src/cpu/sparc/vm/sharedRuntime_sparc.cpp

Mon, 27 Aug 2012 15:17:17 -0700

author
twisti
date
Mon, 27 Aug 2012 15:17:17 -0700
changeset 4020
a5dd6e3ef9f3
parent 3969
1d7922586cf6
child 4037
da91efe96a93
permissions
-rw-r--r--

6677625: Move platform specific flags from globals.hpp to globals_<arch>.hpp
Reviewed-by: kvn, dholmes, coleenp
Contributed-by: Tao Mao <tao.mao@oracle.com>

     1 /*
     2  * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "assembler_sparc.inline.hpp"
    28 #include "code/debugInfoRec.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/vtableStubs.hpp"
    31 #include "interpreter/interpreter.hpp"
    32 #include "oops/compiledICHolderOop.hpp"
    33 #include "prims/jvmtiRedefineClassesTrace.hpp"
    34 #include "runtime/sharedRuntime.hpp"
    35 #include "runtime/vframeArray.hpp"
    36 #include "vmreg_sparc.inline.hpp"
    37 #ifdef COMPILER1
    38 #include "c1/c1_Runtime1.hpp"
    39 #endif
    40 #ifdef COMPILER2
    41 #include "opto/runtime.hpp"
    42 #endif
    43 #ifdef SHARK
    44 #include "compiler/compileBroker.hpp"
    45 #include "shark/sharkCompiler.hpp"
    46 #endif
    48 #define __ masm->
    51 class RegisterSaver {
    53   // Used for saving volatile registers. This is Gregs, Fregs, I/L/O.
    54   // The Oregs are problematic. In the 32bit build the compiler can
    55   // have O registers live with 64 bit quantities. A window save will
    56   // cut the heads off of the registers. We have to do a very extensive
    57   // stack dance to save and restore these properly.
    59   // Note that the Oregs problem only exists if we block at either a polling
    60   // page exception a compiled code safepoint that was not originally a call
    61   // or deoptimize following one of these kinds of safepoints.
    63   // Lots of registers to save.  For all builds, a window save will preserve
    64   // the %i and %l registers.  For the 32-bit longs-in-two entries and 64-bit
    65   // builds a window-save will preserve the %o registers.  In the LION build
    66   // we need to save the 64-bit %o registers which requires we save them
    67   // before the window-save (as then they become %i registers and get their
    68   // heads chopped off on interrupt).  We have to save some %g registers here
    69   // as well.
    70   enum {
    71     // This frame's save area.  Includes extra space for the native call:
    72     // vararg's layout space and the like.  Briefly holds the caller's
    73     // register save area.
    74     call_args_area = frame::register_save_words_sp_offset +
    75                      frame::memory_parameter_word_sp_offset*wordSize,
    76     // Make sure save locations are always 8 byte aligned.
    77     // can't use round_to because it doesn't produce compile time constant
    78     start_of_extra_save_area = ((call_args_area + 7) & ~7),
    79     g1_offset = start_of_extra_save_area, // g-regs needing saving
    80     g3_offset = g1_offset+8,
    81     g4_offset = g3_offset+8,
    82     g5_offset = g4_offset+8,
    83     o0_offset = g5_offset+8,
    84     o1_offset = o0_offset+8,
    85     o2_offset = o1_offset+8,
    86     o3_offset = o2_offset+8,
    87     o4_offset = o3_offset+8,
    88     o5_offset = o4_offset+8,
    89     start_of_flags_save_area = o5_offset+8,
    90     ccr_offset = start_of_flags_save_area,
    91     fsr_offset = ccr_offset + 8,
    92     d00_offset = fsr_offset+8,  // Start of float save area
    93     register_save_size = d00_offset+8*32
    94   };
    97   public:
    99   static int Oexception_offset() { return o0_offset; };
   100   static int G3_offset() { return g3_offset; };
   101   static int G5_offset() { return g5_offset; };
   102   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words);
   103   static void restore_live_registers(MacroAssembler* masm);
   105   // During deoptimization only the result register need to be restored
   106   // all the other values have already been extracted.
   108   static void restore_result_registers(MacroAssembler* masm);
   109 };
   111 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) {
   112   // Record volatile registers as callee-save values in an OopMap so their save locations will be
   113   // propagated to the caller frame's RegisterMap during StackFrameStream construction (needed for
   114   // deoptimization; see compiledVFrame::create_stack_value).  The caller's I, L and O registers
   115   // are saved in register windows - I's and L's in the caller's frame and O's in the stub frame
   116   // (as the stub's I's) when the runtime routine called by the stub creates its frame.
   117   int i;
   118   // Always make the frame size 16 byte aligned.
   119   int frame_size = round_to(additional_frame_words + register_save_size, 16);
   120   // OopMap frame size is in c2 stack slots (sizeof(jint)) not bytes or words
   121   int frame_size_in_slots = frame_size / sizeof(jint);
   122   // CodeBlob frame size is in words.
   123   *total_frame_words = frame_size / wordSize;
   124   // OopMap* map = new OopMap(*total_frame_words, 0);
   125   OopMap* map = new OopMap(frame_size_in_slots, 0);
   127 #if !defined(_LP64)
   129   // Save 64-bit O registers; they will get their heads chopped off on a 'save'.
   130   __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
   131   __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
   132   __ stx(O2, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8);
   133   __ stx(O3, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8);
   134   __ stx(O4, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8);
   135   __ stx(O5, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8);
   136 #endif /* _LP64 */
   138   __ save(SP, -frame_size, SP);
   140 #ifndef _LP64
   141   // Reload the 64 bit Oregs. Although they are now Iregs we load them
   142   // to Oregs here to avoid interrupts cutting off their heads
   144   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
   145   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
   146   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8, O2);
   147   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8, O3);
   148   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8, O4);
   149   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8, O5);
   151   __ stx(O0, SP, o0_offset+STACK_BIAS);
   152   map->set_callee_saved(VMRegImpl::stack2reg((o0_offset + 4)>>2), O0->as_VMReg());
   154   __ stx(O1, SP, o1_offset+STACK_BIAS);
   156   map->set_callee_saved(VMRegImpl::stack2reg((o1_offset + 4)>>2), O1->as_VMReg());
   158   __ stx(O2, SP, o2_offset+STACK_BIAS);
   159   map->set_callee_saved(VMRegImpl::stack2reg((o2_offset + 4)>>2), O2->as_VMReg());
   161   __ stx(O3, SP, o3_offset+STACK_BIAS);
   162   map->set_callee_saved(VMRegImpl::stack2reg((o3_offset + 4)>>2), O3->as_VMReg());
   164   __ stx(O4, SP, o4_offset+STACK_BIAS);
   165   map->set_callee_saved(VMRegImpl::stack2reg((o4_offset + 4)>>2), O4->as_VMReg());
   167   __ stx(O5, SP, o5_offset+STACK_BIAS);
   168   map->set_callee_saved(VMRegImpl::stack2reg((o5_offset + 4)>>2), O5->as_VMReg());
   169 #endif /* _LP64 */
   172 #ifdef _LP64
   173   int debug_offset = 0;
   174 #else
   175   int debug_offset = 4;
   176 #endif
   177   // Save the G's
   178   __ stx(G1, SP, g1_offset+STACK_BIAS);
   179   map->set_callee_saved(VMRegImpl::stack2reg((g1_offset + debug_offset)>>2), G1->as_VMReg());
   181   __ stx(G3, SP, g3_offset+STACK_BIAS);
   182   map->set_callee_saved(VMRegImpl::stack2reg((g3_offset + debug_offset)>>2), G3->as_VMReg());
   184   __ stx(G4, SP, g4_offset+STACK_BIAS);
   185   map->set_callee_saved(VMRegImpl::stack2reg((g4_offset + debug_offset)>>2), G4->as_VMReg());
   187   __ stx(G5, SP, g5_offset+STACK_BIAS);
   188   map->set_callee_saved(VMRegImpl::stack2reg((g5_offset + debug_offset)>>2), G5->as_VMReg());
   190   // This is really a waste but we'll keep things as they were for now
   191   if (true) {
   192 #ifndef _LP64
   193     map->set_callee_saved(VMRegImpl::stack2reg((o0_offset)>>2), O0->as_VMReg()->next());
   194     map->set_callee_saved(VMRegImpl::stack2reg((o1_offset)>>2), O1->as_VMReg()->next());
   195     map->set_callee_saved(VMRegImpl::stack2reg((o2_offset)>>2), O2->as_VMReg()->next());
   196     map->set_callee_saved(VMRegImpl::stack2reg((o3_offset)>>2), O3->as_VMReg()->next());
   197     map->set_callee_saved(VMRegImpl::stack2reg((o4_offset)>>2), O4->as_VMReg()->next());
   198     map->set_callee_saved(VMRegImpl::stack2reg((o5_offset)>>2), O5->as_VMReg()->next());
   199     map->set_callee_saved(VMRegImpl::stack2reg((g1_offset)>>2), G1->as_VMReg()->next());
   200     map->set_callee_saved(VMRegImpl::stack2reg((g3_offset)>>2), G3->as_VMReg()->next());
   201     map->set_callee_saved(VMRegImpl::stack2reg((g4_offset)>>2), G4->as_VMReg()->next());
   202     map->set_callee_saved(VMRegImpl::stack2reg((g5_offset)>>2), G5->as_VMReg()->next());
   203 #endif /* _LP64 */
   204   }
   207   // Save the flags
   208   __ rdccr( G5 );
   209   __ stx(G5, SP, ccr_offset+STACK_BIAS);
   210   __ stxfsr(SP, fsr_offset+STACK_BIAS);
   212   // Save all the FP registers: 32 doubles (32 floats correspond to the 2 halves of the first 16 doubles)
   213   int offset = d00_offset;
   214   for( int i=0; i<FloatRegisterImpl::number_of_registers; i+=2 ) {
   215     FloatRegister f = as_FloatRegister(i);
   216     __ stf(FloatRegisterImpl::D,  f, SP, offset+STACK_BIAS);
   217     // Record as callee saved both halves of double registers (2 float registers).
   218     map->set_callee_saved(VMRegImpl::stack2reg(offset>>2), f->as_VMReg());
   219     map->set_callee_saved(VMRegImpl::stack2reg((offset + sizeof(float))>>2), f->as_VMReg()->next());
   220     offset += sizeof(double);
   221   }
   223   // And we're done.
   225   return map;
   226 }
   229 // Pop the current frame and restore all the registers that we
   230 // saved.
   231 void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
   233   // Restore all the FP registers
   234   for( int i=0; i<FloatRegisterImpl::number_of_registers; i+=2 ) {
   235     __ ldf(FloatRegisterImpl::D, SP, d00_offset+i*sizeof(float)+STACK_BIAS, as_FloatRegister(i));
   236   }
   238   __ ldx(SP, ccr_offset+STACK_BIAS, G1);
   239   __ wrccr (G1) ;
   241   // Restore the G's
   242   // Note that G2 (AKA GThread) must be saved and restored separately.
   243   // TODO-FIXME: save and restore some of the other ASRs, viz., %asi and %gsr.
