src/cpu/sparc/vm/interp_masm_sparc.cpp

Sat, 01 Dec 2007 00:00:00 +0000

author
duke
date
Sat, 01 Dec 2007 00:00:00 +0000
changeset 435
a61af66fc99e
child 548
ba764ed4b6f2
permissions
-rw-r--r--

Initial load

     1 /*
     2  * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_interp_masm_sparc.cpp.incl"
    28 #ifndef CC_INTERP
    29 #ifndef FAST_DISPATCH
    30 #define FAST_DISPATCH 1
    31 #endif
    32 #undef FAST_DISPATCH
    34 // Implementation of InterpreterMacroAssembler
    36 // This file specializes the assember with interpreter-specific macros
    38 const Address InterpreterMacroAssembler::l_tmp( FP, 0,  (frame::interpreter_frame_l_scratch_fp_offset    * wordSize ) + STACK_BIAS);
    39 const Address InterpreterMacroAssembler::d_tmp( FP, 0,  (frame::interpreter_frame_d_scratch_fp_offset    * wordSize) + STACK_BIAS);
    41 #else // CC_INTERP
    42 #ifndef STATE
    43 #define STATE(field_name) Lstate, in_bytes(byte_offset_of(BytecodeInterpreter, field_name))
    44 #endif // STATE
    46 #endif // CC_INTERP
    48 void InterpreterMacroAssembler::compute_extra_locals_size_in_bytes(Register args_size, Register locals_size, Register delta) {
    49   // Note: this algorithm is also used by C1's OSR entry sequence.
    50   // Any changes should also be applied to CodeEmitter::emit_osr_entry().
    51   assert_different_registers(args_size, locals_size);
    52   // max_locals*2 for TAGS.  Assumes that args_size has already been adjusted.
    53   if (TaggedStackInterpreter) sll(locals_size, 1, locals_size);
    54   subcc(locals_size, args_size, delta);// extra space for non-arguments locals in words
    55   // Use br/mov combination because it works on both V8 and V9 and is
    56   // faster.
    57   Label skip_move;
    58   br(Assembler::negative, true, Assembler::pt, skip_move);
    59   delayed()->mov(G0, delta);
    60   bind(skip_move);
    61   round_to(delta, WordsPerLong);       // make multiple of 2 (SP must be 2-word aligned)
    62   sll(delta, LogBytesPerWord, delta);  // extra space for locals in bytes
    63 }
    65 #ifndef CC_INTERP
    67 // Dispatch code executed in the prolog of a bytecode which does not do it's
    68 // own dispatch. The dispatch address is computed and placed in IdispatchAddress
    69 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) {
    70   assert_not_delayed();
    71 #ifdef FAST_DISPATCH
    72   // FAST_DISPATCH and ProfileInterpreter are mutually exclusive since
    73   // they both use I2.
    74   assert(!ProfileInterpreter, "FAST_DISPATCH and +ProfileInterpreter are mutually exclusive");
    75   ldub(Lbcp, bcp_incr, Lbyte_code);                     // load next bytecode
    76   add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
    77                                                         // add offset to correct dispatch table
    78   sll(Lbyte_code, LogBytesPerWord, Lbyte_code);         // multiply by wordSize
    79   ld_ptr(IdispatchTables, Lbyte_code, IdispatchAddress);// get entry addr
    80 #else
    81   ldub( Lbcp, bcp_incr, Lbyte_code);               // load next bytecode
    82   // dispatch table to use
    83   Address tbl(G3_scratch, (address)Interpreter::dispatch_table(state));
    85   sethi(tbl);
    86   sll(Lbyte_code, LogBytesPerWord, Lbyte_code);    // multiply by wordSize
    87   add(tbl, tbl.base(), 0);
    88   ld_ptr( G3_scratch, Lbyte_code, IdispatchAddress);     // get entry addr
    89 #endif
    90 }
    93 // Dispatch code executed in the epilog of a bytecode which does not do it's
    94 // own dispatch. The dispatch address in IdispatchAddress is used for the
    95 // dispatch.
    96 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int bcp_incr) {
    97   assert_not_delayed();
    98   verify_FPU(1, state);
    99   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
   100   jmp( IdispatchAddress, 0 );
   101   if (bcp_incr != 0)  delayed()->inc(Lbcp, bcp_incr);
   102   else                delayed()->nop();
   103 }
   106 void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr) {
   107   // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
   108   assert_not_delayed();
   109   ldub( Lbcp, bcp_incr, Lbyte_code);               // load next bytecode
   110   dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr);
   111 }
   114 void InterpreterMacroAssembler::dispatch_next_noverify_oop(TosState state, int bcp_incr) {
   115   // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
   116   assert_not_delayed();
   117   ldub( Lbcp, bcp_incr, Lbyte_code);               // load next bytecode
   118   dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr, false);
   119 }
   122 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
   123   // load current bytecode
   124   assert_not_delayed();
   125   ldub( Lbcp, 0, Lbyte_code);               // load next bytecode
   126   dispatch_base(state, table);
   127 }
   130 void InterpreterMacroAssembler::call_VM_leaf_base(
   131   Register java_thread,
   132   address  entry_point,
   133   int      number_of_arguments
   134 ) {
   135   if (!java_thread->is_valid())
   136     java_thread = L7_thread_cache;
   137   // super call
   138   MacroAssembler::call_VM_leaf_base(java_thread, entry_point, number_of_arguments);
   139 }
   142 void InterpreterMacroAssembler::call_VM_base(
   143   Register        oop_result,
   144   Register        java_thread,
   145   Register        last_java_sp,
   146   address         entry_point,
   147   int             number_of_arguments,
   148   bool            check_exception
   149 ) {
   150   if (!java_thread->is_valid())
   151     java_thread = L7_thread_cache;
   152   // See class ThreadInVMfromInterpreter, which assumes that the interpreter
   153   // takes responsibility for setting its own thread-state on call-out.
   154   // However, ThreadInVMfromInterpreter resets the state to "in_Java".
   156   //save_bcp();                                  // save bcp
   157   MacroAssembler::call_VM_base(oop_result, java_thread, last_java_sp, entry_point, number_of_arguments, check_exception);
   158   //restore_bcp();                               // restore bcp
   159   //restore_locals();                            // restore locals pointer
   160 }
   163 void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) {
   164   if (JvmtiExport::can_pop_frame()) {
   165     Label L;
   167     // Check the "pending popframe condition" flag in the current thread
   168     Address popframe_condition_addr(G2_thread, 0, in_bytes(JavaThread::popframe_condition_offset()));
   169     ld(popframe_condition_addr, scratch_reg);
   171     // Initiate popframe handling only if it is not already being processed.  If the flag
   172     // has the popframe_processing bit set, it means that this code is called *during* popframe
   173     // handling - we don't want to reenter.
   174     btst(JavaThread::popframe_pending_bit, scratch_reg);
   175     br(zero, false, pt, L);
   176     delayed()->nop();
   177     btst(JavaThread::popframe_processing_bit, scratch_reg);
   178     br(notZero, false, pt, L);
   179     delayed()->nop();
   181     // Call Interpreter::remove_activation_preserving_args_entry() to get the
   182     // address of the same-named entrypoint in the generated interpreter code.
   183     call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
   185     // Jump to Interpreter::_remove_activation_preserving_args_entry
   186     jmpl(O0, G0, G0);
   187     delayed()->nop();
   188     bind(L);
   189   }
   190 }
   193 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
   194   Register thr_state = G4_scratch;
   195   ld_ptr(Address(G2_thread, 0, in_bytes(JavaThread::jvmti_thread_state_offset())),
   196          thr_state);
   197   const Address tos_addr(thr_state, 0, in_bytes(JvmtiThreadState::earlyret_tos_offset()));
   198   const Address oop_addr(thr_state, 0, in_bytes(JvmtiThreadState::earlyret_oop_offset()));
   199   const Address val_addr(thr_state, 0, in_bytes(JvmtiThreadState::earlyret_value_offset()));
   200   switch (state) {
   201   case ltos: ld_long(val_addr, Otos_l);                   break;
   202   case atos: ld_ptr(oop_addr, Otos_l);
   203              st_ptr(G0, oop_addr);                        break;
   204   case btos:                                           // fall through
   205   case ctos:                                           // fall through
   206   case stos:                                           // fall through
   207   case itos: ld(val_addr, Otos_l1);                       break;
   208   case ftos: ldf(FloatRegisterImpl::S, val_addr, Ftos_f); break;
   209   case dtos: ldf(FloatRegisterImpl::D, val_addr, Ftos_d); break;
   210   case vtos: /* nothing to do */                          break;
   211   default  : ShouldNotReachHere();
   212   }
   213   // Clean up tos value in the jvmti thread state
   214   or3(G0, ilgl, G3_scratch);
   215   stw(G3_scratch, tos_addr);
   216   st_long(G0, val_addr);
   217   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
   218 }
   221 void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
   222   if (JvmtiExport::can_force_early_return()) {
   223     Label L;
   224     Register thr_state = G3_scratch;
   225     ld_ptr(Address(G2_thread, 0, in_bytes(JavaThread::jvmti_thread_state_offset())),
   226            thr_state);
   227     tst(thr_state);
   228     br(zero, false, pt, L); // if (thread->jvmti_thread_state() == NULL) exit;
   229     delayed()->nop();
   231     // Initiate earlyret handling only if it is not already being processed.
   232     // If the flag has the earlyret_processing bit set, it means that this code
   233     // is called *during* earlyret handling - we don't want to reenter.
   234     ld(Address(thr_state, 0, in_bytes(JvmtiThreadState::earlyret_state_offset())),
   235        G4_scratch);
   236     cmp(G4_scratch, JvmtiThreadState::earlyret_pending);
   237     br(Assembler::notEqual, false, pt, L);
   238     delayed()->nop();
   240     // Call Interpreter::remove_activation_early_entry() to get the address of the
   241     // same-named entrypoint in the generated interpreter code
   242     Address tos_addr(thr_state, 0, in_bytes(JvmtiThreadState::earlyret_tos_offset()));
   243     ld(tos_addr, Otos_l1);
   244     call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), Otos_l1);
   246     // Jump to Interpreter::_remove_activation_early_entry
   247     jmpl(O0, G0, G0);
   248     delayed()->nop();
   249     bind(L);
   250   }
   251 }
   254 void InterpreterMacroAssembler::super_call_VM_leaf(Register thread_cache, address entry_point, Register arg_1) {
   255   mov(arg_1, O0);
   256   MacroAssembler::call_VM_leaf_base(thread_cache, entry_point, 1);
   257 }
   258 #endif /* CC_INTERP */
   261 #ifndef CC_INTERP
   263 void InterpreterMacroAssembler::dispatch_base(TosState state, address* table) {
   264   assert_not_delayed();
   265   dispatch_Lbyte_code(state, table);
   266 }
   269 void InterpreterMacroAssembler::dispatch_normal(TosState state) {
   270   dispatch_base(state, Interpreter::normal_table(state));
   271 }
   274 void InterpreterMacroAssembler::dispatch_only(TosState state) {
   275   dispatch_base(state, Interpreter::dispatch_table(state));
   276 }
   279 // common code to dispatch and dispatch_only
   280 // dispatch value in Lbyte_code and increment Lbcp
   282 void InterpreterMacroAssembler::dispatch_Lbyte_code(TosState state, address* table, int bcp_incr, bool verify) {
   283   verify_FPU(1, state);
   284   // %%%%% maybe implement +VerifyActivationFrameSize here
   285   //verify_thread(); //too slow; we will just verify on method entry & exit
   286   if (verify) interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
   287 #ifdef FAST_DISPATCH
   288   if (table == Interpreter::dispatch_table(state)) {
   289     // use IdispatchTables
   290     add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
   291                                                         // add offset to correct dispatch table
   292     sll(Lbyte_code, LogBytesPerWord, Lbyte_code);       // multiply by wordSize
   293     ld_ptr(IdispatchTables, Lbyte_code, G3_scratch);    // get entry addr
   294   } else {
   295 #endif
   296     // dispatch table to use
   297     Address tbl(G3_scratch, (address)table);
   299     sll(Lbyte_code, LogBytesPerWord, Lbyte_code);       // multiply by wordSize
   300     load_address(tbl);                                  // compute addr of table
   301     ld_ptr(G3_scratch, Lbyte_code, G3_scratch);         // get entry addr
   302 #ifdef FAST_DISPATCH
   303   }
   304 #endif
   305   jmp( G3_scratch, 0 );
   306   if (bcp_incr != 0)  delayed()->inc(Lbcp, bcp_incr);
   307   else                delayed()->nop();
   308 }
   311 // Helpers for expression stack
   313 // Longs and doubles are Category 2 computational types in the
   314 // JVM specification (section 3.11.1) and take 2 expression stack or
   315 // local slots.
   316 // Aligning them on 32 bit with tagged stacks is hard because the code generated
   317 // for the dup* bytecodes depends on what types are already on the stack.
   318 // If the types are split into the two stack/local slots, that is much easier
   319 // (and we can use 0 for non-reference tags).
