src/cpu/sparc/vm/frame_sparc.cpp

Sat, 01 Dec 2007 00:00:00 +0000

author
duke
date
Sat, 01 Dec 2007 00:00:00 +0000
changeset 435
a61af66fc99e
child 542
93b6525e3b82
permissions
-rw-r--r--

Initial load

     1 /*
     2  * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_frame_sparc.cpp.incl"
    28 void RegisterMap::pd_clear() {
    29   if (_thread->has_last_Java_frame()) {
    30     frame fr = _thread->last_frame();
    31     _window = fr.sp();
    32   } else {
    33     _window = NULL;
    34   }
    35   _younger_window = NULL;
    36 }
    39 // Unified register numbering scheme: each 32-bits counts as a register
    40 // number, so all the V9 registers take 2 slots.
    41 const static int R_L_nums[] = {0+040,2+040,4+040,6+040,8+040,10+040,12+040,14+040};
    42 const static int R_I_nums[] = {0+060,2+060,4+060,6+060,8+060,10+060,12+060,14+060};
    43 const static int R_O_nums[] = {0+020,2+020,4+020,6+020,8+020,10+020,12+020,14+020};
    44 const static int R_G_nums[] = {0+000,2+000,4+000,6+000,8+000,10+000,12+000,14+000};
    45 static RegisterMap::LocationValidType bad_mask = 0;
    46 static RegisterMap::LocationValidType R_LIO_mask = 0;
    47 static bool register_map_inited = false;
    49 static void register_map_init() {
    50   if (!register_map_inited) {
    51     register_map_inited = true;
    52     int i;
    53     for (i = 0; i < 8; i++) {
    54       assert(R_L_nums[i] < RegisterMap::location_valid_type_size, "in first chunk");
    55       assert(R_I_nums[i] < RegisterMap::location_valid_type_size, "in first chunk");
    56       assert(R_O_nums[i] < RegisterMap::location_valid_type_size, "in first chunk");
    57       assert(R_G_nums[i] < RegisterMap::location_valid_type_size, "in first chunk");
    58     }
    60     bad_mask |= (1LL << R_O_nums[6]); // SP
    61     bad_mask |= (1LL << R_O_nums[7]); // cPC
    62     bad_mask |= (1LL << R_I_nums[6]); // FP
    63     bad_mask |= (1LL << R_I_nums[7]); // rPC
    64     bad_mask |= (1LL << R_G_nums[2]); // TLS
    65     bad_mask |= (1LL << R_G_nums[7]); // reserved by libthread
    67     for (i = 0; i < 8; i++) {
    68       R_LIO_mask |= (1LL << R_L_nums[i]);
    69       R_LIO_mask |= (1LL << R_I_nums[i]);
    70       R_LIO_mask |= (1LL << R_O_nums[i]);
    71     }
    72   }
    73 }
    76 address RegisterMap::pd_location(VMReg regname) const {
    77   register_map_init();
    79   assert(regname->is_reg(), "sanity check");
    80   // Only the GPRs get handled this way
    81   if( !regname->is_Register())
    82     return NULL;
    84   // don't talk about bad registers
    85   if ((bad_mask & ((LocationValidType)1 << regname->value())) != 0) {
    86     return NULL;
    87   }
    89   // Convert to a GPR
    90   Register reg;
    91   int second_word = 0;
    92   // 32-bit registers for in, out and local
    93   if (!regname->is_concrete()) {
    94     // HMM ought to return NULL for any non-concrete (odd) vmreg
    95     // this all tied up in the fact we put out double oopMaps for
    96     // register locations. When that is fixed we'd will return NULL
    97     // (or assert here).
    98     reg = regname->prev()->as_Register();
    99 #ifdef _LP64
   100     second_word = sizeof(jint);
   101 #else
   102     return NULL;
   103 #endif // _LP64
   104   } else {
   105     reg = regname->as_Register();
   106   }
   107   if (reg->is_out()) {
   108     assert(_younger_window != NULL, "Younger window should be available");
   109     return second_word + (address)&_younger_window[reg->after_save()->sp_offset_in_saved_window()];
   110   }
   111   if (reg->is_local() || reg->is_in()) {
   112     assert(_window != NULL, "Window should be available");
   113     return second_word + (address)&_window[reg->sp_offset_in_saved_window()];
   114   }
   115   // Only the window'd GPRs get handled this way; not the globals.
