src/cpu/x86/vm/templateTable_x86_64.cpp

Sat, 01 Dec 2007 00:00:00 +0000

author
duke
date
Sat, 01 Dec 2007 00:00:00 +0000
changeset 435
a61af66fc99e
child 548
ba764ed4b6f2
permissions
-rw-r--r--

Initial load

     1 /*
     2  * Copyright 2003-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_templateTable_x86_64.cpp.incl"
    28 #define __ _masm->
    30 // Platform-dependent initialization
    32 void TemplateTable::pd_initialize() {
    33   // No amd64 specific initialization
    34 }
    36 // Address computation: local variables
    38 static inline Address iaddress(int n) {
    39   return Address(r14, Interpreter::local_offset_in_bytes(n));
    40 }
    42 static inline Address laddress(int n) {
    43   return iaddress(n + 1);
    44 }
    46 static inline Address faddress(int n) {
    47   return iaddress(n);
    48 }
    50 static inline Address daddress(int n) {
    51   return laddress(n);
    52 }
    54 static inline Address aaddress(int n) {
    55   return iaddress(n);
    56 }
    58 static inline Address iaddress(Register r) {
    59   return Address(r14, r, Address::times_8, Interpreter::value_offset_in_bytes());
    60 }
    62 static inline Address laddress(Register r) {
    63   return Address(r14, r, Address::times_8, Interpreter::local_offset_in_bytes(1));
    64 }
    66 static inline Address faddress(Register r) {
    67   return iaddress(r);
    68 }
    70 static inline Address daddress(Register r) {
    71   return laddress(r);
    72 }
    74 static inline Address aaddress(Register r) {
    75   return iaddress(r);
    76 }
    78 static inline Address at_rsp() {
    79   return Address(rsp, 0);
    80 }
    82 // At top of Java expression stack which may be different than esp().  It
    83 // isn't for category 1 objects.
    84 static inline Address at_tos   () {
    85   return Address(rsp,  Interpreter::expr_offset_in_bytes(0));
    86 }
    88 static inline Address at_tos_p1() {
    89   return Address(rsp,  Interpreter::expr_offset_in_bytes(1));
    90 }
    92 static inline Address at_tos_p2() {
    93   return Address(rsp,  Interpreter::expr_offset_in_bytes(2));
    94 }
    96 static inline Address at_tos_p3() {
    97   return Address(rsp,  Interpreter::expr_offset_in_bytes(3));
    98 }
   100 // Condition conversion
   101 static Assembler::Condition j_not(TemplateTable::Condition cc) {
   102   switch (cc) {
   103   case TemplateTable::equal        : return Assembler::notEqual;
   104   case TemplateTable::not_equal    : return Assembler::equal;
   105   case TemplateTable::less         : return Assembler::greaterEqual;
   106   case TemplateTable::less_equal   : return Assembler::greater;
   107   case TemplateTable::greater      : return Assembler::lessEqual;
   108   case TemplateTable::greater_equal: return Assembler::less;
   109   }
   110   ShouldNotReachHere();
   111   return Assembler::zero;
   112 }
   115 // Miscelaneous helper routines
   117 Address TemplateTable::at_bcp(int offset) {
   118   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
   119   return Address(r13, offset);
   120 }
   122 void TemplateTable::patch_bytecode(Bytecodes::Code bytecode, Register bc,
   123                                    Register scratch,
   124                                    bool load_bc_into_scratch/*=true*/) {
   125   if (!RewriteBytecodes) {
   126     return;
   127   }
   128   // the pair bytecodes have already done the load.
   129   if (load_bc_into_scratch) {
   130     __ movl(bc, bytecode);
   131   }
   132   Label patch_done;
   133   if (JvmtiExport::can_post_breakpoint()) {
   134     Label fast_patch;
   135     // if a breakpoint is present we can't rewrite the stream directly
   136     __ movzbl(scratch, at_bcp(0));
   137     __ cmpl(scratch, Bytecodes::_breakpoint);
   138     __ jcc(Assembler::notEqual, fast_patch);
   139     __ get_method(scratch);
   140     // Let breakpoint table handling rewrite to quicker bytecode
   141     __ call_VM(noreg,
   142                CAST_FROM_FN_PTR(address,
   143                                 InterpreterRuntime::set_original_bytecode_at),
   144                scratch, r13, bc);
   145 #ifndef ASSERT
   146     __ jmpb(patch_done);
   147     __ bind(fast_patch);
   148   }
   149 #else
   150     __ jmp(patch_done);
   151     __ bind(fast_patch);
   152   }
   153   Label okay;
   154   __ load_unsigned_byte(scratch, at_bcp(0));
   155   __ cmpl(scratch, (int) Bytecodes::java_code(bytecode));
   156   __ jcc(Assembler::equal, okay);
   157   __ cmpl(scratch, bc);
   158   __ jcc(Assembler::equal, okay);
   159   __ stop("patching the wrong bytecode");
   160   __ bind(okay);
   161 #endif
   162   // patch bytecode
   163   __ movb(at_bcp(0), bc);
   164   __ bind(patch_done);
   165 }
   168 // Individual instructions
   170 void TemplateTable::nop() {
   171   transition(vtos, vtos);
   172   // nothing to do
   173 }
   175 void TemplateTable::shouldnotreachhere() {
   176   transition(vtos, vtos);
   177   __ stop("shouldnotreachhere bytecode");
   178 }
   180 void TemplateTable::aconst_null() {
   181   transition(vtos, atos);
   182   __ xorl(rax, rax);
   183 }
   185 void TemplateTable::iconst(int value) {
   186   transition(vtos, itos);
   187   if (value == 0) {
   188     __ xorl(rax, rax);
   189   } else {
   190     __ movl(rax, value);
   191   }
   192 }
   194 void TemplateTable::lconst(int value) {
   195   transition(vtos, ltos);
   196   if (value == 0) {
   197     __ xorl(rax, rax);
   198   } else {
   199     __ movl(rax, value);
   200   }
   201 }
   203 void TemplateTable::fconst(int value) {
   204   transition(vtos, ftos);
   205   static float one = 1.0f, two = 2.0f;
   206   switch (value) {
   207   case 0:
   208     __ xorps(xmm0, xmm0);
   209     break;
   210   case 1:
   211     __ movflt(xmm0, ExternalAddress((address) &one));
   212     break;
   213   case 2:
   214     __ movflt(xmm0, ExternalAddress((address) &two));
   215     break;
   216   default:
   217     ShouldNotReachHere();
   218     break;
   219   }
   220 }
   222 void TemplateTable::dconst(int value) {
   223   transition(vtos, dtos);
   224   static double one = 1.0;
   225   switch (value) {
   226   case 0:
   227     __ xorpd(xmm0, xmm0);
   228     break;
   229   case 1:
   230     __ movdbl(xmm0, ExternalAddress((address) &one));
   231     break;
   232   default:
   233     ShouldNotReachHere();
   234     break;
   235   }
   236 }
   238 void TemplateTable::bipush() {
   239   transition(vtos, itos);
   240   __ load_signed_byte(rax, at_bcp(1));
   241 }
   243 void TemplateTable::sipush() {
   244   transition(vtos, itos);
   245   __ load_unsigned_word(rax, at_bcp(1));
   246   __ bswapl(rax);
   247   __ sarl(rax, 16);
   248 }
   250 void TemplateTable::ldc(bool wide) {
   251   transition(vtos, vtos);
   252   Label call_ldc, notFloat, notClass, Done;
   254   if (wide) {
   255     __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
   256   } else {
   257     __ load_unsigned_byte(rbx, at_bcp(1));
   258   }
   260   __ get_cpool_and_tags(rcx, rax);
   261   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
   262   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
   264   // get type
   265   __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset));
   267   // unresolved string - get the resolved string
   268   __ cmpl(rdx, JVM_CONSTANT_UnresolvedString);
   269   __ jccb(Assembler::equal, call_ldc);
   271   // unresolved class - get the resolved class
   272   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass);
   273   __ jccb(Assembler::equal, call_ldc);
   275   // unresolved class in error state - call into runtime to throw the error
   276   // from the first resolution attempt
   277   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError);
   278   __ jccb(Assembler::equal, call_ldc);
   280   // resolved class - need to call vm to get java mirror of the class
   281   __ cmpl(rdx, JVM_CONSTANT_Class);
   282   __ jcc(Assembler::notEqual, notClass);
   284   __ bind(call_ldc);
   285   __ movl(c_rarg1, wide);
   286   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), c_rarg1);
   287   __ push_ptr(rax);
   288   __ verify_oop(rax);
   289   __ jmp(Done);
   291   __ bind(notClass);
   292   __ cmpl(rdx, JVM_CONSTANT_Float);
   293   __ jccb(Assembler::notEqual, notFloat);
   294   // ftos
   295   __ movflt(xmm0, Address(rcx, rbx, Address::times_8, base_offset));
   296   __ push_f();
   297   __ jmp(Done);
   299   __ bind(notFloat);
   300 #ifdef ASSERT
   301   {
   302     Label L;
   303     __ cmpl(rdx, JVM_CONSTANT_Integer);
   304     __ jcc(Assembler::equal, L);
   305     __ cmpl(rdx, JVM_CONSTANT_String);
   306     __ jcc(Assembler::equal, L);
   307     __ stop("unexpected tag type in ldc");
   308     __ bind(L);
   309   }
   310 #endif
   311   // atos and itos
   312   Label isOop;
   313   __ cmpl(rdx, JVM_CONSTANT_Integer);
   314   __ jcc(Assembler::notEqual, isOop);
   315   __ movl(rax, Address(rcx, rbx, Address::times_8, base_offset));
   316   __ push_i(rax);
   317   __ jmp(Done);
   319   __ bind(isOop);
   320   __ movq(rax, Address(rcx, rbx, Address::times_8, base_offset));
   321   __ push_ptr(rax);
   323   if (VerifyOops) {
   324     __ verify_oop(rax);
   325   }
   327   __ bind(Done);
   328 }
   330 void TemplateTable::ldc2_w() {
   331   transition(vtos, vtos);
   332   Label Long, Done;
   333   __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
   335   __ get_cpool_and_tags(rcx, rax);
   336   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
   337   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
   339   // get type
   340   __ cmpb(Address(rax, rbx, Address::times_1, tags_offset),
   341           JVM_CONSTANT_Double);
   342   __ jccb(Assembler::notEqual, Long);
   343   // dtos
   344   __ movdbl(xmm0, Address(rcx, rbx, Address::times_8, base_offset));
   345   __ push_d();
   346   __ jmpb(Done);
   348   __ bind(Long);
   349   // ltos
   350   __ movq(rax, Address(rcx, rbx, Address::times_8, base_offset));
   351   __ push_l();
   353   __ bind(Done);
   354 }
   356 void TemplateTable::locals_index(Register reg, int offset) {
   357   __ load_unsigned_byte(reg, at_bcp(offset));
   358   __ negq(reg);
   359   if (TaggedStackInterpreter) __ shlq(reg, 1);  // index = index*2
   360 }
   362 void TemplateTable::iload() {
   363   transition(vtos, itos);
   364   if (RewriteFrequentPairs) {
   365     Label rewrite, done;
   366     const Register bc = c_rarg3;
   367     assert(rbx != bc, "register damaged");
   369     // get next byte
   370     __ load_unsigned_byte(rbx,
   371                           at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
   372     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
   373     // last two iloads in a pair.  Comparing against fast_iload means that
   374     // the next bytecode is neither an iload or a caload, and therefore
   375     // an iload pair.
   376     __ cmpl(rbx, Bytecodes::_iload);
   377     __ jcc(Assembler::equal, done);
   379     __ cmpl(rbx, Bytecodes::_fast_iload);
   380     __ movl(bc, Bytecodes::_fast_iload2);
   381     __ jccb(Assembler::equal, rewrite);
   383     // if _caload, rewrite to fast_icaload
   384     __ cmpl(rbx, Bytecodes::_caload);
   385     __ movl(bc, Bytecodes::_fast_icaload);
   386     __ jccb(Assembler::equal, rewrite);
   388     // rewrite so iload doesn't check again.
