       return 1;
  1412     } else {
  1413       return 0;
  1418 #ifndef PRODUCT
  1419 bool LinearScan::is_sorted(IntervalArray* intervals) {
  1420   int from = -1;
  1421   int i, j;
  1422   for (i = 0; i < intervals->length(); i ++) {
  1423     Interval* it = intervals->at(i);
  1424     if (it != NULL) {
  1425       if (from > it->from()) {
  1426         assert(false, "");
  1427         return false;
  1429       from = it->from();
  1433   // check in both directions if sorted list and unsorted list contain same intervals
  1434   for (i = 0; i < interval_count(); i++) {
  1435     if (interval_at(i) != NULL) {
  1436       int num_found = 0;
  1437       for (j = 0; j < intervals->length(); j++) {
  1438         if (interval_at(i) == intervals->at(j)) {
  1439           num_found++;
  1442       assert(num_found == 1, "lists do not contain same intervals");
  1445   for (j = 0; j < intervals->length(); j++) {
  1446     int num_found = 0;
  1447     for (i = 0; i < interval_count(); i++) {
  1448       if (interval_at(i) == intervals->at(j)) {
  1449         num_found++;
  1452     assert(num_found == 1, "lists do not contain same intervals");
  1455   return true;
  1457 #endif
  1459 void LinearScan::add_to_list(Interval** first, Interval** prev, Interval* interval) {
  1460   if (*prev != NULL) {
  1461     (*prev)->set_next(interval);
  1462   } else {
  1463     *first = interval;
  1465   *prev = interval;
  1468 void LinearScan::create_unhandled_lists(Interval** list1, Interval** list2, bool (is_list1)(const Interval* i), bool (is_list2)(const Interval* i)) {
  1469   assert(is_sorted(_sorted_intervals), "interval list is not sorted");
  1471   *list1 = *list2 = Interval::end();
  1473   Interval* list1_prev = NULL;
  1474   Interval* list2_prev = NULL;
  1475   Interval* v;
  1477   const int n = _sorted_intervals->length();
  1478   for (int i = 0; i < n; i++) {
  1479     v = _sorted_intervals->at(i);
  1480     if (v == NULL) continue;
  1482     if (is_list1(v)) {
  1483       add_to_list(list1, &list1_prev, v);
  1484     } else if (is_list2 == NULL || is_list2(v)) {
  1485       add_to_list(list2, &list2_prev, v);
  1489   if (list1_prev != NULL) list1_prev->set_next(Interval::end());
  1490   if (list2_prev != NULL) list2_prev->set_next(Interval::end());
  1492   assert(list1_prev == NULL || list1_prev->next() == Interval::end(), "linear list ends not with sentinel");
  1493   assert(list2_prev == NULL || list2_prev->next() == Interval::end(), "linear list ends not with sentinel");
  1497 void LinearScan::sort_intervals_before_allocation() {
  1498   TIME_LINEAR_SCAN(timer_sort_intervals_before);
  1500   IntervalList* unsorted_list = &_intervals;
  1501   int unsorted_len = unsorted_list->length();
  1502   int sorted_len = 0;
  1503   int unsorted_idx;
  1504   int sorted_idx = 0;
  1505   int sorted_from_max = -1;
  1507   // calc number of items for sorted list (sorted list must not contain NULL values)
  1508   for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) {
  1509     if (unsorted_list->at(unsorted_idx) != NULL) {
  1510       sorted_len++;
  1513   IntervalArray* sorted_list = new IntervalArray(sorted_len);
  1515   // special sorting algorithm: the original interval-list is almost sorted,
  1516   // only some intervals are swapped. So this is much faster than a complete QuickSort
  1517   for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) {
  1518     Interval* cur_interval = unsorted_list->at(unsorted_idx);
  1520     if (cur_interval != NULL) {
  1521       int cur_from = cur_interval->from();
  1523       if (sorted_from_max <= cur_from) {
  1524         sorted_list->at_put(sorted_idx++, cur_interval);
  1525         sorted_from_max = cur_interval->from();
  1526       } else {
  1527         // the asumption that the intervals are already sorted failed,
  1528         // so this interval must be sorted in manually
  1529         int j;
  1530         for (j = sorted_idx - 1; j >= 0 && cur_from < sorted_list->at(j)->from(); j--) {
  1531           sorted_list->at_put(j + 1, sorted_list->at(j));
  1533         sorted_list->at_put(j + 1, cur_interval);
  1534         sorted_idx++;
  1538   _sorted_intervals = sorted_list;
  1541 void LinearScan::sort_intervals_after_allocation() {
  1542   TIME_LINEAR_SCAN(timer_sort_intervals_after);
  1544   IntervalArray* old_list      = _sorted_intervals;
  1545   IntervalList*  new_list      = _new_intervals_from_allocation;
  1546   int old_len = old_list->length();
  1547   int new_len = new_list->length();
  1549   if (new_len == 0) {
  1550     // no intervals have been added during allocation, so sorted list is already up to date
  1551     return;
  1554   // conventional sort-algorithm for new intervals
  1555   new_list->sort(interval_cmp);
  1557   // merge old and new list (both already sorted) into one combined list
  1558   IntervalArray* combined_list = new IntervalArray(old_len + new_len);
  1559   int old_idx = 0;
  1560   int new_idx = 0;
  1562   while (old_idx + new_idx < old_len + new_len) {
  1563     if (new_idx >= new_len || (old_idx < old_len && old_list->at(old_idx)->from() <= new_list->at(new_idx)->from())) {
  1564       combined_list->at_put(old_idx + new_idx, old_list->at(old_idx));
  1565       old_idx++;
  1566     } else {
  1567       combined_list->at_put(old_idx + new_idx, new_list->at(new_idx));
  1568       new_idx++;
  1572   _sorted_intervals = combined_list;
  1576 void LinearScan::allocate_registers() {
  1577   TIME_LINEAR_SCAN(timer_allocate_registers);
  1579   Interval* precolored_cpu_intervals, *not_precolored_cpu_intervals;
  1580   Interval* precolored_fpu_intervals, *not_precolored_fpu_intervals;
  1582   create_unhandled_lists(&precolored_cpu_intervals, &not_precolored_cpu_intervals, is_precolored_cpu_interval, is_virtual_cpu_interval);
  1583   if (has_fpu_registers()) {
  1584     create_unhandled_lists(&precolored_fpu_intervals, &not_precolored_fpu_intervals, is_precolored_fpu_interval, is_virtual_fpu_interval);
  1585 #ifdef ASSERT
  1586   } else {
  1587     // fpu register allocation is omitted because no virtual fpu registers are present
  1588     // just check this again...
  1589     create_unhandled_lists(&precolored_fpu_intervals, &not_precolored_fpu_intervals, is_precolored_fpu_interval, is_virtual_fpu_interval);
  1590     assert(not_precolored_fpu_intervals == Interval::end(), "missed an uncolored fpu interval");
  1591 #endif
  1594   // allocate cpu registers
  1595   LinearScanWalker cpu_lsw(this, precolored_cpu_intervals, not_precolored_cpu_intervals);
  1596   cpu_lsw.walk();
  1597   cpu_lsw.finish_allocation();
  1599   if (has_fpu_registers()) {
  1600     // allocate fpu registers
  1601     LinearScanWalker fpu_lsw(this, precolored_fpu_intervals, not_precolored_fpu_intervals);
  1602     fpu_lsw.walk();
  1603     fpu_lsw.finish_allocation();
  1608 // ********** Phase 6: resolve data flow
  1609 // (insert moves at edges between blocks if intervals have been split)
  1611 // wrapper for Interval::split_child_at_op_id that performs a bailout in product mode
  1612 // instead of returning NULL
  1613 Interval* LinearScan::split_child_at_op_id(Interval* interval, int op_id, LIR_OpVisitState::OprMode mode) {
  1614   Interval* result = interval->split_child_at_op_id(op_id, mode);
  1615   if (result != NULL) {
  1616     return result;
  1619   assert(false, "must find an interval, but do a clean bailout in product mode");
  1620   result = new Interval(LIR_OprDesc::vreg_base);
  1621   result->assign_reg(0);
  1622   result->set_type(T_INT);
  1623   BAILOUT_("LinearScan: interval is NULL", result);
  1627 Interval* LinearScan::interval_at_block_begin(BlockBegin* block, int reg_num) {
  1628   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
  1629   assert(interval_at(reg_num) != NULL, "no interval found");
  1631   return split_child_at_op_id(interval_at(reg_num), block->first_lir_instruction_id(), LIR_OpVisitState::outputMode);
  1634 Interval* LinearScan::interval_at_block_end(BlockBegin* block, int reg_num) {
  1635   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
  1636   assert(interval_at(reg_num) != NULL, "no interval found");
  1638   return split_child_at_op_id(interval_at(reg_num), block->last_lir_instruction_id() + 1, LIR_OpVisitState::outputMode);
  1641 Interval* LinearScan::interval_at_op_id(int reg_num, int op_id) {
  1642   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
  1643   assert(interval_at(reg_num) != NULL, "no interval found");
  1645   return split_child_at_op_id(interval_at(reg_num), op_id, LIR_OpVisitState::inputMode);
  1649 void LinearScan::resolve_collect_mappings(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) {
  1650   DEBUG_ONLY(move_resolver.check_empty());
  1652   const int num_regs = num_virtual_regs();
  1653   const int size = live_set_size();
  1654   const BitMap live_at_edge = to_block->live_in();
  1656   // visit all registers where the live_at_edge bit is set
  1657   for (int r = live_at_edge.get_next_one_offset(0, size); r < size; r = live_at_edge.get_next_one_offset(r + 1, size)) {
  1658     assert(r < num_regs, "live information set for not exisiting interval");
  1659     assert(from_block->live_out().at(r) && to_block->live_in().at(r), "interval not live at this edge");
  1661     Interval* from_interval = interval_at_block_end(from_block, r);
  1662     Interval* to_interval = interval_at_block_begin(to_block, r);
  1664     if (from_interval != to_interval && (from_interval->assigned_reg() != to_interval->assigned_reg() || from_interval->assigned_regHi() != to_interval->assigned_regHi())) {
  1665       // need to insert move instruction
  1666       move_resolver.add_mapping(from_interval, to_interval);
  1672 void LinearScan::resolve_find_insert_pos(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) {
  1673   if (from_block->number_of_sux() <= 1) {
  1674     TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at end of from_block B%d", from_block->block_id()));
  1676     LIR_OpList* instructions = from_block->lir()->instructions_list();
  1677     LIR_OpBranch* branch = instructions->last()->as_OpBranch();
  1678     if (branch != NULL) {
  1679       // insert moves before branch
  1680       assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump");
  1681       move_resolver.set_insert_position(from_block->lir(), instructions->length() - 2);
  1682     } else {
  1683       move_resolver.set_insert_position(from_block->lir(), instructions->length() - 1);
  1686   } else {
  1687     TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at beginning of to_block B%d", to_block->block_id()));
  1688 #ifdef ASSERT
  1689     assert(from_block->lir()->instructions_list()->at(0)->as_OpLabel() != NULL, "block does not start with a label");
  1691     // because the number of predecessor edges matches the number of
  1692     // successor edges, blocks which are reached by switch statements
  1693     // may have be more than one predecessor but it will be guaranteed
  1694     // that all predecessors will be the same.
  1695     for (int i = 0; i < to_block->number_of_preds(); i++) {
  1696       assert(from_block == to_block->pred_at(i), "all critical edges must be broken");
  1698 #endif
  1700     move_resolver.set_insert_position(to_block->lir(), 0);
  1705 // insert necessary moves (spilling or reloading) at edges between blocks if interval has been split
  1706 void LinearScan::resolve_data_flow() {
  1707   TIME_LINEAR_SCAN(timer_resolve_data_flow);
  1709   int num_blocks = block_count();
  1710   MoveResolver move_resolver(this);
  1711   BitMap block_completed(num_blocks);  block_completed.clear();
  1712   BitMap already_resolved(num_blocks); already_resolved.clear();
  1714   int i;
  1715   for (i = 0; i < num_blocks; i++) {
  1716     BlockBegin* block = block_at(i);
  1718     // check if block has only one predecessor and only one successor
  1719     if (block->number_of_preds() == 1 && block->number_of_sux() == 1 && block->number_of_exception_handlers() == 0) {
  1720       LIR_OpList* instructions = block->lir()->instructions_list();
  1721       assert(instructions->at(0)->code() == lir_label, "block must start with label");
  1722       assert(instructions->last()->code() == lir_branch, "block with successors must end with branch");
  1723       assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block with successor must end with unconditional branch");
  1725       // check if block is empty (only label and branch)
  1726       if (instructions->length() == 2) {
  1727         BlockBegin* pred = block->pred_at(0);
  1728         BlockBegin* sux = block->sux_at(0);
  1730         // prevent optimization of two consecutive blocks
  1731         if (!block_completed.at(pred->linear_scan_number()) && !block_completed.at(sux->linear_scan_number())) {
  1732           TRACE_LINEAR_SCAN(3, tty->print_cr("**** optimizing empty block B%d (pred: B%d, sux: B%d)", block->block_id(), pred->block_id(), sux->block_id()));
  1733           block_completed.set_bit(block->linear_scan_number());
  1735           // directly resolve between pred and sux (without looking at the empty block between)
  1736           resolve_collect_mappings(pred, sux, move_resolver);
  1737           if (move_resolver.has_mappings()) {
  1738             move_resolver.set_insert_position(block->lir(), 0);
  1739             move_resolver.resolve_and_append_moves();
  1747   for (i = 0; i < num_blocks; i++) {
  1748     if (!block_completed.at(i)) {
  1749       BlockBegin* from_block = block_at(i);
  1750       already_resolved.set_from(block_completed);
  1752       int num_sux = from_block->number_of_sux();
  1753       for (int s = 0; s < num_sux; s++) {
  1754         BlockBegin* to_block = from_block->sux_at(s);
  1756         // check for duplicate edges between the same blocks (can happen with switch blocks)
  1757         if (!already_resolved.at(to_block->linear_scan_number())) {
  1758           TRACE_LINEAR_SCAN(3, tty->print_cr("**** processing edge between B%d and B%d", from_block->block_id(), to_block->block_id()));
  1759           already_resolved.set_bit(to_block->linear_scan_number());
  1761           // collect all intervals that have been split between from_block and to_block
  1762           resolve_collect_mappings(from_block, to_block, move_resolver);
  1763           if (move_resolver.has_mappings()) {
  1764             resolve_find_insert_pos(from_block, to_block, move_resolver);
  1765             move_resolver.resolve_and_append_moves();
  1774 void LinearScan::resolve_exception_entry(BlockBegin* block, int reg_num, MoveResolver &move_resolver) {
  1775   if (interval_at(reg_num) == NULL) {
  1776     // if a phi function is never used, no interval is created -> ignore this
  1777     return;
  1780   Interval* interval = interval_at_block_begin(block, reg_num);
  1781   int reg = interval->assigned_reg();
  1782   int regHi = interval->assigned_regHi();
  1784   if ((reg < nof_regs && interval->always_in_memory()) ||
  1785       (use_fpu_stack_allocation() && reg >= pd_first_fpu_reg && reg <= pd_last_fpu_reg)) {
  1786     // the interval is split to get a short range that is located on the stack
  1787     // in the following two cases:
  1788     // * the interval started in memory (e.g. method parameter), but is currently in a register
  1789     //   this is an optimization for exception handling that reduces the number of moves that
  1790     //   are necessary for resolving the states when an exception uses this exception handler
  1791     // * the interval would be on the fpu stack at the begin of the exception handler
  1792     //   this is not allowed because of the complicated fpu stack handling on Intel
  1794     // range that will be spilled to memory
  1795     int from_op_id = block->first_lir_instruction_id();
  1796     int to_op_id = from_op_id + 1;  // short live range of length 1
  1797     assert(interval->from() <= from_op_id && interval->to() >= to_op_id,
  1798            "no split allowed between exception entry and first instruction");
  1800     if (interval->from() != from_op_id) {
  1801       // the part before from_op_id is unchanged
  1802       interval = interval->split(from_op_id);
  1803       interval->assign_reg(reg, regHi);
  1804       append_interval(interval);
  1806     assert(interval->from() == from_op_id, "must be true now");
  1808     Interval* spilled_part = interval;
  1809     if (interval->to() != to_op_id) {
  1810       // the part after to_op_id is unchanged
  1811       spilled_part = interval->split_from_start(to_op_id);
  1812       append_interval(spilled_part);
  1813       move_resolver.add_mapping(spilled_part, interval);
  1815     assign_spill_slot(spilled_part);
  1817     assert(spilled_part->from() == from_op_id && spilled_part->to() == to_op_id, "just checking");
  1821 void LinearScan::resolve_exception_entry(BlockBegin* block, MoveResolver &move_resolver) {
  1822   assert(block->is_set(BlockBegin::exception_entry_flag), "should not call otherwise");
  1823   DEBUG_ONLY(move_resolver.check_empty());
  1825   // visit all registers where the live_in bit is set
  1826   int size = live_set_size();
  1827   for (int r = block->live_in().get_next_one_offset(0, size); r < size; r = block->live_in().get_next_one_offset(r + 1, size)) {
  1828     resolve_exception_entry(block, r, move_resolver);
  1831   // the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately
  1832   for_each_phi_fun(block, phi,
  1833     resolve_exception_entry(block, phi->operand()->vreg_number(), move_resolver)
  1834   );
  1836   if (move_resolver.has_mappings()) {
  1837     // insert moves after first instruction
  1838     move_resolver.set_insert_position(block->lir(), 1);
  1839     move_resolver.resolve_and_append_moves();
  1844 void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, int reg_num, Phi* phi, MoveResolver &move_resolver) {
  1845   if (interval_at(reg_num) == NULL) {
  1846     // if a phi function is never used, no interval is created -> ignore this
  1847     return;
  1850   // the computation of to_interval is equal to resolve_collect_mappings,
  1851   // but from_interval is more complicated because of phi functions
  1852   BlockBegin* to_block = handler->entry_block();
  1853   Interval* to_interval = interval_at_block_begin(to_block, reg_num);
  1855   if (phi != NULL) {
  1856     // phi function of the exception entry block
  1857     // no moves are created for this phi function in the LIR_Generator, so the
  1858     // interval at the throwing instruction must be searched using the operands
  1859     // of the phi function
  1860     Value from_value = phi->operand_at(handler->phi_operand());
  1862     // with phi functions it can happen that the same from_value is used in
  1863     // multiple mappings, so notify move-resolver that this is allowed
  1864     move_resolver.set_multiple_reads_allowed();
  1866     Constant* con = from_value->as_Constant();
  1867     if (con != NULL && !con->is_pinned()) {
  1868       // unpinned constants may have no register, so add mapping from constant to interval
  1869       move_resolver.add_mapping(LIR_OprFact::value_type(con->type()), to_interval);
  1870     } else {
  1871       // search split child at the throwing op_id
  1872       Interval* from_interval = interval_at_op_id(from_value->operand()->vreg_number(), throwing_op_id);
  1873       move_resolver.add_mapping(from_interval, to_interval);
  1876   } else {
  1877     // no phi function, so use reg_num also for from_interval
  1878     // search split child at the throwing op_id
  1879     Interval* from_interval = interval_at_op_id(reg_num, throwing_op_id);
  1880     if (from_interval != to_interval) {
  1881       // optimization to reduce number of moves: when to_interval is on stack and
  1882       // the stack slot is known to be always correct, then no move is necessary
  1883       if (!from_interval->always_in_memory() || from_interval->canonical_spill_slot() != to_interval->assigned_reg()) {
  1884         move_resolver.add_mapping(from_interval, to_interval);
  1890 void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, MoveResolver &move_resolver) {
  1891   TRACE_LINEAR_SCAN(4, tty->print_cr("resolving exception handler B%d: throwing_op_id=%d", handler->entry_block()->block_id(), throwing_op_id));
  1893   DEBUG_ONLY(move_resolver.check_empty());
  1894   assert(handler->lir_op_id() == -1, "already processed this xhandler");
  1895   DEBUG_ONLY(handler->set_lir_op_id(throwing_op_id));
  1896   assert(handler->entry_code() == NULL, "code already present");
  1898   // visit all registers where the live_in bit is set
  1899   BlockBegin* block = handler->entry_block();
  1900   int size = live_set_size();
  1901   for (int r = block->live_in().get_next_one_offset(0, size); r < size; r = block->live_in().get_next_one_offset(r + 1, size)) {
  1902     resolve_exception_edge(handler, throwing_op_id, r, NULL, move_resolver);
  1905   // the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately
  1906   for_each_phi_fun(block, phi,
  1907     resolve_exception_edge(handler, throwing_op_id, phi->operand()->vreg_number(), phi, move_resolver)
  1908   );
  1910   if (move_resolver.has_mappings()) {
  1911     LIR_List* entry_code = new LIR_List(compilation());
  1912     move_resolver.set_insert_position(entry_code, 0);
  1913     move_resolver.resolve_and_append_moves();
  1915     entry_code->jump(handler->entry_block());
  1916     handler->set_entry_code(entry_code);
  1921 void LinearScan::resolve_exception_handlers() {
  1922   MoveResolver move_resolver(this);
  1923   LIR_OpVisitState visitor;
  1924   int num_blocks = block_count();
  1926   int i;
  1927   for (i = 0; i < num_blocks; i++) {
  1928     BlockBegin* block = block_at(i);
  1929     if (block->is_set(BlockBegin::exception_entry_flag)) {
  1930       resolve_exception_entry(block, move_resolver);
  1934   for (i = 0; i < num_blocks; i++) {
  1935     BlockBegin* block = block_at(i);
  1936     LIR_List* ops = block->lir();
  1937     int num_ops = ops->length();
  1939     // iterate all instructions of the block. skip the first because it is always a label
  1940     assert(visitor.no_operands(ops->at(0)), "first operation must always be a label");
  1941     for (int j = 1; j < num_ops; j++) {
  1942       LIR_Op* op = ops->at(j);
  1943       int op_id = op->id();
  1945       if (op_id != -1 && has_info(op_id)) {
  1946         // visit operation to collect all operands
  1947         visitor.visit(op);
  1948         assert(visitor.info_count() > 0, "should not visit otherwise");
  1950         XHandlers* xhandlers = visitor.all_xhandler();
  1951         int n = xhandlers->length();
  1952         for (int k = 0; k < n; k++) {
  1953           resolve_exception_edge(xhandlers->handler_at(k), op_id, move_resolver);
  1956 #ifdef ASSERT
  1957       } else {
  1958         visitor.visit(op);
  1959         assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
  1960 #endif
  1967 // ********** Phase 7: assign register numbers back to LIR
  1968 // (includes computation of debug information and oop maps)
  1970 VMReg LinearScan::vm_reg_for_interval(Interval* interval) {
  1971   VMReg reg = interval->cached_vm_reg();
  1972   if (!reg->is_valid() ) {
  1973     reg = vm_reg_for_operand(operand_for_interval(interval));
  1974     interval->set_cached_vm_reg(reg);
  1976   assert(reg == vm_reg_for_operand(operand_for_interval(interval)), "wrong cached value");
  1977   return reg;
  1980 VMReg LinearScan::vm_reg_for_operand(LIR_Opr opr) {
  1981   assert(opr->is_oop(), "currently only implemented for oop operands");
  1982   return frame_map()->regname(opr);
  1986 LIR_Opr LinearScan::operand_for_interval(Interval* interval) {
  1987   LIR_Opr opr = interval->cached_opr();
  1988   if (opr->is_illegal()) {
  1989     opr = calc_operand_for_interval(interval);
  1990     interval->set_cached_opr(opr);
  1993   assert(opr == calc_operand_for_interval(interval), "wrong cached value");
  1994   return opr;
  1997 LIR_Opr LinearScan::calc_operand_for_interval(const Interval* interval) {
  1998   int assigned_reg = interval->assigned_reg();
  1999   BasicType type = interval->type();
  2001   if (assigned_reg >= nof_regs) {
  2002     // stack slot
  2003     assert(interval->assigned_regHi() == any_reg, "must not have hi register");
  2004     return LIR_OprFact::stack(assigned_reg - nof_regs, type);
  2006   } else {
  2007     // register
  2008     switch (type) {
  2009       case T_OBJECT: {
  2010         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
  2011         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
  2012         return LIR_OprFact::single_cpu_oop(assigned_reg);
  2015       case T_INT: {
  2016         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
  2017         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
  2018         return LIR_OprFact::single_cpu(assigned_reg);
  2021       case T_LONG: {
  2022         int assigned_regHi = interval->assigned_regHi();
  2023         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
  2024         assert(num_physical_regs(T_LONG) == 1 ||
  2025                (assigned_regHi >= pd_first_cpu_reg && assigned_regHi <= pd_last_cpu_reg), "no cpu register");
  2027         assert(assigned_reg != assigned_regHi, "invalid allocation");
  2028         assert(num_physical_regs(T_LONG) == 1 || assigned_reg < assigned_regHi,
  2029                "register numbers must be sorted (ensure that e.g. a move from eax,ebx to ebx,eax can not occur)");
  2030         assert((assigned_regHi != any_reg) ^ (num_physical_regs(T_LONG) == 1), "must be match");
  2031         if (requires_adjacent_regs(T_LONG)) {
  2032           assert(assigned_reg % 2 == 0 && assigned_reg + 1 == assigned_regHi, "must be sequential and even");
  2035 #ifdef SPARC
  2036 #ifdef _LP64
  2037         return LIR_OprFact::double_cpu(assigned_reg, assigned_reg);
  2038 #else
  2039         return LIR_OprFact::double_cpu(assigned_regHi, assigned_reg);
  2040 #endif
  2041 #else
  2042         return LIR_OprFact::double_cpu(assigned_reg, assigned_regHi);
  2043 #endif
  2046       case T_FLOAT: {
  2047 #ifdef IA32
  2048         if (UseSSE >= 1) {
  2049           assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= pd_last_xmm_reg, "no xmm register");
  2050           assert(interval->assigned_regHi() == any_reg, "must not have hi register");
  2051           return LIR_OprFact::single_xmm(assigned_reg - pd_first_xmm_reg);
  2053 #endif
  2055         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
  2056         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
  2057         return LIR_OprFact::single_fpu(assigned_reg - pd_first_fpu_reg);
  2060       case T_DOUBLE: {
  2061 #ifdef IA32
  2062         if (UseSSE >= 2) {
  2063           assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= pd_last_xmm_reg, "no xmm register");
  2064           assert(interval->assigned_regHi() == any_reg, "must not have hi register (double xmm values are stored in one register)");
  2065           return LIR_OprFact::double_xmm(assigned_reg - pd_first_xmm_reg);
  2067 #endif
  2069 #ifdef SPARC
  2070         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
  2071         assert(interval->assigned_regHi() >= pd_first_fpu_reg && interval->assigned_regHi() <= pd_last_fpu_reg, "no fpu register");
  2072         assert(assigned_reg % 2 == 0 && assigned_reg + 1 == interval->assigned_regHi(), "must be sequential and even");
  2073         LIR_Opr result = LIR_OprFact::double_fpu(interval->assigned_regHi() - pd_first_fpu_reg, assigned_reg - pd_first_fpu_reg);
  2074 #else
  2075         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
  2076         assert(interval->assigned_regHi() == any_reg, "must not have hi register (double fpu values are stored in one register on Intel)");
  2077         LIR_Opr result = LIR_OprFact::double_fpu(assigned_reg - pd_first_fpu_reg);
  2078 #endif
  2079         return result;
  2082       default: {
  2083         ShouldNotReachHere();
  2084         return LIR_OprFact::illegalOpr;
  2090 LIR_Opr LinearScan::canonical_spill_opr(Interval* interval) {
  2091   assert(interval->canonical_spill_slot() >= nof_regs, "canonical spill slot not set");
  2092   return LIR_OprFact::stack(interval->canonical_spill_slot() - nof_regs, interval->type());
  2095 LIR_Opr LinearScan::color_lir_opr(LIR_Opr opr, int op_id, LIR_OpVisitState::OprMode mode) {
  2096   assert(opr->is_virtual(), "should not call this otherwise");
  2098   Interval* interval = interval_at(opr->vreg_number());
  2099   assert(interval != NULL, "interval must exist");
  2101   if (op_id != -1) {
  2102 #ifdef ASSERT
  2103     BlockBegin* block = block_of_op_with_id(op_id);
  2104     if (block->number_of_sux() <= 1 && op_id == block->last_lir_instruction_id()) {
  2105       // check if spill moves could have been appended at the end of this block, but
  2106       // before the branch instruction. So the split child information for this branch would
  2107       // be incorrect.