   245   __ ldx(SP, g1_offset+STACK_BIAS, G1);
   246   __ ldx(SP, g3_offset+STACK_BIAS, G3);
   247   __ ldx(SP, g4_offset+STACK_BIAS, G4);
   248   __ ldx(SP, g5_offset+STACK_BIAS, G5);
   251 #if !defined(_LP64)
   252   // Restore the 64-bit O's.
   253   __ ldx(SP, o0_offset+STACK_BIAS, O0);
   254   __ ldx(SP, o1_offset+STACK_BIAS, O1);
   255   __ ldx(SP, o2_offset+STACK_BIAS, O2);
   256   __ ldx(SP, o3_offset+STACK_BIAS, O3);
   257   __ ldx(SP, o4_offset+STACK_BIAS, O4);
   258   __ ldx(SP, o5_offset+STACK_BIAS, O5);
   260   // And temporarily place them in TLS
   262   __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
   263   __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
   264   __ stx(O2, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8);
   265   __ stx(O3, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8);
   266   __ stx(O4, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8);
   267   __ stx(O5, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8);
   268 #endif /* _LP64 */
   270   // Restore flags
   272   __ ldxfsr(SP, fsr_offset+STACK_BIAS);
   274   __ restore();
   276 #if !defined(_LP64)
   277   // Now reload the 64bit Oregs after we've restore the window.
   278   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
   279   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
   280   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8, O2);
   281   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8, O3);
   282   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8, O4);
   283   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8, O5);
   284 #endif /* _LP64 */
   286 }
   288 // Pop the current frame and restore the registers that might be holding
   289 // a result.
   290 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
   292 #if !defined(_LP64)
   293   // 32bit build returns longs in G1
   294   __ ldx(SP, g1_offset+STACK_BIAS, G1);
   296   // Retrieve the 64-bit O's.
   297   __ ldx(SP, o0_offset+STACK_BIAS, O0);
   298   __ ldx(SP, o1_offset+STACK_BIAS, O1);
   299   // and save to TLS
   300   __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
   301   __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
   302 #endif /* _LP64 */
   304   __ ldf(FloatRegisterImpl::D, SP, d00_offset+STACK_BIAS, as_FloatRegister(0));
   306   __ restore();
   308 #if !defined(_LP64)
   309   // Now reload the 64bit Oregs after we've restore the window.
   310   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
   311   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
   312 #endif /* _LP64 */
   314 }
   316 // The java_calling_convention describes stack locations as ideal slots on
   317 // a frame with no abi restrictions. Since we must observe abi restrictions
   318 // (like the placement of the register window) the slots must be biased by
   319 // the following value.
   320 static int reg2offset(VMReg r) {
   321   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
   322 }
   324 static VMRegPair reg64_to_VMRegPair(Register r) {
   325   VMRegPair ret;
   326   if (wordSize == 8) {
   327     ret.set2(r->as_VMReg());
   328   } else {
   329     ret.set_pair(r->successor()->as_VMReg(), r->as_VMReg());
   330   }
   331   return ret;
   332 }
   334 // ---------------------------------------------------------------------------
   335 // Read the array of BasicTypes from a signature, and compute where the
   336 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte (VMRegImpl::stack_slot_size)
   337 // quantities.  Values less than VMRegImpl::stack0 are registers, those above
   338 // refer to 4-byte stack slots.  All stack slots are based off of the window
   339 // top.  VMRegImpl::stack0 refers to the first slot past the 16-word window,
   340 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
   341 // values 0-63 (up to RegisterImpl::number_of_registers) are the 64-bit
   342 // integer registers.  Values 64-95 are the (32-bit only) float registers.
   343 // Each 32-bit quantity is given its own number, so the integer registers
   344 // (in either 32- or 64-bit builds) use 2 numbers.  For example, there is
   345 // an O0-low and an O0-high.  Essentially, all int register numbers are doubled.
   347 // Register results are passed in O0-O5, for outgoing call arguments.  To
   348 // convert to incoming arguments, convert all O's to I's.  The regs array
   349 // refer to the low and hi 32-bit words of 64-bit registers or stack slots.
   350 // If the regs[].second() field is set to VMRegImpl::Bad(), it means it's unused (a
   351 // 32-bit value was passed).  If both are VMRegImpl::Bad(), it means no value was
   352 // passed (used as a placeholder for the other half of longs and doubles in
   353 // the 64-bit build).  regs[].second() is either VMRegImpl::Bad() or regs[].second() is
   354 // regs[].first()+1 (regs[].first() may be misaligned in the C calling convention).
   355 // Sparc never passes a value in regs[].second() but not regs[].first() (regs[].first()
   356 // == VMRegImpl::Bad() && regs[].second() != VMRegImpl::Bad()) nor unrelated values in the
   357 // same VMRegPair.
   359 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
   360 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
   361 // units regardless of build.
   364 // ---------------------------------------------------------------------------
   365 // The compiled Java calling convention.  The Java convention always passes
   366 // 64-bit values in adjacent aligned locations (either registers or stack),
   367 // floats in float registers and doubles in aligned float pairs.  Values are
   368 // packed in the registers.  There is no backing varargs store for values in
   369 // registers.  In the 32-bit build, longs are passed in G1 and G4 (cannot be
   370 // passed in I's, because longs in I's get their heads chopped off at
   371 // interrupt).
   372 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
   373                                            VMRegPair *regs,
   374                                            int total_args_passed,
   375                                            int is_outgoing) {
   376   assert(F31->as_VMReg()->is_reg(), "overlapping stack/register numbers");
   378   // Convention is to pack the first 6 int/oop args into the first 6 registers
   379   // (I0-I5), extras spill to the stack.  Then pack the first 8 float args
   380   // into F0-F7, extras spill to the stack.  Then pad all register sets to
   381   // align.  Then put longs and doubles into the same registers as they fit,
   382   // else spill to the stack.
   383   const int int_reg_max = SPARC_ARGS_IN_REGS_NUM;
   384   const int flt_reg_max = 8;
   385   //
   386   // Where 32-bit 1-reg longs start being passed
   387   // In tiered we must pass on stack because c1 can't use a "pair" in a single reg.
   388   // So make it look like we've filled all the G regs that c2 wants to use.
   389   Register g_reg = TieredCompilation ? noreg : G1;
   391   // Count int/oop and float args.  See how many stack slots we'll need and
   392   // where the longs & doubles will go.
   393   int int_reg_cnt   = 0;
   394   int flt_reg_cnt   = 0;
   395   // int stk_reg_pairs = frame::register_save_words*(wordSize>>2);
   396   // int stk_reg_pairs = SharedRuntime::out_preserve_stack_slots();
   397   int stk_reg_pairs = 0;
   398   for (int i = 0; i < total_args_passed; i++) {
   399     switch (sig_bt[i]) {
   400     case T_LONG:                // LP64, longs compete with int args
   401       assert(sig_bt[i+1] == T_VOID, "");
   402 #ifdef _LP64
   403       if (int_reg_cnt < int_reg_max)  int_reg_cnt++;
   404 #endif
   405       break;
   406     case T_OBJECT:
   407     case T_ARRAY:
   408     case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
   409       if (int_reg_cnt < int_reg_max)  int_reg_cnt++;
   410 #ifndef _LP64
   411       else                            stk_reg_pairs++;
   412 #endif
   413       break;
   414     case T_INT:
   415     case T_SHORT:
   416     case T_CHAR:
   417     case T_BYTE:
   418     case T_BOOLEAN:
   419       if (int_reg_cnt < int_reg_max)  int_reg_cnt++;
   420       else                            stk_reg_pairs++;
   421       break;
   422     case T_FLOAT:
   423       if (flt_reg_cnt < flt_reg_max)  flt_reg_cnt++;
   424       else                            stk_reg_pairs++;
   425       break;
   426     case T_DOUBLE:
   427       assert(sig_bt[i+1] == T_VOID, "");
   428       break;
   429     case T_VOID:
   430       break;
   431     default:
   432       ShouldNotReachHere();
   433     }
   434   }
   436   // This is where the longs/doubles start on the stack.
   437   stk_reg_pairs = (stk_reg_pairs+1) & ~1; // Round
   439   int flt_reg_pairs = (flt_reg_cnt+1) & ~1;
   441   // int stk_reg = frame::register_save_words*(wordSize>>2);
   442   // int stk_reg = SharedRuntime::out_preserve_stack_slots();
   443   int stk_reg = 0;
   444   int int_reg = 0;
   445   int flt_reg = 0;
   447   // Now do the signature layout
   448   for (int i = 0; i < total_args_passed; i++) {
   449     switch (sig_bt[i]) {
   450     case T_INT:
   451     case T_SHORT:
   452     case T_CHAR:
   453     case T_BYTE:
   454     case T_BOOLEAN:
   455 #ifndef _LP64
   456     case T_OBJECT:
   457     case T_ARRAY:
   458     case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
   459 #endif // _LP64
   460       if (int_reg < int_reg_max) {
   461         Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
   462         regs[i].set1(r->as_VMReg());
   463       } else {
   464         regs[i].set1(VMRegImpl::stack2reg(stk_reg++));
   465       }
   466       break;
   468 #ifdef _LP64
   469     case T_OBJECT:
   470     case T_ARRAY:
   471     case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
   472       if (int_reg < int_reg_max) {
   473         Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
   474         regs[i].set2(r->as_VMReg());
   475       } else {
   476         regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
   477         stk_reg_pairs += 2;
   478       }
   479       break;
   480 #endif // _LP64
   482     case T_LONG:
   483       assert(sig_bt[i+1] == T_VOID, "expecting VOID in other half");
   484 #ifdef _LP64
   485         if (int_reg < int_reg_max) {
   486           Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
   487           regs[i].set2(r->as_VMReg());
   488         } else {
   489           regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
   490           stk_reg_pairs += 2;
   491         }
   492 #else
   493 #ifdef COMPILER2
   494         // For 32-bit build, can't pass longs in O-regs because they become
   495         // I-regs and get trashed.  Use G-regs instead.  G1 and G4 are almost
   496         // spare and available.  This convention isn't used by the Sparc ABI or
   497         // anywhere else. If we're tiered then we don't use G-regs because c1
   498         // can't deal with them as a "pair". (Tiered makes this code think g's are filled)
   499         // G0: zero
   500         // G1: 1st Long arg
   501         // G2: global allocated to TLS
   502         // G3: used in inline cache check
   503         // G4: 2nd Long arg
   504         // G5: used in inline cache check
   505         // G6: used by OS
   506         // G7: used by OS
   508         if (g_reg == G1) {
   509           regs[i].set2(G1->as_VMReg()); // This long arg in G1
   510           g_reg = G4;                  // Where the next arg goes
   511         } else if (g_reg == G4) {
   512           regs[i].set2(G4->as_VMReg()); // The 2nd long arg in G4
   513           g_reg = noreg;               // No more longs in registers
   514         } else {
   515           regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
   516           stk_reg_pairs += 2;
   517         }
   518 #else // COMPILER2
   519           regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
   520           stk_reg_pairs += 2;
   521 #endif // COMPILER2
   522 #endif // _LP64
   523       break;
   525     case T_FLOAT:
   526       if (flt_reg < flt_reg_max) regs[i].set1(as_FloatRegister(flt_reg++)->as_VMReg());
   527       else                       regs[i].set1(VMRegImpl::stack2reg(stk_reg++));
   528       break;
   529     case T_DOUBLE:
   530       assert(sig_bt[i+1] == T_VOID, "expecting half");
   531       if (flt_reg_pairs + 1 < flt_reg_max) {
   532         regs[i].set2(as_FloatRegister(flt_reg_pairs)->as_VMReg());
   533         flt_reg_pairs += 2;
   534       } else {
   535         regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
   536         stk_reg_pairs += 2;
   537       }
   538       break;
   539     case T_VOID: regs[i].set_bad();  break; // Halves of longs & doubles
   540     default:
   541       ShouldNotReachHere();
   542     }
   543   }
   545   // retun the amount of stack space these arguments will need.