   116   return NULL;
   117 }
   120 #ifdef ASSERT
   121 void RegisterMap::check_location_valid() {
   122   register_map_init();
   123   assert((_location_valid[0] & bad_mask) == 0, "cannot have special locations for SP,FP,TLS,etc.");
   124 }
   125 #endif
   127 // We are shifting windows.  That means we are moving all %i to %o,
   128 // getting rid of all current %l, and keeping all %g.  This is only
   129 // complicated if any of the location pointers for these are valid.
   130 // The normal case is that everything is in its standard register window
   131 // home, and _location_valid[0] is zero.  In that case, this routine
   132 // does exactly nothing.
   133 void RegisterMap::shift_individual_registers() {
   134   if (!update_map())  return;  // this only applies to maps with locations
   135   register_map_init();
   136   check_location_valid();
   138   LocationValidType lv = _location_valid[0];
   139   LocationValidType lv0 = lv;
   141   lv &= ~R_LIO_mask;  // clear %l, %o, %i regs
   143   // if we cleared some non-%g locations, we may have to do some shifting
   144   if (lv != lv0) {
   145     // copy %i0-%i5 to %o0-%o5, if they have special locations
   146     // This can happen in within stubs which spill argument registers
   147     // around a dynamic link operation, such as resolve_opt_virtual_call.
   148     for (int i = 0; i < 8; i++) {
   149       if (lv0 & (1LL << R_I_nums[i])) {
   150         _location[R_O_nums[i]] = _location[R_I_nums[i]];
   151         lv |=  (1LL << R_O_nums[i]);
   152       }
   153     }
   154   }
   156   _location_valid[0] = lv;
   157   check_location_valid();
   158 }
   161 bool frame::safe_for_sender(JavaThread *thread) {
   162   address   sp = (address)_sp;
   163   if (sp != NULL &&
   164       (sp <= thread->stack_base() && sp >= thread->stack_base() - thread->stack_size())) {
   165       // Unfortunately we can only check frame complete for runtime stubs and nmethod
   166       // other generic buffer blobs are more problematic so we just assume they are
   167       // ok. adapter blobs never have a frame complete and are never ok.
   168       if (_cb != NULL && !_cb->is_frame_complete_at(_pc)) {
   169         if (_cb->is_nmethod() || _cb->is_adapter_blob() || _cb->is_runtime_stub()) {
   170           return false;
   171         }
   172       }
   173       return true;
   174   }
   175   return false;
   176 }
   178 // constructors
   180 // Construct an unpatchable, deficient frame
   181 frame::frame(intptr_t* sp, unpatchable_t, address pc, CodeBlob* cb) {
   182 #ifdef _LP64
   183   assert( (((intptr_t)sp & (wordSize-1)) == 0), "frame constructor passed an invalid sp");
   184 #endif
   185   _sp = sp;
   186   _younger_sp = NULL;
   187   _pc = pc;
   188   _cb = cb;
   189   _sp_adjustment_by_callee = 0;
   190   assert(pc == NULL && cb == NULL || pc != NULL, "can't have a cb and no pc!");
   191   if (_cb == NULL && _pc != NULL ) {
   192     _cb = CodeCache::find_blob(_pc);
   193   }
   194   _deopt_state = unknown;
   195 #ifdef ASSERT
   196   if ( _cb != NULL && _cb->is_nmethod()) {
   197     // Without a valid unextended_sp() we can't convert the pc to "original"
   198     assert(!((nmethod*)_cb)->is_deopt_pc(_pc), "invariant broken");
   199   }
   200 #endif // ASSERT
   201 }
   203 frame::frame(intptr_t* sp, intptr_t* younger_sp, bool younger_frame_adjusted_stack) {
   204   _sp = sp;
   205   _younger_sp = younger_sp;
   206   if (younger_sp == NULL) {
   207     // make a deficient frame which doesn't know where its PC is
   208     _pc = NULL;
   209     _cb = NULL;
   210   } else {
   211     _pc = (address)younger_sp[I7->sp_offset_in_saved_window()] + pc_return_offset;
   212     assert( (intptr_t*)younger_sp[FP->sp_offset_in_saved_window()] == (intptr_t*)((intptr_t)sp - STACK_BIAS), "younger_sp must be valid");
   213     // Any frame we ever build should always "safe" therefore we should not have to call
   214     // find_blob_unsafe
   215     // In case of native stubs, the pc retrieved here might be
   216     // wrong.  (the _last_native_pc will have the right value)
   217     // So do not put add any asserts on the _pc here.