  2108       LIR_OpBranch* branch = block->lir()->instructions_list()->last()->as_OpBranch();
  2109       if (branch != NULL) {
  2110         if (block->live_out().at(opr->vreg_number())) {
  2111           assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump");
  2112           assert(false, "can't get split child for the last branch of a block because the information would be incorrect (moves are inserted before the branch in resolve_data_flow)");
  2116 #endif
  2118     // operands are not changed when an interval is split during allocation,
  2119     // so search the right interval here
  2120     interval = split_child_at_op_id(interval, op_id, mode);
  2123   LIR_Opr res = operand_for_interval(interval);
  2125 #ifdef IA32
  2126   // new semantic for is_last_use: not only set on definite end of interval,
  2127   // but also before hole
  2128   // This may still miss some cases (e.g. for dead values), but it is not necessary that the
  2129   // last use information is completely correct
  2130   // information is only needed for fpu stack allocation
  2131   if (res->is_fpu_register()) {
  2132     if (opr->is_last_use() || op_id == interval->to() || (op_id != -1 && interval->has_hole_between(op_id, op_id + 1))) {
  2133       assert(op_id == -1 || !is_block_begin(op_id), "holes at begin of block may also result from control flow");
  2134       res = res->make_last_use();
  2137 #endif
  2139   assert(!gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::callee_saved) || !FrameMap::is_caller_save_register(res), "bad allocation");
  2141   return res;
  2145 #ifdef ASSERT
  2146 // some methods used to check correctness of debug information
  2148 void assert_no_register_values(GrowableArray<ScopeValue*>* values) {
  2149   if (values == NULL) {
  2150     return;
  2153   for (int i = 0; i < values->length(); i++) {
  2154     ScopeValue* value = values->at(i);
  2156     if (value->is_location()) {
  2157       Location location = ((LocationValue*)value)->location();
  2158       assert(location.where() == Location::on_stack, "value is in register");
  2163 void assert_no_register_values(GrowableArray<MonitorValue*>* values) {
  2164   if (values == NULL) {
  2165     return;
  2168   for (int i = 0; i < values->length(); i++) {
  2169     MonitorValue* value = values->at(i);
  2171     if (value->owner()->is_location()) {
  2172       Location location = ((LocationValue*)value->owner())->location();
  2173       assert(location.where() == Location::on_stack, "owner is in register");
  2175     assert(value->basic_lock().where() == Location::on_stack, "basic_lock is in register");
  2179 void assert_equal(Location l1, Location l2) {
  2180   assert(l1.where() == l2.where() && l1.type() == l2.type() && l1.offset() == l2.offset(), "");
  2183 void assert_equal(ScopeValue* v1, ScopeValue* v2) {
  2184   if (v1->is_location()) {
  2185     assert(v2->is_location(), "");
  2186     assert_equal(((LocationValue*)v1)->location(), ((LocationValue*)v2)->location());
  2187   } else if (v1->is_constant_int()) {
  2188     assert(v2->is_constant_int(), "");
  2189     assert(((ConstantIntValue*)v1)->value() == ((ConstantIntValue*)v2)->value(), "");
  2190   } else if (v1->is_constant_double()) {
  2191     assert(v2->is_constant_double(), "");
  2192     assert(((ConstantDoubleValue*)v1)->value() == ((ConstantDoubleValue*)v2)->value(), "");
  2193   } else if (v1->is_constant_long()) {
  2194     assert(v2->is_constant_long(), "");
  2195     assert(((ConstantLongValue*)v1)->value() == ((ConstantLongValue*)v2)->value(), "");
  2196   } else if (v1->is_constant_oop()) {
  2197     assert(v2->is_constant_oop(), "");
  2198     assert(((ConstantOopWriteValue*)v1)->value() == ((ConstantOopWriteValue*)v2)->value(), "");
  2199   } else {
  2200     ShouldNotReachHere();
  2204 void assert_equal(MonitorValue* m1, MonitorValue* m2) {
  2205   assert_equal(m1->owner(), m2->owner());
  2206   assert_equal(m1->basic_lock(), m2->basic_lock());
  2209 void assert_equal(IRScopeDebugInfo* d1, IRScopeDebugInfo* d2) {
  2210   assert(d1->scope() == d2->scope(), "not equal");
  2211   assert(d1->bci() == d2->bci(), "not equal");
  2213   if (d1->locals() != NULL) {
  2214     assert(d1->locals() != NULL && d2->locals() != NULL, "not equal");
  2215     assert(d1->locals()->length() == d2->locals()->length(), "not equal");
  2216     for (int i = 0; i < d1->locals()->length(); i++) {
  2217       assert_equal(d1->locals()->at(i), d2->locals()->at(i));
  2219   } else {
  2220     assert(d1->locals() == NULL && d2->locals() == NULL, "not equal");
  2223   if (d1->expressions() != NULL) {
  2224     assert(d1->expressions() != NULL && d2->expressions() != NULL, "not equal");
  2225     assert(d1->expressions()->length() == d2->expressions()->length(), "not equal");
  2226     for (int i = 0; i < d1->expressions()->length(); i++) {
  2227       assert_equal(d1->expressions()->at(i), d2->expressions()->at(i));
  2229   } else {
  2230     assert(d1->expressions() == NULL && d2->expressions() == NULL, "not equal");
  2233   if (d1->monitors() != NULL) {
  2234     assert(d1->monitors() != NULL && d2->monitors() != NULL, "not equal");
  2235     assert(d1->monitors()->length() == d2->monitors()->length(), "not equal");
  2236     for (int i = 0; i < d1->monitors()->length(); i++) {
  2237       assert_equal(d1->monitors()->at(i), d2->monitors()->at(i));
  2239   } else {
  2240     assert(d1->monitors() == NULL && d2->monitors() == NULL, "not equal");
  2243   if (d1->caller() != NULL) {
  2244     assert(d1->caller() != NULL && d2->caller() != NULL, "not equal");
  2245     assert_equal(d1->caller(), d2->caller());
  2246   } else {
  2247     assert(d1->caller() == NULL && d2->caller() == NULL, "not equal");
  2251 void check_stack_depth(CodeEmitInfo* info, int stack_end) {
  2252   if (info->bci() != SynchronizationEntryBCI && !info->scope()->method()->is_native()) {
  2253     Bytecodes::Code code = info->scope()->method()->java_code_at_bci(info->bci());
  2254     switch (code) {
  2255       case Bytecodes::_ifnull    : // fall through
  2256       case Bytecodes::_ifnonnull : // fall through
  2257       case Bytecodes::_ifeq      : // fall through
  2258       case Bytecodes::_ifne      : // fall through
  2259       case Bytecodes::_iflt      : // fall through
  2260       case Bytecodes::_ifge      : // fall through
  2261       case Bytecodes::_ifgt      : // fall through
  2262       case Bytecodes::_ifle      : // fall through
  2263       case Bytecodes::_if_icmpeq : // fall through
  2264       case Bytecodes::_if_icmpne : // fall through
  2265       case Bytecodes::_if_icmplt : // fall through
  2266       case Bytecodes::_if_icmpge : // fall through
  2267       case Bytecodes::_if_icmpgt : // fall through
  2268       case Bytecodes::_if_icmple : // fall through
  2269       case Bytecodes::_if_acmpeq : // fall through
  2270       case Bytecodes::_if_acmpne :
  2271         assert(stack_end >= -Bytecodes::depth(code), "must have non-empty expression stack at if bytecode");
  2272         break;
  2277 #endif // ASSERT
  2280 IntervalWalker* LinearScan::init_compute_oop_maps() {
  2281   // setup lists of potential oops for walking
  2282   Interval* oop_intervals;
  2283   Interval* non_oop_intervals;
  2285   create_unhandled_lists(&oop_intervals, &non_oop_intervals, is_oop_interval, NULL);
  2287   // intervals that have no oops inside need not to be processed
  2288   // to ensure a walking until the last instruction id, add a dummy interval
  2289   // with a high operation id
  2290   non_oop_intervals = new Interval(any_reg);
  2291   non_oop_intervals->add_range(max_jint - 2, max_jint - 1);
  2293   return new IntervalWalker(this, oop_intervals, non_oop_intervals);
  2297 OopMap* LinearScan::compute_oop_map(IntervalWalker* iw, LIR_Op* op, CodeEmitInfo* info, bool is_call_site) {
  2298   TRACE_LINEAR_SCAN(3, tty->print_cr("creating oop map at op_id %d", op->id()));
  2300   // walk before the current operation -> intervals that start at
  2301   // the operation (= output operands of the operation) are not
  2302   // included in the oop map
  2303   iw->walk_before(op->id());
  2305   int frame_size = frame_map()->framesize();
  2306   int arg_count = frame_map()->oop_map_arg_count();
  2307   OopMap* map = new OopMap(frame_size, arg_count);
  2309   // Check if this is a patch site.
  2310   bool is_patch_info = false;
  2311   if (op->code() == lir_move) {
  2312     assert(!is_call_site, "move must not be a call site");
  2313     assert(op->as_Op1() != NULL, "move must be LIR_Op1");
  2314     LIR_Op1* move = (LIR_Op1*)op;
  2316     is_patch_info = move->patch_code() != lir_patch_none;
  2319   // Iterate through active intervals
  2320   for (Interval* interval = iw->active_first(fixedKind); interval != Interval::end(); interval = interval->next()) {
  2321     int assigned_reg = interval->assigned_reg();
  2323     assert(interval->current_from() <= op->id() && op->id() <= interval->current_to(), "interval should not be active otherwise");
  2324     assert(interval->assigned_regHi() == any_reg, "oop must be single word");
  2325     assert(interval->reg_num() >= LIR_OprDesc::vreg_base, "fixed interval found");
  2327     // Check if this range covers the instruction. Intervals that
  2328     // start or end at the current operation are not included in the
  2329     // oop map, except in the case of patching moves.  For patching
  2330     // moves, any intervals which end at this instruction are included
  2331     // in the oop map since we may safepoint while doing the patch
  2332     // before we've consumed the inputs.
  2333     if (is_patch_info || op->id() < interval->current_to()) {
  2335       // caller-save registers must not be included into oop-maps at calls
  2336       assert(!is_call_site || assigned_reg >= nof_regs || !is_caller_save(assigned_reg), "interval is in a caller-save register at a call -> register will be overwritten");
  2338       VMReg name = vm_reg_for_interval(interval);
  2339       map->set_oop(name);
  2341       // Spill optimization: when the stack value is guaranteed to be always correct,
  2342       // then it must be added to the oop map even if the interval is currently in a register
  2343       if (interval->always_in_memory() &&
  2344           op->id() > interval->spill_definition_pos() &&
  2345           interval->assigned_reg() != interval->canonical_spill_slot()) {
  2346         assert(interval->spill_definition_pos() > 0, "position not set correctly");
  2347         assert(interval->canonical_spill_slot() >= LinearScan::nof_regs, "no spill slot assigned");
  2348         assert(interval->assigned_reg() < LinearScan::nof_regs, "interval is on stack, so stack slot is registered twice");
  2350         map->set_oop(frame_map()->slot_regname(interval->canonical_spill_slot() - LinearScan::nof_regs));
  2355   // add oops from lock stack
  2356   assert(info->stack() != NULL, "CodeEmitInfo must always have a stack");
  2357   int locks_count = info->stack()->locks_size();
  2358   for (int i = 0; i < locks_count; i++) {
  2359     map->set_oop(frame_map()->monitor_object_regname(i));
  2362   return map;
  2366 void LinearScan::compute_oop_map(IntervalWalker* iw, const LIR_OpVisitState &visitor, LIR_Op* op) {
  2367   assert(visitor.info_count() > 0, "no oop map needed");
  2369   // compute oop_map only for first CodeEmitInfo
  2370   // because it is (in most cases) equal for all other infos of the same operation
  2371   CodeEmitInfo* first_info = visitor.info_at(0);
  2372   OopMap* first_oop_map = compute_oop_map(iw, op, first_info, visitor.has_call());
  2374   for (int i = 0; i < visitor.info_count(); i++) {
  2375     CodeEmitInfo* info = visitor.info_at(i);
  2376     OopMap* oop_map = first_oop_map;
  2378     if (info->stack()->locks_size() != first_info->stack()->locks_size()) {
  2379       // this info has a different number of locks then the precomputed oop map
  2380       // (possible for lock and unlock instructions) -> compute oop map with
  2381       // correct lock information
  2382       oop_map = compute_oop_map(iw, op, info, visitor.has_call());
  2385     if (info->_oop_map == NULL) {
  2386       info->_oop_map = oop_map;
  2387     } else {
  2388       // a CodeEmitInfo can not be shared between different LIR-instructions
  2389       // because interval splitting can occur anywhere between two instructions
  2390       // and so the oop maps must be different
  2391       // -> check if the already set oop_map is exactly the one calculated for this operation
  2392       assert(info->_oop_map == oop_map, "same CodeEmitInfo used for multiple LIR instructions");
  2398 // frequently used constants
  2399 ConstantOopWriteValue LinearScan::_oop_null_scope_value = ConstantOopWriteValue(NULL);
  2400 ConstantIntValue      LinearScan::_int_m1_scope_value = ConstantIntValue(-1);
  2401 ConstantIntValue      LinearScan::_int_0_scope_value =  ConstantIntValue(0);
  2402 ConstantIntValue      LinearScan::_int_1_scope_value =  ConstantIntValue(1);
  2403 ConstantIntValue      LinearScan::_int_2_scope_value =  ConstantIntValue(2);
  2404 LocationValue         _illegal_value = LocationValue(Location());
  2406 void LinearScan::init_compute_debug_info() {
  2407   // cache for frequently used scope values
  2408   // (cpu registers and stack slots)
  2409   _scope_value_cache = ScopeValueArray((LinearScan::nof_cpu_regs + frame_map()->argcount() + max_spills()) * 2, NULL);
  2412 MonitorValue* LinearScan::location_for_monitor_index(int monitor_index) {
  2413   Location loc;
  2414   if (!frame_map()->location_for_monitor_object(monitor_index, &loc)) {
  2415     bailout("too large frame");
  2417   ScopeValue* object_scope_value = new LocationValue(loc);
  2419   if (!frame_map()->location_for_monitor_lock(monitor_index, &loc)) {
  2420     bailout("too large frame");
  2422   return new MonitorValue(object_scope_value, loc);
  2425 LocationValue* LinearScan::location_for_name(int name, Location::Type loc_type) {
  2426   Location loc;
  2427   if (!frame_map()->locations_for_slot(name, loc_type, &loc)) {
  2428     bailout("too large frame");
  2430   return new LocationValue(loc);
  2434 int LinearScan::append_scope_value_for_constant(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) {
  2435   assert(opr->is_constant(), "should not be called otherwise");
  2437   LIR_Const* c = opr->as_constant_ptr();
  2438   BasicType t = c->type();
  2439   switch (t) {
  2440     case T_OBJECT: {
  2441       jobject value = c->as_jobject();
  2442       if (value == NULL) {
  2443         scope_values->append(&_oop_null_scope_value);
  2444       } else {
  2445         scope_values->append(new ConstantOopWriteValue(c->as_jobject()));
  2447       return 1;
  2450     case T_INT: // fall through
  2451     case T_FLOAT: {
  2452       int value = c->as_jint_bits();
  2453       switch (value) {
  2454         case -1: scope_values->append(&_int_m1_scope_value); break;
  2455         case 0:  scope_values->append(&_int_0_scope_value); break;
  2456         case 1:  scope_values->append(&_int_1_scope_value); break;
  2457         case 2:  scope_values->append(&_int_2_scope_value); break;
  2458         default: scope_values->append(new ConstantIntValue(c->as_jint_bits())); break;
  2460       return 1;
  2463     case T_LONG: // fall through
  2464     case T_DOUBLE: {
  2465       if (hi_word_offset_in_bytes > lo_word_offset_in_bytes) {
  2466         scope_values->append(new ConstantIntValue(c->as_jint_hi_bits()));
  2467         scope_values->append(new ConstantIntValue(c->as_jint_lo_bits()));
  2468       } else {
  2469         scope_values->append(new ConstantIntValue(c->as_jint_lo_bits()));
  2470         scope_values->append(new ConstantIntValue(c->as_jint_hi_bits()));
  2473       return 2;
  2476     default:
  2477       ShouldNotReachHere();
  2481 int LinearScan::append_scope_value_for_operand(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) {
  2482   if (opr->is_single_stack()) {
  2483     int stack_idx = opr->single_stack_ix();
  2484     bool is_oop = opr->is_oop_register();
  2485     int cache_idx = (stack_idx + LinearScan::nof_cpu_regs) * 2 + (is_oop ? 1 : 0);
  2487     ScopeValue* sv = _scope_value_cache.at(cache_idx);
  2488     if (sv == NULL) {
  2489       Location::Type loc_type = is_oop ? Location::oop : Location::normal;
  2490       sv = location_for_name(stack_idx, loc_type);
  2491       _scope_value_cache.at_put(cache_idx, sv);
  2494     // check if cached value is correct
  2495     DEBUG_ONLY(assert_equal(sv, location_for_name(stack_idx, is_oop ? Location::oop : Location::normal)));
  2497     scope_values->append(sv);
  2498     return 1;
  2500   } else if (opr->is_single_cpu()) {
  2501     bool is_oop = opr->is_oop_register();
  2502     int cache_idx = opr->cpu_regnr() * 2 + (is_oop ? 1 : 0);
  2504     ScopeValue* sv = _scope_value_cache.at(cache_idx);
  2505     if (sv == NULL) {
  2506       Location::Type loc_type = is_oop ? Location::oop : Location::normal;
  2507       VMReg rname = frame_map()->regname(opr);
  2508       sv = new LocationValue(Location::new_reg_loc(loc_type, rname));
  2509       _scope_value_cache.at_put(cache_idx, sv);
  2512     // check if cached value is correct
  2513     DEBUG_ONLY(assert_equal(sv, new LocationValue(Location::new_reg_loc(is_oop ? Location::oop : Location::normal, frame_map()->regname(opr)))));
  2515     scope_values->append(sv);
  2516     return 1;
  2518 #ifdef IA32
  2519   } else if (opr->is_single_xmm()) {
  2520     VMReg rname = opr->as_xmm_float_reg()->as_VMReg();
  2521     LocationValue* sv = new LocationValue(Location::new_reg_loc(Location::normal, rname));
  2523     scope_values->append(sv);
  2524     return 1;
  2525 #endif
  2527   } else if (opr->is_single_fpu()) {
  2528 #ifdef IA32
  2529     // the exact location of fpu stack values is only known
  2530     // during fpu stack allocation, so the stack allocator object
  2531     // must be present
  2532     assert(use_fpu_stack_allocation(), "should not have float stack values without fpu stack allocation (all floats must be SSE2)");
  2533     assert(_fpu_stack_allocator != NULL, "must be present");
  2534     opr = _fpu_stack_allocator->to_fpu_stack(opr);
  2535 #endif
  2537     Location::Type loc_type = float_saved_as_double ? Location::float_in_dbl : Location::normal;
  2538     VMReg rname = frame_map()->fpu_regname(opr->fpu_regnr());
  2539     LocationValue* sv = new LocationValue(Location::new_reg_loc(loc_type, rname));
  2541     scope_values->append(sv);
  2542     return 1;
  2544   } else {
  2545     // double-size operands
  2547     ScopeValue* first;
  2548     ScopeValue* second;
  2550     if (opr->is_double_stack()) {
  2551       Location loc1, loc2;
  2552       if (!frame_map()->locations_for_slot(opr->double_stack_ix(), Location::normal, &loc1, &loc2)) {
  2553         bailout("too large frame");
  2555       first =  new LocationValue(loc1);
  2556       second = new LocationValue(loc2);
  2558     } else if (opr->is_double_cpu()) {
  2559 #ifdef _LP64
  2560       VMReg rname_first = opr->as_register_lo()->as_VMReg();
  2561       first = new LocationValue(Location::new_reg_loc(Location::lng, rname_first));
  2562       second = &_int_0_scope_value;
  2563 #else
  2564       VMReg rname_first = opr->as_register_lo()->as_VMReg();
  2565       VMReg rname_second = opr->as_register_hi()->as_VMReg();
  2567       if (hi_word_offset_in_bytes < lo_word_offset_in_bytes) {
  2568         // lo/hi and swapped relative to first and second, so swap them
  2569         VMReg tmp = rname_first;
  2570         rname_first = rname_second;
  2571         rname_second = tmp;
  2574       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
  2575       second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
  2576 #endif
  2578 #ifdef IA32
  2579     } else if (opr->is_double_xmm()) {
  2580       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation");
  2581       VMReg rname_first  = opr->as_xmm_double_reg()->as_VMReg();
  2582       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
  2583       // %%% This is probably a waste but we'll keep things as they were for now
  2584       if (true) {
  2585         VMReg rname_second = rname_first->next();
  2586         second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
  2588 #endif
  2590     } else if (opr->is_double_fpu()) {
  2591       // On SPARC, fpu_regnrLo/fpu_regnrHi represents the two halves of
  2592       // the double as float registers in the native ordering. On IA32,
  2593       // fpu_regnrLo is a FPU stack slot whose VMReg represents
  2594       // the low-order word of the double and fpu_regnrLo + 1 is the
  2595       // name for the other half.  *first and *second must represent the
  2596       // least and most significant words, respectively.
