src/os_cpu/linux_x86/vm/os_linux_x86.cpp

Sat, 01 Dec 2007 00:00:00 +0000

author
duke
date
Sat, 01 Dec 2007 00:00:00 +0000
changeset 435
a61af66fc99e
child 455
e195fe4c40c7
child 485
485d403e94e1
permissions
-rw-r--r--

Initial load

     1 /*
     2  * Copyright 1999-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // do not include  precompiled  header file
    26 # include "incls/_os_linux_x86.cpp.incl"
    28 // put OS-includes here
    29 # include <sys/types.h>
    30 # include <sys/mman.h>
    31 # include <pthread.h>
    32 # include <signal.h>
    33 # include <errno.h>
    34 # include <dlfcn.h>
    35 # include <stdlib.h>
    36 # include <stdio.h>
    37 # include <unistd.h>
    38 # include <sys/resource.h>
    39 # include <pthread.h>
    40 # include <sys/stat.h>
    41 # include <sys/time.h>
    42 # include <sys/utsname.h>
    43 # include <sys/socket.h>
    44 # include <sys/wait.h>
    45 # include <pwd.h>
    46 # include <poll.h>
    47 # include <ucontext.h>
    48 # include <fpu_control.h>
    50 #ifdef AMD64
    51 #define REG_SP REG_RSP
    52 #define REG_PC REG_RIP
    53 #define REG_FP REG_RBP
    54 #define SPELL_REG_SP "rsp"
    55 #define SPELL_REG_FP "rbp"
    56 #else
    57 #define REG_SP REG_UESP
    58 #define REG_PC REG_EIP
    59 #define REG_FP REG_EBP
    60 #define SPELL_REG_SP "esp"
    61 #define SPELL_REG_FP "ebp"
    62 #endif // AMD64
    64 address os::current_stack_pointer() {
    65   register void *esp __asm__ (SPELL_REG_SP);
    66   return (address) esp;
    67 }
    69 char* os::non_memory_address_word() {
    70   // Must never look like an address returned by reserve_memory,
    71   // even in its subfields (as defined by the CPU immediate fields,
    72   // if the CPU splits constants across multiple instructions).
    74   return (char*) -1;
    75 }
    77 void os::initialize_thread() {
    78 // Nothing to do.
    79 }
    81 address os::Linux::ucontext_get_pc(ucontext_t * uc) {
    82   return (address)uc->uc_mcontext.gregs[REG_PC];
    83 }
    85 intptr_t* os::Linux::ucontext_get_sp(ucontext_t * uc) {
    86   return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
    87 }
    89 intptr_t* os::Linux::ucontext_get_fp(ucontext_t * uc) {
    90   return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
    91 }
    93 // For Forte Analyzer AsyncGetCallTrace profiling support - thread
    94 // is currently interrupted by SIGPROF.
    95 // os::Solaris::fetch_frame_from_ucontext() tries to skip nested signal
    96 // frames. Currently we don't do that on Linux, so it's the same as
    97 // os::fetch_frame_from_context().
    98 ExtendedPC os::Linux::fetch_frame_from_ucontext(Thread* thread,
    99   ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
   101   assert(thread != NULL, "just checking");
   102   assert(ret_sp != NULL, "just checking");
   103   assert(ret_fp != NULL, "just checking");
   105   return os::fetch_frame_from_context(uc, ret_sp, ret_fp);
   106 }
   108 ExtendedPC os::fetch_frame_from_context(void* ucVoid,
   109                     intptr_t** ret_sp, intptr_t** ret_fp) {
   111   ExtendedPC  epc;
   112   ucontext_t* uc = (ucontext_t*)ucVoid;
   114   if (uc != NULL) {
   115     epc = ExtendedPC(os::Linux::ucontext_get_pc(uc));
   116     if (ret_sp) *ret_sp = os::Linux::ucontext_get_sp(uc);
   117     if (ret_fp) *ret_fp = os::Linux::ucontext_get_fp(uc);
   118   } else {
   119     // construct empty ExtendedPC for return value checking
   120     epc = ExtendedPC(NULL);
   121     if (ret_sp) *ret_sp = (intptr_t *)NULL;
   122     if (ret_fp) *ret_fp = (intptr_t *)NULL;
   123   }
   125   return epc;
   126 }
   128 frame os::fetch_frame_from_context(void* ucVoid) {
   129   intptr_t* sp;
   130   intptr_t* fp;
   131   ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
   132   return frame(sp, fp, epc.pc());
   133 }
   135 // By default, gcc always save frame pointer (%ebp/%rbp) on stack. It may get
   136 // turned off by -fomit-frame-pointer,
   137 frame os::get_sender_for_C_frame(frame* fr) {
   138   return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
   139 }
   141 intptr_t* _get_previous_fp() {
   142   register intptr_t **ebp __asm__ (SPELL_REG_FP);
   143   return (intptr_t*) *ebp;   // we want what it points to.