   321 // Known good alignment in _LP64 but unknown otherwise
   322 void InterpreterMacroAssembler::load_unaligned_double(Register r1, int offset, FloatRegister d) {
   323   assert_not_delayed();
   325 #ifdef _LP64
   326   ldf(FloatRegisterImpl::D, r1, offset, d);
   327 #else
   328   ldf(FloatRegisterImpl::S, r1, offset, d);
   329   ldf(FloatRegisterImpl::S, r1, offset + Interpreter::stackElementSize(), d->successor());
   330 #endif
   331 }
   333 // Known good alignment in _LP64 but unknown otherwise
   334 void InterpreterMacroAssembler::store_unaligned_double(FloatRegister d, Register r1, int offset) {
   335   assert_not_delayed();
   337 #ifdef _LP64
   338   stf(FloatRegisterImpl::D, d, r1, offset);
   339   // store something more useful here
   340   debug_only(stx(G0, r1, offset+Interpreter::stackElementSize());)
   341 #else
   342   stf(FloatRegisterImpl::S, d, r1, offset);
   343   stf(FloatRegisterImpl::S, d->successor(), r1, offset + Interpreter::stackElementSize());
   344 #endif
   345 }
   348 // Known good alignment in _LP64 but unknown otherwise
   349 void InterpreterMacroAssembler::load_unaligned_long(Register r1, int offset, Register rd) {
   350   assert_not_delayed();
   351 #ifdef _LP64
   352   ldx(r1, offset, rd);
   353 #else
   354   ld(r1, offset, rd);
   355   ld(r1, offset + Interpreter::stackElementSize(), rd->successor());
   356 #endif
   357 }
   359 // Known good alignment in _LP64 but unknown otherwise
   360 void InterpreterMacroAssembler::store_unaligned_long(Register l, Register r1, int offset) {
   361   assert_not_delayed();
   363 #ifdef _LP64
   364   stx(l, r1, offset);
   365   // store something more useful here
   366   debug_only(stx(G0, r1, offset+Interpreter::stackElementSize());)
   367 #else
   368   st(l, r1, offset);
   369   st(l->successor(), r1, offset + Interpreter::stackElementSize());
   370 #endif
   371 }
   373 #ifdef ASSERT
   374 void InterpreterMacroAssembler::verify_stack_tag(frame::Tag t,
   375                                                  Register r,
   376                                                  Register scratch) {
   377   if (TaggedStackInterpreter) {
   378     Label ok, long_ok;
   379     ld_ptr(Lesp, Interpreter::expr_tag_offset_in_bytes(0), r);
   380     if (t == frame::TagCategory2) {
   381       cmp(r, G0);
   382       brx(Assembler::equal, false, Assembler::pt, long_ok);
   383       delayed()->ld_ptr(Lesp, Interpreter::expr_tag_offset_in_bytes(1), r);
   384       stop("stack long/double tag value bad");
   385       bind(long_ok);
   386       cmp(r, G0);
   387     } else if (t == frame::TagValue) {
   388       cmp(r, G0);
   389     } else {
   390       assert_different_registers(r, scratch);
   391       mov(t, scratch);
   392       cmp(r, scratch);
   393     }
   394     brx(Assembler::equal, false, Assembler::pt, ok);
   395     delayed()->nop();
   396     // Also compare if the stack value is zero, then the tag might
   397     // not have been set coming from deopt.
   398     ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), r);
   399     cmp(r, G0);
   400     brx(Assembler::equal, false, Assembler::pt, ok);
   401     delayed()->nop();
   402     stop("Stack tag value is bad");
   403     bind(ok);
   404   }
   405 }
   406 #endif // ASSERT
   408 void InterpreterMacroAssembler::pop_i(Register r) {
   409   assert_not_delayed();
   410   // Uses destination register r for scratch
   411   debug_only(verify_stack_tag(frame::TagValue, r));
   412   ld(Lesp, Interpreter::expr_offset_in_bytes(0), r);
   413   inc(Lesp, Interpreter::stackElementSize());
   414   debug_only(verify_esp(Lesp));
   415 }
   417 void InterpreterMacroAssembler::pop_ptr(Register r, Register scratch) {
   418   assert_not_delayed();
   419   // Uses destination register r for scratch
   420   debug_only(verify_stack_tag(frame::TagReference, r, scratch));
   421   ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), r);
   422   inc(Lesp, Interpreter::stackElementSize());
   423   debug_only(verify_esp(Lesp));
   424 }
   426 void InterpreterMacroAssembler::pop_l(Register r) {
   427   assert_not_delayed();
   428   // Uses destination register r for scratch
   429   debug_only(verify_stack_tag(frame::TagCategory2, r));
   430   load_unaligned_long(Lesp, Interpreter::expr_offset_in_bytes(0), r);
   431   inc(Lesp, 2*Interpreter::stackElementSize());
   432   debug_only(verify_esp(Lesp));
   433 }
   436 void InterpreterMacroAssembler::pop_f(FloatRegister f, Register scratch) {
   437   assert_not_delayed();
   438   debug_only(verify_stack_tag(frame::TagValue, scratch));
   439   ldf(FloatRegisterImpl::S, Lesp, Interpreter::expr_offset_in_bytes(0), f);
   440   inc(Lesp, Interpreter::stackElementSize());
   441   debug_only(verify_esp(Lesp));
   442 }
   445 void InterpreterMacroAssembler::pop_d(FloatRegister f, Register scratch) {
   446   assert_not_delayed();
   447   debug_only(verify_stack_tag(frame::TagCategory2, scratch));
   448   load_unaligned_double(Lesp, Interpreter::expr_offset_in_bytes(0), f);
   449   inc(Lesp, 2*Interpreter::stackElementSize());
   450   debug_only(verify_esp(Lesp));
   451 }
   454 // (Note use register first, then decrement so dec can be done during store stall)
   455 void InterpreterMacroAssembler::tag_stack(Register r) {
   456   if (TaggedStackInterpreter) {
   457     st_ptr(r, Lesp, Interpreter::tag_offset_in_bytes());
   458   }
   459 }
   461 void InterpreterMacroAssembler::tag_stack(frame::Tag t, Register r) {
   462   if (TaggedStackInterpreter) {
   463     assert (frame::TagValue == 0, "TagValue must be zero");
   464     if (t == frame::TagValue) {
   465       st_ptr(G0, Lesp, Interpreter::tag_offset_in_bytes());
   466     } else if (t == frame::TagCategory2) {
   467       st_ptr(G0, Lesp, Interpreter::tag_offset_in_bytes());
   468       // Tag next slot down too
   469       st_ptr(G0, Lesp, -Interpreter::stackElementSize() + Interpreter::tag_offset_in_bytes());
   470     } else {
   471       assert_different_registers(r, O3);
   472       mov(t, O3);
   473       st_ptr(O3, Lesp, Interpreter::tag_offset_in_bytes());
   474     }
   475   }
   476 }
   478 void InterpreterMacroAssembler::push_i(Register r) {
   479   assert_not_delayed();
   480   debug_only(verify_esp(Lesp));
   481   tag_stack(frame::TagValue, r);
   482   st(  r,    Lesp, Interpreter::value_offset_in_bytes());
   483   dec( Lesp, Interpreter::stackElementSize());
   484 }
   486 void InterpreterMacroAssembler::push_ptr(Register r) {
   487   assert_not_delayed();
   488   tag_stack(frame::TagReference, r);
   489   st_ptr(  r,    Lesp, Interpreter::value_offset_in_bytes());
   490   dec( Lesp, Interpreter::stackElementSize());
   491 }
   493 void InterpreterMacroAssembler::push_ptr(Register r, Register tag) {
   494   assert_not_delayed();
   495   tag_stack(tag);
   496   st_ptr(r, Lesp, Interpreter::value_offset_in_bytes());
   497   dec( Lesp, Interpreter::stackElementSize());
   498 }
   500 // remember: our convention for longs in SPARC is:
   501 // O0 (Otos_l1) has high-order part in first word,
   502 // O1 (Otos_l2) has low-order part in second word
   504 void InterpreterMacroAssembler::push_l(Register r) {
   505   assert_not_delayed();
   506   debug_only(verify_esp(Lesp));
   507   tag_stack(frame::TagCategory2, r);
   508   // Longs are in stored in memory-correct order, even if unaligned.
   509   // and may be separated by stack tags.
   510   int offset = -Interpreter::stackElementSize() + Interpreter::value_offset_in_bytes();
   511   store_unaligned_long(r, Lesp, offset);
   512   dec(Lesp, 2 * Interpreter::stackElementSize());
   513 }
   516 void InterpreterMacroAssembler::push_f(FloatRegister f) {
   517   assert_not_delayed();
   518   debug_only(verify_esp(Lesp));
   519   tag_stack(frame::TagValue, Otos_i);
   520   stf(FloatRegisterImpl::S, f, Lesp, Interpreter::value_offset_in_bytes());
   521   dec(Lesp, Interpreter::stackElementSize());
   522 }
   525 void InterpreterMacroAssembler::push_d(FloatRegister d)   {
   526   assert_not_delayed();
   527   debug_only(verify_esp(Lesp));
   528   tag_stack(frame::TagCategory2, Otos_i);
   529   // Longs are in stored in memory-correct order, even if unaligned.
   530   // and may be separated by stack tags.
   531   int offset = -Interpreter::stackElementSize() + Interpreter::value_offset_in_bytes();
   532   store_unaligned_double(d, Lesp, offset);
   533   dec(Lesp, 2 * Interpreter::stackElementSize());
   534 }
   537 void InterpreterMacroAssembler::push(TosState state) {
   538   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
   539   switch (state) {
   540     case atos: push_ptr();            break;
   541     case btos: push_i();              break;
   542     case ctos:
   543     case stos: push_i();              break;
   544     case itos: push_i();              break;
   545     case ltos: push_l();              break;
   546     case ftos: push_f();              break;
   547     case dtos: push_d();              break;
   548     case vtos: /* nothing to do */    break;
   549     default  : ShouldNotReachHere();
   550   }
   551 }
   554 void InterpreterMacroAssembler::pop(TosState state) {
   555   switch (state) {
   556     case atos: pop_ptr();            break;
   557     case btos: pop_i();              break;
   558     case ctos:
   559     case stos: pop_i();              break;
   560     case itos: pop_i();              break;
   561     case ltos: pop_l();              break;
   562     case ftos: pop_f();              break;
   563     case dtos: pop_d();              break;
   564     case vtos: /* nothing to do */   break;
   565     default  : ShouldNotReachHere();
   566   }
   567   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
   568 }
   571 // Tagged stack helpers for swap and dup
   572 void InterpreterMacroAssembler::load_ptr_and_tag(int n, Register val,
   573                                                  Register tag) {
   574   ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(n), val);
   575   if (TaggedStackInterpreter) {
   576     ld_ptr(Lesp, Interpreter::expr_tag_offset_in_bytes(n), tag);
   577   }
   578 }
   579 void InterpreterMacroAssembler::store_ptr_and_tag(int n, Register val,
   580                                                   Register tag) {
   581   st_ptr(val, Lesp, Interpreter::expr_offset_in_bytes(n));
   582   if (TaggedStackInterpreter) {
   583     st_ptr(tag, Lesp, Interpreter::expr_tag_offset_in_bytes(n));
   584   }
   585 }
   588 void InterpreterMacroAssembler::load_receiver(Register param_count,
   589                                               Register recv) {
   591   sll(param_count, Interpreter::logStackElementSize(), param_count);
   592   if (TaggedStackInterpreter) {
   593     add(param_count, Interpreter::value_offset_in_bytes(), param_count);  // get obj address
   594   }
   595   ld_ptr(Lesp, param_count, recv);                      // gets receiver Oop
   596 }
   598 void InterpreterMacroAssembler::empty_expression_stack() {
   599   // Reset Lesp.
   600   sub( Lmonitors, wordSize, Lesp );
   602   // Reset SP by subtracting more space from Lesp.
   603   Label done;
   605   const Address max_stack   (Lmethod, 0, in_bytes(methodOopDesc::max_stack_offset()));
   606   const Address access_flags(Lmethod, 0, in_bytes(methodOopDesc::access_flags_offset()));
   608   verify_oop(Lmethod);
   611   assert( G4_scratch    != Gframe_size,
   612           "Only you can prevent register aliasing!");
   614   // A native does not need to do this, since its callee does not change SP.
   615   ld(access_flags, Gframe_size);
   616   btst(JVM_ACC_NATIVE, Gframe_size);
   617   br(Assembler::notZero, false, Assembler::pt, done);
   618   delayed()->nop();
   620   //
   621   // Compute max expression stack+register save area
   622   //
   623   lduh( max_stack, Gframe_size );
   624   if (TaggedStackInterpreter) sll ( Gframe_size, 1, Gframe_size);  // max_stack * 2 for TAGS
   625   add( Gframe_size, frame::memory_parameter_word_sp_offset, Gframe_size );
   627   //
   628   // now set up a stack frame with the size computed above
   629   //
   630   //round_to( Gframe_size, WordsPerLong ); // -- moved down to the "and" below
   631   sll( Gframe_size, LogBytesPerWord, Gframe_size );
   632   sub( Lesp, Gframe_size, Gframe_size );
   633   and3( Gframe_size, -(2 * wordSize), Gframe_size );          // align SP (downwards) to an 8/16-byte boundary
   634   debug_only(verify_sp(Gframe_size, G4_scratch));
   635 #ifdef _LP64
   636   sub(Gframe_size, STACK_BIAS, Gframe_size );
   637 #endif
   638   mov(Gframe_size, SP);
   640   bind(done);
   641 }
   644 #ifdef ASSERT
   645 void InterpreterMacroAssembler::verify_sp(Register Rsp, Register Rtemp) {
   646   Label Bad, OK;
   648   // Saved SP must be aligned.