   389     __ movl(bc, Bytecodes::_fast_iload);
   391     // rewrite
   392     // bc: fast bytecode
   393     __ bind(rewrite);
   394     patch_bytecode(Bytecodes::_iload, bc, rbx, false);
   395     __ bind(done);
   396   }
   398   // Get the local value into tos
   399   locals_index(rbx);
   400   __ movl(rax, iaddress(rbx));
   401   debug_only(__ verify_local_tag(frame::TagValue, rbx));
   402 }
   404 void TemplateTable::fast_iload2() {
   405   transition(vtos, itos);
   406   locals_index(rbx);
   407   __ movl(rax, iaddress(rbx));
   408   debug_only(__ verify_local_tag(frame::TagValue, rbx));
   409   __ push(itos);
   410   locals_index(rbx, 3);
   411   __ movl(rax, iaddress(rbx));
   412   debug_only(__ verify_local_tag(frame::TagValue, rbx));
   413 }
   415 void TemplateTable::fast_iload() {
   416   transition(vtos, itos);
   417   locals_index(rbx);
   418   __ movl(rax, iaddress(rbx));
   419   debug_only(__ verify_local_tag(frame::TagValue, rbx));
   420 }
   422 void TemplateTable::lload() {
   423   transition(vtos, ltos);
   424   locals_index(rbx);
   425   __ movq(rax, laddress(rbx));
   426   debug_only(__ verify_local_tag(frame::TagCategory2, rbx));
   427 }
   429 void TemplateTable::fload() {
   430   transition(vtos, ftos);
   431   locals_index(rbx);
   432   __ movflt(xmm0, faddress(rbx));
   433   debug_only(__ verify_local_tag(frame::TagValue, rbx));
   434 }
   436 void TemplateTable::dload() {
   437   transition(vtos, dtos);
   438   locals_index(rbx);
   439   __ movdbl(xmm0, daddress(rbx));
   440   debug_only(__ verify_local_tag(frame::TagCategory2, rbx));
   441 }
   443 void TemplateTable::aload() {
   444   transition(vtos, atos);
   445   locals_index(rbx);
   446   __ movq(rax, aaddress(rbx));
   447   debug_only(__ verify_local_tag(frame::TagReference, rbx));
   448 }
   450 void TemplateTable::locals_index_wide(Register reg) {
   451   __ movl(reg, at_bcp(2));
   452   __ bswapl(reg);
   453   __ shrl(reg, 16);
   454   __ negq(reg);
   455   if (TaggedStackInterpreter) __ shlq(reg, 1);  // index = index*2
   456 }
   458 void TemplateTable::wide_iload() {
   459   transition(vtos, itos);
   460   locals_index_wide(rbx);
   461   __ movl(rax, iaddress(rbx));
   462   debug_only(__ verify_local_tag(frame::TagValue, rbx));
   463 }
   465 void TemplateTable::wide_lload() {
   466   transition(vtos, ltos);
   467   locals_index_wide(rbx);
   468   __ movq(rax, laddress(rbx));
   469   debug_only(__ verify_local_tag(frame::TagCategory2, rbx));
   470 }
   472 void TemplateTable::wide_fload() {
   473   transition(vtos, ftos);
   474   locals_index_wide(rbx);
   475   __ movflt(xmm0, faddress(rbx));
   476   debug_only(__ verify_local_tag(frame::TagValue, rbx));
   477 }
   479 void TemplateTable::wide_dload() {
   480   transition(vtos, dtos);
   481   locals_index_wide(rbx);
   482   __ movdbl(xmm0, daddress(rbx));
   483   debug_only(__ verify_local_tag(frame::TagCategory2, rbx));
   484 }
   486 void TemplateTable::wide_aload() {
   487   transition(vtos, atos);
   488   locals_index_wide(rbx);
   489   __ movq(rax, aaddress(rbx));
   490   debug_only(__ verify_local_tag(frame::TagReference, rbx));
   491 }
   493 void TemplateTable::index_check(Register array, Register index) {
   494   // destroys rbx
   495   // check array
   496   __ null_check(array, arrayOopDesc::length_offset_in_bytes());
   497   // sign extend index for use by indexed load
   498   __ movslq(index, index);
   499   // check index
   500   __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
   501   if (index != rbx) {
   502     // ??? convention: move aberrant index into ebx for exception message
   503     assert(rbx != array, "different registers");
   504     __ movl(rbx, index);
   505   }
   506   __ jump_cc(Assembler::aboveEqual,
   507              ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry));
   508 }
   510 void TemplateTable::iaload() {
   511   transition(itos, itos);
   512   __ pop_ptr(rdx);
   513   // eax: index
   514   // rdx: array
   515   index_check(rdx, rax); // kills rbx
   516   __ movl(rax, Address(rdx, rax,
   517                        Address::times_4,
   518                        arrayOopDesc::base_offset_in_bytes(T_INT)));
   519 }
   521 void TemplateTable::laload() {
   522   transition(itos, ltos);
   523   __ pop_ptr(rdx);
   524   // eax: index
   525   // rdx: array
   526   index_check(rdx, rax); // kills rbx
   527   __ movq(rax, Address(rdx, rbx,
   528                        Address::times_8,
   529                        arrayOopDesc::base_offset_in_bytes(T_LONG)));
   530 }
   532 void TemplateTable::faload() {
   533   transition(itos, ftos);
   534   __ pop_ptr(rdx);
   535   // eax: index
   536   // rdx: array
   537   index_check(rdx, rax); // kills rbx
   538   __ movflt(xmm0, Address(rdx, rax,
   539                          Address::times_4,
   540                          arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
   541 }
   543 void TemplateTable::daload() {
   544   transition(itos, dtos);
   545   __ pop_ptr(rdx);
   546   // eax: index
   547   // rdx: array
   548   index_check(rdx, rax); // kills rbx
   549   __ movdbl(xmm0, Address(rdx, rax,
   550                           Address::times_8,
   551                           arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
   552 }
   554 void TemplateTable::aaload() {
   555   transition(itos, atos);
   556   __ pop_ptr(rdx);
   557   // eax: index
   558   // rdx: array
   559   index_check(rdx, rax); // kills rbx
   560   __ movq(rax, Address(rdx, rax,
   561                        Address::times_8,
   562                        arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
   563 }
   565 void TemplateTable::baload() {
   566   transition(itos, itos);
   567   __ pop_ptr(rdx);
   568   // eax: index
   569   // rdx: array
   570   index_check(rdx, rax); // kills rbx
   571   __ load_signed_byte(rax,
   572                       Address(rdx, rax,
   573                               Address::times_1,
   574                               arrayOopDesc::base_offset_in_bytes(T_BYTE)));
   575 }
   577 void TemplateTable::caload() {
   578   transition(itos, itos);
   579   __ pop_ptr(rdx);
   580   // eax: index
   581   // rdx: array
   582   index_check(rdx, rax); // kills rbx
   583   __ load_unsigned_word(rax,
   584                         Address(rdx, rax,
   585                                 Address::times_2,
   586                                 arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   587 }
   589 // iload followed by caload frequent pair
   590 void TemplateTable::fast_icaload() {
   591   transition(vtos, itos);
   592   // load index out of locals
   593   locals_index(rbx);
   594   __ movl(rax, iaddress(rbx));
   595   debug_only(__ verify_local_tag(frame::TagValue, rbx));
   597   // eax: index
   598   // rdx: array
   599   __ pop_ptr(rdx);
   600   index_check(rdx, rax); // kills rbx
   601   __ load_unsigned_word(rax,
   602                         Address(rdx, rax,
   603                                 Address::times_2,
   604                                 arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   605 }
   607 void TemplateTable::saload() {
   608   transition(itos, itos);
   609   __ pop_ptr(rdx);
   610   // eax: index
   611   // rdx: array
   612   index_check(rdx, rax); // kills rbx
   613   __ load_signed_word(rax,
   614                       Address(rdx, rax,
   615                               Address::times_2,
   616                               arrayOopDesc::base_offset_in_bytes(T_SHORT)));
   617 }
   619 void TemplateTable::iload(int n) {
   620   transition(vtos, itos);
   621   __ movl(rax, iaddress(n));
   622   debug_only(__ verify_local_tag(frame::TagValue, n));
   623 }
   625 void TemplateTable::lload(int n) {
   626   transition(vtos, ltos);
   627   __ movq(rax, laddress(n));
   628   debug_only(__ verify_local_tag(frame::TagCategory2, n));
   629 }
   631 void TemplateTable::fload(int n) {
   632   transition(vtos, ftos);
   633   __ movflt(xmm0, faddress(n));
   634   debug_only(__ verify_local_tag(frame::TagValue, n));
   635 }
   637 void TemplateTable::dload(int n) {
   638   transition(vtos, dtos);
   639   __ movdbl(xmm0, daddress(n));
   640   debug_only(__ verify_local_tag(frame::TagCategory2, n));
   641 }
   643 void TemplateTable::aload(int n) {
   644   transition(vtos, atos);
   645   __ movq(rax, aaddress(n));
   646   debug_only(__ verify_local_tag(frame::TagReference, n));
   647 }
   649 void TemplateTable::aload_0() {
   650   transition(vtos, atos);
   651   // According to bytecode histograms, the pairs:
   652   //
   653   // _aload_0, _fast_igetfield
   654   // _aload_0, _fast_agetfield
   655   // _aload_0, _fast_fgetfield
   656   //
   657   // occur frequently. If RewriteFrequentPairs is set, the (slow)
   658   // _aload_0 bytecode checks if the next bytecode is either
   659   // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
   660   // rewrites the current bytecode into a pair bytecode; otherwise it
   661   // rewrites the current bytecode into _fast_aload_0 that doesn't do
   662   // the pair check anymore.
   663   //
   664   // Note: If the next bytecode is _getfield, the rewrite must be
   665   //       delayed, otherwise we may miss an opportunity for a pair.
   666   //
   667   // Also rewrite frequent pairs
   668   //   aload_0, aload_1
   669   //   aload_0, iload_1
   670   // These bytecodes with a small amount of code are most profitable
   671   // to rewrite
   672   if (RewriteFrequentPairs) {
   673     Label rewrite, done;
   674     const Register bc = c_rarg3;
   675     assert(rbx != bc, "register damaged");
   676     // get next byte
   677     __ load_unsigned_byte(rbx,
   678                           at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
   680     // do actual aload_0
   681     aload(0);
   683     // if _getfield then wait with rewrite
   684     __ cmpl(rbx, Bytecodes::_getfield);
   685     __ jcc(Assembler::equal, done);
   687     // if _igetfield then reqrite to _fast_iaccess_0
   688     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) ==
   689            Bytecodes::_aload_0,
   690            "fix bytecode definition");
   691     __ cmpl(rbx, Bytecodes::_fast_igetfield);
   692     __ movl(bc, Bytecodes::_fast_iaccess_0);
   693     __ jccb(Assembler::equal, rewrite);
   695     // if _agetfield then reqrite to _fast_aaccess_0
   696     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) ==
   697            Bytecodes::_aload_0,
   698            "fix bytecode definition");
   699     __ cmpl(rbx, Bytecodes::_fast_agetfield);
   700     __ movl(bc, Bytecodes::_fast_aaccess_0);
   701     __ jccb(Assembler::equal, rewrite);
   703     // if _fgetfield then reqrite to _fast_faccess_0
   704     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) ==
   705            Bytecodes::_aload_0,
   706            "fix bytecode definition");
   707     __ cmpl(rbx, Bytecodes::_fast_fgetfield);
   708     __ movl(bc, Bytecodes::_fast_faccess_0);
   709     __ jccb(Assembler::equal, rewrite);
   711     // else rewrite to _fast_aload0
   712     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) ==
   713            Bytecodes::_aload_0,
   714            "fix bytecode definition");
   715     __ movl(bc, Bytecodes::_fast_aload_0);
   717     // rewrite
   718     // bc: fast bytecode
   719     __ bind(rewrite);
   720     patch_bytecode(Bytecodes::_aload_0, bc, rbx, false);
   722     __ bind(done);
   723   } else {
   724     aload(0);
   725   }
   726 }
   728 void TemplateTable::istore() {
   729   transition(itos, vtos);
   730   locals_index(rbx);
   731   __ movl(iaddress(rbx), rax);
   732   __ tag_local(frame::TagValue, rbx);
   733 }
   735 void TemplateTable::lstore() {
   736   transition(ltos, vtos);
   737   locals_index(rbx);
   738   __ movq(laddress(rbx), rax);
   739   __ tag_local(frame::TagCategory2, rbx);
   740 }
   742 void TemplateTable::fstore() {
   743   transition(ftos, vtos);
   744   locals_index(rbx);
   745   __ movflt(faddress(rbx), xmm0);
   746   __ tag_local(frame::TagValue, rbx);
   747 }
   749 void TemplateTable::dstore() {
   750   transition(dtos, vtos);
   751   locals_index(rbx);
   752   __ movdbl(daddress(rbx), xmm0);
   753   __ tag_local(frame::TagCategory2, rbx);
   754 }
   756 void TemplateTable::astore() {
   757   transition(vtos, vtos);
   758   __ pop_ptr(rax, rdx);    // will need to pop tag too
   759   locals_index(rbx);
   760   __ movq(aaddress(rbx), rax);
   761   __ tag_local(rdx, rbx);  // store tag from stack, might be returnAddr
   762 }
   764 void TemplateTable::wide_istore() {
   765   transition(vtos, vtos);
   766   __ pop_i();
   767   locals_index_wide(rbx);
   768   __ movl(iaddress(rbx), rax);
   769   __ tag_local(frame::TagValue, rbx);
   770 }
   772 void TemplateTable::wide_lstore() {
   773   transition(vtos, vtos);
   774   __ pop_l();
   775   locals_index_wide(rbx);
   776   __ movq(laddress(rbx), rax);
   777   __ tag_local(frame::TagCategory2, rbx);
   778 }
   780 void TemplateTable::wide_fstore() {
   781   transition(vtos, vtos);
   782   __ pop_f();
   783   locals_index_wide(rbx);
   784   __ movflt(faddress(rbx), xmm0);
   785   __ tag_local(frame::TagValue, rbx);
   786 }
   788 void TemplateTable::wide_dstore() {
   789   transition(vtos, vtos);
   790   __ pop_d();
   791   locals_index_wide(rbx);
   792   __ movdbl(daddress(rbx), xmm0);
   793   __ tag_local(frame::TagCategory2, rbx);
   794 }
   796 void TemplateTable::wide_astore() {
   797   transition(vtos, vtos);
   798   __ pop_ptr(rax, rdx);    // will need to pop tag too
   799   locals_index_wide(rbx);
   800   __ movq(aaddress(rbx), rax);
   801   __ tag_local(rdx, rbx);  // store tag from stack, might be returnAddr
   802 }
   804 void TemplateTable::iastore() {
   805   transition(itos, vtos);
   806   __ pop_i(rbx);
   807   __ pop_ptr(rdx);
   808   // eax: value
   809   // ebx: index
   810   // rdx: array
   811   index_check(rdx, rbx); // prefer index in ebx
   812   __ movl(Address(rdx, rbx,
   813                   Address::times_4,
   814                   arrayOopDesc::base_offset_in_bytes(T_INT)),
   815           rax);
   816 }
   818 void TemplateTable::lastore() {
   819   transition(ltos, vtos);
   820   __ pop_i(rbx);
   821   __ pop_ptr(rdx);
   822   // rax: value
   823   // ebx: index
   824   // rdx: array
   825   index_check(rdx, rbx); // prefer index in ebx
   826   __ movq(Address(rdx, rbx,
   827                   Address::times_8,
   828                   arrayOopDesc::base_offset_in_bytes(T_LONG)),
   829           rax);
   830 }
   832 void TemplateTable::fastore() {
   833   transition(ftos, vtos);
   834   __ pop_i(rbx);
   835   __ pop_ptr(rdx);
   836   // xmm0: value
   837   // ebx:  index
   838   // rdx:  array
   839   index_check(rdx, rbx); // prefer index in ebx
   840   __ movflt(Address(rdx, rbx,
   841                    Address::times_4,
   842                    arrayOopDesc::base_offset_in_bytes(T_FLOAT)),
   843            xmm0);
   844 }
   846 void TemplateTable::dastore() {
   847   transition(dtos, vtos);
   848   __ pop_i(rbx);
   849   __ pop_ptr(rdx);
   850   // xmm0: value
   851   // ebx:  index
   852   // rdx:  array
   853   index_check(rdx, rbx); // prefer index in ebx
   854   __ movdbl(Address(rdx, rbx,
   855                    Address::times_8,
   856                    arrayOopDesc::base_offset_in_bytes(T_DOUBLE)),
   857            xmm0);
   858 }
   860 void TemplateTable::aastore() {
   861   Label is_null, ok_is_subtype, done;
   862   transition(vtos, vtos);
   863   // stack: ..., array, index, value
   864   __ movq(rax, at_tos());    // value
   865   __ movl(rcx, at_tos_p1()); // index
   866   __ movq(rdx, at_tos_p2()); // array
   867   index_check(rdx, rcx);     // kills rbx
   868   // do array store check - check for NULL value first
   869   __ testq(rax, rax);
   870   __ jcc(Assembler::zero, is_null);
   872   // Move subklass into rbx
   873   __ movq(rbx, Address(rax, oopDesc::klass_offset_in_bytes()));
   874   // Move superklass into rax
   875   __ movq(rax, Address(rdx, oopDesc::klass_offset_in_bytes()));
   876   __ movq(rax, Address(rax,
   877                        sizeof(oopDesc) +
   878                        objArrayKlass::element_klass_offset_in_bytes()));
   879   // Compress array + index*8 + 12 into a single register.  Frees rcx.
   880   __ leaq(rdx, Address(rdx, rcx,
   881                        Address::times_8,
   882                        arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
   884   // Generate subtype check.  Blows rcx, rdi
   885   // Superklass in rax.  Subklass in rbx.