   144 }
   147 frame os::current_frame() {
   148   intptr_t* fp = _get_previous_fp();
   149   frame myframe((intptr_t*)os::current_stack_pointer(),
   150                 (intptr_t*)fp,
   151                 CAST_FROM_FN_PTR(address, os::current_frame));
   152   if (os::is_first_C_frame(&myframe)) {
   153     // stack is not walkable
   154     return frame(NULL, NULL, NULL);
   155   } else {
   156     return os::get_sender_for_C_frame(&myframe);
   157   }
   158 }
   161 // Utility functions
   163 julong os::allocatable_physical_memory(julong size) {
   164 #ifdef AMD64
   165   return size;
   166 #else
   167   julong result = MIN2(size, (julong)3800*M);
   168    if (!is_allocatable(result)) {
   169      // See comments under solaris for alignment considerations
   170      julong reasonable_size = (julong)2*G - 2 * os::vm_page_size();
   171      result =  MIN2(size, reasonable_size);
   172    }
   173    return result;
   174 #endif // AMD64
   175 }
   177 // From IA32 System Programming Guide
   178 enum {
   179   trap_page_fault = 0xE
   180 };
   182 extern "C" void Fetch32PFI () ;
   183 extern "C" void Fetch32Resume () ;
   184 #ifdef AMD64
   185 extern "C" void FetchNPFI () ;
   186 extern "C" void FetchNResume () ;
   187 #endif // AMD64
   189 extern "C" int
   190 JVM_handle_linux_signal(int sig,
   191                         siginfo_t* info,
   192                         void* ucVoid,
   193                         int abort_if_unrecognized) {
   194   ucontext_t* uc = (ucontext_t*) ucVoid;
   196   Thread* t = ThreadLocalStorage::get_thread_slow();
   198   SignalHandlerMark shm(t);
   200   // Note: it's not uncommon that JNI code uses signal/sigset to install
   201   // then restore certain signal handler (e.g. to temporarily block SIGPIPE,
   202   // or have a SIGILL handler when detecting CPU type). When that happens,
   203   // JVM_handle_linux_signal() might be invoked with junk info/ucVoid. To
   204   // avoid unnecessary crash when libjsig is not preloaded, try handle signals
   205   // that do not require siginfo/ucontext first.
   207   if (sig == SIGPIPE || sig == SIGXFSZ) {
   208     // allow chained handler to go first
   209     if (os::Linux::chained_handler(sig, info, ucVoid)) {
   210       return true;
   211     } else {
   212       if (PrintMiscellaneous && (WizardMode || Verbose)) {
   213         char buf[64];
   214         warning("Ignoring %s - see bugs 4229104 or 646499219",
   215                 os::exception_name(sig, buf, sizeof(buf)));
   216       }
   217       return true;
   218     }
   219   }
   221   JavaThread* thread = NULL;
   222   VMThread* vmthread = NULL;
   223   if (os::Linux::signal_handlers_are_installed) {
   224     if (t != NULL ){
   225       if(t->is_Java_thread()) {
   226         thread = (JavaThread*)t;
   227       }
   228       else if(t->is_VM_thread()){
   229         vmthread = (VMThread *)t;