  2598 #ifdef IA32
  2599       // the exact location of fpu stack values is only known
  2600       // during fpu stack allocation, so the stack allocator object
  2601       // must be present
  2602       assert(use_fpu_stack_allocation(), "should not have float stack values without fpu stack allocation (all floats must be SSE2)");
  2603       assert(_fpu_stack_allocator != NULL, "must be present");
  2604       opr = _fpu_stack_allocator->to_fpu_stack(opr);
  2606       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation (only fpu_regnrHi is used)");
  2607 #endif
  2608 #ifdef SPARC
  2609       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi() + 1, "assumed in calculation (only fpu_regnrHi is used)");
  2610 #endif
  2612       VMReg rname_first = frame_map()->fpu_regname(opr->fpu_regnrHi());
  2614       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
  2615       // %%% This is probably a waste but we'll keep things as they were for now
  2616       if (true) {
  2617         VMReg rname_second = rname_first->next();
  2618         second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
  2621     } else {
  2622       ShouldNotReachHere();
  2623       first = NULL;
  2624       second = NULL;
  2627     assert(first != NULL && second != NULL, "must be set");
  2628     // The convention the interpreter uses is that the second local
  2629     // holds the first raw word of the native double representation.
  2630     // This is actually reasonable, since locals and stack arrays
  2631     // grow downwards in all implementations.
  2632     // (If, on some machine, the interpreter's Java locals or stack
  2633     // were to grow upwards, the embedded doubles would be word-swapped.)
  2634     scope_values->append(second);
  2635     scope_values->append(first);
  2636     return 2;
  2641 int LinearScan::append_scope_value(int op_id, Value value, GrowableArray<ScopeValue*>* scope_values) {
  2642   if (value != NULL) {
  2643     LIR_Opr opr = value->operand();
  2644     Constant* con = value->as_Constant();
  2646     assert(con == NULL || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "asumption: Constant instructions have only constant operands (or illegal if constant is optimized away)");
  2647     assert(con != NULL || opr->is_virtual(), "asumption: non-Constant instructions have only virtual operands");
  2649     if (con != NULL && !con->is_pinned() && !opr->is_constant()) {
  2650       // Unpinned constants may have a virtual operand for a part of the lifetime
  2651       // or may be illegal when it was optimized away,
  2652       // so always use a constant operand
  2653       opr = LIR_OprFact::value_type(con->type());
  2655     assert(opr->is_virtual() || opr->is_constant(), "other cases not allowed here");
  2657     if (opr->is_virtual()) {
  2658       LIR_OpVisitState::OprMode mode = LIR_OpVisitState::inputMode;
  2660       BlockBegin* block = block_of_op_with_id(op_id);
  2661       if (block->number_of_sux() == 1 && op_id == block->last_lir_instruction_id()) {
  2662         // generating debug information for the last instruction of a block.
  2663         // if this instruction is a branch, spill moves are inserted before this branch
  2664         // and so the wrong operand would be returned (spill moves at block boundaries are not
  2665         // considered in the live ranges of intervals)
  2666         // Solution: use the first op_id of the branch target block instead.
  2667         if (block->lir()->instructions_list()->last()->as_OpBranch() != NULL) {
  2668           if (block->live_out().at(opr->vreg_number())) {
  2669             op_id = block->sux_at(0)->first_lir_instruction_id();
  2670             mode = LIR_OpVisitState::outputMode;
  2675       // Get current location of operand
  2676       // The operand must be live because debug information is considered when building the intervals
  2677       // if the interval is not live, color_lir_opr will cause an assertion failure
  2678       opr = color_lir_opr(opr, op_id, mode);
  2679       assert(!has_call(op_id) || opr->is_stack() || !is_caller_save(reg_num(opr)), "can not have caller-save register operands at calls");
  2681       // Append to ScopeValue array
  2682       return append_scope_value_for_operand(opr, scope_values);
  2684     } else {
  2685       assert(value->as_Constant() != NULL, "all other instructions have only virtual operands");
  2686       assert(opr->is_constant(), "operand must be constant");
  2688       return append_scope_value_for_constant(opr, scope_values);
  2690   } else {
  2691     // append a dummy value because real value not needed
  2692     scope_values->append(&_illegal_value);
  2693     return 1;
  2698 IRScopeDebugInfo* LinearScan::compute_debug_info_for_scope(int op_id, IRScope* cur_scope, ValueStack* cur_state, ValueStack* innermost_state, int cur_bci, int stack_end, int locks_end) {
  2699   IRScopeDebugInfo* caller_debug_info = NULL;
  2700   int stack_begin, locks_begin;
  2702   ValueStack* caller_state = cur_scope->caller_state();
  2703   if (caller_state != NULL) {
  2704     // process recursively to compute outermost scope first
  2705     stack_begin = caller_state->stack_size();
  2706     locks_begin = caller_state->locks_size();
  2707     caller_debug_info = compute_debug_info_for_scope(op_id, cur_scope->caller(), caller_state, innermost_state, cur_scope->caller_bci(), stack_begin, locks_begin);
  2708   } else {
  2709     stack_begin = 0;
  2710     locks_begin = 0;
  2713   // initialize these to null.
  2714   // If we don't need deopt info or there are no locals, expressions or monitors,
  2715   // then these get recorded as no information and avoids the allocation of 0 length arrays.
  2716   GrowableArray<ScopeValue*>*   locals      = NULL;
  2717   GrowableArray<ScopeValue*>*   expressions = NULL;
  2718   GrowableArray<MonitorValue*>* monitors    = NULL;
  2720   // describe local variable values
  2721   int nof_locals = cur_scope->method()->max_locals();
  2722   if (nof_locals > 0) {
  2723     locals = new GrowableArray<ScopeValue*>(nof_locals);
  2725     int pos = 0;
  2726     while (pos < nof_locals) {
  2727       assert(pos < cur_state->locals_size(), "why not?");
  2729       Value local = cur_state->local_at(pos);
  2730       pos += append_scope_value(op_id, local, locals);
  2732       assert(locals->length() == pos, "must match");
  2734     assert(locals->length() == cur_scope->method()->max_locals(), "wrong number of locals");
  2735     assert(locals->length() == cur_state->locals_size(), "wrong number of locals");
  2739   // describe expression stack
  2740   //
  2741   // When we inline methods containing exception handlers, the
  2742   // "lock_stacks" are changed to preserve expression stack values
  2743   // in caller scopes when exception handlers are present. This
  2744   // can cause callee stacks to be smaller than caller stacks.
  2745   if (stack_end > innermost_state->stack_size()) {
  2746     stack_end = innermost_state->stack_size();
  2751   int nof_stack = stack_end - stack_begin;
  2752   if (nof_stack > 0) {
  2753     expressions = new GrowableArray<ScopeValue*>(nof_stack);
  2755     int pos = stack_begin;
  2756     while (pos < stack_end) {
  2757       Value expression = innermost_state->stack_at_inc(pos);
  2758       append_scope_value(op_id, expression, expressions);
  2760       assert(expressions->length() + stack_begin == pos, "must match");
  2764   // describe monitors
  2765   assert(locks_begin <= locks_end, "error in scope iteration");
  2766   int nof_locks = locks_end - locks_begin;
  2767   if (nof_locks > 0) {
  2768     monitors = new GrowableArray<MonitorValue*>(nof_locks);
  2769     for (int i = locks_begin; i < locks_end; i++) {
  2770       monitors->append(location_for_monitor_index(i));
  2774   return new IRScopeDebugInfo(cur_scope, cur_bci, locals, expressions, monitors, caller_debug_info);
  2778 void LinearScan::compute_debug_info(CodeEmitInfo* info, int op_id) {
  2779   if (!compilation()->needs_debug_information()) {
  2780     return;
  2782   TRACE_LINEAR_SCAN(3, tty->print_cr("creating debug information at op_id %d", op_id));
  2784   IRScope* innermost_scope = info->scope();
  2785   ValueStack* innermost_state = info->stack();
  2787   assert(innermost_scope != NULL && innermost_state != NULL, "why is it missing?");
  2789   int stack_end = innermost_state->stack_size();
  2790   int locks_end = innermost_state->locks_size();
  2792   DEBUG_ONLY(check_stack_depth(info, stack_end));
  2794   if (info->_scope_debug_info == NULL) {
  2795     // compute debug information
  2796     info->_scope_debug_info = compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state, info->bci(), stack_end, locks_end);
  2797   } else {
  2798     // debug information already set. Check that it is correct from the current point of view
  2799     DEBUG_ONLY(assert_equal(info->_scope_debug_info, compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state, info->bci(), stack_end, locks_end)));
  2804 void LinearScan::assign_reg_num(LIR_OpList* instructions, IntervalWalker* iw) {
  2805   LIR_OpVisitState visitor;
  2806   int num_inst = instructions->length();
  2807   bool has_dead = false;
  2809   for (int j = 0; j < num_inst; j++) {
  2810     LIR_Op* op = instructions->at(j);
  2811     if (op == NULL) {  // this can happen when spill-moves are removed in eliminate_spill_moves
  2812       has_dead = true;
  2813       continue;
  2815     int op_id = op->id();
  2817     // visit instruction to get list of operands
  2818     visitor.visit(op);
  2820     // iterate all modes of the visitor and process all virtual operands
  2821     for_each_visitor_mode(mode) {
  2822       int n = visitor.opr_count(mode);
  2823       for (int k = 0; k < n; k++) {
  2824         LIR_Opr opr = visitor.opr_at(mode, k);
  2825         if (opr->is_virtual_register()) {
  2826           visitor.set_opr_at(mode, k, color_lir_opr(opr, op_id, mode));
  2831     if (visitor.info_count() > 0) {
  2832       // exception handling
  2833       if (compilation()->has_exception_handlers()) {
  2834         XHandlers* xhandlers = visitor.all_xhandler();
  2835         int n = xhandlers->length();
  2836         for (int k = 0; k < n; k++) {
  2837           XHandler* handler = xhandlers->handler_at(k);
  2838           if (handler->entry_code() != NULL) {
  2839             assign_reg_num(handler->entry_code()->instructions_list(), NULL);
  2842       } else {
  2843         assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
  2846       // compute oop map
  2847       assert(iw != NULL, "needed for compute_oop_map");
  2848       compute_oop_map(iw, visitor, op);
  2850       // compute debug information
  2851       if (!use_fpu_stack_allocation()) {
  2852         // compute debug information if fpu stack allocation is not needed.
  2853         // when fpu stack allocation is needed, the debug information can not
  2854         // be computed here because the exact location of fpu operands is not known
  2855         // -> debug information is created inside the fpu stack allocator
  2856         int n = visitor.info_count();
  2857         for (int k = 0; k < n; k++) {
  2858           compute_debug_info(visitor.info_at(k), op_id);
  2863 #ifdef ASSERT
  2864     // make sure we haven't made the op invalid.
  2865     op->verify();
  2866 #endif
  2868 #ifndef _LP64
  2869     // remove useless moves
  2870     if (op->code() == lir_move) {
  2871       assert(op->as_Op1() != NULL, "move must be LIR_Op1");
  2872       LIR_Op1* move = (LIR_Op1*)op;
  2873       LIR_Opr src = move->in_opr();
  2874       LIR_Opr dst = move->result_opr();
  2875       if (dst == src ||
  2876           !dst->is_pointer() && !src->is_pointer() &&
  2877           src->is_same_register(dst)) {
  2878         instructions->at_put(j, NULL);
  2879         has_dead = true;
  2882 #endif
  2885   if (has_dead) {
  2886     // iterate all instructions of the block and remove all null-values.
  2887     int insert_point = 0;
  2888     for (int j = 0; j < num_inst; j++) {
  2889       LIR_Op* op = instructions->at(j);
  2890       if (op != NULL) {
  2891         if (insert_point != j) {
  2892           instructions->at_put(insert_point, op);
  2894         insert_point++;
  2897     instructions->truncate(insert_point);
  2901 void LinearScan::assign_reg_num() {
  2902   TIME_LINEAR_SCAN(timer_assign_reg_num);
  2904   init_compute_debug_info();
  2905   IntervalWalker* iw = init_compute_oop_maps();
  2907   int num_blocks = block_count();
  2908   for (int i = 0; i < num_blocks; i++) {
  2909     BlockBegin* block = block_at(i);
  2910     assign_reg_num(block->lir()->instructions_list(), iw);
  2915 void LinearScan::do_linear_scan() {
  2916   NOT_PRODUCT(_total_timer.begin_method());
  2918   number_instructions();
  2920   NOT_PRODUCT(print_lir(1, "Before Register Allocation"));
  2922   compute_local_live_sets();
  2923   compute_global_live_sets();
  2924   CHECK_BAILOUT();
  2926   build_intervals();
  2927   CHECK_BAILOUT();
  2928   sort_intervals_before_allocation();
  2930   NOT_PRODUCT(print_intervals("Before Register Allocation"));
  2931   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_before_alloc));
  2933   allocate_registers();
  2934   CHECK_BAILOUT();
  2936   resolve_data_flow();
  2937   if (compilation()->has_exception_handlers()) {
  2938     resolve_exception_handlers();
  2940   // fill in number of spill slots into frame_map
  2941   propagate_spill_slots();
  2942   CHECK_BAILOUT();
  2944   NOT_PRODUCT(print_intervals("After Register Allocation"));
  2945   NOT_PRODUCT(print_lir(2, "LIR after register allocation:"));
  2946   DEBUG_ONLY(verify());
  2948   sort_intervals_after_allocation();
  2949   eliminate_spill_moves();
  2950   assign_reg_num();
  2951   CHECK_BAILOUT();
  2953   NOT_PRODUCT(print_lir(2, "LIR after assignment of register numbers:"));
  2954   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_after_asign));
  2956   { TIME_LINEAR_SCAN(timer_allocate_fpu_stack);
  2958     if (use_fpu_stack_allocation()) {
  2959       allocate_fpu_stack(); // Only has effect on Intel
  2960       NOT_PRODUCT(print_lir(2, "LIR after FPU stack allocation:"));
  2964   { TIME_LINEAR_SCAN(timer_optimize_lir);
  2966     EdgeMoveOptimizer::optimize(ir()->code());
  2967     ControlFlowOptimizer::optimize(ir()->code());
  2968     // check that cfg is still correct after optimizations
  2969     ir()->verify();
  2972   NOT_PRODUCT(print_lir(1, "Before Code Generation", false));
  2973   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_final));
  2974   NOT_PRODUCT(_total_timer.end_method(this));
  2978 // ********** Printing functions
  2980 #ifndef PRODUCT
  2982 void LinearScan::print_timers(double total) {
  2983   _total_timer.print(total);
  2986 void LinearScan::print_statistics() {
  2987   _stat_before_alloc.print("before allocation");
  2988   _stat_after_asign.print("after assignment of register");
  2989   _stat_final.print("after optimization");
  2992 void LinearScan::print_bitmap(BitMap& b) {
  2993   for (unsigned int i = 0; i < b.size(); i++) {
  2994     if (b.at(i)) tty->print("%d ", i);
  2996   tty->cr();
  2999 void LinearScan::print_intervals(const char* label) {
  3000   if (TraceLinearScanLevel >= 1) {
  3001     int i;
  3002     tty->cr();
  3003     tty->print_cr("%s", label);
  3005     for (i = 0; i < interval_count(); i++) {
  3006       Interval* interval = interval_at(i);
  3007       if (interval != NULL) {
  3008         interval->print();
  3012     tty->cr();
  3013     tty->print_cr("--- Basic Blocks ---");
  3014     for (i = 0; i < block_count(); i++) {
  3015       BlockBegin* block = block_at(i);
  3016       tty->print("B%d [%d, %d, %d, %d] ", block->block_id(), block->first_lir_instruction_id(), block->last_lir_instruction_id(), block->loop_index(), block->loop_depth());
  3018     tty->cr();
  3019     tty->cr();
  3022   if (PrintCFGToFile) {
  3023     CFGPrinter::print_intervals(&_intervals, label);
  3027 void LinearScan::print_lir(int level, const char* label, bool hir_valid) {
  3028   if (TraceLinearScanLevel >= level) {
  3029     tty->cr();
  3030     tty->print_cr("%s", label);
  3031     print_LIR(ir()->linear_scan_order());
  3032     tty->cr();
  3035   if (level == 1 && PrintCFGToFile) {
  3036     CFGPrinter::print_cfg(ir()->linear_scan_order(), label, hir_valid, true);
  3040 #endif //PRODUCT
  3043 // ********** verification functions for allocation
  3044 // (check that all intervals have a correct register and that no registers are overwritten)
  3045 #ifdef ASSERT
  3047 void LinearScan::verify() {
  3048   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying intervals ******************************************"));
  3049   verify_intervals();
  3051   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that no oops are in fixed intervals ****************"));
  3052   verify_no_oops_in_fixed_intervals();
  3054   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that unpinned constants are not alive across block boundaries"));
  3055   verify_constants();
  3057   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying register allocation ********************************"));
  3058   verify_registers();
  3060   TRACE_LINEAR_SCAN(2, tty->print_cr("********* no errors found **********************************************"));
  3063 void LinearScan::verify_intervals() {
  3064   int len = interval_count();
  3065   bool has_error = false;
  3067   for (int i = 0; i < len; i++) {
  3068     Interval* i1 = interval_at(i);
  3069     if (i1 == NULL) continue;
  3071     i1->check_split_children();
  3073     if (i1->reg_num() != i) {
  3074       tty->print_cr("Interval %d is on position %d in list", i1->reg_num(), i); i1->print(); tty->cr();
  3075       has_error = true;
  3078     if (i1->reg_num() >= LIR_OprDesc::vreg_base && i1->type() == T_ILLEGAL) {
  3079       tty->print_cr("Interval %d has no type assigned", i1->reg_num()); i1->print(); tty->cr();
  3080       has_error = true;
  3083     if (i1->assigned_reg() == any_reg) {
  3084       tty->print_cr("Interval %d has no register assigned", i1->reg_num()); i1->print(); tty->cr();
  3085       has_error = true;
  3088     if (i1->assigned_reg() == i1->assigned_regHi()) {
  3089       tty->print_cr("Interval %d: low and high register equal", i1->reg_num()); i1->print(); tty->cr();
  3090       has_error = true;
  3093     if (!is_processed_reg_num(i1->assigned_reg())) {
  3094       tty->print_cr("Can not have an Interval for an ignored register"); i1->print(); tty->cr();
  3095       has_error = true;
  3098     if (i1->first() == Range::end()) {
  3099       tty->print_cr("Interval %d has no Range", i1->reg_num()); i1->print(); tty->cr();
  3100       has_error = true;
  3103     for (Range* r = i1->first(); r != Range::end(); r = r->next()) {
  3104       if (r->from() >= r->to()) {
  3105         tty->print_cr("Interval %d has zero length range", i1->reg_num()); i1->print(); tty->cr();
  3106         has_error = true;
  3110     for (int j = i + 1; j < len; j++) {
  3111       Interval* i2 = interval_at(j);
  3112       if (i2 == NULL) continue;
  3114       // special intervals that are created in MoveResolver
  3115       // -> ignore them because the range information has no meaning there
  3116       if (i1->from() == 1 && i1->to() == 2) continue;
  3117       if (i2->from() == 1 && i2->to() == 2) continue;
  3119       int r1 = i1->assigned_reg();
  3120       int r1Hi = i1->assigned_regHi();
  3121       int r2 = i2->assigned_reg();
  3122       int r2Hi = i2->assigned_regHi();
  3123       if (i1->intersects(i2) && (r1 == r2 || r1 == r2Hi || (r1Hi != any_reg && (r1Hi == r2 || r1Hi == r2Hi)))) {
  3124         tty->print_cr("Intervals %d and %d overlap and have the same register assigned", i1->reg_num(), i2->reg_num());
  3125         i1->print(); tty->cr();
  3126         i2->print(); tty->cr();
  3127         has_error = true;
  3132   assert(has_error == false, "register allocation invalid");
  3136 void LinearScan::verify_no_oops_in_fixed_intervals() {
  3137   LIR_OpVisitState visitor;
  3138   for (int i = 0; i < block_count(); i++) {
  3139     BlockBegin* block = block_at(i);
  3141     LIR_OpList* instructions = block->lir()->instructions_list();
  3143     for (int j = 0; j < instructions->length(); j++) {
  3144       LIR_Op* op = instructions->at(j);
  3145       int op_id = op->id();
  3147       visitor.visit(op);
  3149       // oop-maps at calls do not contain registers, so check is not needed
  3150       if (!visitor.has_call()) {
  3152         for_each_visitor_mode(mode) {
  3153           int n = visitor.opr_count(mode);
  3154           for (int k = 0; k < n; k++) {
  3155             LIR_Opr opr = visitor.opr_at(mode, k);
  3157             if (opr->is_fixed_cpu() && opr->is_oop()) {
  3158               // operand is a non-virtual cpu register and contains an oop
  3159               TRACE_LINEAR_SCAN(4, op->print_on(tty); tty->print("checking operand "); opr->print(); tty->cr());
  3161               Interval* interval = interval_at(reg_num(opr));
  3162               assert(interval != NULL, "no interval");
  3164               if (mode == LIR_OpVisitState::inputMode) {
  3165                 if (interval->to() >= op_id + 1) {
  3166                   assert(interval->to() < op_id + 2 ||
  3167                          interval->has_hole_between(op_id, op_id + 2),
  3168                          "oop input operand live after instruction");
  3170               } else if (mode == LIR_OpVisitState::outputMode) {
  3171                 if (interval->from() <= op_id - 1) {
  3172                   assert(interval->has_hole_between(op_id - 1, op_id),
  3173                          "oop input operand live after instruction");
  3185 void LinearScan::verify_constants() {
  3186   int num_regs = num_virtual_regs();
  3187   int size = live_set_size();
  3188   int num_blocks = block_count();
  3190   for (int i = 0; i < num_blocks; i++) {
  3191     BlockBegin* block = block_at(i);
  3192     BitMap live_at_edge = block->live_in();
  3194     // visit all registers where the live_at_edge bit is set
  3195     for (int r = live_at_edge.get_next_one_offset(0, size); r < size; r = live_at_edge.get_next_one_offset(r + 1, size)) {
  3196       TRACE_LINEAR_SCAN(4, tty->print("checking interval %d of block B%d", r, block->block_id()));
  3198       Value value = gen()->instruction_for_vreg(r);
  3200       assert(value != NULL, "all intervals live across block boundaries must have Value");
  3201       assert(value->operand()->is_register() && value->operand()->is_virtual(), "value must have virtual operand");
  3202       assert(value->operand()->vreg_number() == r, "register number must match");
  3203       // TKR assert(value->as_Constant() == NULL || value->is_pinned(), "only pinned constants can be alive accross block boundaries");
  3209 class RegisterVerifier: public StackObj {
  3210  private:
  3211   LinearScan*   _allocator;
  3212   BlockList     _work_list;      // all blocks that must be processed
  3213   IntervalsList _saved_states;   // saved information of previous check
  3215   // simplified access to methods of LinearScan
  3216   Compilation*  compilation() const              { return _allocator->compilation(); }
  3217   Interval*     interval_at(int reg_num) const   { return _allocator->interval_at(reg_num); }
  3218   int           reg_num(LIR_Opr opr) const       { return _allocator->reg_num(opr); }
  3220   // currently, only registers are processed
  3221   int           state_size()                     { return LinearScan::nof_regs; }
  3223   // accessors
  3224   IntervalList* state_for_block(BlockBegin* block) { return _saved_states.at(block->block_id()); }
  3225   void          set_state_for_block(BlockBegin* block, IntervalList* saved_state) { _saved_states.at_put(block->block_id(), saved_state); }
  3226   void          add_to_work_list(BlockBegin* block) { if (!_work_list.contains(block)) _work_list.append(block); }
  3228   // helper functions
  3229   IntervalList* copy(IntervalList* input_state);
  3230   void          state_put(IntervalList* input_state, int reg, Interval* interval);
  3231   bool          check_state(IntervalList* input_state, int reg, Interval* interval);
  3233   void process_block(BlockBegin* block);
  3234   void process_xhandler(XHandler* xhandler, IntervalList* input_state);
  3235   void process_successor(BlockBegin* block, IntervalList* input_state);
  3236   void process_operations(LIR_List* ops, IntervalList* input_state);
  3238  public:
  3239   RegisterVerifier(LinearScan* allocator)
  3240     : _allocator(allocator)
  3241     , _work_list(16)
  3242     , _saved_states(BlockBegin::number_of_blocks(), NULL)
  3243   { }
  3245   void verify(BlockBegin* start);
  3246 };
  3249 // entry function from LinearScan that starts the verification
  3250 void LinearScan::verify_registers() {
  3251   RegisterVerifier verifier(this);
  3252   verifier.verify(block_at(0));
  3256 void RegisterVerifier::verify(BlockBegin* start) {
  3257   // setup input registers (method arguments) for first block
  3258   IntervalList* input_state = new IntervalList(state_size(), NULL);
  3259   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
  3260   for (int n = 0; n < args->length(); n++) {
  3261     LIR_Opr opr = args->at(n);
  3262     if (opr->is_register()) {
  3263       Interval* interval = interval_at(reg_num(opr));
  3265       if (interval->assigned_reg() < state_size()) {
  3266         input_state->at_put(interval->assigned_reg(), interval);
  3268       if (interval->assigned_regHi() != LinearScan::any_reg && interval->assigned_regHi() < state_size()) {
  3269         input_state->at_put(interval->assigned_regHi(), interval);
  3274   set_state_for_block(start, input_state);
  3275   add_to_work_list(start);
  3277   // main loop for verification
  3278   do {
  3279     BlockBegin* block = _work_list.at(0);
  3280     _work_list.remove_at(0);
  3282     process_block(block);
  3283   } while (!_work_list.is_empty());
  3286 void RegisterVerifier::process_block(BlockBegin* block) {
  3287   TRACE_LINEAR_SCAN(2, tty->cr(); tty->print_cr("process_block B%d", block->block_id()));
  3289   // must copy state because it is modified
  3290   IntervalList* input_state = copy(state_for_block(block));
  3292   if (TraceLinearScanLevel >= 4) {
  3293     tty->print_cr("Input-State of intervals:");
  3294     tty->print("    ");
  3295     for (int i = 0; i < state_size(); i++) {
  3296       if (input_state->at(i) != NULL) {
  3297         tty->print(" %4d", input_state->at(i)->reg_num());
  3298       } else {
  3299         tty->print("   __");
  3302     tty->cr();
  3303     tty->cr();
  3306   // process all operations of the block
  3307   process_operations(block->lir(), input_state);
  3309   // iterate all successors
  3310   for (int i = 0; i < block->number_of_sux(); i++) {
  3311     process_successor(block->sux_at(i), input_state);
  3315 void RegisterVerifier::process_xhandler(XHandler* xhandler, IntervalList* input_state) {
  3316   TRACE_LINEAR_SCAN(2, tty->print_cr("process_xhandler B%d", xhandler->entry_block()->block_id()));
  3318   // must copy state because it is modified
  3319   input_state = copy(input_state);
  3321   if (xhandler->entry_code() != NULL) {
  3322     process_operations(xhandler->entry_code(), input_state);
  3324   process_successor(xhandler->entry_block(), input_state);
  3327 void RegisterVerifier::process_successor(BlockBegin* block, IntervalList* input_state) {
  3328   IntervalList* saved_state = state_for_block(block);
  3330   if (saved_state != NULL) {
  3331     // this block was already processed before.