   886   __ gen_subtype_check(rbx, ok_is_subtype);
   888   // Come here on failure
   889   // object is at TOS
   890   __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry));
   892   // Come here on success
   893   __ bind(ok_is_subtype);
   894   __ movq(rax, at_tos()); // Value
   895   __ movq(Address(rdx, 0), rax);
   896   __ store_check(rdx);
   897   __ jmp(done);
   899   // Have a NULL in rax, rdx=array, ecx=index.  Store NULL at ary[idx]
   900   __ bind(is_null);
   901   __ profile_null_seen(rbx);
   902   __ movq(Address(rdx, rcx,
   903                   Address::times_8,
   904                   arrayOopDesc::base_offset_in_bytes(T_OBJECT)),
   905           rax);
   907   // Pop stack arguments
   908   __ bind(done);
   909   __ addq(rsp, 3 * Interpreter::stackElementSize());
   910 }
   912 void TemplateTable::bastore() {
   913   transition(itos, vtos);
   914   __ pop_i(rbx);
   915   __ pop_ptr(rdx);
   916   // eax: value
   917   // ebx: index
   918   // rdx: array
   919   index_check(rdx, rbx); // prefer index in ebx
   920   __ movb(Address(rdx, rbx,
   921                   Address::times_1,
   922                   arrayOopDesc::base_offset_in_bytes(T_BYTE)),
   923           rax);
   924 }
   926 void TemplateTable::castore() {
   927   transition(itos, vtos);
   928   __ pop_i(rbx);
   929   __ pop_ptr(rdx);
   930   // eax: value
   931   // ebx: index
   932   // rdx: array
   933   index_check(rdx, rbx);  // prefer index in ebx
   934   __ movw(Address(rdx, rbx,
   935                   Address::times_2,
   936                   arrayOopDesc::base_offset_in_bytes(T_CHAR)),
   937           rax);
   938 }
   940 void TemplateTable::sastore() {
   941   castore();
   942 }
   944 void TemplateTable::istore(int n) {
   945   transition(itos, vtos);
   946   __ movl(iaddress(n), rax);
   947   __ tag_local(frame::TagValue, n);
   948 }
   950 void TemplateTable::lstore(int n) {
   951   transition(ltos, vtos);
   952   __ movq(laddress(n), rax);
   953   __ tag_local(frame::TagCategory2, n);
   954 }
   956 void TemplateTable::fstore(int n) {
   957   transition(ftos, vtos);
   958   __ movflt(faddress(n), xmm0);
   959   __ tag_local(frame::TagValue, n);
   960 }
   962 void TemplateTable::dstore(int n) {
   963   transition(dtos, vtos);
   964   __ movdbl(daddress(n), xmm0);
   965   __ tag_local(frame::TagCategory2, n);
   966 }
   968 void TemplateTable::astore(int n) {
   969   transition(vtos, vtos);
   970   __ pop_ptr(rax, rdx);
   971   __ movq(aaddress(n), rax);
   972   __ tag_local(rdx, n);
   973 }
   975 void TemplateTable::pop() {
   976   transition(vtos, vtos);
   977   __ addq(rsp, Interpreter::stackElementSize());
   978 }
   980 void TemplateTable::pop2() {
   981   transition(vtos, vtos);
   982   __ addq(rsp, 2 * Interpreter::stackElementSize());
   983 }
   985 void TemplateTable::dup() {
   986   transition(vtos, vtos);
   987   __ load_ptr_and_tag(0, rax, rdx);
   988   __ push_ptr(rax, rdx);
   989   // stack: ..., a, a
   990 }
   992 void TemplateTable::dup_x1() {
   993   transition(vtos, vtos);
   994   // stack: ..., a, b
   995   __ load_ptr_and_tag(0, rax, rdx);  // load b
   996   __ load_ptr_and_tag(1, rcx, rbx);  // load a
   997   __ store_ptr_and_tag(1, rax, rdx); // store b
   998   __ store_ptr_and_tag(0, rcx, rbx); // store a
   999   __ push_ptr(rax, rdx);             // push b
  1000   // stack: ..., b, a, b
  1003 void TemplateTable::dup_x2() {
  1004   transition(vtos, vtos);
  1005   // stack: ..., a, b, c
  1006   __ load_ptr_and_tag(0, rax, rdx);  // load c
  1007   __ load_ptr_and_tag(2, rcx, rbx);  // load a
  1008   __ store_ptr_and_tag(2, rax, rdx); // store c in a
  1009   __ push_ptr(rax, rdx);             // push c
  1010   // stack: ..., c, b, c, c
  1011   __ load_ptr_and_tag(2, rax, rdx);  // load b
  1012   __ store_ptr_and_tag(2, rcx, rbx); // store a in b
  1013   // stack: ..., c, a, c, c
  1014   __ store_ptr_and_tag(1, rax, rdx); // store b in c
  1015   // stack: ..., c, a, b, c
  1018 void TemplateTable::dup2() {
  1019   transition(vtos, vtos);
  1020   // stack: ..., a, b
  1021   __ load_ptr_and_tag(1, rax, rdx);  // load a
  1022   __ push_ptr(rax, rdx);             // push a
  1023   __ load_ptr_and_tag(1, rax, rdx);  // load b
  1024   __ push_ptr(rax, rdx);             // push b
  1025   // stack: ..., a, b, a, b
  1028 void TemplateTable::dup2_x1() {
  1029   transition(vtos, vtos);
  1030   // stack: ..., a, b, c
  1031   __ load_ptr_and_tag(0, rcx, rbx);  // load c
  1032   __ load_ptr_and_tag(1, rax, rdx);  // load b
  1033   __ push_ptr(rax, rdx);             // push b
  1034   __ push_ptr(rcx, rbx);             // push c
  1035   // stack: ..., a, b, c, b, c
  1036   __ store_ptr_and_tag(3, rcx, rbx); // store c in b
  1037   // stack: ..., a, c, c, b, c
  1038   __ load_ptr_and_tag(4, rcx, rbx);  // load a
  1039   __ store_ptr_and_tag(2, rcx, rbx); // store a in 2nd c
  1040   // stack: ..., a, c, a, b, c
  1041   __ store_ptr_and_tag(4, rax, rdx); // store b in a
  1042   // stack: ..., b, c, a, b, c
  1045 void TemplateTable::dup2_x2() {
  1046   transition(vtos, vtos);
  1047   // stack: ..., a, b, c, d
  1048   __ load_ptr_and_tag(0, rcx, rbx);  // load d
  1049   __ load_ptr_and_tag(1, rax, rdx);  // load c
  1050   __ push_ptr(rax, rdx);             // push c
  1051   __ push_ptr(rcx, rbx);             // push d
  1052   // stack: ..., a, b, c, d, c, d
  1053   __ load_ptr_and_tag(4, rax, rdx);  // load b
  1054   __ store_ptr_and_tag(2, rax, rdx); // store b in d
  1055   __ store_ptr_and_tag(4, rcx, rbx); // store d in b
  1056   // stack: ..., a, d, c, b, c, d
  1057   __ load_ptr_and_tag(5, rcx, rbx);  // load a
  1058   __ load_ptr_and_tag(3, rax, rdx);  // load c
  1059   __ store_ptr_and_tag(3, rcx, rbx); // store a in c
  1060   __ store_ptr_and_tag(5, rax, rdx); // store c in a
  1061   // stack: ..., c, d, a, b, c, d
  1064 void TemplateTable::swap() {
  1065   transition(vtos, vtos);
  1066   // stack: ..., a, b
  1067   __ load_ptr_and_tag(1, rcx, rbx);  // load a
  1068   __ load_ptr_and_tag(0, rax, rdx);  // load b
  1069   __ store_ptr_and_tag(0, rcx, rbx); // store a in b
  1070   __ store_ptr_and_tag(1, rax, rdx); // store b in a
  1071   // stack: ..., b, a
  1074 void TemplateTable::iop2(Operation op) {
  1075   transition(itos, itos);
  1076   switch (op) {
  1077   case add  :                    __ pop_i(rdx); __ addl (rax, rdx); break;
  1078   case sub  : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break;
  1079   case mul  :                    __ pop_i(rdx); __ imull(rax, rdx); break;
  1080   case _and :                    __ pop_i(rdx); __ andl (rax, rdx); break;
  1081   case _or  :                    __ pop_i(rdx); __ orl  (rax, rdx); break;
  1082   case _xor :                    __ pop_i(rdx); __ xorl (rax, rdx); break;
  1083   case shl  : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax);      break;
  1084   case shr  : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax);      break;
  1085   case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax);      break;
  1086   default   : ShouldNotReachHere();
  1090 void TemplateTable::lop2(Operation op) {
  1091   transition(ltos, ltos);
  1092   switch (op) {
  1093   case add  :                    __ pop_l(rdx); __ addq (rax, rdx); break;
  1094   case sub  : __ movq(rdx, rax); __ pop_l(rax); __ subq (rax, rdx); break;
  1095   case _and :                    __ pop_l(rdx); __ andq (rax, rdx); break;
  1096   case _or  :                    __ pop_l(rdx); __ orq  (rax, rdx); break;
  1097   case _xor :                    __ pop_l(rdx); __ xorq (rax, rdx); break;
  1098   default : ShouldNotReachHere();
  1102 void TemplateTable::idiv() {
  1103   transition(itos, itos);
  1104   __ movl(rcx, rax);
  1105   __ pop_i(rax);
  1106   // Note: could xor eax and ecx and compare with (-1 ^ min_int). If
  1107   //       they are not equal, one could do a normal division (no correction
  1108   //       needed), which may speed up this implementation for the common case.
  1109   //       (see also JVM spec., p.243 & p.271)
  1110   __ corrected_idivl(rcx);
  1113 void TemplateTable::irem() {
  1114   transition(itos, itos);
  1115   __ movl(rcx, rax);
  1116   __ pop_i(rax);
  1117   // Note: could xor eax and ecx and compare with (-1 ^ min_int). If
  1118   //       they are not equal, one could do a normal division (no correction
  1119   //       needed), which may speed up this implementation for the common case.
  1120   //       (see also JVM spec., p.243 & p.271)
  1121   __ corrected_idivl(rcx);
  1122   __ movl(rax, rdx);
  1125 void TemplateTable::lmul() {
  1126   transition(ltos, ltos);
  1127   __ pop_l(rdx);
  1128   __ imulq(rax, rdx);
  1131 void TemplateTable::ldiv() {
  1132   transition(ltos, ltos);
  1133   __ movq(rcx, rax);
  1134   __ pop_l(rax);
  1135   // generate explicit div0 check
  1136   __ testq(rcx, rcx);
  1137   __ jump_cc(Assembler::zero,
  1138              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
  1139   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
  1140   //       they are not equal, one could do a normal division (no correction
  1141   //       needed), which may speed up this implementation for the common case.
  1142   //       (see also JVM spec., p.243 & p.271)
  1143   __ corrected_idivq(rcx); // kills rbx
  1146 void TemplateTable::lrem() {
  1147   transition(ltos, ltos);
  1148   __ movq(rcx, rax);
  1149   __ pop_l(rax);
  1150   __ testq(rcx, rcx);
  1151   __ jump_cc(Assembler::zero,
  1152              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
  1153   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
  1154   //       they are not equal, one could do a normal division (no correction
  1155   //       needed), which may speed up this implementation for the common case.
  1156   //       (see also JVM spec., p.243 & p.271)
  1157   __ corrected_idivq(rcx); // kills rbx
  1158   __ movq(rax, rdx);
  1161 void TemplateTable::lshl() {
  1162   transition(itos, ltos);
  1163   __ movl(rcx, rax);                             // get shift count
  1164   __ pop_l(rax);                                 // get shift value
  1165   __ shlq(rax);
  1168 void TemplateTable::lshr() {
  1169   transition(itos, ltos);
  1170   __ movl(rcx, rax);                             // get shift count
  1171   __ pop_l(rax);                                 // get shift value
  1172   __ sarq(rax);
  1175 void TemplateTable::lushr() {
  1176   transition(itos, ltos);
  1177   __ movl(rcx, rax);                             // get shift count
  1178   __ pop_l(rax);                                 // get shift value
  1179   __ shrq(rax);
  1182 void TemplateTable::fop2(Operation op) {
  1183   transition(ftos, ftos);
  1184   switch (op) {
  1185   case add:
  1186     __ addss(xmm0, at_rsp());
  1187     __ addq(rsp, Interpreter::stackElementSize());
  1188     break;
  1189   case sub:
  1190     __ movflt(xmm1, xmm0);
  1191     __ pop_f(xmm0);
  1192     __ subss(xmm0, xmm1);
  1193     break;
  1194   case mul:
  1195     __ mulss(xmm0, at_rsp());
  1196     __ addq(rsp, Interpreter::stackElementSize());
  1197     break;
  1198   case div:
  1199     __ movflt(xmm1, xmm0);
  1200     __ pop_f(xmm0);
  1201     __ divss(xmm0, xmm1);
  1202     break;
  1203   case rem:
  1204     __ movflt(xmm1, xmm0);
  1205     __ pop_f(xmm0);
  1206     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), 2);
  1207     break;
  1208   default:
  1209     ShouldNotReachHere();
  1210     break;
  1214 void TemplateTable::dop2(Operation op) {
  1215   transition(dtos, dtos);
  1216   switch (op) {
  1217   case add:
  1218     __ addsd(xmm0, at_rsp());
  1219     __ addq(rsp, 2 * Interpreter::stackElementSize());
  1220     break;
  1221   case sub:
  1222     __ movdbl(xmm1, xmm0);
  1223     __ pop_d(xmm0);
  1224     __ subsd(xmm0, xmm1);
  1225     break;
  1226   case mul:
  1227     __ mulsd(xmm0, at_rsp());
  1228     __ addq(rsp, 2 * Interpreter::stackElementSize());
  1229     break;
  1230   case div:
  1231     __ movdbl(xmm1, xmm0);
  1232     __ pop_d(xmm0);
  1233     __ divsd(xmm0, xmm1);
  1234     break;
  1235   case rem:
  1236     __ movdbl(xmm1, xmm0);
  1237     __ pop_d(xmm0);
  1238     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), 2);
  1239     break;
  1240   default:
  1241     ShouldNotReachHere();
  1242     break;
  1246 void TemplateTable::ineg() {
  1247   transition(itos, itos);
  1248   __ negl(rax);
  1251 void TemplateTable::lneg() {
  1252   transition(ltos, ltos);
  1253   __ negq(rax);
  1256 // Note: 'double' and 'long long' have 32-bits alignment on x86.
  1257 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
  1258   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
  1259   // of 128-bits operands for SSE instructions.
  1260   jlong *operand = (jlong*)(((intptr_t)adr)&((intptr_t)(~0xF)));
  1261   // Store the value to a 128-bits operand.
  1262   operand[0] = lo;
  1263   operand[1] = hi;
  1264   return operand;
  1267 // Buffer for 128-bits masks used by SSE instructions.
  1268 static jlong float_signflip_pool[2*2];
  1269 static jlong double_signflip_pool[2*2];
  1271 void TemplateTable::fneg() {
  1272   transition(ftos, ftos);
  1273   static jlong *float_signflip  = double_quadword(&float_signflip_pool[1], 0x8000000080000000, 0x8000000080000000);
  1274   __ xorps(xmm0, ExternalAddress((address) float_signflip));
  1277 void TemplateTable::dneg() {
  1278   transition(dtos, dtos);
  1279   static jlong *double_signflip  = double_quadword(&double_signflip_pool[1], 0x8000000000000000, 0x8000000000000000);
  1280   __ xorpd(xmm0, ExternalAddress((address) double_signflip));
  1283 void TemplateTable::iinc() {
  1284   transition(vtos, vtos);
  1285   __ load_signed_byte(rdx, at_bcp(2)); // get constant
  1286   locals_index(rbx);
  1287   __ addl(iaddress(rbx), rdx);
  1290 void TemplateTable::wide_iinc() {
  1291   transition(vtos, vtos);
  1292   __ movl(rdx, at_bcp(4)); // get constant
  1293   locals_index_wide(rbx);
  1294   __ bswapl(rdx); // swap bytes & sign-extend constant
  1295   __ sarl(rdx, 16);
  1296   __ addl(iaddress(rbx), rdx);
  1297   // Note: should probably use only one movl to get both
  1298   //       the index and the constant -> fix this
  1301 void TemplateTable::convert() {
  1302   // Checking
  1303 #ifdef ASSERT
  1305     TosState tos_in  = ilgl;
  1306     TosState tos_out = ilgl;
  1307     switch (bytecode()) {
  1308     case Bytecodes::_i2l: // fall through
  1309     case Bytecodes::_i2f: // fall through
  1310     case Bytecodes::_i2d: // fall through
  1311     case Bytecodes::_i2b: // fall through
  1312     case Bytecodes::_i2c: // fall through
  1313     case Bytecodes::_i2s: tos_in = itos; break;
  1314     case Bytecodes::_l2i: // fall through
  1315     case Bytecodes::_l2f: // fall through
  1316     case Bytecodes::_l2d: tos_in = ltos; break;
  1317     case Bytecodes::_f2i: // fall through
  1318     case Bytecodes::_f2l: // fall through
  1319     case Bytecodes::_f2d: tos_in = ftos; break;
  1320     case Bytecodes::_d2i: // fall through
  1321     case Bytecodes::_d2l: // fall through
  1322     case Bytecodes::_d2f: tos_in = dtos; break;
  1323     default             : ShouldNotReachHere();
  1325     switch (bytecode()) {
  1326     case Bytecodes::_l2i: // fall through
  1327     case Bytecodes::_f2i: // fall through
  1328     case Bytecodes::_d2i: // fall through
  1329     case Bytecodes::_i2b: // fall through
  1330     case Bytecodes::_i2c: // fall through
  1331     case Bytecodes::_i2s: tos_out = itos; break;
  1332     case Bytecodes::_i2l: // fall through
  1333     case Bytecodes::_f2l: // fall through
  1334     case Bytecodes::_d2l: tos_out = ltos; break;
  1335     case Bytecodes::_i2f: // fall through
  1336     case Bytecodes::_l2f: // fall through
  1337     case Bytecodes::_d2f: tos_out = ftos; break;
  1338     case Bytecodes::_i2d: // fall through
  1339     case Bytecodes::_l2d: // fall through
  1340     case Bytecodes::_f2d: tos_out = dtos; break;
  1341     default             : ShouldNotReachHere();
  1343     transition(tos_in, tos_out);
  1345 #endif // ASSERT
  1347   static const int64_t is_nan = 0x8000000000000000L;
  1349   // Conversion
  1350   switch (bytecode()) {
  1351   case Bytecodes::_i2l:
  1352     __ movslq(rax, rax);
  1353     break;
  1354   case Bytecodes::_i2f:
  1355     __ cvtsi2ssl(xmm0, rax);
  1356     break;
  1357   case Bytecodes::_i2d:
  1358     __ cvtsi2sdl(xmm0, rax);
  1359     break;
  1360   case Bytecodes::_i2b:
  1361     __ movsbl(rax, rax);
  1362     break;
  1363   case Bytecodes::_i2c:
  1364     __ movzwl(rax, rax);
  1365     break;
  1366   case Bytecodes::_i2s:
  1367     __ movswl(rax, rax);
  1368     break;
  1369   case Bytecodes::_l2i:
  1370     __ movl(rax, rax);
  1371     break;
  1372   case Bytecodes::_l2f:
  1373     __ cvtsi2ssq(xmm0, rax);
  1374     break;
  1375   case Bytecodes::_l2d:
  1376     __ cvtsi2sdq(xmm0, rax);
  1377     break;
  1378   case Bytecodes::_f2i:
  1380     Label L;
  1381     __ cvttss2sil(rax, xmm0);
  1382     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
  1383     __ jcc(Assembler::notEqual, L);
  1384     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
  1385     __ bind(L);
  1387     break;
  1388   case Bytecodes::_f2l:
  1390     Label L;
  1391     __ cvttss2siq(rax, xmm0);
  1392     // NaN or overflow/underflow?
