src/cpu/sparc/vm/sparc.ad

Mon, 27 Aug 2012 15:17:17 -0700

author
twisti
date
Mon, 27 Aug 2012 15:17:17 -0700
changeset 4020
a5dd6e3ef9f3
parent 3882
8c92982cbbc4
child 4037
da91efe96a93
permissions
-rw-r--r--

6677625: Move platform specific flags from globals.hpp to globals_<arch>.hpp
Reviewed-by: kvn, dholmes, coleenp
Contributed-by: Tao Mao <tao.mao@oracle.com>

     1 //
     2 // Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
     3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4 //
     5 // This code is free software; you can redistribute it and/or modify it
     6 // under the terms of the GNU General Public License version 2 only, as
     7 // published by the Free Software Foundation.
     8 //
     9 // This code is distributed in the hope that it will be useful, but WITHOUT
    10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12 // version 2 for more details (a copy is included in the LICENSE file that
    13 // accompanied this code).
    14 //
    15 // You should have received a copy of the GNU General Public License version
    16 // 2 along with this work; if not, write to the Free Software Foundation,
    17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18 //
    19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20 // or visit www.oracle.com if you need additional information or have any
    21 // questions.
    22 //
    23 //
    25 // SPARC Architecture Description File
    27 //----------REGISTER DEFINITION BLOCK------------------------------------------
    28 // This information is used by the matcher and the register allocator to
    29 // describe individual registers and classes of registers within the target
    30 // archtecture.
    31 register %{
    32 //----------Architecture Description Register Definitions----------------------
    33 // General Registers
    34 // "reg_def"  name ( register save type, C convention save type,
    35 //                   ideal register type, encoding, vm name );
    36 // Register Save Types:
    37 //
    38 // NS  = No-Save:       The register allocator assumes that these registers
    39 //                      can be used without saving upon entry to the method, &
    40 //                      that they do not need to be saved at call sites.
    41 //
    42 // SOC = Save-On-Call:  The register allocator assumes that these registers
    43 //                      can be used without saving upon entry to the method,
    44 //                      but that they must be saved at call sites.
    45 //
    46 // SOE = Save-On-Entry: The register allocator assumes that these registers
    47 //                      must be saved before using them upon entry to the
    48 //                      method, but they do not need to be saved at call
    49 //                      sites.
    50 //
    51 // AS  = Always-Save:   The register allocator assumes that these registers
    52 //                      must be saved before using them upon entry to the
    53 //                      method, & that they must be saved at call sites.
    54 //
    55 // Ideal Register Type is used to determine how to save & restore a
    56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
    58 //
    59 // The encoding number is the actual bit-pattern placed into the opcodes.
    62 // ----------------------------
    63 // Integer/Long Registers
    64 // ----------------------------
    66 // Need to expose the hi/lo aspect of 64-bit registers
    67 // This register set is used for both the 64-bit build and
    68 // the 32-bit build with 1-register longs.
    70 // Global Registers 0-7
    71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
    72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
    73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
    74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
    75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
    76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
    77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
    78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
    79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
    80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
    81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
    82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
    83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
    84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
    85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
    86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
    88 // Output Registers 0-7
    89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
    90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
    91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
    92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
    93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
    94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
    95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
    96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
    97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
    98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
    99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
   100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
   101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
   102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
   103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
   104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
   106 // Local Registers 0-7
   107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
   108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
   109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
   110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
   111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
   112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
   113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
   114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
   115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
   116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
   117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
   118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
   119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
   120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
   121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
   122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
   124 // Input Registers 0-7
   125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
   126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
   127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
   128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
   129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
   130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
   131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
   132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
   133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
   134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
   135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
   136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
   137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
   138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
   139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
   140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
   142 // ----------------------------
   143 // Float/Double Registers
   144 // ----------------------------
   146 // Float Registers
   147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
   148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
   149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
   150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
   151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
   152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
   153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
   154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
   155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
   156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
   157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
   158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
   159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
   160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
   161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
   162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
   163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
   164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
   165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
   166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
   167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
   168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
   169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
   170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
   171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
   172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
   173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
   174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
   175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
   176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
   177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
   178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
   180 // Double Registers
   181 // The rules of ADL require that double registers be defined in pairs.
   182 // Each pair must be two 32-bit values, but not necessarily a pair of
   183 // single float registers.  In each pair, ADLC-assigned register numbers
   184 // must be adjacent, with the lower number even.  Finally, when the
   185 // CPU stores such a register pair to memory, the word associated with
   186 // the lower ADLC-assigned number must be stored to the lower address.
   188 // These definitions specify the actual bit encodings of the sparc
   189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
   190 // wants 0-63, so we have to convert every time we want to use fp regs
   191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
   192 // 255 is a flag meaning "don't go here".
   193 // I believe we can't handle callee-save doubles D32 and up until
   194 // the place in the sparc stack crawler that asserts on the 255 is
   195 // fixed up.
   196 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg());
   197 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg()->next());
   198 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg());
   199 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg()->next());
   200 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg());
   201 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg()->next());
   202 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg());
   203 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg()->next());
   204 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg());
   205 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg()->next());
   206 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg());
   207 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg()->next());
   208 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg());
   209 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg()->next());
   210 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg());
   211 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg()->next());
   212 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg());
   213 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg()->next());
   214 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg());
   215 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg()->next());
   216 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg());
   217 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg()->next());
   218 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg());
   219 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg()->next());
   220 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg());
   221 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg()->next());
   222 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg());
   223 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg()->next());
   224 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg());
   225 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg()->next());
   226 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg());
   227 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg()->next());
   230 // ----------------------------
   231 // Special Registers
   232 // Condition Codes Flag Registers
   233 // I tried to break out ICC and XCC but it's not very pretty.
   234 // Every Sparc instruction which defs/kills one also kills the other.
   235 // Hence every compare instruction which defs one kind of flags ends
   236 // up needing a kill of the other.
   237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
   241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
   242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
   244 // ----------------------------
   245 // Specify the enum values for the registers.  These enums are only used by the
   246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
   247 // for visibility to the rest of the vm. The order of this enum influences the
   248 // register allocator so having the freedom to set this order and not be stuck
   249 // with the order that is natural for the rest of the vm is worth it.
   250 alloc_class chunk0(
   251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
   252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
   253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
   254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
   256 // Note that a register is not allocatable unless it is also mentioned
   257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
   259 alloc_class chunk1(
   260   // The first registers listed here are those most likely to be used
   261   // as temporaries.  We move F0..F7 away from the front of the list,
   262   // to reduce the likelihood of interferences with parameters and
   263   // return values.  Likewise, we avoid using F0/F1 for parameters,
   264   // since they are used for return values.
   265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
   266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
   268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
   269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
   270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
   271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
   273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
   275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
   277 //----------Architecture Description Register Classes--------------------------
   278 // Several register classes are automatically defined based upon information in
   279 // this architecture description.
   280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
   281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
   282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   283 //
   285 // G0 is not included in integer class since it has special meaning.
   286 reg_class g0_reg(R_G0);
   288 // ----------------------------
   289 // Integer Register Classes
   290 // ----------------------------
   291 // Exclusions from i_reg:
   292 // R_G0: hardwired zero
   293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
   294 // R_G6: reserved by Solaris ABI to tools
   295 // R_G7: reserved by Solaris ABI to libthread
   296 // R_O7: Used as a temp in many encodings
   297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   299 // Class for all integer registers, except the G registers.  This is used for
   300 // encodings which use G registers as temps.  The regular inputs to such
   301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
   302 // will not put an input into a temp register.
   303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   305 reg_class g1_regI(R_G1);
   306 reg_class g3_regI(R_G3);
   307 reg_class g4_regI(R_G4);
   308 reg_class o0_regI(R_O0);
   309 reg_class o7_regI(R_O7);
   311 // ----------------------------
   312 // Pointer Register Classes
   313 // ----------------------------
   314 #ifdef _LP64
   315 // 64-bit build means 64-bit pointers means hi/lo pairs
   316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   320 // Lock encodings use G3 and G4 internally
   321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
   322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   325 // Special class for storeP instructions, which can store SP or RPC to TLS.
   326 // It is also used for memory addressing, allowing direct TLS addressing.
   327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
   329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
   331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   332 // We use it to save R_G2 across calls out of Java.
   333 reg_class l7_regP(R_L7H,R_L7);
   335 // Other special pointer regs
   336 reg_class g1_regP(R_G1H,R_G1);
   337 reg_class g2_regP(R_G2H,R_G2);
   338 reg_class g3_regP(R_G3H,R_G3);
   339 reg_class g4_regP(R_G4H,R_G4);
   340 reg_class g5_regP(R_G5H,R_G5);
   341 reg_class i0_regP(R_I0H,R_I0);
   342 reg_class o0_regP(R_O0H,R_O0);
   343 reg_class o1_regP(R_O1H,R_O1);
   344 reg_class o2_regP(R_O2H,R_O2);
   345 reg_class o7_regP(R_O7H,R_O7);
   347 #else // _LP64
   348 // 32-bit build means 32-bit pointers means 1 register.
   349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
   350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   353 // Lock encodings use G3 and G4 internally
   354 reg_class lock_ptr_reg(R_G1,               R_G5,
   355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   358 // Special class for storeP instructions, which can store SP or RPC to TLS.
   359 // It is also used for memory addressing, allowing direct TLS addressing.
   360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
   361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
   362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
   364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   365 // We use it to save R_G2 across calls out of Java.
   366 reg_class l7_regP(R_L7);
   368 // Other special pointer regs
   369 reg_class g1_regP(R_G1);
   370 reg_class g2_regP(R_G2);
   371 reg_class g3_regP(R_G3);
   372 reg_class g4_regP(R_G4);
   373 reg_class g5_regP(R_G5);
   374 reg_class i0_regP(R_I0);
   375 reg_class o0_regP(R_O0);
   376 reg_class o1_regP(R_O1);
   377 reg_class o2_regP(R_O2);
   378 reg_class o7_regP(R_O7);
   379 #endif // _LP64
   382 // ----------------------------
   383 // Long Register Classes
   384 // ----------------------------
   385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
   386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
   387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
   388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
   389 #ifdef _LP64
   390 // 64-bit, longs in 1 register: use all 64-bit integer registers
   391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
   392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
   393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
   394 #endif // _LP64
   395                   );
   397 reg_class g1_regL(R_G1H,R_G1);
   398 reg_class g3_regL(R_G3H,R_G3);
   399 reg_class o2_regL(R_O2H,R_O2);
   400 reg_class o7_regL(R_O7H,R_O7);
   402 // ----------------------------
   403 // Special Class for Condition Code Flags Register
   404 reg_class int_flags(CCR);
   405 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
   406 reg_class float_flag0(FCC0);
   409 // ----------------------------
   410 // Float Point Register Classes
   411 // ----------------------------
   412 // Skip F30/F31, they are reserved for mem-mem copies
   413 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
   415 // Paired floating point registers--they show up in the same order as the floats,
   416 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   417 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   418                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
   419                    /* Use extra V9 double registers; this AD file does not support V8 */
   420                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   421                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
   422                    );
   424 // Paired floating point registers--they show up in the same order as the floats,
   425 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   426 // This class is usable for mis-aligned loads as happen in I2C adapters.
   427 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   428                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
   429 %}
   431 //----------DEFINITION BLOCK---------------------------------------------------
   432 // Define name --> value mappings to inform the ADLC of an integer valued name
   433 // Current support includes integer values in the range [0, 0x7FFFFFFF]
   434 // Format:
   435 //        int_def  <name>         ( <int_value>, <expression>);
   436 // Generated Code in ad_<arch>.hpp
   437 //        #define  <name>   (<expression>)
   438 //        // value == <int_value>
   439 // Generated code in ad_<arch>.cpp adlc_verification()
   440 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
   441 //
   442 definitions %{
   443 // The default cost (of an ALU instruction).
   444   int_def DEFAULT_COST      (    100,     100);
   445   int_def HUGE_COST         (1000000, 1000000);
   447 // Memory refs are twice as expensive as run-of-the-mill.
   448   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
   450 // Branches are even more expensive.
   451   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
   452   int_def CALL_COST         (    300, DEFAULT_COST * 3);
   453 %}
   456 //----------SOURCE BLOCK-------------------------------------------------------
   457 // This is a block of C++ code which provides values, functions, and
   458 // definitions necessary in the rest of the architecture description
   459 source_hpp %{
   460 // Must be visible to the DFA in dfa_sparc.cpp
   461 extern bool can_branch_register( Node *bol, Node *cmp );
   463 extern bool use_block_zeroing(Node* count);
   465 // Macros to extract hi & lo halves from a long pair.
   466 // G0 is not part of any long pair, so assert on that.
   467 // Prevents accidentally using G1 instead of G0.
   468 #define LONG_HI_REG(x) (x)
   469 #define LONG_LO_REG(x) (x)
   471 %}
   473 source %{
   474 #define __ _masm.
   476 // tertiary op of a LoadP or StoreP encoding
   477 #define REGP_OP true
   479 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
   480 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
   481 static Register reg_to_register_object(int register_encoding);
   483 // Used by the DFA in dfa_sparc.cpp.
   484 // Check for being able to use a V9 branch-on-register.  Requires a
   485 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
   486 // extended.  Doesn't work following an integer ADD, for example, because of
   487 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
   488 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
   489 // replace them with zero, which could become sign-extension in a different OS
   490 // release.  There's no obvious reason why an interrupt will ever fill these
   491 // bits with non-zero junk (the registers are reloaded with standard LD
   492 // instructions which either zero-fill or sign-fill).
   493 bool can_branch_register( Node *bol, Node *cmp ) {
   494   if( !BranchOnRegister ) return false;
   495 #ifdef _LP64
   496   if( cmp->Opcode() == Op_CmpP )
   497     return true;  // No problems with pointer compares
   498 #endif
   499   if( cmp->Opcode() == Op_CmpL )
   500     return true;  // No problems with long compares
   502   if( !SparcV9RegsHiBitsZero ) return false;
   503   if( bol->as_Bool()->_test._test != BoolTest::ne &&
   504       bol->as_Bool()->_test._test != BoolTest::eq )
   505      return false;
   507   // Check for comparing against a 'safe' value.  Any operation which
   508   // clears out the high word is safe.  Thus, loads and certain shifts
   509   // are safe, as are non-negative constants.  Any operation which
   510   // preserves zero bits in the high word is safe as long as each of its
   511   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
   512   // inputs are safe.  At present, the only important case to recognize
   513   // seems to be loads.  Constants should fold away, and shifts &
   514   // logicals can use the 'cc' forms.
   515   Node *x = cmp->in(1);
   516   if( x->is_Load() ) return true;
   517   if( x->is_Phi() ) {
   518     for( uint i = 1; i < x->req(); i++ )
   519       if( !x->in(i)->is_Load() )
   520         return false;
   521     return true;
   522   }
   523   return false;
   524 }
   526 bool use_block_zeroing(Node* count) {
   527   // Use BIS for zeroing if count is not constant
   528   // or it is >= BlockZeroingLowLimit.
   529   return UseBlockZeroing && (count->find_intptr_t_con(BlockZeroingLowLimit) >= BlockZeroingLowLimit);
   530 }
   532 // ****************************************************************************
   534 // REQUIRED FUNCTIONALITY
   536 // !!!!! Special hack to get all type of calls to specify the byte offset
   537 //       from the start of the call to the point where the return address
   538 //       will point.
   539 //       The "return address" is the address of the call instruction, plus 8.
   541 int MachCallStaticJavaNode::ret_addr_offset() {
   542   int offset = NativeCall::instruction_size;  // call; delay slot
   543   if (_method_handle_invoke)
   544     offset += 4;  // restore SP
   545   return offset;
   546 }
   548 int MachCallDynamicJavaNode::ret_addr_offset() {
   549   int vtable_index = this->_vtable_index;
   550   if (vtable_index < 0) {
   551     // must be invalid_vtable_index, not nonvirtual_vtable_index
   552     assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
   553     return (NativeMovConstReg::instruction_size +
   554            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
   555   } else {
   556     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
   557     int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
   558     int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
   559     int klass_load_size;
   560     if (UseCompressedOops) {
   561       assert(Universe::heap() != NULL, "java heap should be initialized");
   562       if (Universe::narrow_oop_base() == NULL)
   563         klass_load_size = 2*BytesPerInstWord; // see MacroAssembler::load_klass()
   564       else
   565         klass_load_size = 3*BytesPerInstWord;
   566     } else {
   567       klass_load_size = 1*BytesPerInstWord;
   568     }
   569     if (Assembler::is_simm13(v_off)) {
   570       return klass_load_size +
   571              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
   572              NativeCall::instruction_size);  // call; delay slot
   573     } else {
   574       return klass_load_size +
   575              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
   576              NativeCall::instruction_size);  // call; delay slot
   577     }
   578   }
   579 }
   581 int MachCallRuntimeNode::ret_addr_offset() {
   582 #ifdef _LP64
   583   if (MacroAssembler::is_far_target(entry_point())) {
   584     return NativeFarCall::instruction_size;
   585   } else {
   586     return NativeCall::instruction_size;
   587   }
   588 #else
   589   return NativeCall::instruction_size;  // call; delay slot
   590 #endif
   591 }
   593 // Indicate if the safepoint node needs the polling page as an input.
   594 // Since Sparc does not have absolute addressing, it does.
   595 bool SafePointNode::needs_polling_address_input() {
   596   return true;
   597 }
   599 // emit an interrupt that is caught by the debugger (for debugging compiler)
   600 void emit_break(CodeBuffer &cbuf) {
   601   MacroAssembler _masm(&cbuf);
   602   __ breakpoint_trap();
   603 }
   605 #ifndef PRODUCT
   606 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
   607   st->print("TA");
   608 }
   609 #endif
   611 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   612   emit_break(cbuf);
   613 }
   615 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
   616   return MachNode::size(ra_);
   617 }
   619 // Traceable jump
   620 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
   621   MacroAssembler _masm(&cbuf);
   622   Register rdest = reg_to_register_object(jump_target);
   623   __ JMP(rdest, 0);
   624   __ delayed()->nop();
   625 }
   627 // Traceable jump and set exception pc
   628 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
   629   MacroAssembler _masm(&cbuf);
   630   Register rdest = reg_to_register_object(jump_target);
   631   __ JMP(rdest, 0);
   632   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
   633 }
   635 void emit_nop(CodeBuffer &cbuf) {
   636   MacroAssembler _masm(&cbuf);
   637   __ nop();
   638 }
   640 void emit_illtrap(CodeBuffer &cbuf) {
   641   MacroAssembler _masm(&cbuf);
   642   __ illtrap(0);
   643 }
   646 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
   647   assert(n->rule() != loadUB_rule, "");
   649   intptr_t offset = 0;
   650   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
   651   const Node* addr = n->get_base_and_disp(offset, adr_type);
   652   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
   653   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
   654   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   655   atype = atype->add_offset(offset);
   656   assert(disp32 == offset, "wrong disp32");
   657   return atype->_offset;
   658 }
   661 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
   662   assert(n->rule() != loadUB_rule, "");
   664   intptr_t offset = 0;
   665   Node* addr = n->in(2);
   666   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   667   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
   668     Node* a = addr->in(2/*AddPNode::Address*/);
   669     Node* o = addr->in(3/*AddPNode::Offset*/);
   670     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
   671     atype = a->bottom_type()->is_ptr()->add_offset(offset);
   672     assert(atype->isa_oop_ptr(), "still an oop");
   673   }
   674   offset = atype->is_ptr()->_offset;
   675   if (offset != Type::OffsetBot)  offset += disp32;
   676   return offset;
   677 }
   679 static inline jdouble replicate_immI(int con, int count, int width) {
   680   // Load a constant replicated "count" times with width "width"
   681   assert(count*width == 8 && width <= 4, "sanity");
   682   int bit_width = width * 8;
   683   jlong val = con;
   684   val &= (((jlong) 1) << bit_width) - 1;  // mask off sign bits
   685   for (int i = 0; i < count - 1; i++) {
   686     val |= (val << bit_width);
   687   }
   688   jdouble dval = *((jdouble*) &val);  // coerce to double type
   689   return dval;
   690 }
   692 static inline jdouble replicate_immF(float con) {
   693   // Replicate float con 2 times and pack into vector.
   694   int val = *((int*)&con);
   695   jlong lval = val;
   696   lval = (lval << 32) | (lval & 0xFFFFFFFFl);
   697   jdouble dval = *((jdouble*) &lval);  // coerce to double type
   698   return dval;
   699 }
   701 // Standard Sparc opcode form2 field breakdown
   702 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
   703   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
   704   int op = (f30 << 30) |
   705            (f29 << 29) |
   706            (f25 << 25) |
   707            (f22 << 22) |
   708            (f20 << 20) |
   709            (f19 << 19) |
   710            (f0  <<  0);
   711   cbuf.insts()->emit_int32(op);
   712 }
   714 // Standard Sparc opcode form2 field breakdown
   715 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
   716   f0 >>= 10;           // Drop 10 bits
   717   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
   718   int op = (f30 << 30) |
   719            (f25 << 25) |
   720            (f22 << 22) |
   721            (f0  <<  0);
   722   cbuf.insts()->emit_int32(op);
   723 }
   725 // Standard Sparc opcode form3 field breakdown
   726 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
   727   int op = (f30 << 30) |
   728            (f25 << 25) |
   729            (f19 << 19) |
   730            (f14 << 14) |
   731            (f5  <<  5) |
   732            (f0  <<  0);
   733   cbuf.insts()->emit_int32(op);
   734 }
   736 // Standard Sparc opcode form3 field breakdown
   737 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
   738   simm13 &= (1<<13)-1; // Mask to 13 bits
   739   int op = (f30 << 30) |
   740            (f25 << 25) |
   741            (f19 << 19) |
   742            (f14 << 14) |
   743            (1   << 13) | // bit to indicate immediate-mode
   744            (simm13<<0);
   745   cbuf.insts()->emit_int32(op);
   746 }
   748 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
   749   simm10 &= (1<<10)-1; // Mask to 10 bits
   750   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
   751 }
   753 #ifdef ASSERT
   754 // Helper function for VerifyOops in emit_form3_mem_reg
   755 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
   756   warning("VerifyOops encountered unexpected instruction:");
   757   n->dump(2);
   758   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
   759 }
   760 #endif
   763 void emit_form3_mem_reg(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
   764                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
   766 #ifdef ASSERT
   767   // The following code implements the +VerifyOops feature.
   768   // It verifies oop values which are loaded into or stored out of
   769   // the current method activation.  +VerifyOops complements techniques
   770   // like ScavengeALot, because it eagerly inspects oops in transit,
   771   // as they enter or leave the stack, as opposed to ScavengeALot,
   772   // which inspects oops "at rest", in the stack or heap, at safepoints.
   773   // For this reason, +VerifyOops can sometimes detect bugs very close
   774   // to their point of creation.  It can also serve as a cross-check
   775   // on the validity of oop maps, when used toegether with ScavengeALot.
   777   // It would be good to verify oops at other points, especially
   778   // when an oop is used as a base pointer for a load or store.
   779   // This is presently difficult, because it is hard to know when
   780   // a base address is biased or not.  (If we had such information,
   781   // it would be easy and useful to make a two-argument version of
   782   // verify_oop which unbiases the base, and performs verification.)
   784   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
   785   bool is_verified_oop_base  = false;
   786   bool is_verified_oop_load  = false;
   787   bool is_verified_oop_store = false;
   788   int tmp_enc = -1;
   789   if (VerifyOops && src1_enc != R_SP_enc) {
   790     // classify the op, mainly for an assert check
   791     int st_op = 0, ld_op = 0;
   792     switch (primary) {
   793     case Assembler::stb_op3:  st_op = Op_StoreB; break;
   794     case Assembler::sth_op3:  st_op = Op_StoreC; break;
   795     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
   796     case Assembler::stw_op3:  st_op = Op_StoreI; break;
   797     case Assembler::std_op3:  st_op = Op_StoreL; break;
   798     case Assembler::stf_op3:  st_op = Op_StoreF; break;
   799     case Assembler::stdf_op3: st_op = Op_StoreD; break;
   801     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
   802     case Assembler::ldub_op3: ld_op = Op_LoadUB; break;
   803     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
   804     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
   805     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
   806     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
   807     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
   808     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
   809     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
   810     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
   811     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
   813     default: ShouldNotReachHere();
   814     }
   815     if (tertiary == REGP_OP) {
   816       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
   817       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
   818       else                          ShouldNotReachHere();
   819       if (st_op) {
   820         // a store
   821         // inputs are (0:control, 1:memory, 2:address, 3:value)
   822         Node* n2 = n->in(3);
   823         if (n2 != NULL) {
   824           const Type* t = n2->bottom_type();
   825           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   826         }
   827       } else {
   828         // a load
   829         const Type* t = n->bottom_type();
   830         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   831       }
   832     }
   834     if (ld_op) {
   835       // a Load
   836       // inputs are (0:control, 1:memory, 2:address)
   837       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
   838           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
   839           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
   840           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
   841           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
   842           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
   843           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
   844           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
   845           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
   846           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
   847           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
   848           !(n->ideal_Opcode()==Op_PrefetchRead  && ld_op==Op_LoadI) &&
   849           !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
   850           !(n->ideal_Opcode()==Op_PrefetchAllocation && ld_op==Op_LoadI) &&
   851           !(n->ideal_Opcode()==Op_LoadVector && ld_op==Op_LoadD) &&
   852           !(n->rule() == loadUB_rule)) {
   853         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
   854       }
   855     } else if (st_op) {
   856       // a Store
   857       // inputs are (0:control, 1:memory, 2:address, 3:value)
   858       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
   859           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
   860           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
   861           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
   862           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
   863           !(n->ideal_Opcode()==Op_StoreVector && st_op==Op_StoreD) &&
   864           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
   865         verify_oops_warning(n, n->ideal_Opcode(), st_op);
   866       }
   867     }
   869     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
   870       Node* addr = n->in(2);
   871       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
   872         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
   873         if (atype != NULL) {
   874           intptr_t offset = get_offset_from_base(n, atype, disp32);
   875           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
   876           if (offset != offset_2) {
   877             get_offset_from_base(n, atype, disp32);
   878             get_offset_from_base_2(n, atype, disp32);
   879           }
   880           assert(offset == offset_2, "different offsets");
   881           if (offset == disp32) {
   882             // we now know that src1 is a true oop pointer
   883             is_verified_oop_base = true;
   884             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
   885               if( primary == Assembler::ldd_op3 ) {
   886                 is_verified_oop_base = false; // Cannot 'ldd' into O7
   887               } else {
   888                 tmp_enc = dst_enc;
   889                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
   890                 assert(src1_enc != dst_enc, "");
   891               }
   892             }
   893           }
   894           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
   895                        || offset == oopDesc::mark_offset_in_bytes())) {
   896                       // loading the mark should not be allowed either, but
   897                       // we don't check this since it conflicts with InlineObjectHash
   898                       // usage of LoadINode to get the mark. We could keep the
   899                       // check if we create a new LoadMarkNode
   900             // but do not verify the object before its header is initialized
   901             ShouldNotReachHere();
   902           }
   903         }
   904       }
   905     }
   906   }
   907 #endif
   909   uint instr;
   910   instr = (Assembler::ldst_op << 30)
   911         | (dst_enc        << 25)
   912         | (primary        << 19)
   913         | (src1_enc       << 14);
   915   uint index = src2_enc;
   916   int disp = disp32;
   918   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
   919     disp += STACK_BIAS;
   921   // We should have a compiler bailout here rather than a guarantee.
   922   // Better yet would be some mechanism to handle variable-size matches correctly.
   923   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
   925   if( disp == 0 ) {
   926     // use reg-reg form
   927     // bit 13 is already zero
   928     instr |= index;
   929   } else {
   930     // use reg-imm form
   931     instr |= 0x00002000;          // set bit 13 to one
   932     instr |= disp & 0x1FFF;
   933   }
   935   cbuf.insts()->emit_int32(instr);
   937 #ifdef ASSERT
   938   {
   939     MacroAssembler _masm(&cbuf);
   940     if (is_verified_oop_base) {
   941       __ verify_oop(reg_to_register_object(src1_enc));
   942     }
   943     if (is_verified_oop_store) {
   944       __ verify_oop(reg_to_register_object(dst_enc));
   945     }
   946     if (tmp_enc != -1) {
   947       __ mov(O7, reg_to_register_object(tmp_enc));
   948     }
   949     if (is_verified_oop_load) {
   950       __ verify_oop(reg_to_register_object(dst_enc));
   951     }
   952   }
   953 #endif
   954 }
   956 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false) {
   957   // The method which records debug information at every safepoint
   958   // expects the call to be the first instruction in the snippet as
   959   // it creates a PcDesc structure which tracks the offset of a call
   960   // from the start of the codeBlob. This offset is computed as
   961   // code_end() - code_begin() of the code which has been emitted
   962   // so far.
   963   // In this particular case we have skirted around the problem by
   964   // putting the "mov" instruction in the delay slot but the problem
   965   // may bite us again at some other point and a cleaner/generic
   966   // solution using relocations would be needed.
   967   MacroAssembler _masm(&cbuf);
   968   __ set_inst_mark();
   970   // We flush the current window just so that there is a valid stack copy
   971   // the fact that the current window becomes active again instantly is
   972   // not a problem there is nothing live in it.
   974 #ifdef ASSERT
   975   int startpos = __ offset();
   976 #endif /* ASSERT */
   978   __ call((address)entry_point, rtype);
   980   if (preserve_g2)   __ delayed()->mov(G2, L7);
   981   else __ delayed()->nop();
   983   if (preserve_g2)   __ mov(L7, G2);
   985 #ifdef ASSERT
   986   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
   987 #ifdef _LP64
   988     // Trash argument dump slots.
   989     __ set(0xb0b8ac0db0b8ac0d, G1);
   990     __ mov(G1, G5);
   991     __ stx(G1, SP, STACK_BIAS + 0x80);
   992     __ stx(G1, SP, STACK_BIAS + 0x88);
   993     __ stx(G1, SP, STACK_BIAS + 0x90);
   994     __ stx(G1, SP, STACK_BIAS + 0x98);
   995     __ stx(G1, SP, STACK_BIAS + 0xA0);
   996     __ stx(G1, SP, STACK_BIAS + 0xA8);
   997 #else // _LP64
   998     // this is also a native call, so smash the first 7 stack locations,
   999     // and the various registers
  1001     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
  1002     // while [SP+0x44..0x58] are the argument dump slots.
  1003     __ set((intptr_t)0xbaadf00d, G1);
  1004     __ mov(G1, G5);
  1005     __ sllx(G1, 32, G1);
  1006     __ or3(G1, G5, G1);
  1007     __ mov(G1, G5);
  1008     __ stx(G1, SP, 0x40);
  1009     __ stx(G1, SP, 0x48);
  1010     __ stx(G1, SP, 0x50);
  1011     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
  1012 #endif // _LP64
  1014 #endif /*ASSERT*/
  1017 //=============================================================================
  1018 // REQUIRED FUNCTIONALITY for encoding
  1019 void emit_lo(CodeBuffer &cbuf, int val) {  }
  1020 void emit_hi(CodeBuffer &cbuf, int val) {  }
  1023 //=============================================================================
  1024 const RegMask& MachConstantBaseNode::_out_RegMask = PTR_REG_mask();
  1026 int Compile::ConstantTable::calculate_table_base_offset() const {
  1027   if (UseRDPCForConstantTableBase) {
  1028     // The table base offset might be less but then it fits into
  1029     // simm13 anyway and we are good (cf. MachConstantBaseNode::emit).
  1030     return Assembler::min_simm13();
  1031   } else {
  1032     int offset = -(size() / 2);
  1033     if (!Assembler::is_simm13(offset)) {
  1034       offset = Assembler::min_simm13();
  1036     return offset;
  1040 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
  1041   Compile* C = ra_->C;
  1042   Compile::ConstantTable& constant_table = C->constant_table();
  1043   MacroAssembler _masm(&cbuf);
  1045   Register r = as_Register(ra_->get_encode(this));
  1046   CodeSection* consts_section = __ code()->consts();
  1047   int consts_size = consts_section->align_at_start(consts_section->size());
  1048   assert(constant_table.size() == consts_size, err_msg("must be: %d == %d", constant_table.size(), consts_size));
  1050   if (UseRDPCForConstantTableBase) {
  1051     // For the following RDPC logic to work correctly the consts
  1052     // section must be allocated right before the insts section.  This
  1053     // assert checks for that.  The layout and the SECT_* constants
  1054     // are defined in src/share/vm/asm/codeBuffer.hpp.
  1055     assert(CodeBuffer::SECT_CONSTS + 1 == CodeBuffer::SECT_INSTS, "must be");
  1056     int insts_offset = __ offset();
  1058     // Layout:
  1059     //
  1060     // |----------- consts section ------------|----------- insts section -----------...
  1061     // |------ constant table -----|- padding -|------------------x----
  1062     //                                                            \ current PC (RDPC instruction)
  1063     // |<------------- consts_size ----------->|<- insts_offset ->|
  1064     //                                                            \ table base
  1065     // The table base offset is later added to the load displacement
  1066     // so it has to be negative.
  1067     int table_base_offset = -(consts_size + insts_offset);
  1068     int disp;
  1070     // If the displacement from the current PC to the constant table
  1071     // base fits into simm13 we set the constant table base to the
  1072     // current PC.
  1073     if (Assembler::is_simm13(table_base_offset)) {
  1074       constant_table.set_table_base_offset(table_base_offset);
  1075       disp = 0;
  1076     } else {
  1077       // Otherwise we set the constant table base offset to the
  1078       // maximum negative displacement of load instructions to keep
  1079       // the disp as small as possible:
  1080       //
  1081       // |<------------- consts_size ----------->|<- insts_offset ->|
  1082       // |<--------- min_simm13 --------->|<-------- disp --------->|
  1083       //                                  \ table base
  1084       table_base_offset = Assembler::min_simm13();
  1085       constant_table.set_table_base_offset(table_base_offset);
  1086       disp = (consts_size + insts_offset) + table_base_offset;
  1089     __ rdpc(r);
  1091     if (disp != 0) {
  1092       assert(r != O7, "need temporary");
  1093       __ sub(r, __ ensure_simm13_or_reg(disp, O7), r);
  1096   else {
  1097     // Materialize the constant table base.
  1098     address baseaddr = consts_section->start() + -(constant_table.table_base_offset());
  1099     RelocationHolder rspec = internal_word_Relocation::spec(baseaddr);
  1100     AddressLiteral base(baseaddr, rspec);
  1101     __ set(base, r);
  1105 uint MachConstantBaseNode::size(PhaseRegAlloc*) const {
  1106   if (UseRDPCForConstantTableBase) {
  1107     // This is really the worst case but generally it's only 1 instruction.
  1108     return (1 /*rdpc*/ + 1 /*sub*/ + MacroAssembler::worst_case_insts_for_set()) * BytesPerInstWord;
  1109   } else {
  1110     return MacroAssembler::worst_case_insts_for_set() * BytesPerInstWord;
  1114 #ifndef PRODUCT
  1115 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
  1116   char reg[128];
  1117   ra_->dump_register(this, reg);
  1118   if (UseRDPCForConstantTableBase) {
  1119     st->print("RDPC   %s\t! constant table base", reg);
  1120   } else {
  1121     st->print("SET    &constanttable,%s\t! constant table base", reg);
  1124 #endif
  1127 //=============================================================================
  1129 #ifndef PRODUCT
  1130 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1131   Compile* C = ra_->C;
  1133   for (int i = 0; i < OptoPrologueNops; i++) {
  1134     st->print_cr("NOP"); st->print("\t");
  1137   if( VerifyThread ) {
  1138     st->print_cr("Verify_Thread"); st->print("\t");
  1141   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1143   // Calls to C2R adapters often do not accept exceptional returns.
  1144   // We require that their callers must bang for them.  But be careful, because
  1145   // some VM calls (such as call site linkage) can use several kilobytes of
  1146   // stack.  But the stack safety zone should account for that.
  1147   // See bugs 4446381, 4468289, 4497237.
  1148   if (C->need_stack_bang(framesize)) {
  1149     st->print_cr("! stack bang"); st->print("\t");
  1152   if (Assembler::is_simm13(-framesize)) {
  1153     st->print   ("SAVE   R_SP,-%d,R_SP",framesize);
  1154   } else {
  1155     st->print_cr("SETHI  R_SP,hi%%(-%d),R_G3",framesize); st->print("\t");
  1156     st->print_cr("ADD    R_G3,lo%%(-%d),R_G3",framesize); st->print("\t");
  1157     st->print   ("SAVE   R_SP,R_G3,R_SP");
  1161 #endif
  1163 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1164   Compile* C = ra_->C;
  1165   MacroAssembler _masm(&cbuf);
  1167   for (int i = 0; i < OptoPrologueNops; i++) {
  1168     __ nop();
  1171   __ verify_thread();
  1173   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1174   assert(framesize >= 16*wordSize, "must have room for reg. save area");
  1175   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
  1177   // Calls to C2R adapters often do not accept exceptional returns.
  1178   // We require that their callers must bang for them.  But be careful, because
  1179   // some VM calls (such as call site linkage) can use several kilobytes of
  1180   // stack.  But the stack safety zone should account for that.
  1181   // See bugs 4446381, 4468289, 4497237.
  1182   if (C->need_stack_bang(framesize)) {
  1183     __ generate_stack_overflow_check(framesize);
  1186   if (Assembler::is_simm13(-framesize)) {
  1187     __ save(SP, -framesize, SP);
  1188   } else {
  1189     __ sethi(-framesize & ~0x3ff, G3);
  1190     __ add(G3, -framesize & 0x3ff, G3);
  1191     __ save(SP, G3, SP);
  1193   C->set_frame_complete( __ offset() );
  1195   if (!UseRDPCForConstantTableBase && C->has_mach_constant_base_node()) {
  1196     // NOTE: We set the table base offset here because users might be
  1197     // emitted before MachConstantBaseNode.
  1198     Compile::ConstantTable& constant_table = C->constant_table();
  1199     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
  1203 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
  1204   return MachNode::size(ra_);
  1207 int MachPrologNode::reloc() const {
  1208   return 10; // a large enough number
  1211 //=============================================================================
  1212 #ifndef PRODUCT
  1213 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1214   Compile* C = ra_->C;
  1216   if( do_polling() && ra_->C->is_method_compilation() ) {
  1217     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
  1218 #ifdef _LP64
  1219     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
  1220 #else
  1221     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
  1222 #endif
  1225   if( do_polling() )
  1226     st->print("RET\n\t");
  1228   st->print("RESTORE");
  1230 #endif
  1232 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1233   MacroAssembler _masm(&cbuf);
  1234   Compile* C = ra_->C;
  1236   __ verify_thread();
  1238   // If this does safepoint polling, then do it here
  1239   if( do_polling() && ra_->C->is_method_compilation() ) {
  1240     AddressLiteral polling_page(os::get_polling_page());
  1241     __ sethi(polling_page, L0);
  1242     __ relocate(relocInfo::poll_return_type);
  1243     __ ld_ptr( L0, 0, G0 );
  1246   // If this is a return, then stuff the restore in the delay slot
  1247   if( do_polling() ) {
  1248     __ ret();
  1249     __ delayed()->restore();
  1250   } else {
  1251     __ restore();
  1255 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
  1256   return MachNode::size(ra_);
  1259 int MachEpilogNode::reloc() const {
  1260   return 16; // a large enough number
  1263 const Pipeline * MachEpilogNode::pipeline() const {
  1264   return MachNode::pipeline_class();
  1267 int MachEpilogNode::safepoint_offset() const {
  1268   assert( do_polling(), "no return for this epilog node");
  1269   return MacroAssembler::insts_for_sethi(os::get_polling_page()) * BytesPerInstWord;
  1272 //=============================================================================
  1274 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
  1275 enum RC { rc_bad, rc_int, rc_float, rc_stack };
  1276 static enum RC rc_class( OptoReg::Name reg ) {
  1277   if( !OptoReg::is_valid(reg)  ) return rc_bad;
  1278   if (OptoReg::is_stack(reg)) return rc_stack;
  1279   VMReg r = OptoReg::as_VMReg(reg);
  1280   if (r->is_Register()) return rc_int;
  1281   assert(r->is_FloatRegister(), "must be");
  1282   return rc_float;
  1285 static int impl_helper( const MachNode *mach, CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
  1286   if( cbuf ) {
  1287     // Better yet would be some mechanism to handle variable-size matches correctly
  1288     if (!Assembler::is_simm13(offset + STACK_BIAS)) {
  1289       ra_->C->record_method_not_compilable("unable to handle large constant offsets");
  1290     } else {
  1291       emit_form3_mem_reg(*cbuf, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
  1294 #ifndef PRODUCT
  1295   else if( !do_size ) {
  1296     if( size != 0 ) st->print("\n\t");
  1297     if( is_load ) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
  1298     else          st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
  1300 #endif
  1301   return size+4;
  1304 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
  1305   if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
  1306 #ifndef PRODUCT
  1307   else if( !do_size ) {
  1308     if( size != 0 ) st->print("\n\t");
  1309     st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
  1311 #endif
  1312   return size+4;
  1315 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
  1316                                         PhaseRegAlloc *ra_,
  1317                                         bool do_size,
  1318                                         outputStream* st ) const {
  1319   // Get registers to move
  1320   OptoReg::Name src_second = ra_->get_reg_second(in(1));
  1321   OptoReg::Name src_first = ra_->get_reg_first(in(1));
  1322   OptoReg::Name dst_second = ra_->get_reg_second(this );
  1323   OptoReg::Name dst_first = ra_->get_reg_first(this );
  1325   enum RC src_second_rc = rc_class(src_second);
  1326   enum RC src_first_rc = rc_class(src_first);
  1327   enum RC dst_second_rc = rc_class(dst_second);
  1328   enum RC dst_first_rc = rc_class(dst_first);
  1330   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
  1332   // Generate spill code!
  1333   int size = 0;
  1335   if( src_first == dst_first && src_second == dst_second )
  1336     return size;            // Self copy, no move
  1338   // --------------------------------------
  1339   // Check for mem-mem move.  Load into unused float registers and fall into
  1340   // the float-store case.
  1341   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
  1342     int offset = ra_->reg2offset(src_first);
  1343     // Further check for aligned-adjacent pair, so we can use a double load
  1344     if( (src_first&1)==0 && src_first+1 == src_second ) {
  1345       src_second    = OptoReg::Name(R_F31_num);
  1346       src_second_rc = rc_float;
  1347       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
  1348     } else {
  1349       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
  1351     src_first    = OptoReg::Name(R_F30_num);
  1352     src_first_rc = rc_float;
  1355   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
  1356     int offset = ra_->reg2offset(src_second);
  1357     size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
  1358     src_second    = OptoReg::Name(R_F31_num);
  1359     src_second_rc = rc_float;
  1362   // --------------------------------------
  1363   // Check for float->int copy; requires a trip through memory
  1364   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS < 3) {
  1365     int offset = frame::register_save_words*wordSize;
  1366     if (cbuf) {
  1367       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
  1368       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1369       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1370       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
  1372 #ifndef PRODUCT
  1373     else if (!do_size) {
  1374       if (size != 0) st->print("\n\t");
  1375       st->print(  "SUB    R_SP,16,R_SP\n");
  1376       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1377       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1378       st->print("\tADD    R_SP,16,R_SP\n");
  1380 #endif
  1381     size += 16;
  1384   // Check for float->int copy on T4
  1385   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS >= 3) {
  1386     // Further check for aligned-adjacent pair, so we can use a double move
  1387     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
  1388       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mdtox_opf,"MOVDTOX",size, st);
  1389     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mstouw_opf,"MOVSTOUW",size, st);
  1391   // Check for int->float copy on T4
  1392   if (src_first_rc == rc_int && dst_first_rc == rc_float && UseVIS >= 3) {
  1393     // Further check for aligned-adjacent pair, so we can use a double move
  1394     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
  1395       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mxtod_opf,"MOVXTOD",size, st);
  1396     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mwtos_opf,"MOVWTOS",size, st);
  1399   // --------------------------------------
  1400   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
  1401   // In such cases, I have to do the big-endian swap.  For aligned targets, the
  1402   // hardware does the flop for me.  Doubles are always aligned, so no problem
  1403   // there.  Misaligned sources only come from native-long-returns (handled
  1404   // special below).