  3332     // check if new input_state is consistent with saved_state
  3334     bool saved_state_correct = true;
  3335     for (int i = 0; i < state_size(); i++) {
  3336       if (input_state->at(i) != saved_state->at(i)) {
  3337         // current input_state and previous saved_state assume a different
  3338         // interval in this register -> assume that this register is invalid
  3339         if (saved_state->at(i) != NULL) {
  3340           // invalidate old calculation only if it assumed that
  3341           // register was valid. when the register was already invalid,
  3342           // then the old calculation was correct.
  3343           saved_state_correct = false;
  3344           saved_state->at_put(i, NULL);
  3346           TRACE_LINEAR_SCAN(4, tty->print_cr("process_successor B%d: invalidating slot %d", block->block_id(), i));
  3351     if (saved_state_correct) {
  3352       // already processed block with correct input_state
  3353       TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: previous visit already correct", block->block_id()));
  3354     } else {
  3355       // must re-visit this block
  3356       TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: must re-visit because input state changed", block->block_id()));
  3357       add_to_work_list(block);
  3360   } else {
  3361     // block was not processed before, so set initial input_state
  3362     TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: initial visit", block->block_id()));
  3364     set_state_for_block(block, copy(input_state));
  3365     add_to_work_list(block);
  3370 IntervalList* RegisterVerifier::copy(IntervalList* input_state) {
  3371   IntervalList* copy_state = new IntervalList(input_state->length());
  3372   copy_state->push_all(input_state);
  3373   return copy_state;
  3376 void RegisterVerifier::state_put(IntervalList* input_state, int reg, Interval* interval) {
  3377   if (reg != LinearScan::any_reg && reg < state_size()) {
  3378     if (interval != NULL) {
  3379       TRACE_LINEAR_SCAN(4, tty->print_cr("        reg[%d] = %d", reg, interval->reg_num()));
  3380     } else if (input_state->at(reg) != NULL) {
  3381       TRACE_LINEAR_SCAN(4, tty->print_cr("        reg[%d] = NULL", reg));
  3384     input_state->at_put(reg, interval);
  3388 bool RegisterVerifier::check_state(IntervalList* input_state, int reg, Interval* interval) {
  3389   if (reg != LinearScan::any_reg && reg < state_size()) {
  3390     if (input_state->at(reg) != interval) {
  3391       tty->print_cr("!! Error in register allocation: register %d does not contain interval %d", reg, interval->reg_num());
  3392       return true;
  3395   return false;
  3398 void RegisterVerifier::process_operations(LIR_List* ops, IntervalList* input_state) {
  3399   // visit all instructions of the block
  3400   LIR_OpVisitState visitor;
  3401   bool has_error = false;
  3403   for (int i = 0; i < ops->length(); i++) {
  3404     LIR_Op* op = ops->at(i);
  3405     visitor.visit(op);
  3407     TRACE_LINEAR_SCAN(4, op->print_on(tty));
  3409     // check if input operands are correct
  3410     int j;
  3411     int n = visitor.opr_count(LIR_OpVisitState::inputMode);
  3412     for (j = 0; j < n; j++) {
  3413       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, j);
  3414       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
  3415         Interval* interval = interval_at(reg_num(opr));
  3416         if (op->id() != -1) {
  3417           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::inputMode);
  3420         has_error |= check_state(input_state, interval->assigned_reg(),   interval->split_parent());
  3421         has_error |= check_state(input_state, interval->assigned_regHi(), interval->split_parent());
  3423         // When an operand is marked with is_last_use, then the fpu stack allocator
  3424         // removes the register from the fpu stack -> the register contains no value
  3425         if (opr->is_last_use()) {
  3426           state_put(input_state, interval->assigned_reg(),   NULL);
  3427           state_put(input_state, interval->assigned_regHi(), NULL);
  3432     // invalidate all caller save registers at calls
  3433     if (visitor.has_call()) {
  3434       for (j = 0; j < FrameMap::nof_caller_save_cpu_regs; j++) {
  3435         state_put(input_state, reg_num(FrameMap::caller_save_cpu_reg_at(j)), NULL);
  3437       for (j = 0; j < FrameMap::nof_caller_save_fpu_regs; j++) {
  3438         state_put(input_state, reg_num(FrameMap::caller_save_fpu_reg_at(j)), NULL);
  3441 #ifdef IA32
  3442       for (j = 0; j < FrameMap::nof_caller_save_xmm_regs; j++) {
  3443         state_put(input_state, reg_num(FrameMap::caller_save_xmm_reg_at(j)), NULL);
  3445 #endif
  3448     // process xhandler before output and temp operands
  3449     XHandlers* xhandlers = visitor.all_xhandler();
  3450     n = xhandlers->length();
  3451     for (int k = 0; k < n; k++) {
  3452       process_xhandler(xhandlers->handler_at(k), input_state);
  3455     // set temp operands (some operations use temp operands also as output operands, so can't set them NULL)
  3456     n = visitor.opr_count(LIR_OpVisitState::tempMode);
  3457     for (j = 0; j < n; j++) {
  3458       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, j);
  3459       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
  3460         Interval* interval = interval_at(reg_num(opr));
  3461         if (op->id() != -1) {
  3462           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::tempMode);
  3465         state_put(input_state, interval->assigned_reg(),   interval->split_parent());
  3466         state_put(input_state, interval->assigned_regHi(), interval->split_parent());
  3470     // set output operands
  3471     n = visitor.opr_count(LIR_OpVisitState::outputMode);
  3472     for (j = 0; j < n; j++) {
  3473       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, j);
  3474       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
  3475         Interval* interval = interval_at(reg_num(opr));
  3476         if (op->id() != -1) {
  3477           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::outputMode);
  3480         state_put(input_state, interval->assigned_reg(),   interval->split_parent());
  3481         state_put(input_state, interval->assigned_regHi(), interval->split_parent());
  3485   assert(has_error == false, "Error in register allocation");
  3488 #endif // ASSERT
  3492 // **** Implementation of MoveResolver ******************************
  3494 MoveResolver::MoveResolver(LinearScan* allocator) :
  3495   _allocator(allocator),
  3496   _multiple_reads_allowed(false),
  3497   _mapping_from(8),
  3498   _mapping_from_opr(8),
  3499   _mapping_to(8),
  3500   _insert_list(NULL),
  3501   _insert_idx(-1),
  3502   _insertion_buffer()
  3504   for (int i = 0; i < LinearScan::nof_regs; i++) {
  3505     _register_blocked[i] = 0;
  3507   DEBUG_ONLY(check_empty());
  3511 #ifdef ASSERT
  3513 void MoveResolver::check_empty() {
  3514   assert(_mapping_from.length() == 0 && _mapping_from_opr.length() == 0 && _mapping_to.length() == 0, "list must be empty before and after processing");
  3515   for (int i = 0; i < LinearScan::nof_regs; i++) {
  3516     assert(register_blocked(i) == 0, "register map must be empty before and after processing");
  3518   assert(_multiple_reads_allowed == false, "must have default value");
  3521 void MoveResolver::verify_before_resolve() {
  3522   assert(_mapping_from.length() == _mapping_from_opr.length(), "length must be equal");
  3523   assert(_mapping_from.length() == _mapping_to.length(), "length must be equal");
  3524   assert(_insert_list != NULL && _insert_idx != -1, "insert position not set");
  3526   int i, j;
  3527   if (!_multiple_reads_allowed) {
  3528     for (i = 0; i < _mapping_from.length(); i++) {
  3529       for (j = i + 1; j < _mapping_from.length(); j++) {
  3530         assert(_mapping_from.at(i) == NULL || _mapping_from.at(i) != _mapping_from.at(j), "cannot read from same interval twice");
  3535   for (i = 0; i < _mapping_to.length(); i++) {
  3536     for (j = i + 1; j < _mapping_to.length(); j++) {
  3537       assert(_mapping_to.at(i) != _mapping_to.at(j), "cannot write to same interval twice");
  3542   BitMap used_regs(LinearScan::nof_regs + allocator()->frame_map()->argcount() + allocator()->max_spills());
  3543   used_regs.clear();
  3544   if (!_multiple_reads_allowed) {
  3545     for (i = 0; i < _mapping_from.length(); i++) {
  3546       Interval* it = _mapping_from.at(i);
  3547       if (it != NULL) {
  3548         assert(!used_regs.at(it->assigned_reg()), "cannot read from same register twice");
  3549         used_regs.set_bit(it->assigned_reg());
  3551         if (it->assigned_regHi() != LinearScan::any_reg) {
  3552           assert(!used_regs.at(it->assigned_regHi()), "cannot read from same register twice");
  3553           used_regs.set_bit(it->assigned_regHi());
  3559   used_regs.clear();
  3560   for (i = 0; i < _mapping_to.length(); i++) {
  3561     Interval* it = _mapping_to.at(i);
  3562     assert(!used_regs.at(it->assigned_reg()), "cannot write to same register twice");
  3563     used_regs.set_bit(it->assigned_reg());
  3565     if (it->assigned_regHi() != LinearScan::any_reg) {
  3566       assert(!used_regs.at(it->assigned_regHi()), "cannot write to same register twice");
  3567       used_regs.set_bit(it->assigned_regHi());
  3571   used_regs.clear();
  3572   for (i = 0; i < _mapping_from.length(); i++) {
  3573     Interval* it = _mapping_from.at(i);
  3574     if (it != NULL && it->assigned_reg() >= LinearScan::nof_regs) {
  3575       used_regs.set_bit(it->assigned_reg());
  3578   for (i = 0; i < _mapping_to.length(); i++) {
  3579     Interval* it = _mapping_to.at(i);
  3580     assert(!used_regs.at(it->assigned_reg()) || it->assigned_reg() == _mapping_from.at(i)->assigned_reg(), "stack slots used in _mapping_from must be disjoint to _mapping_to");
  3584 #endif // ASSERT
  3587 // mark assigned_reg and assigned_regHi of the interval as blocked
  3588 void MoveResolver::block_registers(Interval* it) {
  3589   int reg = it->assigned_reg();
  3590   if (reg < LinearScan::nof_regs) {
  3591     assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used");
  3592     set_register_blocked(reg, 1);
  3594   reg = it->assigned_regHi();
  3595   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
  3596     assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used");
  3597     set_register_blocked(reg, 1);
  3601 // mark assigned_reg and assigned_regHi of the interval as unblocked
  3602 void MoveResolver::unblock_registers(Interval* it) {
  3603   int reg = it->assigned_reg();
  3604   if (reg < LinearScan::nof_regs) {
  3605     assert(register_blocked(reg) > 0, "register already marked as unused");
  3606     set_register_blocked(reg, -1);
  3608   reg = it->assigned_regHi();
  3609   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
  3610     assert(register_blocked(reg) > 0, "register already marked as unused");
  3611     set_register_blocked(reg, -1);
  3615 // check if assigned_reg and assigned_regHi of the to-interval are not blocked (or only blocked by from)
  3616 bool MoveResolver::save_to_process_move(Interval* from, Interval* to) {
  3617   int from_reg = -1;
  3618   int from_regHi = -1;
  3619   if (from != NULL) {
  3620     from_reg = from->assigned_reg();
  3621     from_regHi = from->assigned_regHi();
  3624   int reg = to->assigned_reg();
  3625   if (reg < LinearScan::nof_regs) {
  3626     if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) {
  3627       return false;
  3630   reg = to->assigned_regHi();
  3631   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
  3632     if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) {
  3633       return false;
  3637   return true;
  3641 void MoveResolver::create_insertion_buffer(LIR_List* list) {
  3642   assert(!_insertion_buffer.initialized(), "overwriting existing buffer");
  3643   _insertion_buffer.init(list);
  3646 void MoveResolver::append_insertion_buffer() {
  3647   if (_insertion_buffer.initialized()) {
  3648     _insertion_buffer.lir_list()->append(&_insertion_buffer);
  3650   assert(!_insertion_buffer.initialized(), "must be uninitialized now");
  3652   _insert_list = NULL;
  3653   _insert_idx = -1;
  3656 void MoveResolver::insert_move(Interval* from_interval, Interval* to_interval) {
  3657   assert(from_interval->reg_num() != to_interval->reg_num(), "from and to interval equal");
  3658   assert(from_interval->type() == to_interval->type(), "move between different types");
  3659   assert(_insert_list != NULL && _insert_idx != -1, "must setup insert position first");
  3660   assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer");
  3662   LIR_Opr from_opr = LIR_OprFact::virtual_register(from_interval->reg_num(), from_interval->type());
  3663   LIR_Opr to_opr = LIR_OprFact::virtual_register(to_interval->reg_num(), to_interval->type());
  3665   if (!_multiple_reads_allowed) {
  3666     // the last_use flag is an optimization for FPU stack allocation. When the same
  3667     // input interval is used in more than one move, then it is too difficult to determine
  3668     // if this move is really the last use.
  3669     from_opr = from_opr->make_last_use();
  3671   _insertion_buffer.move(_insert_idx, from_opr, to_opr);
  3673   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: inserted move from register %d (%d, %d) to %d (%d, %d)", from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
  3676 void MoveResolver::insert_move(LIR_Opr from_opr, Interval* to_interval) {
  3677   assert(from_opr->type() == to_interval->type(), "move between different types");
  3678   assert(_insert_list != NULL && _insert_idx != -1, "must setup insert position first");
  3679   assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer");
  3681   LIR_Opr to_opr = LIR_OprFact::virtual_register(to_interval->reg_num(), to_interval->type());
  3682   _insertion_buffer.move(_insert_idx, from_opr, to_opr);
  3684   TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: inserted move from constant "); from_opr->print(); tty->print_cr("  to %d (%d, %d)", to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
  3688 void MoveResolver::resolve_mappings() {
  3689   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: resolving mappings for Block B%d, index %d", _insert_list->block() != NULL ? _insert_list->block()->block_id() : -1, _insert_idx));
  3690   DEBUG_ONLY(verify_before_resolve());
  3692   // Block all registers that are used as input operands of a move.
  3693   // When a register is blocked, no move to this register is emitted.
  3694   // This is necessary for detecting cycles in moves.
  3695   int i;
  3696   for (i = _mapping_from.length() - 1; i >= 0; i--) {
  3697     Interval* from_interval = _mapping_from.at(i);
  3698     if (from_interval != NULL) {
  3699       block_registers(from_interval);
  3703   int spill_candidate = -1;
  3704   while (_mapping_from.length() > 0) {
  3705     bool processed_interval = false;
  3707     for (i = _mapping_from.length() - 1; i >= 0; i--) {
  3708       Interval* from_interval = _mapping_from.at(i);
  3709       Interval* to_interval = _mapping_to.at(i);
  3711       if (save_to_process_move(from_interval, to_interval)) {
  3712         // this inverval can be processed because target is free
  3713         if (from_interval != NULL) {
  3714           insert_move(from_interval, to_interval);
  3715           unblock_registers(from_interval);
  3716         } else {
  3717           insert_move(_mapping_from_opr.at(i), to_interval);
  3719         _mapping_from.remove_at(i);
  3720         _mapping_from_opr.remove_at(i);
  3721         _mapping_to.remove_at(i);
  3723         processed_interval = true;
  3724       } else if (from_interval != NULL && from_interval->assigned_reg() < LinearScan::nof_regs) {
  3725         // this interval cannot be processed now because target is not free
  3726         // it starts in a register, so it is a possible candidate for spilling
  3727         spill_candidate = i;
  3731     if (!processed_interval) {
  3732       // no move could be processed because there is a cycle in the move list
  3733       // (e.g. r1 -> r2, r2 -> r1), so one interval must be spilled to memory
  3734       assert(spill_candidate != -1, "no interval in register for spilling found");
  3736       // create a new spill interval and assign a stack slot to it
  3737       Interval* from_interval = _mapping_from.at(spill_candidate);
  3738       Interval* spill_interval = new Interval(-1);
  3739       spill_interval->set_type(from_interval->type());
  3741       // add a dummy range because real position is difficult to calculate
  3742       // Note: this range is a special case when the integrity of the allocation is checked
  3743       spill_interval->add_range(1, 2);
  3745       //       do not allocate a new spill slot for temporary interval, but
  3746       //       use spill slot assigned to from_interval. Otherwise moves from
  3747       //       one stack slot to another can happen (not allowed by LIR_Assembler
  3748       int spill_slot = from_interval->canonical_spill_slot();
  3749       if (spill_slot < 0) {
  3750         spill_slot = allocator()->allocate_spill_slot(type2spill_size[spill_interval->type()] == 2);
  3751         from_interval->set_canonical_spill_slot(spill_slot);
  3753       spill_interval->assign_reg(spill_slot);
  3754       allocator()->append_interval(spill_interval);
  3756       TRACE_LINEAR_SCAN(4, tty->print_cr("created new Interval %d for spilling", spill_interval->reg_num()));
  3758       // insert a move from register to stack and update the mapping
  3759       insert_move(from_interval, spill_interval);
  3760       _mapping_from.at_put(spill_candidate, spill_interval);
  3761       unblock_registers(from_interval);
  3765   // reset to default value
  3766   _multiple_reads_allowed = false;
  3768   // check that all intervals have been processed
  3769   DEBUG_ONLY(check_empty());
  3773 void MoveResolver::set_insert_position(LIR_List* insert_list, int insert_idx) {
  3774   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: setting insert position to Block B%d, index %d", insert_list->block() != NULL ? insert_list->block()->block_id() : -1, insert_idx));
  3775   assert(_insert_list == NULL && _insert_idx == -1, "use move_insert_position instead of set_insert_position when data already set");
  3777   create_insertion_buffer(insert_list);
  3778   _insert_list = insert_list;
  3779   _insert_idx = insert_idx;
  3782 void MoveResolver::move_insert_position(LIR_List* insert_list, int insert_idx) {
  3783   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: moving insert position to Block B%d, index %d", insert_list->block() != NULL ? insert_list->block()->block_id() : -1, insert_idx));
  3785   if (_insert_list != NULL && (insert_list != _insert_list || insert_idx != _insert_idx)) {
  3786     // insert position changed -> resolve current mappings
  3787     resolve_mappings();
  3790   if (insert_list != _insert_list) {
  3791     // block changed -> append insertion_buffer because it is
  3792     // bound to a specific block and create a new insertion_buffer
  3793     append_insertion_buffer();
  3794     create_insertion_buffer(insert_list);
  3797   _insert_list = insert_list;
  3798   _insert_idx = insert_idx;
  3801 void MoveResolver::add_mapping(Interval* from_interval, Interval* to_interval) {
  3802   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: adding mapping from %d (%d, %d) to %d (%d, %d)", from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
  3804   _mapping_from.append(from_interval);
  3805   _mapping_from_opr.append(LIR_OprFact::illegalOpr);
  3806   _mapping_to.append(to_interval);
  3810 void MoveResolver::add_mapping(LIR_Opr from_opr, Interval* to_interval) {
  3811   TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: adding mapping from "); from_opr->print(); tty->print_cr(" to %d (%d, %d)", to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
  3812   assert(from_opr->is_constant(), "only for constants");
  3814   _mapping_from.append(NULL);
  3815   _mapping_from_opr.append(from_opr);
  3816   _mapping_to.append(to_interval);
  3819 void MoveResolver::resolve_and_append_moves() {
  3820   if (has_mappings()) {
  3821     resolve_mappings();
  3823   append_insertion_buffer();
  3828 // **** Implementation of Range *************************************
  3830 Range::Range(int from, int to, Range* next) :
  3831   _from(from),
  3832   _to(to),
  3833   _next(next)
  3837 // initialize sentinel
  3838 Range* Range::_end = NULL;
  3839 void Range::initialize() {
  3840   _end = new Range(max_jint, max_jint, NULL);
  3843 int Range::intersects_at(Range* r2) const {
  3844   const Range* r1 = this;
  3846   assert(r1 != NULL && r2 != NULL, "null ranges not allowed");
  3847   assert(r1 != _end && r2 != _end, "empty ranges not allowed");
  3849   do {
  3850     if (r1->from() < r2->from()) {
  3851       if (r1->to() <= r2->from()) {
  3852         r1 = r1->next(); if (r1 == _end) return -1;
  3853       } else {
  3854         return r2->from();
  3856     } else if (r2->from() < r1->from()) {
  3857       if (r2->to() <= r1->from()) {
  3858         r2 = r2->next(); if (r2 == _end) return -1;
  3859       } else {
  3860         return r1->from();
  3862     } else { // r1->from() == r2->from()
  3863       if (r1->from() == r1->to()) {
  3864         r1 = r1->next(); if (r1 == _end) return -1;
  3865       } else if (r2->from() == r2->to()) {
  3866         r2 = r2->next(); if (r2 == _end) return -1;
  3867       } else {
  3868         return r1->from();
  3871   } while (true);
  3874 #ifndef PRODUCT
  3875 void Range::print(outputStream* out) const {
  3876   out->print("[%d, %d[ ", _from, _to);
  3878 #endif
  3882 // **** Implementation of Interval **********************************
  3884 // initialize sentinel
  3885 Interval* Interval::_end = NULL;
  3886 void Interval::initialize() {
  3887   Range::initialize();
  3888   _end = new Interval(-1);
  3891 Interval::Interval(int reg_num) :
  3892   _reg_num(reg_num),
  3893   _type(T_ILLEGAL),
  3894   _first(Range::end()),
  3895   _use_pos_and_kinds(12),
  3896   _current(Range::end()),
  3897   _next(_end),
  3898   _state(invalidState),
  3899   _assigned_reg(LinearScan::any_reg),
  3900   _assigned_regHi(LinearScan::any_reg),
  3901   _cached_to(-1),
  3902   _cached_opr(LIR_OprFact::illegalOpr),
  3903   _cached_vm_reg(VMRegImpl::Bad()),
  3904   _split_children(0),
  3905   _canonical_spill_slot(-1),
  3906   _insert_move_when_activated(false),
  3907   _register_hint(NULL),
  3908   _spill_state(noDefinitionFound),
  3909   _spill_definition_pos(-1)
  3911   _split_parent = this;
  3912   _current_split_child = this;
  3915 int Interval::calc_to() {
  3916   assert(_first != Range::end(), "interval has no range");
  3918   Range* r = _first;
  3919   while (r->next() != Range::end()) {
  3920     r = r->next();
  3922   return r->to();
  3926 #ifdef ASSERT
  3927 // consistency check of split-children
  3928 void Interval::check_split_children() {
  3929   if (_split_children.length() > 0) {
  3930     assert(is_split_parent(), "only split parents can have children");
  3932     for (int i = 0; i < _split_children.length(); i++) {
  3933       Interval* i1 = _split_children.at(i);
  3935       assert(i1->split_parent() == this, "not a split child of this interval");
  3936       assert(i1->type() == type(), "must be equal for all split children");
  3937       assert(i1->canonical_spill_slot() == canonical_spill_slot(), "must be equal for all split children");
  3939       for (int j = i + 1; j < _split_children.length(); j++) {
  3940         Interval* i2 = _split_children.at(j);
  3942         assert(i1->reg_num() != i2->reg_num(), "same register number");
  3944         if (i1->from() < i2->from()) {
  3945           assert(i1->to() <= i2->from() && i1->to() < i2->to(), "intervals overlapping");
  3946         } else {
  3947           assert(i2->from() < i1->from(), "intervals start at same op_id");
  3948           assert(i2->to() <= i1->from() && i2->to() < i1->to(), "intervals overlapping");
  3954 #endif // ASSERT
  3956 Interval* Interval::register_hint(bool search_split_child) const {
  3957   if (!search_split_child) {
  3958     return _register_hint;
  3961   if (_register_hint != NULL) {
  3962     assert(_register_hint->is_split_parent(), "ony split parents are valid hint registers");
  3964     if (_register_hint->assigned_reg() >= 0 && _register_hint->assigned_reg() < LinearScan::nof_regs) {
  3965       return _register_hint;
  3967     } else if (_register_hint->_split_children.length() > 0) {
  3968       // search the first split child that has a register assigned
  3969       int len = _register_hint->_split_children.length();
  3970       for (int i = 0; i < len; i++) {
  3971         Interval* cur = _register_hint->_split_children.at(i);
  3973         if (cur->assigned_reg() >= 0 && cur->assigned_reg() < LinearScan::nof_regs) {
  3974           return cur;
  3980   // no hint interval found that has a register assigned
  3981   return NULL;
  3985 Interval* Interval::split_child_at_op_id(int op_id, LIR_OpVisitState::OprMode mode) {
  3986   assert(is_split_parent(), "can only be called for split parents");
  3987   assert(op_id >= 0, "invalid op_id (method can not be called for spill moves)");
  3989   Interval* result;
  3990   if (_split_children.length() == 0) {
  3991     result = this;
  3992   } else {
  3993     result = NULL;
  3994     int len = _split_children.length();
  3996     // in outputMode, the end of the interval (op_id == cur->to()) is not valid
  3997     int to_offset = (mode == LIR_OpVisitState::outputMode ? 0 : 1);
  3999     int i;
  4000     for (i = 0; i < len; i++) {
  4001       Interval* cur = _split_children.at(i);
  4002       if (cur->from() <= op_id && op_id < cur->to() + to_offset) {
  4003         if (i > 0) {
  4004           // exchange current split child to start of list (faster access for next call)
  4005           _split_children.at_put(i, _split_children.at(0));
  4006           _split_children.at_put(0, cur);
  4009         // interval found
  4010         result = cur;
  4011         break;
  4015 #ifdef ASSERT
  4016     for (i = 0; i < len; i++) {
  4017       Interval* tmp = _split_children.at(i);
  4018       if (tmp != result && tmp->from() <= op_id && op_id < tmp->to() + to_offset) {
  4019         tty->print_cr("two valid result intervals found for op_id %d: %d and %d", op_id, result->reg_num(), tmp->reg_num());
  4020         result->print();
  4021         tmp->print();
  4022         assert(false, "two valid result intervals found");
  4025 #endif
  4028   assert(result != NULL, "no matching interval found");
  4029   assert(result->covers(op_id, mode), "op_id not covered by interval");
  4031   return result;
  4035 // returns the last split child that ends before the given op_id
  4036 Interval* Interval::split_child_before_op_id(int op_id) {
  4037   assert(op_id >= 0, "invalid op_id");
  4039   Interval* parent = split_parent();
  4040   Interval* result = NULL;
  4042   int len = parent->_split_children.length();