  1393     __ cmp64(rax, ExternalAddress((address) &is_nan));
  1394     __ jcc(Assembler::notEqual, L);
  1395     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
  1396     __ bind(L);
  1398     break;
  1399   case Bytecodes::_f2d:
  1400     __ cvtss2sd(xmm0, xmm0);
  1401     break;
  1402   case Bytecodes::_d2i:
  1404     Label L;
  1405     __ cvttsd2sil(rax, xmm0);
  1406     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
  1407     __ jcc(Assembler::notEqual, L);
  1408     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1);
  1409     __ bind(L);
  1411     break;
  1412   case Bytecodes::_d2l:
  1414     Label L;
  1415     __ cvttsd2siq(rax, xmm0);
  1416     // NaN or overflow/underflow?
  1417     __ cmp64(rax, ExternalAddress((address) &is_nan));
  1418     __ jcc(Assembler::notEqual, L);
  1419     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1);
  1420     __ bind(L);
  1422     break;
  1423   case Bytecodes::_d2f:
  1424     __ cvtsd2ss(xmm0, xmm0);
  1425     break;
  1426   default:
  1427     ShouldNotReachHere();
  1431 void TemplateTable::lcmp() {
  1432   transition(ltos, itos);
  1433   Label done;
  1434   __ pop_l(rdx);
  1435   __ cmpq(rdx, rax);
  1436   __ movl(rax, -1);
  1437   __ jccb(Assembler::less, done);
  1438   __ setb(Assembler::notEqual, rax);
  1439   __ movzbl(rax, rax);
  1440   __ bind(done);
  1443 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
  1444   Label done;
  1445   if (is_float) {
  1446     // XXX get rid of pop here, use ... reg, mem32
  1447     __ pop_f(xmm1);
  1448     __ ucomiss(xmm1, xmm0);
  1449   } else {
  1450     // XXX get rid of pop here, use ... reg, mem64
  1451     __ pop_d(xmm1);
  1452     __ ucomisd(xmm1, xmm0);
  1454   if (unordered_result < 0) {
  1455     __ movl(rax, -1);
  1456     __ jccb(Assembler::parity, done);
  1457     __ jccb(Assembler::below, done);
  1458     __ setb(Assembler::notEqual, rdx);
  1459     __ movzbl(rax, rdx);
  1460   } else {
  1461     __ movl(rax, 1);
  1462     __ jccb(Assembler::parity, done);
  1463     __ jccb(Assembler::above, done);
  1464     __ movl(rax, 0);
  1465     __ jccb(Assembler::equal, done);
  1466     __ decrementl(rax);
  1468   __ bind(done);
  1471 void TemplateTable::branch(bool is_jsr, bool is_wide) {
  1472   __ get_method(rcx); // rcx holds method
  1473   __ profile_taken_branch(rax, rbx); // rax holds updated MDP, rbx
  1474                                      // holds bumped taken count
  1476   const ByteSize be_offset = methodOopDesc::backedge_counter_offset() +
  1477                              InvocationCounter::counter_offset();
  1478   const ByteSize inv_offset = methodOopDesc::invocation_counter_offset() +
  1479                               InvocationCounter::counter_offset();
  1480   const int method_offset = frame::interpreter_frame_method_offset * wordSize;
  1482   // Load up edx with the branch displacement
  1483   __ movl(rdx, at_bcp(1));
  1484   __ bswapl(rdx);
  1486   if (!is_wide) {
  1487     __ sarl(rdx, 16);
  1489   __ movslq(rdx, rdx);
  1491   // Handle all the JSR stuff here, then exit.
  1492   // It's much shorter and cleaner than intermingling with the non-JSR
  1493   // normal-branch stuff occuring below.
  1494   if (is_jsr) {
  1495     // Pre-load the next target bytecode into rbx
  1496     __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1, 0));
  1498     // compute return address as bci in rax
  1499     __ leaq(rax, at_bcp((is_wide ? 5 : 3) -
  1500                         in_bytes(constMethodOopDesc::codes_offset())));
  1501     __ subq(rax, Address(rcx, methodOopDesc::const_offset()));
  1502     // Adjust the bcp in r13 by the displacement in rdx
  1503     __ addq(r13, rdx);
  1504     // jsr returns atos that is not an oop
  1505     __ push_i(rax);
  1506     __ dispatch_only(vtos);
  1507     return;
  1510   // Normal (non-jsr) branch handling
  1512   // Adjust the bcp in r13 by the displacement in rdx
  1513   __ addq(r13, rdx);
  1515   assert(UseLoopCounter || !UseOnStackReplacement,
  1516          "on-stack-replacement requires loop counters");
  1517   Label backedge_counter_overflow;
  1518   Label profile_method;
  1519   Label dispatch;
  1520   if (UseLoopCounter) {
  1521     // increment backedge counter for backward branches
  1522     // rax: MDO
  1523     // ebx: MDO bumped taken-count
  1524     // rcx: method
  1525     // rdx: target offset
  1526     // r13: target bcp
  1527     // r14: locals pointer
  1528     __ testl(rdx, rdx);             // check if forward or backward branch
  1529     __ jcc(Assembler::positive, dispatch); // count only if backward branch
  1531     // increment counter
  1532     __ movl(rax, Address(rcx, be_offset));        // load backedge counter
  1533     __ incrementl(rax, InvocationCounter::count_increment); // increment
  1534                                                             // counter
  1535     __ movl(Address(rcx, be_offset), rax);        // store counter
  1537     __ movl(rax, Address(rcx, inv_offset));    // load invocation counter
  1538     __ andl(rax, InvocationCounter::count_mask_value); // and the status bits
  1539     __ addl(rax, Address(rcx, be_offset));        // add both counters
  1541     if (ProfileInterpreter) {
  1542       // Test to see if we should create a method data oop
  1543       __ cmp32(rax,
  1544                ExternalAddress((address) &InvocationCounter::InterpreterProfileLimit));
  1545       __ jcc(Assembler::less, dispatch);
  1547       // if no method data exists, go to profile method
  1548       __ test_method_data_pointer(rax, profile_method);
  1550       if (UseOnStackReplacement) {
  1551         // check for overflow against ebx which is the MDO taken count
  1552         __ cmp32(rbx,
  1553                  ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
  1554         __ jcc(Assembler::below, dispatch);
  1556         // When ProfileInterpreter is on, the backedge_count comes
  1557         // from the methodDataOop, which value does not get reset on
  1558         // the call to frequency_counter_overflow().  To avoid
  1559         // excessive calls to the overflow routine while the method is
  1560         // being compiled, add a second test to make sure the overflow
  1561         // function is called only once every overflow_frequency.
  1562         const int overflow_frequency = 1024;
  1563         __ andl(rbx, overflow_frequency - 1);
  1564         __ jcc(Assembler::zero, backedge_counter_overflow);
  1567     } else {
  1568       if (UseOnStackReplacement) {
  1569         // check for overflow against eax, which is the sum of the
  1570         // counters
  1571         __ cmp32(rax,
  1572                  ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
  1573         __ jcc(Assembler::aboveEqual, backedge_counter_overflow);
  1577     __ bind(dispatch);
  1580   // Pre-load the next target bytecode into rbx
  1581   __ load_unsigned_byte(rbx, Address(r13, 0));
  1583   // continue with the bytecode @ target
  1584   // eax: return bci for jsr's, unused otherwise
  1585   // ebx: target bytecode
  1586   // r13: target bcp
  1587   __ dispatch_only(vtos);
  1589   if (UseLoopCounter) {
  1590     if (ProfileInterpreter) {
  1591       // Out-of-line code to allocate method data oop.
  1592       __ bind(profile_method);
  1593       __ call_VM(noreg,
  1594                  CAST_FROM_FN_PTR(address,
  1595                                   InterpreterRuntime::profile_method), r13);
  1596       __ load_unsigned_byte(rbx, Address(r13, 0));  // restore target bytecode
  1597       __ movq(rcx, Address(rbp, method_offset));
  1598       __ movq(rcx, Address(rcx,
  1599                            in_bytes(methodOopDesc::method_data_offset())));
  1600       __ movq(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize),
  1601               rcx);
  1602       __ test_method_data_pointer(rcx, dispatch);
  1603       // offset non-null mdp by MDO::data_offset() + IR::profile_method()
  1604       __ addq(rcx, in_bytes(methodDataOopDesc::data_offset()));
  1605       __ addq(rcx, rax);
  1606       __ movq(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize),
  1607               rcx);
  1608       __ jmp(dispatch);
  1611     if (UseOnStackReplacement) {
  1612       // invocation counter overflow
  1613       __ bind(backedge_counter_overflow);
  1614       __ negq(rdx);
  1615       __ addq(rdx, r13); // branch bcp
  1616       // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp)
  1617       __ call_VM(noreg,
  1618                  CAST_FROM_FN_PTR(address,
  1619                                   InterpreterRuntime::frequency_counter_overflow),
  1620                  rdx);
  1621       __ load_unsigned_byte(rbx, Address(r13, 0));  // restore target bytecode
  1623       // rax: osr nmethod (osr ok) or NULL (osr not possible)
  1624       // ebx: target bytecode
  1625       // rdx: scratch
  1626       // r14: locals pointer
  1627       // r13: bcp
  1628       __ testq(rax, rax);                        // test result
  1629       __ jcc(Assembler::zero, dispatch);         // no osr if null
  1630       // nmethod may have been invalidated (VM may block upon call_VM return)
  1631       __ movl(rcx, Address(rax, nmethod::entry_bci_offset()));
  1632       __ cmpl(rcx, InvalidOSREntryBci);
  1633       __ jcc(Assembler::equal, dispatch);
  1635       // We have the address of an on stack replacement routine in eax
  1636       // We need to prepare to execute the OSR method. First we must
  1637       // migrate the locals and monitors off of the stack.
  1639       __ movq(r13, rax);                             // save the nmethod
  1641       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
  1643       // eax is OSR buffer, move it to expected parameter location
  1644       __ movq(j_rarg0, rax);
  1646       // We use j_rarg definitions here so that registers don't conflict as parameter
  1647       // registers change across platforms as we are in the midst of a calling
  1648       // sequence to the OSR nmethod and we don't want collision. These are NOT parameters.
  1650       const Register retaddr = j_rarg2;
  1651       const Register sender_sp = j_rarg1;
  1653       // pop the interpreter frame
  1654       __ movq(sender_sp, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
  1655       __ leave();                                // remove frame anchor
  1656       __ popq(retaddr);                            // get return address
  1657       __ movq(rsp, sender_sp);                   // set sp to sender sp
  1658       // Ensure compiled code always sees stack at proper alignment
  1659       __ andq(rsp, -(StackAlignmentInBytes));
  1661       // unlike x86 we need no specialized return from compiled code
  1662       // to the interpreter or the call stub.
  1664       // push the return address
  1665       __ pushq(retaddr);
  1667       // and begin the OSR nmethod
  1668       __ jmp(Address(r13, nmethod::osr_entry_point_offset()));
  1674 void TemplateTable::if_0cmp(Condition cc) {
  1675   transition(itos, vtos);
  1676   // assume branch is more often taken than not (loops use backward branches)
  1677   Label not_taken;
  1678   __ testl(rax, rax);
  1679   __ jcc(j_not(cc), not_taken);
  1680   branch(false, false);
  1681   __ bind(not_taken);
  1682   __ profile_not_taken_branch(rax);
  1685 void TemplateTable::if_icmp(Condition cc) {
  1686   transition(itos, vtos);
  1687   // assume branch is more often taken than not (loops use backward branches)
  1688   Label not_taken;
  1689   __ pop_i(rdx);
  1690   __ cmpl(rdx, rax);
  1691   __ jcc(j_not(cc), not_taken);
  1692   branch(false, false);
  1693   __ bind(not_taken);
  1694   __ profile_not_taken_branch(rax);
  1697 void TemplateTable::if_nullcmp(Condition cc) {
  1698   transition(atos, vtos);
  1699   // assume branch is more often taken than not (loops use backward branches)
  1700   Label not_taken;
  1701   __ testq(rax, rax);
  1702   __ jcc(j_not(cc), not_taken);
  1703   branch(false, false);
  1704   __ bind(not_taken);
  1705   __ profile_not_taken_branch(rax);
  1708 void TemplateTable::if_acmp(Condition cc) {
  1709   transition(atos, vtos);
  1710   // assume branch is more often taken than not (loops use backward branches)
  1711   Label not_taken;
  1712   __ pop_ptr(rdx);
  1713   __ cmpq(rdx, rax);
  1714   __ jcc(j_not(cc), not_taken);
  1715   branch(false, false);
  1716   __ bind(not_taken);
  1717   __ profile_not_taken_branch(rax);
  1720 void TemplateTable::ret() {
  1721   transition(vtos, vtos);
  1722   locals_index(rbx);
  1723   __ movq(rbx, aaddress(rbx)); // get return bci, compute return bcp
  1724   __ profile_ret(rbx, rcx);
  1725   __ get_method(rax);
  1726   __ movq(r13, Address(rax, methodOopDesc::const_offset()));
  1727   __ leaq(r13, Address(r13, rbx, Address::times_1,
  1728                        constMethodOopDesc::codes_offset()));
  1729   __ dispatch_next(vtos);
  1732 void TemplateTable::wide_ret() {
  1733   transition(vtos, vtos);
  1734   locals_index_wide(rbx);
  1735   __ movq(rbx, aaddress(rbx)); // get return bci, compute return bcp
  1736   __ profile_ret(rbx, rcx);
  1737   __ get_method(rax);
  1738   __ movq(r13, Address(rax, methodOopDesc::const_offset()));
  1739   __ leaq(r13, Address(r13, rbx, Address::times_1, constMethodOopDesc::codes_offset()));
  1740   __ dispatch_next(vtos);
  1743 void TemplateTable::tableswitch() {
  1744   Label default_case, continue_execution;
  1745   transition(itos, vtos);
  1746   // align r13
  1747   __ leaq(rbx, at_bcp(BytesPerInt));
  1748   __ andq(rbx, -BytesPerInt);
  1749   // load lo & hi
  1750   __ movl(rcx, Address(rbx, BytesPerInt));
  1751   __ movl(rdx, Address(rbx, 2 * BytesPerInt));
  1752   __ bswapl(rcx);
  1753   __ bswapl(rdx);
  1754   // check against lo & hi
  1755   __ cmpl(rax, rcx);
  1756   __ jcc(Assembler::less, default_case);
  1757   __ cmpl(rax, rdx);
  1758   __ jcc(Assembler::greater, default_case);
  1759   // lookup dispatch offset
  1760   __ subl(rax, rcx);
  1761   __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt));
  1762   __ profile_switch_case(rax, rbx, rcx);
  1763   // continue execution
  1764   __ bind(continue_execution);
  1765   __ bswapl(rdx);
  1766   __ movslq(rdx, rdx);
  1767   __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1));
  1768   __ addq(r13, rdx);
  1769   __ dispatch_only(vtos);
  1770   // handle default
  1771   __ bind(default_case);
  1772   __ profile_switch_default(rax);
  1773   __ movl(rdx, Address(rbx, 0));
  1774   __ jmp(continue_execution);
  1777 void TemplateTable::lookupswitch() {
  1778   transition(itos, itos);
  1779   __ stop("lookupswitch bytecode should have been rewritten");
  1782 void TemplateTable::fast_linearswitch() {
  1783   transition(itos, vtos);
  1784   Label loop_entry, loop, found, continue_execution;
  1785   // bswap rax so we can avoid bswapping the table entries
  1786   __ bswapl(rax);
  1787   // align r13
  1788   __ leaq(rbx, at_bcp(BytesPerInt)); // btw: should be able to get rid of
  1789                                      // this instruction (change offsets
  1790                                      // below)
  1791   __ andq(rbx, -BytesPerInt);
  1792   // set counter
  1793   __ movl(rcx, Address(rbx, BytesPerInt));
  1794   __ bswapl(rcx);
  1795   __ jmpb(loop_entry);
  1796   // table search
  1797   __ bind(loop);
  1798   __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * BytesPerInt));
  1799   __ jcc(Assembler::equal, found);
  1800   __ bind(loop_entry);
  1801   __ decrementl(rcx);
  1802   __ jcc(Assembler::greaterEqual, loop);
  1803   // default case
  1804   __ profile_switch_default(rax);
  1805   __ movl(rdx, Address(rbx, 0));
  1806   __ jmp(continue_execution);
  1807   // entry found -> get offset
  1808   __ bind(found);
  1809   __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * BytesPerInt));
  1810   __ profile_switch_case(rcx, rax, rbx);
  1811   // continue execution
  1812   __ bind(continue_execution);
  1813   __ bswapl(rdx);
  1814   __ movslq(rdx, rdx);
  1815   __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1));
  1816   __ addq(r13, rdx);
  1817   __ dispatch_only(vtos);
  1820 void TemplateTable::fast_binaryswitch() {
  1821   transition(itos, vtos);
  1822   // Implementation using the following core algorithm:
  1823   //
  1824   // int binary_search(int key, LookupswitchPair* array, int n) {
  1825   //   // Binary search according to "Methodik des Programmierens" by
  1826   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
  1827   //   int i = 0;
  1828   //   int j = n;
  1829   //   while (i+1 < j) {
  1830   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
  1831   //     // with      Q: for all i: 0 <= i < n: key < a[i]
  1832   //     // where a stands for the array and assuming that the (inexisting)
  1833   //     // element a[n] is infinitely big.