  1405 #ifndef _LP64
  1406   if( src_first_rc == rc_int &&     // source is already big-endian
  1407       src_second_rc != rc_bad &&    // 64-bit move
  1408       ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
  1409     assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
  1410     // Do the big-endian flop.
  1411     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
  1412     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
  1414 #endif
  1416   // --------------------------------------
  1417   // Check for integer reg-reg copy
  1418   if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
  1419 #ifndef _LP64
  1420     if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
  1421       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1422       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1423       //       operand contains the least significant word of the 64-bit value and vice versa.
  1424       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
  1425       assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
  1426       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
  1427       if( cbuf ) {
  1428         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
  1429         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
  1430         emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
  1431 #ifndef PRODUCT
  1432       } else if( !do_size ) {
  1433         if( size != 0 ) st->print("\n\t");
  1434         st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
  1435         st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
  1436         st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
  1437 #endif
  1439       return size+12;
  1441     else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
  1442       // returning a long value in I0/I1
  1443       // a SpillCopy must be able to target a return instruction's reg_class
  1444       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1445       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1446       //       operand contains the least significant word of the 64-bit value and vice versa.
  1447       OptoReg::Name tdest = dst_first;
  1449       if (src_first == dst_first) {
  1450         tdest = OptoReg::Name(R_O7_num);
  1451         size += 4;
  1454       if( cbuf ) {
  1455         assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
  1456         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
  1457         // ShrL_reg_imm6
  1458         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
  1459         // ShrR_reg_imm6  src, 0, dst
  1460         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
  1461         if (tdest != dst_first) {
  1462           emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
  1465 #ifndef PRODUCT
  1466       else if( !do_size ) {
  1467         if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
  1468         st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
  1469         st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
  1470         if (tdest != dst_first) {
  1471           st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
  1474 #endif // PRODUCT
  1475       return size+8;
  1477 #endif // !_LP64
  1478     // Else normal reg-reg copy
  1479     assert( src_second != dst_first, "smashed second before evacuating it" );
  1480     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
  1481     assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
  1482     // This moves an aligned adjacent pair.
  1483     // See if we are done.
  1484     if( src_first+1 == src_second && dst_first+1 == dst_second )
  1485       return size;
  1488   // Check for integer store
  1489   if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
  1490     int offset = ra_->reg2offset(dst_first);
  1491     // Further check for aligned-adjacent pair, so we can use a double store
  1492     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1493       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
  1494     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
  1497   // Check for integer load
  1498   if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
  1499     int offset = ra_->reg2offset(src_first);
  1500     // Further check for aligned-adjacent pair, so we can use a double load
  1501     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1502       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
  1503     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1506   // Check for float reg-reg copy
  1507   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
  1508     // Further check for aligned-adjacent pair, so we can use a double move
  1509     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1510       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
  1511     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
  1514   // Check for float store
  1515   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
  1516     int offset = ra_->reg2offset(dst_first);
  1517     // Further check for aligned-adjacent pair, so we can use a double store
  1518     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1519       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
  1520     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1523   // Check for float load
  1524   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
  1525     int offset = ra_->reg2offset(src_first);
  1526     // Further check for aligned-adjacent pair, so we can use a double load
  1527     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1528       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
  1529     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
  1532   // --------------------------------------------------------------------
  1533   // Check for hi bits still needing moving.  Only happens for misaligned
  1534   // arguments to native calls.
  1535   if( src_second == dst_second )
  1536     return size;               // Self copy; no move
  1537   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
  1539 #ifndef _LP64
  1540   // In the LP64 build, all registers can be moved as aligned/adjacent
  1541   // pairs, so there's never any need to move the high bits separately.
  1542   // The 32-bit builds have to deal with the 32-bit ABI which can force
  1543   // all sorts of silly alignment problems.
  1545   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
  1546   // 32-bits of a 64-bit register, but are needed in low bits of another
  1547   // register (else it's a hi-bits-to-hi-bits copy which should have
  1548   // happened already as part of a 64-bit move)
  1549   if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
  1550     assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
  1551     assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
  1552     // Shift src_second down to dst_second's low bits.
  1553     if( cbuf ) {
  1554       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1555 #ifndef PRODUCT
  1556     } else if( !do_size ) {
  1557       if( size != 0 ) st->print("\n\t");
  1558       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
  1559 #endif
  1561     return size+4;
  1564   // Check for high word integer store.  Must down-shift the hi bits
  1565   // into a temp register, then fall into the case of storing int bits.
  1566   if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
  1567     // Shift src_second down to dst_second's low bits.
  1568     if( cbuf ) {
  1569       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1570 #ifndef PRODUCT
  1571     } else if( !do_size ) {
  1572       if( size != 0 ) st->print("\n\t");
  1573       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
  1574 #endif
  1576     size+=4;
  1577     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
  1580   // Check for high word integer load
  1581   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
  1582     return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
  1584   // Check for high word integer store
  1585   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
  1586     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
  1588   // Check for high word float store
  1589   if( src_second_rc == rc_float && dst_second_rc == rc_stack )
  1590     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
  1592 #endif // !_LP64
  1594   Unimplemented();
  1597 #ifndef PRODUCT
  1598 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1599   implementation( NULL, ra_, false, st );
  1601 #endif
  1603 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1604   implementation( &cbuf, ra_, false, NULL );
  1607 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1608   return implementation( NULL, ra_, true, NULL );
  1611 //=============================================================================
  1612 #ifndef PRODUCT
  1613 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
  1614   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
  1616 #endif
  1618 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
  1619   MacroAssembler _masm(&cbuf);
  1620   for(int i = 0; i < _count; i += 1) {
  1621     __ nop();
  1625 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
  1626   return 4 * _count;
  1630 //=============================================================================
  1631 #ifndef PRODUCT
  1632 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1633   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1634   int reg = ra_->get_reg_first(this);
  1635   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
  1637 #endif
  1639 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1640   MacroAssembler _masm(&cbuf);
  1641   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
  1642   int reg = ra_->get_encode(this);
  1644   if (Assembler::is_simm13(offset)) {
  1645      __ add(SP, offset, reg_to_register_object(reg));
  1646   } else {
  1647      __ set(offset, O7);
  1648      __ add(SP, O7, reg_to_register_object(reg));
  1652 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1653   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
  1654   assert(ra_ == ra_->C->regalloc(), "sanity");
  1655   return ra_->C->scratch_emit_size(this);
  1658 //=============================================================================
  1660 // emit call stub, compiled java to interpretor
  1661 void emit_java_to_interp(CodeBuffer &cbuf ) {
  1663   // Stub is fixed up when the corresponding call is converted from calling
  1664   // compiled code to calling interpreted code.
  1665   // set (empty), G5
  1666   // jmp -1
  1668   address mark = cbuf.insts_mark();  // get mark within main instrs section
  1670   MacroAssembler _masm(&cbuf);
  1672   address base =
  1673   __ start_a_stub(Compile::MAX_stubs_size);
  1674   if (base == NULL)  return;  // CodeBuffer::expand failed
  1676   // static stub relocation stores the instruction address of the call
  1677   __ relocate(static_stub_Relocation::spec(mark));
  1679   __ set_oop(NULL, reg_to_register_object(Matcher::inline_cache_reg_encode()));
  1681   __ set_inst_mark();
  1682   AddressLiteral addrlit(-1);
  1683   __ JUMP(addrlit, G3, 0);
  1685   __ delayed()->nop();
  1687   // Update current stubs pointer and restore code_end.
  1688   __ end_a_stub();
  1691 // size of call stub, compiled java to interpretor
  1692 uint size_java_to_interp() {
  1693   // This doesn't need to be accurate but it must be larger or equal to
  1694   // the real size of the stub.
  1695   return (NativeMovConstReg::instruction_size +  // sethi/setlo;
  1696           NativeJump::instruction_size + // sethi; jmp; nop
  1697           (TraceJumps ? 20 * BytesPerInstWord : 0) );
  1699 // relocation entries for call stub, compiled java to interpretor
  1700 uint reloc_java_to_interp() {
  1701   return 10;  // 4 in emit_java_to_interp + 1 in Java_Static_Call
  1705 //=============================================================================
  1706 #ifndef PRODUCT
  1707 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1708   st->print_cr("\nUEP:");
  1709 #ifdef    _LP64
  1710   if (UseCompressedOops) {
  1711     assert(Universe::heap() != NULL, "java heap should be initialized");
  1712     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
  1713     st->print_cr("\tSLL    R_G5,3,R_G5");
  1714     if (Universe::narrow_oop_base() != NULL)
  1715       st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
  1716   } else {
  1717     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1719   st->print_cr("\tCMP    R_G5,R_G3" );
  1720   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1721 #else  // _LP64
  1722   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1723   st->print_cr("\tCMP    R_G5,R_G3" );
  1724   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1725 #endif // _LP64
  1727 #endif
  1729 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1730   MacroAssembler _masm(&cbuf);
  1731   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
  1732   Register temp_reg   = G3;
  1733   assert( G5_ic_reg != temp_reg, "conflicting registers" );
  1735   // Load klass from receiver
  1736   __ load_klass(O0, temp_reg);
  1737   // Compare against expected klass
  1738   __ cmp(temp_reg, G5_ic_reg);
  1739   // Branch to miss code, checks xcc or icc depending
  1740   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
  1743 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  1744   return MachNode::size(ra_);
  1748 //=============================================================================
  1750 uint size_exception_handler() {
  1751   if (TraceJumps) {
  1752     return (400); // just a guess
  1754   return ( NativeJump::instruction_size ); // sethi;jmp;nop
  1757 uint size_deopt_handler() {
  1758   if (TraceJumps) {
  1759     return (400); // just a guess
  1761   return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
  1764 // Emit exception handler code.
  1765 int emit_exception_handler(CodeBuffer& cbuf) {
  1766   Register temp_reg = G3;
  1767   AddressLiteral exception_blob(OptoRuntime::exception_blob()->entry_point());
  1768   MacroAssembler _masm(&cbuf);
  1770   address base =
  1771   __ start_a_stub(size_exception_handler());
  1772   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1774   int offset = __ offset();
  1776   __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
  1777   __ delayed()->nop();
  1779   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
  1781   __ end_a_stub();
  1783   return offset;
  1786 int emit_deopt_handler(CodeBuffer& cbuf) {
  1787   // Can't use any of the current frame's registers as we may have deopted
  1788   // at a poll and everything (including G3) can be live.
  1789   Register temp_reg = L0;
  1790   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
  1791   MacroAssembler _masm(&cbuf);
  1793   address base =
  1794   __ start_a_stub(size_deopt_handler());
  1795   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1797   int offset = __ offset();
  1798   __ save_frame(0);
  1799   __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
  1800   __ delayed()->restore();
  1802   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
  1804   __ end_a_stub();
  1805   return offset;
  1809 // Given a register encoding, produce a Integer Register object
  1810 static Register reg_to_register_object(int register_encoding) {
  1811   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
  1812   return as_Register(register_encoding);
  1815 // Given a register encoding, produce a single-precision Float Register object
  1816 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
  1817   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
  1818   return as_SingleFloatRegister(register_encoding);
  1821 // Given a register encoding, produce a double-precision Float Register object
  1822 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
  1823   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
  1824   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
  1825   return as_DoubleFloatRegister(register_encoding);
  1828 const bool Matcher::match_rule_supported(int opcode) {
  1829   if (!has_match_rule(opcode))
  1830     return false;
  1832   switch (opcode) {
  1833   case Op_CountLeadingZerosI:
  1834   case Op_CountLeadingZerosL:
  1835   case Op_CountTrailingZerosI:
  1836   case Op_CountTrailingZerosL:
  1837   case Op_PopCountI:
  1838   case Op_PopCountL:
  1839     if (!UsePopCountInstruction)
  1840       return false;
  1841     break;
  1844   return true;  // Per default match rules are supported.
  1847 int Matcher::regnum_to_fpu_offset(int regnum) {
  1848   return regnum - 32; // The FP registers are in the second chunk
  1851 #ifdef ASSERT
  1852 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
  1853 #endif
  1855 // Map Types to machine register types
  1856 const int Matcher::base2reg[Type::lastype] = {
  1857   Node::NotAMachineReg,0,0, Op_RegI, Op_RegL, 0, Op_RegN,
  1858   Node::NotAMachineReg, Node::NotAMachineReg, /* tuple, array */
  1859   0, Op_RegD, 0, 0, /* Vectors */
  1860   Op_RegP, Op_RegP, Op_RegP, Op_RegP, Op_RegP, Op_RegP, /* the pointers */
  1861   0, 0/*abio*/,
  1862   Op_RegP /* Return address */, 0, /* the memories */
  1863   Op_RegF, Op_RegF, Op_RegF, Op_RegD, Op_RegD, Op_RegD,
  1864   0  /*bottom*/
  1865 };
  1867 // Vector width in bytes
  1868 const int Matcher::vector_width_in_bytes(BasicType bt) {
  1869   assert(MaxVectorSize == 8, "");
  1870   return 8;
  1873 // Vector ideal reg
  1874 const int Matcher::vector_ideal_reg(int size) {
  1875   assert(MaxVectorSize == 8, "");
  1876   return Op_RegD;
  1879 // Limits on vector size (number of elements) loaded into vector.
  1880 const int Matcher::max_vector_size(const BasicType bt) {
  1881   assert(is_java_primitive(bt), "only primitive type vectors");
  1882   return vector_width_in_bytes(bt)/type2aelembytes(bt);
  1885 const int Matcher::min_vector_size(const BasicType bt) {
  1886   return max_vector_size(bt); // Same as max.
  1889 // SPARC doesn't support misaligned vectors store/load.
  1890 const bool Matcher::misaligned_vectors_ok() {
  1891   return false;
  1894 // USII supports fxtof through the whole range of number, USIII doesn't
  1895 const bool Matcher::convL2FSupported(void) {
  1896   return VM_Version::has_fast_fxtof();
  1899 // Is this branch offset short enough that a short branch can be used?
  1900 //
  1901 // NOTE: If the platform does not provide any short branch variants, then
  1902 //       this method should return false for offset 0.
  1903 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
  1904   // The passed offset is relative to address of the branch.
  1905   // Don't need to adjust the offset.
  1906   return UseCBCond && Assembler::is_simm12(offset);
  1909 const bool Matcher::isSimpleConstant64(jlong value) {
  1910   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
  1911   // Depends on optimizations in MacroAssembler::setx.
  1912   int hi = (int)(value >> 32);
  1913   int lo = (int)(value & ~0);
  1914   return (hi == 0) || (hi == -1) || (lo == 0);
  1917 // No scaling for the parameter the ClearArray node.
  1918 const bool Matcher::init_array_count_is_in_bytes = true;
  1920 // Threshold size for cleararray.
  1921 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  1923 // No additional cost for CMOVL.
  1924 const int Matcher::long_cmove_cost() { return 0; }
  1926 // CMOVF/CMOVD are expensive on T4 and on SPARC64.
  1927 const int Matcher::float_cmove_cost() {
  1928   return (VM_Version::is_T4() || VM_Version::is_sparc64()) ? ConditionalMoveLimit : 0;
  1931 // Should the Matcher clone shifts on addressing modes, expecting them to
  1932 // be subsumed into complex addressing expressions or compute them into
  1933 // registers?  True for Intel but false for most RISCs
  1934 const bool Matcher::clone_shift_expressions = false;
  1936 // Do we need to mask the count passed to shift instructions or does
  1937 // the cpu only look at the lower 5/6 bits anyway?
  1938 const bool Matcher::need_masked_shift_count = false;
  1940 bool Matcher::narrow_oop_use_complex_address() {
  1941   NOT_LP64(ShouldNotCallThis());
  1942   assert(UseCompressedOops, "only for compressed oops code");
  1943   return false;
  1946 // Is it better to copy float constants, or load them directly from memory?
  1947 // Intel can load a float constant from a direct address, requiring no
  1948 // extra registers.  Most RISCs will have to materialize an address into a
  1949 // register first, so they would do better to copy the constant from stack.
  1950 const bool Matcher::rematerialize_float_constants = false;
  1952 // If CPU can load and store mis-aligned doubles directly then no fixup is
  1953 // needed.  Else we split the double into 2 integer pieces and move it
  1954 // piece-by-piece.  Only happens when passing doubles into C code as the
  1955 // Java calling convention forces doubles to be aligned.
  1956 #ifdef _LP64
  1957 const bool Matcher::misaligned_doubles_ok = true;
  1958 #else
  1959 const bool Matcher::misaligned_doubles_ok = false;
  1960 #endif
  1962 // No-op on SPARC.
  1963 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  1966 // Advertise here if the CPU requires explicit rounding operations
  1967 // to implement the UseStrictFP mode.
  1968 const bool Matcher::strict_fp_requires_explicit_rounding = false;
  1970 // Are floats conerted to double when stored to stack during deoptimization?
  1971 // Sparc does not handle callee-save floats.
  1972 bool Matcher::float_in_double() { return false; }
  1974 // Do ints take an entire long register or just half?
  1975 // Note that we if-def off of _LP64.
  1976 // The relevant question is how the int is callee-saved.  In _LP64
  1977 // the whole long is written but de-opt'ing will have to extract
  1978 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
  1979 #ifdef _LP64
  1980 const bool Matcher::int_in_long = true;
  1981 #else
  1982 const bool Matcher::int_in_long = false;
  1983 #endif
  1985 // Return whether or not this register is ever used as an argument.  This
  1986 // function is used on startup to build the trampoline stubs in generateOptoStub.
  1987 // Registers not mentioned will be killed by the VM call in the trampoline, and
  1988 // arguments in those registers not be available to the callee.
  1989 bool Matcher::can_be_java_arg( int reg ) {
  1990   // Standard sparc 6 args in registers
  1991   if( reg == R_I0_num ||
  1992       reg == R_I1_num ||
  1993       reg == R_I2_num ||
  1994       reg == R_I3_num ||
  1995       reg == R_I4_num ||
  1996       reg == R_I5_num ) return true;
  1997 #ifdef _LP64
  1998   // 64-bit builds can pass 64-bit pointers and longs in
  1999   // the high I registers
  2000   if( reg == R_I0H_num ||
  2001       reg == R_I1H_num ||
  2002       reg == R_I2H_num ||
  2003       reg == R_I3H_num ||
  2004       reg == R_I4H_num ||
  2005       reg == R_I5H_num ) return true;
  2007   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
  2008     return true;
  2011 #else
  2012   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
  2013   // Longs cannot be passed in O regs, because O regs become I regs
  2014   // after a 'save' and I regs get their high bits chopped off on
  2015   // interrupt.
  2016   if( reg == R_G1H_num || reg == R_G1_num ) return true;
  2017   if( reg == R_G4H_num || reg == R_G4_num ) return true;
  2018 #endif
  2019   // A few float args in registers
  2020   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
  2022   return false;
  2025 bool Matcher::is_spillable_arg( int reg ) {
  2026   return can_be_java_arg(reg);
  2029 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
  2030   // Use hardware SDIVX instruction when it is
  2031   // faster than a code which use multiply.
  2032   return VM_Version::has_fast_idiv();
  2035 // Register for DIVI projection of divmodI
  2036 RegMask Matcher::divI_proj_mask() {
  2037   ShouldNotReachHere();
  2038   return RegMask();
  2041 // Register for MODI projection of divmodI
  2042 RegMask Matcher::modI_proj_mask() {
  2043   ShouldNotReachHere();
  2044   return RegMask();
  2047 // Register for DIVL projection of divmodL
  2048 RegMask Matcher::divL_proj_mask() {
  2049   ShouldNotReachHere();
  2050   return RegMask();
  2053 // Register for MODL projection of divmodL
  2054 RegMask Matcher::modL_proj_mask() {
  2055   ShouldNotReachHere();
  2056   return RegMask();
  2059 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
  2060   return L7_REGP_mask();
  2063 %}
  2066 // The intptr_t operand types, defined by textual substitution.
  2067 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
  2068 #ifdef _LP64
  2069 #define immX      immL
  2070 #define immX13    immL13
  2071 #define immX13m7  immL13m7
  2072 #define iRegX     iRegL
  2073 #define g1RegX    g1RegL
  2074 #else
  2075 #define immX      immI
  2076 #define immX13    immI13
  2077 #define immX13m7  immI13m7
  2078 #define iRegX     iRegI
  2079 #define g1RegX    g1RegI
  2080 #endif
  2082 //----------ENCODING BLOCK-----------------------------------------------------
  2083 // This block specifies the encoding classes used by the compiler to output
  2084 // byte streams.  Encoding classes are parameterized macros used by
  2085 // Machine Instruction Nodes in order to generate the bit encoding of the
  2086 // instruction.  Operands specify their base encoding interface with the
  2087 // interface keyword.  There are currently supported four interfaces,
  2088 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
  2089 // operand to generate a function which returns its register number when
  2090 // queried.   CONST_INTER causes an operand to generate a function which
  2091 // returns the value of the constant when queried.  MEMORY_INTER causes an
  2092 // operand to generate four functions which return the Base Register, the
  2093 // Index Register, the Scale Value, and the Offset Value of the operand when
  2094 // queried.  COND_INTER causes an operand to generate six functions which
  2095 // return the encoding code (ie - encoding bits for the instruction)
  2096 // associated with each basic boolean condition for a conditional instruction.
  2097 //
  2098 // Instructions specify two basic values for encoding.  Again, a function
  2099 // is available to check if the constant displacement is an oop. They use the
  2100 // ins_encode keyword to specify their encoding classes (which must be
  2101 // a sequence of enc_class names, and their parameters, specified in
  2102 // the encoding block), and they use the
  2103 // opcode keyword to specify, in order, their primary, secondary, and
  2104 // tertiary opcode.  Only the opcode sections which a particular instruction
  2105 // needs for encoding need to be specified.
  2106 encode %{
  2107   enc_class enc_untested %{
  2108 #ifdef ASSERT
  2109     MacroAssembler _masm(&cbuf);
  2110     __ untested("encoding");
  2111 #endif
  2112   %}
  2114   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
  2115     emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
  2116                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  2117   %}
  2119   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
  2120     emit_form3_mem_reg(cbuf, this, $primary, -1,
  2121                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  2122   %}
  2124   enc_class form3_mem_prefetch_read( memory mem ) %{
  2125     emit_form3_mem_reg(cbuf, this, $primary, -1,
  2126                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
  2127   %}
  2129   enc_class form3_mem_prefetch_write( memory mem ) %{
  2130     emit_form3_mem_reg(cbuf, this, $primary, -1,
  2131                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
  2132   %}
  2134   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
  2135     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
  2136     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
  2137     guarantee($mem$$index == R_G0_enc, "double index?");
  2138     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
  2139     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
  2140     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
  2141     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
  2142   %}
  2144   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
  2145     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
  2146     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
  2147     guarantee($mem$$index == R_G0_enc, "double index?");
  2148     // Load long with 2 instructions
  2149     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
  2150     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
  2151   %}
  2153   //%%% form3_mem_plus_4_reg is a hack--get rid of it
  2154   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
  2155     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
  2156     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
  2157   %}
  2159   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
  2160     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2161     if( $rs2$$reg != $rd$$reg )
  2162       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
  2163   %}
  2165   // Target lo half of long
  2166   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
  2167     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2168     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
  2169       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
  2170   %}
  2172   // Source lo half of long
  2173   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
  2174     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2175     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
  2176       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
  2177   %}
  2179   // Target hi half of long
  2180   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
  2181     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
  2182   %}
  2184   // Source lo half of long, and leave it sign extended.
  2185   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
  2186     // Sign extend low half
  2187     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
  2188   %}
  2190   // Source hi half of long, and leave it sign extended.
  2191   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
  2192     // Shift high half to low half
  2193     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
  2194   %}
  2196   // Source hi half of long
  2197   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
  2198     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2199     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
  2200       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
  2201   %}
  2203   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
  2204     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
  2205   %}
  2207   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
  2208     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
  2209     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
  2210   %}
  2212   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
  2213     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
  2214     // clear if nothing else is happening
  2215     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
  2216     // blt,a,pn done
  2217     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
  2218     // mov dst,-1 in delay slot
  2219     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2220   %}
  2222   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
  2223     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
  2224   %}
  2226   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
  2227     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
  2228   %}
  2230   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
  2231     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
  2232   %}
  2234   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
  2235     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
  2236   %}
  2238   enc_class move_return_pc_to_o1() %{
  2239     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
  2240   %}
  2242 #ifdef _LP64
  2243   /* %%% merge with enc_to_bool */
  2244   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
  2245     MacroAssembler _masm(&cbuf);
  2247     Register   src_reg = reg_to_register_object($src$$reg);
  2248     Register   dst_reg = reg_to_register_object($dst$$reg);
  2249     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
  2250   %}
  2251 #endif
  2253   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
  2254     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
  2255     MacroAssembler _masm(&cbuf);
  2257     Register   p_reg = reg_to_register_object($p$$reg);
  2258     Register   q_reg = reg_to_register_object($q$$reg);
  2259     Register   y_reg = reg_to_register_object($y$$reg);
  2260     Register tmp_reg = reg_to_register_object($tmp$$reg);
  2262     __ subcc( p_reg, q_reg,   p_reg );
  2263     __ add  ( p_reg, y_reg, tmp_reg );
  2264     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
  2265   %}
  2267   enc_class form_d2i_helper(regD src, regF dst) %{
  2268     // fcmp %fcc0,$src,$src
  2269     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2270     // branch %fcc0 not-nan, predict taken
  2271     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2272     // fdtoi $src,$dst
  2273     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
  2274     // fitos $dst,$dst (if nan)
  2275     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2276     // clear $dst (if nan)
  2277     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2278     // carry on here...
  2279   %}
  2281   enc_class form_d2l_helper(regD src, regD dst) %{
  2282     // fcmp %fcc0,$src,$src  check for NAN
  2283     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2284     // branch %fcc0 not-nan, predict taken
  2285     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2286     // fdtox $src,$dst   convert in delay slot
  2287     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
  2288     // fxtod $dst,$dst  (if nan)
  2289     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2290     // clear $dst (if nan)
  2291     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2292     // carry on here...
  2293   %}
  2295   enc_class form_f2i_helper(regF src, regF dst) %{
  2296     // fcmps %fcc0,$src,$src
  2297     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2298     // branch %fcc0 not-nan, predict taken
  2299     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2300     // fstoi $src,$dst
  2301     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
  2302     // fitos $dst,$dst (if nan)
  2303     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2304     // clear $dst (if nan)
  2305     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2306     // carry on here...
  2307   %}
  2309   enc_class form_f2l_helper(regF src, regD dst) %{
  2310     // fcmps %fcc0,$src,$src
  2311     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2312     // branch %fcc0 not-nan, predict taken
  2313     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2314     // fstox $src,$dst
  2315     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
  2316     // fxtod $dst,$dst (if nan)
  2317     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2318     // clear $dst (if nan)
  2319     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2320     // carry on here...
  2321   %}
  2323   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2324   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2325   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2326   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2328   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
  2330   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2331   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
  2333   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
  2334     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2335   %}
  2337   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
  2338     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2339   %}
  2341   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
  2342     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2343   %}
  2345   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
  2346     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2347   %}
  2349   enc_class form3_convI2F(regF rs2, regF rd) %{
  2350     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
  2351   %}
  2353   // Encloding class for traceable jumps
  2354   enc_class form_jmpl(g3RegP dest) %{
  2355     emit_jmpl(cbuf, $dest$$reg);
  2356   %}
  2358   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
  2359     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
  2360   %}
  2362   enc_class form2_nop() %{
  2363     emit_nop(cbuf);
  2364   %}
  2366   enc_class form2_illtrap() %{
  2367     emit_illtrap(cbuf);
  2368   %}
  2371   // Compare longs and convert into -1, 0, 1.
  2372   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
  2373     // CMP $src1,$src2
  2374     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
  2375     // blt,a,pn done
  2376     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
  2377     // mov dst,-1 in delay slot
  2378     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2379     // bgt,a,pn done
  2380     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
  2381     // mov dst,1 in delay slot
  2382     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
  2383     // CLR    $dst
  2384     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
  2385   %}
  2387   enc_class enc_PartialSubtypeCheck() %{
  2388     MacroAssembler _masm(&cbuf);
  2389     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
  2390     __ delayed()->nop();
  2391   %}
  2393   enc_class enc_bp( label labl, cmpOp cmp, flagsReg cc ) %{
  2394     MacroAssembler _masm(&cbuf);
  2395     Label* L = $labl$$label;
  2396     Assembler::Predict predict_taken =
  2397       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  2399     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  2400     __ delayed()->nop();
  2401   %}
  2403   enc_class enc_bpr( label labl, cmpOp_reg cmp, iRegI op1 ) %{
  2404     MacroAssembler _masm(&cbuf);
  2405     Label* L = $labl$$label;
  2406     Assembler::Predict predict_taken =
  2407       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  2409     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), *L);
  2410     __ delayed()->nop();
  2411   %}
  2413   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
  2414     int op = (Assembler::arith_op << 30) |
  2415              ($dst$$reg << 25) |
  2416              (Assembler::movcc_op3 << 19) |
  2417              (1 << 18) |                    // cc2 bit for 'icc'
  2418              ($cmp$$cmpcode << 14) |
  2419              (0 << 13) |                    // select register move
  2420              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
  2421              ($src$$reg << 0);
  2422     cbuf.insts()->emit_int32(op);
  2423   %}
  2425   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
  2426     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2427     int op = (Assembler::arith_op << 30) |
  2428              ($dst$$reg << 25) |
  2429              (Assembler::movcc_op3 << 19) |
  2430              (1 << 18) |                    // cc2 bit for 'icc'
  2431              ($cmp$$cmpcode << 14) |
  2432              (1 << 13) |                    // select immediate move
  2433              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
  2434              (simm11 << 0);
  2435     cbuf.insts()->emit_int32(op);
  2436   %}
  2438   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
  2439     int op = (Assembler::arith_op << 30) |
  2440              ($dst$$reg << 25) |
  2441              (Assembler::movcc_op3 << 19) |
  2442              (0 << 18) |                    // cc2 bit for 'fccX'
  2443              ($cmp$$cmpcode << 14) |
  2444              (0 << 13) |                    // select register move
  2445              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2446              ($src$$reg << 0);
  2447     cbuf.insts()->emit_int32(op);
  2448   %}
  2450   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
  2451     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2452     int op = (Assembler::arith_op << 30) |
  2453              ($dst$$reg << 25) |
  2454              (Assembler::movcc_op3 << 19) |
  2455              (0 << 18) |                    // cc2 bit for 'fccX'
  2456              ($cmp$$cmpcode << 14) |
  2457              (1 << 13) |                    // select immediate move
  2458              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2459              (simm11 << 0);
  2460     cbuf.insts()->emit_int32(op);
  2461   %}
  2463   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
  2464     int op = (Assembler::arith_op << 30) |
  2465              ($dst$$reg << 25) |
  2466              (Assembler::fpop2_op3 << 19) |
  2467              (0 << 18) |
  2468              ($cmp$$cmpcode << 14) |
  2469              (1 << 13) |                    // select register move
  2470              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
  2471              ($primary << 5) |              // select single, double or quad
  2472              ($src$$reg << 0);
  2473     cbuf.insts()->emit_int32(op);
  2474   %}
  2476   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
  2477     int op = (Assembler::arith_op << 30) |
  2478              ($dst$$reg << 25) |
  2479              (Assembler::fpop2_op3 << 19) |
  2480              (0 << 18) |
  2481              ($cmp$$cmpcode << 14) |
  2482              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
  2483              ($primary << 5) |              // select single, double or quad
  2484              ($src$$reg << 0);
  2485     cbuf.insts()->emit_int32(op);
  2486   %}
  2488   // Used by the MIN/MAX encodings.  Same as a CMOV, but
  2489   // the condition comes from opcode-field instead of an argument.
  2490   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
  2491     int op = (Assembler::arith_op << 30) |
  2492              ($dst$$reg << 25) |
  2493              (Assembler::movcc_op3 << 19) |
  2494              (1 << 18) |                    // cc2 bit for 'icc'
  2495              ($primary << 14) |
  2496              (0 << 13) |                    // select register move
  2497              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2498              ($src$$reg << 0);
  2499     cbuf.insts()->emit_int32(op);
  2500   %}
  2502   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
  2503     int op = (Assembler::arith_op << 30) |
  2504              ($dst$$reg << 25) |
  2505              (Assembler::movcc_op3 << 19) |
  2506              (6 << 16) |                    // cc2 bit for 'xcc'
  2507              ($primary << 14) |
  2508              (0 << 13) |                    // select register move
  2509              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2510              ($src$$reg << 0);
  2511     cbuf.insts()->emit_int32(op);
  2512   %}
  2514   enc_class Set13( immI13 src, iRegI rd ) %{
  2515     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
  2516   %}
  2518   enc_class SetHi22( immI src, iRegI rd ) %{
  2519     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
  2520   %}
  2522   enc_class Set32( immI src, iRegI rd ) %{
  2523     MacroAssembler _masm(&cbuf);
  2524     __ set($src$$constant, reg_to_register_object($rd$$reg));
  2525   %}
  2527   enc_class call_epilog %{
  2528     if( VerifyStackAtCalls ) {
  2529       MacroAssembler _masm(&cbuf);
  2530       int framesize = ra_->C->frame_slots() << LogBytesPerInt;
  2531       Register temp_reg = G3;
  2532       __ add(SP, framesize, temp_reg);
  2533       __ cmp(temp_reg, FP);
  2534       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
  2536   %}
  2538   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
  2539   // to G1 so the register allocator will not have to deal with the misaligned register
  2540   // pair.
  2541   enc_class adjust_long_from_native_call %{
  2542 #ifndef _LP64
  2543     if (returns_long()) {
  2544       //    sllx  O0,32,O0
  2545       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
  2546       //    srl   O1,0,O1
  2547       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
  2548       //    or    O0,O1,G1
  2549       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
  2551 #endif
  2552   %}
  2554   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
  2555     // CALL directly to the runtime
  2556     // The user of this is responsible for ensuring that R_L7 is empty (killed).
  2557     emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
  2558                     /*preserve_g2=*/true);
  2559   %}
  2561   enc_class preserve_SP %{
  2562     MacroAssembler _masm(&cbuf);
  2563     __ mov(SP, L7_mh_SP_save);
  2564   %}
  2566   enc_class restore_SP %{
  2567     MacroAssembler _masm(&cbuf);
  2568     __ mov(L7_mh_SP_save, SP);
  2569   %}
  2571   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
  2572     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  2573     // who we intended to call.
  2574     if ( !_method ) {
  2575       emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
  2576     } else if (_optimized_virtual) {
  2577       emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
  2578     } else {
  2579       emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
  2581     if( _method ) {  // Emit stub for static call
  2582       emit_java_to_interp(cbuf);
  2584   %}
  2586   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
  2587     MacroAssembler _masm(&cbuf);
  2588     __ set_inst_mark();
  2589     int vtable_index = this->_vtable_index;
  2590     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
  2591     if (vtable_index < 0) {
  2592       // must be invalid_vtable_index, not nonvirtual_vtable_index
  2593       assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
  2594       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2595       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
  2596       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
  2597       // !!!!!
  2598       // Generate  "set 0x01, R_G5", placeholder instruction to load oop-info
  2599       // emit_call_dynamic_prologue( cbuf );
  2600       __ set_oop((jobject)Universe::non_oop_word(), G5_ic_reg);
  2602       address  virtual_call_oop_addr = __ inst_mark();
  2603       // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  2604       // who we intended to call.
  2605       __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr));
  2606       emit_call_reloc(cbuf, $meth$$method, relocInfo::none);
  2607     } else {
  2608       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
  2609       // Just go thru the vtable
  2610       // get receiver klass (receiver already checked for non-null)
  2611       // If we end up going thru a c2i adapter interpreter expects method in G5
  2612       int off = __ offset();
  2613       __ load_klass(O0, G3_scratch);
  2614       int klass_load_size;
  2615       if (UseCompressedOops) {
  2616         assert(Universe::heap() != NULL, "java heap should be initialized");
  2617         if (Universe::narrow_oop_base() == NULL)
  2618           klass_load_size = 2*BytesPerInstWord;
  2619         else
  2620           klass_load_size = 3*BytesPerInstWord;
  2621       } else {
  2622         klass_load_size = 1*BytesPerInstWord;
  2624       int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
  2625       int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
  2626       if (Assembler::is_simm13(v_off)) {
  2627         __ ld_ptr(G3, v_off, G5_method);
  2628       } else {
  2629         // Generate 2 instructions
  2630         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
  2631         __ or3(G5_method, v_off & 0x3ff, G5_method);
  2632         // ld_ptr, set_hi, set
  2633         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
  2634                "Unexpected instruction size(s)");
  2635         __ ld_ptr(G3, G5_method, G5_method);
  2637       // NOTE: for vtable dispatches, the vtable entry will never be null.
  2638       // However it may very well end up in handle_wrong_method if the
  2639       // method is abstract for the particular class.
  2640       __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3_scratch);
  2641       // jump to target (either compiled code or c2iadapter)
  2642       __ jmpl(G3_scratch, G0, O7);
  2643       __ delayed()->nop();
  2645   %}
  2647   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
  2648     MacroAssembler _masm(&cbuf);
  2650     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2651     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
  2652                               // we might be calling a C2I adapter which needs it.
  2654     assert(temp_reg != G5_ic_reg, "conflicting registers");
  2655     // Load nmethod
  2656     __ ld_ptr(G5_ic_reg, in_bytes(methodOopDesc::from_compiled_offset()), temp_reg);
  2658     // CALL to compiled java, indirect the contents of G3
  2659     __ set_inst_mark();
  2660     __ callr(temp_reg, G0);
  2661     __ delayed()->nop();
  2662   %}
  2664 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
  2665     MacroAssembler _masm(&cbuf);
  2666     Register Rdividend = reg_to_register_object($src1$$reg);
  2667     Register Rdivisor = reg_to_register_object($src2$$reg);
  2668     Register Rresult = reg_to_register_object($dst$$reg);
  2670     __ sra(Rdivisor, 0, Rdivisor);
  2671     __ sra(Rdividend, 0, Rdividend);
  2672     __ sdivx(Rdividend, Rdivisor, Rresult);
  2673 %}
  2675 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
  2676     MacroAssembler _masm(&cbuf);
  2678     Register Rdividend = reg_to_register_object($src1$$reg);
  2679     int divisor = $imm$$constant;
  2680     Register Rresult = reg_to_register_object($dst$$reg);
  2682     __ sra(Rdividend, 0, Rdividend);
  2683     __ sdivx(Rdividend, divisor, Rresult);
  2684 %}
  2686 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
  2687     MacroAssembler _masm(&cbuf);
  2688     Register Rsrc1 = reg_to_register_object($src1$$reg);
  2689     Register Rsrc2 = reg_to_register_object($src2$$reg);
  2690     Register Rdst  = reg_to_register_object($dst$$reg);
  2692     __ sra( Rsrc1, 0, Rsrc1 );
  2693     __ sra( Rsrc2, 0, Rsrc2 );
  2694     __ mulx( Rsrc1, Rsrc2, Rdst );
  2695     __ srlx( Rdst, 32, Rdst );
  2696 %}
  2698 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
  2699     MacroAssembler _masm(&cbuf);
  2700     Register Rdividend = reg_to_register_object($src1$$reg);
  2701     Register Rdivisor = reg_to_register_object($src2$$reg);
  2702     Register Rresult = reg_to_register_object($dst$$reg);
  2703     Register Rscratch = reg_to_register_object($scratch$$reg);
  2705     assert(Rdividend != Rscratch, "");
  2706     assert(Rdivisor  != Rscratch, "");
  2708     __ sra(Rdividend, 0, Rdividend);
  2709     __ sra(Rdivisor, 0, Rdivisor);
  2710     __ sdivx(Rdividend, Rdivisor, Rscratch);
  2711     __ mulx(Rscratch, Rdivisor, Rscratch);
  2712     __ sub(Rdividend, Rscratch, Rresult);
  2713 %}
  2715 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
  2716     MacroAssembler _masm(&cbuf);
  2718     Register Rdividend = reg_to_register_object($src1$$reg);
  2719     int divisor = $imm$$constant;
  2720     Register Rresult = reg_to_register_object($dst$$reg);
  2721     Register Rscratch = reg_to_register_object($scratch$$reg);
  2723     assert(Rdividend != Rscratch, "");
  2725     __ sra(Rdividend, 0, Rdividend);
  2726     __ sdivx(Rdividend, divisor, Rscratch);
  2727     __ mulx(Rscratch, divisor, Rscratch);
  2728     __ sub(Rdividend, Rscratch, Rresult);
  2729 %}
  2731 enc_class fabss (sflt_reg dst, sflt_reg src) %{
  2732     MacroAssembler _masm(&cbuf);
  2734     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2735     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2737     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
  2738 %}
  2740 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
  2741     MacroAssembler _masm(&cbuf);
  2743     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2744     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2746     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
  2747 %}
  2749 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
  2750     MacroAssembler _masm(&cbuf);
  2752     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2753     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2755     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
  2756 %}
  2758 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
  2759     MacroAssembler _masm(&cbuf);
  2761     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2762     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2764     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
  2765 %}
  2767 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
  2768     MacroAssembler _masm(&cbuf);
  2770     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2771     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2773     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
  2774 %}
  2776 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
  2777     MacroAssembler _masm(&cbuf);
  2779     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2780     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2782     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
  2783 %}
  2785 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
  2786     MacroAssembler _masm(&cbuf);
  2788     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2789     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2791     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
  2792 %}
  2794 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2795     MacroAssembler _masm(&cbuf);
  2797     Register Roop  = reg_to_register_object($oop$$reg);
  2798     Register Rbox  = reg_to_register_object($box$$reg);
  2799     Register Rscratch = reg_to_register_object($scratch$$reg);
  2800     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2802     assert(Roop  != Rscratch, "");
  2803     assert(Roop  != Rmark, "");
  2804     assert(Rbox  != Rscratch, "");
  2805     assert(Rbox  != Rmark, "");
  2807     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
  2808 %}
  2810 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2811     MacroAssembler _masm(&cbuf);
  2813     Register Roop  = reg_to_register_object($oop$$reg);
  2814     Register Rbox  = reg_to_register_object($box$$reg);
  2815     Register Rscratch = reg_to_register_object($scratch$$reg);
  2816     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2818     assert(Roop  != Rscratch, "");
  2819     assert(Roop  != Rmark, "");
  2820     assert(Rbox  != Rscratch, "");
  2821     assert(Rbox  != Rmark, "");
  2823     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
  2824   %}
  2826   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
  2827     MacroAssembler _masm(&cbuf);
  2828     Register Rmem = reg_to_register_object($mem$$reg);
  2829     Register Rold = reg_to_register_object($old$$reg);
  2830     Register Rnew = reg_to_register_object($new$$reg);
  2832     // casx_under_lock picks 1 of 3 encodings:
  2833     // For 32-bit pointers you get a 32-bit CAS
  2834     // For 64-bit pointers you get a 64-bit CASX
  2835     __ casn(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
  2836     __ cmp( Rold, Rnew );
  2837   %}
  2839   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
  2840     Register Rmem = reg_to_register_object($mem$$reg);
  2841     Register Rold = reg_to_register_object($old$$reg);
  2842     Register Rnew = reg_to_register_object($new$$reg);
  2844     MacroAssembler _masm(&cbuf);
  2845     __ mov(Rnew, O7);
  2846     __ casx(Rmem, Rold, O7);
  2847     __ cmp( Rold, O7 );
  2848   %}
  2850   // raw int cas, used for compareAndSwap
  2851   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
  2852     Register Rmem = reg_to_register_object($mem$$reg);
  2853     Register Rold = reg_to_register_object($old$$reg);
  2854     Register Rnew = reg_to_register_object($new$$reg);
  2856     MacroAssembler _masm(&cbuf);
  2857     __ mov(Rnew, O7);
  2858     __ cas(Rmem, Rold, O7);
  2859     __ cmp( Rold, O7 );
  2860   %}
  2862   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
  2863     Register Rres = reg_to_register_object($res$$reg);
  2865     MacroAssembler _masm(&cbuf);
  2866     __ mov(1, Rres);
  2867     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
  2868   %}
  2870   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
  2871     Register Rres = reg_to_register_object($res$$reg);
  2873     MacroAssembler _masm(&cbuf);
  2874     __ mov(1, Rres);
  2875     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
  2876   %}
  2878   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
  2879     MacroAssembler _masm(&cbuf);
  2880     Register Rdst = reg_to_register_object($dst$$reg);
  2881     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
  2882                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
  2883     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
  2884                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
  2886     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
  2887     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
  2888   %}
  2891   enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result) %{
  2892     Label Ldone, Lloop;
  2893     MacroAssembler _masm(&cbuf);
  2895     Register   str1_reg = reg_to_register_object($str1$$reg);
  2896     Register   str2_reg = reg_to_register_object($str2$$reg);
  2897     Register   cnt1_reg = reg_to_register_object($cnt1$$reg);
  2898     Register   cnt2_reg = reg_to_register_object($cnt2$$reg);
  2899     Register result_reg = reg_to_register_object($result$$reg);
  2901     assert(result_reg != str1_reg &&
  2902            result_reg != str2_reg &&
  2903            result_reg != cnt1_reg &&
  2904            result_reg != cnt2_reg ,
  2905            "need different registers");
  2907     // Compute the minimum of the string lengths(str1_reg) and the
  2908     // difference of the string lengths (stack)
  2910     // See if the lengths are different, and calculate min in str1_reg.