   649 #ifdef _LP64
   650   btst(2*BytesPerWord-1, Rsp);
   651 #else
   652   btst(LongAlignmentMask, Rsp);
   653 #endif
   654   br(Assembler::notZero, false, Assembler::pn, Bad);
   655   delayed()->nop();
   657   // Saved SP, plus register window size, must not be above FP.
   658   add(Rsp, frame::register_save_words * wordSize, Rtemp);
   659 #ifdef _LP64
   660   sub(Rtemp, STACK_BIAS, Rtemp);  // Bias Rtemp before cmp to FP
   661 #endif
   662   cmp(Rtemp, FP);
   663   brx(Assembler::greaterUnsigned, false, Assembler::pn, Bad);
   664   delayed()->nop();
   666   // Saved SP must not be ridiculously below current SP.
   667   size_t maxstack = MAX2(JavaThread::stack_size_at_create(), (size_t) 4*K*K);
   668   set(maxstack, Rtemp);
   669   sub(SP, Rtemp, Rtemp);
   670 #ifdef _LP64
   671   add(Rtemp, STACK_BIAS, Rtemp);  // Unbias Rtemp before cmp to Rsp
   672 #endif
   673   cmp(Rsp, Rtemp);
   674   brx(Assembler::lessUnsigned, false, Assembler::pn, Bad);
   675   delayed()->nop();
   677   br(Assembler::always, false, Assembler::pn, OK);
   678   delayed()->nop();
   680   bind(Bad);
   681   stop("on return to interpreted call, restored SP is corrupted");
   683   bind(OK);
   684 }
   687 void InterpreterMacroAssembler::verify_esp(Register Resp) {
   688   // about to read or write Resp[0]
   689   // make sure it is not in the monitors or the register save area
   690   Label OK1, OK2;
   692   cmp(Resp, Lmonitors);
   693   brx(Assembler::lessUnsigned, true, Assembler::pt, OK1);
   694   delayed()->sub(Resp, frame::memory_parameter_word_sp_offset * wordSize, Resp);
   695   stop("too many pops:  Lesp points into monitor area");
   696   bind(OK1);
   697 #ifdef _LP64
   698   sub(Resp, STACK_BIAS, Resp);
   699 #endif
   700   cmp(Resp, SP);
   701   brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, OK2);
   702   delayed()->add(Resp, STACK_BIAS + frame::memory_parameter_word_sp_offset * wordSize, Resp);
   703   stop("too many pushes:  Lesp points into register window");
   704   bind(OK2);
   705 }
   706 #endif // ASSERT
   708 // Load compiled (i2c) or interpreter entry when calling from interpreted and
   709 // do the call. Centralized so that all interpreter calls will do the same actions.
   710 // If jvmti single stepping is on for a thread we must not call compiled code.
   711 void InterpreterMacroAssembler::call_from_interpreter(Register target, Register scratch, Register Rret) {
   713   // Assume we want to go compiled if available
   715   ld_ptr(G5_method, in_bytes(methodOopDesc::from_interpreted_offset()), target);
   717   if (JvmtiExport::can_post_interpreter_events()) {
   718     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
   719     // compiled code in threads for which the event is enabled.  Check here for
   720     // interp_only_mode if these events CAN be enabled.
   721     verify_thread();
   722     Label skip_compiled_code;
   724     const Address interp_only       (G2_thread, 0, in_bytes(JavaThread::interp_only_mode_offset()));
   726     ld(interp_only, scratch);
   727     tst(scratch);
   728     br(Assembler::notZero, true, Assembler::pn, skip_compiled_code);
   729     delayed()->ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), target);
   730     bind(skip_compiled_code);
   731   }
   733   // the i2c_adapters need methodOop in G5_method (right? %%%)
   734   // do the call
   735 #ifdef ASSERT
   736   {
   737     Label ok;
   738     br_notnull(target, false, Assembler::pt, ok);
   739     delayed()->nop();
   740     stop("null entry point");
   741     bind(ok);
   742   }
   743 #endif // ASSERT
   745   // Adjust Rret first so Llast_SP can be same as Rret
   746   add(Rret, -frame::pc_return_offset, O7);
   747   add(Lesp, BytesPerWord, Gargs); // setup parameter pointer
   748   // Record SP so we can remove any stack space allocated by adapter transition
   749   jmp(target, 0);
   750   delayed()->mov(SP, Llast_SP);
   751 }
   753 void InterpreterMacroAssembler::if_cmp(Condition cc, bool ptr_compare) {
   754   assert_not_delayed();
   756   Label not_taken;
   757   if (ptr_compare) brx(cc, false, Assembler::pn, not_taken);
   758   else             br (cc, false, Assembler::pn, not_taken);
   759   delayed()->nop();
   761   TemplateTable::branch(false,false);
   763   bind(not_taken);
   765   profile_not_taken_branch(G3_scratch);
   766 }
   769 void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(
   770                                   int         bcp_offset,
   771                                   Register    Rtmp,
   772                                   Register    Rdst,
   773                                   signedOrNot is_signed,
   774                                   setCCOrNot  should_set_CC ) {
   775   assert(Rtmp != Rdst, "need separate temp register");
   776   assert_not_delayed();
   777   switch (is_signed) {
   778    default: ShouldNotReachHere();
   780    case   Signed:  ldsb( Lbcp, bcp_offset, Rdst  );  break; // high byte
   781    case Unsigned:  ldub( Lbcp, bcp_offset, Rdst  );  break; // high byte
   782   }
   783   ldub( Lbcp, bcp_offset + 1, Rtmp ); // low byte
   784   sll( Rdst, BitsPerByte, Rdst);
   785   switch (should_set_CC ) {
   786    default: ShouldNotReachHere();
   788    case      set_CC:  orcc( Rdst, Rtmp, Rdst ); break;
   789    case dont_set_CC:  or3(  Rdst, Rtmp, Rdst ); break;
   790   }
   791 }
   794 void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(
   795                                   int        bcp_offset,
   796                                   Register   Rtmp,
   797                                   Register   Rdst,
   798                                   setCCOrNot should_set_CC ) {
   799   assert(Rtmp != Rdst, "need separate temp register");
   800   assert_not_delayed();
   801   add( Lbcp, bcp_offset, Rtmp);
   802   andcc( Rtmp, 3, G0);
   803   Label aligned;
   804   switch (should_set_CC ) {
   805    default: ShouldNotReachHere();
   807    case      set_CC: break;
   808    case dont_set_CC: break;
   809   }
   811   br(Assembler::zero, true, Assembler::pn, aligned);
   812 #ifdef _LP64
   813   delayed()->ldsw(Rtmp, 0, Rdst);
   814 #else
   815   delayed()->ld(Rtmp, 0, Rdst);
   816 #endif
   818   ldub(Lbcp, bcp_offset + 3, Rdst);
   819   ldub(Lbcp, bcp_offset + 2, Rtmp);  sll(Rtmp,  8, Rtmp);  or3(Rtmp, Rdst, Rdst);
   820   ldub(Lbcp, bcp_offset + 1, Rtmp);  sll(Rtmp, 16, Rtmp);  or3(Rtmp, Rdst, Rdst);
   821 #ifdef _LP64
   822   ldsb(Lbcp, bcp_offset + 0, Rtmp);  sll(Rtmp, 24, Rtmp);
   823 #else
   824   // Unsigned load is faster than signed on some implementations
   825   ldub(Lbcp, bcp_offset + 0, Rtmp);  sll(Rtmp, 24, Rtmp);
   826 #endif
   827   or3(Rtmp, Rdst, Rdst );
   829   bind(aligned);
   830   if (should_set_CC == set_CC) tst(Rdst);
   831 }
   834 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register tmp, int bcp_offset) {
   835   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
   836   assert_different_registers(cache, tmp);
   837   assert_not_delayed();
   838   get_2_byte_integer_at_bcp(bcp_offset, cache, tmp, Unsigned);
   839               // convert from field index to ConstantPoolCacheEntry index
   840               // and from word index to byte offset
   841   sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
   842   add(LcpoolCache, tmp, cache);
   843 }
   846 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register tmp, int bcp_offset) {
   847   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
   848   assert_different_registers(cache, tmp);
   849   assert_not_delayed();
   850   get_2_byte_integer_at_bcp(bcp_offset, cache, tmp, Unsigned);
   851               // convert from field index to ConstantPoolCacheEntry index
   852               // and from word index to byte offset
   853   sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
   854               // skip past the header
   855   add(tmp, in_bytes(constantPoolCacheOopDesc::base_offset()), tmp);
   856               // construct pointer to cache entry
   857   add(LcpoolCache, tmp, cache);
   858 }
   861 // Generate a subtype check: branch to ok_is_subtype if sub_klass is
   862 // a subtype of super_klass.  Blows registers Rsub_klass, tmp1, tmp2.
   863 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
   864                                                   Register Rsuper_klass,
   865                                                   Register Rtmp1,
   866                                                   Register Rtmp2,
   867                                                   Register Rtmp3,
   868                                                   Label &ok_is_subtype ) {
   869   Label not_subtype, loop;
   871   // Profile the not-null value's klass.
   872   profile_typecheck(Rsub_klass, Rtmp1);
   874   // Load the super-klass's check offset into Rtmp1
   875   ld( Rsuper_klass, sizeof(oopDesc) + Klass::super_check_offset_offset_in_bytes(), Rtmp1 );
   876   // Load from the sub-klass's super-class display list, or a 1-word cache of
   877   // the secondary superclass list, or a failing value with a sentinel offset
   878   // if the super-klass is an interface or exceptionally deep in the Java
   879   // hierarchy and we have to scan the secondary superclass list the hard way.
   880   ld_ptr( Rsub_klass, Rtmp1, Rtmp2 );
   881   // See if we get an immediate positive hit
   882   cmp( Rtmp2, Rsuper_klass );
   883   brx( Assembler::equal, false, Assembler::pt, ok_is_subtype );
   884   // In the delay slot, check for immediate negative hit
   885   delayed()->cmp( Rtmp1, sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() );
   886   br( Assembler::notEqual, false, Assembler::pt, not_subtype );
   887   // In the delay slot, check for self
   888   delayed()->cmp( Rsub_klass, Rsuper_klass );
   889   brx( Assembler::equal, false, Assembler::pt, ok_is_subtype );
   891   // Now do a linear scan of the secondary super-klass chain.
   892   delayed()->ld_ptr( Rsub_klass, sizeof(oopDesc) + Klass::secondary_supers_offset_in_bytes(), Rtmp2 );
   894   // Rtmp2 holds the objArrayOop of secondary supers.
   895   ld( Rtmp2, arrayOopDesc::length_offset_in_bytes(), Rtmp1 );// Load the array length
   896   // Check for empty secondary super list
   897   tst(Rtmp1);
   899   // Top of search loop
   900   bind( loop );
   901   br( Assembler::equal, false, Assembler::pn, not_subtype );
   902   delayed()->nop();
   903   // load next super to check
   904   ld_ptr( Rtmp2, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Rtmp3 );
   906   // Bump array pointer forward one oop
   907   add( Rtmp2, wordSize, Rtmp2 );
   908   // Look for Rsuper_klass on Rsub_klass's secondary super-class-overflow list
   909   cmp( Rtmp3, Rsuper_klass );
   910   // A miss means we are NOT a subtype and need to keep looping
   911   brx( Assembler::notEqual, false, Assembler::pt, loop );
   912   delayed()->deccc( Rtmp1 );    // dec trip counter in delay slot
   913   // Falling out the bottom means we found a hit; we ARE a subtype
   914   br( Assembler::always, false, Assembler::pt, ok_is_subtype );
   915   // Update the cache
   916   delayed()->st_ptr( Rsuper_klass, Rsub_klass, sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() );
   918   bind(not_subtype);
   919   profile_typecheck_failed(Rtmp1);
   920 }
   922 // Separate these two to allow for delay slot in middle
   923 // These are used to do a test and full jump to exception-throwing code.
   925 // %%%%% Could possibly reoptimize this by testing to see if could use
   926 // a single conditional branch (i.e. if span is small enough.
   927 // If you go that route, than get rid of the split and give up
   928 // on the delay-slot hack.