   230       }
   231     }
   232   }
   233 /*
   234   NOTE: does not seem to work on linux.
   235   if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
   236     // can't decode this kind of signal
   237     info = NULL;
   238   } else {
   239     assert(sig == info->si_signo, "bad siginfo");
   240   }
   241 */
   242   // decide if this trap can be handled by a stub
   243   address stub = NULL;
   245   address pc          = NULL;
   247   //%note os_trap_1
   248   if (info != NULL && uc != NULL && thread != NULL) {
   249     pc = (address) os::Linux::ucontext_get_pc(uc);
   251     if (pc == (address) Fetch32PFI) {
   252        uc->uc_mcontext.gregs[REG_PC] = intptr_t(Fetch32Resume) ;
   253        return 1 ;
   254     }
   255 #ifdef AMD64
   256     if (pc == (address) FetchNPFI) {
   257        uc->uc_mcontext.gregs[REG_PC] = intptr_t (FetchNResume) ;
   258        return 1 ;
   259     }
   260 #endif // AMD64
   262     // Handle ALL stack overflow variations here
   263     if (sig == SIGSEGV) {
   264       address addr = (address) info->si_addr;
   266       // check if fault address is within thread stack
   267       if (addr < thread->stack_base() &&
   268           addr >= thread->stack_base() - thread->stack_size()) {
   269         // stack overflow
   270         if (thread->in_stack_yellow_zone(addr)) {
   271           thread->disable_stack_yellow_zone();
   272           if (thread->thread_state() == _thread_in_Java) {
   273             // Throw a stack overflow exception.  Guard pages will be reenabled
   274             // while unwinding the stack.
   275             stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
   276           } else {
   277             // Thread was in the vm or native code.  Return and try to finish.
   278             return 1;
   279           }
   280         } else if (thread->in_stack_red_zone(addr)) {
   281           // Fatal red zone violation.  Disable the guard pages and fall through
   282           // to handle_unexpected_exception way down below.
   283           thread->disable_stack_red_zone();
   284           tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
   285         } else {
   286           // Accessing stack address below sp may cause SEGV if current
   287           // thread has MAP_GROWSDOWN stack. This should only happen when
   288           // current thread was created by user code with MAP_GROWSDOWN flag
   289           // and then attached to VM. See notes in os_linux.cpp.
   290           if (thread->osthread()->expanding_stack() == 0) {
   291              thread->osthread()->set_expanding_stack();
   292              if (os::Linux::manually_expand_stack(thread, addr)) {
   293                thread->osthread()->clear_expanding_stack();
   294                return 1;
   295              }
   296              thread->osthread()->clear_expanding_stack();
   297           } else {
   298              fatal("recursive segv. expanding stack.");
   299           }
   300         }
   301       }
   302     }
   304     if (thread->thread_state() == _thread_in_Java) {
   305       // Java thread running in Java code => find exception handler if any
   306       // a fault inside compiled code, the interpreter, or a stub
   308       if (sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
   309         stub = SharedRuntime::get_poll_stub(pc);
   310       } else if (sig == SIGBUS /* && info->si_code == BUS_OBJERR */) {
   311         // BugId 4454115: A read from a MappedByteBuffer can fault
   312         // here if the underlying file has been truncated.
   313         // Do not crash the VM in such a case.
   314         CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
   315         nmethod* nm = cb->is_nmethod() ? (nmethod*)cb : NULL;
   316         if (nm != NULL && nm->has_unsafe_access()) {
   317           stub = StubRoutines::handler_for_unsafe_access();
   318         }
   319       }
   320       else
   322 #ifdef AMD64
   323       if (sig == SIGFPE  &&
   324           (info->si_code == FPE_INTDIV || info->si_code == FPE_FLTDIV)) {
   325         stub =
   326           SharedRuntime::
   327           continuation_for_implicit_exception(thread,
   328                                               pc,
   329                                               SharedRuntime::
   330                                               IMPLICIT_DIVIDE_BY_ZERO);
   331 #else
   332       if (sig == SIGFPE /* && info->si_code == FPE_INTDIV */) {
   333         // HACK: si_code does not work on linux 2.2.12-20!!!