  2911     // Stash diff in O7 in case we need it for a tie-breaker.
  2912     Label Lskip;
  2913     __ subcc(cnt1_reg, cnt2_reg, O7);
  2914     __ sll(cnt1_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
  2915     __ br(Assembler::greater, true, Assembler::pt, Lskip);
  2916     // cnt2 is shorter, so use its count:
  2917     __ delayed()->sll(cnt2_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
  2918     __ bind(Lskip);
  2920     // reallocate cnt1_reg, cnt2_reg, result_reg
  2921     // Note:  limit_reg holds the string length pre-scaled by 2
  2922     Register limit_reg =   cnt1_reg;
  2923     Register  chr2_reg =   cnt2_reg;
  2924     Register  chr1_reg = result_reg;
  2925     // str{12} are the base pointers
  2927     // Is the minimum length zero?
  2928     __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
  2929     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2930     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2932     // Load first characters
  2933     __ lduh(str1_reg, 0, chr1_reg);
  2934     __ lduh(str2_reg, 0, chr2_reg);
  2936     // Compare first characters
  2937     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2938     __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
  2939     assert(chr1_reg == result_reg, "result must be pre-placed");
  2940     __ delayed()->nop();
  2943       // Check after comparing first character to see if strings are equivalent
  2944       Label LSkip2;
  2945       // Check if the strings start at same location
  2946       __ cmp(str1_reg, str2_reg);
  2947       __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
  2948       __ delayed()->nop();
  2950       // Check if the length difference is zero (in O7)
  2951       __ cmp(G0, O7);
  2952       __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2953       __ delayed()->mov(G0, result_reg);  // result is zero
  2955       // Strings might not be equal
  2956       __ bind(LSkip2);
  2959     __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
  2960     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2961     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2963     // Shift str1_reg and str2_reg to the end of the arrays, negate limit
  2964     __ add(str1_reg, limit_reg, str1_reg);
  2965     __ add(str2_reg, limit_reg, str2_reg);
  2966     __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
  2968     // Compare the rest of the characters
  2969     __ lduh(str1_reg, limit_reg, chr1_reg);
  2970     __ bind(Lloop);
  2971     // __ lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2972     __ lduh(str2_reg, limit_reg, chr2_reg);
  2973     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2974     __ br(Assembler::notZero, false, Assembler::pt, Ldone);
  2975     assert(chr1_reg == result_reg, "result must be pre-placed");
  2976     __ delayed()->inccc(limit_reg, sizeof(jchar));
  2977     // annul LDUH if branch is not taken to prevent access past end of string
  2978     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
  2979     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2981     // If strings are equal up to min length, return the length difference.
  2982     __ mov(O7, result_reg);
  2984     // Otherwise, return the difference between the first mismatched chars.
  2985     __ bind(Ldone);
  2986   %}
  2988 enc_class enc_String_Equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result) %{
  2989     Label Lword_loop, Lpost_word, Lchar, Lchar_loop, Ldone;
  2990     MacroAssembler _masm(&cbuf);
  2992     Register   str1_reg = reg_to_register_object($str1$$reg);
  2993     Register   str2_reg = reg_to_register_object($str2$$reg);
  2994     Register    cnt_reg = reg_to_register_object($cnt$$reg);
  2995     Register   tmp1_reg = O7;
  2996     Register result_reg = reg_to_register_object($result$$reg);
  2998     assert(result_reg != str1_reg &&
  2999            result_reg != str2_reg &&
  3000            result_reg !=  cnt_reg &&
  3001            result_reg != tmp1_reg ,
  3002            "need different registers");
  3004     __ cmp(str1_reg, str2_reg); //same char[] ?
  3005     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
  3006     __ delayed()->add(G0, 1, result_reg);
  3008     __ cmp_zero_and_br(Assembler::zero, cnt_reg, Ldone, true, Assembler::pn);
  3009     __ delayed()->add(G0, 1, result_reg); // count == 0
  3011     //rename registers
  3012     Register limit_reg =    cnt_reg;
  3013     Register  chr1_reg = result_reg;
  3014     Register  chr2_reg =   tmp1_reg;
  3016     //check for alignment and position the pointers to the ends
  3017     __ or3(str1_reg, str2_reg, chr1_reg);
  3018     __ andcc(chr1_reg, 0x3, chr1_reg);
  3019     // notZero means at least one not 4-byte aligned.
  3020     // We could optimize the case when both arrays are not aligned
  3021     // but it is not frequent case and it requires additional checks.
  3022     __ br(Assembler::notZero, false, Assembler::pn, Lchar); // char by char compare
  3023     __ delayed()->sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg); // set byte count
  3025     // Compare char[] arrays aligned to 4 bytes.
  3026     __ char_arrays_equals(str1_reg, str2_reg, limit_reg, result_reg,
  3027                           chr1_reg, chr2_reg, Ldone);
  3028     __ ba(Ldone);
  3029     __ delayed()->add(G0, 1, result_reg);
  3031     // char by char compare
  3032     __ bind(Lchar);
  3033     __ add(str1_reg, limit_reg, str1_reg);
  3034     __ add(str2_reg, limit_reg, str2_reg);
  3035     __ neg(limit_reg); //negate count
  3037     __ lduh(str1_reg, limit_reg, chr1_reg);
  3038     // Lchar_loop
  3039     __ bind(Lchar_loop);
  3040     __ lduh(str2_reg, limit_reg, chr2_reg);
  3041     __ cmp(chr1_reg, chr2_reg);
  3042     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
  3043     __ delayed()->mov(G0, result_reg); //not equal
  3044     __ inccc(limit_reg, sizeof(jchar));
  3045     // annul LDUH if branch is not taken to prevent access past end of string
  3046     __ br(Assembler::notZero, true, Assembler::pt, Lchar_loop);
  3047     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  3049     __ add(G0, 1, result_reg);  //equal
  3051     __ bind(Ldone);
  3052   %}
  3054 enc_class enc_Array_Equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, notemp_iRegI result) %{
  3055     Label Lvector, Ldone, Lloop;
  3056     MacroAssembler _masm(&cbuf);
  3058     Register   ary1_reg = reg_to_register_object($ary1$$reg);
  3059     Register   ary2_reg = reg_to_register_object($ary2$$reg);
  3060     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
  3061     Register   tmp2_reg = O7;
  3062     Register result_reg = reg_to_register_object($result$$reg);
  3064     int length_offset  = arrayOopDesc::length_offset_in_bytes();
  3065     int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
  3067     // return true if the same array
  3068     __ cmp(ary1_reg, ary2_reg);
  3069     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
  3070     __ delayed()->add(G0, 1, result_reg); // equal
  3072     __ br_null(ary1_reg, true, Assembler::pn, Ldone);
  3073     __ delayed()->mov(G0, result_reg);    // not equal
  3075     __ br_null(ary2_reg, true, Assembler::pn, Ldone);
  3076     __ delayed()->mov(G0, result_reg);    // not equal
  3078     //load the lengths of arrays
  3079     __ ld(Address(ary1_reg, length_offset), tmp1_reg);
  3080     __ ld(Address(ary2_reg, length_offset), tmp2_reg);
  3082     // return false if the two arrays are not equal length
  3083     __ cmp(tmp1_reg, tmp2_reg);
  3084     __ br(Assembler::notEqual, true, Assembler::pn, Ldone);
  3085     __ delayed()->mov(G0, result_reg);     // not equal
  3087     __ cmp_zero_and_br(Assembler::zero, tmp1_reg, Ldone, true, Assembler::pn);
  3088     __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
  3090     // load array addresses
  3091     __ add(ary1_reg, base_offset, ary1_reg);
  3092     __ add(ary2_reg, base_offset, ary2_reg);
  3094     // renaming registers
  3095     Register chr1_reg  =  result_reg; // for characters in ary1
  3096     Register chr2_reg  =  tmp2_reg;   // for characters in ary2
  3097     Register limit_reg =  tmp1_reg;   // length
  3099     // set byte count
  3100     __ sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg);
  3102     // Compare char[] arrays aligned to 4 bytes.
  3103     __ char_arrays_equals(ary1_reg, ary2_reg, limit_reg, result_reg,
  3104                           chr1_reg, chr2_reg, Ldone);
  3105     __ add(G0, 1, result_reg); // equals
  3107     __ bind(Ldone);
  3108   %}
  3110   enc_class enc_rethrow() %{
  3111     cbuf.set_insts_mark();
  3112     Register temp_reg = G3;
  3113     AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
  3114     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
  3115     MacroAssembler _masm(&cbuf);
  3116 #ifdef ASSERT
  3117     __ save_frame(0);
  3118     AddressLiteral last_rethrow_addrlit(&last_rethrow);
  3119     __ sethi(last_rethrow_addrlit, L1);
  3120     Address addr(L1, last_rethrow_addrlit.low10());
  3121     __ get_pc(L2);
  3122     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
  3123     __ st_ptr(L2, addr);
  3124     __ restore();
  3125 #endif
  3126     __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
  3127     __ delayed()->nop();
  3128   %}
  3130   enc_class emit_mem_nop() %{
  3131     // Generates the instruction LDUXA [o6,g0],#0x82,g0
  3132     cbuf.insts()->emit_int32((unsigned int) 0xc0839040);
  3133   %}
  3135   enc_class emit_fadd_nop() %{
  3136     // Generates the instruction FMOVS f31,f31
  3137     cbuf.insts()->emit_int32((unsigned int) 0xbfa0003f);
  3138   %}
  3140   enc_class emit_br_nop() %{
  3141     // Generates the instruction BPN,PN .
  3142     cbuf.insts()->emit_int32((unsigned int) 0x00400000);
  3143   %}
  3145   enc_class enc_membar_acquire %{
  3146     MacroAssembler _masm(&cbuf);
  3147     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
  3148   %}
  3150   enc_class enc_membar_release %{
  3151     MacroAssembler _masm(&cbuf);
  3152     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
  3153   %}
  3155   enc_class enc_membar_volatile %{
  3156     MacroAssembler _masm(&cbuf);
  3157     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
  3158   %}
  3160 %}
  3162 //----------FRAME--------------------------------------------------------------
  3163 // Definition of frame structure and management information.
  3164 //
  3165 //  S T A C K   L A Y O U T    Allocators stack-slot number
  3166 //                             |   (to get allocators register number
  3167 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
  3168 //  r   CALLER     |        |
  3169 //  o     |        +--------+      pad to even-align allocators stack-slot
  3170 //  w     V        |  pad0  |        numbers; owned by CALLER
  3171 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  3172 //  h     ^        |   in   |  5
  3173 //        |        |  args  |  4   Holes in incoming args owned by SELF
  3174 //  |     |        |        |  3
  3175 //  |     |        +--------+
  3176 //  V     |        | old out|      Empty on Intel, window on Sparc
  3177 //        |    old |preserve|      Must be even aligned.
  3178 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
  3179 //        |        |   in   |  3   area for Intel ret address
  3180 //     Owned by    |preserve|      Empty on Sparc.
  3181 //       SELF      +--------+
  3182 //        |        |  pad2  |  2   pad to align old SP
  3183 //        |        +--------+  1
  3184 //        |        | locks  |  0
  3185 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
  3186 //        |        |  pad1  | 11   pad to align new SP
  3187 //        |        +--------+
  3188 //        |        |        | 10
  3189 //        |        | spills |  9   spills
  3190 //        V        |        |  8   (pad0 slot for callee)
  3191 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  3192 //        ^        |  out   |  7
  3193 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  3194 //     Owned by    +--------+
  3195 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
  3196 //        |    new |preserve|      Must be even-aligned.
  3197 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
  3198 //        |        |        |
  3199 //
  3200 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
  3201 //         known from SELF's arguments and the Java calling convention.
  3202 //         Region 6-7 is determined per call site.
  3203 // Note 2: If the calling convention leaves holes in the incoming argument
  3204 //         area, those holes are owned by SELF.  Holes in the outgoing area
  3205 //         are owned by the CALLEE.  Holes should not be nessecary in the
  3206 //         incoming area, as the Java calling convention is completely under
  3207 //         the control of the AD file.  Doubles can be sorted and packed to
  3208 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  3209 //         varargs C calling conventions.
  3210 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
  3211 //         even aligned with pad0 as needed.
  3212 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  3213 //         region 6-11 is even aligned; it may be padded out more so that
  3214 //         the region from SP to FP meets the minimum stack alignment.
  3216 frame %{
  3217   // What direction does stack grow in (assumed to be same for native & Java)
  3218   stack_direction(TOWARDS_LOW);
  3220   // These two registers define part of the calling convention
  3221   // between compiled code and the interpreter.
  3222   inline_cache_reg(R_G5);                // Inline Cache Register or methodOop for I2C
  3223   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
  3225   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  3226   cisc_spilling_operand_name(indOffset);
  3228   // Number of stack slots consumed by a Monitor enter
  3229 #ifdef _LP64
  3230   sync_stack_slots(2);
  3231 #else
  3232   sync_stack_slots(1);
  3233 #endif
  3235   // Compiled code's Frame Pointer
  3236   frame_pointer(R_SP);
  3238   // Stack alignment requirement
  3239   stack_alignment(StackAlignmentInBytes);
  3240   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
  3241   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
  3243   // Number of stack slots between incoming argument block and the start of
  3244   // a new frame.  The PROLOG must add this many slots to the stack.  The
  3245   // EPILOG must remove this many slots.
  3246   in_preserve_stack_slots(0);
  3248   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  3249   // for calls to C.  Supports the var-args backing area for register parms.
  3250   // ADLC doesn't support parsing expressions, so I folded the math by hand.
  3251 #ifdef _LP64
  3252   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
  3253   varargs_C_out_slots_killed(12);
  3254 #else
  3255   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
  3256   varargs_C_out_slots_killed( 7);
  3257 #endif
  3259   // The after-PROLOG location of the return address.  Location of
  3260   // return address specifies a type (REG or STACK) and a number
  3261   // representing the register number (i.e. - use a register name) or
  3262   // stack slot.
  3263   return_addr(REG R_I7);          // Ret Addr is in register I7
  3265   // Body of function which returns an OptoRegs array locating
  3266   // arguments either in registers or in stack slots for calling
  3267   // java
  3268   calling_convention %{
  3269     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
  3271   %}
  3273   // Body of function which returns an OptoRegs array locating
  3274   // arguments either in registers or in stack slots for callin
  3275   // C.
  3276   c_calling_convention %{
  3277     // This is obviously always outgoing
  3278     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
  3279   %}
  3281   // Location of native (C/C++) and interpreter return values.  This is specified to
  3282   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
  3283   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
  3284   // to and from the register pairs is done by the appropriate call and epilog
  3285   // opcodes.  This simplifies the register allocator.
  3286   c_return_value %{
  3287     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3288 #ifdef     _LP64
  3289     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3290     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3291     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3292     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3293 #else  // !_LP64
  3294     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3295     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3296     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3297     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3298 #endif
  3299     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3300                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3301   %}
  3303   // Location of compiled Java return values.  Same as C
  3304   return_value %{
  3305     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3306 #ifdef     _LP64
  3307     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3308     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3309     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3310     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3311 #else  // !_LP64
  3312     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3313     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3314     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3315     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3316 #endif
  3317     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3318                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3319   %}
  3321 %}
  3324 //----------ATTRIBUTES---------------------------------------------------------
  3325 //----------Operand Attributes-------------------------------------------------
  3326 op_attrib op_cost(1);          // Required cost attribute
  3328 //----------Instruction Attributes---------------------------------------------
  3329 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
  3330 ins_attrib ins_size(32);           // Required size attribute (in bits)
  3331 ins_attrib ins_avoid_back_to_back(0); // instruction should not be generated back to back
  3332 ins_attrib ins_short_branch(0);    // Required flag: is this instruction a
  3333                                    // non-matching short branch variant of some
  3334                                                             // long branch?
  3336 //----------OPERANDS-----------------------------------------------------------
  3337 // Operand definitions must precede instruction definitions for correct parsing
  3338 // in the ADLC because operands constitute user defined types which are used in
  3339 // instruction definitions.
  3341 //----------Simple Operands----------------------------------------------------
  3342 // Immediate Operands
  3343 // Integer Immediate: 32-bit
  3344 operand immI() %{
  3345   match(ConI);
  3347   op_cost(0);
  3348   // formats are generated automatically for constants and base registers
  3349   format %{ %}
  3350   interface(CONST_INTER);
  3351 %}
  3353 // Integer Immediate: 8-bit
  3354 operand immI8() %{
  3355   predicate(Assembler::is_simm8(n->get_int()));
  3356   match(ConI);
  3357   op_cost(0);
  3358   format %{ %}
  3359   interface(CONST_INTER);
  3360 %}
  3362 // Integer Immediate: 13-bit
  3363 operand immI13() %{
  3364   predicate(Assembler::is_simm13(n->get_int()));
  3365   match(ConI);
  3366   op_cost(0);
  3368   format %{ %}
  3369   interface(CONST_INTER);
  3370 %}
  3372 // Integer Immediate: 13-bit minus 7
  3373 operand immI13m7() %{
  3374   predicate((-4096 < n->get_int()) && ((n->get_int() + 7) <= 4095));
  3375   match(ConI);
  3376   op_cost(0);
  3378   format %{ %}
  3379   interface(CONST_INTER);
  3380 %}
  3382 // Integer Immediate: 16-bit
  3383 operand immI16() %{
  3384   predicate(Assembler::is_simm16(n->get_int()));
  3385   match(ConI);
  3386   op_cost(0);
  3387   format %{ %}
  3388   interface(CONST_INTER);
  3389 %}
  3391 // Unsigned (positive) Integer Immediate: 13-bit
  3392 operand immU13() %{
  3393   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
  3394   match(ConI);
  3395   op_cost(0);
  3397   format %{ %}
  3398   interface(CONST_INTER);
  3399 %}
  3401 // Integer Immediate: 6-bit
  3402 operand immU6() %{
  3403   predicate(n->get_int() >= 0 && n->get_int() <= 63);
  3404   match(ConI);
  3405   op_cost(0);
  3406   format %{ %}
  3407   interface(CONST_INTER);
  3408 %}
  3410 // Integer Immediate: 11-bit
  3411 operand immI11() %{
  3412   predicate(Assembler::is_simm11(n->get_int()));
  3413   match(ConI);
  3414   op_cost(0);
  3415   format %{ %}
  3416   interface(CONST_INTER);
  3417 %}
  3419 // Integer Immediate: 5-bit
  3420 operand immI5() %{
  3421   predicate(Assembler::is_simm5(n->get_int()));
  3422   match(ConI);
  3423   op_cost(0);
  3424   format %{ %}
  3425   interface(CONST_INTER);
  3426 %}
  3428 // Integer Immediate: 0-bit
  3429 operand immI0() %{
  3430   predicate(n->get_int() == 0);
  3431   match(ConI);
  3432   op_cost(0);
  3434   format %{ %}
  3435   interface(CONST_INTER);
  3436 %}
  3438 // Integer Immediate: the value 10
  3439 operand immI10() %{
  3440   predicate(n->get_int() == 10);
  3441   match(ConI);
  3442   op_cost(0);
  3444   format %{ %}
  3445   interface(CONST_INTER);
  3446 %}
  3448 // Integer Immediate: the values 0-31
  3449 operand immU5() %{
  3450   predicate(n->get_int() >= 0 && n->get_int() <= 31);
  3451   match(ConI);
  3452   op_cost(0);
  3454   format %{ %}
  3455   interface(CONST_INTER);
  3456 %}
  3458 // Integer Immediate: the values 1-31
  3459 operand immI_1_31() %{
  3460   predicate(n->get_int() >= 1 && n->get_int() <= 31);
  3461   match(ConI);
  3462   op_cost(0);
  3464   format %{ %}
  3465   interface(CONST_INTER);
  3466 %}
  3468 // Integer Immediate: the values 32-63
  3469 operand immI_32_63() %{
  3470   predicate(n->get_int() >= 32 && n->get_int() <= 63);
  3471   match(ConI);
  3472   op_cost(0);
  3474   format %{ %}
  3475   interface(CONST_INTER);
  3476 %}
  3478 // Immediates for special shifts (sign extend)
  3480 // Integer Immediate: the value 16
  3481 operand immI_16() %{
  3482   predicate(n->get_int() == 16);
  3483   match(ConI);
  3484   op_cost(0);
  3486   format %{ %}
  3487   interface(CONST_INTER);
  3488 %}
  3490 // Integer Immediate: the value 24
  3491 operand immI_24() %{
  3492   predicate(n->get_int() == 24);
  3493   match(ConI);
  3494   op_cost(0);
  3496   format %{ %}
  3497   interface(CONST_INTER);
  3498 %}
  3500 // Integer Immediate: the value 255
  3501 operand immI_255() %{
  3502   predicate( n->get_int() == 255 );
  3503   match(ConI);
  3504   op_cost(0);
  3506   format %{ %}
  3507   interface(CONST_INTER);
  3508 %}
  3510 // Integer Immediate: the value 65535
  3511 operand immI_65535() %{
  3512   predicate(n->get_int() == 65535);
  3513   match(ConI);
  3514   op_cost(0);
  3516   format %{ %}
  3517   interface(CONST_INTER);
  3518 %}
  3520 // Long Immediate: the value FF
  3521 operand immL_FF() %{
  3522   predicate( n->get_long() == 0xFFL );
  3523   match(ConL);
  3524   op_cost(0);
  3526   format %{ %}
  3527   interface(CONST_INTER);
  3528 %}
  3530 // Long Immediate: the value FFFF
  3531 operand immL_FFFF() %{
  3532   predicate( n->get_long() == 0xFFFFL );
  3533   match(ConL);
  3534   op_cost(0);
  3536   format %{ %}
  3537   interface(CONST_INTER);
  3538 %}
  3540 // Pointer Immediate: 32 or 64-bit
  3541 operand immP() %{
  3542   match(ConP);
  3544   op_cost(5);
  3545   // formats are generated automatically for constants and base registers
  3546   format %{ %}
  3547   interface(CONST_INTER);
  3548 %}
  3550 #ifdef _LP64
  3551 // Pointer Immediate: 64-bit
  3552 operand immP_set() %{
  3553   predicate(!VM_Version::is_niagara_plus());
  3554   match(ConP);
  3556   op_cost(5);
  3557   // formats are generated automatically for constants and base registers
  3558   format %{ %}
  3559   interface(CONST_INTER);
  3560 %}
  3562 // Pointer Immediate: 64-bit
  3563 // From Niagara2 processors on a load should be better than materializing.
  3564 operand immP_load() %{
  3565   predicate(VM_Version::is_niagara_plus() && (n->bottom_type()->isa_oop_ptr() || (MacroAssembler::insts_for_set(n->get_ptr()) > 3)));
  3566   match(ConP);
  3568   op_cost(5);
  3569   // formats are generated automatically for constants and base registers
  3570   format %{ %}
  3571   interface(CONST_INTER);
  3572 %}
  3574 // Pointer Immediate: 64-bit
  3575 operand immP_no_oop_cheap() %{
  3576   predicate(VM_Version::is_niagara_plus() && !n->bottom_type()->isa_oop_ptr() && (MacroAssembler::insts_for_set(n->get_ptr()) <= 3));
  3577   match(ConP);
  3579   op_cost(5);
  3580   // formats are generated automatically for constants and base registers
  3581   format %{ %}
  3582   interface(CONST_INTER);
  3583 %}
  3584 #endif
  3586 operand immP13() %{
  3587   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
  3588   match(ConP);
  3589   op_cost(0);
  3591   format %{ %}
  3592   interface(CONST_INTER);
  3593 %}
  3595 operand immP0() %{
  3596   predicate(n->get_ptr() == 0);
  3597   match(ConP);
  3598   op_cost(0);
  3600   format %{ %}
  3601   interface(CONST_INTER);
  3602 %}
  3604 operand immP_poll() %{
  3605   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
  3606   match(ConP);
  3608   // formats are generated automatically for constants and base registers
  3609   format %{ %}
  3610   interface(CONST_INTER);
  3611 %}
  3613 // Pointer Immediate
  3614 operand immN()
  3615 %{
  3616   match(ConN);
  3618   op_cost(10);
  3619   format %{ %}
  3620   interface(CONST_INTER);
  3621 %}
  3623 // NULL Pointer Immediate
  3624 operand immN0()
  3625 %{
  3626   predicate(n->get_narrowcon() == 0);
  3627   match(ConN);
  3629   op_cost(0);
  3630   format %{ %}
  3631   interface(CONST_INTER);
  3632 %}
  3634 operand immL() %{
  3635   match(ConL);
  3636   op_cost(40);
  3637   // formats are generated automatically for constants and base registers
  3638   format %{ %}
  3639   interface(CONST_INTER);
  3640 %}
  3642 operand immL0() %{
  3643   predicate(n->get_long() == 0L);
  3644   match(ConL);
  3645   op_cost(0);
  3646   // formats are generated automatically for constants and base registers
  3647   format %{ %}
  3648   interface(CONST_INTER);
  3649 %}
  3651 // Integer Immediate: 5-bit
  3652 operand immL5() %{
  3653   predicate(n->get_long() == (int)n->get_long() && Assembler::is_simm5((int)n->get_long()));
  3654   match(ConL);
  3655   op_cost(0);
  3656   format %{ %}
  3657   interface(CONST_INTER);
  3658 %}
  3660 // Long Immediate: 13-bit
  3661 operand immL13() %{
  3662   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
  3663   match(ConL);
  3664   op_cost(0);
  3666   format %{ %}
  3667   interface(CONST_INTER);
  3668 %}
  3670 // Long Immediate: 13-bit minus 7
  3671 operand immL13m7() %{
  3672   predicate((-4096L < n->get_long()) && ((n->get_long() + 7L) <= 4095L));
  3673   match(ConL);
  3674   op_cost(0);
  3676   format %{ %}
  3677   interface(CONST_INTER);
  3678 %}
  3680 // Long Immediate: low 32-bit mask
  3681 operand immL_32bits() %{
  3682   predicate(n->get_long() == 0xFFFFFFFFL);
  3683   match(ConL);
  3684   op_cost(0);
  3686   format %{ %}
  3687   interface(CONST_INTER);
  3688 %}
  3690 // Long Immediate: cheap (materialize in <= 3 instructions)
  3691 operand immL_cheap() %{
  3692   predicate(!VM_Version::is_niagara_plus() || MacroAssembler::insts_for_set64(n->get_long()) <= 3);
  3693   match(ConL);
  3694   op_cost(0);
  3696   format %{ %}
  3697   interface(CONST_INTER);
  3698 %}
  3700 // Long Immediate: expensive (materialize in > 3 instructions)
  3701 operand immL_expensive() %{
  3702   predicate(VM_Version::is_niagara_plus() && MacroAssembler::insts_for_set64(n->get_long()) > 3);
  3703   match(ConL);
  3704   op_cost(0);
  3706   format %{ %}
  3707   interface(CONST_INTER);
  3708 %}
  3710 // Double Immediate
  3711 operand immD() %{
  3712   match(ConD);
  3714   op_cost(40);
  3715   format %{ %}
  3716   interface(CONST_INTER);
  3717 %}
  3719 operand immD0() %{
  3720 #ifdef _LP64
  3721   // on 64-bit architectures this comparision is faster
  3722   predicate(jlong_cast(n->getd()) == 0);
  3723 #else
  3724   predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
  3725 #endif
  3726   match(ConD);
  3728   op_cost(0);
  3729   format %{ %}
  3730   interface(CONST_INTER);
  3731 %}
  3733 // Float Immediate
  3734 operand immF() %{
  3735   match(ConF);
  3737   op_cost(20);
  3738   format %{ %}
  3739   interface(CONST_INTER);
  3740 %}
  3742 // Float Immediate: 0
  3743 operand immF0() %{
  3744   predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
  3745   match(ConF);
  3747   op_cost(0);
  3748   format %{ %}
  3749   interface(CONST_INTER);
  3750 %}
  3752 // Integer Register Operands
  3753 // Integer Register
  3754 operand iRegI() %{
  3755   constraint(ALLOC_IN_RC(int_reg));
  3756   match(RegI);
  3758   match(notemp_iRegI);
  3759   match(g1RegI);
  3760   match(o0RegI);
  3761   match(iRegIsafe);
  3763   format %{ %}
  3764   interface(REG_INTER);
  3765 %}
  3767 operand notemp_iRegI() %{
  3768   constraint(ALLOC_IN_RC(notemp_int_reg));
  3769   match(RegI);
  3771   match(o0RegI);
  3773   format %{ %}
  3774   interface(REG_INTER);
  3775 %}
  3777 operand o0RegI() %{
  3778   constraint(ALLOC_IN_RC(o0_regI));
  3779   match(iRegI);
  3781   format %{ %}
  3782   interface(REG_INTER);
  3783 %}
  3785 // Pointer Register
  3786 operand iRegP() %{
  3787   constraint(ALLOC_IN_RC(ptr_reg));
  3788   match(RegP);
  3790   match(lock_ptr_RegP);
  3791   match(g1RegP);
  3792   match(g2RegP);
  3793   match(g3RegP);
  3794   match(g4RegP);
  3795   match(i0RegP);
  3796   match(o0RegP);
  3797   match(o1RegP);
  3798   match(l7RegP);
  3800   format %{ %}
  3801   interface(REG_INTER);
  3802 %}
  3804 operand sp_ptr_RegP() %{
  3805   constraint(ALLOC_IN_RC(sp_ptr_reg));
  3806   match(RegP);
  3807   match(iRegP);
  3809   format %{ %}
  3810   interface(REG_INTER);
  3811 %}
  3813 operand lock_ptr_RegP() %{
  3814   constraint(ALLOC_IN_RC(lock_ptr_reg));
  3815   match(RegP);
  3816   match(i0RegP);
  3817   match(o0RegP);
  3818   match(o1RegP);
  3819   match(l7RegP);
  3821   format %{ %}
  3822   interface(REG_INTER);
  3823 %}
  3825 operand g1RegP() %{
  3826   constraint(ALLOC_IN_RC(g1_regP));
  3827   match(iRegP);
  3829   format %{ %}
  3830   interface(REG_INTER);
  3831 %}
  3833 operand g2RegP() %{
  3834   constraint(ALLOC_IN_RC(g2_regP));
  3835   match(iRegP);
  3837   format %{ %}
  3838   interface(REG_INTER);
  3839 %}
  3841 operand g3RegP() %{
  3842   constraint(ALLOC_IN_RC(g3_regP));
  3843   match(iRegP);
  3845   format %{ %}
  3846   interface(REG_INTER);
  3847 %}
  3849 operand g1RegI() %{
  3850   constraint(ALLOC_IN_RC(g1_regI));
  3851   match(iRegI);
  3853   format %{ %}
  3854   interface(REG_INTER);
  3855 %}
  3857 operand g3RegI() %{
  3858   constraint(ALLOC_IN_RC(g3_regI));
  3859   match(iRegI);
  3861   format %{ %}
  3862   interface(REG_INTER);
  3863 %}
  3865 operand g4RegI() %{
  3866   constraint(ALLOC_IN_RC(g4_regI));
  3867   match(iRegI);
  3869   format %{ %}
  3870   interface(REG_INTER);
  3871 %}
  3873 operand g4RegP() %{
  3874   constraint(ALLOC_IN_RC(g4_regP));
  3875   match(iRegP);
  3877   format %{ %}
  3878   interface(REG_INTER);
  3879 %}
  3881 operand i0RegP() %{
  3882   constraint(ALLOC_IN_RC(i0_regP));
  3883   match(iRegP);
  3885   format %{ %}
  3886   interface(REG_INTER);
  3887 %}
  3889 operand o0RegP() %{
  3890   constraint(ALLOC_IN_RC(o0_regP));
  3891   match(iRegP);
  3893   format %{ %}
  3894   interface(REG_INTER);
  3895 %}
  3897 operand o1RegP() %{
  3898   constraint(ALLOC_IN_RC(o1_regP));
  3899   match(iRegP);
  3901   format %{ %}
  3902   interface(REG_INTER);
  3903 %}
  3905 operand o2RegP() %{
  3906   constraint(ALLOC_IN_RC(o2_regP));
  3907   match(iRegP);
  3909   format %{ %}
  3910   interface(REG_INTER);
  3911 %}
  3913 operand o7RegP() %{
  3914   constraint(ALLOC_IN_RC(o7_regP));
  3915   match(iRegP);
  3917   format %{ %}
  3918   interface(REG_INTER);
  3919 %}
  3921 operand l7RegP() %{
  3922   constraint(ALLOC_IN_RC(l7_regP));
  3923   match(iRegP);
  3925   format %{ %}
  3926   interface(REG_INTER);
  3927 %}
  3929 operand o7RegI() %{
  3930   constraint(ALLOC_IN_RC(o7_regI));
  3931   match(iRegI);
  3933   format %{ %}
  3934   interface(REG_INTER);
  3935 %}
  3937 operand iRegN() %{
  3938   constraint(ALLOC_IN_RC(int_reg));
  3939   match(RegN);
  3941   format %{ %}
  3942   interface(REG_INTER);
  3943 %}
  3945 // Long Register
  3946 operand iRegL() %{
  3947   constraint(ALLOC_IN_RC(long_reg));
  3948   match(RegL);
  3950   format %{ %}
  3951   interface(REG_INTER);
  3952 %}
  3954 operand o2RegL() %{
  3955   constraint(ALLOC_IN_RC(o2_regL));
  3956   match(iRegL);
  3958   format %{ %}
  3959   interface(REG_INTER);
  3960 %}
  3962 operand o7RegL() %{
  3963   constraint(ALLOC_IN_RC(o7_regL));
  3964   match(iRegL);
  3966   format %{ %}
  3967   interface(REG_INTER);
  3968 %}
  3970 operand g1RegL() %{
  3971   constraint(ALLOC_IN_RC(g1_regL));
  3972   match(iRegL);
  3974   format %{ %}
  3975   interface(REG_INTER);
  3976 %}
  3978 operand g3RegL() %{
  3979   constraint(ALLOC_IN_RC(g3_regL));
  3980   match(iRegL);
  3982   format %{ %}
  3983   interface(REG_INTER);
  3984 %}
  3986 // Int Register safe
  3987 // This is 64bit safe
  3988 operand iRegIsafe() %{
  3989   constraint(ALLOC_IN_RC(long_reg));
  3991   match(iRegI);
  3993   format %{ %}
  3994   interface(REG_INTER);
  3995 %}
  3997 // Condition Code Flag Register
  3998 operand flagsReg() %{
  3999   constraint(ALLOC_IN_RC(int_flags));
  4000   match(RegFlags);
  4002   format %{ "ccr" %} // both ICC and XCC
  4003   interface(REG_INTER);
  4004 %}
  4006 // Condition Code Register, unsigned comparisons.
  4007 operand flagsRegU() %{
  4008   constraint(ALLOC_IN_RC(int_flags));
  4009   match(RegFlags);
  4011   format %{ "icc_U" %}
  4012   interface(REG_INTER);
  4013 %}
  4015 // Condition Code Register, pointer comparisons.
  4016 operand flagsRegP() %{
  4017   constraint(ALLOC_IN_RC(int_flags));
  4018   match(RegFlags);
  4020 #ifdef _LP64
  4021   format %{ "xcc_P" %}
  4022 #else
  4023   format %{ "icc_P" %}
  4024 #endif
  4025   interface(REG_INTER);
  4026 %}
  4028 // Condition Code Register, long comparisons.
  4029 operand flagsRegL() %{
  4030   constraint(ALLOC_IN_RC(int_flags));
  4031   match(RegFlags);
  4033   format %{ "xcc_L" %}
  4034   interface(REG_INTER);
  4035 %}
  4037 // Condition Code Register, floating comparisons, unordered same as "less".
  4038 operand flagsRegF() %{
  4039   constraint(ALLOC_IN_RC(float_flags));
  4040   match(RegFlags);
  4041   match(flagsRegF0);
  4043   format %{ %}
  4044   interface(REG_INTER);
  4045 %}
  4047 operand flagsRegF0() %{
  4048   constraint(ALLOC_IN_RC(float_flag0));
  4049   match(RegFlags);
  4051   format %{ %}
  4052   interface(REG_INTER);
  4053 %}
  4056 // Condition Code Flag Register used by long compare
  4057 operand flagsReg_long_LTGE() %{
  4058   constraint(ALLOC_IN_RC(int_flags));
  4059   match(RegFlags);
  4060   format %{ "icc_LTGE" %}
  4061   interface(REG_INTER);
  4062 %}
  4063 operand flagsReg_long_EQNE() %{
  4064   constraint(ALLOC_IN_RC(int_flags));
  4065   match(RegFlags);
  4066   format %{ "icc_EQNE" %}
  4067   interface(REG_INTER);
  4068 %}
  4069 operand flagsReg_long_LEGT() %{
  4070   constraint(ALLOC_IN_RC(int_flags));
  4071   match(RegFlags);
  4072   format %{ "icc_LEGT" %}
  4073   interface(REG_INTER);
  4074 %}
  4077 operand regD() %{
  4078   constraint(ALLOC_IN_RC(dflt_reg));
  4079   match(RegD);
  4081   match(regD_low);
  4083   format %{ %}
  4084   interface(REG_INTER);
  4085 %}
  4087 operand regF() %{
  4088   constraint(ALLOC_IN_RC(sflt_reg));
  4089   match(RegF);
  4091   format %{ %}
  4092   interface(REG_INTER);
  4093 %}
  4095 operand regD_low() %{
  4096   constraint(ALLOC_IN_RC(dflt_low_reg));
  4097   match(regD);
  4099   format %{ %}
  4100   interface(REG_INTER);
  4101 %}
  4103 // Special Registers
  4105 // Method Register
  4106 operand inline_cache_regP(iRegP reg) %{
  4107   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
  4108   match(reg);
  4109   format %{ %}
  4110   interface(REG_INTER);
  4111 %}
  4113 operand interpreter_method_oop_regP(iRegP reg) %{
  4114   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
  4115   match(reg);
  4116   format %{ %}
  4117   interface(REG_INTER);
  4118 %}
  4121 //----------Complex Operands---------------------------------------------------
  4122 // Indirect Memory Reference
  4123 operand indirect(sp_ptr_RegP reg) %{
  4124   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4125   match(reg);
  4127   op_cost(100);
  4128   format %{ "[$reg]" %}
  4129   interface(MEMORY_INTER) %{
  4130     base($reg);
  4131     index(0x0);
  4132     scale(0x0);
  4133     disp(0x0);
  4134   %}
  4135 %}
  4137 // Indirect with simm13 Offset
  4138 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
  4139   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4140   match(AddP reg offset);
  4142   op_cost(100);
  4143   format %{ "[$reg + $offset]" %}
  4144   interface(MEMORY_INTER) %{
  4145     base($reg);
  4146     index(0x0);
  4147     scale(0x0);
  4148     disp($offset);
  4149   %}
  4150 %}
  4152 // Indirect with simm13 Offset minus 7
  4153 operand indOffset13m7(sp_ptr_RegP reg, immX13m7 offset) %{
  4154   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4155   match(AddP reg offset);
  4157   op_cost(100);
  4158   format %{ "[$reg + $offset]" %}
  4159   interface(MEMORY_INTER) %{
  4160     base($reg);
  4161     index(0x0);
  4162     scale(0x0);
  4163     disp($offset);
  4164   %}
  4165 %}
  4167 // Note:  Intel has a swapped version also, like this:
  4168 //operand indOffsetX(iRegI reg, immP offset) %{
  4169 //  constraint(ALLOC_IN_RC(int_reg));
  4170 //  match(AddP offset reg);
  4171 //
  4172 //  op_cost(100);
  4173 //  format %{ "[$reg + $offset]" %}
  4174 //  interface(MEMORY_INTER) %{
  4175 //    base($reg);
  4176 //    index(0x0);
  4177 //    scale(0x0);
  4178 //    disp($offset);
  4179 //  %}
  4180 //%}
  4181 //// However, it doesn't make sense for SPARC, since
  4182 // we have no particularly good way to embed oops in
  4183 // single instructions.
  4185 // Indirect with Register Index
  4186 operand indIndex(iRegP addr, iRegX index) %{
  4187   constraint(ALLOC_IN_RC(ptr_reg));
  4188   match(AddP addr index);
  4190   op_cost(100);
  4191   format %{ "[$addr + $index]" %}
  4192   interface(MEMORY_INTER) %{
  4193     base($addr);
  4194     index($index);
  4195     scale(0x0);
  4196     disp(0x0);
  4197   %}
  4198 %}
  4200 //----------Special Memory Operands--------------------------------------------
  4201 // Stack Slot Operand - This operand is used for loading and storing temporary
  4202 //                      values on the stack where a match requires a value to
  4203 //                      flow through memory.
  4204 operand stackSlotI(sRegI reg) %{
  4205   constraint(ALLOC_IN_RC(stack_slots));
  4206   op_cost(100);
  4207   //match(RegI);
  4208   format %{ "[$reg]" %}
  4209   interface(MEMORY_INTER) %{
  4210     base(0xE);   // R_SP
  4211     index(0x0);
  4212     scale(0x0);
  4213     disp($reg);  // Stack Offset
  4214   %}
  4215 %}
  4217 operand stackSlotP(sRegP reg) %{
  4218   constraint(ALLOC_IN_RC(stack_slots));
  4219   op_cost(100);
  4220   //match(RegP);
  4221   format %{ "[$reg]" %}
  4222   interface(MEMORY_INTER) %{
  4223     base(0xE);   // R_SP
  4224     index(0x0);
  4225     scale(0x0);
  4226     disp($reg);  // Stack Offset
  4227   %}
  4228 %}
  4230 operand stackSlotF(sRegF reg) %{
  4231   constraint(ALLOC_IN_RC(stack_slots));
  4232   op_cost(100);
  4233   //match(RegF);
  4234   format %{ "[$reg]" %}
  4235   interface(MEMORY_INTER) %{
  4236     base(0xE);   // R_SP
  4237     index(0x0);
  4238     scale(0x0);
  4239     disp($reg);  // Stack Offset
  4240   %}
  4241 %}
  4242 operand stackSlotD(sRegD reg) %{
  4243   constraint(ALLOC_IN_RC(stack_slots));
  4244   op_cost(100);
  4245   //match(RegD);
  4246   format %{ "[$reg]" %}
  4247   interface(MEMORY_INTER) %{
  4248     base(0xE);   // R_SP
  4249     index(0x0);
  4250     scale(0x0);
  4251     disp($reg);  // Stack Offset
  4252   %}
  4253 %}
  4254 operand stackSlotL(sRegL reg) %{
  4255   constraint(ALLOC_IN_RC(stack_slots));
  4256   op_cost(100);
  4257   //match(RegL);
  4258   format %{ "[$reg]" %}
  4259   interface(MEMORY_INTER) %{
  4260     base(0xE);   // R_SP
  4261     index(0x0);
  4262     scale(0x0);
  4263     disp($reg);  // Stack Offset
  4264   %}
  4265 %}
  4267 // Operands for expressing Control Flow
  4268 // NOTE:  Label is a predefined operand which should not be redefined in
  4269 //        the AD file.  It is generically handled within the ADLC.