   930 void InterpreterMacroAssembler::throw_if_not_1_icc( Condition ok_condition,
   931                                                     Label&    ok ) {
   932   assert_not_delayed();
   933   br(ok_condition, true, pt, ok);
   934   // DELAY SLOT
   935 }
   937 void InterpreterMacroAssembler::throw_if_not_1_xcc( Condition ok_condition,
   938                                                     Label&    ok ) {
   939   assert_not_delayed();
   940   bp( ok_condition, true, Assembler::xcc, pt, ok);
   941   // DELAY SLOT
   942 }
   944 void InterpreterMacroAssembler::throw_if_not_1_x( Condition ok_condition,
   945                                                   Label&    ok ) {
   946   assert_not_delayed();
   947   brx(ok_condition, true, pt, ok);
   948   // DELAY SLOT
   949 }
   951 void InterpreterMacroAssembler::throw_if_not_2( address  throw_entry_point,
   952                                                 Register Rscratch,
   953                                                 Label&   ok ) {
   954   assert(throw_entry_point != NULL, "entry point must be generated by now");
   955   Address dest(Rscratch, throw_entry_point);
   956   jump_to(dest);
   957   delayed()->nop();
   958   bind(ok);
   959 }
   962 // And if you cannot use the delay slot, here is a shorthand:
   964 void InterpreterMacroAssembler::throw_if_not_icc( Condition ok_condition,
   965                                                   address   throw_entry_point,
   966                                                   Register  Rscratch ) {
   967   Label ok;
   968   if (ok_condition != never) {
   969     throw_if_not_1_icc( ok_condition, ok);
   970     delayed()->nop();
   971   }
   972   throw_if_not_2( throw_entry_point, Rscratch, ok);
   973 }
   974 void InterpreterMacroAssembler::throw_if_not_xcc( Condition ok_condition,
   975                                                   address   throw_entry_point,
   976                                                   Register  Rscratch ) {
   977   Label ok;
   978   if (ok_condition != never) {
   979     throw_if_not_1_xcc( ok_condition, ok);
   980     delayed()->nop();
   981   }
   982   throw_if_not_2( throw_entry_point, Rscratch, ok);
   983 }
   984 void InterpreterMacroAssembler::throw_if_not_x( Condition ok_condition,
   985                                                 address   throw_entry_point,
   986                                                 Register  Rscratch ) {
   987   Label ok;
   988   if (ok_condition != never) {
   989     throw_if_not_1_x( ok_condition, ok);
   990     delayed()->nop();
   991   }
   992   throw_if_not_2( throw_entry_point, Rscratch, ok);
   993 }
   995 // Check that index is in range for array, then shift index by index_shift, and put arrayOop + shifted_index into res
   996 // Note: res is still shy of address by array offset into object.
   998 void InterpreterMacroAssembler::index_check_without_pop(Register array, Register index, int index_shift, Register tmp, Register res) {
   999   assert_not_delayed();
  1001   verify_oop(array);
  1002 #ifdef _LP64
  1003   // sign extend since tos (index) can be a 32bit value
  1004   sra(index, G0, index);
  1005 #endif // _LP64
  1007   // check array
  1008   Label ptr_ok;
  1009   tst(array);
  1010   throw_if_not_1_x( notZero, ptr_ok );
  1011   delayed()->ld( array, arrayOopDesc::length_offset_in_bytes(), tmp ); // check index
  1012   throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ptr_ok);
  1014   Label index_ok;
  1015   cmp(index, tmp);
  1016   throw_if_not_1_icc( lessUnsigned, index_ok );
  1017   if (index_shift > 0)  delayed()->sll(index, index_shift, index);
  1018   else                  delayed()->add(array, index, res); // addr - const offset in index
  1019   // convention: move aberrant index into G3_scratch for exception message
  1020   mov(index, G3_scratch);
  1021   throw_if_not_2( Interpreter::_throw_ArrayIndexOutOfBoundsException_entry, G4_scratch, index_ok);
  1023   // add offset if didn't do it in delay slot
  1024   if (index_shift > 0)   add(array, index, res); // addr - const offset in index
  1028 void InterpreterMacroAssembler::index_check(Register array, Register index, int index_shift, Register tmp, Register res) {
  1029   assert_not_delayed();
  1031   // pop array
  1032   pop_ptr(array);
  1034   // check array
  1035   index_check_without_pop(array, index, index_shift, tmp, res);
  1039 void InterpreterMacroAssembler::get_constant_pool(Register Rdst) {
  1040   ld_ptr(Lmethod, in_bytes(methodOopDesc::constants_offset()), Rdst);
  1044 void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) {
  1045   get_constant_pool(Rdst);
  1046   ld_ptr(Rdst, constantPoolOopDesc::cache_offset_in_bytes(), Rdst);
  1050 void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) {
  1051   get_constant_pool(Rcpool);
  1052   ld_ptr(Rcpool, constantPoolOopDesc::tags_offset_in_bytes(), Rtags);
  1056 // unlock if synchronized method
  1057 //
  1058 // Unlock the receiver if this is a synchronized method.
  1059 // Unlock any Java monitors from syncronized blocks.
  1060 //
  1061 // If there are locked Java monitors
  1062 //    If throw_monitor_exception
  1063 //       throws IllegalMonitorStateException
  1064 //    Else if install_monitor_exception
  1065 //       installs IllegalMonitorStateException
  1066 //    Else
  1067 //       no error processing
  1068 void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state,
  1069                                                               bool throw_monitor_exception,
  1070                                                               bool install_monitor_exception) {
  1071   Label unlocked, unlock, no_unlock;
  1073   // get the value of _do_not_unlock_if_synchronized into G1_scratch
  1074   const Address do_not_unlock_if_synchronized(G2_thread, 0,
  1075     in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
  1076   ldbool(do_not_unlock_if_synchronized, G1_scratch);
  1077   stbool(G0, do_not_unlock_if_synchronized); // reset the flag
  1079   // check if synchronized method
  1080   const Address access_flags(Lmethod, 0, in_bytes(methodOopDesc::access_flags_offset()));
  1081   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
  1082   push(state); // save tos
  1083   ld(access_flags, G3_scratch);
  1084   btst(JVM_ACC_SYNCHRONIZED, G3_scratch);
  1085   br( zero, false, pt, unlocked);
  1086   delayed()->nop();
  1088   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
  1089   // is set.
  1090   tstbool(G1_scratch);
  1091   br(Assembler::notZero, false, pn, no_unlock);
  1092   delayed()->nop();
  1094   // BasicObjectLock will be first in list, since this is a synchronized method. However, need
  1095   // to check that the object has not been unlocked by an explicit monitorexit bytecode.
  1097   //Intel: if (throw_monitor_exception) ... else ...
  1098   // Entry already unlocked, need to throw exception
  1099   //...
  1101   // pass top-most monitor elem
  1102   add( top_most_monitor(), O1 );
  1104   ld_ptr(O1, BasicObjectLock::obj_offset_in_bytes(), G3_scratch);
  1105   br_notnull(G3_scratch, false, pt, unlock);
  1106   delayed()->nop();
  1108   if (throw_monitor_exception) {
  1109     // Entry already unlocked need to throw an exception
  1110     MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
  1111     should_not_reach_here();
  1112   } else {
  1113     // Monitor already unlocked during a stack unroll.
  1114     // If requested, install an illegal_monitor_state_exception.
  1115     // Continue with stack unrolling.
  1116     if (install_monitor_exception) {
  1117       MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
  1119     ba(false, unlocked);
  1120     delayed()->nop();
  1123   bind(unlock);
  1125   unlock_object(O1);
  1127   bind(unlocked);
  1129   // I0, I1: Might contain return value
  1131   // Check that all monitors are unlocked
  1132   { Label loop, exception, entry, restart;
  1134     Register Rmptr   = O0;
  1135     Register Rtemp   = O1;
  1136     Register Rlimit  = Lmonitors;
  1137     const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
  1138     assert( (delta & LongAlignmentMask) == 0,
  1139             "sizeof BasicObjectLock must be even number of doublewords");
  1141     #ifdef ASSERT
  1142     add(top_most_monitor(), Rmptr, delta);
  1143     { Label L;
  1144       // ensure that Rmptr starts out above (or at) Rlimit
  1145       cmp(Rmptr, Rlimit);
  1146       brx(Assembler::greaterEqualUnsigned, false, pn, L);
  1147       delayed()->nop();
  1148       stop("monitor stack has negative size");
  1149       bind(L);
  1151     #endif
  1152     bind(restart);
  1153     ba(false, entry);
  1154     delayed()->
  1155     add(top_most_monitor(), Rmptr, delta);      // points to current entry, starting with bottom-most entry
  1157     // Entry is still locked, need to throw exception
  1158     bind(exception);
  1159     if (throw_monitor_exception) {
  1160       MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
  1161       should_not_reach_here();
  1162     } else {
  1163       // Stack unrolling. Unlock object and if requested, install illegal_monitor_exception.
  1164       // Unlock does not block, so don't have to worry about the frame
  1165       unlock_object(Rmptr);
  1166       if (install_monitor_exception) {
  1167         MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
  1169       ba(false, restart);
  1170       delayed()->nop();
  1173     bind(loop);
  1174     cmp(Rtemp, G0);                             // check if current entry is used
  1175     brx(Assembler::notEqual, false, pn, exception);
  1176     delayed()->
  1177     dec(Rmptr, delta);                          // otherwise advance to next entry
  1178     #ifdef ASSERT
  1179     { Label L;
  1180       // ensure that Rmptr has not somehow stepped below Rlimit
  1181       cmp(Rmptr, Rlimit);
  1182       brx(Assembler::greaterEqualUnsigned, false, pn, L);
  1183       delayed()->nop();
  1184       stop("ran off the end of the monitor stack");
  1185       bind(L);
  1187     #endif
  1188     bind(entry);
  1189     cmp(Rmptr, Rlimit);                         // check if bottom reached
  1190     brx(Assembler::notEqual, true, pn, loop);   // if not at bottom then check this entry
  1191     delayed()->
  1192     ld_ptr(Rmptr, BasicObjectLock::obj_offset_in_bytes() - delta, Rtemp);
  1195   bind(no_unlock);
  1196   pop(state);
  1197   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
  1201 // remove activation
  1202 //
  1203 // Unlock the receiver if this is a synchronized method.
  1204 // Unlock any Java monitors from syncronized blocks.
  1205 // Remove the activation from the stack.
  1206 //
  1207 // If there are locked Java monitors
  1208 //    If throw_monitor_exception
  1209 //       throws IllegalMonitorStateException
  1210 //    Else if install_monitor_exception
  1211 //       installs IllegalMonitorStateException
  1212 //    Else
  1213 //       no error processing
  1214 void InterpreterMacroAssembler::remove_activation(TosState state,
  1215                                                   bool throw_monitor_exception,
  1216                                                   bool install_monitor_exception) {
  1218   unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception);
  1220   // save result (push state before jvmti call and pop it afterwards) and notify jvmti
  1221   notify_method_exit(false, state, NotifyJVMTI);
  1223   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
  1224   verify_oop(Lmethod);
  1225   verify_thread();
  1227   // return tos
  1228   assert(Otos_l1 == Otos_i, "adjust code below");
  1229   switch (state) {
  1230 #ifdef _LP64
  1231   case ltos: mov(Otos_l, Otos_l->after_save()); break; // O0 -> I0
  1232 #else
  1233   case ltos: mov(Otos_l2, Otos_l2->after_save()); // fall through  // O1 -> I1
  1234 #endif
  1235   case btos:                                      // fall through
  1236   case ctos:
  1237   case stos:                                      // fall through
  1238   case atos:                                      // fall through
  1239   case itos: mov(Otos_l1, Otos_l1->after_save());    break;        // O0 -> I0
  1240   case ftos:                                      // fall through
  1241   case dtos:                                      // fall through
  1242   case vtos: /* nothing to do */                     break;
  1243   default  : ShouldNotReachHere();
  1246 #if defined(COMPILER2) && !defined(_LP64)
  1247   if (state == ltos) {
  1248     // C2 expects long results in G1 we can't tell if we're returning to interpreted
  1249     // or compiled so just be safe use G1 and O0/O1
  1251     // Shift bits into high (msb) of G1
  1252     sllx(Otos_l1->after_save(), 32, G1);
  1253     // Zero extend low bits
  1254     srl (Otos_l2->after_save(), 0, Otos_l2->after_save());
  1255     or3 (Otos_l2->after_save(), G1, G1);
  1257 #endif /* COMPILER2 */
  1260 #endif /* CC_INTERP */
  1263 // Lock object
  1264 //
  1265 // Argument - lock_reg points to the BasicObjectLock to be used for locking,
  1266 //            it must be initialized with the object to lock
  1267 void InterpreterMacroAssembler::lock_object(Register lock_reg, Register Object) {
  1268   if (UseHeavyMonitors) {
  1269     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
  1271   else {
  1272     Register obj_reg = Object;
  1273     Register mark_reg = G4_scratch;
  1274     Register temp_reg = G1_scratch;
  1275     Address  lock_addr = Address(lock_reg, 0, BasicObjectLock::lock_offset_in_bytes());
  1276     Address  mark_addr = Address(obj_reg, 0, oopDesc::mark_offset_in_bytes());
  1277     Label    done;
  1279     Label slow_case;
  1281     assert_different_registers(lock_reg, obj_reg, mark_reg, temp_reg);
  1283     // load markOop from object into mark_reg
  1284     ld_ptr(mark_addr, mark_reg);
  1286     if (UseBiasedLocking) {
  1287       biased_locking_enter(obj_reg, mark_reg, temp_reg, done, &slow_case);
  1290     // get the address of basicLock on stack that will be stored in the object
  1291     // we need a temporary register here as we do not want to clobber lock_reg
  1292     // (cas clobbers the destination register)
  1293     mov(lock_reg, temp_reg);
  1294     // set mark reg to be (markOop of object | UNLOCK_VALUE)
  1295     or3(mark_reg, markOopDesc::unlocked_value, mark_reg);
  1296     // initialize the box  (Must happen before we update the object mark!)