   334         int op = pc[0];
   335         if (op == 0xDB) {
   336           // FIST
   337           // TODO: The encoding of D2I in i486.ad can cause an exception
   338           // prior to the fist instruction if there was an invalid operation
   339           // pending. We want to dismiss that exception. From the win_32
   340           // side it also seems that if it really was the fist causing
   341           // the exception that we do the d2i by hand with different
   342           // rounding. Seems kind of weird.
   343           // NOTE: that we take the exception at the NEXT floating point instruction.
   344           assert(pc[0] == 0xDB, "not a FIST opcode");
   345           assert(pc[1] == 0x14, "not a FIST opcode");
   346           assert(pc[2] == 0x24, "not a FIST opcode");
   347           return true;
   348         } else if (op == 0xF7) {
   349           // IDIV
   350           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
   351         } else {
   352           // TODO: handle more cases if we are using other x86 instructions
   353           //   that can generate SIGFPE signal on linux.
   354           tty->print_cr("unknown opcode 0x%X with SIGFPE.", op);
   355           fatal("please update this code.");
   356         }
   357 #endif // AMD64
   358       } else if (sig == SIGSEGV &&
   359                !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
   360           // Determination of interpreter/vtable stub/compiled code null exception
   361           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
   362       }
   363     } else if (thread->thread_state() == _thread_in_vm &&
   364                sig == SIGBUS && /* info->si_code == BUS_OBJERR && */
   365                thread->doing_unsafe_access()) {
   366         stub = StubRoutines::handler_for_unsafe_access();
   367     }
   369     // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
   370     // and the heap gets shrunk before the field access.
   371     if ((sig == SIGSEGV) || (sig == SIGBUS)) {
   372       address addr = JNI_FastGetField::find_slowcase_pc(pc);
   373       if (addr != (address)-1) {
   374         stub = addr;
   375       }
   376     }
   378     // Check to see if we caught the safepoint code in the
   379     // process of write protecting the memory serialization page.
   380     // It write enables the page immediately after protecting it
   381     // so we can just return to retry the write.
   382     if ((sig == SIGSEGV) &&
   383         os::is_memory_serialize_page(thread, (address) info->si_addr)) {
   384       // Block current thread until the memory serialize page permission restored.
   385       os::block_on_serialize_page_trap();
   386       return true;
   387     }
   388   }
   390 #ifndef AMD64
   391   // Execution protection violation
   392   //
   393   // This should be kept as the last step in the triage.  We don't
   394   // have a dedicated trap number for a no-execute fault, so be
   395   // conservative and allow other handlers the first shot.
   396   //
   397   // Note: We don't test that info->si_code == SEGV_ACCERR here.
   398   // this si_code is so generic that it is almost meaningless; and
   399   // the si_code for this condition may change in the future.
   400   // Furthermore, a false-positive should be harmless.
   401   if (UnguardOnExecutionViolation > 0 &&
   402       (sig == SIGSEGV || sig == SIGBUS) &&
   403       uc->uc_mcontext.gregs[REG_TRAPNO] == trap_page_fault) {
   404     int page_size = os::vm_page_size();
   405     address addr = (address) info->si_addr;
   406     address pc = os::Linux::ucontext_get_pc(uc);
   407     // Make sure the pc and the faulting address are sane.
   408     //
   409     // If an instruction spans a page boundary, and the page containing
   410     // the beginning of the instruction is executable but the following
   411     // page is not, the pc and the faulting address might be slightly
   412     // different - we still want to unguard the 2nd page in this case.
   413     //
   414     // 15 bytes seems to be a (very) safe value for max instruction size.
   415     bool pc_is_near_addr =
   416       (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
   417     bool instr_spans_page_boundary =
   418       (align_size_down((intptr_t) pc ^ (intptr_t) addr,
   419                        (intptr_t) page_size) > 0);
   421     if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
   422       static volatile address last_addr =
   423         (address) os::non_memory_address_word();
   425       // In conservative mode, don't unguard unless the address is in the VM
   426       if (addr != last_addr &&
   427           (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
   429         // Unguard and retry
   430         address page_start =
   431           (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
   432         bool res = os::unguard_memory((char*) page_start, page_size);
   434         if (PrintMiscellaneous && Verbose) {
   435           char buf[256];
   436           jio_snprintf(buf, sizeof(buf), "Execution protection violation "
   437                        "at " INTPTR_FORMAT
   438                        ", unguarding " INTPTR_FORMAT ": %s, errno=%d", addr,
   439                        page_start, (res ? "success" : "failed"), errno);
   440           tty->print_raw_cr(buf);
   441         }
   442         stub = pc;
   444         // Set last_addr so if we fault again at the same address, we don't end
   445         // up in an endless loop.