  4271 //----------Conditional Branch Operands----------------------------------------
  4272 // Comparison Op  - This is the operation of the comparison, and is limited to
  4273 //                  the following set of codes:
  4274 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  4275 //
  4276 // Other attributes of the comparison, such as unsignedness, are specified
  4277 // by the comparison instruction that sets a condition code flags register.
  4278 // That result is represented by a flags operand whose subtype is appropriate
  4279 // to the unsignedness (etc.) of the comparison.
  4280 //
  4281 // Later, the instruction which matches both the Comparison Op (a Bool) and
  4282 // the flags (produced by the Cmp) specifies the coding of the comparison op
  4283 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  4285 operand cmpOp() %{
  4286   match(Bool);
  4288   format %{ "" %}
  4289   interface(COND_INTER) %{
  4290     equal(0x1);
  4291     not_equal(0x9);
  4292     less(0x3);
  4293     greater_equal(0xB);
  4294     less_equal(0x2);
  4295     greater(0xA);
  4296   %}
  4297 %}
  4299 // Comparison Op, unsigned
  4300 operand cmpOpU() %{
  4301   match(Bool);
  4303   format %{ "u" %}
  4304   interface(COND_INTER) %{
  4305     equal(0x1);
  4306     not_equal(0x9);
  4307     less(0x5);
  4308     greater_equal(0xD);
  4309     less_equal(0x4);
  4310     greater(0xC);
  4311   %}
  4312 %}
  4314 // Comparison Op, pointer (same as unsigned)
  4315 operand cmpOpP() %{
  4316   match(Bool);
  4318   format %{ "p" %}
  4319   interface(COND_INTER) %{
  4320     equal(0x1);
  4321     not_equal(0x9);
  4322     less(0x5);
  4323     greater_equal(0xD);
  4324     less_equal(0x4);
  4325     greater(0xC);
  4326   %}
  4327 %}
  4329 // Comparison Op, branch-register encoding
  4330 operand cmpOp_reg() %{
  4331   match(Bool);
  4333   format %{ "" %}
  4334   interface(COND_INTER) %{
  4335     equal        (0x1);
  4336     not_equal    (0x5);
  4337     less         (0x3);
  4338     greater_equal(0x7);
  4339     less_equal   (0x2);
  4340     greater      (0x6);
  4341   %}
  4342 %}
  4344 // Comparison Code, floating, unordered same as less
  4345 operand cmpOpF() %{
  4346   match(Bool);
  4348   format %{ "fl" %}
  4349   interface(COND_INTER) %{
  4350     equal(0x9);
  4351     not_equal(0x1);
  4352     less(0x3);
  4353     greater_equal(0xB);
  4354     less_equal(0xE);
  4355     greater(0x6);
  4356   %}
  4357 %}
  4359 // Used by long compare
  4360 operand cmpOp_commute() %{
  4361   match(Bool);
  4363   format %{ "" %}
  4364   interface(COND_INTER) %{
  4365     equal(0x1);
  4366     not_equal(0x9);
  4367     less(0xA);
  4368     greater_equal(0x2);
  4369     less_equal(0xB);
  4370     greater(0x3);
  4371   %}
  4372 %}
  4374 //----------OPERAND CLASSES----------------------------------------------------
  4375 // Operand Classes are groups of operands that are used to simplify
  4376 // instruction definitions by not requiring the AD writer to specify separate
  4377 // instructions for every form of operand when the instruction accepts
  4378 // multiple operand types with the same basic encoding and format.  The classic
  4379 // case of this is memory operands.
  4380 opclass memory( indirect, indOffset13, indIndex );
  4381 opclass indIndexMemory( indIndex );
  4383 //----------PIPELINE-----------------------------------------------------------
  4384 pipeline %{
  4386 //----------ATTRIBUTES---------------------------------------------------------
  4387 attributes %{
  4388   fixed_size_instructions;           // Fixed size instructions
  4389   branch_has_delay_slot;             // Branch has delay slot following
  4390   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
  4391   instruction_unit_size = 4;         // An instruction is 4 bytes long
  4392   instruction_fetch_unit_size = 16;  // The processor fetches one line
  4393   instruction_fetch_units = 1;       // of 16 bytes
  4395   // List of nop instructions
  4396   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
  4397 %}
  4399 //----------RESOURCES----------------------------------------------------------
  4400 // Resources are the functional units available to the machine
  4401 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
  4403 //----------PIPELINE DESCRIPTION-----------------------------------------------
  4404 // Pipeline Description specifies the stages in the machine's pipeline
  4406 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
  4408 //----------PIPELINE CLASSES---------------------------------------------------
  4409 // Pipeline Classes describe the stages in which input and output are
  4410 // referenced by the hardware pipeline.
  4412 // Integer ALU reg-reg operation
  4413 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4414     single_instruction;
  4415     dst   : E(write);
  4416     src1  : R(read);
  4417     src2  : R(read);
  4418     IALU  : R;
  4419 %}
  4421 // Integer ALU reg-reg long operation
  4422 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  4423     instruction_count(2);
  4424     dst   : E(write);
  4425     src1  : R(read);
  4426     src2  : R(read);
  4427     IALU  : R;
  4428     IALU  : R;
  4429 %}
  4431 // Integer ALU reg-reg long dependent operation
  4432 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
  4433     instruction_count(1); multiple_bundles;
  4434     dst   : E(write);
  4435     src1  : R(read);
  4436     src2  : R(read);
  4437     cr    : E(write);
  4438     IALU  : R(2);
  4439 %}
  4441 // Integer ALU reg-imm operaion
  4442 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4443     single_instruction;
  4444     dst   : E(write);
  4445     src1  : R(read);
  4446     IALU  : R;
  4447 %}
  4449 // Integer ALU reg-reg operation with condition code
  4450 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
  4451     single_instruction;
  4452     dst   : E(write);
  4453     cr    : E(write);
  4454     src1  : R(read);
  4455     src2  : R(read);
  4456     IALU  : R;
  4457 %}
  4459 // Integer ALU reg-imm operation with condition code
  4460 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
  4461     single_instruction;
  4462     dst   : E(write);
  4463     cr    : E(write);
  4464     src1  : R(read);
  4465     IALU  : R;
  4466 %}
  4468 // Integer ALU zero-reg operation
  4469 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  4470     single_instruction;
  4471     dst   : E(write);
  4472     src2  : R(read);
  4473     IALU  : R;
  4474 %}
  4476 // Integer ALU zero-reg operation with condition code only
  4477 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
  4478     single_instruction;
  4479     cr    : E(write);
  4480     src   : R(read);
  4481     IALU  : R;
  4482 %}
  4484 // Integer ALU reg-reg operation with condition code only
  4485 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4486     single_instruction;
  4487     cr    : E(write);
  4488     src1  : R(read);
  4489     src2  : R(read);
  4490     IALU  : R;
  4491 %}
  4493 // Integer ALU reg-imm operation with condition code only
  4494 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4495     single_instruction;
  4496     cr    : E(write);
  4497     src1  : R(read);
  4498     IALU  : R;
  4499 %}
  4501 // Integer ALU reg-reg-zero operation with condition code only
  4502 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
  4503     single_instruction;
  4504     cr    : E(write);
  4505     src1  : R(read);
  4506     src2  : R(read);
  4507     IALU  : R;
  4508 %}
  4510 // Integer ALU reg-imm-zero operation with condition code only
  4511 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
  4512     single_instruction;
  4513     cr    : E(write);
  4514     src1  : R(read);
  4515     IALU  : R;
  4516 %}
  4518 // Integer ALU reg-reg operation with condition code, src1 modified
  4519 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4520     single_instruction;
  4521     cr    : E(write);
  4522     src1  : E(write);
  4523     src1  : R(read);
  4524     src2  : R(read);
  4525     IALU  : R;
  4526 %}
  4528 // Integer ALU reg-imm operation with condition code, src1 modified
  4529 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4530     single_instruction;
  4531     cr    : E(write);
  4532     src1  : E(write);
  4533     src1  : R(read);
  4534     IALU  : R;
  4535 %}
  4537 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
  4538     multiple_bundles;
  4539     dst   : E(write)+4;
  4540     cr    : E(write);
  4541     src1  : R(read);
  4542     src2  : R(read);
  4543     IALU  : R(3);
  4544     BR    : R(2);
  4545 %}
  4547 // Integer ALU operation
  4548 pipe_class ialu_none(iRegI dst) %{
  4549     single_instruction;
  4550     dst   : E(write);
  4551     IALU  : R;
  4552 %}
  4554 // Integer ALU reg operation
  4555 pipe_class ialu_reg(iRegI dst, iRegI src) %{
  4556     single_instruction; may_have_no_code;
  4557     dst   : E(write);
  4558     src   : R(read);
  4559     IALU  : R;
  4560 %}
  4562 // Integer ALU reg conditional operation
  4563 // This instruction has a 1 cycle stall, and cannot execute
  4564 // in the same cycle as the instruction setting the condition
  4565 // code. We kludge this by pretending to read the condition code
  4566 // 1 cycle earlier, and by marking the functional units as busy
  4567 // for 2 cycles with the result available 1 cycle later than
  4568 // is really the case.
  4569 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
  4570     single_instruction;
  4571     op2_out : C(write);
  4572     op1     : R(read);
  4573     cr      : R(read);       // This is really E, with a 1 cycle stall
  4574     BR      : R(2);
  4575     MS      : R(2);
  4576 %}
  4578 #ifdef _LP64
  4579 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
  4580     instruction_count(1); multiple_bundles;
  4581     dst     : C(write)+1;
  4582     src     : R(read)+1;
  4583     IALU    : R(1);
  4584     BR      : E(2);
  4585     MS      : E(2);
  4586 %}
  4587 #endif
  4589 // Integer ALU reg operation
  4590 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
  4591     single_instruction; may_have_no_code;
  4592     dst   : E(write);
  4593     src   : R(read);
  4594     IALU  : R;
  4595 %}
  4596 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
  4597     single_instruction; may_have_no_code;
  4598     dst   : E(write);
  4599     src   : R(read);
  4600     IALU  : R;
  4601 %}
  4603 // Two integer ALU reg operations
  4604 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
  4605     instruction_count(2);
  4606     dst   : E(write);
  4607     src   : R(read);
  4608     A0    : R;
  4609     A1    : R;
  4610 %}
  4612 // Two integer ALU reg operations
  4613 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
  4614     instruction_count(2); may_have_no_code;
  4615     dst   : E(write);
  4616     src   : R(read);
  4617     A0    : R;
  4618     A1    : R;
  4619 %}
  4621 // Integer ALU imm operation
  4622 pipe_class ialu_imm(iRegI dst, immI13 src) %{
  4623     single_instruction;
  4624     dst   : E(write);
  4625     IALU  : R;
  4626 %}
  4628 // Integer ALU reg-reg with carry operation
  4629 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
  4630     single_instruction;
  4631     dst   : E(write);
  4632     src1  : R(read);
  4633     src2  : R(read);
  4634     IALU  : R;
  4635 %}
  4637 // Integer ALU cc operation
  4638 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
  4639     single_instruction;
  4640     dst   : E(write);
  4641     cc    : R(read);
  4642     IALU  : R;
  4643 %}
  4645 // Integer ALU cc / second IALU operation
  4646 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
  4647     instruction_count(1); multiple_bundles;
  4648     dst   : E(write)+1;
  4649     src   : R(read);
  4650     IALU  : R;
  4651 %}
  4653 // Integer ALU cc / second IALU operation
  4654 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
  4655     instruction_count(1); multiple_bundles;
  4656     dst   : E(write)+1;
  4657     p     : R(read);
  4658     q     : R(read);
  4659     IALU  : R;
  4660 %}
  4662 // Integer ALU hi-lo-reg operation
  4663 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
  4664     instruction_count(1); multiple_bundles;
  4665     dst   : E(write)+1;
  4666     IALU  : R(2);
  4667 %}
  4669 // Float ALU hi-lo-reg operation (with temp)
  4670 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
  4671     instruction_count(1); multiple_bundles;
  4672     dst   : E(write)+1;
  4673     IALU  : R(2);
  4674 %}
  4676 // Long Constant
  4677 pipe_class loadConL( iRegL dst, immL src ) %{
  4678     instruction_count(2); multiple_bundles;
  4679     dst   : E(write)+1;
  4680     IALU  : R(2);
  4681     IALU  : R(2);
  4682 %}
  4684 // Pointer Constant
  4685 pipe_class loadConP( iRegP dst, immP src ) %{
  4686     instruction_count(0); multiple_bundles;
  4687     fixed_latency(6);
  4688 %}
  4690 // Polling Address
  4691 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
  4692 #ifdef _LP64
  4693     instruction_count(0); multiple_bundles;
  4694     fixed_latency(6);
  4695 #else
  4696     dst   : E(write);
  4697     IALU  : R;
  4698 #endif
  4699 %}
  4701 // Long Constant small
  4702 pipe_class loadConLlo( iRegL dst, immL src ) %{
  4703     instruction_count(2);
  4704     dst   : E(write);
  4705     IALU  : R;
  4706     IALU  : R;
  4707 %}
  4709 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
  4710 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
  4711     instruction_count(1); multiple_bundles;
  4712     src   : R(read);
  4713     dst   : M(write)+1;
  4714     IALU  : R;
  4715     MS    : E;
  4716 %}
  4718 // Integer ALU nop operation
  4719 pipe_class ialu_nop() %{
  4720     single_instruction;
  4721     IALU  : R;
  4722 %}
  4724 // Integer ALU nop operation
  4725 pipe_class ialu_nop_A0() %{
  4726     single_instruction;
  4727     A0    : R;
  4728 %}
  4730 // Integer ALU nop operation
  4731 pipe_class ialu_nop_A1() %{
  4732     single_instruction;
  4733     A1    : R;
  4734 %}
  4736 // Integer Multiply reg-reg operation
  4737 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4738     single_instruction;
  4739     dst   : E(write);
  4740     src1  : R(read);
  4741     src2  : R(read);
  4742     MS    : R(5);
  4743 %}
  4745 // Integer Multiply reg-imm operation
  4746 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4747     single_instruction;
  4748     dst   : E(write);
  4749     src1  : R(read);
  4750     MS    : R(5);
  4751 %}
  4753 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4754     single_instruction;
  4755     dst   : E(write)+4;
  4756     src1  : R(read);
  4757     src2  : R(read);
  4758     MS    : R(6);
  4759 %}
  4761 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4762     single_instruction;
  4763     dst   : E(write)+4;
  4764     src1  : R(read);
  4765     MS    : R(6);
  4766 %}
  4768 // Integer Divide reg-reg
  4769 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
  4770     instruction_count(1); multiple_bundles;
  4771     dst   : E(write);
  4772     temp  : E(write);
  4773     src1  : R(read);
  4774     src2  : R(read);
  4775     temp  : R(read);
  4776     MS    : R(38);
  4777 %}
  4779 // Integer Divide reg-imm
  4780 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
  4781     instruction_count(1); multiple_bundles;
  4782     dst   : E(write);
  4783     temp  : E(write);
  4784     src1  : R(read);
  4785     temp  : R(read);
  4786     MS    : R(38);
  4787 %}
  4789 // Long Divide
  4790 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4791     dst  : E(write)+71;
  4792     src1 : R(read);
  4793     src2 : R(read)+1;
  4794     MS   : R(70);
  4795 %}
  4797 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4798     dst  : E(write)+71;
  4799     src1 : R(read);
  4800     MS   : R(70);
  4801 %}
  4803 // Floating Point Add Float
  4804 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
  4805     single_instruction;
  4806     dst   : X(write);
  4807     src1  : E(read);
  4808     src2  : E(read);
  4809     FA    : R;
  4810 %}
  4812 // Floating Point Add Double
  4813 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
  4814     single_instruction;
  4815     dst   : X(write);
  4816     src1  : E(read);
  4817     src2  : E(read);
  4818     FA    : R;
  4819 %}
  4821 // Floating Point Conditional Move based on integer flags
  4822 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
  4823     single_instruction;
  4824     dst   : X(write);
  4825     src   : E(read);
  4826     cr    : R(read);
  4827     FA    : R(2);
  4828     BR    : R(2);
  4829 %}
  4831 // Floating Point Conditional Move based on integer flags
  4832 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
  4833     single_instruction;
  4834     dst   : X(write);
  4835     src   : E(read);
  4836     cr    : R(read);
  4837     FA    : R(2);
  4838     BR    : R(2);
  4839 %}
  4841 // Floating Point Multiply Float
  4842 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
  4843     single_instruction;
  4844     dst   : X(write);
  4845     src1  : E(read);
  4846     src2  : E(read);
  4847     FM    : R;
  4848 %}
  4850 // Floating Point Multiply Double
  4851 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
  4852     single_instruction;
  4853     dst   : X(write);
  4854     src1  : E(read);
  4855     src2  : E(read);
  4856     FM    : R;
  4857 %}
  4859 // Floating Point Divide Float
  4860 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
  4861     single_instruction;
  4862     dst   : X(write);
  4863     src1  : E(read);
  4864     src2  : E(read);
  4865     FM    : R;
  4866     FDIV  : C(14);
  4867 %}
  4869 // Floating Point Divide Double
  4870 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
  4871     single_instruction;
  4872     dst   : X(write);
  4873     src1  : E(read);
  4874     src2  : E(read);
  4875     FM    : R;
  4876     FDIV  : C(17);
  4877 %}
  4879 // Floating Point Move/Negate/Abs Float
  4880 pipe_class faddF_reg(regF dst, regF src) %{
  4881     single_instruction;
  4882     dst   : W(write);
  4883     src   : E(read);
  4884     FA    : R(1);
  4885 %}
  4887 // Floating Point Move/Negate/Abs Double
  4888 pipe_class faddD_reg(regD dst, regD src) %{
  4889     single_instruction;
  4890     dst   : W(write);
  4891     src   : E(read);
  4892     FA    : R;
  4893 %}
  4895 // Floating Point Convert F->D
  4896 pipe_class fcvtF2D(regD dst, regF src) %{
  4897     single_instruction;
  4898     dst   : X(write);
  4899     src   : E(read);
  4900     FA    : R;
  4901 %}
  4903 // Floating Point Convert I->D
  4904 pipe_class fcvtI2D(regD dst, regF src) %{
  4905     single_instruction;
  4906     dst   : X(write);
  4907     src   : E(read);
  4908     FA    : R;
  4909 %}
  4911 // Floating Point Convert LHi->D
  4912 pipe_class fcvtLHi2D(regD dst, regD src) %{
  4913     single_instruction;
  4914     dst   : X(write);
  4915     src   : E(read);
  4916     FA    : R;
  4917 %}
  4919 // Floating Point Convert L->D
  4920 pipe_class fcvtL2D(regD dst, regF src) %{
  4921     single_instruction;
  4922     dst   : X(write);
  4923     src   : E(read);
  4924     FA    : R;
  4925 %}
  4927 // Floating Point Convert L->F
  4928 pipe_class fcvtL2F(regD dst, regF src) %{
  4929     single_instruction;
  4930     dst   : X(write);
  4931     src   : E(read);
  4932     FA    : R;
  4933 %}
  4935 // Floating Point Convert D->F
  4936 pipe_class fcvtD2F(regD dst, regF src) %{
  4937     single_instruction;
  4938     dst   : X(write);
  4939     src   : E(read);
  4940     FA    : R;
  4941 %}
  4943 // Floating Point Convert I->L
  4944 pipe_class fcvtI2L(regD dst, regF src) %{
  4945     single_instruction;
  4946     dst   : X(write);
  4947     src   : E(read);
  4948     FA    : R;
  4949 %}
  4951 // Floating Point Convert D->F
  4952 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
  4953     instruction_count(1); multiple_bundles;
  4954     dst   : X(write)+6;
  4955     src   : E(read);
  4956     FA    : R;
  4957 %}
  4959 // Floating Point Convert D->L
  4960 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
  4961     instruction_count(1); multiple_bundles;
  4962     dst   : X(write)+6;
  4963     src   : E(read);
  4964     FA    : R;
  4965 %}
  4967 // Floating Point Convert F->I
  4968 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
  4969     instruction_count(1); multiple_bundles;
  4970     dst   : X(write)+6;
  4971     src   : E(read);
  4972     FA    : R;
  4973 %}
  4975 // Floating Point Convert F->L
  4976 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
  4977     instruction_count(1); multiple_bundles;
  4978     dst   : X(write)+6;
  4979     src   : E(read);
  4980     FA    : R;
  4981 %}
  4983 // Floating Point Convert I->F
  4984 pipe_class fcvtI2F(regF dst, regF src) %{
  4985     single_instruction;
  4986     dst   : X(write);
  4987     src   : E(read);
  4988     FA    : R;
  4989 %}
  4991 // Floating Point Compare
  4992 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
  4993     single_instruction;
  4994     cr    : X(write);
  4995     src1  : E(read);
  4996     src2  : E(read);
  4997     FA    : R;
  4998 %}
  5000 // Floating Point Compare
  5001 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
  5002     single_instruction;
  5003     cr    : X(write);
  5004     src1  : E(read);
  5005     src2  : E(read);
  5006     FA    : R;
  5007 %}
  5009 // Floating Add Nop
  5010 pipe_class fadd_nop() %{
  5011     single_instruction;
  5012     FA  : R;
  5013 %}
  5015 // Integer Store to Memory
  5016 pipe_class istore_mem_reg(memory mem, iRegI src) %{
  5017     single_instruction;
  5018     mem   : R(read);
  5019     src   : C(read);
  5020     MS    : R;
  5021 %}
  5023 // Integer Store to Memory
  5024 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
  5025     single_instruction;
  5026     mem   : R(read);
  5027     src   : C(read);
  5028     MS    : R;
  5029 %}
  5031 // Integer Store Zero to Memory
  5032 pipe_class istore_mem_zero(memory mem, immI0 src) %{
  5033     single_instruction;
  5034     mem   : R(read);
  5035     MS    : R;
  5036 %}
  5038 // Special Stack Slot Store
  5039 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
  5040     single_instruction;
  5041     stkSlot : R(read);
  5042     src     : C(read);
  5043     MS      : R;
  5044 %}
  5046 // Special Stack Slot Store
  5047 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
  5048     instruction_count(2); multiple_bundles;
  5049     stkSlot : R(read);
  5050     src     : C(read);
  5051     MS      : R(2);
  5052 %}
  5054 // Float Store
  5055 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
  5056     single_instruction;
  5057     mem : R(read);
  5058     src : C(read);
  5059     MS  : R;
  5060 %}
  5062 // Float Store
  5063 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
  5064     single_instruction;
  5065     mem : R(read);
  5066     MS  : R;
  5067 %}
  5069 // Double Store
  5070 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
  5071     instruction_count(1);
  5072     mem : R(read);
  5073     src : C(read);
  5074     MS  : R;
  5075 %}
  5077 // Double Store
  5078 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
  5079     single_instruction;
  5080     mem : R(read);
  5081     MS  : R;
  5082 %}
  5084 // Special Stack Slot Float Store
  5085 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
  5086     single_instruction;
  5087     stkSlot : R(read);
  5088     src     : C(read);
  5089     MS      : R;
  5090 %}
  5092 // Special Stack Slot Double Store
  5093 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
  5094     single_instruction;
  5095     stkSlot : R(read);
  5096     src     : C(read);
  5097     MS      : R;
  5098 %}
  5100 // Integer Load (when sign bit propagation not needed)
  5101 pipe_class iload_mem(iRegI dst, memory mem) %{
  5102     single_instruction;
  5103     mem : R(read);
  5104     dst : C(write);
  5105     MS  : R;
  5106 %}
  5108 // Integer Load from stack operand
  5109 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
  5110     single_instruction;
  5111     mem : R(read);
  5112     dst : C(write);
  5113     MS  : R;
  5114 %}
  5116 // Integer Load (when sign bit propagation or masking is needed)
  5117 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
  5118     single_instruction;
  5119     mem : R(read);
  5120     dst : M(write);
  5121     MS  : R;
  5122 %}
  5124 // Float Load
  5125 pipe_class floadF_mem(regF dst, memory mem) %{
  5126     single_instruction;
  5127     mem : R(read);
  5128     dst : M(write);
  5129     MS  : R;
  5130 %}
  5132 // Float Load
  5133 pipe_class floadD_mem(regD dst, memory mem) %{
  5134     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
  5135     mem : R(read);
  5136     dst : M(write);
  5137     MS  : R;
  5138 %}
  5140 // Float Load
  5141 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
  5142     single_instruction;
  5143     stkSlot : R(read);
  5144     dst : M(write);
  5145     MS  : R;
  5146 %}
  5148 // Float Load
  5149 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
  5150     single_instruction;
  5151     stkSlot : R(read);
  5152     dst : M(write);
  5153     MS  : R;
  5154 %}
  5156 // Memory Nop
  5157 pipe_class mem_nop() %{
  5158     single_instruction;
  5159     MS  : R;
  5160 %}
  5162 pipe_class sethi(iRegP dst, immI src) %{
  5163     single_instruction;
  5164     dst  : E(write);
  5165     IALU : R;
  5166 %}
  5168 pipe_class loadPollP(iRegP poll) %{
  5169     single_instruction;
  5170     poll : R(read);
  5171     MS   : R;
  5172 %}
  5174 pipe_class br(Universe br, label labl) %{
  5175     single_instruction_with_delay_slot;
  5176     BR  : R;
  5177 %}
  5179 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
  5180     single_instruction_with_delay_slot;
  5181     cr    : E(read);
  5182     BR    : R;
  5183 %}
  5185 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
  5186     single_instruction_with_delay_slot;
  5187     op1 : E(read);
  5188     BR  : R;
  5189     MS  : R;
  5190 %}
  5192 // Compare and branch
  5193 pipe_class cmp_br_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl, flagsReg cr) %{
  5194     instruction_count(2); has_delay_slot;
  5195     cr    : E(write);
  5196     src1  : R(read);
  5197     src2  : R(read);
  5198     IALU  : R;
  5199     BR    : R;
  5200 %}
  5202 // Compare and branch
  5203 pipe_class cmp_br_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI13 src2, label labl, flagsReg cr) %{
  5204     instruction_count(2); has_delay_slot;
  5205     cr    : E(write);
  5206     src1  : R(read);
  5207     IALU  : R;
  5208     BR    : R;
  5209 %}
  5211 // Compare and branch using cbcond
  5212 pipe_class cbcond_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl) %{
  5213     single_instruction;
  5214     src1  : E(read);
  5215     src2  : E(read);
  5216     IALU  : R;
  5217     BR    : R;
  5218 %}
  5220 // Compare and branch using cbcond
  5221 pipe_class cbcond_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI5 src2, label labl) %{
  5222     single_instruction;
  5223     src1  : E(read);
  5224     IALU  : R;
  5225     BR    : R;
  5226 %}
  5228 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
  5229     single_instruction_with_delay_slot;
  5230     cr    : E(read);
  5231     BR    : R;
  5232 %}
  5234 pipe_class br_nop() %{
  5235     single_instruction;
  5236     BR  : R;
  5237 %}
  5239 pipe_class simple_call(method meth) %{
  5240     instruction_count(2); multiple_bundles; force_serialization;
  5241     fixed_latency(100);
  5242     BR  : R(1);
  5243     MS  : R(1);
  5244     A0  : R(1);
  5245 %}
  5247 pipe_class compiled_call(method meth) %{
  5248     instruction_count(1); multiple_bundles; force_serialization;
  5249     fixed_latency(100);
  5250     MS  : R(1);
  5251 %}
  5253 pipe_class call(method meth) %{
  5254     instruction_count(0); multiple_bundles; force_serialization;
  5255     fixed_latency(100);
  5256 %}
  5258 pipe_class tail_call(Universe ignore, label labl) %{
  5259     single_instruction; has_delay_slot;
  5260     fixed_latency(100);
  5261     BR  : R(1);
  5262     MS  : R(1);
  5263 %}
  5265 pipe_class ret(Universe ignore) %{
  5266     single_instruction; has_delay_slot;
  5267     BR  : R(1);
  5268     MS  : R(1);
  5269 %}
  5271 pipe_class ret_poll(g3RegP poll) %{
  5272     instruction_count(3); has_delay_slot;
  5273     poll : E(read);
  5274     MS   : R;
  5275 %}
  5277 // The real do-nothing guy
  5278 pipe_class empty( ) %{
  5279     instruction_count(0);
  5280 %}
  5282 pipe_class long_memory_op() %{
  5283     instruction_count(0); multiple_bundles; force_serialization;
  5284     fixed_latency(25);
  5285     MS  : R(1);
  5286 %}
  5288 // Check-cast
  5289 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
  5290     array : R(read);
  5291     match  : R(read);
  5292     IALU   : R(2);
  5293     BR     : R(2);
  5294     MS     : R;
  5295 %}
  5297 // Convert FPU flags into +1,0,-1
  5298 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
  5299     src1  : E(read);
  5300     src2  : E(read);
  5301     dst   : E(write);
  5302     FA    : R;
  5303     MS    : R(2);
  5304     BR    : R(2);
  5305 %}
  5307 // Compare for p < q, and conditionally add y
  5308 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
  5309     p     : E(read);
  5310     q     : E(read);
  5311     y     : E(read);
  5312     IALU  : R(3)
  5313 %}
  5315 // Perform a compare, then move conditionally in a branch delay slot.
  5316 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
  5317     src2   : E(read);
  5318     srcdst : E(read);
  5319     IALU   : R;
  5320     BR     : R;
  5321 %}
  5323 // Define the class for the Nop node
  5324 define %{
  5325    MachNop = ialu_nop;
  5326 %}
  5328 %}
  5330 //----------INSTRUCTIONS-------------------------------------------------------
  5332 //------------Special Stack Slot instructions - no match rules-----------------
  5333 instruct stkI_to_regF(regF dst, stackSlotI src) %{
  5334   // No match rule to avoid chain rule match.
  5335   effect(DEF dst, USE src);
  5336   ins_cost(MEMORY_REF_COST);
  5337   size(4);
  5338   format %{ "LDF    $src,$dst\t! stkI to regF" %}
  5339   opcode(Assembler::ldf_op3);
  5340   ins_encode(simple_form3_mem_reg(src, dst));
  5341   ins_pipe(floadF_stk);
  5342 %}
  5344 instruct stkL_to_regD(regD dst, stackSlotL src) %{
  5345   // No match rule to avoid chain rule match.
  5346   effect(DEF dst, USE src);
  5347   ins_cost(MEMORY_REF_COST);
  5348   size(4);
  5349   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
  5350   opcode(Assembler::lddf_op3);
  5351   ins_encode(simple_form3_mem_reg(src, dst));
  5352   ins_pipe(floadD_stk);
  5353 %}
  5355 instruct regF_to_stkI(stackSlotI dst, regF src) %{
  5356   // No match rule to avoid chain rule match.
  5357   effect(DEF dst, USE src);
  5358   ins_cost(MEMORY_REF_COST);
  5359   size(4);
  5360   format %{ "STF    $src,$dst\t! regF to stkI" %}
  5361   opcode(Assembler::stf_op3);
  5362   ins_encode(simple_form3_mem_reg(dst, src));
  5363   ins_pipe(fstoreF_stk_reg);
  5364 %}
  5366 instruct regD_to_stkL(stackSlotL dst, regD src) %{
  5367   // No match rule to avoid chain rule match.
  5368   effect(DEF dst, USE src);
  5369   ins_cost(MEMORY_REF_COST);
  5370   size(4);
  5371   format %{ "STDF   $src,$dst\t! regD to stkL" %}
  5372   opcode(Assembler::stdf_op3);
  5373   ins_encode(simple_form3_mem_reg(dst, src));
  5374   ins_pipe(fstoreD_stk_reg);
  5375 %}
  5377 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
  5378   effect(DEF dst, USE src);
  5379   ins_cost(MEMORY_REF_COST*2);
  5380   size(8);
  5381   format %{ "STW    $src,$dst.hi\t! long\n\t"
  5382             "STW    R_G0,$dst.lo" %}
  5383   opcode(Assembler::stw_op3);
  5384   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
  5385   ins_pipe(lstoreI_stk_reg);
  5386 %}
  5388 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
  5389   // No match rule to avoid chain rule match.
  5390   effect(DEF dst, USE src);
  5391   ins_cost(MEMORY_REF_COST);
  5392   size(4);
  5393   format %{ "STX    $src,$dst\t! regL to stkD" %}
  5394   opcode(Assembler::stx_op3);
  5395   ins_encode(simple_form3_mem_reg( dst, src ) );
  5396   ins_pipe(istore_stk_reg);
  5397 %}
  5399 //---------- Chain stack slots between similar types --------
  5401 // Load integer from stack slot
  5402 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
  5403   match(Set dst src);
  5404   ins_cost(MEMORY_REF_COST);
  5406   size(4);
  5407   format %{ "LDUW   $src,$dst\t!stk" %}
  5408   opcode(Assembler::lduw_op3);
  5409   ins_encode(simple_form3_mem_reg( src, dst ) );
  5410   ins_pipe(iload_mem);
  5411 %}
  5413 // Store integer to stack slot
  5414 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
  5415   match(Set dst src);
  5416   ins_cost(MEMORY_REF_COST);
  5418   size(4);
  5419   format %{ "STW    $src,$dst\t!stk" %}
  5420   opcode(Assembler::stw_op3);
  5421   ins_encode(simple_form3_mem_reg( dst, src ) );
  5422   ins_pipe(istore_mem_reg);
  5423 %}
  5425 // Load long from stack slot
  5426 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
  5427   match(Set dst src);
  5429   ins_cost(MEMORY_REF_COST);
  5430   size(4);
  5431   format %{ "LDX    $src,$dst\t! long" %}
  5432   opcode(Assembler::ldx_op3);
  5433   ins_encode(simple_form3_mem_reg( src, dst ) );
  5434   ins_pipe(iload_mem);
  5435 %}
  5437 // Store long to stack slot
  5438 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
  5439   match(Set dst src);
  5441   ins_cost(MEMORY_REF_COST);
  5442   size(4);
  5443   format %{ "STX    $src,$dst\t! long" %}
  5444   opcode(Assembler::stx_op3);
  5445   ins_encode(simple_form3_mem_reg( dst, src ) );
  5446   ins_pipe(istore_mem_reg);
  5447 %}
  5449 #ifdef _LP64
  5450 // Load pointer from stack slot, 64-bit encoding
  5451 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5452   match(Set dst src);
  5453   ins_cost(MEMORY_REF_COST);
  5454   size(4);
  5455   format %{ "LDX    $src,$dst\t!ptr" %}
  5456   opcode(Assembler::ldx_op3);
  5457   ins_encode(simple_form3_mem_reg( src, dst ) );
  5458   ins_pipe(iload_mem);
  5459 %}
  5461 // Store pointer to stack slot
  5462 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5463   match(Set dst src);
  5464   ins_cost(MEMORY_REF_COST);
  5465   size(4);
  5466   format %{ "STX    $src,$dst\t!ptr" %}
  5467   opcode(Assembler::stx_op3);
  5468   ins_encode(simple_form3_mem_reg( dst, src ) );
  5469   ins_pipe(istore_mem_reg);
  5470 %}
  5471 #else // _LP64
  5472 // Load pointer from stack slot, 32-bit encoding
  5473 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5474   match(Set dst src);
  5475   ins_cost(MEMORY_REF_COST);
  5476   format %{ "LDUW   $src,$dst\t!ptr" %}
  5477   opcode(Assembler::lduw_op3, Assembler::ldst_op);
  5478   ins_encode(simple_form3_mem_reg( src, dst ) );
  5479   ins_pipe(iload_mem);
  5480 %}
  5482 // Store pointer to stack slot
  5483 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5484   match(Set dst src);
  5485   ins_cost(MEMORY_REF_COST);
  5486   format %{ "STW    $src,$dst\t!ptr" %}
  5487   opcode(Assembler::stw_op3, Assembler::ldst_op);
  5488   ins_encode(simple_form3_mem_reg( dst, src ) );
  5489   ins_pipe(istore_mem_reg);
  5490 %}
  5491 #endif // _LP64
  5493 //------------Special Nop instructions for bundling - no match rules-----------
  5494 // Nop using the A0 functional unit
  5495 instruct Nop_A0() %{
  5496   ins_cost(0);
  5498   format %{ "NOP    ! Alu Pipeline" %}
  5499   opcode(Assembler::or_op3, Assembler::arith_op);
  5500   ins_encode( form2_nop() );
  5501   ins_pipe(ialu_nop_A0);
  5502 %}
  5504 // Nop using the A1 functional unit
  5505 instruct Nop_A1( ) %{
  5506   ins_cost(0);
  5508   format %{ "NOP    ! Alu Pipeline" %}
  5509   opcode(Assembler::or_op3, Assembler::arith_op);
  5510   ins_encode( form2_nop() );
  5511   ins_pipe(ialu_nop_A1);
  5512 %}
  5514 // Nop using the memory functional unit
  5515 instruct Nop_MS( ) %{
  5516   ins_cost(0);
  5518   format %{ "NOP    ! Memory Pipeline" %}
  5519   ins_encode( emit_mem_nop );
  5520   ins_pipe(mem_nop);
  5521 %}
  5523 // Nop using the floating add functional unit
  5524 instruct Nop_FA( ) %{
  5525   ins_cost(0);
  5527   format %{ "NOP    ! Floating Add Pipeline" %}
  5528   ins_encode( emit_fadd_nop );
  5529   ins_pipe(fadd_nop);
  5530 %}
  5532 // Nop using the branch functional unit
  5533 instruct Nop_BR( ) %{
  5534   ins_cost(0);
  5536   format %{ "NOP    ! Branch Pipeline" %}
  5537   ins_encode( emit_br_nop );
  5538   ins_pipe(br_nop);
  5539 %}
  5541 //----------Load/Store/Move Instructions---------------------------------------
  5542 //----------Load Instructions--------------------------------------------------
  5543 // Load Byte (8bit signed)
  5544 instruct loadB(iRegI dst, memory mem) %{
  5545   match(Set dst (LoadB mem));
  5546   ins_cost(MEMORY_REF_COST);
  5548   size(4);
  5549   format %{ "LDSB   $mem,$dst\t! byte" %}
  5550   ins_encode %{
  5551     __ ldsb($mem$$Address, $dst$$Register);
  5552   %}
  5553   ins_pipe(iload_mask_mem);
  5554 %}
  5556 // Load Byte (8bit signed) into a Long Register
  5557 instruct loadB2L(iRegL dst, memory mem) %{
  5558   match(Set dst (ConvI2L (LoadB mem)));
  5559   ins_cost(MEMORY_REF_COST);
  5561   size(4);
  5562   format %{ "LDSB   $mem,$dst\t! byte -> long" %}
  5563   ins_encode %{
  5564     __ ldsb($mem$$Address, $dst$$Register);
  5565   %}
  5566   ins_pipe(iload_mask_mem);
  5567 %}
  5569 // Load Unsigned Byte (8bit UNsigned) into an int reg
  5570 instruct loadUB(iRegI dst, memory mem) %{
  5571   match(Set dst (LoadUB mem));
  5572   ins_cost(MEMORY_REF_COST);
  5574   size(4);
  5575   format %{ "LDUB   $mem,$dst\t! ubyte" %}
  5576   ins_encode %{
  5577     __ ldub($mem$$Address, $dst$$Register);
  5578   %}
  5579   ins_pipe(iload_mem);
  5580 %}
  5582 // Load Unsigned Byte (8bit UNsigned) into a Long Register
  5583 instruct loadUB2L(iRegL dst, memory mem) %{
  5584   match(Set dst (ConvI2L (LoadUB mem)));
  5585   ins_cost(MEMORY_REF_COST);
  5587   size(4);
  5588   format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
  5589   ins_encode %{
  5590     __ ldub($mem$$Address, $dst$$Register);
  5591   %}
  5592   ins_pipe(iload_mem);
  5593 %}
  5595 // Load Unsigned Byte (8 bit UNsigned) with 8-bit mask into Long Register
  5596 instruct loadUB2L_immI8(iRegL dst, memory mem, immI8 mask) %{
  5597   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
  5598   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5600   size(2*4);
  5601   format %{ "LDUB   $mem,$dst\t# ubyte & 8-bit mask -> long\n\t"
  5602             "AND    $dst,$mask,$dst" %}
  5603   ins_encode %{
  5604     __ ldub($mem$$Address, $dst$$Register);
  5605     __ and3($dst$$Register, $mask$$constant, $dst$$Register);
  5606   %}
  5607   ins_pipe(iload_mem);
  5608 %}
  5610 // Load Short (16bit signed)
  5611 instruct loadS(iRegI dst, memory mem) %{
  5612   match(Set dst (LoadS mem));
  5613   ins_cost(MEMORY_REF_COST);
  5615   size(4);
  5616   format %{ "LDSH   $mem,$dst\t! short" %}
  5617   ins_encode %{
  5618     __ ldsh($mem$$Address, $dst$$Register);
  5619   %}
  5620   ins_pipe(iload_mask_mem);
  5621 %}
  5623 // Load Short (16 bit signed) to Byte (8 bit signed)
  5624 instruct loadS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5625   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
  5626   ins_cost(MEMORY_REF_COST);
  5628   size(4);
  5630   format %{ "LDSB   $mem+1,$dst\t! short -> byte" %}
  5631   ins_encode %{
  5632     __ ldsb($mem$$Address, $dst$$Register, 1);
  5633   %}
  5634   ins_pipe(iload_mask_mem);
  5635 %}
  5637 // Load Short (16bit signed) into a Long Register
  5638 instruct loadS2L(iRegL dst, memory mem) %{
  5639   match(Set dst (ConvI2L (LoadS mem)));
  5640   ins_cost(MEMORY_REF_COST);
  5642   size(4);
  5643   format %{ "LDSH   $mem,$dst\t! short -> long" %}
  5644   ins_encode %{
  5645     __ ldsh($mem$$Address, $dst$$Register);
  5646   %}
  5647   ins_pipe(iload_mask_mem);
  5648 %}
  5650 // Load Unsigned Short/Char (16bit UNsigned)
  5651 instruct loadUS(iRegI dst, memory mem) %{
  5652   match(Set dst (LoadUS mem));
  5653   ins_cost(MEMORY_REF_COST);
  5655   size(4);
  5656   format %{ "LDUH   $mem,$dst\t! ushort/char" %}
  5657   ins_encode %{
  5658     __ lduh($mem$$Address, $dst$$Register);
  5659   %}
  5660   ins_pipe(iload_mem);
  5661 %}
  5663 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
  5664 instruct loadUS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5665   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
  5666   ins_cost(MEMORY_REF_COST);
  5668   size(4);
  5669   format %{ "LDSB   $mem+1,$dst\t! ushort -> byte" %}
  5670   ins_encode %{
  5671     __ ldsb($mem$$Address, $dst$$Register, 1);
  5672   %}
  5673   ins_pipe(iload_mask_mem);
  5674 %}
  5676 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
  5677 instruct loadUS2L(iRegL dst, memory mem) %{
  5678   match(Set dst (ConvI2L (LoadUS mem)));
  5679   ins_cost(MEMORY_REF_COST);
  5681   size(4);
  5682   format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
  5683   ins_encode %{
  5684     __ lduh($mem$$Address, $dst$$Register);
  5685   %}
  5686   ins_pipe(iload_mem);
  5687 %}
  5689 // Load Unsigned Short/Char (16bit UNsigned) with mask 0xFF into a Long Register
  5690 instruct loadUS2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
  5691   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5692   ins_cost(MEMORY_REF_COST);
  5694   size(4);
  5695   format %{ "LDUB   $mem+1,$dst\t! ushort/char & 0xFF -> long" %}
  5696   ins_encode %{
  5697     __ ldub($mem$$Address, $dst$$Register, 1);  // LSB is index+1 on BE
  5698   %}
  5699   ins_pipe(iload_mem);
  5700 %}
  5702 // Load Unsigned Short/Char (16bit UNsigned) with a 13-bit mask into a Long Register
  5703 instruct loadUS2L_immI13(iRegL dst, memory mem, immI13 mask) %{
  5704   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5705   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5707   size(2*4);
  5708   format %{ "LDUH   $mem,$dst\t! ushort/char & 13-bit mask -> long\n\t"
  5709             "AND    $dst,$mask,$dst" %}
  5710   ins_encode %{
  5711     Register Rdst = $dst$$Register;
  5712     __ lduh($mem$$Address, Rdst);
  5713     __ and3(Rdst, $mask$$constant, Rdst);
  5714   %}
  5715   ins_pipe(iload_mem);
  5716 %}
  5718 // Load Unsigned Short/Char (16bit UNsigned) with a 16-bit mask into a Long Register
  5719 instruct loadUS2L_immI16(iRegL dst, memory mem, immI16 mask, iRegL tmp) %{
  5720   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5721   effect(TEMP dst, TEMP tmp);
  5722   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
  5724   size((3+1)*4);  // set may use two instructions.