  4043   assert(len > 0, "no split children available");
  4045   for (int i = len - 1; i >= 0; i--) {
  4046     Interval* cur = parent->_split_children.at(i);
  4047     if (cur->to() <= op_id && (result == NULL || result->to() < cur->to())) {
  4048       result = cur;
  4052   assert(result != NULL, "no split child found");
  4053   return result;
  4057 // checks if op_id is covered by any split child
  4058 bool Interval::split_child_covers(int op_id, LIR_OpVisitState::OprMode mode) {
  4059   assert(is_split_parent(), "can only be called for split parents");
  4060   assert(op_id >= 0, "invalid op_id (method can not be called for spill moves)");
  4062   if (_split_children.length() == 0) {
  4063     // simple case if interval was not split
  4064     return covers(op_id, mode);
  4066   } else {
  4067     // extended case: check all split children
  4068     int len = _split_children.length();
  4069     for (int i = 0; i < len; i++) {
  4070       Interval* cur = _split_children.at(i);
  4071       if (cur->covers(op_id, mode)) {
  4072         return true;
  4075     return false;
  4080 // Note: use positions are sorted descending -> first use has highest index
  4081 int Interval::first_usage(IntervalUseKind min_use_kind) const {
  4082   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
  4084   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
  4085     if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) {
  4086       return _use_pos_and_kinds.at(i);
  4089   return max_jint;
  4092 int Interval::next_usage(IntervalUseKind min_use_kind, int from) const {
  4093   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
  4095   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
  4096     if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) >= min_use_kind) {
  4097       return _use_pos_and_kinds.at(i);
  4100   return max_jint;
  4103 int Interval::next_usage_exact(IntervalUseKind exact_use_kind, int from) const {
  4104   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
  4106   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
  4107     if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) == exact_use_kind) {
  4108       return _use_pos_and_kinds.at(i);
  4111   return max_jint;
  4114 int Interval::previous_usage(IntervalUseKind min_use_kind, int from) const {
  4115   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
  4117   int prev = 0;
  4118   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
  4119     if (_use_pos_and_kinds.at(i) > from) {
  4120       return prev;
  4122     if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) {
  4123       prev = _use_pos_and_kinds.at(i);
  4126   return prev;
  4129 void Interval::add_use_pos(int pos, IntervalUseKind use_kind) {
  4130   assert(covers(pos, LIR_OpVisitState::inputMode), "use position not covered by live range");
  4132   // do not add use positions for precolored intervals because
  4133   // they are never used
  4134   if (use_kind != noUse && reg_num() >= LIR_OprDesc::vreg_base) {
  4135 #ifdef ASSERT
  4136     assert(_use_pos_and_kinds.length() % 2 == 0, "must be");
  4137     for (int i = 0; i < _use_pos_and_kinds.length(); i += 2) {
  4138       assert(pos <= _use_pos_and_kinds.at(i), "already added a use-position with lower position");
  4139       assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
  4140       if (i > 0) {
  4141         assert(_use_pos_and_kinds.at(i) < _use_pos_and_kinds.at(i - 2), "not sorted descending");
  4144 #endif
  4146     // Note: add_use is called in descending order, so list gets sorted
  4147     //       automatically by just appending new use positions
  4148     int len = _use_pos_and_kinds.length();
  4149     if (len == 0 || _use_pos_and_kinds.at(len - 2) > pos) {
  4150       _use_pos_and_kinds.append(pos);
  4151       _use_pos_and_kinds.append(use_kind);
  4152     } else if (_use_pos_and_kinds.at(len - 1) < use_kind) {
  4153       assert(_use_pos_and_kinds.at(len - 2) == pos, "list not sorted correctly");
  4154       _use_pos_and_kinds.at_put(len - 1, use_kind);
  4159 void Interval::add_range(int from, int to) {
  4160   assert(from < to, "invalid range");
  4161   assert(first() == Range::end() || to < first()->next()->from(), "not inserting at begin of interval");
  4162   assert(from <= first()->to(), "not inserting at begin of interval");
  4164   if (first()->from() <= to) {
  4165     // join intersecting ranges
  4166     first()->set_from(MIN2(from, first()->from()));
  4167     first()->set_to  (MAX2(to,   first()->to()));
  4168   } else {
  4169     // insert new range
  4170     _first = new Range(from, to, first());
  4174 Interval* Interval::new_split_child() {
  4175   // allocate new interval
  4176   Interval* result = new Interval(-1);
  4177   result->set_type(type());
  4179   Interval* parent = split_parent();
  4180   result->_split_parent = parent;
  4181   result->set_register_hint(parent);
  4183   // insert new interval in children-list of parent
  4184   if (parent->_split_children.length() == 0) {
  4185     assert(is_split_parent(), "list must be initialized at first split");
  4187     parent->_split_children = IntervalList(4);
  4188     parent->_split_children.append(this);
  4190   parent->_split_children.append(result);
  4192   return result;
  4195 // split this interval at the specified position and return
  4196 // the remainder as a new interval.
  4197 //
  4198 // when an interval is split, a bi-directional link is established between the original interval
  4199 // (the split parent) and the intervals that are split off this interval (the split children)
  4200 // When a split child is split again, the new created interval is also a direct child
  4201 // of the original parent (there is no tree of split children stored, but a flat list)
  4202 // All split children are spilled to the same stack slot (stored in _canonical_spill_slot)
  4203 //
  4204 // Note: The new interval has no valid reg_num
  4205 Interval* Interval::split(int split_pos) {
  4206   assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals");
  4208   // allocate new interval
  4209   Interval* result = new_split_child();
  4211   // split the ranges
  4212   Range* prev = NULL;
  4213   Range* cur = _first;
  4214   while (cur != Range::end() && cur->to() <= split_pos) {
  4215     prev = cur;
  4216     cur = cur->next();
  4218   assert(cur != Range::end(), "split interval after end of last range");
  4220   if (cur->from() < split_pos) {
  4221     result->_first = new Range(split_pos, cur->to(), cur->next());
  4222     cur->set_to(split_pos);
  4223     cur->set_next(Range::end());
  4225   } else {
  4226     assert(prev != NULL, "split before start of first range");
  4227     result->_first = cur;
  4228     prev->set_next(Range::end());
  4230   result->_current = result->_first;
  4231   _cached_to = -1; // clear cached value
  4233   // split list of use positions
  4234   int total_len = _use_pos_and_kinds.length();
  4235   int start_idx = total_len - 2;
  4236   while (start_idx >= 0 && _use_pos_and_kinds.at(start_idx) < split_pos) {
  4237     start_idx -= 2;
  4240   intStack new_use_pos_and_kinds(total_len - start_idx);
  4241   int i;
  4242   for (i = start_idx + 2; i < total_len; i++) {
  4243     new_use_pos_and_kinds.append(_use_pos_and_kinds.at(i));
  4246   _use_pos_and_kinds.truncate(start_idx + 2);
  4247   result->_use_pos_and_kinds = _use_pos_and_kinds;
  4248   _use_pos_and_kinds = new_use_pos_and_kinds;
  4250 #ifdef ASSERT
  4251   assert(_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos");
  4252   assert(result->_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos");
  4253   assert(_use_pos_and_kinds.length() + result->_use_pos_and_kinds.length() == total_len, "missed some entries");
  4255   for (i = 0; i < _use_pos_and_kinds.length(); i += 2) {
  4256     assert(_use_pos_and_kinds.at(i) < split_pos, "must be");
  4257     assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
  4259   for (i = 0; i < result->_use_pos_and_kinds.length(); i += 2) {
  4260     assert(result->_use_pos_and_kinds.at(i) >= split_pos, "must be");
  4261     assert(result->_use_pos_and_kinds.at(i + 1) >= firstValidKind && result->_use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
  4263 #endif
  4265   return result;
  4268 // split this interval at the specified position and return
  4269 // the head as a new interval (the original interval is the tail)
  4270 //
  4271 // Currently, only the first range can be split, and the new interval
  4272 // must not have split positions
  4273 Interval* Interval::split_from_start(int split_pos) {
  4274   assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals");
  4275   assert(split_pos > from() && split_pos < to(), "can only split inside interval");
  4276   assert(split_pos > _first->from() && split_pos <= _first->to(), "can only split inside first range");
  4277   assert(first_usage(noUse) > split_pos, "can not split when use positions are present");
  4279   // allocate new interval
  4280   Interval* result = new_split_child();
  4282   // the new created interval has only one range (checked by assertion above),
  4283   // so the splitting of the ranges is very simple
  4284   result->add_range(_first->from(), split_pos);
  4286   if (split_pos == _first->to()) {
  4287     assert(_first->next() != Range::end(), "must not be at end");
  4288     _first = _first->next();
  4289   } else {
  4290     _first->set_from(split_pos);
  4293   return result;
  4297 // returns true if the op_id is inside the interval
  4298 bool Interval::covers(int op_id, LIR_OpVisitState::OprMode mode) const {
  4299   Range* cur  = _first;
  4301   while (cur != Range::end() && cur->to() < op_id) {
  4302     cur = cur->next();
  4304   if (cur != Range::end()) {
  4305     assert(cur->to() != cur->next()->from(), "ranges not separated");
  4307     if (mode == LIR_OpVisitState::outputMode) {
  4308       return cur->from() <= op_id && op_id < cur->to();
  4309     } else {
  4310       return cur->from() <= op_id && op_id <= cur->to();
  4313   return false;
  4316 // returns true if the interval has any hole between hole_from and hole_to
  4317 // (even if the hole has only the length 1)
  4318 bool Interval::has_hole_between(int hole_from, int hole_to) {
  4319   assert(hole_from < hole_to, "check");
  4320   assert(from() <= hole_from && hole_to <= to(), "index out of interval");
  4322   Range* cur  = _first;
  4323   while (cur != Range::end()) {
  4324     assert(cur->to() < cur->next()->from(), "no space between ranges");
  4326     // hole-range starts before this range -> hole
  4327     if (hole_from < cur->from()) {
  4328       return true;
  4330     // hole-range completely inside this range -> no hole
  4331     } else if (hole_to <= cur->to()) {
  4332       return false;
  4334     // overlapping of hole-range with this range -> hole
  4335     } else if (hole_from <= cur->to()) {
  4336       return true;
  4339     cur = cur->next();
  4342   return false;
  4346 #ifndef PRODUCT
  4347 void Interval::print(outputStream* out) const {
  4348   const char* SpillState2Name[] = { "no definition", "no spill store", "one spill store", "store at definition", "start in memory", "no optimization" };
  4349   const char* UseKind2Name[] = { "N", "L", "S", "M" };
  4351   const char* type_name;
  4352   LIR_Opr opr = LIR_OprFact::illegal();
  4353   if (reg_num() < LIR_OprDesc::vreg_base) {
  4354     type_name = "fixed";
  4355     // need a temporary operand for fixed intervals because type() cannot be called
  4356     if (assigned_reg() >= pd_first_cpu_reg && assigned_reg() <= pd_last_cpu_reg) {
  4357       opr = LIR_OprFact::single_cpu(assigned_reg());
  4358     } else if (assigned_reg() >= pd_first_fpu_reg && assigned_reg() <= pd_last_fpu_reg) {
  4359       opr = LIR_OprFact::single_fpu(assigned_reg() - pd_first_fpu_reg);
  4360 #ifdef IA32
  4361     } else if (assigned_reg() >= pd_first_xmm_reg && assigned_reg() <= pd_last_xmm_reg) {
  4362       opr = LIR_OprFact::single_xmm(assigned_reg() - pd_first_xmm_reg);
  4363 #endif
  4364     } else {
  4365       ShouldNotReachHere();
  4367   } else {
  4368     type_name = type2name(type());
  4369     if (assigned_reg() != -1) {
  4370       opr = LinearScan::calc_operand_for_interval(this);
  4374   out->print("%d %s ", reg_num(), type_name);
  4375   if (opr->is_valid()) {
  4376     out->print("\"");
  4377     opr->print(out);
  4378     out->print("\" ");
  4380   out->print("%d %d ", split_parent()->reg_num(), (register_hint(false) != NULL ? register_hint(false)->reg_num() : -1));
  4382   // print ranges
  4383   Range* cur = _first;
  4384   while (cur != Range::end()) {
  4385     cur->print(out);
  4386     cur = cur->next();
  4387     assert(cur != NULL, "range list not closed with range sentinel");
  4390   // print use positions
  4391   int prev = 0;
  4392   assert(_use_pos_and_kinds.length() % 2 == 0, "must be");
  4393   for (int i =_use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
  4394     assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
  4395     assert(prev < _use_pos_and_kinds.at(i), "use positions not sorted");
  4397     out->print("%d %s ", _use_pos_and_kinds.at(i), UseKind2Name[_use_pos_and_kinds.at(i + 1)]);
  4398     prev = _use_pos_and_kinds.at(i);
  4401   out->print(" \"%s\"", SpillState2Name[spill_state()]);
  4402   out->cr();
  4404 #endif
  4408 // **** Implementation of IntervalWalker ****************************
  4410 IntervalWalker::IntervalWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first)
  4411  : _compilation(allocator->compilation())
  4412  , _allocator(allocator)
  4414   _unhandled_first[fixedKind] = unhandled_fixed_first;
  4415   _unhandled_first[anyKind]   = unhandled_any_first;
  4416   _active_first[fixedKind]    = Interval::end();
  4417   _inactive_first[fixedKind]  = Interval::end();
  4418   _active_first[anyKind]      = Interval::end();
  4419   _inactive_first[anyKind]    = Interval::end();
  4420   _current_position = -1;
  4421   _current = NULL;
  4422   next_interval();
  4426 // append interval at top of list
  4427 void IntervalWalker::append_unsorted(Interval** list, Interval* interval) {
  4428   interval->set_next(*list); *list = interval;
  4432 // append interval in order of current range from()
  4433 void IntervalWalker::append_sorted(Interval** list, Interval* interval) {
  4434   Interval* prev = NULL;
  4435   Interval* cur  = *list;
  4436   while (cur->current_from() < interval->current_from()) {
  4437     prev = cur; cur = cur->next();
  4439   if (prev == NULL) {
  4440     *list = interval;
  4441   } else {
  4442     prev->set_next(interval);
  4444   interval->set_next(cur);
  4447 void IntervalWalker::append_to_unhandled(Interval** list, Interval* interval) {
  4448   assert(interval->from() >= current()->current_from(), "cannot append new interval before current walk position");
  4450   Interval* prev = NULL;
  4451   Interval* cur  = *list;
  4452   while (cur->from() < interval->from() || (cur->from() == interval->from() && cur->first_usage(noUse) < interval->first_usage(noUse))) {
  4453     prev = cur; cur = cur->next();
  4455   if (prev == NULL) {
  4456     *list = interval;
  4457   } else {
  4458     prev->set_next(interval);
  4460   interval->set_next(cur);
  4464 inline bool IntervalWalker::remove_from_list(Interval** list, Interval* i) {
  4465   while (*list != Interval::end() && *list != i) {
  4466     list = (*list)->next_addr();
  4468   if (*list != Interval::end()) {
  4469     assert(*list == i, "check");
  4470     *list = (*list)->next();
  4471     return true;
  4472   } else {
  4473     return false;
  4477 void IntervalWalker::remove_from_list(Interval* i) {
  4478   bool deleted;
  4480   if (i->state() == activeState) {
  4481     deleted = remove_from_list(active_first_addr(anyKind), i);
  4482   } else {
  4483     assert(i->state() == inactiveState, "invalid state");
  4484     deleted = remove_from_list(inactive_first_addr(anyKind), i);
  4487   assert(deleted, "interval has not been found in list");
  4491 void IntervalWalker::walk_to(IntervalState state, int from) {
  4492   assert (state == activeState || state == inactiveState, "wrong state");
  4493   for_each_interval_kind(kind) {
  4494     Interval** prev = state == activeState ? active_first_addr(kind) : inactive_first_addr(kind);
  4495     Interval* next   = *prev;
  4496     while (next->current_from() <= from) {
  4497       Interval* cur = next;
  4498       next = cur->next();
  4500       bool range_has_changed = false;
  4501       while (cur->current_to() <= from) {
  4502         cur->next_range();
  4503         range_has_changed = true;
  4506       // also handle move from inactive list to active list
  4507       range_has_changed = range_has_changed || (state == inactiveState && cur->current_from() <= from);
  4509       if (range_has_changed) {
  4510         // remove cur from list
  4511         *prev = next;
  4512         if (cur->current_at_end()) {
  4513           // move to handled state (not maintained as a list)
  4514           cur->set_state(handledState);
  4515           interval_moved(cur, kind, state, handledState);
  4516         } else if (cur->current_from() <= from){
  4517           // sort into active list
  4518           append_sorted(active_first_addr(kind), cur);
  4519           cur->set_state(activeState);
  4520           if (*prev == cur) {
  4521             assert(state == activeState, "check");
  4522             prev = cur->next_addr();
  4524           interval_moved(cur, kind, state, activeState);
  4525         } else {
  4526           // sort into inactive list
  4527           append_sorted(inactive_first_addr(kind), cur);
  4528           cur->set_state(inactiveState);
  4529           if (*prev == cur) {
  4530             assert(state == inactiveState, "check");
  4531             prev = cur->next_addr();
  4533           interval_moved(cur, kind, state, inactiveState);
  4535       } else {
  4536         prev = cur->next_addr();
  4537         continue;
  4544 void IntervalWalker::next_interval() {
  4545   IntervalKind kind;
  4546   Interval* any   = _unhandled_first[anyKind];
  4547   Interval* fixed = _unhandled_first[fixedKind];
  4549   if (any != Interval::end()) {
  4550     // intervals may start at same position -> prefer fixed interval
  4551     kind = fixed != Interval::end() && fixed->from() <= any->from() ? fixedKind : anyKind;
  4553     assert (kind == fixedKind && fixed->from() <= any->from() ||
  4554             kind == anyKind   && any->from() <= fixed->from(), "wrong interval!!!");
  4555     assert(any == Interval::end() || fixed == Interval::end() || any->from() != fixed->from() || kind == fixedKind, "if fixed and any-Interval start at same position, fixed must be processed first");
  4557   } else if (fixed != Interval::end()) {
  4558     kind = fixedKind;
  4559   } else {
  4560     _current = NULL; return;
  4562   _current_kind = kind;
  4563   _current = _unhandled_first[kind];
  4564   _unhandled_first[kind] = _current->next();
  4565   _current->set_next(Interval::end());
  4566   _current->rewind_range();
  4570 void IntervalWalker::walk_to(int lir_op_id) {
  4571   assert(_current_position <= lir_op_id, "can not walk backwards");
  4572   while (current() != NULL) {
  4573     bool is_active = current()->from() <= lir_op_id;
  4574     int id = is_active ? current()->from() : lir_op_id;
  4576     TRACE_LINEAR_SCAN(2, if (_current_position < id) { tty->cr(); tty->print_cr("walk_to(%d) **************************************************************", id); })
  4578     // set _current_position prior to call of walk_to
  4579     _current_position = id;
  4581     // call walk_to even if _current_position == id
  4582     walk_to(activeState, id);
  4583     walk_to(inactiveState, id);
  4585     if (is_active) {
  4586       current()->set_state(activeState);
  4587       if (activate_current()) {
  4588         append_sorted(active_first_addr(current_kind()), current());
  4589         interval_moved(current(), current_kind(), unhandledState, activeState);
  4592       next_interval();
  4593     } else {
  4594       return;
  4599 void IntervalWalker::interval_moved(Interval* interval, IntervalKind kind, IntervalState from, IntervalState to) {
  4600 #ifndef PRODUCT
  4601   if (TraceLinearScanLevel >= 4) {
  4602     #define print_state(state) \
  4603     switch(state) {\
  4604       case unhandledState: tty->print("unhandled"); break;\
  4605       case activeState: tty->print("active"); break;\
  4606       case inactiveState: tty->print("inactive"); break;\
  4607       case handledState: tty->print("handled"); break;\
  4608       default: ShouldNotReachHere(); \
  4611     print_state(from); tty->print(" to "); print_state(to);
  4612     tty->fill_to(23);
  4613     interval->print();
  4615     #undef print_state
  4617 #endif
  4622 // **** Implementation of LinearScanWalker **************************
  4624 LinearScanWalker::LinearScanWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first)
  4625   : IntervalWalker(allocator, unhandled_fixed_first, unhandled_any_first)
  4626   , _move_resolver(allocator)
  4628   for (int i = 0; i < LinearScan::nof_regs; i++) {
  4629     _spill_intervals[i] = new IntervalList(2);
  4634 inline void LinearScanWalker::init_use_lists(bool only_process_use_pos) {
  4635   for (int i = _first_reg; i <= _last_reg; i++) {
  4636     _use_pos[i] = max_jint;
  4638     if (!only_process_use_pos) {
  4639       _block_pos[i] = max_jint;
  4640       _spill_intervals[i]->clear();
  4645 inline void LinearScanWalker::exclude_from_use(int reg) {
  4646   assert(reg < LinearScan::nof_regs, "interval must have a register assigned (stack slots not allowed)");
  4647   if (reg >= _first_reg && reg <= _last_reg) {
  4648     _use_pos[reg] = 0;
  4651 inline void LinearScanWalker::exclude_from_use(Interval* i) {
  4652   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
  4654   exclude_from_use(i->assigned_reg());
  4655   exclude_from_use(i->assigned_regHi());
  4658 inline void LinearScanWalker::set_use_pos(int reg, Interval* i, int use_pos, bool only_process_use_pos) {
  4659   assert(use_pos != 0, "must use exclude_from_use to set use_pos to 0");
  4661   if (reg >= _first_reg && reg <= _last_reg) {
  4662     if (_use_pos[reg] > use_pos) {
  4663       _use_pos[reg] = use_pos;
  4665     if (!only_process_use_pos) {
  4666       _spill_intervals[reg]->append(i);
  4670 inline void LinearScanWalker::set_use_pos(Interval* i, int use_pos, bool only_process_use_pos) {
  4671   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
  4672   if (use_pos != -1) {
  4673     set_use_pos(i->assigned_reg(), i, use_pos, only_process_use_pos);
  4674     set_use_pos(i->assigned_regHi(), i, use_pos, only_process_use_pos);
  4678 inline void LinearScanWalker::set_block_pos(int reg, Interval* i, int block_pos) {
  4679   if (reg >= _first_reg && reg <= _last_reg) {
  4680     if (_block_pos[reg] > block_pos) {
  4681       _block_pos[reg] = block_pos;
  4683     if (_use_pos[reg] > block_pos) {
  4684       _use_pos[reg] = block_pos;
  4688 inline void LinearScanWalker::set_block_pos(Interval* i, int block_pos) {
  4689   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
  4690   if (block_pos != -1) {
  4691     set_block_pos(i->assigned_reg(), i, block_pos);
  4692     set_block_pos(i->assigned_regHi(), i, block_pos);
  4697 void LinearScanWalker::free_exclude_active_fixed() {
  4698   Interval* list = active_first(fixedKind);
  4699   while (list != Interval::end()) {
  4700     assert(list->assigned_reg() < LinearScan::nof_regs, "active interval must have a register assigned");
  4701     exclude_from_use(list);
  4702     list = list->next();
  4706 void LinearScanWalker::free_exclude_active_any() {
  4707   Interval* list = active_first(anyKind);
  4708   while (list != Interval::end()) {
  4709     exclude_from_use(list);
  4710     list = list->next();
  4714 void LinearScanWalker::free_collect_inactive_fixed(Interval* cur) {
  4715   Interval* list = inactive_first(fixedKind);
  4716   while (list != Interval::end()) {
  4717     if (cur->to() <= list->current_from()) {
  4718       assert(list->current_intersects_at(cur) == -1, "must not intersect");
  4719       set_use_pos(list, list->current_from(), true);
  4720     } else {
  4721       set_use_pos(list, list->current_intersects_at(cur), true);
  4723     list = list->next();
  4727 void LinearScanWalker::free_collect_inactive_any(Interval* cur) {
  4728   Interval* list = inactive_first(anyKind);
  4729   while (list != Interval::end()) {
  4730     set_use_pos(list, list->current_intersects_at(cur), true);
  4731     list = list->next();
  4735 void LinearScanWalker::free_collect_unhandled(IntervalKind kind, Interval* cur) {
  4736   Interval* list = unhandled_first(kind);
  4737   while (list != Interval::end()) {
  4738     set_use_pos(list, list->intersects_at(cur), true);
  4739     if (kind == fixedKind && cur->to() <= list->from()) {
  4740       set_use_pos(list, list->from(), true);
  4742     list = list->next();
  4746 void LinearScanWalker::spill_exclude_active_fixed() {
  4747   Interval* list = active_first(fixedKind);
  4748   while (list != Interval::end()) {
  4749     exclude_from_use(list);
  4750     list = list->next();
  4754 void LinearScanWalker::spill_block_unhandled_fixed(Interval* cur) {
  4755   Interval* list = unhandled_first(fixedKind);
  4756   while (list != Interval::end()) {
  4757     set_block_pos(list, list->intersects_at(cur));
  4758     list = list->next();
  4762 void LinearScanWalker::spill_block_inactive_fixed(Interval* cur) {
  4763   Interval* list = inactive_first(fixedKind);
  4764   while (list != Interval::end()) {
  4765     if (cur->to() > list->current_from()) {
  4766       set_block_pos(list, list->current_intersects_at(cur));
  4767     } else {
  4768       assert(list->current_intersects_at(cur) == -1, "invalid optimization: intervals intersect");
  4771     list = list->next();
  4775 void LinearScanWalker::spill_collect_active_any() {
  4776   Interval* list = active_first(anyKind);
  4777   while (list != Interval::end()) {
  4778     set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false);
  4779     list = list->next();
  4783 void LinearScanWalker::spill_collect_inactive_any(Interval* cur) {
  4784   Interval* list = inactive_first(anyKind);
  4785   while (list != Interval::end()) {
  4786     if (list->current_intersects(cur)) {
  4787       set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false);
  4789     list = list->next();
  4794 void LinearScanWalker::insert_move(int op_id, Interval* src_it, Interval* dst_it) {
  4795   // output all moves here. When source and target are equal, the move is
  4796   // optimized away later in assign_reg_nums
  4798   op_id = (op_id + 1) & ~1;
  4799   BlockBegin* op_block = allocator()->block_of_op_with_id(op_id);
  4800   assert(op_id > 0 && allocator()->block_of_op_with_id(op_id - 2) == op_block, "cannot insert move at block boundary");
  4802   // calculate index of instruction inside instruction list of current block
  4803   // the minimal index (for a block with no spill moves) can be calculated because the
  4804   // numbering of instructions is known.