   446         //
   447         // There are two potential complications here.  Two threads trapping at
   448         // the same address at the same time could cause one of the threads to
   449         // think it already unguarded, and abort the VM.  Likely very rare.
   450         //
   451         // The other race involves two threads alternately trapping at
   452         // different addresses and failing to unguard the page, resulting in
   453         // an endless loop.  This condition is probably even more unlikely than
   454         // the first.
   455         //
   456         // Although both cases could be avoided by using locks or thread local
   457         // last_addr, these solutions are unnecessary complication: this
   458         // handler is a best-effort safety net, not a complete solution.  It is
   459         // disabled by default and should only be used as a workaround in case
   460         // we missed any no-execute-unsafe VM code.
   462         last_addr = addr;
   463       }
   464     }
   465   }
   466 #endif // !AMD64
   468   if (stub != NULL) {
   469     // save all thread context in case we need to restore it
   470     if (thread != NULL) thread->set_saved_exception_pc(pc);
   472     uc->uc_mcontext.gregs[REG_PC] = (greg_t)stub;
   473     return true;
   474   }
   476   // signal-chaining
   477   if (os::Linux::chained_handler(sig, info, ucVoid)) {
   478      return true;
   479   }
   481   if (!abort_if_unrecognized) {
   482     // caller wants another chance, so give it to him
   483     return false;
   484   }
   486   if (pc == NULL && uc != NULL) {
   487     pc = os::Linux::ucontext_get_pc(uc);
   488   }
   490   // unmask current signal
   491   sigset_t newset;
   492   sigemptyset(&newset);
   493   sigaddset(&newset, sig);
   494   sigprocmask(SIG_UNBLOCK, &newset, NULL);
   496   VMError err(t, sig, pc, info, ucVoid);
   497   err.report_and_die();
   499   ShouldNotReachHere();
   500 }
   502 void os::Linux::init_thread_fpu_state(void) {
   503 #ifndef AMD64
   504   // set fpu to 53 bit precision
   505   set_fpu_control_word(0x27f);
   506 #endif // !AMD64
   507 }
   509 int os::Linux::get_fpu_control_word(void) {
   510 #ifdef AMD64
   511   return 0;
   512 #else
   513   int fpu_control;
   514   _FPU_GETCW(fpu_control);
   515   return fpu_control & 0xffff;
   516 #endif // AMD64
   517 }
   519 void os::Linux::set_fpu_control_word(int fpu_control) {
   520 #ifndef AMD64
   521   _FPU_SETCW(fpu_control);
   522 #endif // !AMD64
   523 }
   525 // Check that the linux kernel version is 2.4 or higher since earlier
   526 // versions do not support SSE without patches.
   527 bool os::supports_sse() {
   528 #ifdef AMD64
   529   return true;
   530 #else
   531   struct utsname uts;
   532   if( uname(&uts) != 0 ) return false; // uname fails?
   533   char *minor_string;
   534   int major = strtol(uts.release,&minor_string,10);
   535   int minor = strtol(minor_string+1,NULL,10);
   536   bool result = (major > 2 || (major==2 && minor >= 4));
   537 #ifndef PRODUCT
   538   if (PrintMiscellaneous && Verbose) {
   539     tty->print("OS version is %d.%d, which %s support SSE/SSE2\n",
   540                major,minor, result ? "DOES" : "does NOT");
   541   }
   542 #endif
   543   return result;
   544 #endif // AMD64
   545 }
   547 bool os::is_allocatable(size_t bytes) {
   548 #ifdef AMD64
   549   // unused on amd64?