   218   }
   219   if (younger_frame_adjusted_stack) {
   220     // compute adjustment to this frame's SP made by its interpreted callee
   221     _sp_adjustment_by_callee = (intptr_t*)((intptr_t)younger_sp[I5_savedSP->sp_offset_in_saved_window()] +
   222                                              STACK_BIAS) - sp;
   223   } else {
   224     _sp_adjustment_by_callee = 0;
   225   }
   227   _deopt_state = unknown;
   229   // It is important that frame be fully construct when we do this lookup
   230   // as get_original_pc() needs correct value for unextended_sp()
   231   if (_pc != NULL) {
   232     _cb = CodeCache::find_blob(_pc);
   233     if (_cb != NULL && _cb->is_nmethod() && ((nmethod*)_cb)->is_deopt_pc(_pc)) {
   234       _pc = ((nmethod*)_cb)->get_original_pc(this);
   235       _deopt_state = is_deoptimized;
   236     } else {
   237       _deopt_state = not_deoptimized;
   238     }
   239   }
   240 }
   242 bool frame::is_interpreted_frame() const  {
   243   return Interpreter::contains(pc());
   244 }
   246 // sender_sp
   248 intptr_t* frame::interpreter_frame_sender_sp() const {
   249   assert(is_interpreted_frame(), "interpreted frame expected");
   250   return fp();
   251 }
   253 #ifndef CC_INTERP
   254 void frame::set_interpreter_frame_sender_sp(intptr_t* sender_sp) {
   255   assert(is_interpreted_frame(), "interpreted frame expected");
   256   Unimplemented();
   257 }
   258 #endif // CC_INTERP
   261 #ifdef ASSERT
   262 // Debugging aid
   263 static frame nth_sender(int n) {
   264   frame f = JavaThread::current()->last_frame();
   266   for(int i = 0; i < n; ++i)
   267     f = f.sender((RegisterMap*)NULL);
   269   printf("first frame %d\n",          f.is_first_frame()       ? 1 : 0);
   270   printf("interpreted frame %d\n",    f.is_interpreted_frame() ? 1 : 0);
   271   printf("java frame %d\n",           f.is_java_frame()        ? 1 : 0);
   272   printf("entry frame %d\n",          f.is_entry_frame()       ? 1 : 0);
   273   printf("native frame %d\n",         f.is_native_frame()      ? 1 : 0);
   274   if (f.is_compiled_frame()) {
   275     if (f.is_deoptimized_frame())
   276       printf("deoptimized frame 1\n");
   277     else
   278       printf("compiled frame 1\n");
   279   }
   281   return f;
   282 }
   283 #endif
   286 frame frame::sender_for_entry_frame(RegisterMap *map) const {
   287   assert(map != NULL, "map must be set");
   288   // Java frame called from C; skip all C frames and return top C
   289   // frame of that chunk as the sender
   290   JavaFrameAnchor* jfa = entry_frame_call_wrapper()->anchor();
   291   assert(!entry_frame_is_first(), "next Java fp must be non zero");
   292   assert(jfa->last_Java_sp() > _sp, "must be above this frame on stack");
   293   intptr_t* last_Java_sp = jfa->last_Java_sp();
   294   // Since we are walking the stack now this nested anchor is obviously walkable
   295   // even if it wasn't when it was stacked.
   296   if (!jfa->walkable()) {
   297     // Capture _last_Java_pc (if needed) and mark anchor walkable.
   298     jfa->capture_last_Java_pc(_sp);
   299   }
   300   assert(jfa->last_Java_pc() != NULL, "No captured pc!");
   301   map->clear();
   302   map->make_integer_regs_unsaved();
   303   map->shift_window(last_Java_sp, NULL);
   304   assert(map->include_argument_oops(), "should be set by clear");
   305   return frame(last_Java_sp, frame::unpatchable, jfa->last_Java_pc());
   306 }
   308 frame frame::sender_for_interpreter_frame(RegisterMap *map) const {
   309   ShouldNotCallThis();
   310   return sender(map);
   311 }
   313 frame frame::sender_for_compiled_frame(RegisterMap *map) const {
   314   ShouldNotCallThis();
   315   return sender(map);
   316 }
   318 frame frame::sender(RegisterMap* map) const {
   319   assert(map != NULL, "map must be set");
   321   assert(CodeCache::find_blob_unsafe(_pc) == _cb, "inconsistent");
   323   // Default is not to follow arguments; update it accordingly below
   324   map->set_include_argument_oops(false);
   326   if (is_entry_frame()) return sender_for_entry_frame(map);
   328   intptr_t* younger_sp     = sp();
   329   intptr_t* sp             = sender_sp();
   330   bool      adjusted_stack = false;
   332   // Note:  The version of this operation on any platform with callee-save
   333   //        registers must update the register map (if not null).