  1834   //     int h = (i + j) >> 1;
  1835   //     // i < h < j
  1836   //     if (key < array[h].fast_match()) {
  1837   //       j = h;
  1838   //     } else {
  1839   //       i = h;
  1840   //     }
  1841   //   }
  1842   //   // R: a[i] <= key < a[i+1] or Q
  1843   //   // (i.e., if key is within array, i is the correct index)
  1844   //   return i;
  1845   // }
  1847   // Register allocation
  1848   const Register key   = rax; // already set (tosca)
  1849   const Register array = rbx;
  1850   const Register i     = rcx;
  1851   const Register j     = rdx;
  1852   const Register h     = rdi;
  1853   const Register temp  = rsi;
  1855   // Find array start
  1856   __ leaq(array, at_bcp(3 * BytesPerInt)); // btw: should be able to
  1857                                            // get rid of this
  1858                                            // instruction (change
  1859                                            // offsets below)
  1860   __ andq(array, -BytesPerInt);
  1862   // Initialize i & j
  1863   __ xorl(i, i);                            // i = 0;
  1864   __ movl(j, Address(array, -BytesPerInt)); // j = length(array);
  1866   // Convert j into native byteordering
  1867   __ bswapl(j);
  1869   // And start
  1870   Label entry;
  1871   __ jmp(entry);
  1873   // binary search loop
  1875     Label loop;
  1876     __ bind(loop);
  1877     // int h = (i + j) >> 1;
  1878     __ leal(h, Address(i, j, Address::times_1)); // h = i + j;
  1879     __ sarl(h, 1);                               // h = (i + j) >> 1;
  1880     // if (key < array[h].fast_match()) {
  1881     //   j = h;
  1882     // } else {
  1883     //   i = h;
  1884     // }
  1885     // Convert array[h].match to native byte-ordering before compare
  1886     __ movl(temp, Address(array, h, Address::times_8));
  1887     __ bswapl(temp);
  1888     __ cmpl(key, temp);
  1889     // j = h if (key <  array[h].fast_match())
  1890     __ cmovl(Assembler::less, j, h);
  1891     // i = h if (key >= array[h].fast_match())
  1892     __ cmovl(Assembler::greaterEqual, i, h);
  1893     // while (i+1 < j)
  1894     __ bind(entry);
  1895     __ leal(h, Address(i, 1)); // i+1
  1896     __ cmpl(h, j);             // i+1 < j
  1897     __ jcc(Assembler::less, loop);
  1900   // end of binary search, result index is i (must check again!)
  1901   Label default_case;
  1902   // Convert array[i].match to native byte-ordering before compare
  1903   __ movl(temp, Address(array, i, Address::times_8));
  1904   __ bswapl(temp);
  1905   __ cmpl(key, temp);
  1906   __ jcc(Assembler::notEqual, default_case);
  1908   // entry found -> j = offset
  1909   __ movl(j , Address(array, i, Address::times_8, BytesPerInt));
  1910   __ profile_switch_case(i, key, array);
  1911   __ bswapl(j);
  1912   __ movslq(j, j);
  1913   __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1));
  1914   __ addq(r13, j);
  1915   __ dispatch_only(vtos);
  1917   // default case -> j = default offset
  1918   __ bind(default_case);
  1919   __ profile_switch_default(i);
  1920   __ movl(j, Address(array, -2 * BytesPerInt));
  1921   __ bswapl(j);
  1922   __ movslq(j, j);
  1923   __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1));
  1924   __ addq(r13, j);
  1925   __ dispatch_only(vtos);
  1929 void TemplateTable::_return(TosState state) {
  1930   transition(state, state);
  1931   assert(_desc->calls_vm(),
  1932          "inconsistent calls_vm information"); // call in remove_activation
  1934   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
  1935     assert(state == vtos, "only valid state");
  1936     __ movq(c_rarg1, aaddress(0));
  1937     __ movq(rdi, Address(c_rarg1, oopDesc::klass_offset_in_bytes()));
  1938     __ movl(rdi, Address(rdi, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc)));
  1939     __ testl(rdi, JVM_ACC_HAS_FINALIZER);
  1940     Label skip_register_finalizer;
  1941     __ jcc(Assembler::zero, skip_register_finalizer);
  1943     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1);
  1945     __ bind(skip_register_finalizer);
  1948   __ remove_activation(state, r13);
  1949   __ jmp(r13);
  1952 // ----------------------------------------------------------------------------
  1953 // Volatile variables demand their effects be made known to all CPU's
  1954 // in order.  Store buffers on most chips allow reads & writes to
  1955 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
  1956 // without some kind of memory barrier (i.e., it's not sufficient that
  1957 // the interpreter does not reorder volatile references, the hardware
  1958 // also must not reorder them).
  1959 //
  1960 // According to the new Java Memory Model (JMM):
  1961 // (1) All volatiles are serialized wrt to each other.  ALSO reads &
  1962 //     writes act as aquire & release, so:
  1963 // (2) A read cannot let unrelated NON-volatile memory refs that
  1964 //     happen after the read float up to before the read.  It's OK for
  1965 //     non-volatile memory refs that happen before the volatile read to
  1966 //     float down below it.
  1967 // (3) Similar a volatile write cannot let unrelated NON-volatile
  1968 //     memory refs that happen BEFORE the write float down to after the
  1969 //     write.  It's OK for non-volatile memory refs that happen after the
  1970 //     volatile write to float up before it.
  1971 //
  1972 // We only put in barriers around volatile refs (they are expensive),
  1973 // not _between_ memory refs (that would require us to track the
  1974 // flavor of the previous memory refs).  Requirements (2) and (3)
  1975 // require some barriers before volatile stores and after volatile
  1976 // loads.  These nearly cover requirement (1) but miss the
  1977 // volatile-store-volatile-load case.  This final case is placed after
  1978 // volatile-stores although it could just as well go before
  1979 // volatile-loads.
  1980 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits
  1981                                      order_constraint) {
  1982   // Helper function to insert a is-volatile test and memory barrier
  1983   if (os::is_MP()) { // Not needed on single CPU
  1984     __ membar(order_constraint);
  1988 void TemplateTable::resolve_cache_and_index(int byte_no,
  1989                                             Register Rcache,
  1990                                             Register index) {
  1991   assert(byte_no == 1 || byte_no == 2, "byte_no out of range");
  1993   const Register temp = rbx;
  1994   assert_different_registers(Rcache, index, temp);
  1996   const int shift_count = (1 + byte_no) * BitsPerByte;
  1997   Label resolved;
  1998   __ get_cache_and_index_at_bcp(Rcache, index, 1);
  1999   __ movl(temp, Address(Rcache,
  2000                         index, Address::times_8,
  2001                         constantPoolCacheOopDesc::base_offset() +
  2002                         ConstantPoolCacheEntry::indices_offset()));
  2003   __ shrl(temp, shift_count);
  2004   // have we resolved this bytecode?
  2005   __ andl(temp, 0xFF);
  2006   __ cmpl(temp, (int) bytecode());
  2007   __ jcc(Assembler::equal, resolved);
  2009   // resolve first time through
  2010   address entry;
  2011   switch (bytecode()) {
  2012   case Bytecodes::_getstatic:
  2013   case Bytecodes::_putstatic:
  2014   case Bytecodes::_getfield:
  2015   case Bytecodes::_putfield:
  2016     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put);
  2017     break;
  2018   case Bytecodes::_invokevirtual:
  2019   case Bytecodes::_invokespecial:
  2020   case Bytecodes::_invokestatic:
  2021   case Bytecodes::_invokeinterface:
  2022     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);
  2023     break;
  2024   default:
  2025     ShouldNotReachHere();
  2026     break;
  2028   __ movl(temp, (int) bytecode());
  2029   __ call_VM(noreg, entry, temp);
  2031   // Update registers with resolved info
  2032   __ get_cache_and_index_at_bcp(Rcache, index, 1);
  2033   __ bind(resolved);
  2036 // The Rcache and index registers must be set before call
  2037 void TemplateTable::load_field_cp_cache_entry(Register obj,
  2038                                               Register cache,
  2039                                               Register index,
  2040                                               Register off,
  2041                                               Register flags,
  2042                                               bool is_static = false) {
  2043   assert_different_registers(cache, index, flags, off);
  2045   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2046   // Field offset
  2047   __ movq(off, Address(cache, index, Address::times_8,
  2048                        in_bytes(cp_base_offset +
  2049                                 ConstantPoolCacheEntry::f2_offset())));
  2050   // Flags
  2051   __ movl(flags, Address(cache, index, Address::times_8,
  2052                          in_bytes(cp_base_offset +
  2053                                   ConstantPoolCacheEntry::flags_offset())));
  2055   // klass overwrite register
  2056   if (is_static) {
  2057     __ movq(obj, Address(cache, index, Address::times_8,
  2058                          in_bytes(cp_base_offset +
  2059                                   ConstantPoolCacheEntry::f1_offset())));
  2063 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
  2064                                                Register method,
  2065                                                Register itable_index,
  2066                                                Register flags,
  2067                                                bool is_invokevirtual,
  2068                                                bool is_invokevfinal /*unused*/) {
  2069   // setup registers
  2070   const Register cache = rcx;
  2071   const Register index = rdx;
  2072   assert_different_registers(method, flags);
  2073   assert_different_registers(method, cache, index);
  2074   assert_different_registers(itable_index, flags);
  2075   assert_different_registers(itable_index, cache, index);
  2076   // determine constant pool cache field offsets
  2077   const int method_offset = in_bytes(
  2078     constantPoolCacheOopDesc::base_offset() +
  2079       (is_invokevirtual
  2080        ? ConstantPoolCacheEntry::f2_offset()
  2081        : ConstantPoolCacheEntry::f1_offset()));
  2082   const int flags_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
  2083                                     ConstantPoolCacheEntry::flags_offset());
  2084   // access constant pool cache fields
  2085   const int index_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
  2086                                     ConstantPoolCacheEntry::f2_offset());
  2088   resolve_cache_and_index(byte_no, cache, index);
  2090   assert(wordSize == 8, "adjust code below");
  2091   __ movq(method, Address(cache, index, Address::times_8, method_offset));
  2092   if (itable_index != noreg) {
  2093     __ movq(itable_index,
  2094             Address(cache, index, Address::times_8, index_offset));
  2096   __ movl(flags , Address(cache, index, Address::times_8, flags_offset));
  2100 // The registers cache and index expected to be set before call.
  2101 // Correct values of the cache and index registers are preserved.
  2102 void TemplateTable::jvmti_post_field_access(Register cache, Register index,
  2103                                             bool is_static, bool has_tos) {
  2104   // do the JVMTI work here to avoid disturbing the register state below
  2105   // We use c_rarg registers here because we want to use the register used in
  2106   // the call to the VM
  2107   if (JvmtiExport::can_post_field_access()) {
  2108     // Check to see if a field access watch has been set before we
  2109     // take the time to call into the VM.
  2110     Label L1;
  2111     assert_different_registers(cache, index, rax);
  2112     __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
  2113     __ testl(rax, rax);
  2114     __ jcc(Assembler::zero, L1);
  2116     __ get_cache_and_index_at_bcp(c_rarg2, c_rarg3, 1);
  2118     // cache entry pointer
  2119     __ addq(c_rarg2, in_bytes(constantPoolCacheOopDesc::base_offset()));
  2120     __ shll(c_rarg3, LogBytesPerWord);
  2121     __ addq(c_rarg2, c_rarg3);
  2122     if (is_static) {
  2123       __ xorl(c_rarg1, c_rarg1); // NULL object reference
  2124     } else {
  2125       __ movq(c_rarg1, at_tos()); // get object pointer without popping it
  2126       __ verify_oop(c_rarg1);
  2128     // c_rarg1: object pointer or NULL
  2129     // c_rarg2: cache entry pointer
  2130     // c_rarg3: jvalue object on the stack
  2131     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  2132                                        InterpreterRuntime::post_field_access),
  2133                c_rarg1, c_rarg2, c_rarg3);
  2134     __ get_cache_and_index_at_bcp(cache, index, 1);
  2135     __ bind(L1);
  2139 void TemplateTable::pop_and_check_object(Register r) {
  2140   __ pop_ptr(r);
  2141   __ null_check(r);  // for field access must check obj.
  2142   __ verify_oop(r);
  2145 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
  2146   transition(vtos, vtos);
  2148   const Register cache = rcx;
  2149   const Register index = rdx;
  2150   const Register obj   = c_rarg3;
  2151   const Register off   = rbx;
  2152   const Register flags = rax;
  2153   const Register bc = c_rarg3; // uses same reg as obj, so don't mix them
  2155   resolve_cache_and_index(byte_no, cache, index);
  2156   jvmti_post_field_access(cache, index, is_static, false);
  2157   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
  2159   if (!is_static) {
  2160     // obj is on the stack
  2161     pop_and_check_object(obj);
  2164   const Address field(obj, off, Address::times_1);
  2166   Label Done, notByte, notInt, notShort, notChar,
  2167               notLong, notFloat, notObj, notDouble;
  2169   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
  2170   assert(btos == 0, "change code, btos != 0");
  2172   __ andl(flags, 0x0F);
  2173   __ jcc(Assembler::notZero, notByte);
  2174   // btos
  2175   __ load_signed_byte(rax, field);
  2176   __ push(btos);
  2177   // Rewrite bytecode to be faster
  2178   if (!is_static) {
  2179     patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx);
  2181   __ jmp(Done);
  2183   __ bind(notByte);
  2184   __ cmpl(flags, atos);
  2185   __ jcc(Assembler::notEqual, notObj);
  2186   // atos
  2187   __ movq(rax, field);
  2188   __ push(atos);
  2189   if (!is_static) {
  2190     patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx);
  2192   __ jmp(Done);
  2194   __ bind(notObj);
  2195   __ cmpl(flags, itos);
  2196   __ jcc(Assembler::notEqual, notInt);
  2197   // itos
  2198   __ movl(rax, field);
  2199   __ push(itos);
  2200   // Rewrite bytecode to be faster
  2201   if (!is_static) {
  2202     patch_bytecode(Bytecodes::_fast_igetfield, bc, rbx);
  2204   __ jmp(Done);
  2206   __ bind(notInt);
  2207   __ cmpl(flags, ctos);
  2208   __ jcc(Assembler::notEqual, notChar);
  2209   // ctos
  2210   __ load_unsigned_word(rax, field);
  2211   __ push(ctos);
  2212   // Rewrite bytecode to be faster
  2213   if (!is_static) {
  2214     patch_bytecode(Bytecodes::_fast_cgetfield, bc, rbx);
  2216   __ jmp(Done);
  2218   __ bind(notChar);
  2219   __ cmpl(flags, stos);
  2220   __ jcc(Assembler::notEqual, notShort);
  2221   // stos
  2222   __ load_signed_word(rax, field);
  2223   __ push(stos);
  2224   // Rewrite bytecode to be faster
  2225   if (!is_static) {
  2226     patch_bytecode(Bytecodes::_fast_sgetfield, bc, rbx);
  2228   __ jmp(Done);
  2230   __ bind(notShort);
  2231   __ cmpl(flags, ltos);
  2232   __ jcc(Assembler::notEqual, notLong);
  2233   // ltos
  2234   __ movq(rax, field);
  2235   __ push(ltos);
  2236   // Rewrite bytecode to be faster
  2237   if (!is_static) {
  2238     patch_bytecode(Bytecodes::_fast_lgetfield, bc, rbx);
  2240   __ jmp(Done);
  2242   __ bind(notLong);
  2243   __ cmpl(flags, ftos);
  2244   __ jcc(Assembler::notEqual, notFloat);
  2245   // ftos
  2246   __ movflt(xmm0, field);
  2247   __ push(ftos);
  2248   // Rewrite bytecode to be faster
  2249   if (!is_static) {
  2250     patch_bytecode(Bytecodes::_fast_fgetfield, bc, rbx);
  2252   __ jmp(Done);
  2254   __ bind(notFloat);
  2255 #ifdef ASSERT
  2256   __ cmpl(flags, dtos);
  2257   __ jcc(Assembler::notEqual, notDouble);
  2258 #endif
  2259   // dtos
  2260   __ movdbl(xmm0, field);
  2261   __ push(dtos);
  2262   // Rewrite bytecode to be faster
  2263   if (!is_static) {
  2264     patch_bytecode(Bytecodes::_fast_dgetfield, bc, rbx);
  2266 #ifdef ASSERT
  2267   __ jmp(Done);
  2269   __ bind(notDouble);
  2270   __ stop("Bad state");
  2271 #endif
  2273   __ bind(Done);
  2274   // [jk] not needed currently
  2275   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadLoad |
  2276   //                                              Assembler::LoadStore));
  2280 void TemplateTable::getfield(int byte_no) {
  2281   getfield_or_static(byte_no, false);
  2284 void TemplateTable::getstatic(int byte_no) {
  2285   getfield_or_static(byte_no, true);
  2288 // The registers cache and index expected to be set before call.