   546   return stk_reg_pairs;
   548 }
   550 // Helper class mostly to avoid passing masm everywhere, and handle
   551 // store displacement overflow logic.
   552 class AdapterGenerator {
   553   MacroAssembler *masm;
   554   Register Rdisp;
   555   void set_Rdisp(Register r)  { Rdisp = r; }
   557   void patch_callers_callsite();
   559   // base+st_off points to top of argument
   560   int arg_offset(const int st_off) { return st_off; }
   561   int next_arg_offset(const int st_off) {
   562     return st_off - Interpreter::stackElementSize;
   563   }
   565   // Argument slot values may be loaded first into a register because
   566   // they might not fit into displacement.
   567   RegisterOrConstant arg_slot(const int st_off);
   568   RegisterOrConstant next_arg_slot(const int st_off);
   570   // Stores long into offset pointed to by base
   571   void store_c2i_long(Register r, Register base,
   572                       const int st_off, bool is_stack);
   573   void store_c2i_object(Register r, Register base,
   574                         const int st_off);
   575   void store_c2i_int(Register r, Register base,
   576                      const int st_off);
   577   void store_c2i_double(VMReg r_2,
   578                         VMReg r_1, Register base, const int st_off);
   579   void store_c2i_float(FloatRegister f, Register base,
   580                        const int st_off);
   582  public:
   583   void gen_c2i_adapter(int total_args_passed,
   584                               // VMReg max_arg,
   585                               int comp_args_on_stack, // VMRegStackSlots
   586                               const BasicType *sig_bt,
   587                               const VMRegPair *regs,
   588                               Label& skip_fixup);
   589   void gen_i2c_adapter(int total_args_passed,
   590                               // VMReg max_arg,
   591                               int comp_args_on_stack, // VMRegStackSlots
   592                               const BasicType *sig_bt,
   593                               const VMRegPair *regs);
   595   AdapterGenerator(MacroAssembler *_masm) : masm(_masm) {}
   596 };
   599 // Patch the callers callsite with entry to compiled code if it exists.
   600 void AdapterGenerator::patch_callers_callsite() {
   601   Label L;
   602   __ ld_ptr(G5_method, in_bytes(methodOopDesc::code_offset()), G3_scratch);
   603   __ br_null(G3_scratch, false, Assembler::pt, L);
   604   // Schedule the branch target address early.
   605   __ delayed()->ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), G3_scratch);
   606   // Call into the VM to patch the caller, then jump to compiled callee
   607   __ save_frame(4);     // Args in compiled layout; do not blow them
   609   // Must save all the live Gregs the list is:
   610   // G1: 1st Long arg (32bit build)
   611   // G2: global allocated to TLS
   612   // G3: used in inline cache check (scratch)
   613   // G4: 2nd Long arg (32bit build);
   614   // G5: used in inline cache check (methodOop)
   616   // The longs must go to the stack by hand since in the 32 bit build they can be trashed by window ops.
   618 #ifdef _LP64
   619   // mov(s,d)
   620   __ mov(G1, L1);
   621   __ mov(G4, L4);
   622   __ mov(G5_method, L5);
   623   __ mov(G5_method, O0);         // VM needs target method
   624   __ mov(I7, O1);                // VM needs caller's callsite
   625   // Must be a leaf call...
   626   // can be very far once the blob has been relocated
   627   AddressLiteral dest(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite));
   628   __ relocate(relocInfo::runtime_call_type);
   629   __ jumpl_to(dest, O7, O7);
   630   __ delayed()->mov(G2_thread, L7_thread_cache);
   631   __ mov(L7_thread_cache, G2_thread);
   632   __ mov(L1, G1);
   633   __ mov(L4, G4);
   634   __ mov(L5, G5_method);
   635 #else
   636   __ stx(G1, FP, -8 + STACK_BIAS);
   637   __ stx(G4, FP, -16 + STACK_BIAS);
   638   __ mov(G5_method, L5);
   639   __ mov(G5_method, O0);         // VM needs target method
   640   __ mov(I7, O1);                // VM needs caller's callsite
   641   // Must be a leaf call...
   642   __ call(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite), relocInfo::runtime_call_type);
   643   __ delayed()->mov(G2_thread, L7_thread_cache);
   644   __ mov(L7_thread_cache, G2_thread);
   645   __ ldx(FP, -8 + STACK_BIAS, G1);
   646   __ ldx(FP, -16 + STACK_BIAS, G4);
   647   __ mov(L5, G5_method);
   648   __ ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), G3_scratch);
   649 #endif /* _LP64 */
   651   __ restore();      // Restore args
   652   __ bind(L);
   653 }
   656 RegisterOrConstant AdapterGenerator::arg_slot(const int st_off) {
   657   RegisterOrConstant roc(arg_offset(st_off));
   658   return __ ensure_simm13_or_reg(roc, Rdisp);
   659 }
   661 RegisterOrConstant AdapterGenerator::next_arg_slot(const int st_off) {
   662   RegisterOrConstant roc(next_arg_offset(st_off));
   663   return __ ensure_simm13_or_reg(roc, Rdisp);
   664 }
   667 // Stores long into offset pointed to by base
   668 void AdapterGenerator::store_c2i_long(Register r, Register base,
   669                                       const int st_off, bool is_stack) {
   670 #ifdef _LP64
   671   // In V9, longs are given 2 64-bit slots in the interpreter, but the
   672   // data is passed in only 1 slot.
   673   __ stx(r, base, next_arg_slot(st_off));
   674 #else
   675 #ifdef COMPILER2
   676   // Misaligned store of 64-bit data
   677   __ stw(r, base, arg_slot(st_off));    // lo bits
   678   __ srlx(r, 32, r);
   679   __ stw(r, base, next_arg_slot(st_off));  // hi bits
   680 #else
   681   if (is_stack) {
   682     // Misaligned store of 64-bit data
   683     __ stw(r, base, arg_slot(st_off));    // lo bits
   684     __ srlx(r, 32, r);
   685     __ stw(r, base, next_arg_slot(st_off));  // hi bits
   686   } else {
   687     __ stw(r->successor(), base, arg_slot(st_off)     ); // lo bits
   688     __ stw(r             , base, next_arg_slot(st_off)); // hi bits
   689   }
   690 #endif // COMPILER2
   691 #endif // _LP64
   692 }
   694 void AdapterGenerator::store_c2i_object(Register r, Register base,
   695                       const int st_off) {
   696   __ st_ptr (r, base, arg_slot(st_off));
   697 }
   699 void AdapterGenerator::store_c2i_int(Register r, Register base,
   700                    const int st_off) {
   701   __ st (r, base, arg_slot(st_off));
   702 }
   704 // Stores into offset pointed to by base
   705 void AdapterGenerator::store_c2i_double(VMReg r_2,
   706                       VMReg r_1, Register base, const int st_off) {
   707 #ifdef _LP64
   708   // In V9, doubles are given 2 64-bit slots in the interpreter, but the
   709   // data is passed in only 1 slot.
   710   __ stf(FloatRegisterImpl::D, r_1->as_FloatRegister(), base, next_arg_slot(st_off));
   711 #else
   712   // Need to marshal 64-bit value from misaligned Lesp loads
   713   __ stf(FloatRegisterImpl::S, r_1->as_FloatRegister(), base, next_arg_slot(st_off));
   714   __ stf(FloatRegisterImpl::S, r_2->as_FloatRegister(), base, arg_slot(st_off) );
   715 #endif
   716 }
   718 void AdapterGenerator::store_c2i_float(FloatRegister f, Register base,
   719                                        const int st_off) {
   720   __ stf(FloatRegisterImpl::S, f, base, arg_slot(st_off));
   721 }
   723 void AdapterGenerator::gen_c2i_adapter(
   724                             int total_args_passed,
   725                             // VMReg max_arg,
   726                             int comp_args_on_stack, // VMRegStackSlots
   727                             const BasicType *sig_bt,
   728                             const VMRegPair *regs,
   729                             Label& skip_fixup) {
   731   // Before we get into the guts of the C2I adapter, see if we should be here
   732   // at all.  We've come from compiled code and are attempting to jump to the
   733   // interpreter, which means the caller made a static call to get here
   734   // (vcalls always get a compiled target if there is one).  Check for a
   735   // compiled target.  If there is one, we need to patch the caller's call.
   736   // However we will run interpreted if we come thru here. The next pass
   737   // thru the call site will run compiled. If we ran compiled here then
   738   // we can (theorectically) do endless i2c->c2i->i2c transitions during
   739   // deopt/uncommon trap cycles. If we always go interpreted here then
   740   // we can have at most one and don't need to play any tricks to keep
   741   // from endlessly growing the stack.
   742   //
   743   // Actually if we detected that we had an i2c->c2i transition here we
   744   // ought to be able to reset the world back to the state of the interpreted
   745   // call and not bother building another interpreter arg area. We don't
   746   // do that at this point.
   748   patch_callers_callsite();
   750   __ bind(skip_fixup);
   752   // Since all args are passed on the stack, total_args_passed*wordSize is the
   753   // space we need.  Add in varargs area needed by the interpreter. Round up
   754   // to stack alignment.
   755   const int arg_size = total_args_passed * Interpreter::stackElementSize;
   756   const int varargs_area =
   757                  (frame::varargs_offset - frame::register_save_words)*wordSize;
   758   const int extraspace = round_to(arg_size + varargs_area, 2*wordSize);
   760   int bias = STACK_BIAS;
   761   const int interp_arg_offset = frame::varargs_offset*wordSize +
   762                         (total_args_passed-1)*Interpreter::stackElementSize;
   764   Register base = SP;
   766 #ifdef _LP64
   767   // In the 64bit build because of wider slots and STACKBIAS we can run
   768   // out of bits in the displacement to do loads and stores.  Use g3 as
   769   // temporary displacement.