   550   return true;
   551 #else
   553   if (bytes < 2 * G) {
   554     return true;
   555   }
   557   char* addr = reserve_memory(bytes, NULL);
   559   if (addr != NULL) {
   560     release_memory(addr, bytes);
   561   }
   563   return addr != NULL;
   564 #endif // AMD64
   565 }
   567 ////////////////////////////////////////////////////////////////////////////////
   568 // thread stack
   570 #ifdef AMD64
   571 size_t os::Linux::min_stack_allowed  = 64 * K;
   573 // amd64: pthread on amd64 is always in floating stack mode
   574 bool os::Linux::supports_variable_stack_size() {  return true; }
   575 #else
   576 size_t os::Linux::min_stack_allowed  =  (48 DEBUG_ONLY(+4))*K;
   578 #define GET_GS() ({int gs; __asm__ volatile("movw %%gs, %w0":"=q"(gs)); gs&0xffff;})
   580 // Test if pthread library can support variable thread stack size. LinuxThreads
   581 // in fixed stack mode allocates 2M fixed slot for each thread. LinuxThreads
   582 // in floating stack mode and NPTL support variable stack size.
   583 bool os::Linux::supports_variable_stack_size() {
   584   if (os::Linux::is_NPTL()) {
   585      // NPTL, yes
   586      return true;
   588   } else {
   589     // Note: We can't control default stack size when creating a thread.
   590     // If we use non-default stack size (pthread_attr_setstacksize), both
   591     // floating stack and non-floating stack LinuxThreads will return the
   592     // same value. This makes it impossible to implement this function by
   593     // detecting thread stack size directly.
   594     //
   595     // An alternative approach is to check %gs. Fixed-stack LinuxThreads
   596     // do not use %gs, so its value is 0. Floating-stack LinuxThreads use
   597     // %gs (either as LDT selector or GDT selector, depending on kernel)
   598     // to access thread specific data.
   599     //
   600     // Note that %gs is a reserved glibc register since early 2001, so
   601     // applications are not allowed to change its value (Ulrich Drepper from
   602     // Redhat confirmed that all known offenders have been modified to use
   603     // either %fs or TSD). In the worst case scenario, when VM is embedded in
   604     // a native application that plays with %gs, we might see non-zero %gs
   605     // even LinuxThreads is running in fixed stack mode. As the result, we'll
   606     // return true and skip _thread_safety_check(), so we may not be able to
   607     // detect stack-heap collisions. But otherwise it's harmless.
   608     //
   609     return (GET_GS() != 0);
   610   }
   611 }
   612 #endif // AMD64
   614 // return default stack size for thr_type
   615 size_t os::Linux::default_stack_size(os::ThreadType thr_type) {
   616   // default stack size (compiler thread needs larger stack)
   617 #ifdef AMD64
   618   size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
   619 #else
   620   size_t s = (thr_type == os::compiler_thread ? 2 * M : 512 * K);
   621 #endif // AMD64
   622   return s;
   623 }
   625 size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
   626   // Creating guard page is very expensive. Java thread has HotSpot
   627   // guard page, only enable glibc guard page for non-Java threads.
   628   return (thr_type == java_thread ? 0 : page_size());
   629 }
   631 // Java thread:
   632 //
   633 //   Low memory addresses
   634 //    +------------------------+
   635 //    |                        |\  JavaThread created by VM does not have glibc
   636 //    |    glibc guard page    | - guard, attached Java thread usually has
   637 //    |                        |/  1 page glibc guard.
   638 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
   639 //    |                        |\
   640 //    |  HotSpot Guard Pages   | - red and yellow pages
   641 //    |                        |/
   642 //    +------------------------+ JavaThread::stack_yellow_zone_base()
   643 //    |                        |\
   644 //    |      Normal Stack      | -
   645 //    |                        |/
   646 // P2 +------------------------+ Thread::stack_base()
   647 //
   648 // Non-Java thread:
   649 //
   650 //   Low memory addresses
   651 //    +------------------------+
   652 //    |                        |\
   653 //    |  glibc guard page      | - usually 1 page
   654 //    |                        |/
   655 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
   656 //    |                        |\
   657 //    |      Normal Stack      | -
   658 //    |                        |/
   659 // P2 +------------------------+ Thread::stack_base()
   660 //
   661 // ** P1 (aka bottom) and size ( P2 = P1 - size) are the address and stack size returned from
   662 //    pthread_attr_getstack()
   664 static void current_stack_region(address * bottom, size_t * size) {
   665   if (os::Linux::is_initial_thread()) {
   666      // initial thread needs special handling because pthread_getattr_np()
   667      // may return bogus value.