  1297     st_ptr(mark_reg, lock_addr, BasicLock::displaced_header_offset_in_bytes());
  1298     // compare and exchange object_addr, markOop | 1, stack address of basicLock
  1299     assert(mark_addr.disp() == 0, "cas must take a zero displacement");
  1300     casx_under_lock(mark_addr.base(), mark_reg, temp_reg,
  1301       (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  1303     // if the compare and exchange succeeded we are done (we saw an unlocked object)
  1304     cmp(mark_reg, temp_reg);
  1305     brx(Assembler::equal, true, Assembler::pt, done);
  1306     delayed()->nop();
  1308     // We did not see an unlocked object so try the fast recursive case
  1310     // Check if owner is self by comparing the value in the markOop of object
  1311     // with the stack pointer
  1312     sub(temp_reg, SP, temp_reg);
  1313 #ifdef _LP64
  1314     sub(temp_reg, STACK_BIAS, temp_reg);
  1315 #endif
  1316     assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
  1318     // Composite "andcc" test:
  1319     // (a) %sp -vs- markword proximity check, and,
  1320     // (b) verify mark word LSBs == 0 (Stack-locked).
  1321     //
  1322     // FFFFF003/FFFFFFFFFFFF003 is (markOopDesc::lock_mask_in_place | -os::vm_page_size())
  1323     // Note that the page size used for %sp proximity testing is arbitrary and is
  1324     // unrelated to the actual MMU page size.  We use a 'logical' page size of
  1325     // 4096 bytes.   F..FFF003 is designed to fit conveniently in the SIMM13 immediate
  1326     // field of the andcc instruction.
  1327     andcc (temp_reg, 0xFFFFF003, G0) ;
  1329     // if condition is true we are done and hence we can store 0 in the displaced
  1330     // header indicating it is a recursive lock and be done
  1331     brx(Assembler::zero, true, Assembler::pt, done);
  1332     delayed()->st_ptr(G0, lock_addr, BasicLock::displaced_header_offset_in_bytes());
  1334     // none of the above fast optimizations worked so we have to get into the
  1335     // slow case of monitor enter
  1336     bind(slow_case);
  1337     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
  1339     bind(done);
  1343 // Unlocks an object. Used in monitorexit bytecode and remove_activation.
  1344 //
  1345 // Argument - lock_reg points to the BasicObjectLock for lock
  1346 // Throw IllegalMonitorException if object is not locked by current thread
  1347 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
  1348   if (UseHeavyMonitors) {
  1349     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
  1350   } else {
  1351     Register obj_reg = G3_scratch;
  1352     Register mark_reg = G4_scratch;
  1353     Register displaced_header_reg = G1_scratch;
  1354     Address  lock_addr = Address(lock_reg, 0, BasicObjectLock::lock_offset_in_bytes());
  1355     Address  lockobj_addr = Address(lock_reg, 0, BasicObjectLock::obj_offset_in_bytes());
  1356     Address  mark_addr = Address(obj_reg, 0, oopDesc::mark_offset_in_bytes());
  1357     Label    done;
  1359     if (UseBiasedLocking) {
  1360       // load the object out of the BasicObjectLock
  1361       ld_ptr(lockobj_addr, obj_reg);
  1362       biased_locking_exit(mark_addr, mark_reg, done, true);
  1363       st_ptr(G0, lockobj_addr);  // free entry
  1366     // Test first if we are in the fast recursive case
  1367     ld_ptr(lock_addr, displaced_header_reg, BasicLock::displaced_header_offset_in_bytes());
  1368     br_null(displaced_header_reg, true, Assembler::pn, done);
  1369     delayed()->st_ptr(G0, lockobj_addr);  // free entry
  1371     // See if it is still a light weight lock, if so we just unlock
  1372     // the object and we are done
  1374     if (!UseBiasedLocking) {
  1375       // load the object out of the BasicObjectLock
  1376       ld_ptr(lockobj_addr, obj_reg);
  1379     // we have the displaced header in displaced_header_reg
  1380     // we expect to see the stack address of the basicLock in case the
  1381     // lock is still a light weight lock (lock_reg)
  1382     assert(mark_addr.disp() == 0, "cas must take a zero displacement");
  1383     casx_under_lock(mark_addr.base(), lock_reg, displaced_header_reg,
  1384       (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  1385     cmp(lock_reg, displaced_header_reg);
  1386     brx(Assembler::equal, true, Assembler::pn, done);
  1387     delayed()->st_ptr(G0, lockobj_addr);  // free entry
  1389     // The lock has been converted into a heavy lock and hence
  1390     // we need to get into the slow case
  1392     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
  1394     bind(done);
  1398 #ifndef CC_INTERP
  1400 // Get the method data pointer from the methodOop and set the
  1401 // specified register to its value.
  1403 void InterpreterMacroAssembler::set_method_data_pointer_offset(Register Roff) {
  1404   assert(ProfileInterpreter, "must be profiling interpreter");
  1405   Label get_continue;
  1407   ld_ptr(Lmethod, in_bytes(methodOopDesc::method_data_offset()), ImethodDataPtr);
  1408   test_method_data_pointer(get_continue);
  1409   add(ImethodDataPtr, in_bytes(methodDataOopDesc::data_offset()), ImethodDataPtr);
  1410   if (Roff != noreg)
  1411     // Roff contains a method data index ("mdi").  It defaults to zero.
  1412     add(ImethodDataPtr, Roff, ImethodDataPtr);
  1413   bind(get_continue);
  1416 // Set the method data pointer for the current bcp.
  1418 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
  1419   assert(ProfileInterpreter, "must be profiling interpreter");
  1420   Label zero_continue;
  1422   // Test MDO to avoid the call if it is NULL.
  1423   ld_ptr(Lmethod, in_bytes(methodOopDesc::method_data_offset()), ImethodDataPtr);
  1424   test_method_data_pointer(zero_continue);
  1425   call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), Lmethod, Lbcp);
  1426   set_method_data_pointer_offset(O0);
  1427   bind(zero_continue);
  1430 // Test ImethodDataPtr.  If it is null, continue at the specified label
  1432 void InterpreterMacroAssembler::test_method_data_pointer(Label& zero_continue) {
  1433   assert(ProfileInterpreter, "must be profiling interpreter");
  1434 #ifdef _LP64
  1435   bpr(Assembler::rc_z, false, Assembler::pn, ImethodDataPtr, zero_continue);
  1436 #else
  1437   tst(ImethodDataPtr);
  1438   br(Assembler::zero, false, Assembler::pn, zero_continue);
  1439 #endif
  1440   delayed()->nop();
  1443 void InterpreterMacroAssembler::verify_method_data_pointer() {
  1444   assert(ProfileInterpreter, "must be profiling interpreter");
  1445 #ifdef ASSERT
  1446   Label verify_continue;
  1447   test_method_data_pointer(verify_continue);
  1449   // If the mdp is valid, it will point to a DataLayout header which is
  1450   // consistent with the bcp.  The converse is highly probable also.
  1451   lduh(ImethodDataPtr, in_bytes(DataLayout::bci_offset()), G3_scratch);
  1452   ld_ptr(Address(Lmethod, 0, in_bytes(methodOopDesc::const_offset())), O5);
  1453   add(G3_scratch, in_bytes(constMethodOopDesc::codes_offset()), G3_scratch);
  1454   add(G3_scratch, O5, G3_scratch);
  1455   cmp(Lbcp, G3_scratch);
  1456   brx(Assembler::equal, false, Assembler::pt, verify_continue);
  1458   Register temp_reg = O5;
  1459   delayed()->mov(ImethodDataPtr, temp_reg);
  1460   // %%% should use call_VM_leaf here?
  1461   //call_VM_leaf(noreg, ..., Lmethod, Lbcp, ImethodDataPtr);
  1462   save_frame_and_mov(sizeof(jdouble) / wordSize, Lmethod, O0, Lbcp, O1);
  1463   Address d_save(FP, 0, -sizeof(jdouble) + STACK_BIAS);
  1464   stf(FloatRegisterImpl::D, Ftos_d, d_save);
  1465   mov(temp_reg->after_save(), O2);
  1466   save_thread(L7_thread_cache);
  1467   call(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), relocInfo::none);
  1468   delayed()->nop();
  1469   restore_thread(L7_thread_cache);
  1470   ldf(FloatRegisterImpl::D, d_save, Ftos_d);
  1471   restore();
  1472   bind(verify_continue);
  1473 #endif // ASSERT
  1476 void InterpreterMacroAssembler::test_invocation_counter_for_mdp(Register invocation_count,
  1477                                                                 Register cur_bcp,
  1478                                                                 Register Rtmp,
  1479                                                                 Label &profile_continue) {
  1480   assert(ProfileInterpreter, "must be profiling interpreter");
  1481   // Control will flow to "profile_continue" if the counter is less than the
  1482   // limit or if we call profile_method()
  1484   Label done;
  1486   // if no method data exists, and the counter is high enough, make one
  1487 #ifdef _LP64
  1488   bpr(Assembler::rc_nz, false, Assembler::pn, ImethodDataPtr, done);
  1489 #else
  1490   tst(ImethodDataPtr);
  1491   br(Assembler::notZero, false, Assembler::pn, done);
  1492 #endif
  1494   // Test to see if we should create a method data oop
  1495   Address profile_limit(Rtmp, (address)&InvocationCounter::InterpreterProfileLimit);
  1496 #ifdef _LP64
  1497   delayed()->nop();
  1498   sethi(profile_limit);
  1499 #else
  1500   delayed()->sethi(profile_limit);
  1501 #endif
  1502   ld(profile_limit, Rtmp);
  1503   cmp(invocation_count, Rtmp);
  1504   br(Assembler::lessUnsigned, false, Assembler::pn, profile_continue);
  1505   delayed()->nop();
  1507   // Build it now.
  1508   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method), cur_bcp);
  1509   set_method_data_pointer_offset(O0);
  1510   ba(false, profile_continue);
  1511   delayed()->nop();
  1512   bind(done);
  1515 // Store a value at some constant offset from the method data pointer.
  1517 void InterpreterMacroAssembler::set_mdp_data_at(int constant, Register value) {
  1518   assert(ProfileInterpreter, "must be profiling interpreter");
  1519   st_ptr(value, ImethodDataPtr, constant);
  1522 void InterpreterMacroAssembler::increment_mdp_data_at(Address counter,
  1523                                                       Register bumped_count,
  1524                                                       bool decrement) {
  1525   assert(ProfileInterpreter, "must be profiling interpreter");
  1527   // Load the counter.
  1528   ld_ptr(counter, bumped_count);
  1530   if (decrement) {
  1531     // Decrement the register.  Set condition codes.
  1532     subcc(bumped_count, DataLayout::counter_increment, bumped_count);
  1534     // If the decrement causes the counter to overflow, stay negative
  1535     Label L;
  1536     brx(Assembler::negative, true, Assembler::pn, L);
  1538     // Store the decremented counter, if it is still negative.
  1539     delayed()->st_ptr(bumped_count, counter);
  1540     bind(L);
  1541   } else {
  1542     // Increment the register.  Set carry flag.
  1543     addcc(bumped_count, DataLayout::counter_increment, bumped_count);
  1545     // If the increment causes the counter to overflow, pull back by 1.
  1546     assert(DataLayout::counter_increment == 1, "subc works");
  1547     subc(bumped_count, G0, bumped_count);
  1549     // Store the incremented counter.
  1550     st_ptr(bumped_count, counter);
  1554 // Increment the value at some constant offset from the method data pointer.
  1556 void InterpreterMacroAssembler::increment_mdp_data_at(int constant,
  1557                                                       Register bumped_count,
  1558                                                       bool decrement) {
  1559   // Locate the counter at a fixed offset from the mdp:
  1560   Address counter(ImethodDataPtr, 0, constant);
  1561   increment_mdp_data_at(counter, bumped_count, decrement);
  1564 // Increment the value at some non-fixed (reg + constant) offset from
  1565 // the method data pointer.
  1567 void InterpreterMacroAssembler::increment_mdp_data_at(Register reg,
  1568                                                       int constant,
  1569                                                       Register bumped_count,
  1570                                                       Register scratch2,
  1571                                                       bool decrement) {
  1572   // Add the constant to reg to get the offset.