  5725   format %{ "LDUH   $mem,$dst\t! ushort/char & 16-bit mask -> long\n\t"
  5726             "SET    $mask,$tmp\n\t"
  5727             "AND    $dst,$tmp,$dst" %}
  5728   ins_encode %{
  5729     Register Rdst = $dst$$Register;
  5730     Register Rtmp = $tmp$$Register;
  5731     __ lduh($mem$$Address, Rdst);
  5732     __ set($mask$$constant, Rtmp);
  5733     __ and3(Rdst, Rtmp, Rdst);
  5734   %}
  5735   ins_pipe(iload_mem);
  5736 %}
  5738 // Load Integer
  5739 instruct loadI(iRegI dst, memory mem) %{
  5740   match(Set dst (LoadI mem));
  5741   ins_cost(MEMORY_REF_COST);
  5743   size(4);
  5744   format %{ "LDUW   $mem,$dst\t! int" %}
  5745   ins_encode %{
  5746     __ lduw($mem$$Address, $dst$$Register);
  5747   %}
  5748   ins_pipe(iload_mem);
  5749 %}
  5751 // Load Integer to Byte (8 bit signed)
  5752 instruct loadI2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5753   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
  5754   ins_cost(MEMORY_REF_COST);
  5756   size(4);
  5758   format %{ "LDSB   $mem+3,$dst\t! int -> byte" %}
  5759   ins_encode %{
  5760     __ ldsb($mem$$Address, $dst$$Register, 3);
  5761   %}
  5762   ins_pipe(iload_mask_mem);
  5763 %}
  5765 // Load Integer to Unsigned Byte (8 bit UNsigned)
  5766 instruct loadI2UB(iRegI dst, indOffset13m7 mem, immI_255 mask) %{
  5767   match(Set dst (AndI (LoadI mem) mask));
  5768   ins_cost(MEMORY_REF_COST);
  5770   size(4);
  5772   format %{ "LDUB   $mem+3,$dst\t! int -> ubyte" %}
  5773   ins_encode %{
  5774     __ ldub($mem$$Address, $dst$$Register, 3);
  5775   %}
  5776   ins_pipe(iload_mask_mem);
  5777 %}
  5779 // Load Integer to Short (16 bit signed)
  5780 instruct loadI2S(iRegI dst, indOffset13m7 mem, immI_16 sixteen) %{
  5781   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
  5782   ins_cost(MEMORY_REF_COST);
  5784   size(4);
  5786   format %{ "LDSH   $mem+2,$dst\t! int -> short" %}
  5787   ins_encode %{
  5788     __ ldsh($mem$$Address, $dst$$Register, 2);
  5789   %}
  5790   ins_pipe(iload_mask_mem);
  5791 %}
  5793 // Load Integer to Unsigned Short (16 bit UNsigned)
  5794 instruct loadI2US(iRegI dst, indOffset13m7 mem, immI_65535 mask) %{
  5795   match(Set dst (AndI (LoadI mem) mask));
  5796   ins_cost(MEMORY_REF_COST);
  5798   size(4);
  5800   format %{ "LDUH   $mem+2,$dst\t! int -> ushort/char" %}
  5801   ins_encode %{
  5802     __ lduh($mem$$Address, $dst$$Register, 2);
  5803   %}
  5804   ins_pipe(iload_mask_mem);
  5805 %}
  5807 // Load Integer into a Long Register
  5808 instruct loadI2L(iRegL dst, memory mem) %{
  5809   match(Set dst (ConvI2L (LoadI mem)));
  5810   ins_cost(MEMORY_REF_COST);
  5812   size(4);
  5813   format %{ "LDSW   $mem,$dst\t! int -> long" %}
  5814   ins_encode %{
  5815     __ ldsw($mem$$Address, $dst$$Register);
  5816   %}
  5817   ins_pipe(iload_mask_mem);
  5818 %}
  5820 // Load Integer with mask 0xFF into a Long Register
  5821 instruct loadI2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
  5822   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5823   ins_cost(MEMORY_REF_COST);
  5825   size(4);
  5826   format %{ "LDUB   $mem+3,$dst\t! int & 0xFF -> long" %}
  5827   ins_encode %{
  5828     __ ldub($mem$$Address, $dst$$Register, 3);  // LSB is index+3 on BE
  5829   %}
  5830   ins_pipe(iload_mem);
  5831 %}
  5833 // Load Integer with mask 0xFFFF into a Long Register
  5834 instruct loadI2L_immI_65535(iRegL dst, indOffset13m7 mem, immI_65535 mask) %{
  5835   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5836   ins_cost(MEMORY_REF_COST);
  5838   size(4);
  5839   format %{ "LDUH   $mem+2,$dst\t! int & 0xFFFF -> long" %}
  5840   ins_encode %{
  5841     __ lduh($mem$$Address, $dst$$Register, 2);  // LSW is index+2 on BE
  5842   %}
  5843   ins_pipe(iload_mem);
  5844 %}
  5846 // Load Integer with a 13-bit mask into a Long Register
  5847 instruct loadI2L_immI13(iRegL dst, memory mem, immI13 mask) %{
  5848   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5849   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5851   size(2*4);
  5852   format %{ "LDUW   $mem,$dst\t! int & 13-bit mask -> long\n\t"
  5853             "AND    $dst,$mask,$dst" %}
  5854   ins_encode %{
  5855     Register Rdst = $dst$$Register;
  5856     __ lduw($mem$$Address, Rdst);
  5857     __ and3(Rdst, $mask$$constant, Rdst);
  5858   %}
  5859   ins_pipe(iload_mem);
  5860 %}
  5862 // Load Integer with a 32-bit mask into a Long Register
  5863 instruct loadI2L_immI(iRegL dst, memory mem, immI mask, iRegL tmp) %{
  5864   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5865   effect(TEMP dst, TEMP tmp);
  5866   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
  5868   size((3+1)*4);  // set may use two instructions.
  5869   format %{ "LDUW   $mem,$dst\t! int & 32-bit mask -> long\n\t"
  5870             "SET    $mask,$tmp\n\t"
  5871             "AND    $dst,$tmp,$dst" %}
  5872   ins_encode %{
  5873     Register Rdst = $dst$$Register;
  5874     Register Rtmp = $tmp$$Register;
  5875     __ lduw($mem$$Address, Rdst);
  5876     __ set($mask$$constant, Rtmp);
  5877     __ and3(Rdst, Rtmp, Rdst);
  5878   %}
  5879   ins_pipe(iload_mem);
  5880 %}
  5882 // Load Unsigned Integer into a Long Register
  5883 instruct loadUI2L(iRegL dst, memory mem) %{
  5884   match(Set dst (LoadUI2L mem));
  5885   ins_cost(MEMORY_REF_COST);
  5887   size(4);
  5888   format %{ "LDUW   $mem,$dst\t! uint -> long" %}
  5889   ins_encode %{
  5890     __ lduw($mem$$Address, $dst$$Register);
  5891   %}
  5892   ins_pipe(iload_mem);
  5893 %}
  5895 // Load Long - aligned
  5896 instruct loadL(iRegL dst, memory mem ) %{
  5897   match(Set dst (LoadL mem));
  5898   ins_cost(MEMORY_REF_COST);
  5900   size(4);
  5901   format %{ "LDX    $mem,$dst\t! long" %}
  5902   ins_encode %{
  5903     __ ldx($mem$$Address, $dst$$Register);
  5904   %}
  5905   ins_pipe(iload_mem);
  5906 %}
  5908 // Load Long - UNaligned
  5909 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
  5910   match(Set dst (LoadL_unaligned mem));
  5911   effect(KILL tmp);
  5912   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  5913   size(16);
  5914   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
  5915           "\tLDUW   $mem  ,$dst\n"
  5916           "\tSLLX   #32, $dst, $dst\n"
  5917           "\tOR     $dst, R_O7, $dst" %}
  5918   opcode(Assembler::lduw_op3);
  5919   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
  5920   ins_pipe(iload_mem);
  5921 %}
  5923 // Load Range
  5924 instruct loadRange(iRegI dst, memory mem) %{
  5925   match(Set dst (LoadRange mem));
  5926   ins_cost(MEMORY_REF_COST);
  5928   size(4);
  5929   format %{ "LDUW   $mem,$dst\t! range" %}
  5930   opcode(Assembler::lduw_op3);
  5931   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5932   ins_pipe(iload_mem);
  5933 %}
  5935 // Load Integer into %f register (for fitos/fitod)
  5936 instruct loadI_freg(regF dst, memory mem) %{
  5937   match(Set dst (LoadI mem));
  5938   ins_cost(MEMORY_REF_COST);
  5939   size(4);
  5941   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
  5942   opcode(Assembler::ldf_op3);
  5943   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5944   ins_pipe(floadF_mem);
  5945 %}
  5947 // Load Pointer
  5948 instruct loadP(iRegP dst, memory mem) %{
  5949   match(Set dst (LoadP mem));
  5950   ins_cost(MEMORY_REF_COST);
  5951   size(4);
  5953 #ifndef _LP64
  5954   format %{ "LDUW   $mem,$dst\t! ptr" %}
  5955   ins_encode %{
  5956     __ lduw($mem$$Address, $dst$$Register);
  5957   %}
  5958 #else
  5959   format %{ "LDX    $mem,$dst\t! ptr" %}
  5960   ins_encode %{
  5961     __ ldx($mem$$Address, $dst$$Register);
  5962   %}
  5963 #endif
  5964   ins_pipe(iload_mem);
  5965 %}
  5967 // Load Compressed Pointer
  5968 instruct loadN(iRegN dst, memory mem) %{
  5969   match(Set dst (LoadN mem));
  5970   ins_cost(MEMORY_REF_COST);
  5971   size(4);
  5973   format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
  5974   ins_encode %{
  5975     __ lduw($mem$$Address, $dst$$Register);
  5976   %}
  5977   ins_pipe(iload_mem);
  5978 %}
  5980 // Load Klass Pointer
  5981 instruct loadKlass(iRegP dst, memory mem) %{
  5982   match(Set dst (LoadKlass mem));
  5983   ins_cost(MEMORY_REF_COST);
  5984   size(4);
  5986 #ifndef _LP64
  5987   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
  5988   ins_encode %{
  5989     __ lduw($mem$$Address, $dst$$Register);
  5990   %}
  5991 #else
  5992   format %{ "LDX    $mem,$dst\t! klass ptr" %}
  5993   ins_encode %{
  5994     __ ldx($mem$$Address, $dst$$Register);
  5995   %}
  5996 #endif
  5997   ins_pipe(iload_mem);
  5998 %}
  6000 // Load narrow Klass Pointer
  6001 instruct loadNKlass(iRegN dst, memory mem) %{
  6002   match(Set dst (LoadNKlass mem));
  6003   ins_cost(MEMORY_REF_COST);
  6004   size(4);
  6006   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
  6007   ins_encode %{
  6008     __ lduw($mem$$Address, $dst$$Register);
  6009   %}
  6010   ins_pipe(iload_mem);
  6011 %}
  6013 // Load Double
  6014 instruct loadD(regD dst, memory mem) %{
  6015   match(Set dst (LoadD mem));
  6016   ins_cost(MEMORY_REF_COST);
  6018   size(4);
  6019   format %{ "LDDF   $mem,$dst" %}
  6020   opcode(Assembler::lddf_op3);
  6021   ins_encode(simple_form3_mem_reg( mem, dst ) );
  6022   ins_pipe(floadD_mem);
  6023 %}
  6025 // Load Double - UNaligned
  6026 instruct loadD_unaligned(regD_low dst, memory mem ) %{
  6027   match(Set dst (LoadD_unaligned mem));
  6028   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  6029   size(8);
  6030   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
  6031           "\tLDF    $mem+4,$dst.lo\t!" %}
  6032   opcode(Assembler::ldf_op3);
  6033   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
  6034   ins_pipe(iload_mem);
  6035 %}
  6037 // Load Float
  6038 instruct loadF(regF dst, memory mem) %{
  6039   match(Set dst (LoadF mem));
  6040   ins_cost(MEMORY_REF_COST);
  6042   size(4);
  6043   format %{ "LDF    $mem,$dst" %}
  6044   opcode(Assembler::ldf_op3);
  6045   ins_encode(simple_form3_mem_reg( mem, dst ) );
  6046   ins_pipe(floadF_mem);
  6047 %}
  6049 // Load Constant
  6050 instruct loadConI( iRegI dst, immI src ) %{
  6051   match(Set dst src);
  6052   ins_cost(DEFAULT_COST * 3/2);
  6053   format %{ "SET    $src,$dst" %}
  6054   ins_encode( Set32(src, dst) );
  6055   ins_pipe(ialu_hi_lo_reg);
  6056 %}
  6058 instruct loadConI13( iRegI dst, immI13 src ) %{
  6059   match(Set dst src);
  6061   size(4);
  6062   format %{ "MOV    $src,$dst" %}
  6063   ins_encode( Set13( src, dst ) );
  6064   ins_pipe(ialu_imm);
  6065 %}
  6067 #ifndef _LP64
  6068 instruct loadConP(iRegP dst, immP con) %{
  6069   match(Set dst con);
  6070   ins_cost(DEFAULT_COST * 3/2);
  6071   format %{ "SET    $con,$dst\t!ptr" %}
  6072   ins_encode %{
  6073     // [RGV] This next line should be generated from ADLC
  6074     if (_opnds[1]->constant_is_oop()) {
  6075       intptr_t val = $con$$constant;
  6076       __ set_oop_constant((jobject) val, $dst$$Register);
  6077     } else {          // non-oop pointers, e.g. card mark base, heap top
  6078       __ set($con$$constant, $dst$$Register);
  6080   %}
  6081   ins_pipe(loadConP);
  6082 %}
  6083 #else
  6084 instruct loadConP_set(iRegP dst, immP_set con) %{
  6085   match(Set dst con);
  6086   ins_cost(DEFAULT_COST * 3/2);
  6087   format %{ "SET    $con,$dst\t! ptr" %}
  6088   ins_encode %{
  6089     // [RGV] This next line should be generated from ADLC
  6090     if (_opnds[1]->constant_is_oop()) {
  6091       intptr_t val = $con$$constant;
  6092       __ set_oop_constant((jobject) val, $dst$$Register);
  6093     } else {          // non-oop pointers, e.g. card mark base, heap top
  6094       __ set($con$$constant, $dst$$Register);
  6096   %}
  6097   ins_pipe(loadConP);
  6098 %}
  6100 instruct loadConP_load(iRegP dst, immP_load con) %{
  6101   match(Set dst con);
  6102   ins_cost(MEMORY_REF_COST);
  6103   format %{ "LD     [$constanttablebase + $constantoffset],$dst\t! load from constant table: ptr=$con" %}
  6104   ins_encode %{
  6105     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
  6106     __ ld_ptr($constanttablebase, con_offset, $dst$$Register);
  6107   %}
  6108   ins_pipe(loadConP);
  6109 %}
  6111 instruct loadConP_no_oop_cheap(iRegP dst, immP_no_oop_cheap con) %{
  6112   match(Set dst con);
  6113   ins_cost(DEFAULT_COST * 3/2);
  6114   format %{ "SET    $con,$dst\t! non-oop ptr" %}
  6115   ins_encode %{
  6116     __ set($con$$constant, $dst$$Register);
  6117   %}
  6118   ins_pipe(loadConP);
  6119 %}
  6120 #endif // _LP64
  6122 instruct loadConP0(iRegP dst, immP0 src) %{
  6123   match(Set dst src);
  6125   size(4);
  6126   format %{ "CLR    $dst\t!ptr" %}
  6127   ins_encode %{
  6128     __ clr($dst$$Register);
  6129   %}
  6130   ins_pipe(ialu_imm);
  6131 %}
  6133 instruct loadConP_poll(iRegP dst, immP_poll src) %{
  6134   match(Set dst src);
  6135   ins_cost(DEFAULT_COST);
  6136   format %{ "SET    $src,$dst\t!ptr" %}
  6137   ins_encode %{
  6138     AddressLiteral polling_page(os::get_polling_page());
  6139     __ sethi(polling_page, reg_to_register_object($dst$$reg));
  6140   %}
  6141   ins_pipe(loadConP_poll);
  6142 %}
  6144 instruct loadConN0(iRegN dst, immN0 src) %{
  6145   match(Set dst src);
  6147   size(4);
  6148   format %{ "CLR    $dst\t! compressed NULL ptr" %}
  6149   ins_encode %{
  6150     __ clr($dst$$Register);
  6151   %}
  6152   ins_pipe(ialu_imm);
  6153 %}
  6155 instruct loadConN(iRegN dst, immN src) %{
  6156   match(Set dst src);
  6157   ins_cost(DEFAULT_COST * 3/2);
  6158   format %{ "SET    $src,$dst\t! compressed ptr" %}
  6159   ins_encode %{
  6160     Register dst = $dst$$Register;
  6161     __ set_narrow_oop((jobject)$src$$constant, dst);
  6162   %}
  6163   ins_pipe(ialu_hi_lo_reg);
  6164 %}
  6166 // Materialize long value (predicated by immL_cheap).
  6167 instruct loadConL_set64(iRegL dst, immL_cheap con, o7RegL tmp) %{
  6168   match(Set dst con);
  6169   effect(KILL tmp);
  6170   ins_cost(DEFAULT_COST * 3);
  6171   format %{ "SET64   $con,$dst KILL $tmp\t! cheap long" %}
  6172   ins_encode %{
  6173     __ set64($con$$constant, $dst$$Register, $tmp$$Register);
  6174   %}
  6175   ins_pipe(loadConL);
  6176 %}
  6178 // Load long value from constant table (predicated by immL_expensive).
  6179 instruct loadConL_ldx(iRegL dst, immL_expensive con) %{
  6180   match(Set dst con);
  6181   ins_cost(MEMORY_REF_COST);
  6182   format %{ "LDX     [$constanttablebase + $constantoffset],$dst\t! load from constant table: long=$con" %}
  6183   ins_encode %{
  6184       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
  6185     __ ldx($constanttablebase, con_offset, $dst$$Register);
  6186   %}
  6187   ins_pipe(loadConL);
  6188 %}
  6190 instruct loadConL0( iRegL dst, immL0 src ) %{
  6191   match(Set dst src);
  6192   ins_cost(DEFAULT_COST);
  6193   size(4);
  6194   format %{ "CLR    $dst\t! long" %}
  6195   ins_encode( Set13( src, dst ) );
  6196   ins_pipe(ialu_imm);
  6197 %}
  6199 instruct loadConL13( iRegL dst, immL13 src ) %{
  6200   match(Set dst src);
  6201   ins_cost(DEFAULT_COST * 2);
  6203   size(4);
  6204   format %{ "MOV    $src,$dst\t! long" %}
  6205   ins_encode( Set13( src, dst ) );
  6206   ins_pipe(ialu_imm);
  6207 %}
  6209 instruct loadConF(regF dst, immF con, o7RegI tmp) %{
  6210   match(Set dst con);
  6211   effect(KILL tmp);
  6212   format %{ "LDF    [$constanttablebase + $constantoffset],$dst\t! load from constant table: float=$con" %}
  6213   ins_encode %{
  6214       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
  6215     __ ldf(FloatRegisterImpl::S, $constanttablebase, con_offset, $dst$$FloatRegister);
  6216   %}
  6217   ins_pipe(loadConFD);
  6218 %}
  6220 instruct loadConD(regD dst, immD con, o7RegI tmp) %{
  6221   match(Set dst con);
  6222   effect(KILL tmp);
  6223   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: double=$con" %}
  6224   ins_encode %{
  6225     // XXX This is a quick fix for 6833573.
  6226     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset($con), $dst$$FloatRegister);
  6227     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
  6228     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  6229   %}
  6230   ins_pipe(loadConFD);
  6231 %}
  6233 // Prefetch instructions.
  6234 // Must be safe to execute with invalid address (cannot fault).
  6236 instruct prefetchr( memory mem ) %{
  6237   match( PrefetchRead mem );
  6238   ins_cost(MEMORY_REF_COST);
  6239   size(4);
  6241   format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
  6242   opcode(Assembler::prefetch_op3);
  6243   ins_encode( form3_mem_prefetch_read( mem ) );
  6244   ins_pipe(iload_mem);
  6245 %}
  6247 instruct prefetchw( memory mem ) %{
  6248   match( PrefetchWrite mem );
  6249   ins_cost(MEMORY_REF_COST);
  6250   size(4);
  6252   format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
  6253   opcode(Assembler::prefetch_op3);
  6254   ins_encode( form3_mem_prefetch_write( mem ) );
  6255   ins_pipe(iload_mem);
  6256 %}
  6258 // Prefetch instructions for allocation.
  6260 instruct prefetchAlloc( memory mem ) %{
  6261   predicate(AllocatePrefetchInstr == 0);
  6262   match( PrefetchAllocation mem );
  6263   ins_cost(MEMORY_REF_COST);
  6264   size(4);
  6266   format %{ "PREFETCH $mem,2\t! Prefetch allocation" %}
  6267   opcode(Assembler::prefetch_op3);
  6268   ins_encode( form3_mem_prefetch_write( mem ) );
  6269   ins_pipe(iload_mem);
  6270 %}
  6272 // Use BIS instruction to prefetch for allocation.
  6273 // Could fault, need space at the end of TLAB.
  6274 instruct prefetchAlloc_bis( iRegP dst ) %{
  6275   predicate(AllocatePrefetchInstr == 1);
  6276   match( PrefetchAllocation dst );
  6277   ins_cost(MEMORY_REF_COST);
  6278   size(4);
  6280   format %{ "STXA   [$dst]\t! // Prefetch allocation using BIS" %}
  6281   ins_encode %{
  6282     __ stxa(G0, $dst$$Register, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
  6283   %}
  6284   ins_pipe(istore_mem_reg);
  6285 %}
  6287 // Next code is used for finding next cache line address to prefetch.
  6288 #ifndef _LP64
  6289 instruct cacheLineAdr( iRegP dst, iRegP src, immI13 mask ) %{
  6290   match(Set dst (CastX2P (AndI (CastP2X src) mask)));
  6291   ins_cost(DEFAULT_COST);
  6292   size(4);
  6294   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
  6295   ins_encode %{
  6296     __ and3($src$$Register, $mask$$constant, $dst$$Register);
  6297   %}
  6298   ins_pipe(ialu_reg_imm);
  6299 %}
  6300 #else
  6301 instruct cacheLineAdr( iRegP dst, iRegP src, immL13 mask ) %{
  6302   match(Set dst (CastX2P (AndL (CastP2X src) mask)));
  6303   ins_cost(DEFAULT_COST);
  6304   size(4);
  6306   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
  6307   ins_encode %{
  6308     __ and3($src$$Register, $mask$$constant, $dst$$Register);
  6309   %}
  6310   ins_pipe(ialu_reg_imm);
  6311 %}
  6312 #endif
  6314 //----------Store Instructions-------------------------------------------------
  6315 // Store Byte
  6316 instruct storeB(memory mem, iRegI src) %{
  6317   match(Set mem (StoreB mem src));
  6318   ins_cost(MEMORY_REF_COST);
  6320   size(4);
  6321   format %{ "STB    $src,$mem\t! byte" %}
  6322   opcode(Assembler::stb_op3);
  6323   ins_encode(simple_form3_mem_reg( mem, src ) );
  6324   ins_pipe(istore_mem_reg);
  6325 %}
  6327 instruct storeB0(memory mem, immI0 src) %{
  6328   match(Set mem (StoreB mem src));
  6329   ins_cost(MEMORY_REF_COST);
  6331   size(4);
  6332   format %{ "STB    $src,$mem\t! byte" %}
  6333   opcode(Assembler::stb_op3);
  6334   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6335   ins_pipe(istore_mem_zero);
  6336 %}
  6338 instruct storeCM0(memory mem, immI0 src) %{
  6339   match(Set mem (StoreCM mem src));
  6340   ins_cost(MEMORY_REF_COST);
  6342   size(4);
  6343   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
  6344   opcode(Assembler::stb_op3);
  6345   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6346   ins_pipe(istore_mem_zero);
  6347 %}
  6349 // Store Char/Short
  6350 instruct storeC(memory mem, iRegI src) %{
  6351   match(Set mem (StoreC mem src));
  6352   ins_cost(MEMORY_REF_COST);
  6354   size(4);
  6355   format %{ "STH    $src,$mem\t! short" %}
  6356   opcode(Assembler::sth_op3);
  6357   ins_encode(simple_form3_mem_reg( mem, src ) );
  6358   ins_pipe(istore_mem_reg);
  6359 %}
  6361 instruct storeC0(memory mem, immI0 src) %{
  6362   match(Set mem (StoreC mem src));
  6363   ins_cost(MEMORY_REF_COST);
  6365   size(4);
  6366   format %{ "STH    $src,$mem\t! short" %}
  6367   opcode(Assembler::sth_op3);
  6368   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6369   ins_pipe(istore_mem_zero);
  6370 %}
  6372 // Store Integer
  6373 instruct storeI(memory mem, iRegI src) %{
  6374   match(Set mem (StoreI mem src));
  6375   ins_cost(MEMORY_REF_COST);
  6377   size(4);
  6378   format %{ "STW    $src,$mem" %}
  6379   opcode(Assembler::stw_op3);
  6380   ins_encode(simple_form3_mem_reg( mem, src ) );
  6381   ins_pipe(istore_mem_reg);
  6382 %}
  6384 // Store Long
  6385 instruct storeL(memory mem, iRegL src) %{
  6386   match(Set mem (StoreL mem src));
  6387   ins_cost(MEMORY_REF_COST);
  6388   size(4);
  6389   format %{ "STX    $src,$mem\t! long" %}
  6390   opcode(Assembler::stx_op3);
  6391   ins_encode(simple_form3_mem_reg( mem, src ) );
  6392   ins_pipe(istore_mem_reg);
  6393 %}
  6395 instruct storeI0(memory mem, immI0 src) %{
  6396   match(Set mem (StoreI mem src));
  6397   ins_cost(MEMORY_REF_COST);
  6399   size(4);
  6400   format %{ "STW    $src,$mem" %}
  6401   opcode(Assembler::stw_op3);
  6402   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6403   ins_pipe(istore_mem_zero);
  6404 %}
  6406 instruct storeL0(memory mem, immL0 src) %{
  6407   match(Set mem (StoreL mem src));
  6408   ins_cost(MEMORY_REF_COST);
  6410   size(4);
  6411   format %{ "STX    $src,$mem" %}
  6412   opcode(Assembler::stx_op3);
  6413   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6414   ins_pipe(istore_mem_zero);
  6415 %}
  6417 // Store Integer from float register (used after fstoi)
  6418 instruct storeI_Freg(memory mem, regF src) %{
  6419   match(Set mem (StoreI mem src));
  6420   ins_cost(MEMORY_REF_COST);
  6422   size(4);
  6423   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
  6424   opcode(Assembler::stf_op3);
  6425   ins_encode(simple_form3_mem_reg( mem, src ) );
  6426   ins_pipe(fstoreF_mem_reg);
  6427 %}
  6429 // Store Pointer
  6430 instruct storeP(memory dst, sp_ptr_RegP src) %{
  6431   match(Set dst (StoreP dst src));
  6432   ins_cost(MEMORY_REF_COST);
  6433   size(4);
  6435 #ifndef _LP64
  6436   format %{ "STW    $src,$dst\t! ptr" %}
  6437   opcode(Assembler::stw_op3, 0, REGP_OP);
  6438 #else
  6439   format %{ "STX    $src,$dst\t! ptr" %}
  6440   opcode(Assembler::stx_op3, 0, REGP_OP);
  6441 #endif
  6442   ins_encode( form3_mem_reg( dst, src ) );
  6443   ins_pipe(istore_mem_spORreg);
  6444 %}
  6446 instruct storeP0(memory dst, immP0 src) %{
  6447   match(Set dst (StoreP dst src));
  6448   ins_cost(MEMORY_REF_COST);
  6449   size(4);
  6451 #ifndef _LP64
  6452   format %{ "STW    $src,$dst\t! ptr" %}
  6453   opcode(Assembler::stw_op3, 0, REGP_OP);
  6454 #else
  6455   format %{ "STX    $src,$dst\t! ptr" %}
  6456   opcode(Assembler::stx_op3, 0, REGP_OP);
  6457 #endif
  6458   ins_encode( form3_mem_reg( dst, R_G0 ) );
  6459   ins_pipe(istore_mem_zero);
  6460 %}
  6462 // Store Compressed Pointer
  6463 instruct storeN(memory dst, iRegN src) %{
  6464    match(Set dst (StoreN dst src));
  6465    ins_cost(MEMORY_REF_COST);
  6466    size(4);
  6468    format %{ "STW    $src,$dst\t! compressed ptr" %}
  6469    ins_encode %{
  6470      Register base = as_Register($dst$$base);
  6471      Register index = as_Register($dst$$index);
  6472      Register src = $src$$Register;
  6473      if (index != G0) {
  6474        __ stw(src, base, index);
  6475      } else {
  6476        __ stw(src, base, $dst$$disp);
  6478    %}
  6479    ins_pipe(istore_mem_spORreg);
  6480 %}
  6482 instruct storeN0(memory dst, immN0 src) %{
  6483    match(Set dst (StoreN dst src));
  6484    ins_cost(MEMORY_REF_COST);
  6485    size(4);
  6487    format %{ "STW    $src,$dst\t! compressed ptr" %}
  6488    ins_encode %{
  6489      Register base = as_Register($dst$$base);
  6490      Register index = as_Register($dst$$index);
  6491      if (index != G0) {
  6492        __ stw(0, base, index);
  6493      } else {
  6494        __ stw(0, base, $dst$$disp);
  6496    %}
  6497    ins_pipe(istore_mem_zero);
  6498 %}
  6500 // Store Double
  6501 instruct storeD( memory mem, regD src) %{
  6502   match(Set mem (StoreD mem src));
  6503   ins_cost(MEMORY_REF_COST);
  6505   size(4);
  6506   format %{ "STDF   $src,$mem" %}
  6507   opcode(Assembler::stdf_op3);
  6508   ins_encode(simple_form3_mem_reg( mem, src ) );
  6509   ins_pipe(fstoreD_mem_reg);
  6510 %}
  6512 instruct storeD0( memory mem, immD0 src) %{
  6513   match(Set mem (StoreD mem src));
  6514   ins_cost(MEMORY_REF_COST);
  6516   size(4);
  6517   format %{ "STX    $src,$mem" %}
  6518   opcode(Assembler::stx_op3);
  6519   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6520   ins_pipe(fstoreD_mem_zero);
  6521 %}
  6523 // Store Float
  6524 instruct storeF( memory mem, regF src) %{
  6525   match(Set mem (StoreF mem src));
  6526   ins_cost(MEMORY_REF_COST);
  6528   size(4);
  6529   format %{ "STF    $src,$mem" %}
  6530   opcode(Assembler::stf_op3);
  6531   ins_encode(simple_form3_mem_reg( mem, src ) );
  6532   ins_pipe(fstoreF_mem_reg);
  6533 %}
  6535 instruct storeF0( memory mem, immF0 src) %{
  6536   match(Set mem (StoreF mem src));
  6537   ins_cost(MEMORY_REF_COST);
  6539   size(4);
  6540   format %{ "STW    $src,$mem\t! storeF0" %}
  6541   opcode(Assembler::stw_op3);
  6542   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6543   ins_pipe(fstoreF_mem_zero);
  6544 %}
  6546 // Convert oop pointer into compressed form
  6547 instruct encodeHeapOop(iRegN dst, iRegP src) %{
  6548   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
  6549   match(Set dst (EncodeP src));
  6550   format %{ "encode_heap_oop $src, $dst" %}
  6551   ins_encode %{
  6552     __ encode_heap_oop($src$$Register, $dst$$Register);
  6553   %}
  6554   ins_pipe(ialu_reg);
  6555 %}
  6557 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
  6558   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
  6559   match(Set dst (EncodeP src));
  6560   format %{ "encode_heap_oop_not_null $src, $dst" %}
  6561   ins_encode %{
  6562     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
  6563   %}
  6564   ins_pipe(ialu_reg);
  6565 %}
  6567 instruct decodeHeapOop(iRegP dst, iRegN src) %{
  6568   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
  6569             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
  6570   match(Set dst (DecodeN src));
  6571   format %{ "decode_heap_oop $src, $dst" %}
  6572   ins_encode %{
  6573     __ decode_heap_oop($src$$Register, $dst$$Register);
  6574   %}
  6575   ins_pipe(ialu_reg);
  6576 %}
  6578 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
  6579   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
  6580             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
  6581   match(Set dst (DecodeN src));
  6582   format %{ "decode_heap_oop_not_null $src, $dst" %}
  6583   ins_encode %{
  6584     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
  6585   %}
  6586   ins_pipe(ialu_reg);
  6587 %}
  6590 //----------MemBar Instructions-----------------------------------------------
  6591 // Memory barrier flavors
  6593 instruct membar_acquire() %{
  6594   match(MemBarAcquire);
  6595   ins_cost(4*MEMORY_REF_COST);
  6597   size(0);
  6598   format %{ "MEMBAR-acquire" %}
  6599   ins_encode( enc_membar_acquire );
  6600   ins_pipe(long_memory_op);
  6601 %}
  6603 instruct membar_acquire_lock() %{
  6604   match(MemBarAcquireLock);
  6605   ins_cost(0);
  6607   size(0);
  6608   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
  6609   ins_encode( );
  6610   ins_pipe(empty);
  6611 %}
  6613 instruct membar_release() %{
  6614   match(MemBarRelease);
  6615   ins_cost(4*MEMORY_REF_COST);
  6617   size(0);
  6618   format %{ "MEMBAR-release" %}
  6619   ins_encode( enc_membar_release );
  6620   ins_pipe(long_memory_op);
  6621 %}
  6623 instruct membar_release_lock() %{
  6624   match(MemBarReleaseLock);
  6625   ins_cost(0);
  6627   size(0);
  6628   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
  6629   ins_encode( );
  6630   ins_pipe(empty);
  6631 %}
  6633 instruct membar_volatile() %{
  6634   match(MemBarVolatile);
  6635   ins_cost(4*MEMORY_REF_COST);
  6637   size(4);
  6638   format %{ "MEMBAR-volatile" %}
  6639   ins_encode( enc_membar_volatile );
  6640   ins_pipe(long_memory_op);
  6641 %}
  6643 instruct unnecessary_membar_volatile() %{
  6644   match(MemBarVolatile);
  6645   predicate(Matcher::post_store_load_barrier(n));
  6646   ins_cost(0);
  6648   size(0);
  6649   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
  6650   ins_encode( );
  6651   ins_pipe(empty);
  6652 %}
  6654 instruct membar_storestore() %{
  6655   match(MemBarStoreStore);
  6656   ins_cost(0);
  6658   size(0);
  6659   format %{ "!MEMBAR-storestore (empty encoding)" %}
  6660   ins_encode( );
  6661   ins_pipe(empty);
  6662 %}
  6664 //----------Register Move Instructions-----------------------------------------
  6665 instruct roundDouble_nop(regD dst) %{
  6666   match(Set dst (RoundDouble dst));
  6667   ins_cost(0);
  6668   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6669   ins_encode( );
  6670   ins_pipe(empty);
  6671 %}
  6674 instruct roundFloat_nop(regF dst) %{
  6675   match(Set dst (RoundFloat dst));
  6676   ins_cost(0);
  6677   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6678   ins_encode( );
  6679   ins_pipe(empty);
  6680 %}
  6683 // Cast Index to Pointer for unsafe natives
  6684 instruct castX2P(iRegX src, iRegP dst) %{
  6685   match(Set dst (CastX2P src));
  6687   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
  6688   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6689   ins_pipe(ialu_reg);
  6690 %}
  6692 // Cast Pointer to Index for unsafe natives
  6693 instruct castP2X(iRegP src, iRegX dst) %{
  6694   match(Set dst (CastP2X src));
  6696   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
  6697   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6698   ins_pipe(ialu_reg);
  6699 %}
  6701 instruct stfSSD(stackSlotD stkSlot, regD src) %{
  6702   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6703   match(Set stkSlot src);   // chain rule
  6704   ins_cost(MEMORY_REF_COST);
  6705   format %{ "STDF   $src,$stkSlot\t!stk" %}
  6706   opcode(Assembler::stdf_op3);
  6707   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6708   ins_pipe(fstoreD_stk_reg);
  6709 %}
  6711 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
  6712   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6713   match(Set dst stkSlot);   // chain rule
  6714   ins_cost(MEMORY_REF_COST);
  6715   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
  6716   opcode(Assembler::lddf_op3);
  6717   ins_encode(simple_form3_mem_reg(stkSlot, dst));
  6718   ins_pipe(floadD_stk);
  6719 %}
  6721 instruct stfSSF(stackSlotF stkSlot, regF src) %{
  6722   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6723   match(Set stkSlot src);   // chain rule
  6724   ins_cost(MEMORY_REF_COST);
  6725   format %{ "STF   $src,$stkSlot\t!stk" %}
  6726   opcode(Assembler::stf_op3);
  6727   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6728   ins_pipe(fstoreF_stk_reg);
  6729 %}
  6731 //----------Conditional Move---------------------------------------------------
  6732 // Conditional move
  6733 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
  6734   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6735   ins_cost(150);
  6736   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6737   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6738   ins_pipe(ialu_reg);
  6739 %}
  6741 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
  6742   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6743   ins_cost(140);
  6744   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6745   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6746   ins_pipe(ialu_imm);
  6747 %}
  6749 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
  6750   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6751   ins_cost(150);
  6752   size(4);
  6753   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6754   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6755   ins_pipe(ialu_reg);
  6756 %}
  6758 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
  6759   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6760   ins_cost(140);
  6761   size(4);
  6762   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6763   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6764   ins_pipe(ialu_imm);
  6765 %}
  6767 instruct cmovIIu_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
  6768   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6769   ins_cost(150);
  6770   size(4);
  6771   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6772   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6773   ins_pipe(ialu_reg);
  6774 %}
  6776 instruct cmovIIu_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
  6777   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6778   ins_cost(140);
  6779   size(4);
  6780   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6781   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6782   ins_pipe(ialu_imm);
  6783 %}
  6785 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
  6786   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6787   ins_cost(150);
  6788   size(4);
  6789   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6790   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6791   ins_pipe(ialu_reg);
  6792 %}
  6794 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
  6795   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6796   ins_cost(140);
  6797   size(4);
  6798   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6799   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  6800   ins_pipe(ialu_imm);
  6801 %}
  6803 // Conditional move for RegN. Only cmov(reg,reg).
  6804 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
  6805   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
  6806   ins_cost(150);
  6807   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6808   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6809   ins_pipe(ialu_reg);
  6810 %}
  6812 // This instruction also works with CmpN so we don't need cmovNN_reg.
  6813 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
  6814   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
  6815   ins_cost(150);
  6816   size(4);
  6817   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6818   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6819   ins_pipe(ialu_reg);
  6820 %}
  6822 // This instruction also works with CmpN so we don't need cmovNN_reg.
  6823 instruct cmovNIu_reg(cmpOpU cmp, flagsRegU icc, iRegN dst, iRegN src) %{
  6824   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
  6825   ins_cost(150);
  6826   size(4);
  6827   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6828   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6829   ins_pipe(ialu_reg);
  6830 %}
  6832 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
  6833   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
  6834   ins_cost(150);
  6835   size(4);
  6836   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6837   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6838   ins_pipe(ialu_reg);
  6839 %}
  6841 // Conditional move
  6842 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
  6843   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6844   ins_cost(150);
  6845   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6846   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6847   ins_pipe(ialu_reg);
  6848 %}
  6850 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
  6851   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6852   ins_cost(140);
  6853   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6854   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6855   ins_pipe(ialu_imm);
  6856 %}
  6858 // This instruction also works with CmpN so we don't need cmovPN_reg.