   770   if (!Assembler::is_simm13(extraspace)) {
   771     __ set(extraspace, G3_scratch);
   772     __ sub(SP, G3_scratch, SP);
   773   } else {
   774     __ sub(SP, extraspace, SP);
   775   }
   776   set_Rdisp(G3_scratch);
   777 #else
   778   __ sub(SP, extraspace, SP);
   779 #endif // _LP64
   781   // First write G1 (if used) to where ever it must go
   782   for (int i=0; i<total_args_passed; i++) {
   783     const int st_off = interp_arg_offset - (i*Interpreter::stackElementSize) + bias;
   784     VMReg r_1 = regs[i].first();
   785     VMReg r_2 = regs[i].second();
   786     if (r_1 == G1_scratch->as_VMReg()) {
   787       if (sig_bt[i] == T_OBJECT || sig_bt[i] == T_ARRAY) {
   788         store_c2i_object(G1_scratch, base, st_off);
   789       } else if (sig_bt[i] == T_LONG) {
   790         assert(!TieredCompilation, "should not use register args for longs");
   791         store_c2i_long(G1_scratch, base, st_off, false);
   792       } else {
   793         store_c2i_int(G1_scratch, base, st_off);
   794       }
   795     }
   796   }
   798   // Now write the args into the outgoing interpreter space
   799   for (int i=0; i<total_args_passed; i++) {
   800     const int st_off = interp_arg_offset - (i*Interpreter::stackElementSize) + bias;
   801     VMReg r_1 = regs[i].first();
   802     VMReg r_2 = regs[i].second();
   803     if (!r_1->is_valid()) {
   804       assert(!r_2->is_valid(), "");
   805       continue;
   806     }
   807     // Skip G1 if found as we did it first in order to free it up
   808     if (r_1 == G1_scratch->as_VMReg()) {
   809       continue;
   810     }
   811 #ifdef ASSERT
   812     bool G1_forced = false;
   813 #endif // ASSERT
   814     if (r_1->is_stack()) {        // Pretend stack targets are loaded into G1
   815 #ifdef _LP64
   816       Register ld_off = Rdisp;
   817       __ set(reg2offset(r_1) + extraspace + bias, ld_off);
   818 #else
   819       int ld_off = reg2offset(r_1) + extraspace + bias;
   820 #endif // _LP64
   821 #ifdef ASSERT
   822       G1_forced = true;
   823 #endif // ASSERT
   824       r_1 = G1_scratch->as_VMReg();// as part of the load/store shuffle
   825       if (!r_2->is_valid()) __ ld (base, ld_off, G1_scratch);
   826       else                  __ ldx(base, ld_off, G1_scratch);
   827     }
   829     if (r_1->is_Register()) {
   830       Register r = r_1->as_Register()->after_restore();
   831       if (sig_bt[i] == T_OBJECT || sig_bt[i] == T_ARRAY) {
   832         store_c2i_object(r, base, st_off);
   833       } else if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
   834 #ifndef _LP64
   835         if (TieredCompilation) {
   836           assert(G1_forced || sig_bt[i] != T_LONG, "should not use register args for longs");
   837         }
   838 #endif // _LP64
   839         store_c2i_long(r, base, st_off, r_2->is_stack());
   840       } else {
   841         store_c2i_int(r, base, st_off);
   842       }
   843     } else {
   844       assert(r_1->is_FloatRegister(), "");
   845       if (sig_bt[i] == T_FLOAT) {
   846         store_c2i_float(r_1->as_FloatRegister(), base, st_off);
   847       } else {
   848         assert(sig_bt[i] == T_DOUBLE, "wrong type");
   849         store_c2i_double(r_2, r_1, base, st_off);
   850       }
   851     }
   852   }
   854 #ifdef _LP64
   855   // Need to reload G3_scratch, used for temporary displacements.
   856   __ ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), G3_scratch);
   858   // Pass O5_savedSP as an argument to the interpreter.
   859   // The interpreter will restore SP to this value before returning.
   860   __ set(extraspace, G1);
   861   __ add(SP, G1, O5_savedSP);
   862 #else
   863   // Pass O5_savedSP as an argument to the interpreter.
   864   // The interpreter will restore SP to this value before returning.
   865   __ add(SP, extraspace, O5_savedSP);
   866 #endif // _LP64
   868   __ mov((frame::varargs_offset)*wordSize -
   869          1*Interpreter::stackElementSize+bias+BytesPerWord, G1);
   870   // Jump to the interpreter just as if interpreter was doing it.
   871   __ jmpl(G3_scratch, 0, G0);
   872   // Setup Lesp for the call.  Cannot actually set Lesp as the current Lesp
   873   // (really L0) is in use by the compiled frame as a generic temp.  However,
   874   // the interpreter does not know where its args are without some kind of
   875   // arg pointer being passed in.  Pass it in Gargs.
   876   __ delayed()->add(SP, G1, Gargs);
   877 }
   879 static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg, Register temp2_reg,
   880                         address code_start, address code_end,
   881                         Label& L_ok) {
   882   Label L_fail;
   883   __ set(ExternalAddress(code_start), temp_reg);
   884   __ set(pointer_delta(code_end, code_start, 1), temp2_reg);
   885   __ cmp(pc_reg, temp_reg);
   886   __ brx(Assembler::lessEqualUnsigned, false, Assembler::pn, L_fail);
   887   __ delayed()->add(temp_reg, temp2_reg, temp_reg);
   888   __ cmp(pc_reg, temp_reg);
   889   __ cmp_and_brx_short(pc_reg, temp_reg, Assembler::lessUnsigned, Assembler::pt, L_ok);
   890   __ bind(L_fail);
   891 }
   893 void AdapterGenerator::gen_i2c_adapter(
   894                             int total_args_passed,
   895                             // VMReg max_arg,
   896                             int comp_args_on_stack, // VMRegStackSlots
   897                             const BasicType *sig_bt,
   898                             const VMRegPair *regs) {
   900   // Generate an I2C adapter: adjust the I-frame to make space for the C-frame
   901   // layout.  Lesp was saved by the calling I-frame and will be restored on
   902   // return.  Meanwhile, outgoing arg space is all owned by the callee
   903   // C-frame, so we can mangle it at will.  After adjusting the frame size,
   904   // hoist register arguments and repack other args according to the compiled
   905   // code convention.  Finally, end in a jump to the compiled code.  The entry
   906   // point address is the start of the buffer.
   908   // We will only enter here from an interpreted frame and never from after
   909   // passing thru a c2i. Azul allowed this but we do not. If we lose the
   910   // race and use a c2i we will remain interpreted for the race loser(s).
   911   // This removes all sorts of headaches on the x86 side and also eliminates
   912   // the possibility of having c2i -> i2c -> c2i -> ... endless transitions.
   914   // More detail:
   915   // Adapters can be frameless because they do not require the caller
   916   // to perform additional cleanup work, such as correcting the stack pointer.
   917   // An i2c adapter is frameless because the *caller* frame, which is interpreted,
   918   // routinely repairs its own stack pointer (from interpreter_frame_last_sp),
   919   // even if a callee has modified the stack pointer.
   920   // A c2i adapter is frameless because the *callee* frame, which is interpreted,
   921   // routinely repairs its caller's stack pointer (from sender_sp, which is set
   922   // up via the senderSP register).
   923   // In other words, if *either* the caller or callee is interpreted, we can
   924   // get the stack pointer repaired after a call.
   925   // This is why c2i and i2c adapters cannot be indefinitely composed.
   926   // In particular, if a c2i adapter were to somehow call an i2c adapter,
   927   // both caller and callee would be compiled methods, and neither would
   928   // clean up the stack pointer changes performed by the two adapters.
   929   // If this happens, control eventually transfers back to the compiled
   930   // caller, but with an uncorrected stack, causing delayed havoc.
   932   if (VerifyAdapterCalls &&
   933       (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) {
   934     // So, let's test for cascading c2i/i2c adapters right now.
   935     //  assert(Interpreter::contains($return_addr) ||
   936     //         StubRoutines::contains($return_addr),
   937     //         "i2c adapter must return to an interpreter frame");
   938     __ block_comment("verify_i2c { ");
   939     Label L_ok;
   940     if (Interpreter::code() != NULL)
   941       range_check(masm, O7, O0, O1,
   942                   Interpreter::code()->code_start(), Interpreter::code()->code_end(),
   943                   L_ok);
   944     if (StubRoutines::code1() != NULL)
   945       range_check(masm, O7, O0, O1,
   946                   StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(),
   947                   L_ok);
   948     if (StubRoutines::code2() != NULL)
   949       range_check(masm, O7, O0, O1,
   950                   StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(),
   951                   L_ok);
   952     const char* msg = "i2c adapter must return to an interpreter frame";
   953     __ block_comment(msg);
   954     __ stop(msg);
   955     __ bind(L_ok);
   956     __ block_comment("} verify_i2ce ");
   957   }
   959   // As you can see from the list of inputs & outputs there are not a lot
   960   // of temp registers to work with: mostly G1, G3 & G4.
   962   // Inputs:
   963   // G2_thread      - TLS
   964   // G5_method      - Method oop
   965   // G4 (Gargs)     - Pointer to interpreter's args
   966   // O0..O4         - free for scratch
   967   // O5_savedSP     - Caller's saved SP, to be restored if needed
   968   // O6             - Current SP!
   969   // O7             - Valid return address
   970   // L0-L7, I0-I7   - Caller's temps (no frame pushed yet)
   972   // Outputs:
   973   // G2_thread      - TLS
   974   // G1, G4         - Outgoing long args in 32-bit build
   975   // O0-O5          - Outgoing args in compiled layout
   976   // O6             - Adjusted or restored SP
   977   // O7             - Valid return address
   978   // L0-L7, I0-I7   - Caller's temps (no frame pushed yet)
   979   // F0-F7          - more outgoing args
   982   // Gargs is the incoming argument base, and also an outgoing argument.
   983   __ sub(Gargs, BytesPerWord, Gargs);
   985   // ON ENTRY TO THE CODE WE ARE MAKING, WE HAVE AN INTERPRETED FRAME
   986   // WITH O7 HOLDING A VALID RETURN PC
   987   //
   988   // |              |
   989   // :  java stack  :
   990   // |              |
   991   // +--------------+ <--- start of outgoing args
   992   // |   receiver   |   |
   993   // : rest of args :   |---size is java-arg-words
   994   // |              |   |
   995   // +--------------+ <--- O4_args (misaligned) and Lesp if prior is not C2I
   996   // |              |   |
   997   // :    unused    :   |---Space for max Java stack, plus stack alignment
   998   // |              |   |
   999   // +--------------+ <--- SP + 16*wordsize
  1000   // |              |
  1001   // :    window    :
  1002   // |              |
  1003   // +--------------+ <--- SP
  1005   // WE REPACK THE STACK.  We use the common calling convention layout as
  1006   // discovered by calling SharedRuntime::calling_convention.  We assume it
  1007   // causes an arbitrary shuffle of memory, which may require some register
  1008   // temps to do the shuffle.  We hope for (and optimize for) the case where
  1009   // temps are not needed.  We may have to resize the stack slightly, in case
  1010   // we need alignment padding (32-bit interpreter can pass longs & doubles
  1011   // misaligned, but the compilers expect them aligned).
  1012   //
  1013   // |              |
  1014   // :  java stack  :
  1015   // |              |
  1016   // +--------------+ <--- start of outgoing args
  1017   // |  pad, align  |   |
  1018   // +--------------+   |
  1019   // | ints, floats |   |---Outgoing stack args, packed low.
  1020   // +--------------+   |   First few args in registers.
  1021   // :   doubles    :   |
  1022   // |   longs      |   |
  1023   // +--------------+ <--- SP' + 16*wordsize
  1024   // |              |
  1025   // :    window    :
  1026   // |              |
  1027   // +--------------+ <--- SP'
  1029   // ON EXIT FROM THE CODE WE ARE MAKING, WE STILL HAVE AN INTERPRETED FRAME
  1030   // WITH O7 HOLDING A VALID RETURN PC - ITS JUST THAT THE ARGS ARE NOW SETUP
  1031   // FOR COMPILED CODE AND THE FRAME SLIGHTLY GROWN.