  4805   // When the block already contains spill moves, the index must be increased until the
  4806   // correct index is reached.
  4807   LIR_OpList* list = op_block->lir()->instructions_list();
  4808   int index = (op_id - list->at(0)->id()) / 2;
  4809   assert(list->at(index)->id() <= op_id, "error in calculation");
  4811   while (list->at(index)->id() != op_id) {
  4812     index++;
  4813     assert(0 <= index && index < list->length(), "index out of bounds");
  4815   assert(1 <= index && index < list->length(), "index out of bounds");
  4816   assert(list->at(index)->id() == op_id, "error in calculation");
  4818   // insert new instruction before instruction at position index
  4819   _move_resolver.move_insert_position(op_block->lir(), index - 1);
  4820   _move_resolver.add_mapping(src_it, dst_it);
  4824 int LinearScanWalker::find_optimal_split_pos(BlockBegin* min_block, BlockBegin* max_block, int max_split_pos) {
  4825   int from_block_nr = min_block->linear_scan_number();
  4826   int to_block_nr = max_block->linear_scan_number();
  4828   assert(0 <= from_block_nr && from_block_nr < block_count(), "out of range");
  4829   assert(0 <= to_block_nr && to_block_nr < block_count(), "out of range");
  4830   assert(from_block_nr < to_block_nr, "must cross block boundary");
  4832   // Try to split at end of max_block. If this would be after
  4833   // max_split_pos, then use the begin of max_block
  4834   int optimal_split_pos = max_block->last_lir_instruction_id() + 2;
  4835   if (optimal_split_pos > max_split_pos) {
  4836     optimal_split_pos = max_block->first_lir_instruction_id();
  4839   int min_loop_depth = max_block->loop_depth();
  4840   for (int i = to_block_nr - 1; i >= from_block_nr; i--) {
  4841     BlockBegin* cur = block_at(i);
  4843     if (cur->loop_depth() < min_loop_depth) {
  4844       // block with lower loop-depth found -> split at the end of this block
  4845       min_loop_depth = cur->loop_depth();
  4846       optimal_split_pos = cur->last_lir_instruction_id() + 2;
  4849   assert(optimal_split_pos > allocator()->max_lir_op_id() || allocator()->is_block_begin(optimal_split_pos), "algorithm must move split pos to block boundary");
  4851   return optimal_split_pos;
  4855 int LinearScanWalker::find_optimal_split_pos(Interval* it, int min_split_pos, int max_split_pos, bool do_loop_optimization) {
  4856   int optimal_split_pos = -1;
  4857   if (min_split_pos == max_split_pos) {
  4858     // trivial case, no optimization of split position possible
  4859     TRACE_LINEAR_SCAN(4, tty->print_cr("      min-pos and max-pos are equal, no optimization possible"));
  4860     optimal_split_pos = min_split_pos;
  4862   } else {
  4863     assert(min_split_pos < max_split_pos, "must be true then");
  4864     assert(min_split_pos > 0, "cannot access min_split_pos - 1 otherwise");
  4866     // reason for using min_split_pos - 1: when the minimal split pos is exactly at the
  4867     // beginning of a block, then min_split_pos is also a possible split position.
  4868     // Use the block before as min_block, because then min_block->last_lir_instruction_id() + 2 == min_split_pos
  4869     BlockBegin* min_block = allocator()->block_of_op_with_id(min_split_pos - 1);
  4871     // reason for using max_split_pos - 1: otherwise there would be an assertion failure
  4872     // when an interval ends at the end of the last block of the method
  4873     // (in this case, max_split_pos == allocator()->max_lir_op_id() + 2, and there is no
  4874     // block at this op_id)
  4875     BlockBegin* max_block = allocator()->block_of_op_with_id(max_split_pos - 1);
  4877     assert(min_block->linear_scan_number() <= max_block->linear_scan_number(), "invalid order");
  4878     if (min_block == max_block) {
  4879       // split position cannot be moved to block boundary, so split as late as possible
  4880       TRACE_LINEAR_SCAN(4, tty->print_cr("      cannot move split pos to block boundary because min_pos and max_pos are in same block"));
  4881       optimal_split_pos = max_split_pos;
  4883     } else if (it->has_hole_between(max_split_pos - 1, max_split_pos) && !allocator()->is_block_begin(max_split_pos)) {
  4884       // Do not move split position if the interval has a hole before max_split_pos.
  4885       // Intervals resulting from Phi-Functions have more than one definition (marked
  4886       // as mustHaveRegister) with a hole before each definition. When the register is needed
  4887       // for the second definition, an earlier reloading is unnecessary.
  4888       TRACE_LINEAR_SCAN(4, tty->print_cr("      interval has hole just before max_split_pos, so splitting at max_split_pos"));
  4889       optimal_split_pos = max_split_pos;
  4891     } else {
  4892       // seach optimal block boundary between min_split_pos and max_split_pos
  4893       TRACE_LINEAR_SCAN(4, tty->print_cr("      moving split pos to optimal block boundary between block B%d and B%d", min_block->block_id(), max_block->block_id()));
  4895       if (do_loop_optimization) {
  4896         // Loop optimization: if a loop-end marker is found between min- and max-position,
  4897         // then split before this loop
  4898         int loop_end_pos = it->next_usage_exact(loopEndMarker, min_block->last_lir_instruction_id() + 2);
  4899         TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization: loop end found at pos %d", loop_end_pos));
  4901         assert(loop_end_pos > min_split_pos, "invalid order");
  4902         if (loop_end_pos < max_split_pos) {
  4903           // loop-end marker found between min- and max-position
  4904           // if it is not the end marker for the same loop as the min-position, then move
  4905           // the max-position to this loop block.
  4906           // Desired result: uses tagged as shouldHaveRegister inside a loop cause a reloading
  4907           // of the interval (normally, only mustHaveRegister causes a reloading)
  4908           BlockBegin* loop_block = allocator()->block_of_op_with_id(loop_end_pos);
  4910           TRACE_LINEAR_SCAN(4, tty->print_cr("      interval is used in loop that ends in block B%d, so trying to move max_block back from B%d to B%d", loop_block->block_id(), max_block->block_id(), loop_block->block_id()));
  4911           assert(loop_block != min_block, "loop_block and min_block must be different because block boundary is needed between");
  4913           optimal_split_pos = find_optimal_split_pos(min_block, loop_block, loop_block->last_lir_instruction_id() + 2);
  4914           if (optimal_split_pos == loop_block->last_lir_instruction_id() + 2) {
  4915             optimal_split_pos = -1;
  4916             TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization not necessary"));
  4917           } else {
  4918             TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization successful"));
  4923       if (optimal_split_pos == -1) {
  4924         // not calculated by loop optimization
  4925         optimal_split_pos = find_optimal_split_pos(min_block, max_block, max_split_pos);
  4929   TRACE_LINEAR_SCAN(4, tty->print_cr("      optimal split position: %d", optimal_split_pos));
  4931   return optimal_split_pos;
  4935 /*
  4936   split an interval at the optimal position between min_split_pos and
  4937   max_split_pos in two parts:
  4938   1) the left part has already a location assigned
  4939   2) the right part is sorted into to the unhandled-list
  4940 */
  4941 void LinearScanWalker::split_before_usage(Interval* it, int min_split_pos, int max_split_pos) {
  4942   TRACE_LINEAR_SCAN(2, tty->print   ("----- splitting interval: "); it->print());
  4943   TRACE_LINEAR_SCAN(2, tty->print_cr("      between %d and %d", min_split_pos, max_split_pos));
  4945   assert(it->from() < min_split_pos,         "cannot split at start of interval");
  4946   assert(current_position() < min_split_pos, "cannot split before current position");
  4947   assert(min_split_pos <= max_split_pos,     "invalid order");
  4948   assert(max_split_pos <= it->to(),          "cannot split after end of interval");
  4950   int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, true);
  4952   assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range");
  4953   assert(optimal_split_pos <= it->to(),  "cannot split after end of interval");
  4954   assert(optimal_split_pos > it->from(), "cannot split at start of interval");
  4956   if (optimal_split_pos == it->to() && it->next_usage(mustHaveRegister, min_split_pos) == max_jint) {
  4957     // the split position would be just before the end of the interval
  4958     // -> no split at all necessary
  4959     TRACE_LINEAR_SCAN(4, tty->print_cr("      no split necessary because optimal split position is at end of interval"));
  4960     return;
  4963   // must calculate this before the actual split is performed and before split position is moved to odd op_id
  4964   bool move_necessary = !allocator()->is_block_begin(optimal_split_pos) && !it->has_hole_between(optimal_split_pos - 1, optimal_split_pos);
  4966   if (!allocator()->is_block_begin(optimal_split_pos)) {
  4967     // move position before actual instruction (odd op_id)
  4968     optimal_split_pos = (optimal_split_pos - 1) | 1;
  4971   TRACE_LINEAR_SCAN(4, tty->print_cr("      splitting at position %d", optimal_split_pos));
  4972   assert(allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary");
  4973   assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary");
  4975   Interval* split_part = it->split(optimal_split_pos);
  4977   allocator()->append_interval(split_part);
  4978   allocator()->copy_register_flags(it, split_part);
  4979   split_part->set_insert_move_when_activated(move_necessary);
  4980   append_to_unhandled(unhandled_first_addr(anyKind), split_part);
  4982   TRACE_LINEAR_SCAN(2, tty->print_cr("      split interval in two parts (insert_move_when_activated: %d)", move_necessary));
  4983   TRACE_LINEAR_SCAN(2, tty->print   ("      "); it->print());
  4984   TRACE_LINEAR_SCAN(2, tty->print   ("      "); split_part->print());
  4987 /*
  4988   split an interval at the optimal position between min_split_pos and
  4989   max_split_pos in two parts:
  4990   1) the left part has already a location assigned
  4991   2) the right part is always on the stack and therefore ignored in further processing
  4992 */
  4993 void LinearScanWalker::split_for_spilling(Interval* it) {
  4994   // calculate allowed range of splitting position
  4995   int max_split_pos = current_position();
  4996   int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, max_split_pos) + 1, it->from());
  4998   TRACE_LINEAR_SCAN(2, tty->print   ("----- splitting and spilling interval: "); it->print());
  4999   TRACE_LINEAR_SCAN(2, tty->print_cr("      between %d and %d", min_split_pos, max_split_pos));
  5001   assert(it->state() == activeState,     "why spill interval that is not active?");
  5002   assert(it->from() <= min_split_pos,    "cannot split before start of interval");
  5003   assert(min_split_pos <= max_split_pos, "invalid order");
  5004   assert(max_split_pos < it->to(),       "cannot split at end end of interval");
  5005   assert(current_position() < it->to(),  "interval must not end before current position");
  5007   if (min_split_pos == it->from()) {
  5008     // the whole interval is never used, so spill it entirely to memory
  5009     TRACE_LINEAR_SCAN(2, tty->print_cr("      spilling entire interval because split pos is at beginning of interval"));
  5010     assert(it->first_usage(shouldHaveRegister) > current_position(), "interval must not have use position before current_position");
  5012     allocator()->assign_spill_slot(it);
  5013     allocator()->change_spill_state(it, min_split_pos);
  5015     // Also kick parent intervals out of register to memory when they have no use
  5016     // position. This avoids short interval in register surrounded by intervals in
  5017     // memory -> avoid useless moves from memory to register and back
  5018     Interval* parent = it;
  5019     while (parent != NULL && parent->is_split_child()) {
  5020       parent = parent->split_child_before_op_id(parent->from());
  5022       if (parent->assigned_reg() < LinearScan::nof_regs) {
  5023         if (parent->first_usage(shouldHaveRegister) == max_jint) {
  5024           // parent is never used, so kick it out of its assigned register
  5025           TRACE_LINEAR_SCAN(4, tty->print_cr("      kicking out interval %d out of its register because it is never used", parent->reg_num()));
  5026           allocator()->assign_spill_slot(parent);
  5027         } else {
  5028           // do not go further back because the register is actually used by the interval
  5029           parent = NULL;
  5034   } else {
  5035     // search optimal split pos, split interval and spill only the right hand part
  5036     int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, false);
  5038     assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range");
  5039     assert(optimal_split_pos < it->to(), "cannot split at end of interval");
  5040     assert(optimal_split_pos >= it->from(), "cannot split before start of interval");
  5042     if (!allocator()->is_block_begin(optimal_split_pos)) {
  5043       // move position before actual instruction (odd op_id)
  5044       optimal_split_pos = (optimal_split_pos - 1) | 1;
  5047     TRACE_LINEAR_SCAN(4, tty->print_cr("      splitting at position %d", optimal_split_pos));
  5048     assert(allocator()->is_block_begin(optimal_split_pos)  || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary");
  5049     assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary");
  5051     Interval* spilled_part = it->split(optimal_split_pos);
  5052     allocator()->append_interval(spilled_part);
  5053     allocator()->assign_spill_slot(spilled_part);
  5054     allocator()->change_spill_state(spilled_part, optimal_split_pos);
  5056     if (!allocator()->is_block_begin(optimal_split_pos)) {
  5057       TRACE_LINEAR_SCAN(4, tty->print_cr("      inserting move from interval %d to %d", it->reg_num(), spilled_part->reg_num()));
  5058       insert_move(optimal_split_pos, it, spilled_part);
  5061     // the current_split_child is needed later when moves are inserted for reloading
  5062     assert(spilled_part->current_split_child() == it, "overwriting wrong current_split_child");
  5063     spilled_part->make_current_split_child();
  5065     TRACE_LINEAR_SCAN(2, tty->print_cr("      split interval in two parts"));
  5066     TRACE_LINEAR_SCAN(2, tty->print   ("      "); it->print());
  5067     TRACE_LINEAR_SCAN(2, tty->print   ("      "); spilled_part->print());
  5072 void LinearScanWalker::split_stack_interval(Interval* it) {
  5073   int min_split_pos = current_position() + 1;
  5074   int max_split_pos = MIN2(it->first_usage(shouldHaveRegister), it->to());
  5076   split_before_usage(it, min_split_pos, max_split_pos);
  5079 void LinearScanWalker::split_when_partial_register_available(Interval* it, int register_available_until) {
  5080   int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, register_available_until), it->from() + 1);
  5081   int max_split_pos = register_available_until;
  5083   split_before_usage(it, min_split_pos, max_split_pos);
  5086 void LinearScanWalker::split_and_spill_interval(Interval* it) {
  5087   assert(it->state() == activeState || it->state() == inactiveState, "other states not allowed");
  5089   int current_pos = current_position();
  5090   if (it->state() == inactiveState) {
  5091     // the interval is currently inactive, so no spill slot is needed for now.
  5092     // when the split part is activated, the interval has a new chance to get a register,
  5093     // so in the best case no stack slot is necessary
  5094     assert(it->has_hole_between(current_pos - 1, current_pos + 1), "interval can not be inactive otherwise");
  5095     split_before_usage(it, current_pos + 1, current_pos + 1);
  5097   } else {
  5098     // search the position where the interval must have a register and split
  5099     // at the optimal position before.