  1573   add(ImethodDataPtr, reg, scratch2);
  1574   Address counter(scratch2, 0, constant);
  1575   increment_mdp_data_at(counter, bumped_count, decrement);
  1578 // Set a flag value at the current method data pointer position.
  1579 // Updates a single byte of the header, to avoid races with other header bits.
  1581 void InterpreterMacroAssembler::set_mdp_flag_at(int flag_constant,
  1582                                                 Register scratch) {
  1583   assert(ProfileInterpreter, "must be profiling interpreter");
  1584   // Load the data header
  1585   ldub(ImethodDataPtr, in_bytes(DataLayout::flags_offset()), scratch);
  1587   // Set the flag
  1588   or3(scratch, flag_constant, scratch);
  1590   // Store the modified header.
  1591   stb(scratch, ImethodDataPtr, in_bytes(DataLayout::flags_offset()));
  1594 // Test the location at some offset from the method data pointer.
  1595 // If it is not equal to value, branch to the not_equal_continue Label.
  1596 // Set condition codes to match the nullness of the loaded value.
  1598 void InterpreterMacroAssembler::test_mdp_data_at(int offset,
  1599                                                  Register value,
  1600                                                  Label& not_equal_continue,
  1601                                                  Register scratch) {
  1602   assert(ProfileInterpreter, "must be profiling interpreter");
  1603   ld_ptr(ImethodDataPtr, offset, scratch);
  1604   cmp(value, scratch);
  1605   brx(Assembler::notEqual, false, Assembler::pn, not_equal_continue);
  1606   delayed()->tst(scratch);
  1609 // Update the method data pointer by the displacement located at some fixed
  1610 // offset from the method data pointer.
  1612 void InterpreterMacroAssembler::update_mdp_by_offset(int offset_of_disp,
  1613                                                      Register scratch) {
  1614   assert(ProfileInterpreter, "must be profiling interpreter");
  1615   ld_ptr(ImethodDataPtr, offset_of_disp, scratch);
  1616   add(ImethodDataPtr, scratch, ImethodDataPtr);
  1619 // Update the method data pointer by the displacement located at the
  1620 // offset (reg + offset_of_disp).
  1622 void InterpreterMacroAssembler::update_mdp_by_offset(Register reg,
  1623                                                      int offset_of_disp,
  1624                                                      Register scratch) {
  1625   assert(ProfileInterpreter, "must be profiling interpreter");
  1626   add(reg, offset_of_disp, scratch);
  1627   ld_ptr(ImethodDataPtr, scratch, scratch);
  1628   add(ImethodDataPtr, scratch, ImethodDataPtr);
  1631 // Update the method data pointer by a simple constant displacement.
  1633 void InterpreterMacroAssembler::update_mdp_by_constant(int constant) {
  1634   assert(ProfileInterpreter, "must be profiling interpreter");
  1635   add(ImethodDataPtr, constant, ImethodDataPtr);
  1638 // Update the method data pointer for a _ret bytecode whose target
  1639 // was not among our cached targets.
  1641 void InterpreterMacroAssembler::update_mdp_for_ret(TosState state,
  1642                                                    Register return_bci) {
  1643   assert(ProfileInterpreter, "must be profiling interpreter");
  1644   push(state);
  1645   st_ptr(return_bci, l_tmp);  // protect return_bci, in case it is volatile
  1646   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
  1647   ld_ptr(l_tmp, return_bci);
  1648   pop(state);
  1651 // Count a taken branch in the bytecodes.
  1653 void InterpreterMacroAssembler::profile_taken_branch(Register scratch, Register bumped_count) {
  1654   if (ProfileInterpreter) {
  1655     Label profile_continue;
  1657     // If no method data exists, go to profile_continue.
  1658     test_method_data_pointer(profile_continue);
  1660     // We are taking a branch.  Increment the taken count.
  1661     increment_mdp_data_at(in_bytes(JumpData::taken_offset()), bumped_count);
  1663     // The method data pointer needs to be updated to reflect the new target.
  1664     update_mdp_by_offset(in_bytes(JumpData::displacement_offset()), scratch);
  1665     bind (profile_continue);
  1670 // Count a not-taken branch in the bytecodes.
  1672 void InterpreterMacroAssembler::profile_not_taken_branch(Register scratch) {
  1673   if (ProfileInterpreter) {
  1674     Label profile_continue;
  1676     // If no method data exists, go to profile_continue.
  1677     test_method_data_pointer(profile_continue);
  1679     // We are taking a branch.  Increment the not taken count.
  1680     increment_mdp_data_at(in_bytes(BranchData::not_taken_offset()), scratch);
  1682     // The method data pointer needs to be updated to correspond to the
  1683     // next bytecode.
  1684     update_mdp_by_constant(in_bytes(BranchData::branch_data_size()));
  1685     bind (profile_continue);
  1690 // Count a non-virtual call in the bytecodes.
  1692 void InterpreterMacroAssembler::profile_call(Register scratch) {
  1693   if (ProfileInterpreter) {
  1694     Label profile_continue;
  1696     // If no method data exists, go to profile_continue.
  1697     test_method_data_pointer(profile_continue);
  1699     // We are making a call.  Increment the count.
  1700     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
  1702     // The method data pointer needs to be updated to reflect the new target.
  1703     update_mdp_by_constant(in_bytes(CounterData::counter_data_size()));
  1704     bind (profile_continue);
  1709 // Count a final call in the bytecodes.
  1711 void InterpreterMacroAssembler::profile_final_call(Register scratch) {
  1712   if (ProfileInterpreter) {
  1713     Label profile_continue;
  1715     // If no method data exists, go to profile_continue.
  1716     test_method_data_pointer(profile_continue);
  1718     // We are making a call.  Increment the count.
  1719     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
  1721     // The method data pointer needs to be updated to reflect the new target.
  1722     update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
  1723     bind (profile_continue);
  1728 // Count a virtual call in the bytecodes.
  1730 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
  1731                                                      Register scratch) {
  1732   if (ProfileInterpreter) {
  1733     Label profile_continue;
  1735     // If no method data exists, go to profile_continue.
  1736     test_method_data_pointer(profile_continue);
  1738     // We are making a call.  Increment the count.
  1739     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
  1741     // Record the receiver type.
  1742     record_klass_in_profile(receiver, scratch);
  1744     // The method data pointer needs to be updated to reflect the new target.
  1745     update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
  1746     bind (profile_continue);
  1750 void InterpreterMacroAssembler::record_klass_in_profile_helper(
  1751                                         Register receiver, Register scratch,
  1752                                         int start_row, Label& done) {
  1753   int last_row = VirtualCallData::row_limit() - 1;
  1754   assert(start_row <= last_row, "must be work left to do");
  1755   // Test this row for both the receiver and for null.
  1756   // Take any of three different outcomes:
  1757   //   1. found receiver => increment count and goto done
  1758   //   2. found null => keep looking for case 1, maybe allocate this cell
  1759   //   3. found something else => keep looking for cases 1 and 2
  1760   // Case 3 is handled by a recursive call.
  1761   for (int row = start_row; row <= last_row; row++) {
  1762     Label next_test;
  1763     bool test_for_null_also = (row == start_row);
  1765     // See if the receiver is receiver[n].
  1766     int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
  1767     test_mdp_data_at(recvr_offset, receiver, next_test, scratch);
  1769     // The receiver is receiver[n].  Increment count[n].
  1770     int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
  1771     increment_mdp_data_at(count_offset, scratch);
  1772     ba(false, done);
  1773     delayed()->nop();
  1774     bind(next_test);
  1776     if (test_for_null_also) {
  1777       // Failed the equality check on receiver[n]...  Test for null.
  1778       if (start_row == last_row) {
  1779         // The only thing left to do is handle the null case.
  1780         brx(Assembler::notZero, false, Assembler::pt, done);
  1781         delayed()->nop();
  1782         break;
  1784       // Since null is rare, make it be the branch-taken case.
  1785       Label found_null;
  1786       brx(Assembler::zero, false, Assembler::pn, found_null);
  1787       delayed()->nop();
  1789       // Put all the "Case 3" tests here.
  1790       record_klass_in_profile_helper(receiver, scratch, start_row + 1, done);
  1792       // Found a null.  Keep searching for a matching receiver,
  1793       // but remember that this is an empty (unused) slot.
  1794       bind(found_null);
  1798   // In the fall-through case, we found no matching receiver, but we
  1799   // observed the receiver[start_row] is NULL.
  1801   // Fill in the receiver field and increment the count.
  1802   int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
  1803   set_mdp_data_at(recvr_offset, receiver);
  1804   int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
  1805   mov(DataLayout::counter_increment, scratch);
  1806   set_mdp_data_at(count_offset, scratch);
  1807   ba(false, done);
  1808   delayed()->nop();
  1811 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
  1812                                                         Register scratch) {
  1813   assert(ProfileInterpreter, "must be profiling");
  1814   Label done;
  1816   record_klass_in_profile_helper(receiver, scratch, 0, done);
  1818   bind (done);
  1822 // Count a ret in the bytecodes.
  1824 void InterpreterMacroAssembler::profile_ret(TosState state,
  1825                                             Register return_bci,
  1826                                             Register scratch) {
  1827   if (ProfileInterpreter) {
  1828     Label profile_continue;
  1829     uint row;
  1831     // If no method data exists, go to profile_continue.
  1832     test_method_data_pointer(profile_continue);
  1834     // Update the total ret count.
  1835     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
  1837     for (row = 0; row < RetData::row_limit(); row++) {
  1838       Label next_test;
  1840       // See if return_bci is equal to bci[n]:
  1841       test_mdp_data_at(in_bytes(RetData::bci_offset(row)),
  1842                        return_bci, next_test, scratch);
  1844       // return_bci is equal to bci[n].  Increment the count.
  1845       increment_mdp_data_at(in_bytes(RetData::bci_count_offset(row)), scratch);
  1847       // The method data pointer needs to be updated to reflect the new target.
  1848       update_mdp_by_offset(in_bytes(RetData::bci_displacement_offset(row)), scratch);
  1849       ba(false, profile_continue);
  1850       delayed()->nop();
  1851       bind(next_test);
  1854     update_mdp_for_ret(state, return_bci);
  1856     bind (profile_continue);
  1860 // Profile an unexpected null in the bytecodes.
  1861 void InterpreterMacroAssembler::profile_null_seen(Register scratch) {
  1862   if (ProfileInterpreter) {
  1863     Label profile_continue;
  1865     // If no method data exists, go to profile_continue.
  1866     test_method_data_pointer(profile_continue);
  1868     set_mdp_flag_at(BitData::null_seen_byte_constant(), scratch);
  1870     // The method data pointer needs to be updated.
  1871     int mdp_delta = in_bytes(BitData::bit_data_size());
  1872     if (TypeProfileCasts) {
  1873       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
  1875     update_mdp_by_constant(mdp_delta);
  1877     bind (profile_continue);
  1881 void InterpreterMacroAssembler::profile_typecheck(Register klass,
  1882                                                   Register scratch) {
  1883   if (ProfileInterpreter) {
  1884     Label profile_continue;
  1886     // If no method data exists, go to profile_continue.
  1887     test_method_data_pointer(profile_continue);
  1889     int mdp_delta = in_bytes(BitData::bit_data_size());
  1890     if (TypeProfileCasts) {
  1891       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
  1893       // Record the object type.
  1894       record_klass_in_profile(klass, scratch);
  1897     // The method data pointer needs to be updated.
  1898     update_mdp_by_constant(mdp_delta);
  1900     bind (profile_continue);
  1904 void InterpreterMacroAssembler::profile_typecheck_failed(Register scratch) {
  1905   if (ProfileInterpreter && TypeProfileCasts) {
  1906     Label profile_continue;
  1908     // If no method data exists, go to profile_continue.
  1909     test_method_data_pointer(profile_continue);
  1911     int count_offset = in_bytes(CounterData::count_offset());
  1912     // Back up the address, since we have already bumped the mdp.
  1913     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
  1915     // *Decrement* the counter.  We expect to see zero or small negatives.
  1916     increment_mdp_data_at(count_offset, scratch, true);
  1918     bind (profile_continue);
  1922 // Count the default case of a switch construct.
  1924 void InterpreterMacroAssembler::profile_switch_default(Register scratch) {
  1925   if (ProfileInterpreter) {
  1926     Label profile_continue;
  1928     // If no method data exists, go to profile_continue.
  1929     test_method_data_pointer(profile_continue);
  1931     // Update the default case count
  1932     increment_mdp_data_at(in_bytes(MultiBranchData::default_count_offset()),
  1933                           scratch);
  1935     // The method data pointer needs to be updated.
  1936     update_mdp_by_offset(
  1937                     in_bytes(MultiBranchData::default_displacement_offset()),
  1938                     scratch);
  1940     bind (profile_continue);
  1944 // Count the index'th case of a switch construct.
  1946 void InterpreterMacroAssembler::profile_switch_case(Register index,
  1947                                                     Register scratch,
  1948                                                     Register scratch2,
  1949                                                     Register scratch3) {
  1950   if (ProfileInterpreter) {
  1951     Label profile_continue;
  1953     // If no method data exists, go to profile_continue.