  6859 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
  6860   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6861   ins_cost(150);
  6863   size(4);
  6864   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6865   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6866   ins_pipe(ialu_reg);
  6867 %}
  6869 instruct cmovPIu_reg(cmpOpU cmp, flagsRegU icc, iRegP dst, iRegP src) %{
  6870   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6871   ins_cost(150);
  6873   size(4);
  6874   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6875   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6876   ins_pipe(ialu_reg);
  6877 %}
  6879 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
  6880   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6881   ins_cost(140);
  6883   size(4);
  6884   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6885   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6886   ins_pipe(ialu_imm);
  6887 %}
  6889 instruct cmovPIu_imm(cmpOpU cmp, flagsRegU icc, iRegP dst, immP0 src) %{
  6890   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6891   ins_cost(140);
  6893   size(4);
  6894   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6895   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6896   ins_pipe(ialu_imm);
  6897 %}
  6899 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
  6900   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  6901   ins_cost(150);
  6902   size(4);
  6903   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6904   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6905   ins_pipe(ialu_imm);
  6906 %}
  6908 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
  6909   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  6910   ins_cost(140);
  6911   size(4);
  6912   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6913   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  6914   ins_pipe(ialu_imm);
  6915 %}
  6917 // Conditional move
  6918 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
  6919   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
  6920   ins_cost(150);
  6921   opcode(0x101);
  6922   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  6923   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6924   ins_pipe(int_conditional_float_move);
  6925 %}
  6927 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
  6928   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  6929   ins_cost(150);
  6931   size(4);
  6932   format %{ "FMOVS$cmp $icc,$src,$dst" %}
  6933   opcode(0x101);
  6934   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6935   ins_pipe(int_conditional_float_move);
  6936 %}
  6938 instruct cmovFIu_reg(cmpOpU cmp, flagsRegU icc, regF dst, regF src) %{
  6939   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  6940   ins_cost(150);
  6942   size(4);
  6943   format %{ "FMOVS$cmp $icc,$src,$dst" %}
  6944   opcode(0x101);
  6945   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6946   ins_pipe(int_conditional_float_move);
  6947 %}
  6949 // Conditional move,
  6950 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
  6951   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
  6952   ins_cost(150);
  6953   size(4);
  6954   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
  6955   opcode(0x1);
  6956   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  6957   ins_pipe(int_conditional_double_move);
  6958 %}
  6960 // Conditional move
  6961 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
  6962   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
  6963   ins_cost(150);
  6964   size(4);
  6965   opcode(0x102);
  6966   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  6967   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6968   ins_pipe(int_conditional_double_move);
  6969 %}
  6971 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
  6972   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  6973   ins_cost(150);
  6975   size(4);
  6976   format %{ "FMOVD$cmp $icc,$src,$dst" %}
  6977   opcode(0x102);
  6978   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6979   ins_pipe(int_conditional_double_move);
  6980 %}
  6982 instruct cmovDIu_reg(cmpOpU cmp, flagsRegU icc, regD dst, regD src) %{
  6983   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  6984   ins_cost(150);
  6986   size(4);
  6987   format %{ "FMOVD$cmp $icc,$src,$dst" %}
  6988   opcode(0x102);
  6989   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6990   ins_pipe(int_conditional_double_move);
  6991 %}
  6993 // Conditional move,
  6994 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
  6995   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
  6996   ins_cost(150);
  6997   size(4);
  6998   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
  6999   opcode(0x2);
  7000   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  7001   ins_pipe(int_conditional_double_move);
  7002 %}
  7004 // Conditional move
  7005 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
  7006   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  7007   ins_cost(150);
  7008   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  7009   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  7010   ins_pipe(ialu_reg);
  7011 %}
  7013 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
  7014   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  7015   ins_cost(140);
  7016   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  7017   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  7018   ins_pipe(ialu_imm);
  7019 %}
  7021 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
  7022   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  7023   ins_cost(150);
  7025   size(4);
  7026   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  7027   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  7028   ins_pipe(ialu_reg);
  7029 %}
  7032 instruct cmovLIu_reg(cmpOpU cmp, flagsRegU icc, iRegL dst, iRegL src) %{
  7033   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  7034   ins_cost(150);
  7036   size(4);
  7037   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  7038   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  7039   ins_pipe(ialu_reg);
  7040 %}
  7043 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
  7044   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
  7045   ins_cost(150);
  7047   size(4);
  7048   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
  7049   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  7050   ins_pipe(ialu_reg);
  7051 %}
  7055 //----------OS and Locking Instructions----------------------------------------
  7057 // This name is KNOWN by the ADLC and cannot be changed.
  7058 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
  7059 // for this guy.
  7060 instruct tlsLoadP(g2RegP dst) %{
  7061   match(Set dst (ThreadLocal));
  7063   size(0);
  7064   ins_cost(0);
  7065   format %{ "# TLS is in G2" %}
  7066   ins_encode( /*empty encoding*/ );
  7067   ins_pipe(ialu_none);
  7068 %}
  7070 instruct checkCastPP( iRegP dst ) %{
  7071   match(Set dst (CheckCastPP dst));
  7073   size(0);
  7074   format %{ "# checkcastPP of $dst" %}
  7075   ins_encode( /*empty encoding*/ );
  7076   ins_pipe(empty);
  7077 %}
  7080 instruct castPP( iRegP dst ) %{
  7081   match(Set dst (CastPP dst));
  7082   format %{ "# castPP of $dst" %}
  7083   ins_encode( /*empty encoding*/ );
  7084   ins_pipe(empty);
  7085 %}
  7087 instruct castII( iRegI dst ) %{
  7088   match(Set dst (CastII dst));
  7089   format %{ "# castII of $dst" %}
  7090   ins_encode( /*empty encoding*/ );
  7091   ins_cost(0);
  7092   ins_pipe(empty);
  7093 %}
  7095 //----------Arithmetic Instructions--------------------------------------------
  7096 // Addition Instructions
  7097 // Register Addition
  7098 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7099   match(Set dst (AddI src1 src2));
  7101   size(4);
  7102   format %{ "ADD    $src1,$src2,$dst" %}
  7103   ins_encode %{
  7104     __ add($src1$$Register, $src2$$Register, $dst$$Register);
  7105   %}
  7106   ins_pipe(ialu_reg_reg);
  7107 %}
  7109 // Immediate Addition
  7110 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7111   match(Set dst (AddI src1 src2));
  7113   size(4);
  7114   format %{ "ADD    $src1,$src2,$dst" %}
  7115   opcode(Assembler::add_op3, Assembler::arith_op);
  7116   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7117   ins_pipe(ialu_reg_imm);
  7118 %}
  7120 // Pointer Register Addition
  7121 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
  7122   match(Set dst (AddP src1 src2));
  7124   size(4);
  7125   format %{ "ADD    $src1,$src2,$dst" %}
  7126   opcode(Assembler::add_op3, Assembler::arith_op);
  7127   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7128   ins_pipe(ialu_reg_reg);
  7129 %}
  7131 // Pointer Immediate Addition
  7132 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
  7133   match(Set dst (AddP src1 src2));
  7135   size(4);
  7136   format %{ "ADD    $src1,$src2,$dst" %}
  7137   opcode(Assembler::add_op3, Assembler::arith_op);
  7138   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7139   ins_pipe(ialu_reg_imm);
  7140 %}
  7142 // Long Addition
  7143 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7144   match(Set dst (AddL src1 src2));
  7146   size(4);
  7147   format %{ "ADD    $src1,$src2,$dst\t! long" %}
  7148   opcode(Assembler::add_op3, Assembler::arith_op);
  7149   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7150   ins_pipe(ialu_reg_reg);
  7151 %}
  7153 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7154   match(Set dst (AddL src1 con));
  7156   size(4);
  7157   format %{ "ADD    $src1,$con,$dst" %}
  7158   opcode(Assembler::add_op3, Assembler::arith_op);
  7159   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7160   ins_pipe(ialu_reg_imm);
  7161 %}
  7163 //----------Conditional_store--------------------------------------------------
  7164 // Conditional-store of the updated heap-top.
  7165 // Used during allocation of the shared heap.
  7166 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
  7168 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
  7169 instruct loadPLocked(iRegP dst, memory mem) %{
  7170   match(Set dst (LoadPLocked mem));
  7171   ins_cost(MEMORY_REF_COST);
  7173 #ifndef _LP64
  7174   size(4);
  7175   format %{ "LDUW   $mem,$dst\t! ptr" %}
  7176   opcode(Assembler::lduw_op3, 0, REGP_OP);
  7177 #else
  7178   format %{ "LDX    $mem,$dst\t! ptr" %}
  7179   opcode(Assembler::ldx_op3, 0, REGP_OP);
  7180 #endif
  7181   ins_encode( form3_mem_reg( mem, dst ) );
  7182   ins_pipe(iload_mem);
  7183 %}
  7185 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
  7186   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
  7187   effect( KILL newval );
  7188   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
  7189             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
  7190   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
  7191   ins_pipe( long_memory_op );
  7192 %}
  7194 // Conditional-store of an int value.
  7195 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
  7196   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
  7197   effect( KILL newval );
  7198   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
  7199             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  7200   ins_encode( enc_cas(mem_ptr,oldval,newval) );
  7201   ins_pipe( long_memory_op );
  7202 %}
  7204 // Conditional-store of a long value.
  7205 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
  7206   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
  7207   effect( KILL newval );
  7208   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
  7209             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  7210   ins_encode( enc_cas(mem_ptr,oldval,newval) );
  7211   ins_pipe( long_memory_op );
  7212 %}
  7214 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
  7216 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7217   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
  7218   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7219   format %{
  7220             "MOV    $newval,O7\n\t"
  7221             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7222             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7223             "MOV    1,$res\n\t"
  7224             "MOVne  xcc,R_G0,$res"
  7225   %}
  7226   ins_encode( enc_casx(mem_ptr, oldval, newval),
  7227               enc_lflags_ne_to_boolean(res) );
  7228   ins_pipe( long_memory_op );
  7229 %}
  7232 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7233   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
  7234   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7235   format %{
  7236             "MOV    $newval,O7\n\t"
  7237             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7238             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7239             "MOV    1,$res\n\t"
  7240             "MOVne  icc,R_G0,$res"
  7241   %}
  7242   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7243               enc_iflags_ne_to_boolean(res) );
  7244   ins_pipe( long_memory_op );
  7245 %}
  7247 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7248   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
  7249   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7250   format %{
  7251             "MOV    $newval,O7\n\t"
  7252             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7253             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7254             "MOV    1,$res\n\t"
  7255             "MOVne  xcc,R_G0,$res"
  7256   %}
  7257 #ifdef _LP64
  7258   ins_encode( enc_casx(mem_ptr, oldval, newval),
  7259               enc_lflags_ne_to_boolean(res) );
  7260 #else
  7261   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7262               enc_iflags_ne_to_boolean(res) );
  7263 #endif
  7264   ins_pipe( long_memory_op );
  7265 %}
  7267 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7268   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
  7269   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7270   format %{
  7271             "MOV    $newval,O7\n\t"
  7272             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7273             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7274             "MOV    1,$res\n\t"
  7275             "MOVne  icc,R_G0,$res"
  7276   %}
  7277   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7278               enc_iflags_ne_to_boolean(res) );
  7279   ins_pipe( long_memory_op );
  7280 %}
  7282 //---------------------
  7283 // Subtraction Instructions
  7284 // Register Subtraction
  7285 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7286   match(Set dst (SubI src1 src2));
  7288   size(4);
  7289   format %{ "SUB    $src1,$src2,$dst" %}
  7290   opcode(Assembler::sub_op3, Assembler::arith_op);
  7291   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7292   ins_pipe(ialu_reg_reg);
  7293 %}
  7295 // Immediate Subtraction
  7296 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7297   match(Set dst (SubI src1 src2));
  7299   size(4);
  7300   format %{ "SUB    $src1,$src2,$dst" %}
  7301   opcode(Assembler::sub_op3, Assembler::arith_op);
  7302   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7303   ins_pipe(ialu_reg_imm);
  7304 %}
  7306 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  7307   match(Set dst (SubI zero src2));
  7309   size(4);
  7310   format %{ "NEG    $src2,$dst" %}
  7311   opcode(Assembler::sub_op3, Assembler::arith_op);
  7312   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  7313   ins_pipe(ialu_zero_reg);
  7314 %}
  7316 // Long subtraction
  7317 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7318   match(Set dst (SubL src1 src2));
  7320   size(4);
  7321   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7322   opcode(Assembler::sub_op3, Assembler::arith_op);
  7323   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7324   ins_pipe(ialu_reg_reg);
  7325 %}
  7327 // Immediate Subtraction
  7328 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7329   match(Set dst (SubL src1 con));
  7331   size(4);
  7332   format %{ "SUB    $src1,$con,$dst\t! long" %}
  7333   opcode(Assembler::sub_op3, Assembler::arith_op);
  7334   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7335   ins_pipe(ialu_reg_imm);
  7336 %}
  7338 // Long negation
  7339 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
  7340   match(Set dst (SubL zero src2));
  7342   size(4);
  7343   format %{ "NEG    $src2,$dst\t! long" %}
  7344   opcode(Assembler::sub_op3, Assembler::arith_op);
  7345   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  7346   ins_pipe(ialu_zero_reg);
  7347 %}
  7349 // Multiplication Instructions
  7350 // Integer Multiplication
  7351 // Register Multiplication
  7352 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7353   match(Set dst (MulI src1 src2));
  7355   size(4);
  7356   format %{ "MULX   $src1,$src2,$dst" %}
  7357   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7358   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7359   ins_pipe(imul_reg_reg);
  7360 %}
  7362 // Immediate Multiplication
  7363 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7364   match(Set dst (MulI src1 src2));
  7366   size(4);
  7367   format %{ "MULX   $src1,$src2,$dst" %}
  7368   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7369   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7370   ins_pipe(imul_reg_imm);
  7371 %}
  7373 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7374   match(Set dst (MulL src1 src2));
  7375   ins_cost(DEFAULT_COST * 5);
  7376   size(4);
  7377   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  7378   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7379   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7380   ins_pipe(mulL_reg_reg);
  7381 %}
  7383 // Immediate Multiplication
  7384 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7385   match(Set dst (MulL src1 src2));
  7386   ins_cost(DEFAULT_COST * 5);
  7387   size(4);
  7388   format %{ "MULX   $src1,$src2,$dst" %}
  7389   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7390   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7391   ins_pipe(mulL_reg_imm);
  7392 %}
  7394 // Integer Division
  7395 // Register Division
  7396 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
  7397   match(Set dst (DivI src1 src2));
  7398   ins_cost((2+71)*DEFAULT_COST);
  7400   format %{ "SRA     $src2,0,$src2\n\t"
  7401             "SRA     $src1,0,$src1\n\t"
  7402             "SDIVX   $src1,$src2,$dst" %}
  7403   ins_encode( idiv_reg( src1, src2, dst ) );
  7404   ins_pipe(sdiv_reg_reg);
  7405 %}
  7407 // Immediate Division
  7408 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
  7409   match(Set dst (DivI src1 src2));
  7410   ins_cost((2+71)*DEFAULT_COST);
  7412   format %{ "SRA     $src1,0,$src1\n\t"
  7413             "SDIVX   $src1,$src2,$dst" %}
  7414   ins_encode( idiv_imm( src1, src2, dst ) );
  7415   ins_pipe(sdiv_reg_imm);
  7416 %}
  7418 //----------Div-By-10-Expansion------------------------------------------------
  7419 // Extract hi bits of a 32x32->64 bit multiply.
  7420 // Expand rule only, not matched
  7421 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
  7422   effect( DEF dst, USE src1, USE src2 );
  7423   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
  7424             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
  7425   ins_encode( enc_mul_hi(dst,src1,src2));
  7426   ins_pipe(sdiv_reg_reg);
  7427 %}
  7429 // Magic constant, reciprocal of 10
  7430 instruct loadConI_x66666667(iRegIsafe dst) %{
  7431   effect( DEF dst );
  7433   size(8);
  7434   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
  7435   ins_encode( Set32(0x66666667, dst) );
  7436   ins_pipe(ialu_hi_lo_reg);
  7437 %}
  7439 // Register Shift Right Arithmetic Long by 32-63
  7440 instruct sra_31( iRegI dst, iRegI src ) %{
  7441   effect( DEF dst, USE src );
  7442   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
  7443   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
  7444   ins_pipe(ialu_reg_reg);
  7445 %}
  7447 // Arithmetic Shift Right by 8-bit immediate
  7448 instruct sra_reg_2( iRegI dst, iRegI src ) %{
  7449   effect( DEF dst, USE src );
  7450   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
  7451   opcode(Assembler::sra_op3, Assembler::arith_op);
  7452   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
  7453   ins_pipe(ialu_reg_imm);
  7454 %}
  7456 // Integer DIV with 10
  7457 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
  7458   match(Set dst (DivI src div));
  7459   ins_cost((6+6)*DEFAULT_COST);
  7460   expand %{
  7461     iRegIsafe tmp1;               // Killed temps;
  7462     iRegIsafe tmp2;               // Killed temps;
  7463     iRegI tmp3;                   // Killed temps;
  7464     iRegI tmp4;                   // Killed temps;
  7465     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
  7466     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
  7467     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
  7468     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
  7469     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
  7470   %}
  7471 %}
  7473 // Register Long Division
  7474 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7475   match(Set dst (DivL src1 src2));
  7476   ins_cost(DEFAULT_COST*71);
  7477   size(4);
  7478   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7479   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7480   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7481   ins_pipe(divL_reg_reg);
  7482 %}
  7484 // Register Long Division
  7485 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7486   match(Set dst (DivL src1 src2));
  7487   ins_cost(DEFAULT_COST*71);
  7488   size(4);
  7489   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7490   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7491   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7492   ins_pipe(divL_reg_imm);
  7493 %}
  7495 // Integer Remainder
  7496 // Register Remainder
  7497 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
  7498   match(Set dst (ModI src1 src2));
  7499   effect( KILL ccr, KILL temp);
  7501   format %{ "SREM   $src1,$src2,$dst" %}
  7502   ins_encode( irem_reg(src1, src2, dst, temp) );
  7503   ins_pipe(sdiv_reg_reg);
  7504 %}
  7506 // Immediate Remainder
  7507 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
  7508   match(Set dst (ModI src1 src2));
  7509   effect( KILL ccr, KILL temp);
  7511   format %{ "SREM   $src1,$src2,$dst" %}
  7512   ins_encode( irem_imm(src1, src2, dst, temp) );
  7513   ins_pipe(sdiv_reg_imm);
  7514 %}
  7516 // Register Long Remainder
  7517 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7518   effect(DEF dst, USE src1, USE src2);
  7519   size(4);
  7520   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7521   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7522   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7523   ins_pipe(divL_reg_reg);
  7524 %}
  7526 // Register Long Division
  7527 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  7528   effect(DEF dst, USE src1, USE src2);
  7529   size(4);
  7530   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7531   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7532   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7533   ins_pipe(divL_reg_imm);
  7534 %}
  7536 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7537   effect(DEF dst, USE src1, USE src2);
  7538   size(4);
  7539   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  7540   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7541   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7542   ins_pipe(mulL_reg_reg);
  7543 %}
  7545 // Immediate Multiplication
  7546 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  7547   effect(DEF dst, USE src1, USE src2);
  7548   size(4);
  7549   format %{ "MULX   $src1,$src2,$dst" %}
  7550   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7551   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7552   ins_pipe(mulL_reg_imm);
  7553 %}
  7555 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7556   effect(DEF dst, USE src1, USE src2);
  7557   size(4);
  7558   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7559   opcode(Assembler::sub_op3, Assembler::arith_op);
  7560   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7561   ins_pipe(ialu_reg_reg);
  7562 %}
  7564 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  7565   effect(DEF dst, USE src1, USE src2);
  7566   size(4);
  7567   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7568   opcode(Assembler::sub_op3, Assembler::arith_op);
  7569   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7570   ins_pipe(ialu_reg_reg);
  7571 %}
  7573 // Register Long Remainder
  7574 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7575   match(Set dst (ModL src1 src2));
  7576   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  7577   expand %{
  7578     iRegL tmp1;
  7579     iRegL tmp2;
  7580     divL_reg_reg_1(tmp1, src1, src2);
  7581     mulL_reg_reg_1(tmp2, tmp1, src2);
  7582     subL_reg_reg_1(dst,  src1, tmp2);
  7583   %}
  7584 %}
  7586 // Register Long Remainder
  7587 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7588   match(Set dst (ModL src1 src2));
  7589   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  7590   expand %{
  7591     iRegL tmp1;
  7592     iRegL tmp2;
  7593     divL_reg_imm13_1(tmp1, src1, src2);
  7594     mulL_reg_imm13_1(tmp2, tmp1, src2);
  7595     subL_reg_reg_2  (dst,  src1, tmp2);
  7596   %}
  7597 %}
  7599 // Integer Shift Instructions
  7600 // Register Shift Left
  7601 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7602   match(Set dst (LShiftI src1 src2));
  7604   size(4);
  7605   format %{ "SLL    $src1,$src2,$dst" %}
  7606   opcode(Assembler::sll_op3, Assembler::arith_op);
  7607   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7608   ins_pipe(ialu_reg_reg);
  7609 %}
  7611 // Register Shift Left Immediate
  7612 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7613   match(Set dst (LShiftI src1 src2));
  7615   size(4);
  7616   format %{ "SLL    $src1,$src2,$dst" %}
  7617   opcode(Assembler::sll_op3, Assembler::arith_op);
  7618   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7619   ins_pipe(ialu_reg_imm);
  7620 %}
  7622 // Register Shift Left
  7623 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7624   match(Set dst (LShiftL src1 src2));
  7626   size(4);
  7627   format %{ "SLLX   $src1,$src2,$dst" %}
  7628   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7629   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7630   ins_pipe(ialu_reg_reg);
  7631 %}
  7633 // Register Shift Left Immediate
  7634 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7635   match(Set dst (LShiftL src1 src2));
  7637   size(4);
  7638   format %{ "SLLX   $src1,$src2,$dst" %}
  7639   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7640   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7641   ins_pipe(ialu_reg_imm);
  7642 %}
  7644 // Register Arithmetic Shift Right
  7645 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7646   match(Set dst (RShiftI src1 src2));
  7647   size(4);
  7648   format %{ "SRA    $src1,$src2,$dst" %}
  7649   opcode(Assembler::sra_op3, Assembler::arith_op);
  7650   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7651   ins_pipe(ialu_reg_reg);
  7652 %}
  7654 // Register Arithmetic Shift Right Immediate
  7655 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7656   match(Set dst (RShiftI src1 src2));
  7658   size(4);
  7659   format %{ "SRA    $src1,$src2,$dst" %}
  7660   opcode(Assembler::sra_op3, Assembler::arith_op);
  7661   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7662   ins_pipe(ialu_reg_imm);
  7663 %}
  7665 // Register Shift Right Arithmatic Long
  7666 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7667   match(Set dst (RShiftL src1 src2));
  7669   size(4);
  7670   format %{ "SRAX   $src1,$src2,$dst" %}
  7671   opcode(Assembler::srax_op3, Assembler::arith_op);
  7672   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7673   ins_pipe(ialu_reg_reg);
  7674 %}
  7676 // Register Shift Left Immediate
  7677 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7678   match(Set dst (RShiftL src1 src2));
  7680   size(4);
  7681   format %{ "SRAX   $src1,$src2,$dst" %}
  7682   opcode(Assembler::srax_op3, Assembler::arith_op);
  7683   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7684   ins_pipe(ialu_reg_imm);
  7685 %}
  7687 // Register Shift Right
  7688 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7689   match(Set dst (URShiftI src1 src2));
  7691   size(4);
  7692   format %{ "SRL    $src1,$src2,$dst" %}
  7693   opcode(Assembler::srl_op3, Assembler::arith_op);
  7694   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7695   ins_pipe(ialu_reg_reg);
  7696 %}
  7698 // Register Shift Right Immediate
  7699 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7700   match(Set dst (URShiftI src1 src2));
  7702   size(4);
  7703   format %{ "SRL    $src1,$src2,$dst" %}
  7704   opcode(Assembler::srl_op3, Assembler::arith_op);
  7705   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7706   ins_pipe(ialu_reg_imm);
  7707 %}
  7709 // Register Shift Right
  7710 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7711   match(Set dst (URShiftL src1 src2));
  7713   size(4);
  7714   format %{ "SRLX   $src1,$src2,$dst" %}
  7715   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7716   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7717   ins_pipe(ialu_reg_reg);
  7718 %}
  7720 // Register Shift Right Immediate
  7721 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7722   match(Set dst (URShiftL src1 src2));
  7724   size(4);
  7725   format %{ "SRLX   $src1,$src2,$dst" %}
  7726   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7727   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7728   ins_pipe(ialu_reg_imm);
  7729 %}
  7731 // Register Shift Right Immediate with a CastP2X
  7732 #ifdef _LP64
  7733 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
  7734   match(Set dst (URShiftL (CastP2X src1) src2));
  7735   size(4);
  7736   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
  7737   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7738   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7739   ins_pipe(ialu_reg_imm);
  7740 %}
  7741 #else
  7742 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
  7743   match(Set dst (URShiftI (CastP2X src1) src2));
  7744   size(4);
  7745   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
  7746   opcode(Assembler::srl_op3, Assembler::arith_op);
  7747   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7748   ins_pipe(ialu_reg_imm);
  7749 %}
  7750 #endif
  7753 //----------Floating Point Arithmetic Instructions-----------------------------
  7755 //  Add float single precision
  7756 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
  7757   match(Set dst (AddF src1 src2));
  7759   size(4);
  7760   format %{ "FADDS  $src1,$src2,$dst" %}
  7761   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
  7762   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7763   ins_pipe(faddF_reg_reg);
  7764 %}
  7766 //  Add float double precision
  7767 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
  7768   match(Set dst (AddD src1 src2));
  7770   size(4);
  7771   format %{ "FADDD  $src1,$src2,$dst" %}
  7772   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  7773   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7774   ins_pipe(faddD_reg_reg);
  7775 %}
  7777 //  Sub float single precision
  7778 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
  7779   match(Set dst (SubF src1 src2));
  7781   size(4);
  7782   format %{ "FSUBS  $src1,$src2,$dst" %}
  7783   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
  7784   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7785   ins_pipe(faddF_reg_reg);
  7786 %}
  7788 //  Sub float double precision
  7789 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
  7790   match(Set dst (SubD src1 src2));
  7792   size(4);
  7793   format %{ "FSUBD  $src1,$src2,$dst" %}
  7794   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  7795   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7796   ins_pipe(faddD_reg_reg);
  7797 %}
  7799 //  Mul float single precision
  7800 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
  7801   match(Set dst (MulF src1 src2));
  7803   size(4);
  7804   format %{ "FMULS  $src1,$src2,$dst" %}
  7805   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
  7806   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7807   ins_pipe(fmulF_reg_reg);
  7808 %}
  7810 //  Mul float double precision
  7811 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
  7812   match(Set dst (MulD src1 src2));
  7814   size(4);
  7815   format %{ "FMULD  $src1,$src2,$dst" %}
  7816   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  7817   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7818   ins_pipe(fmulD_reg_reg);
  7819 %}
  7821 //  Div float single precision
  7822 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
  7823   match(Set dst (DivF src1 src2));
  7825   size(4);
  7826   format %{ "FDIVS  $src1,$src2,$dst" %}
  7827   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
  7828   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7829   ins_pipe(fdivF_reg_reg);
  7830 %}
  7832 //  Div float double precision
  7833 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
  7834   match(Set dst (DivD src1 src2));
  7836   size(4);
  7837   format %{ "FDIVD  $src1,$src2,$dst" %}
  7838   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
  7839   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7840   ins_pipe(fdivD_reg_reg);
  7841 %}
  7843 //  Absolute float double precision
  7844 instruct absD_reg(regD dst, regD src) %{
  7845   match(Set dst (AbsD src));
  7847   format %{ "FABSd  $src,$dst" %}
  7848   ins_encode(fabsd(dst, src));
  7849   ins_pipe(faddD_reg);
  7850 %}
  7852 //  Absolute float single precision
  7853 instruct absF_reg(regF dst, regF src) %{
  7854   match(Set dst (AbsF src));
  7856   format %{ "FABSs  $src,$dst" %}
  7857   ins_encode(fabss(dst, src));
  7858   ins_pipe(faddF_reg);
  7859 %}
  7861 instruct negF_reg(regF dst, regF src) %{
  7862   match(Set dst (NegF src));
  7864   size(4);
  7865   format %{ "FNEGs  $src,$dst" %}
  7866   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
  7867   ins_encode(form3_opf_rs2F_rdF(src, dst));
  7868   ins_pipe(faddF_reg);
  7869 %}
  7871 instruct negD_reg(regD dst, regD src) %{
  7872   match(Set dst (NegD src));
  7874   format %{ "FNEGd  $src,$dst" %}
  7875   ins_encode(fnegd(dst, src));
  7876   ins_pipe(faddD_reg);
  7877 %}
  7879 //  Sqrt float double precision
  7880 instruct sqrtF_reg_reg(regF dst, regF src) %{
  7881   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
  7883   size(4);
  7884   format %{ "FSQRTS $src,$dst" %}
  7885   ins_encode(fsqrts(dst, src));
  7886   ins_pipe(fdivF_reg_reg);
  7887 %}
  7889 //  Sqrt float double precision
  7890 instruct sqrtD_reg_reg(regD dst, regD src) %{
  7891   match(Set dst (SqrtD src));
  7893   size(4);
  7894   format %{ "FSQRTD $src,$dst" %}
  7895   ins_encode(fsqrtd(dst, src));
  7896   ins_pipe(fdivD_reg_reg);
  7897 %}
  7899 //----------Logical Instructions-----------------------------------------------
  7900 // And Instructions
  7901 // Register And
  7902 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7903   match(Set dst (AndI src1 src2));
  7905   size(4);
  7906   format %{ "AND    $src1,$src2,$dst" %}
  7907   opcode(Assembler::and_op3, Assembler::arith_op);
  7908   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7909   ins_pipe(ialu_reg_reg);
  7910 %}
  7912 // Immediate And
  7913 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7914   match(Set dst (AndI src1 src2));
  7916   size(4);
  7917   format %{ "AND    $src1,$src2,$dst" %}
  7918   opcode(Assembler::and_op3, Assembler::arith_op);
  7919   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7920   ins_pipe(ialu_reg_imm);
  7921 %}
  7923 // Register And Long
  7924 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7925   match(Set dst (AndL src1 src2));
  7927   ins_cost(DEFAULT_COST);
  7928   size(4);
  7929   format %{ "AND    $src1,$src2,$dst\t! long" %}
  7930   opcode(Assembler::and_op3, Assembler::arith_op);
  7931   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7932   ins_pipe(ialu_reg_reg);
  7933 %}
  7935 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7936   match(Set dst (AndL src1 con));
  7938   ins_cost(DEFAULT_COST);
  7939   size(4);
  7940   format %{ "AND    $src1,$con,$dst\t! long" %}
  7941   opcode(Assembler::and_op3, Assembler::arith_op);
  7942   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7943   ins_pipe(ialu_reg_imm);
  7944 %}
  7946 // Or Instructions
  7947 // Register Or
  7948 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7949   match(Set dst (OrI src1 src2));
  7951   size(4);
  7952   format %{ "OR     $src1,$src2,$dst" %}
  7953   opcode(Assembler::or_op3, Assembler::arith_op);
  7954   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7955   ins_pipe(ialu_reg_reg);
  7956 %}
  7958 // Immediate Or
  7959 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7960   match(Set dst (OrI src1 src2));
  7962   size(4);
  7963   format %{ "OR     $src1,$src2,$dst" %}
  7964   opcode(Assembler::or_op3, Assembler::arith_op);
  7965   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7966   ins_pipe(ialu_reg_imm);
  7967 %}
  7969 // Register Or Long
  7970 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7971   match(Set dst (OrL src1 src2));
  7973   ins_cost(DEFAULT_COST);
  7974   size(4);
  7975   format %{ "OR     $src1,$src2,$dst\t! long" %}
  7976   opcode(Assembler::or_op3, Assembler::arith_op);
  7977   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7978   ins_pipe(ialu_reg_reg);
  7979 %}
  7981 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7982   match(Set dst (OrL src1 con));
  7983   ins_cost(DEFAULT_COST*2);
  7985   ins_cost(DEFAULT_COST);
  7986   size(4);
  7987   format %{ "OR     $src1,$con,$dst\t! long" %}
  7988   opcode(Assembler::or_op3, Assembler::arith_op);
  7989   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7990   ins_pipe(ialu_reg_imm);
  7991 %}
  7993 #ifndef _LP64
  7995 // Use sp_ptr_RegP to match G2 (TLS register) without spilling.
  7996 instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
  7997   match(Set dst (OrI src1 (CastP2X src2)));
  7999   size(4);
  8000   format %{ "OR     $src1,$src2,$dst" %}
  8001   opcode(Assembler::or_op3, Assembler::arith_op);
  8002   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8003   ins_pipe(ialu_reg_reg);
  8004 %}
  8006 #else
  8008 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
  8009   match(Set dst (OrL src1 (CastP2X src2)));
  8011   ins_cost(DEFAULT_COST);
  8012   size(4);
  8013   format %{ "OR     $src1,$src2,$dst\t! long" %}
  8014   opcode(Assembler::or_op3, Assembler::arith_op);
  8015   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8016   ins_pipe(ialu_reg_reg);
  8017 %}
  8019 #endif
  8021 // Xor Instructions
  8022 // Register Xor
  8023 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  8024   match(Set dst (XorI src1 src2));
  8026   size(4);
  8027   format %{ "XOR    $src1,$src2,$dst" %}
  8028   opcode(Assembler::xor_op3, Assembler::arith_op);
  8029   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8030   ins_pipe(ialu_reg_reg);
  8031 %}
  8033 // Immediate Xor
  8034 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  8035   match(Set dst (XorI src1 src2));
  8037   size(4);
  8038   format %{ "XOR    $src1,$src2,$dst" %}
  8039   opcode(Assembler::xor_op3, Assembler::arith_op);
  8040   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  8041   ins_pipe(ialu_reg_imm);
  8042 %}
  8044 // Register Xor Long
  8045 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  8046   match(Set dst (XorL src1 src2));
  8048   ins_cost(DEFAULT_COST);
  8049   size(4);
  8050   format %{ "XOR    $src1,$src2,$dst\t! long" %}
  8051   opcode(Assembler::xor_op3, Assembler::arith_op);
  8052   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8053   ins_pipe(ialu_reg_reg);
  8054 %}
  8056 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  8057   match(Set dst (XorL src1 con));
  8059   ins_cost(DEFAULT_COST);
  8060   size(4);
  8061   format %{ "XOR    $src1,$con,$dst\t! long" %}
  8062   opcode(Assembler::xor_op3, Assembler::arith_op);
  8063   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  8064   ins_pipe(ialu_reg_imm);
  8065 %}
  8067 //----------Convert to Boolean-------------------------------------------------
  8068 // Nice hack for 32-bit tests but doesn't work for
  8069 // 64-bit pointers.
  8070 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
  8071   match(Set dst (Conv2B src));
  8072   effect( KILL ccr );
  8073   ins_cost(DEFAULT_COST*2);
  8074   format %{ "CMP    R_G0,$src\n\t"
  8075             "ADDX   R_G0,0,$dst" %}
  8076   ins_encode( enc_to_bool( src, dst ) );
  8077   ins_pipe(ialu_reg_ialu);
  8078 %}
  8080 #ifndef _LP64
  8081 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
  8082   match(Set dst (Conv2B src));
  8083   effect( KILL ccr );
  8084   ins_cost(DEFAULT_COST*2);
  8085   format %{ "CMP    R_G0,$src\n\t"
  8086             "ADDX   R_G0,0,$dst" %}
  8087   ins_encode( enc_to_bool( src, dst ) );
  8088   ins_pipe(ialu_reg_ialu);
  8089 %}
  8090 #else
  8091 instruct convP2B( iRegI dst, iRegP src ) %{
  8092   match(Set dst (Conv2B src));
  8093   ins_cost(DEFAULT_COST*2);
  8094   format %{ "MOV    $src,$dst\n\t"
  8095             "MOVRNZ $src,1,$dst" %}
  8096   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
  8097   ins_pipe(ialu_clr_and_mover);
  8098 %}
  8099 #endif
  8101 instruct cmpLTMask0( iRegI dst, iRegI src, immI0 zero, flagsReg ccr ) %{
  8102   match(Set dst (CmpLTMask src zero));
  8103   effect(KILL ccr);
  8104   size(4);
  8105   format %{ "SRA    $src,#31,$dst\t# cmpLTMask0" %}
  8106   ins_encode %{
  8107     __ sra($src$$Register, 31, $dst$$Register);
  8108   %}
  8109   ins_pipe(ialu_reg_imm);
  8110 %}
  8112 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
  8113   match(Set dst (CmpLTMask p q));
  8114   effect( KILL ccr );
  8115   ins_cost(DEFAULT_COST*4);
  8116   format %{ "CMP    $p,$q\n\t"
  8117             "MOV    #0,$dst\n\t"
  8118             "BLT,a  .+8\n\t"
  8119             "MOV    #-1,$dst" %}
  8120   ins_encode( enc_ltmask(p,q,dst) );
  8121   ins_pipe(ialu_reg_reg_ialu);
  8122 %}
  8124 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
  8125   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
  8126   effect(KILL ccr, TEMP tmp);
  8127   ins_cost(DEFAULT_COST*3);
  8129   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
  8130             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
  8131             "MOVlt  $tmp,$p\t! p' < 0 ? p'+y : p'" %}
  8132   ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
  8133   ins_pipe( cadd_cmpltmask );
  8134 %}
  8137 //-----------------------------------------------------------------
  8138 // Direct raw moves between float and general registers using VIS3.
  8140 //  ins_pipe(faddF_reg);
  8141 instruct MoveF2I_reg_reg(iRegI dst, regF src) %{
  8142   predicate(UseVIS >= 3);
  8143   match(Set dst (MoveF2I src));
  8145   format %{ "MOVSTOUW $src,$dst\t! MoveF2I" %}
  8146   ins_encode %{
  8147     __ movstouw($src$$FloatRegister, $dst$$Register);
  8148   %}
  8149   ins_pipe(ialu_reg_reg);
  8150 %}
  8152 instruct MoveI2F_reg_reg(regF dst, iRegI src) %{
  8153   predicate(UseVIS >= 3);
  8154   match(Set dst (MoveI2F src));
  8156   format %{ "MOVWTOS $src,$dst\t! MoveI2F" %}
  8157   ins_encode %{
  8158     __ movwtos($src$$Register, $dst$$FloatRegister);
  8159   %}
  8160   ins_pipe(ialu_reg_reg);
  8161 %}
  8163 instruct MoveD2L_reg_reg(iRegL dst, regD src) %{
  8164   predicate(UseVIS >= 3);
  8165   match(Set dst (MoveD2L src));
  8167   format %{ "MOVDTOX $src,$dst\t! MoveD2L" %}
  8168   ins_encode %{
  8169     __ movdtox(as_DoubleFloatRegister($src$$reg), $dst$$Register);
  8170   %}
  8171   ins_pipe(ialu_reg_reg);
  8172 %}
  8174 instruct MoveL2D_reg_reg(regD dst, iRegL src) %{
  8175   predicate(UseVIS >= 3);
  8176   match(Set dst (MoveL2D src));
  8178   format %{ "MOVXTOD $src,$dst\t! MoveL2D" %}
  8179   ins_encode %{
  8180     __ movxtod($src$$Register, as_DoubleFloatRegister($dst$$reg));
  8181   %}
  8182   ins_pipe(ialu_reg_reg);
  8183 %}
  8186 // Raw moves between float and general registers using stack.
  8188 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
  8189   match(Set dst (MoveF2I src));
  8190   effect(DEF dst, USE src);
  8191   ins_cost(MEMORY_REF_COST);
  8193   size(4);
  8194   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
  8195   opcode(Assembler::lduw_op3);
  8196   ins_encode(simple_form3_mem_reg( src, dst ) );
  8197   ins_pipe(iload_mem);
  8198 %}
  8200 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
  8201   match(Set dst (MoveI2F src));
  8202   effect(DEF dst, USE src);
  8203   ins_cost(MEMORY_REF_COST);
  8205   size(4);
  8206   format %{ "LDF    $src,$dst\t! MoveI2F" %}
  8207   opcode(Assembler::ldf_op3);
  8208   ins_encode(simple_form3_mem_reg(src, dst));
  8209   ins_pipe(floadF_stk);
  8210 %}
  8212 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
  8213   match(Set dst (MoveD2L src));
  8214   effect(DEF dst, USE src);
  8215   ins_cost(MEMORY_REF_COST);
  8217   size(4);
  8218   format %{ "LDX    $src,$dst\t! MoveD2L" %}
  8219   opcode(Assembler::ldx_op3);
  8220   ins_encode(simple_form3_mem_reg( src, dst ) );
  8221   ins_pipe(iload_mem);
  8222 %}
  8224 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
  8225   match(Set dst (MoveL2D src));
  8226   effect(DEF dst, USE src);
  8227   ins_cost(MEMORY_REF_COST);
  8229   size(4);
  8230   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
  8231   opcode(Assembler::lddf_op3);
  8232   ins_encode(simple_form3_mem_reg(src, dst));
  8233   ins_pipe(floadD_stk);
  8234 %}
  8236 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
  8237   match(Set dst (MoveF2I src));
  8238   effect(DEF dst, USE src);
  8239   ins_cost(MEMORY_REF_COST);
  8241   size(4);
  8242   format %{ "STF   $src,$dst\t! MoveF2I" %}
  8243   opcode(Assembler::stf_op3);
  8244   ins_encode(simple_form3_mem_reg(dst, src));
  8245   ins_pipe(fstoreF_stk_reg);
  8246 %}
  8248 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
  8249   match(Set dst (MoveI2F src));
  8250   effect(DEF dst, USE src);
  8251   ins_cost(MEMORY_REF_COST);
  8253   size(4);
  8254   format %{ "STW    $src,$dst\t! MoveI2F" %}
  8255   opcode(Assembler::stw_op3);
  8256   ins_encode(simple_form3_mem_reg( dst, src ) );
  8257   ins_pipe(istore_mem_reg);
  8258 %}
  8260 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
  8261   match(Set dst (MoveD2L src));
  8262   effect(DEF dst, USE src);
  8263   ins_cost(MEMORY_REF_COST);
  8265   size(4);
  8266   format %{ "STDF   $src,$dst\t! MoveD2L" %}
  8267   opcode(Assembler::stdf_op3);
  8268   ins_encode(simple_form3_mem_reg(dst, src));
  8269   ins_pipe(fstoreD_stk_reg);
  8270 %}
  8272 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
  8273   match(Set dst (MoveL2D src));
  8274   effect(DEF dst, USE src);
  8275   ins_cost(MEMORY_REF_COST);
  8277   size(4);
  8278   format %{ "STX    $src,$dst\t! MoveL2D" %}
  8279   opcode(Assembler::stx_op3);
  8280   ins_encode(simple_form3_mem_reg( dst, src ) );
  8281   ins_pipe(istore_mem_reg);
  8282 %}
  8285 //----------Arithmetic Conversion Instructions---------------------------------
  8286 // The conversions operations are all Alpha sorted.  Please keep it that way!
  8288 instruct convD2F_reg(regF dst, regD src) %{
  8289   match(Set dst (ConvD2F src));
  8290   size(4);
  8291   format %{ "FDTOS  $src,$dst" %}
  8292   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
  8293   ins_encode(form3_opf_rs2D_rdF(src, dst));
  8294   ins_pipe(fcvtD2F);
  8295 %}
  8298 // Convert a double to an int in a float register.
  8299 // If the double is a NAN, stuff a zero in instead.
  8300 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
  8301   effect(DEF dst, USE src, KILL fcc0);
  8302   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  8303             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8304             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
  8305             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  8306             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  8307       "skip:" %}
  8308   ins_encode(form_d2i_helper(src,dst));
  8309   ins_pipe(fcvtD2I);
  8310 %}
  8312 instruct convD2I_stk(stackSlotI dst, regD src) %{
  8313   match(Set dst (ConvD2I src));
  8314   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8315   expand %{
  8316     regF tmp;
  8317     convD2I_helper(tmp, src);
  8318     regF_to_stkI(dst, tmp);
  8319   %}
  8320 %}
  8322 instruct convD2I_reg(iRegI dst, regD src) %{
  8323   predicate(UseVIS >= 3);
  8324   match(Set dst (ConvD2I src));
  8325   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8326   expand %{
  8327     regF tmp;
  8328     convD2I_helper(tmp, src);
  8329     MoveF2I_reg_reg(dst, tmp);
  8330   %}
  8331 %}
  8334 // Convert a double to a long in a double register.
  8335 // If the double is a NAN, stuff a zero in instead.
  8336 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
  8337   effect(DEF dst, USE src, KILL fcc0);
  8338   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  8339             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8340             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
  8341             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  8342             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  8343       "skip:" %}
  8344   ins_encode(form_d2l_helper(src,dst));
  8345   ins_pipe(fcvtD2L);
  8346 %}
  8348 instruct convD2L_stk(stackSlotL dst, regD src) %{
  8349   match(Set dst (ConvD2L src));
  8350   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8351   expand %{
  8352     regD tmp;
  8353     convD2L_helper(tmp, src);
  8354     regD_to_stkL(dst, tmp);
  8355   %}
  8356 %}
  8358 instruct convD2L_reg(iRegL dst, regD src) %{
  8359   predicate(UseVIS >= 3);
  8360   match(Set dst (ConvD2L src));
  8361   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8362   expand %{
  8363     regD tmp;
  8364     convD2L_helper(tmp, src);
  8365     MoveD2L_reg_reg(dst, tmp);
  8366   %}
  8367 %}
  8370 instruct convF2D_reg(regD dst, regF src) %{
  8371   match(Set dst (ConvF2D src));
  8372   format %{ "FSTOD  $src,$dst" %}
  8373   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
  8374   ins_encode(form3_opf_rs2F_rdD(src, dst));
  8375   ins_pipe(fcvtF2D);
  8376 %}
  8379 // Convert a float to an int in a float register.