  5100     // The new created part is added to the unhandled list and will get a register
  5101     // when it is activated
  5102     int min_split_pos = current_pos + 1;
  5103     int max_split_pos = MIN2(it->next_usage(mustHaveRegister, min_split_pos), it->to());
  5105     split_before_usage(it, min_split_pos, max_split_pos);
  5107     assert(it->next_usage(mustHaveRegister, current_pos) == max_jint, "the remaining part is spilled to stack and therefore has no register");
  5108     split_for_spilling(it);
  5113 int LinearScanWalker::find_free_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split) {
  5114   int min_full_reg = any_reg;
  5115   int max_partial_reg = any_reg;
  5117   for (int i = _first_reg; i <= _last_reg; i++) {
  5118     if (i == ignore_reg) {
  5119       // this register must be ignored
  5121     } else if (_use_pos[i] >= interval_to) {
  5122       // this register is free for the full interval
  5123       if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) {
  5124         min_full_reg = i;
  5126     } else if (_use_pos[i] > reg_needed_until) {
  5127       // this register is at least free until reg_needed_until
  5128       if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) {
  5129         max_partial_reg = i;
  5134   if (min_full_reg != any_reg) {
  5135     return min_full_reg;
  5136   } else if (max_partial_reg != any_reg) {
  5137     *need_split = true;
  5138     return max_partial_reg;
  5139   } else {
  5140     return any_reg;
  5144 int LinearScanWalker::find_free_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split) {
  5145   assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm");
  5147   int min_full_reg = any_reg;
  5148   int max_partial_reg = any_reg;
  5150   for (int i = _first_reg; i < _last_reg; i+=2) {
  5151     if (_use_pos[i] >= interval_to && _use_pos[i + 1] >= interval_to) {
  5152       // this register is free for the full interval
  5153       if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) {
  5154         min_full_reg = i;
  5156     } else if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) {
  5157       // this register is at least free until reg_needed_until
  5158       if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) {
  5159         max_partial_reg = i;
  5164   if (min_full_reg != any_reg) {
  5165     return min_full_reg;
  5166   } else if (max_partial_reg != any_reg) {
  5167     *need_split = true;
  5168     return max_partial_reg;
  5169   } else {
  5170     return any_reg;
  5175 bool LinearScanWalker::alloc_free_reg(Interval* cur) {
  5176   TRACE_LINEAR_SCAN(2, tty->print("trying to find free register for "); cur->print());
  5178   init_use_lists(true);
  5179   free_exclude_active_fixed();
  5180   free_exclude_active_any();
  5181   free_collect_inactive_fixed(cur);
  5182   free_collect_inactive_any(cur);
  5183 //  free_collect_unhandled(fixedKind, cur);
  5184   assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0");
  5186   // _use_pos contains the start of the next interval that has this register assigned
  5187   // (either as a fixed register or a normal allocated register in the past)
  5188   // only intervals overlapping with cur are processed, non-overlapping invervals can be ignored safely
  5189   TRACE_LINEAR_SCAN(4, tty->print_cr("      state of registers:"));
  5190   TRACE_LINEAR_SCAN(4, for (int i = _first_reg; i <= _last_reg; i++) tty->print_cr("      reg %d: use_pos: %d", i, _use_pos[i]));
  5192   int hint_reg, hint_regHi;
  5193   Interval* register_hint = cur->register_hint();
  5194   if (register_hint != NULL) {
  5195     hint_reg = register_hint->assigned_reg();
  5196     hint_regHi = register_hint->assigned_regHi();
  5198     if (allocator()->is_precolored_cpu_interval(register_hint)) {
  5199       assert(hint_reg != any_reg && hint_regHi == any_reg, "must be for fixed intervals");
  5200       hint_regHi = hint_reg + 1;  // connect e.g. eax-edx
  5202     TRACE_LINEAR_SCAN(4, tty->print("      hint registers %d, %d from interval ", hint_reg, hint_regHi); register_hint->print());
  5204   } else {
  5205     hint_reg = any_reg;
  5206     hint_regHi = any_reg;
  5208   assert(hint_reg == any_reg || hint_reg != hint_regHi, "hint reg and regHi equal");
  5209   assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned to interval");
  5211   // the register must be free at least until this position
  5212   int reg_needed_until = cur->from() + 1;
  5213   int interval_to = cur->to();
  5215   bool need_split = false;
  5216   int split_pos = -1;
  5217   int reg = any_reg;
  5218   int regHi = any_reg;
  5220   if (_adjacent_regs) {
  5221     reg = find_free_double_reg(reg_needed_until, interval_to, hint_reg, &need_split);
  5222     regHi = reg + 1;
  5223     if (reg == any_reg) {
  5224       return false;
  5226     split_pos = MIN2(_use_pos[reg], _use_pos[regHi]);
  5228   } else {
  5229     reg = find_free_reg(reg_needed_until, interval_to, hint_reg, any_reg, &need_split);
  5230     if (reg == any_reg) {
  5231       return false;
  5233     split_pos = _use_pos[reg];
  5235     if (_num_phys_regs == 2) {
  5236       regHi = find_free_reg(reg_needed_until, interval_to, hint_regHi, reg, &need_split);
  5238       if (_use_pos[reg] < interval_to && regHi == any_reg) {
  5239         // do not split interval if only one register can be assigned until the split pos
  5240         // (when one register is found for the whole interval, split&spill is only
  5241         // performed for the hi register)
  5242         return false;
  5244       } else if (regHi != any_reg) {
  5245         split_pos = MIN2(split_pos, _use_pos[regHi]);
  5247         // sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax
  5248         if (reg > regHi) {
  5249           int temp = reg;
  5250           reg = regHi;
  5251           regHi = temp;
  5257   cur->assign_reg(reg, regHi);
  5258   TRACE_LINEAR_SCAN(2, tty->print_cr("selected register %d, %d", reg, regHi));
  5260   assert(split_pos > 0, "invalid split_pos");
  5261   if (need_split) {
  5262     // register not available for full interval, so split it
  5263     split_when_partial_register_available(cur, split_pos);
  5266   // only return true if interval is completely assigned
  5267   return _num_phys_regs == 1 || regHi != any_reg;
  5271 int LinearScanWalker::find_locked_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split) {
  5272   int max_reg = any_reg;
  5274   for (int i = _first_reg; i <= _last_reg; i++) {
  5275     if (i == ignore_reg) {
  5276       // this register must be ignored
  5278     } else if (_use_pos[i] > reg_needed_until) {
  5279       if (max_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_reg] && max_reg != hint_reg)) {
  5280         max_reg = i;
  5285   if (max_reg != any_reg && _block_pos[max_reg] <= interval_to) {
  5286     *need_split = true;
  5289   return max_reg;
  5292 int LinearScanWalker::find_locked_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split) {
  5293   assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm");
  5295   int max_reg = any_reg;
  5297   for (int i = _first_reg; i < _last_reg; i+=2) {
  5298     if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) {
  5299       if (max_reg == any_reg || _use_pos[i] > _use_pos[max_reg]) {
  5300         max_reg = i;
  5305   if (_block_pos[max_reg] <= interval_to || _block_pos[max_reg + 1] <= interval_to) {
  5306     *need_split = true;
  5309   return max_reg;
  5312 void LinearScanWalker::split_and_spill_intersecting_intervals(int reg, int regHi) {
  5313   assert(reg != any_reg, "no register assigned");
  5315   for (int i = 0; i < _spill_intervals[reg]->length(); i++) {
  5316     Interval* it = _spill_intervals[reg]->at(i);
  5317     remove_from_list(it);
  5318     split_and_spill_interval(it);
  5321   if (regHi != any_reg) {
  5322     IntervalList* processed = _spill_intervals[reg];
  5323     for (int i = 0; i < _spill_intervals[regHi]->length(); i++) {
  5324       Interval* it = _spill_intervals[regHi]->at(i);
  5325       if (processed->index_of(it) == -1) {
  5326         remove_from_list(it);
  5327         split_and_spill_interval(it);
  5334 // Split an Interval and spill it to memory so that cur can be placed in a register
  5335 void LinearScanWalker::alloc_locked_reg(Interval* cur) {
  5336   TRACE_LINEAR_SCAN(2, tty->print("need to split and spill to get register for "); cur->print());
  5338   // collect current usage of registers
  5339   init_use_lists(false);
  5340   spill_exclude_active_fixed();
  5341 //  spill_block_unhandled_fixed(cur);
  5342   assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0");
  5343   spill_block_inactive_fixed(cur);
  5344   spill_collect_active_any();
  5345   spill_collect_inactive_any(cur);
  5347 #ifndef PRODUCT
  5348   if (TraceLinearScanLevel >= 4) {
  5349     tty->print_cr("      state of registers:");
  5350     for (int i = _first_reg; i <= _last_reg; i++) {
  5351       tty->print("      reg %d: use_pos: %d, block_pos: %d, intervals: ", i, _use_pos[i], _block_pos[i]);
  5352       for (int j = 0; j < _spill_intervals[i]->length(); j++) {
  5353         tty->print("%d ", _spill_intervals[i]->at(j)->reg_num());
  5355       tty->cr();
  5358 #endif
  5360   // the register must be free at least until this position
  5361   int reg_needed_until = MIN2(cur->first_usage(mustHaveRegister), cur->from() + 1);
  5362   int interval_to = cur->to();
  5363   assert (reg_needed_until > 0 && reg_needed_until < max_jint, "interval has no use");
  5365   int split_pos = 0;
  5366   int use_pos = 0;
  5367   bool need_split = false;
  5368   int reg, regHi;
  5370   if (_adjacent_regs) {
  5371     reg = find_locked_double_reg(reg_needed_until, interval_to, any_reg, &need_split);
  5372     regHi = reg + 1;
  5374     if (reg != any_reg) {
  5375       use_pos = MIN2(_use_pos[reg], _use_pos[regHi]);
  5376       split_pos = MIN2(_block_pos[reg], _block_pos[regHi]);
  5378   } else {
  5379     reg = find_locked_reg(reg_needed_until, interval_to, any_reg, cur->assigned_reg(), &need_split);
  5380     regHi = any_reg;
  5382     if (reg != any_reg) {
  5383       use_pos = _use_pos[reg];
  5384       split_pos = _block_pos[reg];
  5386       if (_num_phys_regs == 2) {
  5387         if (cur->assigned_reg() != any_reg) {
  5388           regHi = reg;
  5389           reg = cur->assigned_reg();
  5390         } else {
  5391           regHi = find_locked_reg(reg_needed_until, interval_to, any_reg, reg, &need_split);
  5392           if (regHi != any_reg) {
  5393             use_pos = MIN2(use_pos, _use_pos[regHi]);
  5394             split_pos = MIN2(split_pos, _block_pos[regHi]);
  5398         if (regHi != any_reg && reg > regHi) {
  5399           // sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax
  5400           int temp = reg;
  5401           reg = regHi;
  5402           regHi = temp;
  5408   if (reg == any_reg || (_num_phys_regs == 2 && regHi == any_reg) || use_pos <= cur->first_usage(mustHaveRegister)) {
  5409     // the first use of cur is later than the spilling position -> spill cur
  5410     TRACE_LINEAR_SCAN(4, tty->print_cr("able to spill current interval. first_usage(register): %d, use_pos: %d", cur->first_usage(mustHaveRegister), use_pos));
  5412     if (cur->first_usage(mustHaveRegister) <= cur->from() + 1) {
  5413       assert(false, "cannot spill interval that is used in first instruction (possible reason: no register found)");
  5414       // assign a reasonable register and do a bailout in product mode to avoid errors
  5415       allocator()->assign_spill_slot(cur);
  5416       BAILOUT("LinearScan: no register found");
  5419     split_and_spill_interval(cur);
  5420   } else {
  5421     TRACE_LINEAR_SCAN(4, tty->print_cr("decided to use register %d, %d", reg, regHi));
  5422     assert(reg != any_reg && (_num_phys_regs == 1 || regHi != any_reg), "no register found");
  5423     assert(split_pos > 0, "invalid split_pos");
  5424     assert(need_split == false || split_pos > cur->from(), "splitting interval at from");
  5426     cur->assign_reg(reg, regHi);
  5427     if (need_split) {
  5428       // register not available for full interval, so split it
  5429       split_when_partial_register_available(cur, split_pos);
  5432     // perform splitting and spilling for all affected intervalls
  5433     split_and_spill_intersecting_intervals(reg, regHi);
  5437 bool LinearScanWalker::no_allocation_possible(Interval* cur) {
  5438 #ifdef IA32
  5439   // fast calculation of intervals that can never get a register because the
  5440   // the next instruction is a call that blocks all registers
  5441   // Note: this does not work if callee-saved registers are available (e.g. on Sparc)
  5443   // check if this interval is the result of a split operation
  5444   // (an interval got a register until this position)
  5445   int pos = cur->from();
  5446   if ((pos & 1) == 1) {
  5447     // the current instruction is a call that blocks all registers
  5448     if (pos < allocator()->max_lir_op_id() && allocator()->has_call(pos + 1)) {
  5449       TRACE_LINEAR_SCAN(4, tty->print_cr("      free register cannot be available because all registers blocked by following call"));
  5451       // safety check that there is really no register available
  5452       assert(alloc_free_reg(cur) == false, "found a register for this interval");
  5453       return true;
  5457 #endif
  5458   return false;
  5461 void LinearScanWalker::init_vars_for_alloc(Interval* cur) {
  5462   BasicType type = cur->type();
  5463   _num_phys_regs = LinearScan::num_physical_regs(type);
  5464   _adjacent_regs = LinearScan::requires_adjacent_regs(type);
  5466   if (pd_init_regs_for_alloc(cur)) {
  5467     // the appropriate register range was selected.
  5468   } else if (type == T_FLOAT || type == T_DOUBLE) {
  5469     _first_reg = pd_first_fpu_reg;
  5470     _last_reg = pd_last_fpu_reg;
  5471   } else {
  5472     _first_reg = pd_first_cpu_reg;
  5473     _last_reg = pd_last_cpu_reg;
  5476   assert(0 <= _first_reg && _first_reg < LinearScan::nof_regs, "out of range");
  5477   assert(0 <= _last_reg && _last_reg < LinearScan::nof_regs, "out of range");
  5481 bool LinearScanWalker::is_move(LIR_Op* op, Interval* from, Interval* to) {
  5482   if (op->code() != lir_move) {
  5483     return false;
  5485   assert(op->as_Op1() != NULL, "move must be LIR_Op1");
  5487   LIR_Opr in = ((LIR_Op1*)op)->in_opr();
  5488   LIR_Opr res = ((LIR_Op1*)op)->result_opr();
  5489   return in->is_virtual() && res->is_virtual() && in->vreg_number() == from->reg_num() && res->vreg_number() == to->reg_num();
  5492 // optimization (especially for phi functions of nested loops):
  5493 // assign same spill slot to non-intersecting intervals
  5494 void LinearScanWalker::combine_spilled_intervals(Interval* cur) {
  5495   if (cur->is_split_child()) {
  5496     // optimization is only suitable for split parents
  5497     return;
  5500   Interval* register_hint = cur->register_hint(false);
  5501   if (register_hint == NULL) {
  5502     // cur is not the target of a move, otherwise register_hint would be set
  5503     return;
  5505   assert(register_hint->is_split_parent(), "register hint must be split parent");
  5507   if (cur->spill_state() != noOptimization || register_hint->spill_state() != noOptimization) {
  5508     // combining the stack slots for intervals where spill move optimization is applied
  5509     // is not benefitial and would cause problems
  5510     return;
  5513   int begin_pos = cur->from();
  5514   int end_pos = cur->to();
  5515   if (end_pos > allocator()->max_lir_op_id() || (begin_pos & 1) != 0 || (end_pos & 1) != 0) {
  5516     // safety check that lir_op_with_id is allowed
  5517     return;
  5520   if (!is_move(allocator()->lir_op_with_id(begin_pos), register_hint, cur) || !is_move(allocator()->lir_op_with_id(end_pos), cur, register_hint)) {
  5521     // cur and register_hint are not connected with two moves
  5522     return;
  5525   Interval* begin_hint = register_hint->split_child_at_op_id(begin_pos, LIR_OpVisitState::inputMode);
  5526   Interval* end_hint = register_hint->split_child_at_op_id(end_pos, LIR_OpVisitState::outputMode);
  5527   if (begin_hint == end_hint || begin_hint->to() != begin_pos || end_hint->from() != end_pos) {
  5528     // register_hint must be split, otherwise the re-writing of use positions does not work
  5529     return;
  5532   assert(begin_hint->assigned_reg() != any_reg, "must have register assigned");
  5533   assert(end_hint->assigned_reg() == any_reg, "must not have register assigned");
  5534   assert(cur->first_usage(mustHaveRegister) == begin_pos, "must have use position at begin of interval because of move");
  5535   assert(end_hint->first_usage(mustHaveRegister) == end_pos, "must have use position at begin of interval because of move");
  5537   if (begin_hint->assigned_reg() < LinearScan::nof_regs) {
  5538     // register_hint is not spilled at begin_pos, so it would not be benefitial to immediately spill cur
  5539     return;
  5541   assert(register_hint->canonical_spill_slot() != -1, "must be set when part of interval was spilled");
  5543   // modify intervals such that cur gets the same stack slot as register_hint
  5544   // delete use positions to prevent the intervals to get a register at beginning
  5545   cur->set_canonical_spill_slot(register_hint->canonical_spill_slot());
  5546   cur->remove_first_use_pos();
  5547   end_hint->remove_first_use_pos();
  5551 // allocate a physical register or memory location to an interval
  5552 bool LinearScanWalker::activate_current() {
  5553   Interval* cur = current();
  5554   bool result = true;
  5556   TRACE_LINEAR_SCAN(2, tty->print   ("+++++ activating interval "); cur->print());
  5557   TRACE_LINEAR_SCAN(4, tty->print_cr("      split_parent: %d, insert_move_when_activated: %d", cur->split_parent()->reg_num(), cur->insert_move_when_activated()));
  5559   if (cur->assigned_reg() >= LinearScan::nof_regs) {
  5560     // activating an interval that has a stack slot assigned -> split it at first use position
  5561     // used for method parameters
  5562     TRACE_LINEAR_SCAN(4, tty->print_cr("      interval has spill slot assigned (method parameter) -> split it before first use"));
  5564     split_stack_interval(cur);
  5565     result = false;
  5567   } else if (allocator()->gen()->is_vreg_flag_set(cur->reg_num(), LIRGenerator::must_start_in_memory)) {
  5568     // activating an interval that must start in a stack slot, but may get a register later
  5569     // used for lir_roundfp: rounding is done by store to stack and reload later
  5570     TRACE_LINEAR_SCAN(4, tty->print_cr("      interval must start in stack slot -> split it before first use"));
  5571     assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned");
  5573     allocator()->assign_spill_slot(cur);
  5574     split_stack_interval(cur);
  5575     result = false;
  5577   } else if (cur->assigned_reg() == any_reg) {
  5578     // interval has not assigned register -> normal allocation
  5579     // (this is the normal case for most intervals)
  5580     TRACE_LINEAR_SCAN(4, tty->print_cr("      normal allocation of register"));
  5582     // assign same spill slot to non-intersecting intervals
  5583     combine_spilled_intervals(cur);
  5585     init_vars_for_alloc(cur);
  5586     if (no_allocation_possible(cur) || !alloc_free_reg(cur)) {
  5587       // no empty register available.
  5588       // split and spill another interval so that this interval gets a register
  5589       alloc_locked_reg(cur);
  5592     // spilled intervals need not be move to active-list
  5593     if (cur->assigned_reg() >= LinearScan::nof_regs) {
  5594       result = false;
  5598   // load spilled values that become active from stack slot to register
  5599   if (cur->insert_move_when_activated()) {
  5600     assert(cur->is_split_child(), "must be");
  5601     assert(cur->current_split_child() != NULL, "must be");
  5602     assert(cur->current_split_child()->reg_num() != cur->reg_num(), "cannot insert move between same interval");
  5603     TRACE_LINEAR_SCAN(4, tty->print_cr("Inserting move from interval %d to %d because insert_move_when_activated is set", cur->current_split_child()->reg_num(), cur->reg_num()));
  5605     insert_move(cur->from(), cur->current_split_child(), cur);
  5607   cur->make_current_split_child();
  5609   return result; // true = interval is moved to active list
  5613 // Implementation of EdgeMoveOptimizer
  5615 EdgeMoveOptimizer::EdgeMoveOptimizer() :
  5616   _edge_instructions(4),
  5617   _edge_instructions_idx(4)
  5621 void EdgeMoveOptimizer::optimize(BlockList* code) {
  5622   EdgeMoveOptimizer optimizer = EdgeMoveOptimizer();
  5624   // ignore the first block in the list (index 0 is not processed)
  5625   for (int i = code->length() - 1; i >= 1; i--) {
  5626     BlockBegin* block = code->at(i);
  5628     if (block->number_of_preds() > 1 && !block->is_set(BlockBegin::exception_entry_flag)) {
  5629       optimizer.optimize_moves_at_block_end(block);
  5631     if (block->number_of_sux() == 2) {
  5632       optimizer.optimize_moves_at_block_begin(block);
  5638 // clear all internal data structures
  5639 void EdgeMoveOptimizer::init_instructions() {
  5640   _edge_instructions.clear();
  5641   _edge_instructions_idx.clear();
  5644 // append a lir-instruction-list and the index of the current operation in to the list
  5645 void EdgeMoveOptimizer::append_instructions(LIR_OpList* instructions, int instructions_idx) {
  5646   _edge_instructions.append(instructions);
  5647   _edge_instructions_idx.append(instructions_idx);
  5650 // return the current operation of the given edge (predecessor or successor)
  5651 LIR_Op* EdgeMoveOptimizer::instruction_at(int edge) {
  5652   LIR_OpList* instructions = _edge_instructions.at(edge);
  5653   int idx = _edge_instructions_idx.at(edge);
  5655   if (idx < instructions->length()) {
  5656     return instructions->at(idx);
  5657   } else {
  5658     return NULL;
  5662 // removes the current operation of the given edge (predecessor or successor)
  5663 void EdgeMoveOptimizer::remove_cur_instruction(int edge, bool decrement_index) {
  5664   LIR_OpList* instructions = _edge_instructions.at(edge);
  5665   int idx = _edge_instructions_idx.at(edge);
  5666   instructions->remove_at(idx);
  5668   if (decrement_index) {
  5669     _edge_instructions_idx.at_put(edge, idx - 1);
  5674 bool EdgeMoveOptimizer::operations_different(LIR_Op* op1, LIR_Op* op2) {
  5675   if (op1 == NULL || op2 == NULL) {
  5676     // at least one block is already empty -> no optimization possible
  5677     return true;
  5680   if (op1->code() == lir_move && op2->code() == lir_move) {
  5681     assert(op1->as_Op1() != NULL, "move must be LIR_Op1");
  5682     assert(op2->as_Op1() != NULL, "move must be LIR_Op1");
  5683     LIR_Op1* move1 = (LIR_Op1*)op1;
  5684     LIR_Op1* move2 = (LIR_Op1*)op2;
  5685     if (move1->info() == move2->info() && move1->in_opr() == move2->in_opr() && move1->result_opr() == move2->result_opr()) {
  5686       // these moves are exactly equal and can be optimized
  5687       return false;
  5690   } else if (op1->code() == lir_fxch && op2->code() == lir_fxch) {
  5691     assert(op1->as_Op1() != NULL, "fxch must be LIR_Op1");
  5692     assert(op2->as_Op1() != NULL, "fxch must be LIR_Op1");
  5693     LIR_Op1* fxch1 = (LIR_Op1*)op1;
  5694     LIR_Op1* fxch2 = (LIR_Op1*)op2;
  5695     if (fxch1->in_opr()->as_jint() == fxch2->in_opr()->as_jint()) {
  5696       // equal FPU stack operations can be optimized
  5697       return false;
  5700   } else if (op1->code() == lir_fpop_raw && op2->code() == lir_fpop_raw) {
  5701     // equal FPU stack operations can be optimized
  5702     return false;
  5705   // no optimization possible
  5706   return true;
  5709 void EdgeMoveOptimizer::optimize_moves_at_block_end(BlockBegin* block) {
  5710   TRACE_LINEAR_SCAN(4, tty->print_cr("optimizing moves at end of block B%d", block->block_id()));
  5712   if (block->is_predecessor(block)) {
  5713     // currently we can't handle this correctly.
  5714     return;
  5717   init_instructions();
  5718   int num_preds = block->number_of_preds();
  5719   assert(num_preds > 1, "do not call otherwise");
  5720   assert(!block->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed");
  5722   // setup a list with the lir-instructions of all predecessors
  5723   int i;
  5724   for (i = 0; i < num_preds; i++) {
  5725     BlockBegin* pred = block->pred_at(i);
  5726     LIR_OpList* pred_instructions = pred->lir()->instructions_list();
  5728     if (pred->number_of_sux() != 1) {
  5729       // this can happen with switch-statements where multiple edges are between
  5730       // the same blocks.
  5731       return;
  5734     assert(pred->number_of_sux() == 1, "can handle only one successor");
  5735     assert(pred->sux_at(0) == block, "invalid control flow");
  5736     assert(pred_instructions->last()->code() == lir_branch, "block with successor must end with branch");
  5737     assert(pred_instructions->last()->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
  5738     assert(pred_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch");
  5740     if (pred_instructions->last()->info() != NULL) {
  5741       // can not optimize instructions when debug info is needed
  5742       return;
  5745     // ignore the unconditional branch at the end of the block
  5746     append_instructions(pred_instructions, pred_instructions->length() - 2);
  5750   // process lir-instructions while all predecessors end with the same instruction
  5751   while (true) {
  5752     LIR_Op* op = instruction_at(0);
  5753     for (i = 1; i < num_preds; i++) {
  5754       if (operations_different(op, instruction_at(i))) {
  5755         // these instructions are different and cannot be optimized ->
  5756         // no further optimization possible
  5757         return;
  5761     TRACE_LINEAR_SCAN(4, tty->print("found instruction that is equal in all %d predecessors: ", num_preds); op->print());
  5763     // insert the instruction at the beginning of the current block
  5764     block->lir()->insert_before(1, op);
  5766     // delete the instruction at the end of all predecessors
  5767     for (i = 0; i < num_preds; i++) {
  5768       remove_cur_instruction(i, true);
  5774 void EdgeMoveOptimizer::optimize_moves_at_block_begin(BlockBegin* block) {
  5775   TRACE_LINEAR_SCAN(4, tty->print_cr("optimization moves at begin of block B%d", block->block_id()));
  5777   init_instructions();
  5778   int num_sux = block->number_of_sux();
  5780   LIR_OpList* cur_instructions = block->lir()->instructions_list();
  5782   assert(num_sux == 2, "method should not be called otherwise");
  5783   assert(cur_instructions->last()->code() == lir_branch, "block with successor must end with branch");
  5784   assert(cur_instructions->last()->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
  5785   assert(cur_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch");
  5787   if (cur_instructions->last()->info() != NULL) {
  5788     // can no optimize instructions when debug info is needed
  5789     return;
  5792   LIR_Op* branch = cur_instructions->at(cur_instructions->length() - 2);
  5793   if (branch->info() != NULL || (branch->code() != lir_branch && branch->code() != lir_cond_float_branch)) {
  5794     // not a valid case for optimization
  5795     // currently, only blocks that end with two branches (conditional branch followed
  5796     // by unconditional branch) are optimized
  5797     return;
  5800   // now it is guaranteed that the block ends with two branch instructions.
  5801   // the instructions are inserted at the end of the block before these two branches
  5802   int insert_idx = cur_instructions->length() - 2;
  5804   int i;
  5805 #ifdef ASSERT
  5806   for (i = insert_idx - 1; i >= 0; i--) {
  5807     LIR_Op* op = cur_instructions->at(i);
  5808     if ((op->code() == lir_branch || op->code() == lir_cond_float_branch) && ((LIR_OpBranch*)op)->block() != NULL) {
  5809       assert(false, "block with two successors can have only two branch instructions");
  5812 #endif
  5814   // setup a list with the lir-instructions of all successors
  5815   for (i = 0; i < num_sux; i++) {
  5816     BlockBegin* sux = block->sux_at(i);
  5817     LIR_OpList* sux_instructions = sux->lir()->instructions_list();
  5819     assert(sux_instructions->at(0)->code() == lir_label, "block must start with label");
  5821     if (sux->number_of_preds() != 1) {
  5822       // this can happen with switch-statements where multiple edges are between
  5823       // the same blocks.
  5824       return;
  5826     assert(sux->pred_at(0) == block, "invalid control flow");
  5827     assert(!sux->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed");
  5829     // ignore the label at the beginning of the block
  5830     append_instructions(sux_instructions, 1);
  5833   // process lir-instructions while all successors begin with the same instruction
  5834   while (true) {
  5835     LIR_Op* op = instruction_at(0);
  5836     for (i = 1; i < num_sux; i++) {
  5837       if (operations_different(op, instruction_at(i))) {
  5838         // these instructions are different and cannot be optimized ->
  5839         // no further optimization possible
  5840         return;
  5844     TRACE_LINEAR_SCAN(4, tty->print("----- found instruction that is equal in all %d successors: ", num_sux); op->print());
  5846     // insert instruction at end of current block
  5847     block->lir()->insert_before(insert_idx, op);
  5848     insert_idx++;
  5850     // delete the instructions at the beginning of all successors
  5851     for (i = 0; i < num_sux; i++) {
  5852       remove_cur_instruction(i, false);
  5858 // Implementation of ControlFlowOptimizer
  5860 ControlFlowOptimizer::ControlFlowOptimizer() :
  5861   _original_preds(4)
  5865 void ControlFlowOptimizer::optimize(BlockList* code) {
  5866   ControlFlowOptimizer optimizer = ControlFlowOptimizer();
  5868   // push the OSR entry block to the end so that we're not jumping over it.