  1954     test_method_data_pointer(profile_continue);
  1956     // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes()
  1957     set(in_bytes(MultiBranchData::per_case_size()), scratch);
  1958     smul(index, scratch, scratch);
  1959     add(scratch, in_bytes(MultiBranchData::case_array_offset()), scratch);
  1961     // Update the case count
  1962     increment_mdp_data_at(scratch,
  1963                           in_bytes(MultiBranchData::relative_count_offset()),
  1964                           scratch2,
  1965                           scratch3);
  1967     // The method data pointer needs to be updated.
  1968     update_mdp_by_offset(scratch,
  1969                      in_bytes(MultiBranchData::relative_displacement_offset()),
  1970                      scratch2);
  1972     bind (profile_continue);
  1976 // add a InterpMonitorElem to stack (see frame_sparc.hpp)
  1978 void InterpreterMacroAssembler::add_monitor_to_stack( bool stack_is_empty,
  1979                                                       Register Rtemp,
  1980                                                       Register Rtemp2 ) {
  1982   Register Rlimit = Lmonitors;
  1983   const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
  1984   assert( (delta & LongAlignmentMask) == 0,
  1985           "sizeof BasicObjectLock must be even number of doublewords");
  1987   sub( SP,        delta, SP);
  1988   sub( Lesp,      delta, Lesp);
  1989   sub( Lmonitors, delta, Lmonitors);
  1991   if (!stack_is_empty) {
  1993     // must copy stack contents down
  1995     Label start_copying, next;
  1997     // untested("monitor stack expansion");
  1998     compute_stack_base(Rtemp);
  1999     ba( false, start_copying );
  2000     delayed()->cmp( Rtemp, Rlimit); // done? duplicated below
  2002     // note: must copy from low memory upwards
  2003     // On entry to loop,
  2004     // Rtemp points to new base of stack, Lesp points to new end of stack (1 past TOS)
  2005     // Loop mutates Rtemp
  2007     bind( next);
  2009     st_ptr(Rtemp2, Rtemp, 0);
  2010     inc(Rtemp, wordSize);
  2011     cmp(Rtemp, Rlimit); // are we done? (duplicated above)
  2013     bind( start_copying );
  2015     brx( notEqual, true, pn, next );
  2016     delayed()->ld_ptr( Rtemp, delta, Rtemp2 );
  2018     // done copying stack
  2022 // Locals
  2023 #ifdef ASSERT
  2024 void InterpreterMacroAssembler::verify_local_tag(frame::Tag t,
  2025                                                  Register base,
  2026                                                  Register scratch,
  2027                                                  int n) {
  2028   if (TaggedStackInterpreter) {
  2029     Label ok, long_ok;
  2030     // Use dst for scratch
  2031     assert_different_registers(base, scratch);
  2032     ld_ptr(base, Interpreter::local_tag_offset_in_bytes(n), scratch);
  2033     if (t == frame::TagCategory2) {
  2034       cmp(scratch, G0);
  2035       brx(Assembler::equal, false, Assembler::pt, long_ok);
  2036       delayed()->ld_ptr(base, Interpreter::local_tag_offset_in_bytes(n+1), scratch);
  2037       stop("local long/double tag value bad");
  2038       bind(long_ok);
  2039       // compare second half tag
  2040       cmp(scratch, G0);
  2041     } else if (t == frame::TagValue) {
  2042       cmp(scratch, G0);
  2043     } else {
  2044       assert_different_registers(O3, base, scratch);
  2045       mov(t, O3);
  2046       cmp(scratch, O3);
  2048     brx(Assembler::equal, false, Assembler::pt, ok);
  2049     delayed()->nop();
  2050     // Also compare if the local value is zero, then the tag might
  2051     // not have been set coming from deopt.
  2052     ld_ptr(base, Interpreter::local_offset_in_bytes(n), scratch);
  2053     cmp(scratch, G0);
  2054     brx(Assembler::equal, false, Assembler::pt, ok);
  2055     delayed()->nop();
  2056     stop("Local tag value is bad");
  2057     bind(ok);
  2060 #endif // ASSERT
  2062 void InterpreterMacroAssembler::access_local_ptr( Register index, Register dst ) {
  2063   assert_not_delayed();
  2064   sll(index, Interpreter::logStackElementSize(), index);
  2065   sub(Llocals, index, index);
  2066   debug_only(verify_local_tag(frame::TagReference, index, dst));
  2067   ld_ptr(index, Interpreter::value_offset_in_bytes(), dst);
  2068   // Note:  index must hold the effective address--the iinc template uses it
  2071 // Just like access_local_ptr but the tag is a returnAddress
  2072 void InterpreterMacroAssembler::access_local_returnAddress(Register index,
  2073                                                            Register dst ) {
  2074   assert_not_delayed();
  2075   sll(index, Interpreter::logStackElementSize(), index);
  2076   sub(Llocals, index, index);
  2077   debug_only(verify_local_tag(frame::TagValue, index, dst));
  2078   ld_ptr(index, Interpreter::value_offset_in_bytes(), dst);
  2081 void InterpreterMacroAssembler::access_local_int( Register index, Register dst ) {
  2082   assert_not_delayed();
  2083   sll(index, Interpreter::logStackElementSize(), index);
  2084   sub(Llocals, index, index);
  2085   debug_only(verify_local_tag(frame::TagValue, index, dst));
  2086   ld(index, Interpreter::value_offset_in_bytes(), dst);
  2087   // Note:  index must hold the effective address--the iinc template uses it
  2091 void InterpreterMacroAssembler::access_local_long( Register index, Register dst ) {
  2092   assert_not_delayed();
  2093   sll(index, Interpreter::logStackElementSize(), index);
  2094   sub(Llocals, index, index);
  2095   debug_only(verify_local_tag(frame::TagCategory2, index, dst));
  2096   // First half stored at index n+1 (which grows down from Llocals[n])
  2097   load_unaligned_long(index, Interpreter::local_offset_in_bytes(1), dst);
  2101 void InterpreterMacroAssembler::access_local_float( Register index, FloatRegister dst ) {
  2102   assert_not_delayed();
  2103   sll(index, Interpreter::logStackElementSize(), index);
  2104   sub(Llocals, index, index);
  2105   debug_only(verify_local_tag(frame::TagValue, index, G1_scratch));
  2106   ldf(FloatRegisterImpl::S, index, Interpreter::value_offset_in_bytes(), dst);
  2110 void InterpreterMacroAssembler::access_local_double( Register index, FloatRegister dst ) {
  2111   assert_not_delayed();
  2112   sll(index, Interpreter::logStackElementSize(), index);
  2113   sub(Llocals, index, index);
  2114   debug_only(verify_local_tag(frame::TagCategory2, index, G1_scratch));
  2115   load_unaligned_double(index, Interpreter::local_offset_in_bytes(1), dst);
  2119 #ifdef ASSERT
  2120 void InterpreterMacroAssembler::check_for_regarea_stomp(Register Rindex, int offset, Register Rlimit, Register Rscratch, Register Rscratch1) {
  2121   Label L;
  2123   assert(Rindex != Rscratch, "Registers cannot be same");
  2124   assert(Rindex != Rscratch1, "Registers cannot be same");
  2125   assert(Rlimit != Rscratch, "Registers cannot be same");
  2126   assert(Rlimit != Rscratch1, "Registers cannot be same");
  2127   assert(Rscratch1 != Rscratch, "Registers cannot be same");
  2129   // untested("reg area corruption");
  2130   add(Rindex, offset, Rscratch);
  2131   add(Rlimit, 64 + STACK_BIAS, Rscratch1);
  2132   cmp(Rscratch, Rscratch1);
  2133   brx(Assembler::greaterEqualUnsigned, false, pn, L);
  2134   delayed()->nop();
  2135   stop("regsave area is being clobbered");
  2136   bind(L);
  2138 #endif // ASSERT
  2140 void InterpreterMacroAssembler::tag_local(frame::Tag t,
  2141                                           Register base,
  2142                                           Register src,
  2143                                           int n) {
  2144   if (TaggedStackInterpreter) {
  2145     // have to store zero because local slots can be reused (rats!)
  2146     if (t == frame::TagValue) {
  2147       st_ptr(G0, base, Interpreter::local_tag_offset_in_bytes(n));
  2148     } else if (t == frame::TagCategory2) {
  2149       st_ptr(G0, base, Interpreter::local_tag_offset_in_bytes(n));
  2150       st_ptr(G0, base, Interpreter::local_tag_offset_in_bytes(n+1));
  2151     } else {
  2152       // assert that we don't stomp the value in 'src'
  2153       // O3 is arbitrary because it's not used.
  2154       assert_different_registers(src, base, O3);
  2155       mov( t, O3);
  2156       st_ptr(O3, base, Interpreter::local_tag_offset_in_bytes(n));
  2162 void InterpreterMacroAssembler::store_local_int( Register index, Register src ) {
  2163   assert_not_delayed();
  2164   sll(index, Interpreter::logStackElementSize(), index);
  2165   sub(Llocals, index, index);
  2166   debug_only(check_for_regarea_stomp(index, Interpreter::value_offset_in_bytes(), FP, G1_scratch, G4_scratch);)
  2167   tag_local(frame::TagValue, index, src);
  2168   st(src, index, Interpreter::value_offset_in_bytes());
  2171 void InterpreterMacroAssembler::store_local_ptr( Register index, Register src,
  2172                                                  Register tag ) {
  2173   assert_not_delayed();
  2174   sll(index, Interpreter::logStackElementSize(), index);
  2175   sub(Llocals, index, index);
  2176   #ifdef ASSERT
  2177   check_for_regarea_stomp(index, Interpreter::value_offset_in_bytes(), FP, G1_scratch, G4_scratch);
  2178   #endif
  2179   st_ptr(src, index, Interpreter::value_offset_in_bytes());
  2180   // Store tag register directly
  2181   if (TaggedStackInterpreter) {
  2182     st_ptr(tag, index, Interpreter::tag_offset_in_bytes());
  2188 void InterpreterMacroAssembler::store_local_ptr( int n, Register src,
  2189                                                  Register tag ) {
  2190   st_ptr(src,  Llocals, Interpreter::local_offset_in_bytes(n));
  2191   if (TaggedStackInterpreter) {
  2192     st_ptr(tag, Llocals, Interpreter::local_tag_offset_in_bytes(n));
  2196 void InterpreterMacroAssembler::store_local_long( Register index, Register src ) {
  2197   assert_not_delayed();
  2198   sll(index, Interpreter::logStackElementSize(), index);
  2199   sub(Llocals, index, index);
  2200   #ifdef ASSERT
  2201   check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
  2202   #endif
  2203   tag_local(frame::TagCategory2, index, src);
  2204   store_unaligned_long(src, index, Interpreter::local_offset_in_bytes(1)); // which is n+1
  2208 void InterpreterMacroAssembler::store_local_float( Register index, FloatRegister src ) {
  2209   assert_not_delayed();
  2210   sll(index, Interpreter::logStackElementSize(), index);
  2211   sub(Llocals, index, index);
  2212   #ifdef ASSERT
  2213   check_for_regarea_stomp(index, Interpreter::value_offset_in_bytes(), FP, G1_scratch, G4_scratch);
  2214   #endif
  2215   tag_local(frame::TagValue, index, G1_scratch);
  2216   stf(FloatRegisterImpl::S, src, index, Interpreter::value_offset_in_bytes());
  2220 void InterpreterMacroAssembler::store_local_double( Register index, FloatRegister src ) {
  2221   assert_not_delayed();
  2222   sll(index, Interpreter::logStackElementSize(), index);
  2223   sub(Llocals, index, index);
  2224   #ifdef ASSERT
  2225   check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
  2226   #endif
  2227   tag_local(frame::TagCategory2, index, G1_scratch);
  2228   store_unaligned_double(src, index, Interpreter::local_offset_in_bytes(1));
  2232 int InterpreterMacroAssembler::top_most_monitor_byte_offset() {
  2233   const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
  2234   int rounded_vm_local_words = ::round_to(frame::interpreter_frame_vm_local_words, WordsPerLong);
  2235   return ((-rounded_vm_local_words * wordSize) - delta ) + STACK_BIAS;
  2239 Address InterpreterMacroAssembler::top_most_monitor() {
  2240   return Address(FP, 0, top_most_monitor_byte_offset());
  2244 void InterpreterMacroAssembler::compute_stack_base( Register Rdest ) {
  2245   add( Lesp,      wordSize,                                    Rdest );
  2248 #endif /* CC_INTERP */
  2250 void InterpreterMacroAssembler::increment_invocation_counter( Register Rtmp, Register Rtmp2 ) {
  2251   assert(UseCompiler, "incrementing must be useful");
  2252 #ifdef CC_INTERP
  2253   Address inv_counter(G5_method, 0, in_bytes(methodOopDesc::invocation_counter_offset()
  2254                             + InvocationCounter::counter_offset()));
  2255   Address be_counter(G5_method, 0, in_bytes(methodOopDesc::backedge_counter_offset()
  2256                             + InvocationCounter::counter_offset()));
  2257 #else
  2258   Address inv_counter(Lmethod, 0, in_bytes(methodOopDesc::invocation_counter_offset()
  2259                             + InvocationCounter::counter_offset()));
  2260   Address be_counter(Lmethod, 0, in_bytes(methodOopDesc::backedge_counter_offset()
  2261                             + InvocationCounter::counter_offset()));
  2262 #endif /* CC_INTERP */
  2263   int delta = InvocationCounter::count_increment;
  2265   // Load each counter in a register
  2266   ld( inv_counter, Rtmp );
  2267   ld( be_counter, Rtmp2 );
  2269   assert( is_simm13( delta ), " delta too large.");
  2271   // Add the delta to the invocation counter and store the result
  2272   add( Rtmp, delta, Rtmp );
  2274   // Mask the backedge counter
  2275   and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
  2277   // Store value
  2278   st( Rtmp, inv_counter);
  2280   // Add invocation counter + backedge counter
  2281   add( Rtmp, Rtmp2, Rtmp);
  2283   // Note that this macro must leave the backedge_count + invocation_count in Rtmp!