  8380 // If the float is a NAN, stuff a zero in instead.
  8381 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
  8382   effect(DEF dst, USE src, KILL fcc0);
  8383   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  8384             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8385             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
  8386             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  8387             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  8388       "skip:" %}
  8389   ins_encode(form_f2i_helper(src,dst));
  8390   ins_pipe(fcvtF2I);
  8391 %}
  8393 instruct convF2I_stk(stackSlotI dst, regF src) %{
  8394   match(Set dst (ConvF2I src));
  8395   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8396   expand %{
  8397     regF tmp;
  8398     convF2I_helper(tmp, src);
  8399     regF_to_stkI(dst, tmp);
  8400   %}
  8401 %}
  8403 instruct convF2I_reg(iRegI dst, regF src) %{
  8404   predicate(UseVIS >= 3);
  8405   match(Set dst (ConvF2I src));
  8406   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8407   expand %{
  8408     regF tmp;
  8409     convF2I_helper(tmp, src);
  8410     MoveF2I_reg_reg(dst, tmp);
  8411   %}
  8412 %}
  8415 // Convert a float to a long in a float register.
  8416 // If the float is a NAN, stuff a zero in instead.
  8417 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
  8418   effect(DEF dst, USE src, KILL fcc0);
  8419   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  8420             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8421             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
  8422             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  8423             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  8424       "skip:" %}
  8425   ins_encode(form_f2l_helper(src,dst));
  8426   ins_pipe(fcvtF2L);
  8427 %}
  8429 instruct convF2L_stk(stackSlotL dst, regF src) %{
  8430   match(Set dst (ConvF2L src));
  8431   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8432   expand %{
  8433     regD tmp;
  8434     convF2L_helper(tmp, src);
  8435     regD_to_stkL(dst, tmp);
  8436   %}
  8437 %}
  8439 instruct convF2L_reg(iRegL dst, regF src) %{
  8440   predicate(UseVIS >= 3);
  8441   match(Set dst (ConvF2L src));
  8442   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8443   expand %{
  8444     regD tmp;
  8445     convF2L_helper(tmp, src);
  8446     MoveD2L_reg_reg(dst, tmp);
  8447   %}
  8448 %}
  8451 instruct convI2D_helper(regD dst, regF tmp) %{
  8452   effect(USE tmp, DEF dst);
  8453   format %{ "FITOD  $tmp,$dst" %}
  8454   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  8455   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
  8456   ins_pipe(fcvtI2D);
  8457 %}
  8459 instruct convI2D_stk(stackSlotI src, regD dst) %{
  8460   match(Set dst (ConvI2D src));
  8461   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8462   expand %{
  8463     regF tmp;
  8464     stkI_to_regF(tmp, src);
  8465     convI2D_helper(dst, tmp);
  8466   %}
  8467 %}
  8469 instruct convI2D_reg(regD_low dst, iRegI src) %{
  8470   predicate(UseVIS >= 3);
  8471   match(Set dst (ConvI2D src));
  8472   expand %{
  8473     regF tmp;
  8474     MoveI2F_reg_reg(tmp, src);
  8475     convI2D_helper(dst, tmp);
  8476   %}
  8477 %}
  8479 instruct convI2D_mem(regD_low dst, memory mem) %{
  8480   match(Set dst (ConvI2D (LoadI mem)));
  8481   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8482   size(8);
  8483   format %{ "LDF    $mem,$dst\n\t"
  8484             "FITOD  $dst,$dst" %}
  8485   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
  8486   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  8487   ins_pipe(floadF_mem);
  8488 %}
  8491 instruct convI2F_helper(regF dst, regF tmp) %{
  8492   effect(DEF dst, USE tmp);
  8493   format %{ "FITOS  $tmp,$dst" %}
  8494   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
  8495   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
  8496   ins_pipe(fcvtI2F);
  8497 %}
  8499 instruct convI2F_stk(regF dst, stackSlotI src) %{
  8500   match(Set dst (ConvI2F src));
  8501   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8502   expand %{
  8503     regF tmp;
  8504     stkI_to_regF(tmp,src);
  8505     convI2F_helper(dst, tmp);
  8506   %}
  8507 %}
  8509 instruct convI2F_reg(regF dst, iRegI src) %{
  8510   predicate(UseVIS >= 3);
  8511   match(Set dst (ConvI2F src));
  8512   ins_cost(DEFAULT_COST);
  8513   expand %{
  8514     regF tmp;
  8515     MoveI2F_reg_reg(tmp, src);
  8516     convI2F_helper(dst, tmp);
  8517   %}
  8518 %}
  8520 instruct convI2F_mem( regF dst, memory mem ) %{
  8521   match(Set dst (ConvI2F (LoadI mem)));
  8522   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8523   size(8);
  8524   format %{ "LDF    $mem,$dst\n\t"
  8525             "FITOS  $dst,$dst" %}
  8526   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
  8527   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  8528   ins_pipe(floadF_mem);
  8529 %}
  8532 instruct convI2L_reg(iRegL dst, iRegI src) %{
  8533   match(Set dst (ConvI2L src));
  8534   size(4);
  8535   format %{ "SRA    $src,0,$dst\t! int->long" %}
  8536   opcode(Assembler::sra_op3, Assembler::arith_op);
  8537   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8538   ins_pipe(ialu_reg_reg);
  8539 %}
  8541 // Zero-extend convert int to long
  8542 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
  8543   match(Set dst (AndL (ConvI2L src) mask) );
  8544   size(4);
  8545   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
  8546   opcode(Assembler::srl_op3, Assembler::arith_op);
  8547   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8548   ins_pipe(ialu_reg_reg);
  8549 %}
  8551 // Zero-extend long
  8552 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
  8553   match(Set dst (AndL src mask) );
  8554   size(4);
  8555   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
  8556   opcode(Assembler::srl_op3, Assembler::arith_op);
  8557   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8558   ins_pipe(ialu_reg_reg);
  8559 %}
  8562 //-----------
  8563 // Long to Double conversion using V8 opcodes.
  8564 // Still useful because cheetah traps and becomes
  8565 // amazingly slow for some common numbers.
  8567 // Magic constant, 0x43300000
  8568 instruct loadConI_x43300000(iRegI dst) %{
  8569   effect(DEF dst);
  8570   size(4);
  8571   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
  8572   ins_encode(SetHi22(0x43300000, dst));
  8573   ins_pipe(ialu_none);
  8574 %}
  8576 // Magic constant, 0x41f00000
  8577 instruct loadConI_x41f00000(iRegI dst) %{
  8578   effect(DEF dst);
  8579   size(4);
  8580   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
  8581   ins_encode(SetHi22(0x41f00000, dst));
  8582   ins_pipe(ialu_none);
  8583 %}
  8585 // Construct a double from two float halves
  8586 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
  8587   effect(DEF dst, USE src1, USE src2);
  8588   size(8);
  8589   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
  8590             "FMOVS  $src2.lo,$dst.lo" %}
  8591   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
  8592   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
  8593   ins_pipe(faddD_reg_reg);
  8594 %}
  8596 // Convert integer in high half of a double register (in the lower half of
  8597 // the double register file) to double
  8598 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
  8599   effect(DEF dst, USE src);
  8600   size(4);
  8601   format %{ "FITOD  $src,$dst" %}
  8602   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  8603   ins_encode(form3_opf_rs2D_rdD(src, dst));
  8604   ins_pipe(fcvtLHi2D);
  8605 %}
  8607 // Add float double precision
  8608 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
  8609   effect(DEF dst, USE src1, USE src2);
  8610   size(4);
  8611   format %{ "FADDD  $src1,$src2,$dst" %}
  8612   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  8613   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8614   ins_pipe(faddD_reg_reg);
  8615 %}
  8617 // Sub float double precision
  8618 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
  8619   effect(DEF dst, USE src1, USE src2);
  8620   size(4);
  8621   format %{ "FSUBD  $src1,$src2,$dst" %}
  8622   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  8623   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8624   ins_pipe(faddD_reg_reg);
  8625 %}
  8627 // Mul float double precision
  8628 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
  8629   effect(DEF dst, USE src1, USE src2);
  8630   size(4);
  8631   format %{ "FMULD  $src1,$src2,$dst" %}
  8632   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  8633   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8634   ins_pipe(fmulD_reg_reg);
  8635 %}
  8637 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
  8638   match(Set dst (ConvL2D src));
  8639   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
  8641   expand %{
  8642     regD_low   tmpsrc;
  8643     iRegI      ix43300000;
  8644     iRegI      ix41f00000;
  8645     stackSlotL lx43300000;
  8646     stackSlotL lx41f00000;
  8647     regD_low   dx43300000;
  8648     regD       dx41f00000;
  8649     regD       tmp1;
  8650     regD_low   tmp2;
  8651     regD       tmp3;
  8652     regD       tmp4;
  8654     stkL_to_regD(tmpsrc, src);
  8656     loadConI_x43300000(ix43300000);
  8657     loadConI_x41f00000(ix41f00000);
  8658     regI_to_stkLHi(lx43300000, ix43300000);
  8659     regI_to_stkLHi(lx41f00000, ix41f00000);
  8660     stkL_to_regD(dx43300000, lx43300000);
  8661     stkL_to_regD(dx41f00000, lx41f00000);
  8663     convI2D_regDHi_regD(tmp1, tmpsrc);
  8664     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
  8665     subD_regD_regD(tmp3, tmp2, dx43300000);
  8666     mulD_regD_regD(tmp4, tmp1, dx41f00000);
  8667     addD_regD_regD(dst, tmp3, tmp4);
  8668   %}
  8669 %}
  8671 // Long to Double conversion using fast fxtof
  8672 instruct convL2D_helper(regD dst, regD tmp) %{
  8673   effect(DEF dst, USE tmp);
  8674   size(4);
  8675   format %{ "FXTOD  $tmp,$dst" %}
  8676   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
  8677   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
  8678   ins_pipe(fcvtL2D);
  8679 %}
  8681 instruct convL2D_stk_fast_fxtof(regD dst, stackSlotL src) %{
  8682   predicate(VM_Version::has_fast_fxtof());
  8683   match(Set dst (ConvL2D src));
  8684   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
  8685   expand %{
  8686     regD tmp;
  8687     stkL_to_regD(tmp, src);
  8688     convL2D_helper(dst, tmp);
  8689   %}
  8690 %}
  8692 instruct convL2D_reg(regD dst, iRegL src) %{
  8693   predicate(UseVIS >= 3);
  8694   match(Set dst (ConvL2D src));
  8695   expand %{
  8696     regD tmp;
  8697     MoveL2D_reg_reg(tmp, src);
  8698     convL2D_helper(dst, tmp);
  8699   %}
  8700 %}
  8702 // Long to Float conversion using fast fxtof
  8703 instruct convL2F_helper(regF dst, regD tmp) %{
  8704   effect(DEF dst, USE tmp);
  8705   size(4);
  8706   format %{ "FXTOS  $tmp,$dst" %}
  8707   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
  8708   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
  8709   ins_pipe(fcvtL2F);
  8710 %}
  8712 instruct convL2F_stk_fast_fxtof(regF dst, stackSlotL src) %{
  8713   match(Set dst (ConvL2F src));
  8714   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8715   expand %{
  8716     regD tmp;
  8717     stkL_to_regD(tmp, src);
  8718     convL2F_helper(dst, tmp);
  8719   %}
  8720 %}
  8722 instruct convL2F_reg(regF dst, iRegL src) %{
  8723   predicate(UseVIS >= 3);
  8724   match(Set dst (ConvL2F src));
  8725   ins_cost(DEFAULT_COST);
  8726   expand %{
  8727     regD tmp;
  8728     MoveL2D_reg_reg(tmp, src);
  8729     convL2F_helper(dst, tmp);
  8730   %}
  8731 %}
  8733 //-----------
  8735 instruct convL2I_reg(iRegI dst, iRegL src) %{
  8736   match(Set dst (ConvL2I src));
  8737 #ifndef _LP64
  8738   format %{ "MOV    $src.lo,$dst\t! long->int" %}
  8739   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
  8740   ins_pipe(ialu_move_reg_I_to_L);
  8741 #else
  8742   size(4);
  8743   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
  8744   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
  8745   ins_pipe(ialu_reg);
  8746 #endif
  8747 %}
  8749 // Register Shift Right Immediate
  8750 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
  8751   match(Set dst (ConvL2I (RShiftL src cnt)));
  8753   size(4);
  8754   format %{ "SRAX   $src,$cnt,$dst" %}
  8755   opcode(Assembler::srax_op3, Assembler::arith_op);
  8756   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
  8757   ins_pipe(ialu_reg_imm);
  8758 %}
  8760 //----------Control Flow Instructions------------------------------------------
  8761 // Compare Instructions
  8762 // Compare Integers
  8763 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
  8764   match(Set icc (CmpI op1 op2));
  8765   effect( DEF icc, USE op1, USE op2 );
  8767   size(4);
  8768   format %{ "CMP    $op1,$op2" %}
  8769   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8770   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8771   ins_pipe(ialu_cconly_reg_reg);
  8772 %}
  8774 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
  8775   match(Set icc (CmpU op1 op2));
  8777   size(4);
  8778   format %{ "CMP    $op1,$op2\t! unsigned" %}
  8779   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8780   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8781   ins_pipe(ialu_cconly_reg_reg);
  8782 %}
  8784 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
  8785   match(Set icc (CmpI op1 op2));
  8786   effect( DEF icc, USE op1 );
  8788   size(4);
  8789   format %{ "CMP    $op1,$op2" %}
  8790   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8791   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8792   ins_pipe(ialu_cconly_reg_imm);
  8793 %}
  8795 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
  8796   match(Set icc (CmpI (AndI op1 op2) zero));
  8798   size(4);
  8799   format %{ "BTST   $op2,$op1" %}
  8800   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8801   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8802   ins_pipe(ialu_cconly_reg_reg_zero);
  8803 %}
  8805 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
  8806   match(Set icc (CmpI (AndI op1 op2) zero));
  8808   size(4);
  8809   format %{ "BTST   $op2,$op1" %}
  8810   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8811   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8812   ins_pipe(ialu_cconly_reg_imm_zero);
  8813 %}
  8815 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
  8816   match(Set xcc (CmpL op1 op2));
  8817   effect( DEF xcc, USE op1, USE op2 );
  8819   size(4);
  8820   format %{ "CMP    $op1,$op2\t\t! long" %}
  8821   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8822   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8823   ins_pipe(ialu_cconly_reg_reg);
  8824 %}
  8826 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
  8827   match(Set xcc (CmpL op1 con));
  8828   effect( DEF xcc, USE op1, USE con );
  8830   size(4);
  8831   format %{ "CMP    $op1,$con\t\t! long" %}
  8832   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8833   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  8834   ins_pipe(ialu_cconly_reg_reg);
  8835 %}
  8837 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
  8838   match(Set xcc (CmpL (AndL op1 op2) zero));
  8839   effect( DEF xcc, USE op1, USE op2 );
  8841   size(4);
  8842   format %{ "BTST   $op1,$op2\t\t! long" %}
  8843   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8844   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8845   ins_pipe(ialu_cconly_reg_reg);
  8846 %}
  8848 // useful for checking the alignment of a pointer:
  8849 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
  8850   match(Set xcc (CmpL (AndL op1 con) zero));
  8851   effect( DEF xcc, USE op1, USE con );
  8853   size(4);
  8854   format %{ "BTST   $op1,$con\t\t! long" %}
  8855   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8856   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  8857   ins_pipe(ialu_cconly_reg_reg);
  8858 %}
  8860 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU13 op2 ) %{
  8861   match(Set icc (CmpU op1 op2));
  8863   size(4);
  8864   format %{ "CMP    $op1,$op2\t! unsigned" %}
  8865   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8866   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8867   ins_pipe(ialu_cconly_reg_imm);
  8868 %}
  8870 // Compare Pointers
  8871 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
  8872   match(Set pcc (CmpP op1 op2));
  8874   size(4);
  8875   format %{ "CMP    $op1,$op2\t! ptr" %}
  8876   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8877   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8878   ins_pipe(ialu_cconly_reg_reg);
  8879 %}
  8881 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
  8882   match(Set pcc (CmpP op1 op2));
  8884   size(4);
  8885   format %{ "CMP    $op1,$op2\t! ptr" %}
  8886   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8887   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8888   ins_pipe(ialu_cconly_reg_imm);
  8889 %}
  8891 // Compare Narrow oops
  8892 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
  8893   match(Set icc (CmpN op1 op2));
  8895   size(4);
  8896   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  8897   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8898   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8899   ins_pipe(ialu_cconly_reg_reg);
  8900 %}
  8902 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
  8903   match(Set icc (CmpN op1 op2));
  8905   size(4);
  8906   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  8907   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8908   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8909   ins_pipe(ialu_cconly_reg_imm);
  8910 %}
  8912 //----------Max and Min--------------------------------------------------------
  8913 // Min Instructions
  8914 // Conditional move for min
  8915 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
  8916   effect( USE_DEF op2, USE op1, USE icc );
  8918   size(4);
  8919   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
  8920   opcode(Assembler::less);
  8921   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  8922   ins_pipe(ialu_reg_flags);
  8923 %}
  8925 // Min Register with Register.
  8926 instruct minI_eReg(iRegI op1, iRegI op2) %{
  8927   match(Set op2 (MinI op1 op2));
  8928   ins_cost(DEFAULT_COST*2);
  8929   expand %{
  8930     flagsReg icc;
  8931     compI_iReg(icc,op1,op2);
  8932     cmovI_reg_lt(op2,op1,icc);
  8933   %}
  8934 %}
  8936 // Max Instructions
  8937 // Conditional move for max
  8938 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
  8939   effect( USE_DEF op2, USE op1, USE icc );
  8940   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
  8941   opcode(Assembler::greater);
  8942   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  8943   ins_pipe(ialu_reg_flags);
  8944 %}
  8946 // Max Register with Register
  8947 instruct maxI_eReg(iRegI op1, iRegI op2) %{
  8948   match(Set op2 (MaxI op1 op2));
  8949   ins_cost(DEFAULT_COST*2);
  8950   expand %{
  8951     flagsReg icc;
  8952     compI_iReg(icc,op1,op2);
  8953     cmovI_reg_gt(op2,op1,icc);
  8954   %}
  8955 %}
  8958 //----------Float Compares----------------------------------------------------
  8959 // Compare floating, generate condition code
  8960 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
  8961   match(Set fcc (CmpF src1 src2));
  8963   size(4);
  8964   format %{ "FCMPs  $fcc,$src1,$src2" %}
  8965   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
  8966   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
  8967   ins_pipe(faddF_fcc_reg_reg_zero);
  8968 %}
  8970 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
  8971   match(Set fcc (CmpD src1 src2));
  8973   size(4);
  8974   format %{ "FCMPd  $fcc,$src1,$src2" %}
  8975   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
  8976   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
  8977   ins_pipe(faddD_fcc_reg_reg_zero);
  8978 %}
  8981 // Compare floating, generate -1,0,1
  8982 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
  8983   match(Set dst (CmpF3 src1 src2));
  8984   effect(KILL fcc0);
  8985   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  8986   format %{ "fcmpl  $dst,$src1,$src2" %}
  8987   // Primary = float
  8988   opcode( true );
  8989   ins_encode( floating_cmp( dst, src1, src2 ) );
  8990   ins_pipe( floating_cmp );
  8991 %}
  8993 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
  8994   match(Set dst (CmpD3 src1 src2));
  8995   effect(KILL fcc0);
  8996   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  8997   format %{ "dcmpl  $dst,$src1,$src2" %}
  8998   // Primary = double (not float)
  8999   opcode( false );
  9000   ins_encode( floating_cmp( dst, src1, src2 ) );
  9001   ins_pipe( floating_cmp );
  9002 %}
  9004 //----------Branches---------------------------------------------------------
  9005 // Jump
  9006 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
  9007 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
  9008   match(Jump switch_val);
  9009   effect(TEMP table);
  9011   ins_cost(350);
  9013   format %{  "ADD    $constanttablebase, $constantoffset, O7\n\t"
  9014              "LD     [O7 + $switch_val], O7\n\t"
  9015              "JUMP   O7" %}
  9016   ins_encode %{
  9017     // Calculate table address into a register.
  9018     Register table_reg;
  9019     Register label_reg = O7;
  9020     // If we are calculating the size of this instruction don't trust
  9021     // zero offsets because they might change when
  9022     // MachConstantBaseNode decides to optimize the constant table
  9023     // base.
  9024     if ((constant_offset() == 0) && !Compile::current()->in_scratch_emit_size()) {
  9025       table_reg = $constanttablebase;
  9026     } else {
  9027       table_reg = O7;
  9028       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset, O7);
  9029       __ add($constanttablebase, con_offset, table_reg);
  9032     // Jump to base address + switch value
  9033     __ ld_ptr(table_reg, $switch_val$$Register, label_reg);
  9034     __ jmp(label_reg, G0);
  9035     __ delayed()->nop();
  9036   %}
  9037   ins_pipe(ialu_reg_reg);
  9038 %}
  9040 // Direct Branch.  Use V8 version with longer range.
  9041 instruct branch(label labl) %{
  9042   match(Goto);
  9043   effect(USE labl);
  9045   size(8);
  9046   ins_cost(BRANCH_COST);
  9047   format %{ "BA     $labl" %}
  9048   ins_encode %{
  9049     Label* L = $labl$$label;
  9050     __ ba(*L);
  9051     __ delayed()->nop();
  9052   %}
  9053   ins_pipe(br);
  9054 %}
  9056 // Direct Branch, short with no delay slot
  9057 instruct branch_short(label labl) %{
  9058   match(Goto);
  9059   predicate(UseCBCond);
  9060   effect(USE labl);
  9062   size(4);
  9063   ins_cost(BRANCH_COST);
  9064   format %{ "BA     $labl\t! short branch" %}
  9065   ins_encode %{ 
  9066     Label* L = $labl$$label;
  9067     assert(__ use_cbcond(*L), "back to back cbcond");
  9068     __ ba_short(*L);
  9069   %}
  9070   ins_short_branch(1);
  9071   ins_avoid_back_to_back(1);
  9072   ins_pipe(cbcond_reg_imm);
  9073 %}
  9075 // Conditional Direct Branch
  9076 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
  9077   match(If cmp icc);
  9078   effect(USE labl);
  9080   size(8);
  9081   ins_cost(BRANCH_COST);
  9082   format %{ "BP$cmp   $icc,$labl" %}
  9083   // Prim = bits 24-22, Secnd = bits 31-30
  9084   ins_encode( enc_bp( labl, cmp, icc ) );
  9085   ins_pipe(br_cc);
  9086 %}
  9088 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
  9089   match(If cmp icc);
  9090   effect(USE labl);
  9092   ins_cost(BRANCH_COST);
  9093   format %{ "BP$cmp  $icc,$labl" %}
  9094   // Prim = bits 24-22, Secnd = bits 31-30
  9095   ins_encode( enc_bp( labl, cmp, icc ) );
  9096   ins_pipe(br_cc);
  9097 %}
  9099 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
  9100   match(If cmp pcc);
  9101   effect(USE labl);
  9103   size(8);
  9104   ins_cost(BRANCH_COST);
  9105   format %{ "BP$cmp  $pcc,$labl" %}
  9106   ins_encode %{
  9107     Label* L = $labl$$label;
  9108     Assembler::Predict predict_taken =
  9109       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9111     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
  9112     __ delayed()->nop();
  9113   %}
  9114   ins_pipe(br_cc);
  9115 %}
  9117 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
  9118   match(If cmp fcc);
  9119   effect(USE labl);
  9121   size(8);
  9122   ins_cost(BRANCH_COST);
  9123   format %{ "FBP$cmp $fcc,$labl" %}
  9124   ins_encode %{
  9125     Label* L = $labl$$label;
  9126     Assembler::Predict predict_taken =
  9127       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9129     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($fcc$$reg), predict_taken, *L);
  9130     __ delayed()->nop();
  9131   %}
  9132   ins_pipe(br_fcc);
  9133 %}
  9135 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
  9136   match(CountedLoopEnd cmp icc);
  9137   effect(USE labl);
  9139   size(8);
  9140   ins_cost(BRANCH_COST);
  9141   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
  9142   // Prim = bits 24-22, Secnd = bits 31-30
  9143   ins_encode( enc_bp( labl, cmp, icc ) );
  9144   ins_pipe(br_cc);
  9145 %}
  9147 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
  9148   match(CountedLoopEnd cmp icc);
  9149   effect(USE labl);
  9151   size(8);
  9152   ins_cost(BRANCH_COST);
  9153   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
  9154   // Prim = bits 24-22, Secnd = bits 31-30
  9155   ins_encode( enc_bp( labl, cmp, icc ) );
  9156   ins_pipe(br_cc);
  9157 %}
  9159 // Compare and branch instructions
  9160 instruct cmpI_reg_branch(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9161   match(If cmp (CmpI op1 op2));
  9162   effect(USE labl, KILL icc);
  9164   size(12);
  9165   ins_cost(BRANCH_COST);
  9166   format %{ "CMP    $op1,$op2\t! int\n\t"
  9167             "BP$cmp   $labl" %}
  9168   ins_encode %{
  9169     Label* L = $labl$$label;
  9170     Assembler::Predict predict_taken =
  9171       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9172     __ cmp($op1$$Register, $op2$$Register);
  9173     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9174     __ delayed()->nop();
  9175   %}
  9176   ins_pipe(cmp_br_reg_reg);
  9177 %}
  9179 instruct cmpI_imm_branch(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9180   match(If cmp (CmpI op1 op2));
  9181   effect(USE labl, KILL icc);
  9183   size(12);
  9184   ins_cost(BRANCH_COST);
  9185   format %{ "CMP    $op1,$op2\t! int\n\t"
  9186             "BP$cmp   $labl" %}
  9187   ins_encode %{
  9188     Label* L = $labl$$label;
  9189     Assembler::Predict predict_taken =
  9190       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9191     __ cmp($op1$$Register, $op2$$constant);
  9192     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9193     __ delayed()->nop();
  9194   %}
  9195   ins_pipe(cmp_br_reg_imm);
  9196 %}
  9198 instruct cmpU_reg_branch(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
  9199   match(If cmp (CmpU op1 op2));
  9200   effect(USE labl, KILL icc);
  9202   size(12);
  9203   ins_cost(BRANCH_COST);
  9204   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
  9205             "BP$cmp  $labl" %}
  9206   ins_encode %{
  9207     Label* L = $labl$$label;
  9208     Assembler::Predict predict_taken =
  9209       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9210     __ cmp($op1$$Register, $op2$$Register);
  9211     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9212     __ delayed()->nop();
  9213   %}
  9214   ins_pipe(cmp_br_reg_reg);
  9215 %}
  9217 instruct cmpU_imm_branch(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
  9218   match(If cmp (CmpU op1 op2));
  9219   effect(USE labl, KILL icc);
  9221   size(12);
  9222   ins_cost(BRANCH_COST);
  9223   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
  9224             "BP$cmp  $labl" %}
  9225   ins_encode %{
  9226     Label* L = $labl$$label;
  9227     Assembler::Predict predict_taken =
  9228       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9229     __ cmp($op1$$Register, $op2$$constant);
  9230     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9231     __ delayed()->nop();
  9232   %}
  9233   ins_pipe(cmp_br_reg_imm);
  9234 %}
  9236 instruct cmpL_reg_branch(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
  9237   match(If cmp (CmpL op1 op2));
  9238   effect(USE labl, KILL xcc);
  9240   size(12);
  9241   ins_cost(BRANCH_COST);
  9242   format %{ "CMP    $op1,$op2\t! long\n\t"
  9243             "BP$cmp   $labl" %}
  9244   ins_encode %{
  9245     Label* L = $labl$$label;
  9246     Assembler::Predict predict_taken =
  9247       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9248     __ cmp($op1$$Register, $op2$$Register);
  9249     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
  9250     __ delayed()->nop();
  9251   %}
  9252   ins_pipe(cmp_br_reg_reg);
  9253 %}
  9255 instruct cmpL_imm_branch(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
  9256   match(If cmp (CmpL op1 op2));
  9257   effect(USE labl, KILL xcc);
  9259   size(12);
  9260   ins_cost(BRANCH_COST);
  9261   format %{ "CMP    $op1,$op2\t! long\n\t"
  9262             "BP$cmp   $labl" %}
  9263   ins_encode %{
  9264     Label* L = $labl$$label;
  9265     Assembler::Predict predict_taken =
  9266       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9267     __ cmp($op1$$Register, $op2$$constant);
  9268     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
  9269     __ delayed()->nop();
  9270   %}
  9271   ins_pipe(cmp_br_reg_imm);
  9272 %}
  9274 // Compare Pointers and branch
  9275 instruct cmpP_reg_branch(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
  9276   match(If cmp (CmpP op1 op2));
  9277   effect(USE labl, KILL pcc);
  9279   size(12);
  9280   ins_cost(BRANCH_COST);
  9281   format %{ "CMP    $op1,$op2\t! ptr\n\t"
  9282             "B$cmp   $labl" %}
  9283   ins_encode %{
  9284     Label* L = $labl$$label;
  9285     Assembler::Predict predict_taken =
  9286       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9287     __ cmp($op1$$Register, $op2$$Register);
  9288     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
  9289     __ delayed()->nop();
  9290   %}
  9291   ins_pipe(cmp_br_reg_reg);
  9292 %}
  9294 instruct cmpP_null_branch(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
  9295   match(If cmp (CmpP op1 null));
  9296   effect(USE labl, KILL pcc);
  9298   size(12);
  9299   ins_cost(BRANCH_COST);
  9300   format %{ "CMP    $op1,0\t! ptr\n\t"
  9301             "B$cmp   $labl" %}
  9302   ins_encode %{
  9303     Label* L = $labl$$label;
  9304     Assembler::Predict predict_taken =
  9305       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9306     __ cmp($op1$$Register, G0);
  9307     // bpr() is not used here since it has shorter distance.
  9308     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
  9309     __ delayed()->nop();
  9310   %}
  9311   ins_pipe(cmp_br_reg_reg);
  9312 %}
  9314 instruct cmpN_reg_branch(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
  9315   match(If cmp (CmpN op1 op2));
  9316   effect(USE labl, KILL icc);
  9318   size(12);
  9319   ins_cost(BRANCH_COST);
  9320   format %{ "CMP    $op1,$op2\t! compressed ptr\n\t"
  9321             "BP$cmp   $labl" %}
  9322   ins_encode %{
  9323     Label* L = $labl$$label;
  9324     Assembler::Predict predict_taken =
  9325       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9326     __ cmp($op1$$Register, $op2$$Register);
  9327     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9328     __ delayed()->nop();
  9329   %}
  9330   ins_pipe(cmp_br_reg_reg);
  9331 %}
  9333 instruct cmpN_null_branch(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
  9334   match(If cmp (CmpN op1 null));
  9335   effect(USE labl, KILL icc);
  9337   size(12);
  9338   ins_cost(BRANCH_COST);
  9339   format %{ "CMP    $op1,0\t! compressed ptr\n\t"
  9340             "BP$cmp   $labl" %}
  9341   ins_encode %{
  9342     Label* L = $labl$$label;
  9343     Assembler::Predict predict_taken =
  9344       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9345     __ cmp($op1$$Register, G0);
  9346     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9347     __ delayed()->nop();
  9348   %}
  9349   ins_pipe(cmp_br_reg_reg);
  9350 %}
  9352 // Loop back branch
  9353 instruct cmpI_reg_branchLoopEnd(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9354   match(CountedLoopEnd cmp (CmpI op1 op2));
  9355   effect(USE labl, KILL icc);
  9357   size(12);
  9358   ins_cost(BRANCH_COST);
  9359   format %{ "CMP    $op1,$op2\t! int\n\t"
  9360             "BP$cmp   $labl\t! Loop end" %}
  9361   ins_encode %{
  9362     Label* L = $labl$$label;
  9363     Assembler::Predict predict_taken =
  9364       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9365     __ cmp($op1$$Register, $op2$$Register);
  9366     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9367     __ delayed()->nop();
  9368   %}
  9369   ins_pipe(cmp_br_reg_reg);
  9370 %}
  9372 instruct cmpI_imm_branchLoopEnd(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9373   match(CountedLoopEnd cmp (CmpI op1 op2));
  9374   effect(USE labl, KILL icc);
  9376   size(12);
  9377   ins_cost(BRANCH_COST);
  9378   format %{ "CMP    $op1,$op2\t! int\n\t"
  9379             "BP$cmp   $labl\t! Loop end" %}
  9380   ins_encode %{
  9381     Label* L = $labl$$label;
  9382     Assembler::Predict predict_taken =
  9383       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9384     __ cmp($op1$$Register, $op2$$constant);
  9385     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9386     __ delayed()->nop();
  9387   %}
  9388   ins_pipe(cmp_br_reg_imm);
  9389 %}
  9391 // Short compare and branch instructions
  9392 instruct cmpI_reg_branch_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9393   match(If cmp (CmpI op1 op2));
  9394   predicate(UseCBCond);
  9395   effect(USE labl, KILL icc);
  9397   size(4);
  9398   ins_cost(BRANCH_COST);
  9399   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
  9400   ins_encode %{
  9401     Label* L = $labl$$label;
  9402     assert(__ use_cbcond(*L), "back to back cbcond");
  9403     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9404   %}
  9405   ins_short_branch(1);
  9406   ins_avoid_back_to_back(1);
  9407   ins_pipe(cbcond_reg_reg);
  9408 %}
  9410 instruct cmpI_imm_branch_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9411   match(If cmp (CmpI op1 op2));
  9412   predicate(UseCBCond);
  9413   effect(USE labl, KILL icc);
  9415   size(4);
  9416   ins_cost(BRANCH_COST);
  9417   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
  9418   ins_encode %{
  9419     Label* L = $labl$$label;
  9420     assert(__ use_cbcond(*L), "back to back cbcond");
  9421     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  9422   %}
  9423   ins_short_branch(1);
  9424   ins_avoid_back_to_back(1);
  9425   ins_pipe(cbcond_reg_imm);
  9426 %}
  9428 instruct cmpU_reg_branch_short(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
  9429   match(If cmp (CmpU op1 op2));
  9430   predicate(UseCBCond);
  9431   effect(USE labl, KILL icc);
  9433   size(4);
  9434   ins_cost(BRANCH_COST);
  9435   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
  9436   ins_encode %{
  9437     Label* L = $labl$$label;
  9438     assert(__ use_cbcond(*L), "back to back cbcond");
  9439     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9440   %}
  9441   ins_short_branch(1);
  9442   ins_avoid_back_to_back(1);
  9443   ins_pipe(cbcond_reg_reg);
  9444 %}
  9446 instruct cmpU_imm_branch_short(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
  9447   match(If cmp (CmpU op1 op2));
  9448   predicate(UseCBCond);
  9449   effect(USE labl, KILL icc);
  9451   size(4);
  9452   ins_cost(BRANCH_COST);
  9453   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
  9454   ins_encode %{
  9455     Label* L = $labl$$label;
  9456     assert(__ use_cbcond(*L), "back to back cbcond");
  9457     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  9458   %}
  9459   ins_short_branch(1);
  9460   ins_avoid_back_to_back(1);
  9461   ins_pipe(cbcond_reg_imm);
  9462 %}
  9464 instruct cmpL_reg_branch_short(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
  9465   match(If cmp (CmpL op1 op2));
  9466   predicate(UseCBCond);
  9467   effect(USE labl, KILL xcc);
  9469   size(4);
  9470   ins_cost(BRANCH_COST);
  9471   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
  9472   ins_encode %{
  9473     Label* L = $labl$$label;
  9474     assert(__ use_cbcond(*L), "back to back cbcond");
  9475     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$Register, *L);
  9476   %}
  9477   ins_short_branch(1);
  9478   ins_avoid_back_to_back(1);
  9479   ins_pipe(cbcond_reg_reg);
  9480 %}
  9482 instruct cmpL_imm_branch_short(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
  9483   match(If cmp (CmpL op1 op2));
  9484   predicate(UseCBCond);
  9485   effect(USE labl, KILL xcc);
  9487   size(4);
  9488   ins_cost(BRANCH_COST);
  9489   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
  9490   ins_encode %{
  9491     Label* L = $labl$$label;
  9492     assert(__ use_cbcond(*L), "back to back cbcond");
  9493     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$constant, *L);
  9494   %}
  9495   ins_short_branch(1);
  9496   ins_avoid_back_to_back(1);
  9497   ins_pipe(cbcond_reg_imm);
  9498 %}
  9500 // Compare Pointers and branch
  9501 instruct cmpP_reg_branch_short(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
  9502   match(If cmp (CmpP op1 op2));
  9503   predicate(UseCBCond);
  9504   effect(USE labl, KILL pcc);
  9506   size(4);
  9507   ins_cost(BRANCH_COST);
  9508 #ifdef _LP64
  9509   format %{ "CXB$cmp $op1,$op2,$labl\t! ptr" %}
  9510 #else
  9511   format %{ "CWB$cmp $op1,$op2,$labl\t! ptr" %}
  9512 #endif
  9513   ins_encode %{
  9514     Label* L = $labl$$label;
  9515     assert(__ use_cbcond(*L), "back to back cbcond");
  9516     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, $op2$$Register, *L);
  9517   %}
  9518   ins_short_branch(1);
  9519   ins_avoid_back_to_back(1);
  9520   ins_pipe(cbcond_reg_reg);
  9521 %}
  9523 instruct cmpP_null_branch_short(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
  9524   match(If cmp (CmpP op1 null));
  9525   predicate(UseCBCond);
  9526   effect(USE labl, KILL pcc);
  9528   size(4);
  9529   ins_cost(BRANCH_COST);
  9530 #ifdef _LP64
  9531   format %{ "CXB$cmp $op1,0,$labl\t! ptr" %}
  9532 #else
  9533   format %{ "CWB$cmp $op1,0,$labl\t! ptr" %}
  9534 #endif
  9535   ins_encode %{
  9536     Label* L = $labl$$label;
  9537     assert(__ use_cbcond(*L), "back to back cbcond");
  9538     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, G0, *L);
  9539   %}
  9540   ins_short_branch(1);
  9541   ins_avoid_back_to_back(1);
  9542   ins_pipe(cbcond_reg_reg);
  9543 %}
  9545 instruct cmpN_reg_branch_short(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
  9546   match(If cmp (CmpN op1 op2));
  9547   predicate(UseCBCond);
  9548   effect(USE labl, KILL icc);
  9550   size(4);
  9551   ins_cost(BRANCH_COST);
  9552   format %{ "CWB$cmp  $op1,op2,$labl\t! compressed ptr" %}
  9553   ins_encode %{
  9554     Label* L = $labl$$label;
  9555     assert(__ use_cbcond(*L), "back to back cbcond");
  9556     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9557   %}
  9558   ins_short_branch(1);
  9559   ins_avoid_back_to_back(1);
  9560   ins_pipe(cbcond_reg_reg);
  9561 %}
  9563 instruct cmpN_null_branch_short(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
  9564   match(If cmp (CmpN op1 null));
  9565   predicate(UseCBCond);
  9566   effect(USE labl, KILL icc);
  9568   size(4);
  9569   ins_cost(BRANCH_COST);
  9570   format %{ "CWB$cmp  $op1,0,$labl\t! compressed ptr" %}
  9571   ins_encode %{
  9572     Label* L = $labl$$label;
  9573     assert(__ use_cbcond(*L), "back to back cbcond");
  9574     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, G0, *L);
  9575   %}
  9576   ins_short_branch(1);
  9577   ins_avoid_back_to_back(1);
  9578   ins_pipe(cbcond_reg_reg);
  9579 %}
  9581 // Loop back branch
  9582 instruct cmpI_reg_branchLoopEnd_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9583   match(CountedLoopEnd cmp (CmpI op1 op2));
  9584   predicate(UseCBCond);
  9585   effect(USE labl, KILL icc);
  9587   size(4);
  9588   ins_cost(BRANCH_COST);
  9589   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
  9590   ins_encode %{
  9591     Label* L = $labl$$label;
  9592     assert(__ use_cbcond(*L), "back to back cbcond");
  9593     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9594   %}
  9595   ins_short_branch(1);
  9596   ins_avoid_back_to_back(1);
  9597   ins_pipe(cbcond_reg_reg);
  9598 %}
  9600 instruct cmpI_imm_branchLoopEnd_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9601   match(CountedLoopEnd cmp (CmpI op1 op2));
  9602   predicate(UseCBCond);
  9603   effect(USE labl, KILL icc);
  9605   size(4);
  9606   ins_cost(BRANCH_COST);
  9607   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
  9608   ins_encode %{
  9609     Label* L = $labl$$label;
  9610     assert(__ use_cbcond(*L), "back to back cbcond");
  9611     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  9612   %}
  9613   ins_short_branch(1);
  9614   ins_avoid_back_to_back(1);
  9615   ins_pipe(cbcond_reg_imm);
  9616 %}
  9618 // Branch-on-register tests all 64 bits.  We assume that values
  9619 // in 64-bit registers always remains zero or sign extended
  9620 // unless our code munges the high bits.  Interrupts can chop
  9621 // the high order bits to zero or sign at any time.
  9622 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
  9623   match(If cmp (CmpI op1 zero));
  9624   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9625   effect(USE labl);
  9627   size(8);
  9628   ins_cost(BRANCH_COST);
  9629   format %{ "BR$cmp   $op1,$labl" %}
  9630   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9631   ins_pipe(br_reg);
  9632 %}
  9634 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
  9635   match(If cmp (CmpP op1 null));
  9636   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9637   effect(USE labl);
  9639   size(8);
  9640   ins_cost(BRANCH_COST);
  9641   format %{ "BR$cmp   $op1,$labl" %}
  9642   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9643   ins_pipe(br_reg);
  9644 %}
  9646 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
  9647   match(If cmp (CmpL op1 zero));
  9648   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9649   effect(USE labl);
  9651   size(8);
  9652   ins_cost(BRANCH_COST);
  9653   format %{ "BR$cmp   $op1,$labl" %}
  9654   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9655   ins_pipe(br_reg);
  9656 %}
  9659 // ============================================================================
  9660 // Long Compare
  9661 //
  9662 // Currently we hold longs in 2 registers.  Comparing such values efficiently
  9663 // is tricky.  The flavor of compare used depends on whether we are testing
  9664 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
  9665 // The GE test is the negated LT test.  The LE test can be had by commuting
  9666 // the operands (yielding a GE test) and then negating; negate again for the
  9667 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
  9668 // NE test is negated from that.
  9670 // Due to a shortcoming in the ADLC, it mixes up expressions like:
  9671 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
  9672 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
  9673 // are collapsed internally in the ADLC's dfa-gen code.  The match for
  9674 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
  9675 // foo match ends up with the wrong leaf.  One fix is to not match both
  9676 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
  9677 // both forms beat the trinary form of long-compare and both are very useful
  9678 // on Intel which has so few registers.
  9680 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
  9681   match(If cmp xcc);
  9682   effect(USE labl);
  9684   size(8);
  9685   ins_cost(BRANCH_COST);
  9686   format %{ "BP$cmp   $xcc,$labl" %}
  9687   ins_encode %{
  9688     Label* L = $labl$$label;
  9689     Assembler::Predict predict_taken =
  9690       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9692     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
  9693     __ delayed()->nop();
  9694   %}
  9695   ins_pipe(br_cc);
  9696 %}
  9698 // Manifest a CmpL3 result in an integer register.  Very painful.
  9699 // This is the test to avoid.