  2289 // The function may destroy various registers, just not the cache and index registers.
  2290 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
  2291   transition(vtos, vtos);
  2293   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2295   if (JvmtiExport::can_post_field_modification()) {
  2296     // Check to see if a field modification watch has been set before
  2297     // we take the time to call into the VM.
  2298     Label L1;
  2299     assert_different_registers(cache, index, rax);
  2300     __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
  2301     __ testl(rax, rax);
  2302     __ jcc(Assembler::zero, L1);
  2304     __ get_cache_and_index_at_bcp(c_rarg2, rscratch1, 1);
  2306     if (is_static) {
  2307       // Life is simple.  Null out the object pointer.
  2308       __ xorl(c_rarg1, c_rarg1);
  2309     } else {
  2310       // Life is harder. The stack holds the value on top, followed by
  2311       // the object.  We don't know the size of the value, though; it
  2312       // could be one or two words depending on its type. As a result,
  2313       // we must find the type to determine where the object is.
  2314       __ movl(c_rarg3, Address(c_rarg2, rscratch1,
  2315                            Address::times_8,
  2316                            in_bytes(cp_base_offset +
  2317                                      ConstantPoolCacheEntry::flags_offset())));
  2318       __ shrl(c_rarg3, ConstantPoolCacheEntry::tosBits);
  2319       // Make sure we don't need to mask rcx for tosBits after the
  2320       // above shift
  2321       ConstantPoolCacheEntry::verify_tosBits();
  2322       __ movq(c_rarg1, at_tos_p1());  // initially assume a one word jvalue
  2323       __ cmpl(c_rarg3, ltos);
  2324       __ cmovq(Assembler::equal,
  2325                c_rarg1, at_tos_p2()); // ltos (two word jvalue)
  2326       __ cmpl(c_rarg3, dtos);
  2327       __ cmovq(Assembler::equal,
  2328                c_rarg1, at_tos_p2()); // dtos (two word jvalue)
  2330     // cache entry pointer
  2331     __ addq(c_rarg2, in_bytes(cp_base_offset));
  2332     __ shll(rscratch1, LogBytesPerWord);
  2333     __ addq(c_rarg2, rscratch1);
  2334     // object (tos)
  2335     __ movq(c_rarg3, rsp);
  2336     // c_rarg1: object pointer set up above (NULL if static)
  2337     // c_rarg2: cache entry pointer
  2338     // c_rarg3: jvalue object on the stack
  2339     __ call_VM(noreg,
  2340                CAST_FROM_FN_PTR(address,
  2341                                 InterpreterRuntime::post_field_modification),
  2342                c_rarg1, c_rarg2, c_rarg3);
  2343     __ get_cache_and_index_at_bcp(cache, index, 1);
  2344     __ bind(L1);
  2348 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
  2349   transition(vtos, vtos);
  2351   const Register cache = rcx;
  2352   const Register index = rdx;
  2353   const Register obj   = rcx;
  2354   const Register off   = rbx;
  2355   const Register flags = rax;
  2356   const Register bc    = c_rarg3;
  2358   resolve_cache_and_index(byte_no, cache, index);
  2359   jvmti_post_field_mod(cache, index, is_static);
  2360   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
  2362   // [jk] not needed currently
  2363   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
  2364   //                                              Assembler::StoreStore));
  2366   Label notVolatile, Done;
  2367   __ movl(rdx, flags);
  2368   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
  2369   __ andl(rdx, 0x1);
  2371   // field address
  2372   const Address field(obj, off, Address::times_1);
  2374   Label notByte, notInt, notShort, notChar,
  2375         notLong, notFloat, notObj, notDouble;
  2377   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
  2379   assert(btos == 0, "change code, btos != 0");
  2380   __ andl(flags, 0x0f);
  2381   __ jcc(Assembler::notZero, notByte);
  2382   // btos
  2383   __ pop(btos);
  2384   if (!is_static) pop_and_check_object(obj);
  2385   __ movb(field, rax);
  2386   if (!is_static) {
  2387     patch_bytecode(Bytecodes::_fast_bputfield, bc, rbx);
  2389   __ jmp(Done);
  2391   __ bind(notByte);
  2392   __ cmpl(flags, atos);
  2393   __ jcc(Assembler::notEqual, notObj);
  2394   // atos
  2395   __ pop(atos);
  2396   if (!is_static) pop_and_check_object(obj);
  2397   __ movq(field, rax);
  2398   __ store_check(obj, field); // Need to mark card
  2399   if (!is_static) {
  2400     patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx);
  2402   __ jmp(Done);
  2404   __ bind(notObj);
  2405   __ cmpl(flags, itos);
  2406   __ jcc(Assembler::notEqual, notInt);
  2407   // itos
  2408   __ pop(itos);
  2409   if (!is_static) pop_and_check_object(obj);
  2410   __ movl(field, rax);
  2411   if (!is_static) {
  2412     patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx);
  2414   __ jmp(Done);
  2416   __ bind(notInt);
  2417   __ cmpl(flags, ctos);
  2418   __ jcc(Assembler::notEqual, notChar);
  2419   // ctos
  2420   __ pop(ctos);
  2421   if (!is_static) pop_and_check_object(obj);
  2422   __ movw(field, rax);
  2423   if (!is_static) {
  2424     patch_bytecode(Bytecodes::_fast_cputfield, bc, rbx);
  2426   __ jmp(Done);
  2428   __ bind(notChar);
  2429   __ cmpl(flags, stos);
  2430   __ jcc(Assembler::notEqual, notShort);
  2431   // stos
  2432   __ pop(stos);
  2433   if (!is_static) pop_and_check_object(obj);
  2434   __ movw(field, rax);
  2435   if (!is_static) {
  2436     patch_bytecode(Bytecodes::_fast_sputfield, bc, rbx);
  2438   __ jmp(Done);
  2440   __ bind(notShort);
  2441   __ cmpl(flags, ltos);
  2442   __ jcc(Assembler::notEqual, notLong);
  2443   // ltos
  2444   __ pop(ltos);
  2445   if (!is_static) pop_and_check_object(obj);
  2446   __ movq(field, rax);
  2447   if (!is_static) {
  2448     patch_bytecode(Bytecodes::_fast_lputfield, bc, rbx);
  2450   __ jmp(Done);
  2452   __ bind(notLong);
  2453   __ cmpl(flags, ftos);
  2454   __ jcc(Assembler::notEqual, notFloat);
  2455   // ftos
  2456   __ pop(ftos);
  2457   if (!is_static) pop_and_check_object(obj);
  2458   __ movflt(field, xmm0);
  2459   if (!is_static) {
  2460     patch_bytecode(Bytecodes::_fast_fputfield, bc, rbx);
  2462   __ jmp(Done);
  2464   __ bind(notFloat);
  2465 #ifdef ASSERT
  2466   __ cmpl(flags, dtos);
  2467   __ jcc(Assembler::notEqual, notDouble);
  2468 #endif
  2469   // dtos
  2470   __ pop(dtos);
  2471   if (!is_static) pop_and_check_object(obj);
  2472   __ movdbl(field, xmm0);
  2473   if (!is_static) {
  2474     patch_bytecode(Bytecodes::_fast_dputfield, bc, rbx);
  2477 #ifdef ASSERT
  2478   __ jmp(Done);
  2480   __ bind(notDouble);
  2481   __ stop("Bad state");
  2482 #endif
  2484   __ bind(Done);
  2485   // Check for volatile store
  2486   __ testl(rdx, rdx);
  2487   __ jcc(Assembler::zero, notVolatile);
  2488   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2489                                                Assembler::StoreStore));
  2491   __ bind(notVolatile);
  2494 void TemplateTable::putfield(int byte_no) {
  2495   putfield_or_static(byte_no, false);
  2498 void TemplateTable::putstatic(int byte_no) {
  2499   putfield_or_static(byte_no, true);
  2502 void TemplateTable::jvmti_post_fast_field_mod() {
  2503   if (JvmtiExport::can_post_field_modification()) {
  2504     // Check to see if a field modification watch has been set before
  2505     // we take the time to call into the VM.
  2506     Label L2;
  2507     __ mov32(c_rarg3, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
  2508     __ testl(c_rarg3, c_rarg3);
  2509     __ jcc(Assembler::zero, L2);
  2510     __ pop_ptr(rbx);                  // copy the object pointer from tos
  2511     __ verify_oop(rbx);
  2512     __ push_ptr(rbx);                 // put the object pointer back on tos
  2513     __ subq(rsp, sizeof(jvalue));  // add space for a jvalue object
  2514     __ movq(c_rarg3, rsp);
  2515     const Address field(c_rarg3, 0);
  2517     switch (bytecode()) {          // load values into the jvalue object
  2518     case Bytecodes::_fast_aputfield: // fall through
  2519     case Bytecodes::_fast_lputfield: __ movq(field, rax); break;
  2520     case Bytecodes::_fast_iputfield: __ movl(field, rax); break;
  2521     case Bytecodes::_fast_bputfield: __ movb(field, rax); break;
  2522     case Bytecodes::_fast_sputfield: // fall through
  2523     case Bytecodes::_fast_cputfield: __ movw(field, rax); break;
  2524     case Bytecodes::_fast_fputfield: __ movflt(field, xmm0); break;
  2525     case Bytecodes::_fast_dputfield: __ movdbl(field, xmm0); break;
  2526     default:
  2527       ShouldNotReachHere();
  2530     // Save rax because call_VM() will clobber it, then use it for
  2531     // JVMTI purposes
  2532     __ pushq(rax);
  2533     // access constant pool cache entry
  2534     __ get_cache_entry_pointer_at_bcp(c_rarg2, rax, 1);
  2535     __ verify_oop(rbx);
  2536     // rbx: object pointer copied above
  2537     // c_rarg2: cache entry pointer
  2538     // c_rarg3: jvalue object on the stack
  2539     __ call_VM(noreg,
  2540                CAST_FROM_FN_PTR(address,
  2541                                 InterpreterRuntime::post_field_modification),
  2542                rbx, c_rarg2, c_rarg3);
  2543     __ popq(rax);     // restore lower value
  2544     __ addq(rsp, sizeof(jvalue));  // release jvalue object space
  2545     __ bind(L2);
  2549 void TemplateTable::fast_storefield(TosState state) {
  2550   transition(state, vtos);
  2552   ByteSize base = constantPoolCacheOopDesc::base_offset();
  2554   jvmti_post_fast_field_mod();
  2556   // access constant pool cache
  2557   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
  2559   // test for volatile with rdx
  2560   __ movl(rdx, Address(rcx, rbx, Address::times_8,
  2561                        in_bytes(base +
  2562                                 ConstantPoolCacheEntry::flags_offset())));
  2564   // replace index with field offset from cache entry
  2565   __ movq(rbx, Address(rcx, rbx, Address::times_8,
  2566                        in_bytes(base + ConstantPoolCacheEntry::f2_offset())));
  2568   // [jk] not needed currently
  2569   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
  2570   //                                              Assembler::StoreStore));
  2572   Label notVolatile;
  2573   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
  2574   __ andl(rdx, 0x1);
  2576   // Get object from stack
  2577   pop_and_check_object(rcx);
  2579   // field address
  2580   const Address field(rcx, rbx, Address::times_1);
  2582   // access field
  2583   switch (bytecode()) {
  2584   case Bytecodes::_fast_aputfield:
  2585     __ movq(field, rax);
  2586     __ store_check(rcx, field);
  2587     break;
  2588   case Bytecodes::_fast_lputfield:
  2589     __ movq(field, rax);
  2590     break;
  2591   case Bytecodes::_fast_iputfield:
  2592     __ movl(field, rax);
  2593     break;
  2594   case Bytecodes::_fast_bputfield:
  2595     __ movb(field, rax);
  2596     break;
  2597   case Bytecodes::_fast_sputfield:
  2598     // fall through
  2599   case Bytecodes::_fast_cputfield:
  2600     __ movw(field, rax);
  2601     break;
  2602   case Bytecodes::_fast_fputfield:
  2603     __ movflt(field, xmm0);
  2604     break;
  2605   case Bytecodes::_fast_dputfield:
  2606     __ movdbl(field, xmm0);
  2607     break;
  2608   default:
  2609     ShouldNotReachHere();
  2612   // Check for volatile store
  2613   __ testl(rdx, rdx);
  2614   __ jcc(Assembler::zero, notVolatile);
  2615   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2616                                                Assembler::StoreStore));
  2617   __ bind(notVolatile);
  2621 void TemplateTable::fast_accessfield(TosState state) {
  2622   transition(atos, state);
  2624   // Do the JVMTI work here to avoid disturbing the register state below
  2625   if (JvmtiExport::can_post_field_access()) {
  2626     // Check to see if a field access watch has been set before we
  2627     // take the time to call into the VM.