   668      *bottom = os::Linux::initial_thread_stack_bottom();
   669      *size   = os::Linux::initial_thread_stack_size();
   670   } else {
   671      pthread_attr_t attr;
   673      int rslt = pthread_getattr_np(pthread_self(), &attr);
   675      // JVM needs to know exact stack location, abort if it fails
   676      if (rslt != 0) {
   677        if (rslt == ENOMEM) {
   678          vm_exit_out_of_memory(0, "pthread_getattr_np");
   679        } else {
   680          fatal1("pthread_getattr_np failed with errno = %d", rslt);
   681        }
   682      }
   684      if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
   685          fatal("Can not locate current stack attributes!");
   686      }
   688      pthread_attr_destroy(&attr);
   690   }
   691   assert(os::current_stack_pointer() >= *bottom &&
   692          os::current_stack_pointer() < *bottom + *size, "just checking");
   693 }
   695 address os::current_stack_base() {
   696   address bottom;
   697   size_t size;
   698   current_stack_region(&bottom, &size);
   699   return (bottom + size);
   700 }
   702 size_t os::current_stack_size() {
   703   // stack size includes normal stack and HotSpot guard pages
   704   address bottom;
   705   size_t size;
   706   current_stack_region(&bottom, &size);
   707   return size;
   708 }
   710 /////////////////////////////////////////////////////////////////////////////
   711 // helper functions for fatal error handler
   713 void os::print_context(outputStream *st, void *context) {
   714   if (context == NULL) return;
   716   ucontext_t *uc = (ucontext_t*)context;
   717   st->print_cr("Registers:");
   718 #ifdef AMD64
   719   st->print(  "RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]);
   720   st->print(", RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]);
   721   st->print(", RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]);
   722   st->print(", RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]);
   723   st->cr();
   724   st->print(  "RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]);
   725   st->print(", RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]);
   726   st->print(", RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]);
   727   st->print(", RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]);
   728   st->cr();
   729   st->print(  "R8 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]);
   730   st->print(", R9 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]);
   731   st->print(", R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]);
   732   st->print(", R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]);
   733   st->cr();
   734   st->print(  "R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]);
   735   st->print(", R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]);
   736   st->print(", R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]);
   737   st->print(", R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]);
   738   st->cr();
   739   st->print(  "RIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RIP]);
   740   st->print(", EFL=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
   741   st->print(", CSGSFS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_CSGSFS]);
   742   st->print(", ERR=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ERR]);
   743   st->cr();
   744   st->print("  TRAPNO=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_TRAPNO]);
   745 #else
   746   st->print(  "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EAX]);
   747   st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBX]);
   748   st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ECX]);
   749   st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDX]);
   750   st->cr();
   751   st->print(  "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_UESP]);
   752   st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBP]);
   753   st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ESI]);
   754   st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDI]);
   755   st->cr();
   756   st->print(  "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EIP]);
   757   st->print(", CR2=" INTPTR_FORMAT, uc->uc_mcontext.cr2);
   758   st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
   759 #endif // AMD64
   760   st->cr();
   761   st->cr();
   763   intptr_t *sp = (intptr_t *)os::Linux::ucontext_get_sp(uc);
   764   st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
   765   print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
   766   st->cr();
   768   // Note: it may be unsafe to inspect memory near pc. For example, pc may
   769   // point to garbage if entry point in an nmethod is corrupted. Leave
   770   // this at the end, and hope for the best.
   771   address pc = os::Linux::ucontext_get_pc(uc);
   772   st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
   773   print_hex_dump(st, pc - 16, pc + 16, sizeof(char));
   774 }
   776 void os::setup_fpu() {
   777 #ifndef AMD64
   778   address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
   779   __asm__ volatile (  "fldcw (%0)" :
   780                       : "r" (fpu_cntrl) : "memory");
   781 #endif // !AMD64
   782 }

mercurial