  5869   BlockBegin* osr_entry = code->at(0)->end()->as_Base()->osr_entry();
  5870   if (osr_entry) {
  5871     int index = osr_entry->linear_scan_number();
  5872     assert(code->at(index) == osr_entry, "wrong index");
  5873     code->remove_at(index);
  5874     code->append(osr_entry);
  5877   optimizer.reorder_short_loops(code);
  5878   optimizer.delete_empty_blocks(code);
  5879   optimizer.delete_unnecessary_jumps(code);
  5880   optimizer.delete_jumps_to_return(code);
  5883 void ControlFlowOptimizer::reorder_short_loop(BlockList* code, BlockBegin* header_block, int header_idx) {
  5884   int i = header_idx + 1;
  5885   int max_end = MIN2(header_idx + ShortLoopSize, code->length());
  5886   while (i < max_end && code->at(i)->loop_depth() >= header_block->loop_depth()) {
  5887     i++;
  5890   if (i == code->length() || code->at(i)->loop_depth() < header_block->loop_depth()) {
  5891     int end_idx = i - 1;
  5892     BlockBegin* end_block = code->at(end_idx);
  5894     if (end_block->number_of_sux() == 1 && end_block->sux_at(0) == header_block) {
  5895       // short loop from header_idx to end_idx found -> reorder blocks such that
  5896       // the header_block is the last block instead of the first block of the loop
  5897       TRACE_LINEAR_SCAN(1, tty->print_cr("Reordering short loop: length %d, header B%d, end B%d",
  5898                                          end_idx - header_idx + 1,
  5899                                          header_block->block_id(), end_block->block_id()));
  5901       for (int j = header_idx; j < end_idx; j++) {
  5902         code->at_put(j, code->at(j + 1));
  5904       code->at_put(end_idx, header_block);
  5906       // correct the flags so that any loop alignment occurs in the right place.
  5907       assert(code->at(end_idx)->is_set(BlockBegin::backward_branch_target_flag), "must be backward branch target");
  5908       code->at(end_idx)->clear(BlockBegin::backward_branch_target_flag);
  5909       code->at(header_idx)->set(BlockBegin::backward_branch_target_flag);
  5914 void ControlFlowOptimizer::reorder_short_loops(BlockList* code) {
  5915   for (int i = code->length() - 1; i >= 0; i--) {
  5916     BlockBegin* block = code->at(i);
  5918     if (block->is_set(BlockBegin::linear_scan_loop_header_flag)) {
  5919       reorder_short_loop(code, block, i);
  5923   DEBUG_ONLY(verify(code));
  5926 // only blocks with exactly one successor can be deleted. Such blocks
  5927 // must always end with an unconditional branch to this successor
  5928 bool ControlFlowOptimizer::can_delete_block(BlockBegin* block) {
  5929   if (block->number_of_sux() != 1 || block->number_of_exception_handlers() != 0 || block->is_entry_block()) {
  5930     return false;
  5933   LIR_OpList* instructions = block->lir()->instructions_list();
  5935   assert(instructions->length() >= 2, "block must have label and branch");
  5936   assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label");
  5937   assert(instructions->last()->as_OpBranch() != NULL, "last instrcution must always be a branch");
  5938   assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "branch must be unconditional");
  5939   assert(instructions->last()->as_OpBranch()->block() == block->sux_at(0), "branch target must be the successor");
  5941   // block must have exactly one successor
  5943   if (instructions->length() == 2 && instructions->last()->info() == NULL) {
  5944     return true;
  5946   return false;
  5949 // substitute branch targets in all branch-instructions of this blocks
  5950 void ControlFlowOptimizer::substitute_branch_target(BlockBegin* block, BlockBegin* target_from, BlockBegin* target_to) {
  5951   TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting empty block: substituting from B%d to B%d inside B%d", target_from->block_id(), target_to->block_id(), block->block_id()));
  5953   LIR_OpList* instructions = block->lir()->instructions_list();
  5955   assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label");
  5956   for (int i = instructions->length() - 1; i >= 1; i--) {
  5957     LIR_Op* op = instructions->at(i);
  5959     if (op->code() == lir_branch || op->code() == lir_cond_float_branch) {
  5960       assert(op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
  5961       LIR_OpBranch* branch = (LIR_OpBranch*)op;
  5963       if (branch->block() == target_from) {
  5964         branch->change_block(target_to);
  5966       if (branch->ublock() == target_from) {
  5967         branch->change_ublock(target_to);
  5973 void ControlFlowOptimizer::delete_empty_blocks(BlockList* code) {
  5974   int old_pos = 0;
  5975   int new_pos = 0;
  5976   int num_blocks = code->length();
  5978   while (old_pos < num_blocks) {
  5979     BlockBegin* block = code->at(old_pos);
  5981     if (can_delete_block(block)) {
  5982       BlockBegin* new_target = block->sux_at(0);
  5984       // propagate backward branch target flag for correct code alignment
  5985       if (block->is_set(BlockBegin::backward_branch_target_flag)) {
  5986         new_target->set(BlockBegin::backward_branch_target_flag);
  5989       // collect a list with all predecessors that contains each predecessor only once
  5990       // the predecessors of cur are changed during the substitution, so a copy of the
  5991       // predecessor list is necessary
  5992       int j;
  5993       _original_preds.clear();
  5994       for (j = block->number_of_preds() - 1; j >= 0; j--) {
  5995         BlockBegin* pred = block->pred_at(j);
  5996         if (_original_preds.index_of(pred) == -1) {
  5997           _original_preds.append(pred);
  6001       for (j = _original_preds.length() - 1; j >= 0; j--) {
  6002         BlockBegin* pred = _original_preds.at(j);
  6003         substitute_branch_target(pred, block, new_target);
  6004         pred->substitute_sux(block, new_target);
  6006     } else {
  6007       // adjust position of this block in the block list if blocks before
  6008       // have been deleted
  6009       if (new_pos != old_pos) {
  6010         code->at_put(new_pos, code->at(old_pos));
  6012       new_pos++;
  6014     old_pos++;
  6016   code->truncate(new_pos);
  6018   DEBUG_ONLY(verify(code));
  6021 void ControlFlowOptimizer::delete_unnecessary_jumps(BlockList* code) {
  6022   // skip the last block because there a branch is always necessary
  6023   for (int i = code->length() - 2; i >= 0; i--) {
  6024     BlockBegin* block = code->at(i);
  6025     LIR_OpList* instructions = block->lir()->instructions_list();
  6027     LIR_Op* last_op = instructions->last();
  6028     if (last_op->code() == lir_branch) {
  6029       assert(last_op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
  6030       LIR_OpBranch* last_branch = (LIR_OpBranch*)last_op;
  6032       assert(last_branch->block() != NULL, "last branch must always have a block as target");
  6033       assert(last_branch->label() == last_branch->block()->label(), "must be equal");
  6035       if (last_branch->info() == NULL) {
  6036         if (last_branch->block() == code->at(i + 1)) {
  6038           TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting unconditional branch at end of block B%d", block->block_id()));
  6040           // delete last branch instruction
  6041           instructions->truncate(instructions->length() - 1);
  6043         } else {
  6044           LIR_Op* prev_op = instructions->at(instructions->length() - 2);
  6045           if (prev_op->code() == lir_branch || prev_op->code() == lir_cond_float_branch) {
  6046             assert(prev_op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
  6047             LIR_OpBranch* prev_branch = (LIR_OpBranch*)prev_op;
  6049             if (prev_branch->block() == code->at(i + 1) && prev_branch->info() == NULL) {
  6051               TRACE_LINEAR_SCAN(3, tty->print_cr("Negating conditional branch and deleting unconditional branch at end of block B%d", block->block_id()));
  6053               // eliminate a conditional branch to the immediate successor
  6054               prev_branch->change_block(last_branch->block());
  6055               prev_branch->negate_cond();
  6056               instructions->truncate(instructions->length() - 1);
  6064   DEBUG_ONLY(verify(code));
  6067 void ControlFlowOptimizer::delete_jumps_to_return(BlockList* code) {
  6068 #ifdef ASSERT
  6069   BitMap return_converted(BlockBegin::number_of_blocks());
  6070   return_converted.clear();
  6071 #endif
  6073   for (int i = code->length() - 1; i >= 0; i--) {
  6074     BlockBegin* block = code->at(i);
  6075     LIR_OpList* cur_instructions = block->lir()->instructions_list();
  6076     LIR_Op*     cur_last_op = cur_instructions->last();
  6078     assert(cur_instructions->at(0)->code() == lir_label, "first instruction must always be a label");
  6079     if (cur_instructions->length() == 2 && cur_last_op->code() == lir_return) {
  6080       // the block contains only a label and a return
  6081       // if a predecessor ends with an unconditional jump to this block, then the jump
  6082       // can be replaced with a return instruction
  6083       //
  6084       // Note: the original block with only a return statement cannot be deleted completely
  6085       //       because the predecessors might have other (conditional) jumps to this block
  6086       //       -> this may lead to unnecesary return instructions in the final code
  6088       assert(cur_last_op->info() == NULL, "return instructions do not have debug information");
  6089       assert(block->number_of_sux() == 0 ||
  6090              (return_converted.at(block->block_id()) && block->number_of_sux() == 1),
  6091              "blocks that end with return must not have successors");
  6093       assert(cur_last_op->as_Op1() != NULL, "return must be LIR_Op1");
  6094       LIR_Opr return_opr = ((LIR_Op1*)cur_last_op)->in_opr();
  6096       for (int j = block->number_of_preds() - 1; j >= 0; j--) {
  6097         BlockBegin* pred = block->pred_at(j);
  6098         LIR_OpList* pred_instructions = pred->lir()->instructions_list();
  6099         LIR_Op*     pred_last_op = pred_instructions->last();
  6101         if (pred_last_op->code() == lir_branch) {
  6102           assert(pred_last_op->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
  6103           LIR_OpBranch* pred_last_branch = (LIR_OpBranch*)pred_last_op;
  6105           if (pred_last_branch->block() == block && pred_last_branch->cond() == lir_cond_always && pred_last_branch->info() == NULL) {
  6106             // replace the jump to a return with a direct return
  6107             // Note: currently the edge between the blocks is not deleted
  6108             pred_instructions->at_put(pred_instructions->length() - 1, new LIR_Op1(lir_return, return_opr));
  6109 #ifdef ASSERT
  6110             return_converted.set_bit(pred->block_id());
  6111 #endif
  6120 #ifdef ASSERT
  6121 void ControlFlowOptimizer::verify(BlockList* code) {
  6122   for (int i = 0; i < code->length(); i++) {
  6123     BlockBegin* block = code->at(i);
  6124     LIR_OpList* instructions = block->lir()->instructions_list();
  6126     int j;
  6127     for (j = 0; j < instructions->length(); j++) {
  6128       LIR_OpBranch* op_branch = instructions->at(j)->as_OpBranch();
  6130       if (op_branch != NULL) {
  6131         assert(op_branch->block() == NULL || code->index_of(op_branch->block()) != -1, "branch target not valid");
  6132         assert(op_branch->ublock() == NULL || code->index_of(op_branch->ublock()) != -1, "branch target not valid");
  6136     for (j = 0; j < block->number_of_sux() - 1; j++) {
  6137       BlockBegin* sux = block->sux_at(j);
  6138       assert(code->index_of(sux) != -1, "successor not valid");
  6141     for (j = 0; j < block->number_of_preds() - 1; j++) {
  6142       BlockBegin* pred = block->pred_at(j);
  6143       assert(code->index_of(pred) != -1, "successor not valid");
  6147 #endif
  6150 #ifndef PRODUCT
  6152 // Implementation of LinearStatistic
  6154 const char* LinearScanStatistic::counter_name(int counter_idx) {
  6155   switch (counter_idx) {
  6156     case counter_method:          return "compiled methods";
  6157     case counter_fpu_method:      return "methods using fpu";
  6158     case counter_loop_method:     return "methods with loops";
  6159     case counter_exception_method:return "methods with xhandler";
  6161     case counter_loop:            return "loops";
  6162     case counter_block:           return "blocks";
  6163     case counter_loop_block:      return "blocks inside loop";
  6164     case counter_exception_block: return "exception handler entries";
  6165     case counter_interval:        return "intervals";
  6166     case counter_fixed_interval:  return "fixed intervals";
  6167     case counter_range:           return "ranges";
  6168     case counter_fixed_range:     return "fixed ranges";
  6169     case counter_use_pos:         return "use positions";
  6170     case counter_fixed_use_pos:   return "fixed use positions";
  6171     case counter_spill_slots:     return "spill slots";
  6173     // counter for classes of lir instructions
  6174     case counter_instruction:     return "total instructions";
  6175     case counter_label:           return "labels";
  6176     case counter_entry:           return "method entries";
  6177     case counter_return:          return "method returns";
  6178     case counter_call:            return "method calls";
  6179     case counter_move:            return "moves";
  6180     case counter_cmp:             return "compare";
  6181     case counter_cond_branch:     return "conditional branches";
  6182     case counter_uncond_branch:   return "unconditional branches";
  6183     case counter_stub_branch:     return "branches to stub";
  6184     case counter_alu:             return "artithmetic + logic";
  6185     case counter_alloc:           return "allocations";
  6186     case counter_sync:            return "synchronisation";
  6187     case counter_throw:           return "throw";
  6188     case counter_unwind:          return "unwind";
  6189     case counter_typecheck:       return "type+null-checks";
  6190     case counter_fpu_stack:       return "fpu-stack";
  6191     case counter_misc_inst:       return "other instructions";
  6192     case counter_other_inst:      return "misc. instructions";
  6194     // counter for different types of moves
  6195     case counter_move_total:      return "total moves";
  6196     case counter_move_reg_reg:    return "register->register";
  6197     case counter_move_reg_stack:  return "register->stack";
  6198     case counter_move_stack_reg:  return "stack->register";
  6199     case counter_move_stack_stack:return "stack->stack";
  6200     case counter_move_reg_mem:    return "register->memory";
  6201     case counter_move_mem_reg:    return "memory->register";
  6202     case counter_move_const_any:  return "constant->any";
  6204     case blank_line_1:            return "";
  6205     case blank_line_2:            return "";
  6207     default: ShouldNotReachHere(); return "";
  6211 LinearScanStatistic::Counter LinearScanStatistic::base_counter(int counter_idx) {
  6212   if (counter_idx == counter_fpu_method || counter_idx == counter_loop_method || counter_idx == counter_exception_method) {
  6213     return counter_method;
  6214   } else if (counter_idx == counter_loop_block || counter_idx == counter_exception_block) {
  6215     return counter_block;
  6216   } else if (counter_idx >= counter_instruction && counter_idx <= counter_other_inst) {
  6217     return counter_instruction;
  6218   } else if (counter_idx >= counter_move_total && counter_idx <= counter_move_const_any) {
  6219     return counter_move_total;
  6221   return invalid_counter;
  6224 LinearScanStatistic::LinearScanStatistic() {
  6225   for (int i = 0; i < number_of_counters; i++) {
  6226     _counters_sum[i] = 0;
  6227     _counters_max[i] = -1;
  6232 // add the method-local numbers to the total sum
  6233 void LinearScanStatistic::sum_up(LinearScanStatistic &method_statistic) {
  6234   for (int i = 0; i < number_of_counters; i++) {
  6235     _counters_sum[i] += method_statistic._counters_sum[i];
  6236     _counters_max[i] = MAX2(_counters_max[i], method_statistic._counters_sum[i]);
  6240 void LinearScanStatistic::print(const char* title) {
  6241   if (CountLinearScan || TraceLinearScanLevel > 0) {
  6242     tty->cr();
  6243     tty->print_cr("***** LinearScan statistic - %s *****", title);
  6245     for (int i = 0; i < number_of_counters; i++) {
  6246       if (_counters_sum[i] > 0 || _counters_max[i] >= 0) {
  6247         tty->print("%25s: %8d", counter_name(i), _counters_sum[i]);
  6249         if (base_counter(i) != invalid_counter) {
  6250           tty->print("  (%5.1f%%) ", _counters_sum[i] * 100.0 / _counters_sum[base_counter(i)]);
  6251         } else {
  6252           tty->print("           ");
  6255         if (_counters_max[i] >= 0) {
  6256           tty->print("%8d", _counters_max[i]);
  6259       tty->cr();
  6264 void LinearScanStatistic::collect(LinearScan* allocator) {
  6265   inc_counter(counter_method);
  6266   if (allocator->has_fpu_registers()) {
  6267     inc_counter(counter_fpu_method);
  6269   if (allocator->num_loops() > 0) {
  6270     inc_counter(counter_loop_method);
  6272   inc_counter(counter_loop, allocator->num_loops());
  6273   inc_counter(counter_spill_slots, allocator->max_spills());
  6275   int i;
  6276   for (i = 0; i < allocator->interval_count(); i++) {
  6277     Interval* cur = allocator->interval_at(i);
  6279     if (cur != NULL) {
  6280       inc_counter(counter_interval);
  6281       inc_counter(counter_use_pos, cur->num_use_positions());
  6282       if (LinearScan::is_precolored_interval(cur)) {
  6283         inc_counter(counter_fixed_interval);
  6284         inc_counter(counter_fixed_use_pos, cur->num_use_positions());
  6287       Range* range = cur->first();
  6288       while (range != Range::end()) {
  6289         inc_counter(counter_range);
  6290         if (LinearScan::is_precolored_interval(cur)) {
  6291           inc_counter(counter_fixed_range);
  6293         range = range->next();
  6298   bool has_xhandlers = false;
  6299   // Note: only count blocks that are in code-emit order
  6300   for (i = 0; i < allocator->ir()->code()->length(); i++) {
  6301     BlockBegin* cur = allocator->ir()->code()->at(i);
  6303     inc_counter(counter_block);
  6304     if (cur->loop_depth() > 0) {
  6305       inc_counter(counter_loop_block);
  6307     if (cur->is_set(BlockBegin::exception_entry_flag)) {
  6308       inc_counter(counter_exception_block);
  6309       has_xhandlers = true;
  6312     LIR_OpList* instructions = cur->lir()->instructions_list();
  6313     for (int j = 0; j < instructions->length(); j++) {
  6314       LIR_Op* op = instructions->at(j);
  6316       inc_counter(counter_instruction);
  6318       switch (op->code()) {
  6319         case lir_label:           inc_counter(counter_label); break;
  6320         case lir_std_entry:
  6321         case lir_osr_entry:       inc_counter(counter_entry); break;
  6322         case lir_return:          inc_counter(counter_return); break;
  6324         case lir_rtcall:
  6325         case lir_static_call:
  6326         case lir_optvirtual_call:
  6327         case lir_virtual_call:    inc_counter(counter_call); break;
  6329         case lir_move: {
  6330           inc_counter(counter_move);
  6331           inc_counter(counter_move_total);
  6333           LIR_Opr in = op->as_Op1()->in_opr();
  6334           LIR_Opr res = op->as_Op1()->result_opr();
  6335           if (in->is_register()) {
  6336             if (res->is_register()) {
  6337               inc_counter(counter_move_reg_reg);
  6338             } else if (res->is_stack()) {
  6339               inc_counter(counter_move_reg_stack);
  6340             } else if (res->is_address()) {
  6341               inc_counter(counter_move_reg_mem);
  6342             } else {
  6343               ShouldNotReachHere();
  6345           } else if (in->is_stack()) {
  6346             if (res->is_register()) {
  6347               inc_counter(counter_move_stack_reg);
  6348             } else {
  6349               inc_counter(counter_move_stack_stack);
  6351           } else if (in->is_address()) {
  6352             assert(res->is_register(), "must be");
  6353             inc_counter(counter_move_mem_reg);
  6354           } else if (in->is_constant()) {
  6355             inc_counter(counter_move_const_any);
  6356           } else {
  6357             ShouldNotReachHere();
  6359           break;
  6362         case lir_cmp:             inc_counter(counter_cmp); break;
  6364         case lir_branch:
  6365         case lir_cond_float_branch: {
  6366           LIR_OpBranch* branch = op->as_OpBranch();
  6367           if (branch->block() == NULL) {
  6368             inc_counter(counter_stub_branch);
  6369           } else if (branch->cond() == lir_cond_always) {
  6370             inc_counter(counter_uncond_branch);
  6371           } else {
  6372             inc_counter(counter_cond_branch);
  6374           break;
  6377         case lir_neg:
  6378         case lir_add:
  6379         case lir_sub:
  6380         case lir_mul:
  6381         case lir_mul_strictfp:
  6382         case lir_div:
  6383         case lir_div_strictfp:
  6384         case lir_rem:
  6385         case lir_sqrt:
  6386         case lir_sin:
  6387         case lir_cos:
  6388         case lir_abs:
  6389         case lir_log10:
  6390         case lir_log:
  6391         case lir_logic_and:
  6392         case lir_logic_or:
  6393         case lir_logic_xor:
  6394         case lir_shl:
  6395         case lir_shr:
  6396         case lir_ushr:            inc_counter(counter_alu); break;
  6398         case lir_alloc_object:
  6399         case lir_alloc_array:     inc_counter(counter_alloc); break;
  6401         case lir_monaddr:
  6402         case lir_lock:
  6403         case lir_unlock:          inc_counter(counter_sync); break;
  6405         case lir_throw:           inc_counter(counter_throw); break;
  6407         case lir_unwind:          inc_counter(counter_unwind); break;
  6409         case lir_null_check:
  6410         case lir_leal:
  6411         case lir_instanceof:
  6412         case lir_checkcast:
  6413         case lir_store_check:     inc_counter(counter_typecheck); break;
  6415         case lir_fpop_raw:
  6416         case lir_fxch:
  6417         case lir_fld:             inc_counter(counter_fpu_stack); break;
  6419         case lir_nop:
  6420         case lir_push:
  6421         case lir_pop:
  6422         case lir_convert:
  6423         case lir_roundfp:
  6424         case lir_cmove:           inc_counter(counter_misc_inst); break;
  6426         default:                  inc_counter(counter_other_inst); break;
  6431   if (has_xhandlers) {
  6432     inc_counter(counter_exception_method);
  6436 void LinearScanStatistic::compute(LinearScan* allocator, LinearScanStatistic &global_statistic) {
  6437   if (CountLinearScan || TraceLinearScanLevel > 0) {
  6439     LinearScanStatistic local_statistic = LinearScanStatistic();
  6441     local_statistic.collect(allocator);
  6442     global_statistic.sum_up(local_statistic);
  6444     if (TraceLinearScanLevel > 2) {
  6445       local_statistic.print("current local statistic");
  6451 // Implementation of LinearTimers
  6453 LinearScanTimers::LinearScanTimers() {
  6454   for (int i = 0; i < number_of_timers; i++) {
  6455     timer(i)->reset();
  6459 const char* LinearScanTimers::timer_name(int idx) {
  6460   switch (idx) {
  6461     case timer_do_nothing:               return "Nothing (Time Check)";
  6462     case timer_number_instructions:      return "Number Instructions";
  6463     case timer_compute_local_live_sets:  return "Local Live Sets";
  6464     case timer_compute_global_live_sets: return "Global Live Sets";
  6465     case timer_build_intervals:          return "Build Intervals";
  6466     case timer_sort_intervals_before:    return "Sort Intervals Before";
  6467     case timer_allocate_registers:       return "Allocate Registers";
  6468     case timer_resolve_data_flow:        return "Resolve Data Flow";
  6469     case timer_sort_intervals_after:     return "Sort Intervals After";
  6470     case timer_eliminate_spill_moves:    return "Spill optimization";
  6471     case timer_assign_reg_num:           return "Assign Reg Num";
  6472     case timer_allocate_fpu_stack:       return "Allocate FPU Stack";
  6473     case timer_optimize_lir:             return "Optimize LIR";
  6474     default: ShouldNotReachHere();       return "";
  6478 void LinearScanTimers::begin_method() {
  6479   if (TimeEachLinearScan) {
  6480     // reset all timers to measure only current method
  6481     for (int i = 0; i < number_of_timers; i++) {
  6482       timer(i)->reset();
  6487 void LinearScanTimers::end_method(LinearScan* allocator) {
  6488   if (TimeEachLinearScan) {
  6490     double c = timer(timer_do_nothing)->seconds();
  6491     double total = 0;
  6492     for (int i = 1; i < number_of_timers; i++) {
  6493       total += timer(i)->seconds() - c;
  6496     if (total >= 0.0005) {
  6497       // print all information in one line for automatic processing
  6498       tty->print("@"); allocator->compilation()->method()->print_name();
  6500       tty->print("@ %d ", allocator->compilation()->method()->code_size());
  6501       tty->print("@ %d ", allocator->block_at(allocator->block_count() - 1)->last_lir_instruction_id() / 2);
  6502       tty->print("@ %d ", allocator->block_count());
  6503       tty->print("@ %d ", allocator->num_virtual_regs());
  6504       tty->print("@ %d ", allocator->interval_count());
  6505       tty->print("@ %d ", allocator->_num_calls);
  6506       tty->print("@ %d ", allocator->num_loops());
  6508       tty->print("@ %6.6f ", total);
  6509       for (int i = 1; i < number_of_timers; i++) {
  6510         tty->print("@ %4.1f ", ((timer(i)->seconds() - c) / total) * 100);
  6512       tty->cr();
  6517 void LinearScanTimers::print(double total_time) {
  6518   if (TimeLinearScan) {
  6519     // correction value: sum of dummy-timer that only measures the time that
  6520     // is necesary to start and stop itself
  6521     double c = timer(timer_do_nothing)->seconds();
  6523     for (int i = 0; i < number_of_timers; i++) {
  6524       double t = timer(i)->seconds();
  6525       tty->print_cr("    %25s: %6.3f s (%4.1f%%)  corrected: %6.3f s (%4.1f%%)", timer_name(i), t, (t / total_time) * 100.0, t - c, (t - c) / (total_time - 2 * number_of_timers * c) * 100);
  6530 #endif // #ifndef PRODUCT

mercurial