  1033   // Cut-out for having no stack args.  Since up to 6 args are passed
  1034   // in registers, we will commonly have no stack args.
  1035   if (comp_args_on_stack > 0) {
  1037     // Convert VMReg stack slots to words.
  1038     int comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
  1039     // Round up to miminum stack alignment, in wordSize
  1040     comp_words_on_stack = round_to(comp_words_on_stack, 2);
  1041     // Now compute the distance from Lesp to SP.  This calculation does not
  1042     // include the space for total_args_passed because Lesp has not yet popped
  1043     // the arguments.
  1044     __ sub(SP, (comp_words_on_stack)*wordSize, SP);
  1047   // Will jump to the compiled code just as if compiled code was doing it.
  1048   // Pre-load the register-jump target early, to schedule it better.
  1049   __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3);
  1051   // Now generate the shuffle code.  Pick up all register args and move the
  1052   // rest through G1_scratch.
  1053   for (int i=0; i<total_args_passed; i++) {
  1054     if (sig_bt[i] == T_VOID) {
  1055       // Longs and doubles are passed in native word order, but misaligned
  1056       // in the 32-bit build.
  1057       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
  1058       continue;
  1061     // Pick up 0, 1 or 2 words from Lesp+offset.  Assume mis-aligned in the
  1062     // 32-bit build and aligned in the 64-bit build.  Look for the obvious
  1063     // ldx/lddf optimizations.
  1065     // Load in argument order going down.
  1066     const int ld_off = (total_args_passed-i)*Interpreter::stackElementSize;
  1067     set_Rdisp(G1_scratch);
  1069     VMReg r_1 = regs[i].first();
  1070     VMReg r_2 = regs[i].second();
  1071     if (!r_1->is_valid()) {
  1072       assert(!r_2->is_valid(), "");
  1073       continue;
  1075     if (r_1->is_stack()) {        // Pretend stack targets are loaded into F8/F9
  1076       r_1 = F8->as_VMReg();        // as part of the load/store shuffle
  1077       if (r_2->is_valid()) r_2 = r_1->next();
  1079     if (r_1->is_Register()) {  // Register argument
  1080       Register r = r_1->as_Register()->after_restore();
  1081       if (!r_2->is_valid()) {
  1082         __ ld(Gargs, arg_slot(ld_off), r);
  1083       } else {
  1084 #ifdef _LP64
  1085         // In V9, longs are given 2 64-bit slots in the interpreter, but the
  1086         // data is passed in only 1 slot.
  1087         RegisterOrConstant slot = (sig_bt[i] == T_LONG) ?
  1088               next_arg_slot(ld_off) : arg_slot(ld_off);
  1089         __ ldx(Gargs, slot, r);
  1090 #else
  1091         // Need to load a 64-bit value into G1/G4, but G1/G4 is being used in the
  1092         // stack shuffle.  Load the first 2 longs into G1/G4 later.
  1093 #endif
  1095     } else {
  1096       assert(r_1->is_FloatRegister(), "");
  1097       if (!r_2->is_valid()) {
  1098         __ ldf(FloatRegisterImpl::S, Gargs, arg_slot(ld_off), r_1->as_FloatRegister());
  1099       } else {
  1100 #ifdef _LP64
  1101         // In V9, doubles are given 2 64-bit slots in the interpreter, but the
  1102         // data is passed in only 1 slot.  This code also handles longs that
  1103         // are passed on the stack, but need a stack-to-stack move through a
  1104         // spare float register.
  1105         RegisterOrConstant slot = (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) ?
  1106               next_arg_slot(ld_off) : arg_slot(ld_off);
  1107         __ ldf(FloatRegisterImpl::D, Gargs, slot, r_1->as_FloatRegister());
  1108 #else
  1109         // Need to marshal 64-bit value from misaligned Lesp loads
  1110         __ ldf(FloatRegisterImpl::S, Gargs, next_arg_slot(ld_off), r_1->as_FloatRegister());
  1111         __ ldf(FloatRegisterImpl::S, Gargs, arg_slot(ld_off), r_2->as_FloatRegister());
  1112 #endif
  1115     // Was the argument really intended to be on the stack, but was loaded
  1116     // into F8/F9?
  1117     if (regs[i].first()->is_stack()) {
  1118       assert(r_1->as_FloatRegister() == F8, "fix this code");
  1119       // Convert stack slot to an SP offset
  1120       int st_off = reg2offset(regs[i].first()) + STACK_BIAS;
  1121       // Store down the shuffled stack word.  Target address _is_ aligned.
  1122       RegisterOrConstant slot = __ ensure_simm13_or_reg(st_off, Rdisp);
  1123       if (!r_2->is_valid()) __ stf(FloatRegisterImpl::S, r_1->as_FloatRegister(), SP, slot);
  1124       else                  __ stf(FloatRegisterImpl::D, r_1->as_FloatRegister(), SP, slot);
  1127   bool made_space = false;
  1128 #ifndef _LP64
  1129   // May need to pick up a few long args in G1/G4
  1130   bool g4_crushed = false;
  1131   bool g3_crushed = false;
  1132   for (int i=0; i<total_args_passed; i++) {
  1133     if (regs[i].first()->is_Register() && regs[i].second()->is_valid()) {
  1134       // Load in argument order going down
  1135       int ld_off = (total_args_passed-i)*Interpreter::stackElementSize;
  1136       // Need to marshal 64-bit value from misaligned Lesp loads
  1137       Register r = regs[i].first()->as_Register()->after_restore();
  1138       if (r == G1 || r == G4) {
  1139         assert(!g4_crushed, "ordering problem");
  1140         if (r == G4){
  1141           g4_crushed = true;
  1142           __ lduw(Gargs, arg_slot(ld_off)     , G3_scratch); // Load lo bits
  1143           __ ld  (Gargs, next_arg_slot(ld_off), r);          // Load hi bits
  1144         } else {
  1145           // better schedule this way
  1146           __ ld  (Gargs, next_arg_slot(ld_off), r);          // Load hi bits
  1147           __ lduw(Gargs, arg_slot(ld_off)     , G3_scratch); // Load lo bits
  1149         g3_crushed = true;
  1150         __ sllx(r, 32, r);
  1151         __ or3(G3_scratch, r, r);
  1152       } else {
  1153         assert(r->is_out(), "longs passed in two O registers");
  1154         __ ld  (Gargs, arg_slot(ld_off)     , r->successor()); // Load lo bits
  1155         __ ld  (Gargs, next_arg_slot(ld_off), r);              // Load hi bits
  1159 #endif
  1161   // Jump to the compiled code just as if compiled code was doing it.
  1162   //
  1163 #ifndef _LP64
  1164     if (g3_crushed) {
  1165       // Rats load was wasted, at least it is in cache...
  1166       __ ld_ptr(G5_method, methodOopDesc::from_compiled_offset(), G3);
  1168 #endif /* _LP64 */
  1170     // 6243940 We might end up in handle_wrong_method if
  1171     // the callee is deoptimized as we race thru here. If that
  1172     // happens we don't want to take a safepoint because the
  1173     // caller frame will look interpreted and arguments are now
  1174     // "compiled" so it is much better to make this transition
  1175     // invisible to the stack walking code. Unfortunately if
  1176     // we try and find the callee by normal means a safepoint
  1177     // is possible. So we stash the desired callee in the thread
  1178     // and the vm will find there should this case occur.
  1179     Address callee_target_addr(G2_thread, JavaThread::callee_target_offset());
  1180     __ st_ptr(G5_method, callee_target_addr);
  1182     if (StressNonEntrant) {
  1183       // Open a big window for deopt failure
  1184       __ save_frame(0);
  1185       __ mov(G0, L0);
  1186       Label loop;
  1187       __ bind(loop);
  1188       __ sub(L0, 1, L0);
  1189       __ br_null_short(L0, Assembler::pt, loop);
  1191       __ restore();
  1195     __ jmpl(G3, 0, G0);
  1196     __ delayed()->nop();
  1199 // ---------------------------------------------------------------
  1200 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
  1201                                                             int total_args_passed,
  1202                                                             // VMReg max_arg,
  1203                                                             int comp_args_on_stack, // VMRegStackSlots
  1204                                                             const BasicType *sig_bt,
  1205                                                             const VMRegPair *regs,
  1206                                                             AdapterFingerPrint* fingerprint) {
  1207   address i2c_entry = __ pc();
  1209   AdapterGenerator agen(masm);
  1211   agen.gen_i2c_adapter(total_args_passed, comp_args_on_stack, sig_bt, regs);
  1214   // -------------------------------------------------------------------------
  1215   // Generate a C2I adapter.  On entry we know G5 holds the methodOop.  The
  1216   // args start out packed in the compiled layout.  They need to be unpacked
  1217   // into the interpreter layout.  This will almost always require some stack
  1218   // space.  We grow the current (compiled) stack, then repack the args.  We
  1219   // finally end in a jump to the generic interpreter entry point.  On exit
  1220   // from the interpreter, the interpreter will restore our SP (lest the
  1221   // compiled code, which relys solely on SP and not FP, get sick).
  1223   address c2i_unverified_entry = __ pc();
  1224   Label skip_fixup;
  1226 #if !defined(_LP64) && defined(COMPILER2)
  1227     Register R_temp   = L0;   // another scratch register
  1228 #else
  1229     Register R_temp   = G1;   // another scratch register
  1230 #endif
  1232     AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
  1234     __ verify_oop(O0);
  1235     __ verify_oop(G5_method);
  1236     __ load_klass(O0, G3_scratch);
  1237     __ verify_oop(G3_scratch);
  1239 #if !defined(_LP64) && defined(COMPILER2)
  1240     __ save(SP, -frame::register_save_words*wordSize, SP);
  1241     __ ld_ptr(G5_method, compiledICHolderOopDesc::holder_klass_offset(), R_temp);
  1242     __ verify_oop(R_temp);
  1243     __ cmp(G3_scratch, R_temp);
  1244     __ restore();
  1245 #else
  1246     __ ld_ptr(G5_method, compiledICHolderOopDesc::holder_klass_offset(), R_temp);
  1247     __ verify_oop(R_temp);
  1248     __ cmp(G3_scratch, R_temp);
  1249 #endif
  1251     Label ok, ok2;
  1252     __ brx(Assembler::equal, false, Assembler::pt, ok);
  1253     __ delayed()->ld_ptr(G5_method, compiledICHolderOopDesc::holder_method_offset(), G5_method);
  1254     __ jump_to(ic_miss, G3_scratch);
  1255     __ delayed()->nop();
  1257     __ bind(ok);
  1258     // Method might have been compiled since the call site was patched to
  1259     // interpreted if that is the case treat it as a miss so we can get
  1260     // the call site corrected.
  1261     __ ld_ptr(G5_method, in_bytes(methodOopDesc::code_offset()), G3_scratch);
  1262     __ bind(ok2);
  1263     __ br_null(G3_scratch, false, Assembler::pt, skip_fixup);
  1264     __ delayed()->ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), G3_scratch);
  1265     __ jump_to(ic_miss, G3_scratch);
  1266     __ delayed()->nop();
  1270   address c2i_entry = __ pc();
  1272   agen.gen_c2i_adapter(total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
  1274   __ flush();
  1275   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
  1279 // Helper function for native calling conventions
  1280 static VMReg int_stk_helper( int i ) {
  1281   // Bias any stack based VMReg we get by ignoring the window area
  1282   // but not the register parameter save area.