  9700 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
  9701   match(Set dst (CmpL3 src1 src2) );
  9702   effect( KILL ccr );
  9703   ins_cost(6*DEFAULT_COST);
  9704   size(24);
  9705   format %{ "CMP    $src1,$src2\t\t! long\n"
  9706           "\tBLT,a,pn done\n"
  9707           "\tMOV    -1,$dst\t! delay slot\n"
  9708           "\tBGT,a,pn done\n"
  9709           "\tMOV    1,$dst\t! delay slot\n"
  9710           "\tCLR    $dst\n"
  9711     "done:"     %}
  9712   ins_encode( cmpl_flag(src1,src2,dst) );
  9713   ins_pipe(cmpL_reg);
  9714 %}
  9716 // Conditional move
  9717 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
  9718   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  9719   ins_cost(150);
  9720   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  9721   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9722   ins_pipe(ialu_reg);
  9723 %}
  9725 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
  9726   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  9727   ins_cost(140);
  9728   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  9729   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9730   ins_pipe(ialu_imm);
  9731 %}
  9733 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
  9734   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  9735   ins_cost(150);
  9736   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9737   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9738   ins_pipe(ialu_reg);
  9739 %}
  9741 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
  9742   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  9743   ins_cost(140);
  9744   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9745   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9746   ins_pipe(ialu_imm);
  9747 %}
  9749 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
  9750   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
  9751   ins_cost(150);
  9752   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9753   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9754   ins_pipe(ialu_reg);
  9755 %}
  9757 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
  9758   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  9759   ins_cost(150);
  9760   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9761   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9762   ins_pipe(ialu_reg);
  9763 %}
  9765 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
  9766   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  9767   ins_cost(140);
  9768   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9769   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9770   ins_pipe(ialu_imm);
  9771 %}
  9773 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
  9774   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
  9775   ins_cost(150);
  9776   opcode(0x101);
  9777   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
  9778   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
  9779   ins_pipe(int_conditional_float_move);
  9780 %}
  9782 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
  9783   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
  9784   ins_cost(150);
  9785   opcode(0x102);
  9786   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
  9787   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
  9788   ins_pipe(int_conditional_float_move);
  9789 %}
  9791 // ============================================================================
  9792 // Safepoint Instruction
  9793 instruct safePoint_poll(iRegP poll) %{
  9794   match(SafePoint poll);
  9795   effect(USE poll);
  9797   size(4);
  9798 #ifdef _LP64
  9799   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
  9800 #else
  9801   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
  9802 #endif
  9803   ins_encode %{
  9804     __ relocate(relocInfo::poll_type);
  9805     __ ld_ptr($poll$$Register, 0, G0);
  9806   %}
  9807   ins_pipe(loadPollP);
  9808 %}
  9810 // ============================================================================
  9811 // Call Instructions
  9812 // Call Java Static Instruction
  9813 instruct CallStaticJavaDirect( method meth ) %{
  9814   match(CallStaticJava);
  9815   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
  9816   effect(USE meth);
  9818   size(8);
  9819   ins_cost(CALL_COST);
  9820   format %{ "CALL,static  ; NOP ==> " %}
  9821   ins_encode( Java_Static_Call( meth ), call_epilog );
  9822   ins_pipe(simple_call);
  9823 %}
  9825 // Call Java Static Instruction (method handle version)
  9826 instruct CallStaticJavaHandle(method meth, l7RegP l7_mh_SP_save) %{
  9827   match(CallStaticJava);
  9828   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
  9829   effect(USE meth, KILL l7_mh_SP_save);
  9831   size(16);
  9832   ins_cost(CALL_COST);
  9833   format %{ "CALL,static/MethodHandle" %}
  9834   ins_encode(preserve_SP, Java_Static_Call(meth), restore_SP, call_epilog);
  9835   ins_pipe(simple_call);
  9836 %}
  9838 // Call Java Dynamic Instruction
  9839 instruct CallDynamicJavaDirect( method meth ) %{
  9840   match(CallDynamicJava);
  9841   effect(USE meth);
  9843   ins_cost(CALL_COST);
  9844   format %{ "SET    (empty),R_G5\n\t"
  9845             "CALL,dynamic  ; NOP ==> " %}
  9846   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
  9847   ins_pipe(call);
  9848 %}
  9850 // Call Runtime Instruction
  9851 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
  9852   match(CallRuntime);
  9853   effect(USE meth, KILL l7);
  9854   ins_cost(CALL_COST);
  9855   format %{ "CALL,runtime" %}
  9856   ins_encode( Java_To_Runtime( meth ),
  9857               call_epilog, adjust_long_from_native_call );
  9858   ins_pipe(simple_call);
  9859 %}
  9861 // Call runtime without safepoint - same as CallRuntime
  9862 instruct CallLeafDirect(method meth, l7RegP l7) %{
  9863   match(CallLeaf);
  9864   effect(USE meth, KILL l7);
  9865   ins_cost(CALL_COST);
  9866   format %{ "CALL,runtime leaf" %}
  9867   ins_encode( Java_To_Runtime( meth ),
  9868               call_epilog,
  9869               adjust_long_from_native_call );
  9870   ins_pipe(simple_call);
  9871 %}
  9873 // Call runtime without safepoint - same as CallLeaf
  9874 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
  9875   match(CallLeafNoFP);
  9876   effect(USE meth, KILL l7);
  9877   ins_cost(CALL_COST);
  9878   format %{ "CALL,runtime leaf nofp" %}
  9879   ins_encode( Java_To_Runtime( meth ),
  9880               call_epilog,
  9881               adjust_long_from_native_call );
  9882   ins_pipe(simple_call);
  9883 %}
  9885 // Tail Call; Jump from runtime stub to Java code.
  9886 // Also known as an 'interprocedural jump'.
  9887 // Target of jump will eventually return to caller.
  9888 // TailJump below removes the return address.
  9889 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
  9890   match(TailCall jump_target method_oop );
  9892   ins_cost(CALL_COST);
  9893   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
  9894   ins_encode(form_jmpl(jump_target));
  9895   ins_pipe(tail_call);
  9896 %}
  9899 // Return Instruction
  9900 instruct Ret() %{
  9901   match(Return);
  9903   // The epilogue node did the ret already.
  9904   size(0);
  9905   format %{ "! return" %}
  9906   ins_encode();
  9907   ins_pipe(empty);
  9908 %}
  9911 // Tail Jump; remove the return address; jump to target.
  9912 // TailCall above leaves the return address around.
  9913 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
  9914 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
  9915 // "restore" before this instruction (in Epilogue), we need to materialize it
  9916 // in %i0.
  9917 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
  9918   match( TailJump jump_target ex_oop );
  9919   ins_cost(CALL_COST);
  9920   format %{ "! discard R_O7\n\t"
  9921             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
  9922   ins_encode(form_jmpl_set_exception_pc(jump_target));
  9923   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
  9924   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
  9925   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
  9926   ins_pipe(tail_call);
  9927 %}
  9929 // Create exception oop: created by stack-crawling runtime code.
  9930 // Created exception is now available to this handler, and is setup
  9931 // just prior to jumping to this handler.  No code emitted.
  9932 instruct CreateException( o0RegP ex_oop )
  9933 %{
  9934   match(Set ex_oop (CreateEx));
  9935   ins_cost(0);
  9937   size(0);
  9938   // use the following format syntax
  9939   format %{ "! exception oop is in R_O0; no code emitted" %}
  9940   ins_encode();
  9941   ins_pipe(empty);
  9942 %}
  9945 // Rethrow exception:
  9946 // The exception oop will come in the first argument position.
  9947 // Then JUMP (not call) to the rethrow stub code.
  9948 instruct RethrowException()
  9949 %{
  9950   match(Rethrow);
  9951   ins_cost(CALL_COST);
  9953   // use the following format syntax
  9954   format %{ "Jmp    rethrow_stub" %}
  9955   ins_encode(enc_rethrow);
  9956   ins_pipe(tail_call);
  9957 %}
  9960 // Die now
  9961 instruct ShouldNotReachHere( )
  9962 %{
  9963   match(Halt);
  9964   ins_cost(CALL_COST);
  9966   size(4);
  9967   // Use the following format syntax
  9968   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
  9969   ins_encode( form2_illtrap() );
  9970   ins_pipe(tail_call);
  9971 %}
  9973 // ============================================================================
  9974 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
  9975 // array for an instance of the superklass.  Set a hidden internal cache on a
  9976 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
  9977 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
  9978 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
  9979   match(Set index (PartialSubtypeCheck sub super));
  9980   effect( KILL pcc, KILL o7 );
  9981   ins_cost(DEFAULT_COST*10);
  9982   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
  9983   ins_encode( enc_PartialSubtypeCheck() );
  9984   ins_pipe(partial_subtype_check_pipe);
  9985 %}
  9987 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
  9988   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
  9989   effect( KILL idx, KILL o7 );
  9990   ins_cost(DEFAULT_COST*10);
  9991   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
  9992   ins_encode( enc_PartialSubtypeCheck() );
  9993   ins_pipe(partial_subtype_check_pipe);
  9994 %}
  9997 // ============================================================================
  9998 // inlined locking and unlocking
 10000 instruct cmpFastLock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
 10001   match(Set pcc (FastLock object box));
 10003   effect(TEMP scratch2, USE_KILL box, KILL scratch);
 10004   ins_cost(100);
 10006   format %{ "FASTLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
 10007   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
 10008   ins_pipe(long_memory_op);
 10009 %}
 10012 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
 10013   match(Set pcc (FastUnlock object box));
 10014   effect(TEMP scratch2, USE_KILL box, KILL scratch);
 10015   ins_cost(100);
 10017   format %{ "FASTUNLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
 10018   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
 10019   ins_pipe(long_memory_op);
 10020 %}
 10022 // The encodings are generic.
 10023 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
 10024   predicate(!use_block_zeroing(n->in(2)) );
 10025   match(Set dummy (ClearArray cnt base));
 10026   effect(TEMP temp, KILL ccr);
 10027   ins_cost(300);
 10028   format %{ "MOV    $cnt,$temp\n"
 10029     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
 10030     "        BRge   loop\t\t! Clearing loop\n"
 10031     "        STX    G0,[$base+$temp]\t! delay slot" %}
 10033   ins_encode %{
 10034     // Compiler ensures base is doubleword aligned and cnt is count of doublewords
 10035     Register nof_bytes_arg    = $cnt$$Register;
 10036     Register nof_bytes_tmp    = $temp$$Register;
 10037     Register base_pointer_arg = $base$$Register;
 10039     Label loop;
 10040     __ mov(nof_bytes_arg, nof_bytes_tmp);
 10042     // Loop and clear, walking backwards through the array.
 10043     // nof_bytes_tmp (if >0) is always the number of bytes to zero
 10044     __ bind(loop);
 10045     __ deccc(nof_bytes_tmp, 8);
 10046     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
 10047     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
 10048     // %%%% this mini-loop must not cross a cache boundary!
 10049   %}
 10050   ins_pipe(long_memory_op);
 10051 %}
 10053 instruct clear_array_bis(g1RegX cnt, o0RegP base, Universe dummy, flagsReg ccr) %{
 10054   predicate(use_block_zeroing(n->in(2)));
 10055   match(Set dummy (ClearArray cnt base));
 10056   effect(USE_KILL cnt, USE_KILL base, KILL ccr);
 10057   ins_cost(300);
 10058   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
 10060   ins_encode %{
 10062     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
 10063     Register to    = $base$$Register;
 10064     Register count = $cnt$$Register;
 10066     Label Ldone;
 10067     __ nop(); // Separate short branches
 10068     // Use BIS for zeroing (temp is not used).
 10069     __ bis_zeroing(to, count, G0, Ldone);
 10070     __ bind(Ldone);
 10072   %}
 10073   ins_pipe(long_memory_op);
 10074 %}
 10076 instruct clear_array_bis_2(g1RegX cnt, o0RegP base, iRegX tmp, Universe dummy, flagsReg ccr) %{
 10077   predicate(use_block_zeroing(n->in(2)) && !Assembler::is_simm13((int)BlockZeroingLowLimit));
 10078   match(Set dummy (ClearArray cnt base));
 10079   effect(TEMP tmp, USE_KILL cnt, USE_KILL base, KILL ccr);
 10080   ins_cost(300);
 10081   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
 10083   ins_encode %{
 10085     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
 10086     Register to    = $base$$Register;
 10087     Register count = $cnt$$Register;
 10088     Register temp  = $tmp$$Register;
 10090     Label Ldone;
 10091     __ nop(); // Separate short branches
 10092     // Use BIS for zeroing
 10093     __ bis_zeroing(to, count, temp, Ldone);
 10094     __ bind(Ldone);
 10096   %}
 10097   ins_pipe(long_memory_op);
 10098 %}
 10100 instruct string_compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
 10101                         o7RegI tmp, flagsReg ccr) %{
 10102   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
 10103   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
 10104   ins_cost(300);
 10105   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
 10106   ins_encode( enc_String_Compare(str1, str2, cnt1, cnt2, result) );
 10107   ins_pipe(long_memory_op);
 10108 %}
 10110 instruct string_equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
 10111                        o7RegI tmp, flagsReg ccr) %{
 10112   match(Set result (StrEquals (Binary str1 str2) cnt));
 10113   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
 10114   ins_cost(300);
 10115   format %{ "String Equals $str1,$str2,$cnt -> $result   // KILL $tmp" %}
 10116   ins_encode( enc_String_Equals(str1, str2, cnt, result) );
 10117   ins_pipe(long_memory_op);
 10118 %}
 10120 instruct array_equals(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
 10121                       o7RegI tmp2, flagsReg ccr) %{
 10122   match(Set result (AryEq ary1 ary2));
 10123   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
 10124   ins_cost(300);
 10125   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
 10126   ins_encode( enc_Array_Equals(ary1, ary2, tmp1, result));
 10127   ins_pipe(long_memory_op);
 10128 %}
 10131 //---------- Zeros Count Instructions ------------------------------------------
 10133 instruct countLeadingZerosI(iRegI dst, iRegI src, iRegI tmp, flagsReg cr) %{
 10134   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10135   match(Set dst (CountLeadingZerosI src));
 10136   effect(TEMP dst, TEMP tmp, KILL cr);
 10138   // x |= (x >> 1);
 10139   // x |= (x >> 2);
 10140   // x |= (x >> 4);
 10141   // x |= (x >> 8);
 10142   // x |= (x >> 16);
 10143   // return (WORDBITS - popc(x));
 10144   format %{ "SRL     $src,1,$tmp\t! count leading zeros (int)\n\t"
 10145             "SRL     $src,0,$dst\t! 32-bit zero extend\n\t"
 10146             "OR      $dst,$tmp,$dst\n\t"
 10147             "SRL     $dst,2,$tmp\n\t"
 10148             "OR      $dst,$tmp,$dst\n\t"
 10149             "SRL     $dst,4,$tmp\n\t"
 10150             "OR      $dst,$tmp,$dst\n\t"
 10151             "SRL     $dst,8,$tmp\n\t"
 10152             "OR      $dst,$tmp,$dst\n\t"
 10153             "SRL     $dst,16,$tmp\n\t"
 10154             "OR      $dst,$tmp,$dst\n\t"
 10155             "POPC    $dst,$dst\n\t"
 10156             "MOV     32,$tmp\n\t"
 10157             "SUB     $tmp,$dst,$dst" %}
 10158   ins_encode %{
 10159     Register Rdst = $dst$$Register;
 10160     Register Rsrc = $src$$Register;
 10161     Register Rtmp = $tmp$$Register;
 10162     __ srl(Rsrc, 1,    Rtmp);
 10163     __ srl(Rsrc, 0,    Rdst);
 10164     __ or3(Rdst, Rtmp, Rdst);
 10165     __ srl(Rdst, 2,    Rtmp);
 10166     __ or3(Rdst, Rtmp, Rdst);
 10167     __ srl(Rdst, 4,    Rtmp);
 10168     __ or3(Rdst, Rtmp, Rdst);
 10169     __ srl(Rdst, 8,    Rtmp);
 10170     __ or3(Rdst, Rtmp, Rdst);
 10171     __ srl(Rdst, 16,   Rtmp);
 10172     __ or3(Rdst, Rtmp, Rdst);
 10173     __ popc(Rdst, Rdst);
 10174     __ mov(BitsPerInt, Rtmp);
 10175     __ sub(Rtmp, Rdst, Rdst);
 10176   %}
 10177   ins_pipe(ialu_reg);
 10178 %}
 10180 instruct countLeadingZerosL(iRegIsafe dst, iRegL src, iRegL tmp, flagsReg cr) %{
 10181   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10182   match(Set dst (CountLeadingZerosL src));
 10183   effect(TEMP dst, TEMP tmp, KILL cr);
 10185   // x |= (x >> 1);
 10186   // x |= (x >> 2);
 10187   // x |= (x >> 4);
 10188   // x |= (x >> 8);
 10189   // x |= (x >> 16);
 10190   // x |= (x >> 32);
 10191   // return (WORDBITS - popc(x));
 10192   format %{ "SRLX    $src,1,$tmp\t! count leading zeros (long)\n\t"
 10193             "OR      $src,$tmp,$dst\n\t"
 10194             "SRLX    $dst,2,$tmp\n\t"
 10195             "OR      $dst,$tmp,$dst\n\t"
 10196             "SRLX    $dst,4,$tmp\n\t"
 10197             "OR      $dst,$tmp,$dst\n\t"
 10198             "SRLX    $dst,8,$tmp\n\t"
 10199             "OR      $dst,$tmp,$dst\n\t"
 10200             "SRLX    $dst,16,$tmp\n\t"
 10201             "OR      $dst,$tmp,$dst\n\t"
 10202             "SRLX    $dst,32,$tmp\n\t"
 10203             "OR      $dst,$tmp,$dst\n\t"
 10204             "POPC    $dst,$dst\n\t"
 10205             "MOV     64,$tmp\n\t"
 10206             "SUB     $tmp,$dst,$dst" %}
 10207   ins_encode %{
 10208     Register Rdst = $dst$$Register;
 10209     Register Rsrc = $src$$Register;
 10210     Register Rtmp = $tmp$$Register;
 10211     __ srlx(Rsrc, 1,    Rtmp);
 10212     __ or3( Rsrc, Rtmp, Rdst);
 10213     __ srlx(Rdst, 2,    Rtmp);
 10214     __ or3( Rdst, Rtmp, Rdst);
 10215     __ srlx(Rdst, 4,    Rtmp);
 10216     __ or3( Rdst, Rtmp, Rdst);
 10217     __ srlx(Rdst, 8,    Rtmp);
 10218     __ or3( Rdst, Rtmp, Rdst);
 10219     __ srlx(Rdst, 16,   Rtmp);
 10220     __ or3( Rdst, Rtmp, Rdst);
 10221     __ srlx(Rdst, 32,   Rtmp);
 10222     __ or3( Rdst, Rtmp, Rdst);
 10223     __ popc(Rdst, Rdst);
 10224     __ mov(BitsPerLong, Rtmp);
 10225     __ sub(Rtmp, Rdst, Rdst);
 10226   %}
 10227   ins_pipe(ialu_reg);
 10228 %}
 10230 instruct countTrailingZerosI(iRegI dst, iRegI src, flagsReg cr) %{
 10231   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10232   match(Set dst (CountTrailingZerosI src));
 10233   effect(TEMP dst, KILL cr);
 10235   // return popc(~x & (x - 1));
 10236   format %{ "SUB     $src,1,$dst\t! count trailing zeros (int)\n\t"
 10237             "ANDN    $dst,$src,$dst\n\t"
 10238             "SRL     $dst,R_G0,$dst\n\t"
 10239             "POPC    $dst,$dst" %}
 10240   ins_encode %{
 10241     Register Rdst = $dst$$Register;
 10242     Register Rsrc = $src$$Register;
 10243     __ sub(Rsrc, 1, Rdst);
 10244     __ andn(Rdst, Rsrc, Rdst);
 10245     __ srl(Rdst, G0, Rdst);
 10246     __ popc(Rdst, Rdst);
 10247   %}
 10248   ins_pipe(ialu_reg);
 10249 %}
 10251 instruct countTrailingZerosL(iRegIsafe dst, iRegL src, flagsReg cr) %{
 10252   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10253   match(Set dst (CountTrailingZerosL src));
 10254   effect(TEMP dst, KILL cr);
 10256   // return popc(~x & (x - 1));
 10257   format %{ "SUB     $src,1,$dst\t! count trailing zeros (long)\n\t"
 10258             "ANDN    $dst,$src,$dst\n\t"
 10259             "POPC    $dst,$dst" %}
 10260   ins_encode %{
 10261     Register Rdst = $dst$$Register;
 10262     Register Rsrc = $src$$Register;
 10263     __ sub(Rsrc, 1, Rdst);
 10264     __ andn(Rdst, Rsrc, Rdst);
 10265     __ popc(Rdst, Rdst);
 10266   %}
 10267   ins_pipe(ialu_reg);
 10268 %}
 10271 //---------- Population Count Instructions -------------------------------------
 10273 instruct popCountI(iRegI dst, iRegI src) %{
 10274   predicate(UsePopCountInstruction);
 10275   match(Set dst (PopCountI src));
 10277   format %{ "POPC   $src, $dst" %}
 10278   ins_encode %{
 10279     __ popc($src$$Register, $dst$$Register);
 10280   %}
 10281   ins_pipe(ialu_reg);
 10282 %}
 10284 // Note: Long.bitCount(long) returns an int.
 10285 instruct popCountL(iRegI dst, iRegL src) %{
 10286   predicate(UsePopCountInstruction);
 10287   match(Set dst (PopCountL src));
 10289   format %{ "POPC   $src, $dst" %}
 10290   ins_encode %{
 10291     __ popc($src$$Register, $dst$$Register);
 10292   %}
 10293   ins_pipe(ialu_reg);
 10294 %}
 10297 // ============================================================================
 10298 //------------Bytes reverse--------------------------------------------------
 10300 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
 10301   match(Set dst (ReverseBytesI src));
 10303   // Op cost is artificially doubled to make sure that load or store
 10304   // instructions are preferred over this one which requires a spill
 10305   // onto a stack slot.
 10306   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10307   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
 10309   ins_encode %{
 10310     __ set($src$$disp + STACK_BIAS, O7);
 10311     __ lduwa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10312   %}
 10313   ins_pipe( iload_mem );
 10314 %}
 10316 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
 10317   match(Set dst (ReverseBytesL src));
 10319   // Op cost is artificially doubled to make sure that load or store
 10320   // instructions are preferred over this one which requires a spill
 10321   // onto a stack slot.
 10322   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10323   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
 10325   ins_encode %{
 10326     __ set($src$$disp + STACK_BIAS, O7);
 10327     __ ldxa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10328   %}
 10329   ins_pipe( iload_mem );
 10330 %}
 10332 instruct bytes_reverse_unsigned_short(iRegI dst, stackSlotI src) %{
 10333   match(Set dst (ReverseBytesUS src));
 10335   // Op cost is artificially doubled to make sure that load or store
 10336   // instructions are preferred over this one which requires a spill
 10337   // onto a stack slot.
 10338   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10339   format %{ "LDUHA  $src, $dst\t!asi=primary_little\n\t" %}
 10341   ins_encode %{
 10342     // the value was spilled as an int so bias the load
 10343     __ set($src$$disp + STACK_BIAS + 2, O7);
 10344     __ lduha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10345   %}
 10346   ins_pipe( iload_mem );
 10347 %}
 10349 instruct bytes_reverse_short(iRegI dst, stackSlotI src) %{
 10350   match(Set dst (ReverseBytesS src));
 10352   // Op cost is artificially doubled to make sure that load or store
 10353   // instructions are preferred over this one which requires a spill
 10354   // onto a stack slot.
 10355   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10356   format %{ "LDSHA  $src, $dst\t!asi=primary_little\n\t" %}
 10358   ins_encode %{
 10359     // the value was spilled as an int so bias the load
 10360     __ set($src$$disp + STACK_BIAS + 2, O7);
 10361     __ ldsha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10362   %}
 10363   ins_pipe( iload_mem );
 10364 %}
 10366 // Load Integer reversed byte order
 10367 instruct loadI_reversed(iRegI dst, indIndexMemory src) %{
 10368   match(Set dst (ReverseBytesI (LoadI src)));
 10370   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
 10371   size(4);
 10372   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
 10374   ins_encode %{
 10375     __ lduwa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10376   %}
 10377   ins_pipe(iload_mem);
 10378 %}
 10380 // Load Long - aligned and reversed
 10381 instruct loadL_reversed(iRegL dst, indIndexMemory src) %{
 10382   match(Set dst (ReverseBytesL (LoadL src)));
 10384   ins_cost(MEMORY_REF_COST);
 10385   size(4);
 10386   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
 10388   ins_encode %{
 10389     __ ldxa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10390   %}
 10391   ins_pipe(iload_mem);
 10392 %}
 10394 // Load unsigned short / char reversed byte order
 10395 instruct loadUS_reversed(iRegI dst, indIndexMemory src) %{
 10396   match(Set dst (ReverseBytesUS (LoadUS src)));
 10398   ins_cost(MEMORY_REF_COST);
 10399   size(4);
 10400   format %{ "LDUHA  $src, $dst\t!asi=primary_little" %}
 10402   ins_encode %{
 10403     __ lduha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10404   %}
 10405   ins_pipe(iload_mem);
 10406 %}
 10408 // Load short reversed byte order
 10409 instruct loadS_reversed(iRegI dst, indIndexMemory src) %{
 10410   match(Set dst (ReverseBytesS (LoadS src)));
 10412   ins_cost(MEMORY_REF_COST);
 10413   size(4);
 10414   format %{ "LDSHA  $src, $dst\t!asi=primary_little" %}
 10416   ins_encode %{
 10417     __ ldsha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10418   %}
 10419   ins_pipe(iload_mem);
 10420 %}
 10422 // Store Integer reversed byte order
 10423 instruct storeI_reversed(indIndexMemory dst, iRegI src) %{
 10424   match(Set dst (StoreI dst (ReverseBytesI src)));
 10426   ins_cost(MEMORY_REF_COST);
 10427   size(4);
 10428   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
 10430   ins_encode %{
 10431     __ stwa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10432   %}
 10433   ins_pipe(istore_mem_reg);
 10434 %}
 10436 // Store Long reversed byte order
 10437 instruct storeL_reversed(indIndexMemory dst, iRegL src) %{
 10438   match(Set dst (StoreL dst (ReverseBytesL src)));
 10440   ins_cost(MEMORY_REF_COST);
 10441   size(4);
 10442   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
 10444   ins_encode %{
 10445     __ stxa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10446   %}
 10447   ins_pipe(istore_mem_reg);
 10448 %}
 10450 // Store unsighed short/char reversed byte order
 10451 instruct storeUS_reversed(indIndexMemory dst, iRegI src) %{
 10452   match(Set dst (StoreC dst (ReverseBytesUS src)));
 10454   ins_cost(MEMORY_REF_COST);
 10455   size(4);
 10456   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
 10458   ins_encode %{
 10459     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10460   %}
 10461   ins_pipe(istore_mem_reg);
 10462 %}
 10464 // Store short reversed byte order
 10465 instruct storeS_reversed(indIndexMemory dst, iRegI src) %{
 10466   match(Set dst (StoreC dst (ReverseBytesS src)));
 10468   ins_cost(MEMORY_REF_COST);
 10469   size(4);
 10470   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
 10472   ins_encode %{
 10473     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10474   %}
 10475   ins_pipe(istore_mem_reg);
 10476 %}
 10478 // ====================VECTOR INSTRUCTIONS=====================================
 10480 // Load Aligned Packed values into a Double Register
 10481 instruct loadV8(regD dst, memory mem) %{
 10482   predicate(n->as_LoadVector()->memory_size() == 8);
 10483   match(Set dst (LoadVector mem));
 10484   ins_cost(MEMORY_REF_COST);
 10485   size(4);
 10486   format %{ "LDDF   $mem,$dst\t! load vector (8 bytes)" %}
 10487   ins_encode %{
 10488     __ ldf(FloatRegisterImpl::D, $mem$$Address, as_DoubleFloatRegister($dst$$reg));
 10489   %}
 10490   ins_pipe(floadD_mem);
 10491 %}
 10493 // Store Vector in Double register to memory
 10494 instruct storeV8(memory mem, regD src) %{
 10495   predicate(n->as_StoreVector()->memory_size() == 8);
 10496   match(Set mem (StoreVector mem src));
 10497   ins_cost(MEMORY_REF_COST);
 10498   size(4);
 10499   format %{ "STDF   $src,$mem\t! store vector (8 bytes)" %}
 10500   ins_encode %{
 10501     __ stf(FloatRegisterImpl::D, as_DoubleFloatRegister($src$$reg), $mem$$Address);
 10502   %}
 10503   ins_pipe(fstoreD_mem_reg);
 10504 %}
 10506 // Store Zero into vector in memory
 10507 instruct storeV8B_zero(memory mem, immI0 zero) %{
 10508   predicate(n->as_StoreVector()->memory_size() == 8);
 10509   match(Set mem (StoreVector mem (ReplicateB zero)));
 10510   ins_cost(MEMORY_REF_COST);
 10511   size(4);
 10512   format %{ "STX    $zero,$mem\t! store zero vector (8 bytes)" %}
 10513   ins_encode %{
 10514     __ stx(G0, $mem$$Address);
 10515   %}
 10516   ins_pipe(fstoreD_mem_zero);
 10517 %}
 10519 instruct storeV4S_zero(memory mem, immI0 zero) %{
 10520   predicate(n->as_StoreVector()->memory_size() == 8);
 10521   match(Set mem (StoreVector mem (ReplicateS zero)));
 10522   ins_cost(MEMORY_REF_COST);
 10523   size(4);
 10524   format %{ "STX    $zero,$mem\t! store zero vector (4 shorts)" %}
 10525   ins_encode %{
 10526     __ stx(G0, $mem$$Address);
 10527   %}
 10528   ins_pipe(fstoreD_mem_zero);
 10529 %}
 10531 instruct storeV2I_zero(memory mem, immI0 zero) %{
 10532   predicate(n->as_StoreVector()->memory_size() == 8);
 10533   match(Set mem (StoreVector mem (ReplicateI zero)));
 10534   ins_cost(MEMORY_REF_COST);
 10535   size(4);
 10536   format %{ "STX    $zero,$mem\t! store zero vector (2 ints)" %}
 10537   ins_encode %{
 10538     __ stx(G0, $mem$$Address);
 10539   %}
 10540   ins_pipe(fstoreD_mem_zero);
 10541 %}
 10543 instruct storeV2F_zero(memory mem, immF0 zero) %{
 10544   predicate(n->as_StoreVector()->memory_size() == 8);
 10545   match(Set mem (StoreVector mem (ReplicateF zero)));
 10546   ins_cost(MEMORY_REF_COST);
 10547   size(4);
 10548   format %{ "STX    $zero,$mem\t! store zero vector (2 floats)" %}
 10549   ins_encode %{
 10550     __ stx(G0, $mem$$Address);
 10551   %}
 10552   ins_pipe(fstoreD_mem_zero);
 10553 %}
 10555 // Replicate scalar to packed byte values into Double register
 10556 instruct Repl8B_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10557   predicate(n->as_Vector()->length() == 8 && UseVIS >= 3);
 10558   match(Set dst (ReplicateB src));
 10559   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10560   format %{ "SLLX  $src,56,$tmp\n\t"
 10561             "SRLX  $tmp, 8,$tmp2\n\t"
 10562             "OR    $tmp,$tmp2,$tmp\n\t"
 10563             "SRLX  $tmp,16,$tmp2\n\t"
 10564             "OR    $tmp,$tmp2,$tmp\n\t"
 10565             "SRLX  $tmp,32,$tmp2\n\t"
 10566             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
 10567             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
 10568   ins_encode %{
 10569     Register Rsrc = $src$$Register;
 10570     Register Rtmp = $tmp$$Register;
 10571     Register Rtmp2 = $tmp2$$Register;
 10572     __ sllx(Rsrc,    56, Rtmp);
 10573     __ srlx(Rtmp,     8, Rtmp2);
 10574     __ or3 (Rtmp, Rtmp2, Rtmp);
 10575     __ srlx(Rtmp,    16, Rtmp2);
 10576     __ or3 (Rtmp, Rtmp2, Rtmp);
 10577     __ srlx(Rtmp,    32, Rtmp2);
 10578     __ or3 (Rtmp, Rtmp2, Rtmp);
 10579     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
 10580   %}
 10581   ins_pipe(ialu_reg);
 10582 %}
 10584 // Replicate scalar to packed byte values into Double stack
 10585 instruct Repl8B_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10586   predicate(n->as_Vector()->length() == 8 && UseVIS < 3);
 10587   match(Set dst (ReplicateB src));
 10588   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10589   format %{ "SLLX  $src,56,$tmp\n\t"
 10590             "SRLX  $tmp, 8,$tmp2\n\t"
 10591             "OR    $tmp,$tmp2,$tmp\n\t"
 10592             "SRLX  $tmp,16,$tmp2\n\t"
 10593             "OR    $tmp,$tmp2,$tmp\n\t"
 10594             "SRLX  $tmp,32,$tmp2\n\t"
 10595             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
 10596             "STX   $tmp,$dst\t! regL to stkD" %}
 10597   ins_encode %{
 10598     Register Rsrc = $src$$Register;
 10599     Register Rtmp = $tmp$$Register;
 10600     Register Rtmp2 = $tmp2$$Register;
 10601     __ sllx(Rsrc,    56, Rtmp);
 10602     __ srlx(Rtmp,     8, Rtmp2);
 10603     __ or3 (Rtmp, Rtmp2, Rtmp);
 10604     __ srlx(Rtmp,    16, Rtmp2);
 10605     __ or3 (Rtmp, Rtmp2, Rtmp);
 10606     __ srlx(Rtmp,    32, Rtmp2);
 10607     __ or3 (Rtmp, Rtmp2, Rtmp);
 10608     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
 10609     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
 10610   %}
 10611   ins_pipe(ialu_reg);
 10612 %}
 10614 // Replicate scalar constant to packed byte values in Double register
 10615 instruct Repl8B_immI(regD dst, immI13 con, o7RegI tmp) %{
 10616   predicate(n->as_Vector()->length() == 8);
 10617   match(Set dst (ReplicateB con));
 10618   effect(KILL tmp);
 10619   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl8B($con)" %}
 10620   ins_encode %{
 10621     // XXX This is a quick fix for 6833573.
 10622     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 8, 1)), $dst$$FloatRegister);
 10623     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 8, 1)), $tmp$$Register);
 10624     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
 10625   %}
 10626   ins_pipe(loadConFD);
 10627 %}
 10629 // Replicate scalar to packed char/short values into Double register
 10630 instruct Repl4S_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10631   predicate(n->as_Vector()->length() == 4 && UseVIS >= 3);
 10632   match(Set dst (ReplicateS src));
 10633   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10634   format %{ "SLLX  $src,48,$tmp\n\t"
 10635             "SRLX  $tmp,16,$tmp2\n\t"
 10636             "OR    $tmp,$tmp2,$tmp\n\t"
 10637             "SRLX  $tmp,32,$tmp2\n\t"
 10638             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
 10639             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
 10640   ins_encode %{
 10641     Register Rsrc = $src$$Register;
 10642     Register Rtmp = $tmp$$Register;
 10643     Register Rtmp2 = $tmp2$$Register;
 10644     __ sllx(Rsrc,    48, Rtmp);
 10645     __ srlx(Rtmp,    16, Rtmp2);
 10646     __ or3 (Rtmp, Rtmp2, Rtmp);
 10647     __ srlx(Rtmp,    32, Rtmp2);
 10648     __ or3 (Rtmp, Rtmp2, Rtmp);
 10649     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
 10650   %}
 10651   ins_pipe(ialu_reg);
 10652 %}
 10654 // Replicate scalar to packed char/short values into Double stack
 10655 instruct Repl4S_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10656   predicate(n->as_Vector()->length() == 4 && UseVIS < 3);
 10657   match(Set dst (ReplicateS src));
 10658   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10659   format %{ "SLLX  $src,48,$tmp\n\t"
 10660             "SRLX  $tmp,16,$tmp2\n\t"
 10661             "OR    $tmp,$tmp2,$tmp\n\t"
 10662             "SRLX  $tmp,32,$tmp2\n\t"
 10663             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
 10664             "STX   $tmp,$dst\t! regL to stkD" %}
 10665   ins_encode %{
 10666     Register Rsrc = $src$$Register;
 10667     Register Rtmp = $tmp$$Register;
 10668     Register Rtmp2 = $tmp2$$Register;
 10669     __ sllx(Rsrc,    48, Rtmp);
 10670     __ srlx(Rtmp,    16, Rtmp2);
 10671     __ or3 (Rtmp, Rtmp2, Rtmp);
 10672     __ srlx(Rtmp,    32, Rtmp2);
 10673     __ or3 (Rtmp, Rtmp2, Rtmp);
 10674     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
 10675     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
 10676   %}
 10677   ins_pipe(ialu_reg);
 10678 %}
 10680 // Replicate scalar constant to packed char/short values in Double register
 10681 instruct Repl4S_immI(regD dst, immI con, o7RegI tmp) %{
 10682   predicate(n->as_Vector()->length() == 4);
 10683   match(Set dst (ReplicateS con));
 10684   effect(KILL tmp);
 10685   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4S($con)" %}
 10686   ins_encode %{
 10687     // XXX This is a quick fix for 6833573.
 10688     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
 10689     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
 10690     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
 10691   %}
 10692   ins_pipe(loadConFD);
 10693 %}
 10695 // Replicate scalar to packed int values into Double register
 10696 instruct Repl2I_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10697   predicate(n->as_Vector()->length() == 2 && UseVIS >= 3);
 10698   match(Set dst (ReplicateI src));
 10699   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10700   format %{ "SLLX  $src,32,$tmp\n\t"
 10701             "SRLX  $tmp,32,$tmp2\n\t"
 10702             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
 10703             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
 10704   ins_encode %{
 10705     Register Rsrc = $src$$Register;
 10706     Register Rtmp = $tmp$$Register;
 10707     Register Rtmp2 = $tmp2$$Register;
 10708     __ sllx(Rsrc,    32, Rtmp);
 10709     __ srlx(Rtmp,    32, Rtmp2);
 10710     __ or3 (Rtmp, Rtmp2, Rtmp);
 10711     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
 10712   %}
 10713   ins_pipe(ialu_reg);
 10714 %}
 10716 // Replicate scalar to packed int values into Double stack
 10717 instruct Repl2I_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10718   predicate(n->as_Vector()->length() == 2 && UseVIS < 3);
 10719   match(Set dst (ReplicateI src));
 10720   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10721   format %{ "SLLX  $src,32,$tmp\n\t"
 10722             "SRLX  $tmp,32,$tmp2\n\t"
 10723             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
 10724             "STX   $tmp,$dst\t! regL to stkD" %}
 10725   ins_encode %{
 10726     Register Rsrc = $src$$Register;
 10727     Register Rtmp = $tmp$$Register;
 10728     Register Rtmp2 = $tmp2$$Register;
 10729     __ sllx(Rsrc,    32, Rtmp);
 10730     __ srlx(Rtmp,    32, Rtmp2);
 10731     __ or3 (Rtmp, Rtmp2, Rtmp);
 10732     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
 10733     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
 10734   %}
 10735   ins_pipe(ialu_reg);
 10736 %}
 10738 // Replicate scalar zero constant to packed int values in Double register
 10739 instruct Repl2I_immI(regD dst, immI con, o7RegI tmp) %{
 10740   predicate(n->as_Vector()->length() == 2);
 10741   match(Set dst (ReplicateI con));
 10742   effect(KILL tmp);
 10743   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2I($con)" %}
 10744   ins_encode %{
 10745     // XXX This is a quick fix for 6833573.
 10746     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 2, 4)), $dst$$FloatRegister);
 10747     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 2, 4)), $tmp$$Register);
 10748     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
 10749   %}
 10750   ins_pipe(loadConFD);
 10751 %}
 10753 // Replicate scalar to packed float values into Double stack
 10754 instruct Repl2F_stk(stackSlotD dst, regF src) %{
 10755   predicate(n->as_Vector()->length() == 2);
 10756   match(Set dst (ReplicateF src));
 10757   ins_cost(MEMORY_REF_COST*2);
 10758   format %{ "STF    $src,$dst.hi\t! packed2F\n\t"
 10759             "STF    $src,$dst.lo" %}
 10760   opcode(Assembler::stf_op3);
 10761   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, src));
 10762   ins_pipe(fstoreF_stk_reg);
 10763 %}
 10765 // Replicate scalar zero constant to packed float values in Double register
 10766 instruct Repl2F_immF(regD dst, immF con, o7RegI tmp) %{
 10767   predicate(n->as_Vector()->length() == 2);
 10768   match(Set dst (ReplicateF con));
 10769   effect(KILL tmp);
 10770   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2F($con)" %}
 10771   ins_encode %{
 10772     // XXX This is a quick fix for 6833573.
 10773     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immF($con$$constant)), $dst$$FloatRegister);
 10774     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immF($con$$constant)), $tmp$$Register);
 10775     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
 10776   %}
 10777   ins_pipe(loadConFD);
 10778 %}
 10780 //----------PEEPHOLE RULES-----------------------------------------------------
 10781 // These must follow all instruction definitions as they use the names
 10782 // defined in the instructions definitions.
 10783 //
 10784 // peepmatch ( root_instr_name [preceding_instruction]* );
 10785 //
 10786 // peepconstraint %{
 10787 // (instruction_number.operand_name relational_op instruction_number.operand_name
 10788 //  [, ...] );
 10789 // // instruction numbers are zero-based using left to right order in peepmatch
 10790 //
 10791 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
 10792 // // provide an instruction_number.operand_name for each operand that appears
 10793 // // in the replacement instruction's match rule
 10794 //
 10795 // ---------VM FLAGS---------------------------------------------------------
 10796 //
 10797 // All peephole optimizations can be turned off using -XX:-OptoPeephole
 10798 //
 10799 // Each peephole rule is given an identifying number starting with zero and
 10800 // increasing by one in the order seen by the parser.  An individual peephole
 10801 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
 10802 // on the command-line.
 10803 //
 10804 // ---------CURRENT LIMITATIONS----------------------------------------------
 10805 //
 10806 // Only match adjacent instructions in same basic block
 10807 // Only equality constraints
 10808 // Only constraints between operands, not (0.dest_reg == EAX_enc)
 10809 // Only one replacement instruction
 10810 //
 10811 // ---------EXAMPLE----------------------------------------------------------
 10812 //
 10813 // // pertinent parts of existing instructions in architecture description
 10814 // instruct movI(eRegI dst, eRegI src) %{
 10815 //   match(Set dst (CopyI src));
 10816 // %}
 10817 //
 10818 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
 10819 //   match(Set dst (AddI dst src));
 10820 //   effect(KILL cr);
 10821 // %}
 10822 //
 10823 // // Change (inc mov) to lea
 10824 // peephole %{
 10825 //   // increment preceeded by register-register move
 10826 //   peepmatch ( incI_eReg movI );
 10827 //   // require that the destination register of the increment
 10828 //   // match the destination register of the move
 10829 //   peepconstraint ( 0.dst == 1.dst );
 10830 //   // construct a replacement instruction that sets
 10831 //   // the destination to ( move's source register + one )
 10832 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
 10833 // %}
 10834 //
 10836 // // Change load of spilled value to only a spill
 10837 // instruct storeI(memory mem, eRegI src) %{
 10838 //   match(Set mem (StoreI mem src));
 10839 // %}
 10840 //
 10841 // instruct loadI(eRegI dst, memory mem) %{
 10842 //   match(Set dst (LoadI mem));
 10843 // %}
 10844 //
 10845 // peephole %{
 10846 //   peepmatch ( loadI storeI );
 10847 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 10848 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
 10849 // %}
 10851 //----------SMARTSPILL RULES---------------------------------------------------
 10852 // These must follow all instruction definitions as they use the names
 10853 // defined in the instructions definitions.
 10854 //
 10855 // SPARC will probably not have any of these rules due to RISC instruction set.
 10857 //----------PIPELINE-----------------------------------------------------------
 10858 // Rules which define the behavior of the target architectures pipeline.

mercurial