  2628     Label L1;
  2629     __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
  2630     __ testl(rcx, rcx);
  2631     __ jcc(Assembler::zero, L1);
  2632     // access constant pool cache entry
  2633     __ get_cache_entry_pointer_at_bcp(c_rarg2, rcx, 1);
  2634     __ movq(r12, rax);  // save object pointer before call_VM() clobbers it
  2635     __ verify_oop(rax);
  2636     __ movq(c_rarg1, rax);
  2637     // c_rarg1: object pointer copied above
  2638     // c_rarg2: cache entry pointer
  2639     __ call_VM(noreg,
  2640                CAST_FROM_FN_PTR(address,
  2641                                 InterpreterRuntime::post_field_access),
  2642                c_rarg1, c_rarg2);
  2643     __ movq(rax, r12); // restore object pointer
  2644     __ bind(L1);
  2647   // access constant pool cache
  2648   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
  2649   // replace index with field offset from cache entry
  2650   // [jk] not needed currently
  2651   // if (os::is_MP()) {
  2652   //   __ movl(rdx, Address(rcx, rbx, Address::times_8,
  2653   //                        in_bytes(constantPoolCacheOopDesc::base_offset() +
  2654   //                                 ConstantPoolCacheEntry::flags_offset())));
  2655   //   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
  2656   //   __ andl(rdx, 0x1);
  2657   // }
  2658   __ movq(rbx, Address(rcx, rbx, Address::times_8,
  2659                        in_bytes(constantPoolCacheOopDesc::base_offset() +
  2660                                 ConstantPoolCacheEntry::f2_offset())));
  2662   // rax: object
  2663   __ verify_oop(rax);
  2664   __ null_check(rax);
  2665   Address field(rax, rbx, Address::times_1);
  2667   // access field
  2668   switch (bytecode()) {
  2669   case Bytecodes::_fast_agetfield:
  2670     __ movq(rax, field);
  2671     __ verify_oop(rax);
  2672     break;
  2673   case Bytecodes::_fast_lgetfield:
  2674     __ movq(rax, field);
  2675     break;
  2676   case Bytecodes::_fast_igetfield:
  2677     __ movl(rax, field);
  2678     break;
  2679   case Bytecodes::_fast_bgetfield:
  2680     __ movsbl(rax, field);
  2681     break;
  2682   case Bytecodes::_fast_sgetfield:
  2683     __ load_signed_word(rax, field);
  2684     break;
  2685   case Bytecodes::_fast_cgetfield:
  2686     __ load_unsigned_word(rax, field);
  2687     break;
  2688   case Bytecodes::_fast_fgetfield:
  2689     __ movflt(xmm0, field);
  2690     break;
  2691   case Bytecodes::_fast_dgetfield:
  2692     __ movdbl(xmm0, field);
  2693     break;
  2694   default:
  2695     ShouldNotReachHere();
  2697   // [jk] not needed currently
  2698   // if (os::is_MP()) {
  2699   //   Label notVolatile;
  2700   //   __ testl(rdx, rdx);
  2701   //   __ jcc(Assembler::zero, notVolatile);
  2702   //   __ membar(Assembler::LoadLoad);
  2703   //   __ bind(notVolatile);
  2704   //};
  2707 void TemplateTable::fast_xaccess(TosState state) {
  2708   transition(vtos, state);
  2710   // get receiver
  2711   __ movq(rax, aaddress(0));
  2712   debug_only(__ verify_local_tag(frame::TagReference, 0));
  2713   // access constant pool cache
  2714   __ get_cache_and_index_at_bcp(rcx, rdx, 2);
  2715   __ movq(rbx,
  2716           Address(rcx, rdx, Address::times_8,
  2717                   in_bytes(constantPoolCacheOopDesc::base_offset() +
  2718                            ConstantPoolCacheEntry::f2_offset())));
  2719   // make sure exception is reported in correct bcp range (getfield is
  2720   // next instruction)
  2721   __ incrementq(r13);
  2722   __ null_check(rax);
  2723   switch (state) {
  2724   case itos:
  2725     __ movl(rax, Address(rax, rbx, Address::times_1));
  2726     break;
  2727   case atos:
  2728     __ movq(rax, Address(rax, rbx, Address::times_1));
  2729     __ verify_oop(rax);
  2730     break;
  2731   case ftos:
  2732     __ movflt(xmm0, Address(rax, rbx, Address::times_1));
  2733     break;
  2734   default:
  2735     ShouldNotReachHere();
  2738   // [jk] not needed currently
  2739   // if (os::is_MP()) {
  2740   //   Label notVolatile;
  2741   //   __ movl(rdx, Address(rcx, rdx, Address::times_8,
  2742   //                        in_bytes(constantPoolCacheOopDesc::base_offset() +
  2743   //                                 ConstantPoolCacheEntry::flags_offset())));
  2744   //   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
  2745   //   __ testl(rdx, 0x1);
  2746   //   __ jcc(Assembler::zero, notVolatile);
  2747   //   __ membar(Assembler::LoadLoad);
  2748   //   __ bind(notVolatile);
  2749   // }
  2751   __ decrementq(r13);
  2756 //-----------------------------------------------------------------------------
  2757 // Calls
  2759 void TemplateTable::count_calls(Register method, Register temp) {
  2760   // implemented elsewhere
  2761   ShouldNotReachHere();
  2764 void TemplateTable::prepare_invoke(Register method,
  2765                                    Register index,
  2766                                    int byte_no,
  2767                                    Bytecodes::Code code) {
  2768   // determine flags
  2769   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
  2770   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
  2771   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
  2772   const bool load_receiver       = code != Bytecodes::_invokestatic;
  2773   const bool receiver_null_check = is_invokespecial;
  2774   const bool save_flags = is_invokeinterface || is_invokevirtual;
  2775   // setup registers & access constant pool cache
  2776   const Register recv   = rcx;
  2777   const Register flags  = rdx;
  2778   assert_different_registers(method, index, recv, flags);
  2780   // save 'interpreter return address'
  2781   __ save_bcp();
  2783   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual);
  2785   // load receiver if needed (note: no return address pushed yet)
  2786   if (load_receiver) {
  2787     __ movl(recv, flags);
  2788     __ andl(recv, 0xFF);
  2789     if (TaggedStackInterpreter) __ shll(recv, 1);  // index*2
  2790     __ movq(recv, Address(rsp, recv, Address::times_8, -Interpreter::expr_offset_in_bytes(1)));
  2791     __ verify_oop(recv);
  2794   // do null check if needed
  2795   if (receiver_null_check) {
  2796     __ null_check(recv);
  2799   if (save_flags) {
  2800     __ movl(r13, flags);
  2803   // compute return type
  2804   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
  2805   // Make sure we don't need to mask flags for tosBits after the above shift
  2806   ConstantPoolCacheEntry::verify_tosBits();
  2807   // load return address
  2809     ExternalAddress return_5((address)Interpreter::return_5_addrs_by_index_table());
  2810     ExternalAddress return_3((address)Interpreter::return_3_addrs_by_index_table());
  2811     __ lea(rscratch1, (is_invokeinterface ? return_5 : return_3));
  2812     __ movq(flags, Address(rscratch1, flags, Address::times_8));
  2815   // push return address
  2816   __ pushq(flags);
  2818   // Restore flag field from the constant pool cache, and restore esi
  2819   // for later null checks.  r13 is the bytecode pointer
  2820   if (save_flags) {
  2821     __ movl(flags, r13);
  2822     __ restore_bcp();
  2827 void TemplateTable::invokevirtual_helper(Register index,
  2828                                          Register recv,
  2829                                          Register flags) {
  2830   // Uses temporary registers rax, rdx  assert_different_registers(index, recv, rax, rdx);
  2832   // Test for an invoke of a final method
  2833   Label notFinal;
  2834   __ movl(rax, flags);
  2835   __ andl(rax, (1 << ConstantPoolCacheEntry::vfinalMethod));
  2836   __ jcc(Assembler::zero, notFinal);
  2838   const Register method = index;  // method must be rbx
  2839   assert(method == rbx,
  2840          "methodOop must be rbx for interpreter calling convention");
  2842   // do the call - the index is actually the method to call
  2843   __ verify_oop(method);
  2845   // It's final, need a null check here!
  2846   __ null_check(recv);
  2848   // profile this call
  2849   __ profile_final_call(rax);
  2851   __ jump_from_interpreted(method, rax);
  2853   __ bind(notFinal);
  2855   // get receiver klass
  2856   __ null_check(recv, oopDesc::klass_offset_in_bytes());
  2857   __ movq(rax, Address(recv, oopDesc::klass_offset_in_bytes()));
  2859   __ verify_oop(rax);
  2861   // profile this call
  2862   __ profile_virtual_call(rax, r14, rdx);
  2864   // get target methodOop & entry point
  2865   const int base = instanceKlass::vtable_start_offset() * wordSize;
  2866   assert(vtableEntry::size() * wordSize == 8,
  2867          "adjust the scaling in the code below");
  2868   __ movq(method, Address(rax, index,
  2869                           Address::times_8,
  2870                           base + vtableEntry::method_offset_in_bytes()));
  2871   __ movq(rdx, Address(method, methodOopDesc::interpreter_entry_offset()));
  2872   __ jump_from_interpreted(method, rdx);
  2876 void TemplateTable::invokevirtual(int byte_no) {
  2877   transition(vtos, vtos);
  2878   prepare_invoke(rbx, noreg, byte_no, bytecode());
  2880   // rbx: index
  2881   // rcx: receiver
  2882   // rdx: flags
  2884   invokevirtual_helper(rbx, rcx, rdx);
  2888 void TemplateTable::invokespecial(int byte_no) {
  2889   transition(vtos, vtos);
  2890   prepare_invoke(rbx, noreg, byte_no, bytecode());
  2891   // do the call
  2892   __ verify_oop(rbx);
  2893   __ profile_call(rax);
  2894   __ jump_from_interpreted(rbx, rax);
  2898 void TemplateTable::invokestatic(int byte_no) {
  2899   transition(vtos, vtos);
  2900   prepare_invoke(rbx, noreg, byte_no, bytecode());
  2901   // do the call
  2902   __ verify_oop(rbx);
  2903   __ profile_call(rax);
  2904   __ jump_from_interpreted(rbx, rax);
  2907 void TemplateTable::fast_invokevfinal(int byte_no) {
  2908   transition(vtos, vtos);
  2909   __ stop("fast_invokevfinal not used on amd64");
  2912 void TemplateTable::invokeinterface(int byte_no) {
  2913   transition(vtos, vtos);
  2914   prepare_invoke(rax, rbx, byte_no, bytecode());
  2916   // rax: Interface
  2917   // rbx: index
  2918   // rcx: receiver
  2919   // rdx: flags
  2921   // Special case of invokeinterface called for virtual method of
  2922   // java.lang.Object.  See cpCacheOop.cpp for details.
  2923   // This code isn't produced by javac, but could be produced by
  2924   // another compliant java compiler.
  2925   Label notMethod;
  2926   __ movl(r14, rdx);
  2927   __ andl(r14, (1 << ConstantPoolCacheEntry::methodInterface));
  2928   __ jcc(Assembler::zero, notMethod);
  2930   invokevirtual_helper(rbx, rcx, rdx);
  2931   __ bind(notMethod);
  2933   // Get receiver klass into rdx - also a null check
  2934   __ restore_locals(); // restore r14
  2935   __ movq(rdx, Address(rcx, oopDesc::klass_offset_in_bytes()));
  2936   __ verify_oop(rdx);
  2938   // profile this call
  2939   __ profile_virtual_call(rdx, r13, r14);
  2941   __ movq(r14, rdx); // Save klassOop in r14
  2943   // Compute start of first itableOffsetEntry (which is at the end of
  2944   // the vtable)
  2945   const int base = instanceKlass::vtable_start_offset() * wordSize;
  2946   // Get length of vtable
  2947   assert(vtableEntry::size() * wordSize == 8,
  2948          "adjust the scaling in the code below");
  2949   __ movl(r13, Address(rdx,
  2950                        instanceKlass::vtable_length_offset() * wordSize));
  2951   __ leaq(rdx, Address(rdx, r13, Address::times_8, base));
  2953   if (HeapWordsPerLong > 1) {
  2954     // Round up to align_object_offset boundary
  2955     __ round_to_q(rdx, BytesPerLong);
  2958   Label entry, search, interface_ok;
  2960   __ jmpb(entry);
  2961   __ bind(search);
  2962   __ addq(rdx, itableOffsetEntry::size() * wordSize);
  2964   __ bind(entry);
  2966   // Check that the entry is non-null.  A null entry means that the
  2967   // receiver class doesn't implement the interface, and wasn't the
  2968   // same as the receiver class checked when the interface was
  2969   // resolved.
  2970   __ pushq(rdx);
  2971   __ movq(rdx, Address(rdx, itableOffsetEntry::interface_offset_in_bytes()));
  2972   __ testq(rdx, rdx);
  2973   __ jcc(Assembler::notZero, interface_ok);
  2974   // throw exception
  2975   __ popq(rdx); // pop saved register first.
  2976   __ popq(rbx); // pop return address (pushed by prepare_invoke)
  2977   __ restore_bcp(); // r13 must be correct for exception handler (was
  2978                     // destroyed)
  2979   __ restore_locals(); // make sure locals pointer is correct as well
  2980                        // (was destroyed)
  2981   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  2982                    InterpreterRuntime::throw_IncompatibleClassChangeError));
  2983   // the call_VM checks for exception, so we should never return here.
  2984   __ should_not_reach_here();
  2985   __ bind(interface_ok);
  2987   __ popq(rdx);
  2989   __ cmpq(rax, Address(rdx, itableOffsetEntry::interface_offset_in_bytes()));
  2990   __ jcc(Assembler::notEqual, search);
  2992   __ movl(rdx, Address(rdx, itableOffsetEntry::offset_offset_in_bytes()));
  2994   __ addq(rdx, r14); // Add offset to klassOop
  2995   assert(itableMethodEntry::size() * wordSize == 8,
  2996          "adjust the scaling in the code below");
  2997   __ movq(rbx, Address(rdx, rbx, Address::times_8));
  2998   // rbx: methodOop to call
  2999   // rcx: receiver
  3000   // Check for abstract method error
  3001   // Note: This should be done more efficiently via a
  3002   // throw_abstract_method_error interpreter entry point and a
  3003   // conditional jump to it in case of a null method.
  3005     Label L;
  3006     __ testq(rbx, rbx);
  3007     __ jcc(Assembler::notZero, L);
  3008     // throw exception
  3009     // note: must restore interpreter registers to canonical
  3010     //       state for exception handling to work correctly!
  3011     __ popq(rbx);  // pop return address (pushed by prepare_invoke)
  3012     __ restore_bcp(); // r13 must be correct for exception handler
  3013                       // (was destroyed)
  3014     __ restore_locals(); // make sure locals pointer is correct as
  3015                          // well (was destroyed)
  3016     __ call_VM(noreg,
  3017                CAST_FROM_FN_PTR(address,
  3018                              InterpreterRuntime::throw_AbstractMethodError));
  3019     // the call_VM checks for exception, so we should never return here.
  3020     __ should_not_reach_here();
  3021     __ bind(L);
  3024   __ movq(rcx, Address(rbx, methodOopDesc::interpreter_entry_offset()));
  3026   // do the call
  3027   // rcx: receiver
  3028   // rbx: methodOop
  3029   __ jump_from_interpreted(rbx, rdx);
  3032 //-----------------------------------------------------------------------------
  3033 // Allocation
  3035 void TemplateTable::_new() {
  3036   transition(vtos, atos);
  3037   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
  3038   Label slow_case;
  3039   Label done;
  3040   Label initialize_header;
  3041   Label initialize_object; // including clearing the fields
  3042   Label allocate_shared;
  3043   ExternalAddress top((address)Universe::heap()->top_addr());
  3044   ExternalAddress end((address)Universe::heap()->end_addr());
  3046   __ get_cpool_and_tags(rsi, rax);
  3047   // get instanceKlass
  3048   __ movq(rsi, Address(rsi, rdx,
  3049                        Address::times_8, sizeof(constantPoolOopDesc)));
  3051   // make sure the class we're about to instantiate has been
  3052   // resolved. Note: slow_case does a pop of stack, which is why we
  3053   // loaded class/pushed above
  3054   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
  3055   __ cmpb(Address(rax, rdx, Address::times_1, tags_offset),
  3056           JVM_CONSTANT_Class);
  3057   __ jcc(Assembler::notEqual, slow_case);
  3059   // make sure klass is initialized & doesn't have finalizer
  3060   // make sure klass is fully initialized
  3061   __ cmpl(Address(rsi,
  3062                   instanceKlass::init_state_offset_in_bytes() +
  3063                   sizeof(oopDesc)),
  3064           instanceKlass::fully_initialized);
  3065   __ jcc(Assembler::notEqual, slow_case);
  3067   // get instance_size in instanceKlass (scaled to a count of bytes)
  3068   __ movl(rdx,
  3069           Address(rsi,
  3070                   Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc)));
  3071   // test to see if it has a finalizer or is malformed in some way
  3072   __ testl(rdx, Klass::_lh_instance_slow_path_bit);
  3073   __ jcc(Assembler::notZero, slow_case);
  3075   // Allocate the instance
  3076   // 1) Try to allocate in the TLAB
  3077   // 2) if fail and the object is large allocate in the shared Eden
  3078   // 3) if the above fails (or is not applicable), go to a slow case
  3079   // (creates a new TLAB, etc.)
  3081   const bool allow_shared_alloc =
  3082     Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
  3084   if (UseTLAB) {
  3085     __ movq(rax, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())));
  3086     __ leaq(rbx, Address(rax, rdx, Address::times_1));
  3087     __ cmpq(rbx, Address(r15_thread, in_bytes(JavaThread::tlab_end_offset())));
  3088     __ jcc(Assembler::above, allow_shared_alloc ? allocate_shared : slow_case);
  3089     __ movq(Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())), rbx);
  3090     if (ZeroTLAB) {
  3091       // the fields have been already cleared
  3092       __ jmp(initialize_header);
  3093     } else {
  3094       // initialize both the header and fields
  3095       __ jmp(initialize_object);
  3099   // Allocation in the shared Eden, if allowed.