  1283   //
  1284   // This is strange for the following reasons. We'd normally expect
  1285   // the calling convention to return an VMReg for a stack slot
  1286   // completely ignoring any abi reserved area. C2 thinks of that
  1287   // abi area as only out_preserve_stack_slots. This does not include
  1288   // the area allocated by the C abi to store down integer arguments
  1289   // because the java calling convention does not use it. So
  1290   // since c2 assumes that there are only out_preserve_stack_slots
  1291   // to bias the optoregs (which impacts VMRegs) when actually referencing any actual stack
  1292   // location the c calling convention must add in this bias amount
  1293   // to make up for the fact that the out_preserve_stack_slots is
  1294   // insufficient for C calls. What a mess. I sure hope those 6
  1295   // stack words were worth it on every java call!
  1297   // Another way of cleaning this up would be for out_preserve_stack_slots
  1298   // to take a parameter to say whether it was C or java calling conventions.
  1299   // Then things might look a little better (but not much).
  1301   int mem_parm_offset = i - SPARC_ARGS_IN_REGS_NUM;
  1302   if( mem_parm_offset < 0 ) {
  1303     return as_oRegister(i)->as_VMReg();
  1304   } else {
  1305     int actual_offset = (mem_parm_offset + frame::memory_parameter_word_sp_offset) * VMRegImpl::slots_per_word;
  1306     // Now return a biased offset that will be correct when out_preserve_slots is added back in
  1307     return VMRegImpl::stack2reg(actual_offset - SharedRuntime::out_preserve_stack_slots());
  1312 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
  1313                                          VMRegPair *regs,
  1314                                          int total_args_passed) {
  1316     // Return the number of VMReg stack_slots needed for the args.
  1317     // This value does not include an abi space (like register window
  1318     // save area).
  1320     // The native convention is V8 if !LP64
  1321     // The LP64 convention is the V9 convention which is slightly more sane.
  1323     // We return the amount of VMReg stack slots we need to reserve for all
  1324     // the arguments NOT counting out_preserve_stack_slots. Since we always
  1325     // have space for storing at least 6 registers to memory we start with that.
  1326     // See int_stk_helper for a further discussion.
  1327     int max_stack_slots = (frame::varargs_offset * VMRegImpl::slots_per_word) - SharedRuntime::out_preserve_stack_slots();
  1329 #ifdef _LP64
  1330     // V9 convention: All things "as-if" on double-wide stack slots.
  1331     // Hoist any int/ptr/long's in the first 6 to int regs.
  1332     // Hoist any flt/dbl's in the first 16 dbl regs.
  1333     int j = 0;                  // Count of actual args, not HALVES
  1334     for( int i=0; i<total_args_passed; i++, j++ ) {
  1335       switch( sig_bt[i] ) {
  1336       case T_BOOLEAN:
  1337       case T_BYTE:
  1338       case T_CHAR:
  1339       case T_INT:
  1340       case T_SHORT:
  1341         regs[i].set1( int_stk_helper( j ) ); break;
  1342       case T_LONG:
  1343         assert( sig_bt[i+1] == T_VOID, "expecting half" );
  1344       case T_ADDRESS: // raw pointers, like current thread, for VM calls
  1345       case T_ARRAY:
  1346       case T_OBJECT:
  1347         regs[i].set2( int_stk_helper( j ) );
  1348         break;
  1349       case T_FLOAT:
  1350         if ( j < 16 ) {
  1351           // V9ism: floats go in ODD registers
  1352           regs[i].set1(as_FloatRegister(1 + (j<<1))->as_VMReg());
  1353         } else {
  1354           // V9ism: floats go in ODD stack slot
  1355           regs[i].set1(VMRegImpl::stack2reg(1 + (j<<1)));
  1357         break;
  1358       case T_DOUBLE:
  1359         assert( sig_bt[i+1] == T_VOID, "expecting half" );
  1360         if ( j < 16 ) {
  1361           // V9ism: doubles go in EVEN/ODD regs
  1362           regs[i].set2(as_FloatRegister(j<<1)->as_VMReg());
  1363         } else {
  1364           // V9ism: doubles go in EVEN/ODD stack slots
  1365           regs[i].set2(VMRegImpl::stack2reg(j<<1));
  1367         break;
  1368       case T_VOID:  regs[i].set_bad(); j--; break; // Do not count HALVES
  1369       default:
  1370         ShouldNotReachHere();
  1372       if (regs[i].first()->is_stack()) {
  1373         int off =  regs[i].first()->reg2stack();
  1374         if (off > max_stack_slots) max_stack_slots = off;
  1376       if (regs[i].second()->is_stack()) {
  1377         int off =  regs[i].second()->reg2stack();
  1378         if (off > max_stack_slots) max_stack_slots = off;
  1382 #else // _LP64
  1383     // V8 convention: first 6 things in O-regs, rest on stack.
  1384     // Alignment is willy-nilly.
  1385     for( int i=0; i<total_args_passed; i++ ) {
  1386       switch( sig_bt[i] ) {
  1387       case T_ADDRESS: // raw pointers, like current thread, for VM calls
  1388       case T_ARRAY:
  1389       case T_BOOLEAN:
  1390       case T_BYTE:
  1391       case T_CHAR:
  1392       case T_FLOAT:
  1393       case T_INT:
  1394       case T_OBJECT:
  1395       case T_SHORT:
  1396         regs[i].set1( int_stk_helper( i ) );
  1397         break;
  1398       case T_DOUBLE:
  1399       case T_LONG:
  1400         assert( sig_bt[i+1] == T_VOID, "expecting half" );
  1401         regs[i].set_pair( int_stk_helper( i+1 ), int_stk_helper( i ) );
  1402         break;
  1403       case T_VOID: regs[i].set_bad(); break;
  1404       default:
  1405         ShouldNotReachHere();
  1407       if (regs[i].first()->is_stack()) {
  1408         int off =  regs[i].first()->reg2stack();
  1409         if (off > max_stack_slots) max_stack_slots = off;
  1411       if (regs[i].second()->is_stack()) {
  1412         int off =  regs[i].second()->reg2stack();
  1413         if (off > max_stack_slots) max_stack_slots = off;
  1416 #endif // _LP64
  1418   return round_to(max_stack_slots + 1, 2);
  1423 // ---------------------------------------------------------------------------
  1424 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
  1425   switch (ret_type) {
  1426   case T_FLOAT:
  1427     __ stf(FloatRegisterImpl::S, F0, SP, frame_slots*VMRegImpl::stack_slot_size - 4+STACK_BIAS);
  1428     break;
  1429   case T_DOUBLE:
  1430     __ stf(FloatRegisterImpl::D, F0, SP, frame_slots*VMRegImpl::stack_slot_size - 8+STACK_BIAS);
  1431     break;
  1435 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
  1436   switch (ret_type) {
  1437   case T_FLOAT:
  1438     __ ldf(FloatRegisterImpl::S, SP, frame_slots*VMRegImpl::stack_slot_size - 4+STACK_BIAS, F0);
  1439     break;
  1440   case T_DOUBLE:
  1441     __ ldf(FloatRegisterImpl::D, SP, frame_slots*VMRegImpl::stack_slot_size - 8+STACK_BIAS, F0);
  1442     break;
  1446 // Check and forward and pending exception.  Thread is stored in
  1447 // L7_thread_cache and possibly NOT in G2_thread.  Since this is a native call, there
  1448 // is no exception handler.  We merely pop this frame off and throw the
  1449 // exception in the caller's frame.
  1450 static void check_forward_pending_exception(MacroAssembler *masm, Register Rex_oop) {
  1451   Label L;
  1452   __ br_null(Rex_oop, false, Assembler::pt, L);
  1453   __ delayed()->mov(L7_thread_cache, G2_thread); // restore in case we have exception
  1454   // Since this is a native call, we *know* the proper exception handler
  1455   // without calling into the VM: it's the empty function.  Just pop this
  1456   // frame and then jump to forward_exception_entry; O7 will contain the
  1457   // native caller's return PC.
  1458  AddressLiteral exception_entry(StubRoutines::forward_exception_entry());
  1459   __ jump_to(exception_entry, G3_scratch);
  1460   __ delayed()->restore();      // Pop this frame off.