  2286 void InterpreterMacroAssembler::increment_backedge_counter( Register Rtmp, Register Rtmp2 ) {
  2287   assert(UseCompiler, "incrementing must be useful");
  2288 #ifdef CC_INTERP
  2289   Address be_counter(G5_method, 0, in_bytes(methodOopDesc::backedge_counter_offset()
  2290                             + InvocationCounter::counter_offset()));
  2291   Address inv_counter(G5_method, 0, in_bytes(methodOopDesc::invocation_counter_offset()
  2292                             +  InvocationCounter::counter_offset()));
  2293 #else
  2294   Address be_counter(Lmethod, 0, in_bytes(methodOopDesc::backedge_counter_offset()
  2295                             + InvocationCounter::counter_offset()));
  2296   Address inv_counter(Lmethod, 0, in_bytes(methodOopDesc::invocation_counter_offset()
  2297                             + InvocationCounter::counter_offset()));
  2298 #endif /* CC_INTERP */
  2299   int delta = InvocationCounter::count_increment;
  2300   // Load each counter in a register
  2301   ld( be_counter, Rtmp );
  2302   ld( inv_counter, Rtmp2 );
  2304   // Add the delta to the backedge counter
  2305   add( Rtmp, delta, Rtmp );
  2307   // Mask the invocation counter, add to backedge counter
  2308   and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
  2310   // and store the result to memory
  2311   st( Rtmp, be_counter );
  2313   // Add backedge + invocation counter
  2314   add( Rtmp, Rtmp2, Rtmp );
  2316   // Note that this macro must leave backedge_count + invocation_count in Rtmp!
  2319 #ifndef CC_INTERP
  2320 void InterpreterMacroAssembler::test_backedge_count_for_osr( Register backedge_count,
  2321                                                              Register branch_bcp,
  2322                                                              Register Rtmp ) {
  2323   Label did_not_overflow;
  2324   Label overflow_with_error;
  2325   assert_different_registers(backedge_count, Rtmp, branch_bcp);
  2326   assert(UseOnStackReplacement,"Must UseOnStackReplacement to test_backedge_count_for_osr");
  2328   Address limit(Rtmp, address(&InvocationCounter::InterpreterBackwardBranchLimit));
  2329   load_contents(limit, Rtmp);
  2330   cmp(backedge_count, Rtmp);
  2331   br(Assembler::lessUnsigned, false, Assembler::pt, did_not_overflow);
  2332   delayed()->nop();
  2334   // When ProfileInterpreter is on, the backedge_count comes from the
  2335   // methodDataOop, which value does not get reset on the call to
  2336   // frequency_counter_overflow().  To avoid excessive calls to the overflow
  2337   // routine while the method is being compiled, add a second test to make sure
  2338   // the overflow function is called only once every overflow_frequency.
  2339   if (ProfileInterpreter) {
  2340     const int overflow_frequency = 1024;
  2341     andcc(backedge_count, overflow_frequency-1, Rtmp);
  2342     brx(Assembler::notZero, false, Assembler::pt, did_not_overflow);
  2343     delayed()->nop();
  2346   // overflow in loop, pass branch bytecode
  2347   set(6,Rtmp);
  2348   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), branch_bcp, Rtmp);
  2350   // Was an OSR adapter generated?
  2351   // O0 = osr nmethod
  2352   tst(O0);
  2353   brx(Assembler::zero, false, Assembler::pn, overflow_with_error);
  2354   delayed()->nop();
  2356   // Has the nmethod been invalidated already?
  2357   ld(O0, nmethod::entry_bci_offset(), O2);
  2358   cmp(O2, InvalidOSREntryBci);
  2359   br(Assembler::equal, false, Assembler::pn, overflow_with_error);
  2360   delayed()->nop();
  2362   // migrate the interpreter frame off of the stack
  2364   mov(G2_thread, L7);
  2365   // save nmethod
  2366   mov(O0, L6);
  2367   set_last_Java_frame(SP, noreg);
  2368   call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), L7);
  2369   reset_last_Java_frame();
  2370   mov(L7, G2_thread);
  2372   // move OSR nmethod to I1
  2373   mov(L6, I1);
  2375   // OSR buffer to I0
  2376   mov(O0, I0);
  2378   // remove the interpreter frame
  2379   restore(I5_savedSP, 0, SP);
  2381   // Jump to the osr code.
  2382   ld_ptr(O1, nmethod::osr_entry_point_offset(), O2);
  2383   jmp(O2, G0);
  2384   delayed()->nop();
  2386   bind(overflow_with_error);
  2388   bind(did_not_overflow);
  2393 void InterpreterMacroAssembler::interp_verify_oop(Register reg, TosState state, const char * file, int line) {
  2394   if (state == atos) { MacroAssembler::_verify_oop(reg, "broken oop ", file, line); }
  2398 // local helper function for the verify_oop_or_return_address macro
  2399 static bool verify_return_address(methodOopDesc* m, int bci) {
  2400 #ifndef PRODUCT
  2401   address pc = (address)(m->constMethod())
  2402              + in_bytes(constMethodOopDesc::codes_offset()) + bci;
  2403   // assume it is a valid return address if it is inside m and is preceded by a jsr
  2404   if (!m->contains(pc))                                          return false;
  2405   address jsr_pc;
  2406   jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr);
  2407   if (*jsr_pc == Bytecodes::_jsr   && jsr_pc >= m->code_base())    return true;
  2408   jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr_w);
  2409   if (*jsr_pc == Bytecodes::_jsr_w && jsr_pc >= m->code_base())    return true;
  2410 #endif // PRODUCT
  2411   return false;
  2415 void InterpreterMacroAssembler::verify_oop_or_return_address(Register reg, Register Rtmp) {
  2416   if (!VerifyOops)  return;
  2417   // the VM documentation for the astore[_wide] bytecode allows
  2418   // the TOS to be not only an oop but also a return address
  2419   Label test;
  2420   Label skip;
  2421   // See if it is an address (in the current method):
  2423   mov(reg, Rtmp);
  2424   const int log2_bytecode_size_limit = 16;
  2425   srl(Rtmp, log2_bytecode_size_limit, Rtmp);
  2426   br_notnull( Rtmp, false, pt, test );
  2427   delayed()->nop();
  2429   // %%% should use call_VM_leaf here?
  2430   save_frame_and_mov(0, Lmethod, O0, reg, O1);
  2431   save_thread(L7_thread_cache);
  2432   call(CAST_FROM_FN_PTR(address,verify_return_address), relocInfo::none);
  2433   delayed()->nop();
  2434   restore_thread(L7_thread_cache);
  2435   br_notnull( O0, false, pt, skip );
  2436   delayed()->restore();
  2438   // Perform a more elaborate out-of-line call
  2439   // Not an address; verify it:
  2440   bind(test);
  2441   verify_oop(reg);
  2442   bind(skip);
  2446 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
  2447   if (state == ftos || state == dtos) MacroAssembler::verify_FPU(stack_depth);
  2449 #endif /* CC_INTERP */
  2451 // Inline assembly for:
  2452 //
  2453 // if (thread is in interp_only_mode) {
  2454 //   InterpreterRuntime::post_method_entry();
  2455 // }
  2456 // if (DTraceMethodProbes) {
  2457 //   SharedRuntime::dtrace_method_entry(method, reciever);
  2458 // }
  2460 void InterpreterMacroAssembler::notify_method_entry() {
  2462   // C++ interpreter only uses this for native methods.
  2464   // Whenever JVMTI puts a thread in interp_only_mode, method
  2465   // entry/exit events are sent for that thread to track stack
  2466   // depth.  If it is possible to enter interp_only_mode we add
  2467   // the code to check if the event should be sent.
  2468   if (JvmtiExport::can_post_interpreter_events()) {
  2469     Label L;
  2470     Register temp_reg = O5;
  2472     const Address interp_only       (G2_thread, 0, in_bytes(JavaThread::interp_only_mode_offset()));
  2474     ld(interp_only, temp_reg);
  2475     tst(temp_reg);
  2476     br(zero, false, pt, L);
  2477     delayed()->nop();
  2478     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
  2479     bind(L);
  2483     Register temp_reg = O5;
  2484     SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
  2485     call_VM_leaf(noreg,
  2486       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
  2487       G2_thread, Lmethod);
  2492 // Inline assembly for:
  2493 //
  2494 // if (thread is in interp_only_mode) {
  2495 //   // save result
  2496 //   InterpreterRuntime::post_method_exit();
  2497 //   // restore result
  2498 // }
  2499 // if (DTraceMethodProbes) {
  2500 //   SharedRuntime::dtrace_method_exit(thread, method);
  2501 // }
  2502 //
  2503 // Native methods have their result stored in d_tmp and l_tmp
  2504 // Java methods have their result stored in the expression stack
  2506 void InterpreterMacroAssembler::notify_method_exit(bool is_native_method,
  2507                                                    TosState state,
  2508                                                    NotifyMethodExitMode mode) {
  2509   // C++ interpreter only uses this for native methods.
  2511   // Whenever JVMTI puts a thread in interp_only_mode, method
  2512   // entry/exit events are sent for that thread to track stack
  2513   // depth.  If it is possible to enter interp_only_mode we add
  2514   // the code to check if the event should be sent.
  2515   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
  2516     Label L;
  2517     Register temp_reg = O5;
  2519     const Address interp_only       (G2_thread, 0, in_bytes(JavaThread::interp_only_mode_offset()));
  2521     ld(interp_only, temp_reg);
  2522     tst(temp_reg);
  2523     br(zero, false, pt, L);
  2524     delayed()->nop();
  2526     // Note: frame::interpreter_frame_result has a dependency on how the
  2527     // method result is saved across the call to post_method_exit. For
  2528     // native methods it assumes the result registers are saved to
  2529     // l_scratch and d_scratch. If this changes then the interpreter_frame_result
  2530     // implementation will need to be updated too.
  2532     save_return_value(state, is_native_method);
  2533     call_VM(noreg,
  2534             CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
  2535     restore_return_value(state, is_native_method);
  2536     bind(L);
  2540     Register temp_reg = O5;
  2541     // Dtrace notification
  2542     SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
  2543     save_return_value(state, is_native_method);
  2544     call_VM_leaf(
  2545       noreg,
  2546       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
  2547       G2_thread, Lmethod);
  2548     restore_return_value(state, is_native_method);
  2552 void InterpreterMacroAssembler::save_return_value(TosState state, bool is_native_call) {
  2553 #ifdef CC_INTERP
  2554   // result potentially in O0/O1: save it across calls
  2555   stf(FloatRegisterImpl::D, F0, STATE(_native_fresult));
  2556 #ifdef _LP64
  2557   stx(O0, STATE(_native_lresult));
  2558 #else
  2559   std(O0, STATE(_native_lresult));
  2560 #endif
  2561 #else // CC_INTERP
  2562   if (is_native_call) {
  2563     stf(FloatRegisterImpl::D, F0, d_tmp);
  2564 #ifdef _LP64
  2565     stx(O0, l_tmp);
  2566 #else
  2567     std(O0, l_tmp);
  2568 #endif
  2569   } else {
  2570     push(state);
  2572 #endif // CC_INTERP
  2575 void InterpreterMacroAssembler::restore_return_value( TosState state, bool is_native_call) {
  2576 #ifdef CC_INTERP
  2577   ldf(FloatRegisterImpl::D, STATE(_native_fresult), F0);
  2578 #ifdef _LP64
  2579   ldx(STATE(_native_lresult), O0);
  2580 #else
  2581   ldd(STATE(_native_lresult), O0);
  2582 #endif
  2583 #else // CC_INTERP
  2584   if (is_native_call) {
  2585     ldf(FloatRegisterImpl::D, d_tmp, F0);
  2586 #ifdef _LP64
  2587     ldx(l_tmp, O0);
  2588 #else
  2589     ldd(l_tmp, O0);
  2590 #endif
  2591   } else {
  2592     pop(state);
  2594 #endif // CC_INTERP

mercurial