   334   //        In order to do this correctly, the various subtypes of
   335   //        of frame (interpreted, compiled, glue, native),
   336   //        must be distinguished.  There is no need on SPARC for
   337   //        such distinctions, because all callee-save registers are
   338   //        preserved for all frames via SPARC-specific mechanisms.
   339   //
   340   //        *** HOWEVER, *** if and when we make any floating-point
   341   //        registers callee-saved, then we will have to copy over
   342   //        the RegisterMap update logic from the Intel code.
   344   // The constructor of the sender must know whether this frame is interpreted so it can set the
   345   // sender's _sp_adjustment_by_callee field.  An osr adapter frame was originally
   346   // interpreted but its pc is in the code cache (for c1 -> osr_frame_return_id stub), so it must be
   347   // explicitly recognized.
   349   adjusted_stack = is_interpreted_frame();
   350   if (adjusted_stack) {
   351     map->make_integer_regs_unsaved();
   352     map->shift_window(sp, younger_sp);
   353   } else if (_cb != NULL) {
   354     // Update the locations of implicitly saved registers to be their
   355     // addresses in the register save area.
   356     // For %o registers, the addresses of %i registers in the next younger
   357     // frame are used.
   358     map->shift_window(sp, younger_sp);
   359     if (map->update_map()) {
   360       // Tell GC to use argument oopmaps for some runtime stubs that need it.
   361       // For C1, the runtime stub might not have oop maps, so set this flag
   362       // outside of update_register_map.
   363       map->set_include_argument_oops(_cb->caller_must_gc_arguments(map->thread()));
   364       if (_cb->oop_maps() != NULL) {
   365         OopMapSet::update_register_map(this, map);
   366       }
   367     }
   368   }
   369   return frame(sp, younger_sp, adjusted_stack);
   370 }
   373 void frame::patch_pc(Thread* thread, address pc) {
   374   if(thread == Thread::current()) {
   375    StubRoutines::Sparc::flush_callers_register_windows_func()();
   376   }
   377   if (TracePcPatching) {
   378     // QQQ this assert is invalid (or too strong anyway) sice _pc could
   379     // be original pc and frame could have the deopt pc.
   380     // assert(_pc == *O7_addr() + pc_return_offset, "frame has wrong pc");
   381     tty->print_cr("patch_pc at address  0x%x [0x%x -> 0x%x] ", O7_addr(), _pc, pc);
   382   }
   383   _cb = CodeCache::find_blob(pc);
   384   *O7_addr() = pc - pc_return_offset;
   385   _cb = CodeCache::find_blob(_pc);
   386   if (_cb != NULL && _cb->is_nmethod() && ((nmethod*)_cb)->is_deopt_pc(_pc)) {
   387     address orig = ((nmethod*)_cb)->get_original_pc(this);
   388     assert(orig == _pc, "expected original to be stored before patching");
   389     _deopt_state = is_deoptimized;
   390   } else {
   391     _deopt_state = not_deoptimized;
   392   }
   393 }
   396 static bool sp_is_valid(intptr_t* old_sp, intptr_t* young_sp, intptr_t* sp) {
   397   return (((intptr_t)sp & (2*wordSize-1)) == 0 &&
   398           sp <= old_sp &&
   399           sp >= young_sp);
   400 }
   403 /*
   404   Find the (biased) sp that is just younger than old_sp starting at sp.
   405   If not found return NULL. Register windows are assumed to be flushed.
   406 */
   407 intptr_t* frame::next_younger_sp_or_null(intptr_t* old_sp, intptr_t* sp) {
   409   intptr_t* previous_sp = NULL;
   410   intptr_t* orig_sp = sp;
   412   int max_frames = (old_sp - sp) / 16; // Minimum frame size is 16
   413   int max_frame2 = max_frames;
   414   while(sp != old_sp && sp_is_valid(old_sp, orig_sp, sp)) {
   415     if (max_frames-- <= 0)
   416       // too many frames have gone by; invalid parameters given to this function
   417       break;
   418     previous_sp = sp;
   419     sp = (intptr_t*)sp[FP->sp_offset_in_saved_window()];
   420     sp = (intptr_t*)((intptr_t)sp + STACK_BIAS);
   421   }
   423   return (sp == old_sp ? previous_sp : NULL);
   424 }
   426 /*
   427   Determine if "sp" is a valid stack pointer. "sp" is assumed to be younger than
   428   "valid_sp". So if "sp" is valid itself then it should be possible to walk frames
   429   from "sp" to "valid_sp". The assumption is that the registers windows for the
   430   thread stack in question are flushed.