  1461   __ bind(L);
  1464 // A simple move of integer like type
  1465 static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1466   if (src.first()->is_stack()) {
  1467     if (dst.first()->is_stack()) {
  1468       // stack to stack
  1469       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
  1470       __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
  1471     } else {
  1472       // stack to reg
  1473       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
  1475   } else if (dst.first()->is_stack()) {
  1476     // reg to stack
  1477     __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1478   } else {
  1479     __ mov(src.first()->as_Register(), dst.first()->as_Register());
  1483 // On 64 bit we will store integer like items to the stack as
  1484 // 64 bits items (sparc abi) even though java would only store
  1485 // 32bits for a parameter. On 32bit it will simply be 32 bits
  1486 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
  1487 static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1488   if (src.first()->is_stack()) {
  1489     if (dst.first()->is_stack()) {
  1490       // stack to stack
  1491       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
  1492       __ st_ptr(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
  1493     } else {
  1494       // stack to reg
  1495       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
  1497   } else if (dst.first()->is_stack()) {
  1498     // reg to stack
  1499     __ st_ptr(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1500   } else {
  1501     __ mov(src.first()->as_Register(), dst.first()->as_Register());
  1506 static void move_ptr(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1507   if (src.first()->is_stack()) {
  1508     if (dst.first()->is_stack()) {
  1509       // stack to stack
  1510       __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, L5);
  1511       __ st_ptr(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
  1512     } else {
  1513       // stack to reg
  1514       __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
  1516   } else if (dst.first()->is_stack()) {
  1517     // reg to stack
  1518     __ st_ptr(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1519   } else {
  1520     __ mov(src.first()->as_Register(), dst.first()->as_Register());
  1525 // An oop arg. Must pass a handle not the oop itself
  1526 static void object_move(MacroAssembler* masm,
  1527                         OopMap* map,
  1528                         int oop_handle_offset,
  1529                         int framesize_in_slots,
  1530                         VMRegPair src,
  1531                         VMRegPair dst,
  1532                         bool is_receiver,
  1533                         int* receiver_offset) {
  1535   // must pass a handle. First figure out the location we use as a handle
  1537   if (src.first()->is_stack()) {
  1538     // Oop is already on the stack
  1539     Register rHandle = dst.first()->is_stack() ? L5 : dst.first()->as_Register();
  1540     __ add(FP, reg2offset(src.first()) + STACK_BIAS, rHandle);
  1541     __ ld_ptr(rHandle, 0, L4);
  1542 #ifdef _LP64
  1543     __ movr( Assembler::rc_z, L4, G0, rHandle );
  1544 #else
  1545     __ tst( L4 );
  1546     __ movcc( Assembler::zero, false, Assembler::icc, G0, rHandle );
  1547 #endif
  1548     if (dst.first()->is_stack()) {
  1549       __ st_ptr(rHandle, SP, reg2offset(dst.first()) + STACK_BIAS);
  1551     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
  1552     if (is_receiver) {
  1553       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
  1555     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
  1556   } else {
  1557     // Oop is in an input register pass we must flush it to the stack
  1558     const Register rOop = src.first()->as_Register();
  1559     const Register rHandle = L5;
  1560     int oop_slot = rOop->input_number() * VMRegImpl::slots_per_word + oop_handle_offset;
  1561     int offset = oop_slot*VMRegImpl::stack_slot_size;
  1562     Label skip;
  1563     __ st_ptr(rOop, SP, offset + STACK_BIAS);
  1564     if (is_receiver) {
  1565       *receiver_offset = oop_slot * VMRegImpl::stack_slot_size;
  1567     map->set_oop(VMRegImpl::stack2reg(oop_slot));
  1568     __ add(SP, offset + STACK_BIAS, rHandle);
  1569 #ifdef _LP64
  1570     __ movr( Assembler::rc_z, rOop, G0, rHandle );
  1571 #else
  1572     __ tst( rOop );
  1573     __ movcc( Assembler::zero, false, Assembler::icc, G0, rHandle );
  1574 #endif
  1576     if (dst.first()->is_stack()) {
  1577       __ st_ptr(rHandle, SP, reg2offset(dst.first()) + STACK_BIAS);
  1578     } else {
  1579       __ mov(rHandle, dst.first()->as_Register());
  1584 // A float arg may have to do float reg int reg conversion
  1585 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1586   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
  1588   if (src.first()->is_stack()) {
  1589     if (dst.first()->is_stack()) {
  1590       // stack to stack the easiest of the bunch
  1591       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
  1592       __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
  1593     } else {
  1594       // stack to reg
  1595       if (dst.first()->is_Register()) {
  1596         __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
  1597       } else {
  1598         __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
  1601   } else if (dst.first()->is_stack()) {
  1602     // reg to stack
  1603     if (src.first()->is_Register()) {
  1604       __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1605     } else {
  1606       __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1608   } else {
  1609     // reg to reg
  1610     if (src.first()->is_Register()) {
  1611       if (dst.first()->is_Register()) {
  1612         // gpr -> gpr
  1613         __ mov(src.first()->as_Register(), dst.first()->as_Register());
  1614       } else {
  1615         // gpr -> fpr
  1616         __ st(src.first()->as_Register(), FP, -4 + STACK_BIAS);
  1617         __ ldf(FloatRegisterImpl::S, FP, -4 + STACK_BIAS, dst.first()->as_FloatRegister());
  1619     } else if (dst.first()->is_Register()) {
  1620       // fpr -> gpr
  1621       __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), FP, -4 + STACK_BIAS);
  1622       __ ld(FP, -4 + STACK_BIAS, dst.first()->as_Register());
  1623     } else {
  1624       // fpr -> fpr
  1625       // In theory these overlap but the ordering is such that this is likely a nop
  1626       if ( src.first() != dst.first()) {
  1627         __ fmov(FloatRegisterImpl::S, src.first()->as_FloatRegister(), dst.first()->as_FloatRegister());
  1633 static void split_long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1634   VMRegPair src_lo(src.first());
  1635   VMRegPair src_hi(src.second());
  1636   VMRegPair dst_lo(dst.first());
  1637   VMRegPair dst_hi(dst.second());
  1638   simple_move32(masm, src_lo, dst_lo);
  1639   simple_move32(masm, src_hi, dst_hi);
  1642 // A long move
  1643 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1645   // Do the simple ones here else do two int moves
  1646   if (src.is_single_phys_reg() ) {
  1647     if (dst.is_single_phys_reg()) {
  1648       __ mov(src.first()->as_Register(), dst.first()->as_Register());
  1649     } else {
  1650       // split src into two separate registers
  1651       // Remember hi means hi address or lsw on sparc
  1652       // Move msw to lsw
  1653       if (dst.second()->is_reg()) {
  1654         // MSW -> MSW
  1655         __ srax(src.first()->as_Register(), 32, dst.first()->as_Register());
  1656         // Now LSW -> LSW
  1657         // this will only move lo -> lo and ignore hi
  1658         VMRegPair split(dst.second());
  1659         simple_move32(masm, src, split);
  1660       } else {
  1661         VMRegPair split(src.first(), L4->as_VMReg());
  1662         // MSW -> MSW (lo ie. first word)
  1663         __ srax(src.first()->as_Register(), 32, L4);
  1664         split_long_move(masm, split, dst);
  1667   } else if (dst.is_single_phys_reg()) {
  1668     if (src.is_adjacent_aligned_on_stack(2)) {
  1669       __ ldx(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
  1670     } else {
  1671       // dst is a single reg.
  1672       // Remember lo is low address not msb for stack slots
  1673       // and lo is the "real" register for registers
  1674       // src is
  1676       VMRegPair split;
  1678       if (src.first()->is_reg()) {
  1679         // src.lo (msw) is a reg, src.hi is stk/reg
  1680         // we will move: src.hi (LSW) -> dst.lo, src.lo (MSW) -> src.lo [the MSW is in the LSW of the reg]
  1681         split.set_pair(dst.first(), src.first());
  1682       } else {
  1683         // msw is stack move to L5
  1684         // lsw is stack move to dst.lo (real reg)
  1685         // we will move: src.hi (LSW) -> dst.lo, src.lo (MSW) -> L5
  1686         split.set_pair(dst.first(), L5->as_VMReg());
  1689       // src.lo -> src.lo/L5, src.hi -> dst.lo (the real reg)
  1690       // msw   -> src.lo/L5,  lsw -> dst.lo
  1691       split_long_move(masm, src, split);
  1693       // So dst now has the low order correct position the
  1694       // msw half
  1695       __ sllx(split.first()->as_Register(), 32, L5);
  1697       const Register d = dst.first()->as_Register();
  1698       __ or3(L5, d, d);
  1700   } else {
  1701     // For LP64 we can probably do better.
  1702     split_long_move(masm, src, dst);
  1706 // A double move
  1707 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1709   // The painful thing here is that like long_move a VMRegPair might be
  1710   // 1: a single physical register
  1711   // 2: two physical registers (v8)
  1712   // 3: a physical reg [lo] and a stack slot [hi] (v8)
  1713   // 4: two stack slots
  1715   // Since src is always a java calling convention we know that the src pair
  1716   // is always either all registers or all stack (and aligned?)
  1718   // in a register [lo] and a stack slot [hi]
  1719   if (src.first()->is_stack()) {
  1720     if (dst.first()->is_stack()) {
  1721       // stack to stack the easiest of the bunch
  1722       // ought to be a way to do this where if alignment is ok we use ldd/std when possible
  1723       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
  1724       __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
  1725       __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
  1726       __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
  1727     } else {
  1728       // stack to reg
  1729       if (dst.second()->is_stack()) {
  1730         // stack -> reg, stack -> stack
  1731         __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
  1732         if (dst.first()->is_Register()) {
  1733           __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
  1734         } else {
  1735           __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
  1737         // This was missing. (very rare case)
  1738         __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
  1739       } else {
  1740         // stack -> reg
  1741         // Eventually optimize for alignment QQQ
  1742         if (dst.first()->is_Register()) {
  1743           __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
  1744           __ ld(FP, reg2offset(src.second()) + STACK_BIAS, dst.second()->as_Register());
  1745         } else {
  1746           __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
  1747           __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.second()) + STACK_BIAS, dst.second()->as_FloatRegister());
  1751   } else if (dst.first()->is_stack()) {
  1752     // reg to stack
  1753     if (src.first()->is_Register()) {
  1754       // Eventually optimize for alignment QQQ
  1755       __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1756       if (src.second()->is_stack()) {
  1757         __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
  1758         __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
  1759       } else {
  1760         __ st(src.second()->as_Register(), SP, reg2offset(dst.second()) + STACK_BIAS);
  1762     } else {
  1763       // fpr to stack
  1764       if (src.second()->is_stack()) {
  1765         ShouldNotReachHere();
  1766       } else {
  1767         // Is the stack aligned?
  1768         if (reg2offset(dst.first()) & 0x7) {
  1769           // No do as pairs
  1770           __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1771           __ stf(FloatRegisterImpl::S, src.second()->as_FloatRegister(), SP, reg2offset(dst.second()) + STACK_BIAS);
  1772         } else {
  1773           __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1777   } else {
  1778     // reg to reg
  1779     if (src.first()->is_Register()) {
  1780       if (dst.first()->is_Register()) {
  1781         // gpr -> gpr
  1782         __ mov(src.first()->as_Register(), dst.first()->as_Register());
  1783         __ mov(src.second()->as_Register(), dst.second()->as_Register());
  1784       } else {
  1785         // gpr -> fpr
  1786         // ought to be able to do a single store
  1787         __ stx(src.first()->as_Register(), FP, -8 + STACK_BIAS);
  1788         __ stx(src.second()->as_Register(), FP, -4 + STACK_BIAS);
  1789         // ought to be able to do a single load
  1790         __ ldf(FloatRegisterImpl::S, FP, -8 + STACK_BIAS, dst.first()->as_FloatRegister());
  1791         __ ldf(FloatRegisterImpl::S, FP, -4 + STACK_BIAS, dst.second()->as_FloatRegister());
  1793     } else if (dst.first()->is_Register()) {
  1794       // fpr -> gpr
  1795       // ought to be able to do a single store
  1796       __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(), FP, -8 + STACK_BIAS);
  1797       // ought to be able to do a single load
  1798       // REMEMBER first() is low address not LSB
  1799       __ ld(FP, -8 + STACK_BIAS, dst.first()->as_Register());
  1800       if (dst.second()->is_Register()) {
  1801         __ ld(FP, -4 + STACK_BIAS, dst.second()->as_Register());
  1802       } else {
  1803         __ ld(FP, -4 + STACK_BIAS, L4);
  1804         __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
  1806     } else {
  1807       // fpr -> fpr
  1808       // In theory these overlap but the ordering is such that this is likely a nop
  1809       if ( src.first() != dst.first()) {
  1810         __ fmov(FloatRegisterImpl::D, src.first()->as_FloatRegister(), dst.first()->as_FloatRegister());
  1816 // Creates an inner frame if one hasn't already been created, and
  1817 // saves a copy of the thread in L7_thread_cache
  1818 static void create_inner_frame(MacroAssembler* masm, bool* already_created) {
  1819   if (!*already_created) {
  1820     __ save_frame(0);
  1821     // Save thread in L7 (INNER FRAME); it crosses a bunch of VM calls below
  1822     // Don't use save_thread because it smashes G2 and we merely want to save a
  1823     // copy
  1824     __ mov(G2_thread, L7_thread_cache);
  1825     *already_created = true;
  1830 static void save_or_restore_arguments(MacroAssembler* masm,
  1831                                       const int stack_slots,
  1832                                       const int total_in_args,
  1833                                       const int arg_save_area,
  1834                                       OopMap* map,
  1835                                       VMRegPair* in_regs,
  1836                                       BasicType* in_sig_bt) {
  1837   // if map is non-NULL then the code should store the values,
  1838   // otherwise it should load them.