  3100   //
  3101   // rdx: instance size in bytes
  3102   if (allow_shared_alloc) {
  3103     __ bind(allocate_shared);
  3105     const Register RtopAddr = rscratch1;
  3106     const Register RendAddr = rscratch2;
  3108     __ lea(RtopAddr, top);
  3109     __ lea(RendAddr, end);
  3110     __ movq(rax, Address(RtopAddr, 0));
  3112     // For retries rax gets set by cmpxchgq
  3113     Label retry;
  3114     __ bind(retry);
  3115     __ leaq(rbx, Address(rax, rdx, Address::times_1));
  3116     __ cmpq(rbx, Address(RendAddr, 0));
  3117     __ jcc(Assembler::above, slow_case);
  3119     // Compare rax with the top addr, and if still equal, store the new
  3120     // top addr in rbx at the address of the top addr pointer. Sets ZF if was
  3121     // equal, and clears it otherwise. Use lock prefix for atomicity on MPs.
  3122     //
  3123     // rax: object begin
  3124     // rbx: object end
  3125     // rdx: instance size in bytes
  3126     if (os::is_MP()) {
  3127       __ lock();
  3129     __ cmpxchgq(rbx, Address(RtopAddr, 0));
  3131     // if someone beat us on the allocation, try again, otherwise continue
  3132     __ jcc(Assembler::notEqual, retry);
  3135   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
  3136     // The object is initialized before the header.  If the object size is
  3137     // zero, go directly to the header initialization.
  3138     __ bind(initialize_object);
  3139     __ decrementl(rdx, sizeof(oopDesc));
  3140     __ jcc(Assembler::zero, initialize_header);
  3142     // Initialize object fields
  3143     __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code)
  3144     __ shrl(rdx, LogBytesPerLong);  // divide by oopSize to simplify the loop
  3146       Label loop;
  3147       __ bind(loop);
  3148       __ movq(Address(rax, rdx, Address::times_8,
  3149                       sizeof(oopDesc) - oopSize),
  3150               rcx);
  3151       __ decrementl(rdx);
  3152       __ jcc(Assembler::notZero, loop);
  3155     // initialize object header only.
  3156     __ bind(initialize_header);
  3157     if (UseBiasedLocking) {
  3158       __ movq(rscratch1, Address(rsi, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  3159       __ movq(Address(rax, oopDesc::mark_offset_in_bytes()), rscratch1);
  3160     } else {
  3161       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()),
  3162                (intptr_t) markOopDesc::prototype()); // header (address 0x1)
  3164     __ movq(Address(rax, oopDesc::klass_offset_in_bytes()), rsi);  // klass
  3165     __ jmp(done);
  3169     SkipIfEqual skip(_masm, &DTraceAllocProbes, false);
  3170     // Trigger dtrace event for fastpath
  3171     __ push(atos); // save the return value
  3172     __ call_VM_leaf(
  3173          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax);
  3174     __ pop(atos); // restore the return value
  3177   // slow case
  3178   __ bind(slow_case);
  3179   __ get_constant_pool(c_rarg1);
  3180   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
  3181   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2);
  3182   __ verify_oop(rax);
  3184   // continue
  3185   __ bind(done);
  3188 void TemplateTable::newarray() {
  3189   transition(itos, atos);
  3190   __ load_unsigned_byte(c_rarg1, at_bcp(1));
  3191   __ movl(c_rarg2, rax);
  3192   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
  3193           c_rarg1, c_rarg2);
  3196 void TemplateTable::anewarray() {
  3197   transition(itos, atos);
  3198   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
  3199   __ get_constant_pool(c_rarg1);
  3200   __ movl(c_rarg3, rax);
  3201   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray),
  3202           c_rarg1, c_rarg2, c_rarg3);
  3205 void TemplateTable::arraylength() {
  3206   transition(atos, itos);
  3207   __ null_check(rax, arrayOopDesc::length_offset_in_bytes());
  3208   __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes()));
  3211 void TemplateTable::checkcast() {
  3212   transition(atos, atos);
  3213   Label done, is_null, ok_is_subtype, quicked, resolved;
  3214   __ testq(rax, rax); // object is in rax
  3215   __ jcc(Assembler::zero, is_null);
  3217   // Get cpool & tags index
  3218   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
  3219   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
  3220   // See if bytecode has already been quicked
  3221   __ cmpb(Address(rdx, rbx,
  3222                   Address::times_1,
  3223                   typeArrayOopDesc::header_size(T_BYTE) * wordSize),
  3224           JVM_CONSTANT_Class);
  3225   __ jcc(Assembler::equal, quicked);
  3227   __ movq(r12, rcx); // save rcx XXX
  3228   __ push(atos); // save receiver for result, and for GC
  3229   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
  3230   __ pop_ptr(rdx); // restore receiver
  3231   __ movq(rcx, r12); // restore rcx XXX
  3232   __ jmpb(resolved);
  3234   // Get superklass in rax and subklass in rbx
  3235   __ bind(quicked);
  3236   __ movq(rdx, rax); // Save object in rdx; rax needed for subtype check
  3237   __ movq(rax, Address(rcx, rbx,
  3238                        Address::times_8, sizeof(constantPoolOopDesc)));
  3240   __ bind(resolved);
  3241   __ movq(rbx, Address(rdx, oopDesc::klass_offset_in_bytes()));
  3243   // Generate subtype check.  Blows rcx, rdi.  Object in rdx.
  3244   // Superklass in rax.  Subklass in rbx.
  3245   __ gen_subtype_check(rbx, ok_is_subtype);
  3247   // Come here on failure
  3248   __ push_ptr(rdx);
  3249   // object is at TOS
  3250   __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry));
  3252   // Come here on success
  3253   __ bind(ok_is_subtype);
  3254   __ movq(rax, rdx); // Restore object in rdx
  3256   // Collect counts on whether this check-cast sees NULLs a lot or not.
  3257   if (ProfileInterpreter) {
  3258     __ jmp(done);
  3259     __ bind(is_null);
  3260     __ profile_null_seen(rcx);
  3261   } else {
  3262     __ bind(is_null);   // same as 'done'
  3264   __ bind(done);
  3267 void TemplateTable::instanceof() {
  3268   transition(atos, itos);
  3269   Label done, is_null, ok_is_subtype, quicked, resolved;
  3270   __ testq(rax, rax);
  3271   __ jcc(Assembler::zero, is_null);
  3273   // Get cpool & tags index
  3274   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
  3275   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
  3276   // See if bytecode has already been quicked
  3277   __ cmpb(Address(rdx, rbx,
  3278                   Address::times_1,
  3279                   typeArrayOopDesc::header_size(T_BYTE) * wordSize),
  3280           JVM_CONSTANT_Class);
  3281   __ jcc(Assembler::equal, quicked);
  3283   __ movq(r12, rcx); // save rcx
  3284   __ push(atos); // save receiver for result, and for GC
  3285   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
  3286   __ pop_ptr(rdx); // restore receiver
  3287   __ movq(rdx, Address(rdx, oopDesc::klass_offset_in_bytes()));
  3288   __ movq(rcx, r12); // restore rcx
  3289   __ jmpb(resolved);
  3291   // Get superklass in rax and subklass in rdx
  3292   __ bind(quicked);
  3293   __ movq(rdx, Address(rax, oopDesc::klass_offset_in_bytes()));
  3294   __ movq(rax, Address(rcx, rbx,
  3295                        Address::times_8, sizeof(constantPoolOopDesc)));
  3297   __ bind(resolved);
  3299   // Generate subtype check.  Blows rcx, rdi
  3300   // Superklass in rax.  Subklass in rdx.
  3301   __ gen_subtype_check(rdx, ok_is_subtype);
  3303   // Come here on failure
  3304   __ xorl(rax, rax);
  3305   __ jmpb(done);
  3306   // Come here on success
  3307   __ bind(ok_is_subtype);
  3308   __ movl(rax, 1);
  3310   // Collect counts on whether this test sees NULLs a lot or not.
  3311   if (ProfileInterpreter) {
  3312     __ jmp(done);
  3313     __ bind(is_null);
  3314     __ profile_null_seen(rcx);
  3315   } else {
  3316     __ bind(is_null);   // same as 'done'
  3318   __ bind(done);
  3319   // rax = 0: obj == NULL or  obj is not an instanceof the specified klass
  3320   // rax = 1: obj != NULL and obj is     an instanceof the specified klass
  3323 //-----------------------------------------------------------------------------
  3324 // Breakpoints
  3325 void TemplateTable::_breakpoint() {
  3326   // Note: We get here even if we are single stepping..
  3327   // jbug inists on setting breakpoints at every bytecode
  3328   // even if we are in single step mode.
  3330   transition(vtos, vtos);
  3332   // get the unpatched byte code
  3333   __ get_method(c_rarg1);
  3334   __ call_VM(noreg,
  3335              CAST_FROM_FN_PTR(address,
  3336                               InterpreterRuntime::get_original_bytecode_at),
  3337              c_rarg1, r13);
  3338   __ movq(rbx, rax);
  3340   // post the breakpoint event
  3341   __ get_method(c_rarg1);
  3342   __ call_VM(noreg,
  3343              CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint),
  3344              c_rarg1, r13);
  3346   // complete the execution of original bytecode
  3347   __ dispatch_only_normal(vtos);
  3350 //-----------------------------------------------------------------------------
  3351 // Exceptions
  3353 void TemplateTable::athrow() {
  3354   transition(atos, vtos);
  3355   __ null_check(rax);
  3356   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
  3359 //-----------------------------------------------------------------------------
  3360 // Synchronization
  3361 //
  3362 // Note: monitorenter & exit are symmetric routines; which is reflected
  3363 //       in the assembly code structure as well
  3364 //
  3365 // Stack layout:
  3366 //
  3367 // [expressions  ] <--- rsp               = expression stack top
  3368 // ..
  3369 // [expressions  ]
  3370 // [monitor entry] <--- monitor block top = expression stack bot
  3371 // ..
  3372 // [monitor entry]
  3373 // [frame data   ] <--- monitor block bot
  3374 // ...
  3375 // [saved rbp    ] <--- rbp
  3376 void TemplateTable::monitorenter() {
  3377   transition(atos, vtos);
  3379   // check for NULL object
  3380   __ null_check(rax);
  3382   const Address monitor_block_top(
  3383         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  3384   const Address monitor_block_bot(
  3385         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
  3386   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
  3388   Label allocated;
  3390   // initialize entry pointer
  3391   __ xorl(c_rarg1, c_rarg1); // points to free slot or NULL
  3393   // find a free slot in the monitor block (result in c_rarg1)
  3395     Label entry, loop, exit;
  3396     __ movq(c_rarg3, monitor_block_top); // points to current entry,
  3397                                      // starting with top-most entry
  3398     __ leaq(c_rarg2, monitor_block_bot); // points to word before bottom
  3399                                      // of monitor block
  3400     __ jmpb(entry);
  3402     __ bind(loop);
  3403     // check if current entry is used
  3404     __ cmpq(Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes()), (int) NULL);
  3405     // if not used then remember entry in c_rarg1
  3406     __ cmovq(Assembler::equal, c_rarg1, c_rarg3);
  3407     // check if current entry is for same object
  3408     __ cmpq(rax, Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes()));
  3409     // if same object then stop searching
  3410     __ jccb(Assembler::equal, exit);
  3411     // otherwise advance to next entry
  3412     __ addq(c_rarg3, entry_size);
  3413     __ bind(entry);
  3414     // check if bottom reached
  3415     __ cmpq(c_rarg3, c_rarg2);
  3416     // if not at bottom then check this entry
  3417     __ jcc(Assembler::notEqual, loop);
  3418     __ bind(exit);
  3421   __ testq(c_rarg1, c_rarg1); // check if a slot has been found
  3422   __ jcc(Assembler::notZero, allocated); // if found, continue with that one
  3424   // allocate one if there's no free slot
  3426     Label entry, loop;
  3427     // 1. compute new pointers       // rsp: old expression stack top
  3428     __ movq(c_rarg1, monitor_block_bot); // c_rarg1: old expression stack bottom
  3429     __ subq(rsp, entry_size);        // move expression stack top
  3430     __ subq(c_rarg1, entry_size);        // move expression stack bottom
  3431     __ movq(c_rarg3, rsp);               // set start value for copy loop
  3432     __ movq(monitor_block_bot, c_rarg1); // set new monitor block bottom
  3433     __ jmp(entry);
  3434     // 2. move expression stack contents
  3435     __ bind(loop);
  3436     __ movq(c_rarg2, Address(c_rarg3, entry_size)); // load expression stack
  3437                                             // word from old location
  3438     __ movq(Address(c_rarg3, 0), c_rarg2);  // and store it at new location
  3439     __ addq(c_rarg3, wordSize);             // advance to next word
  3440     __ bind(entry);
  3441     __ cmpq(c_rarg3, c_rarg1);              // check if bottom reached
  3442     __ jcc(Assembler::notEqual, loop);      // if not at bottom then
  3443                                             // copy next word
  3446   // call run-time routine
  3447   // c_rarg1: points to monitor entry
  3448   __ bind(allocated);
  3450   // Increment bcp to point to the next bytecode, so exception
  3451   // handling for async. exceptions work correctly.
  3452   // The object has already been poped from the stack, so the
  3453   // expression stack looks correct.
  3454   __ incrementq(r13);
  3456   // store object
  3457   __ movq(Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()), rax);
  3458   __ lock_object(c_rarg1);
  3460   // check to make sure this monitor doesn't cause stack overflow after locking
  3461   __ save_bcp();  // in case of exception
  3462   __ generate_stack_overflow_check(0);
  3464   // The bcp has already been incremented. Just need to dispatch to
  3465   // next instruction.
  3466   __ dispatch_next(vtos);
  3470 void TemplateTable::monitorexit() {
  3471   transition(atos, vtos);
  3473   // check for NULL object
  3474   __ null_check(rax);
  3476   const Address monitor_block_top(
  3477         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  3478   const Address monitor_block_bot(
  3479         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
  3480   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
  3482   Label found;
  3484   // find matching slot
  3486     Label entry, loop;
  3487     __ movq(c_rarg1, monitor_block_top); // points to current entry,
  3488                                      // starting with top-most entry
  3489     __ leaq(c_rarg2, monitor_block_bot); // points to word before bottom
  3490                                      // of monitor block
  3491     __ jmpb(entry);
  3493     __ bind(loop);
  3494     // check if current entry is for same object
  3495     __ cmpq(rax, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
  3496     // if same object then stop searching
  3497     __ jcc(Assembler::equal, found);
  3498     // otherwise advance to next entry
  3499     __ addq(c_rarg1, entry_size);
  3500     __ bind(entry);
  3501     // check if bottom reached
  3502     __ cmpq(c_rarg1, c_rarg2);
  3503     // if not at bottom then check this entry
  3504     __ jcc(Assembler::notEqual, loop);
  3507   // error handling. Unlocking was not block-structured
  3508   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3509                    InterpreterRuntime::throw_illegal_monitor_state_exception));
  3510   __ should_not_reach_here();
  3512   // call run-time routine
  3513   // rsi: points to monitor entry
  3514   __ bind(found);
  3515   __ push_ptr(rax); // make sure object is on stack (contract with oopMaps)
  3516   __ unlock_object(c_rarg1);
  3517   __ pop_ptr(rax); // discard object
  3521 // Wide instructions
  3522 void TemplateTable::wide() {
  3523   transition(vtos, vtos);
  3524   __ load_unsigned_byte(rbx, at_bcp(1));
  3525   __ lea(rscratch1, ExternalAddress((address)Interpreter::_wentry_point));
  3526   __ jmp(Address(rscratch1, rbx, Address::times_8));
  3527   // Note: the r13 increment step is part of the individual wide
  3528   // bytecode implementations
  3532 // Multi arrays
  3533 void TemplateTable::multianewarray() {
  3534   transition(vtos, atos);
  3535   __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions
  3536   // last dim is on top of stack; we want address of first one:
  3537   // first_addr = last_addr + (ndims - 1) * wordSize
  3538   if (TaggedStackInterpreter) __ shll(rax, 1);  // index*2
  3539   __ leaq(c_rarg1, Address(rsp, rax, Address::times_8, -wordSize));
  3540   call_VM(rax,
  3541           CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray),
  3542           c_rarg1);
  3543   __ load_unsigned_byte(rbx, at_bcp(3));
  3544   if (TaggedStackInterpreter) __ shll(rbx, 1);  // index*2
  3545   __ leaq(rsp, Address(rsp, rbx, Address::times_8));

mercurial