   431 */
   432 bool frame::is_valid_stack_pointer(intptr_t* valid_sp, intptr_t* sp) {
   433   return next_younger_sp_or_null(valid_sp, sp) != NULL;
   434 }
   437 bool frame::interpreter_frame_equals_unpacked_fp(intptr_t* fp) {
   438   assert(is_interpreted_frame(), "must be interpreter frame");
   439   return this->fp() == fp;
   440 }
   443 void frame::pd_gc_epilog() {
   444   if (is_interpreted_frame()) {
   445     // set constant pool cache entry for interpreter
   446     methodOop m = interpreter_frame_method();
   448     *interpreter_frame_cpoolcache_addr() = m->constants()->cache();
   449   }
   450 }
   453 bool frame::is_interpreted_frame_valid() const {
   454 #ifdef CC_INTERP
   455   // Is there anything to do?
   456 #else
   457   assert(is_interpreted_frame(), "Not an interpreted frame");
   458   // These are reasonable sanity checks
   459   if (fp() == 0 || (intptr_t(fp()) & (2*wordSize-1)) != 0) {
   460     return false;
   461   }
   462   if (sp() == 0 || (intptr_t(sp()) & (2*wordSize-1)) != 0) {
   463     return false;
   464   }
   465   const intptr_t interpreter_frame_initial_sp_offset = interpreter_frame_vm_local_words;
   466   if (fp() + interpreter_frame_initial_sp_offset < sp()) {
   467     return false;
   468   }
   469   // These are hacks to keep us out of trouble.
   470   // The problem with these is that they mask other problems
   471   if (fp() <= sp()) {        // this attempts to deal with unsigned comparison above
   472     return false;
   473   }
   474   if (fp() - sp() > 4096) {  // stack frames shouldn't be large.
   475     return false;
   476   }
   477 #endif /* CC_INTERP */
   478   return true;
   479 }
   482 // Windows have been flushed on entry (but not marked). Capture the pc that
   483 // is the return address to the frame that contains "sp" as its stack pointer.
   484 // This pc resides in the called of the frame corresponding to "sp".
   485 // As a side effect we mark this JavaFrameAnchor as having flushed the windows.
   486 // This side effect lets us mark stacked JavaFrameAnchors (stacked in the
   487 // call_helper) as flushed when we have flushed the windows for the most
   488 // recent (i.e. current) JavaFrameAnchor. This saves useless flushing calls
   489 // and lets us find the pc just once rather than multiple times as it did
   490 // in the bad old _post_Java_state days.
   491 //
   492 void JavaFrameAnchor::capture_last_Java_pc(intptr_t* sp) {
   493   if (last_Java_sp() != NULL && last_Java_pc() == NULL) {
   494     // try and find the sp just younger than _last_Java_sp
   495     intptr_t* _post_Java_sp = frame::next_younger_sp_or_null(last_Java_sp(), sp);
   496     // Really this should never fail otherwise VM call must have non-standard
   497     // frame linkage (bad) or stack is not properly flushed (worse).
   498     guarantee(_post_Java_sp != NULL, "bad stack!");
   499     _last_Java_pc = (address) _post_Java_sp[ I7->sp_offset_in_saved_window()] + frame::pc_return_offset;
   501   }
   502   set_window_flushed();
   503 }
   505 void JavaFrameAnchor::make_walkable(JavaThread* thread) {
   506   if (walkable()) return;
   507   // Eventually make an assert
   508   guarantee(Thread::current() == (Thread*)thread, "only current thread can flush its registers");
   509   // We always flush in case the profiler wants it but we won't mark
   510   // the windows as flushed unless we have a last_Java_frame
   511   intptr_t* sp = StubRoutines::Sparc::flush_callers_register_windows_func()();
   512   if (last_Java_sp() != NULL ) {
   513     capture_last_Java_pc(sp);
   514   }
   515 }
   517 intptr_t* frame::entry_frame_argument_at(int offset) const {
   518   // convert offset to index to deal with tsi
   519   int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize);
   521   intptr_t* LSP = (intptr_t*) sp()[Lentry_args->sp_offset_in_saved_window()];
   522   return &LSP[index+1];
   523 }
   526 BasicType frame::interpreter_frame_result(oop* oop_result, jvalue* value_result) {
   527   assert(is_interpreted_frame(), "interpreted frame expected");
   528   methodOop method = interpreter_frame_method();
   529   BasicType type = method->result_type();
   531   if (method->is_native()) {
   532     // Prior to notifying the runtime of the method_exit the possible result
   533     // value is saved to l_scratch and d_scratch.
   535 #ifdef CC_INTERP
   536     interpreterState istate = get_interpreterState();
   537     intptr_t* l_scratch = (intptr_t*) &istate->_native_lresult;
   538     intptr_t* d_scratch = (intptr_t*) &istate->_native_fresult;
   539 #else /* CC_INTERP */
   540     intptr_t* l_scratch = fp() + interpreter_frame_l_scratch_fp_offset;
   541     intptr_t* d_scratch = fp() + interpreter_frame_d_scratch_fp_offset;
   542 #endif /* CC_INTERP */
   544     address l_addr = (address)l_scratch;
   545 #ifdef _LP64
   546     // On 64-bit the result for 1/8/16/32-bit result types is in the other
   547     // word half
   548     l_addr += wordSize/2;
   549 #endif
   551     switch (type) {
   552       case T_OBJECT:
   553       case T_ARRAY: {
   554 #ifdef CC_INTERP
   555         *oop_result = istate->_oop_temp;
   556 #else
   557         oop obj = (oop) at(interpreter_frame_oop_temp_offset);
   558         assert(obj == NULL || Universe::heap()->is_in(obj), "sanity check");
   559         *oop_result = obj;
   560 #endif // CC_INTERP
   561         break;
   562       }
   564       case T_BOOLEAN : { jint* p = (jint*)l_addr; value_result->z = (jboolean)((*p) & 0x1); break; }
   565       case T_BYTE    : { jint* p = (jint*)l_addr; value_result->b = (jbyte)((*p) & 0xff); break; }
   566       case T_CHAR    : { jint* p = (jint*)l_addr; value_result->c = (jchar)((*p) & 0xffff); break; }
   567       case T_SHORT   : { jint* p = (jint*)l_addr; value_result->s = (jshort)((*p) & 0xffff); break; }
   568       case T_INT     : value_result->i = *(jint*)l_addr; break;
   569       case T_LONG    : value_result->j = *(jlong*)l_scratch; break;
   570       case T_FLOAT   : value_result->f = *(jfloat*)d_scratch; break;
   571       case T_DOUBLE  : value_result->d = *(jdouble*)d_scratch; break;
   572       case T_VOID    : /* Nothing to do */ break;
   573       default        : ShouldNotReachHere();
   574     }
   575   } else {
   576     intptr_t* tos_addr = interpreter_frame_tos_address();
   578     switch(type) {
   579       case T_OBJECT:
   580       case T_ARRAY: {
   581         oop obj = (oop)*tos_addr;
   582         assert(obj == NULL || Universe::heap()->is_in(obj), "sanity check");
   583         *oop_result = obj;
   584         break;
   585       }
   586       case T_BOOLEAN : { jint* p = (jint*)tos_addr; value_result->z = (jboolean)((*p) & 0x1); break; }
   587       case T_BYTE    : { jint* p = (jint*)tos_addr; value_result->b = (jbyte)((*p) & 0xff); break; }
   588       case T_CHAR    : { jint* p = (jint*)tos_addr; value_result->c = (jchar)((*p) & 0xffff); break; }
   589       case T_SHORT   : { jint* p = (jint*)tos_addr; value_result->s = (jshort)((*p) & 0xffff); break; }
   590       case T_INT     : value_result->i = *(jint*)tos_addr; break;
   591       case T_LONG    : value_result->j = *(jlong*)tos_addr; break;
   592       case T_FLOAT   : value_result->f = *(jfloat*)tos_addr; break;
   593       case T_DOUBLE  : value_result->d = *(jdouble*)tos_addr; break;
   594       case T_VOID    : /* Nothing to do */ break;
   595       default        : ShouldNotReachHere();
   596     }
   597   };
   599   return type;
   600 }
   602 // Lesp pointer is one word lower than the top item on the stack.
   603 intptr_t* frame::interpreter_frame_tos_at(jint offset) const {
   604   int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize) - 1;
   605   return &interpreter_frame_tos_address()[index];
   606 }

mercurial