  1839   if (map != NULL) {
  1840     // Fill in the map
  1841     for (int i = 0; i < total_in_args; i++) {
  1842       if (in_sig_bt[i] == T_ARRAY) {
  1843         if (in_regs[i].first()->is_stack()) {
  1844           int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
  1845           map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
  1846         } else if (in_regs[i].first()->is_Register()) {
  1847           map->set_oop(in_regs[i].first());
  1848         } else {
  1849           ShouldNotReachHere();
  1855   // Save or restore double word values
  1856   int handle_index = 0;
  1857   for (int i = 0; i < total_in_args; i++) {
  1858     int slot = handle_index + arg_save_area;
  1859     int offset = slot * VMRegImpl::stack_slot_size;
  1860     if (in_sig_bt[i] == T_LONG && in_regs[i].first()->is_Register()) {
  1861       const Register reg = in_regs[i].first()->as_Register();
  1862       if (reg->is_global()) {
  1863         handle_index += 2;
  1864         assert(handle_index <= stack_slots, "overflow");
  1865         if (map != NULL) {
  1866           __ stx(reg, SP, offset + STACK_BIAS);
  1867         } else {
  1868           __ ldx(SP, offset + STACK_BIAS, reg);
  1871     } else if (in_sig_bt[i] == T_DOUBLE && in_regs[i].first()->is_FloatRegister()) {
  1872       handle_index += 2;
  1873       assert(handle_index <= stack_slots, "overflow");
  1874       if (map != NULL) {
  1875         __ stf(FloatRegisterImpl::D, in_regs[i].first()->as_FloatRegister(), SP, offset + STACK_BIAS);
  1876       } else {
  1877         __ ldf(FloatRegisterImpl::D, SP, offset + STACK_BIAS, in_regs[i].first()->as_FloatRegister());
  1881   // Save floats
  1882   for (int i = 0; i < total_in_args; i++) {
  1883     int slot = handle_index + arg_save_area;
  1884     int offset = slot * VMRegImpl::stack_slot_size;
  1885     if (in_sig_bt[i] == T_FLOAT && in_regs[i].first()->is_FloatRegister()) {
  1886       handle_index++;
  1887       assert(handle_index <= stack_slots, "overflow");
  1888       if (map != NULL) {
  1889         __ stf(FloatRegisterImpl::S, in_regs[i].first()->as_FloatRegister(), SP, offset + STACK_BIAS);
  1890       } else {
  1891         __ ldf(FloatRegisterImpl::S, SP, offset + STACK_BIAS, in_regs[i].first()->as_FloatRegister());
  1899 // Check GC_locker::needs_gc and enter the runtime if it's true.  This
  1900 // keeps a new JNI critical region from starting until a GC has been
  1901 // forced.  Save down any oops in registers and describe them in an
  1902 // OopMap.
  1903 static void check_needs_gc_for_critical_native(MacroAssembler* masm,
  1904                                                const int stack_slots,
  1905                                                const int total_in_args,
  1906                                                const int arg_save_area,
  1907                                                OopMapSet* oop_maps,
  1908                                                VMRegPair* in_regs,
  1909                                                BasicType* in_sig_bt) {
  1910   __ block_comment("check GC_locker::needs_gc");
  1911   Label cont;
  1912   AddressLiteral sync_state(GC_locker::needs_gc_address());
  1913   __ load_bool_contents(sync_state, G3_scratch);
  1914   __ cmp_zero_and_br(Assembler::equal, G3_scratch, cont);
  1915   __ delayed()->nop();
  1917   // Save down any values that are live in registers and call into the
  1918   // runtime to halt for a GC
  1919   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  1920   save_or_restore_arguments(masm, stack_slots, total_in_args,
  1921                             arg_save_area, map, in_regs, in_sig_bt);
  1923   __ mov(G2_thread, L7_thread_cache);
  1925   __ set_last_Java_frame(SP, noreg);
  1927   __ block_comment("block_for_jni_critical");
  1928   __ call(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical), relocInfo::runtime_call_type);
  1929   __ delayed()->mov(L7_thread_cache, O0);
  1930   oop_maps->add_gc_map( __ offset(), map);
  1932   __ restore_thread(L7_thread_cache); // restore G2_thread
  1933   __ reset_last_Java_frame();
  1935   // Reload all the register arguments
  1936   save_or_restore_arguments(masm, stack_slots, total_in_args,
  1937                             arg_save_area, NULL, in_regs, in_sig_bt);
  1939   __ bind(cont);
  1940 #ifdef ASSERT
  1941   if (StressCriticalJNINatives) {
  1942     // Stress register saving
  1943     OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  1944     save_or_restore_arguments(masm, stack_slots, total_in_args,
  1945                               arg_save_area, map, in_regs, in_sig_bt);
  1946     // Destroy argument registers
  1947     for (int i = 0; i < total_in_args; i++) {
  1948       if (in_regs[i].first()->is_Register()) {
  1949         const Register reg = in_regs[i].first()->as_Register();
  1950         if (reg->is_global()) {
  1951           __ mov(G0, reg);
  1953       } else if (in_regs[i].first()->is_FloatRegister()) {
  1954         __ fneg(FloatRegisterImpl::D, in_regs[i].first()->as_FloatRegister(), in_regs[i].first()->as_FloatRegister());
  1958     save_or_restore_arguments(masm, stack_slots, total_in_args,
  1959                               arg_save_area, NULL, in_regs, in_sig_bt);
  1961 #endif
  1964 // Unpack an array argument into a pointer to the body and the length
  1965 // if the array is non-null, otherwise pass 0 for both.
  1966 static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) {
  1967   // Pass the length, ptr pair
  1968   Label is_null, done;
  1969   if (reg.first()->is_stack()) {
  1970     VMRegPair tmp  = reg64_to_VMRegPair(L2);
  1971     // Load the arg up from the stack
  1972     move_ptr(masm, reg, tmp);
  1973     reg = tmp;
  1975   __ cmp(reg.first()->as_Register(), G0);
  1976   __ brx(Assembler::equal, false, Assembler::pt, is_null);
  1977   __ delayed()->add(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type), L4);
  1978   move_ptr(masm, reg64_to_VMRegPair(L4), body_arg);
  1979   __ ld(reg.first()->as_Register(), arrayOopDesc::length_offset_in_bytes(), L4);
  1980   move32_64(masm, reg64_to_VMRegPair(L4), length_arg);
  1981   __ ba_short(done);
  1982   __ bind(is_null);
  1983   // Pass zeros
  1984   move_ptr(masm, reg64_to_VMRegPair(G0), body_arg);
  1985   move32_64(masm, reg64_to_VMRegPair(G0), length_arg);
  1986   __ bind(done);
  1989 static void verify_oop_args(MacroAssembler* masm,
  1990                             int total_args_passed,
  1991                             const BasicType* sig_bt,
  1992                             const VMRegPair* regs) {
  1993   Register temp_reg = G5_method;  // not part of any compiled calling seq
  1994   if (VerifyOops) {
  1995     for (int i = 0; i < total_args_passed; i++) {
  1996       if (sig_bt[i] == T_OBJECT ||
  1997           sig_bt[i] == T_ARRAY) {
  1998         VMReg r = regs[i].first();
  1999         assert(r->is_valid(), "bad oop arg");
  2000         if (r->is_stack()) {
  2001           RegisterOrConstant ld_off = reg2offset(r) + STACK_BIAS;
  2002           ld_off = __ ensure_simm13_or_reg(ld_off, temp_reg);
  2003           __ ld_ptr(SP, ld_off, temp_reg);
  2004           __ verify_oop(temp_reg);
  2005         } else {
  2006           __ verify_oop(r->as_Register());
  2013 static void gen_special_dispatch(MacroAssembler* masm,
  2014                                  int total_args_passed,
  2015                                  int comp_args_on_stack,
  2016                                  vmIntrinsics::ID special_dispatch,
  2017                                  const BasicType* sig_bt,
  2018                                  const VMRegPair* regs) {
  2019   verify_oop_args(masm, total_args_passed, sig_bt, regs);
  2021   // Now write the args into the outgoing interpreter space
  2022   bool     has_receiver   = false;
  2023   Register receiver_reg   = noreg;
  2024   int      member_arg_pos = -1;
  2025   Register member_reg     = noreg;
  2026   int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(special_dispatch);
  2027   if (ref_kind != 0) {
  2028     member_arg_pos = total_args_passed - 1;  // trailing MemberName argument
  2029     member_reg = G5_method;  // known to be free at this point
  2030     has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
  2031   } else if (special_dispatch == vmIntrinsics::_invokeBasic) {
  2032     has_receiver = true;
  2033   } else {
  2034     fatal(err_msg("special_dispatch=%d", special_dispatch));
  2037   if (member_reg != noreg) {
  2038     // Load the member_arg into register, if necessary.
  2039     assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
  2040     assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
  2041     VMReg r = regs[member_arg_pos].first();
  2042     assert(r->is_valid(), "bad member arg");
  2043     if (r->is_stack()) {
  2044       RegisterOrConstant ld_off = reg2offset(r) + STACK_BIAS;
  2045       ld_off = __ ensure_simm13_or_reg(ld_off, member_reg);
  2046       __ ld_ptr(SP, ld_off, member_reg);
  2047     } else {
  2048       // no data motion is needed
  2049       member_reg = r->as_Register();
  2053   if (has_receiver) {
  2054     // Make sure the receiver is loaded into a register.
  2055     assert(total_args_passed > 0, "oob");
  2056     assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
  2057     VMReg r = regs[0].first();
  2058     assert(r->is_valid(), "bad receiver arg");
  2059     if (r->is_stack()) {
  2060       // Porting note:  This assumes that compiled calling conventions always
  2061       // pass the receiver oop in a register.  If this is not true on some
  2062       // platform, pick a temp and load the receiver from stack.
  2063       assert(false, "receiver always in a register");
  2064       receiver_reg = G3_scratch;  // known to be free at this point
  2065       RegisterOrConstant ld_off = reg2offset(r) + STACK_BIAS;
  2066       ld_off = __ ensure_simm13_or_reg(ld_off, member_reg);
  2067       __ ld_ptr(SP, ld_off, receiver_reg);
  2068     } else {
  2069       // no data motion is needed
  2070       receiver_reg = r->as_Register();
  2074   // Figure out which address we are really jumping to:
  2075   MethodHandles::generate_method_handle_dispatch(masm, special_dispatch,
  2076                                                  receiver_reg, member_reg, /*for_compiler_entry:*/ true);
  2079 // ---------------------------------------------------------------------------
  2080 // Generate a native wrapper for a given method.  The method takes arguments
  2081 // in the Java compiled code convention, marshals them to the native
  2082 // convention (handlizes oops, etc), transitions to native, makes the call,
  2083 // returns to java state (possibly blocking), unhandlizes any result and
  2084 // returns.
  2085 //
  2086 // Critical native functions are a shorthand for the use of
  2087 // GetPrimtiveArrayCritical and disallow the use of any other JNI
  2088 // functions.  The wrapper is expected to unpack the arguments before
  2089 // passing them to the callee and perform checks before and after the
  2090 // native call to ensure that they GC_locker
  2091 // lock_critical/unlock_critical semantics are followed.  Some other
  2092 // parts of JNI setup are skipped like the tear down of the JNI handle
  2093 // block and the check for pending exceptions it's impossible for them
  2094 // to be thrown.
  2095 //
  2096 // They are roughly structured like this:
  2097 //    if (GC_locker::needs_gc())
  2098 //      SharedRuntime::block_for_jni_critical();
  2099 //    tranistion to thread_in_native
  2100 //    unpack arrray arguments and call native entry point
  2101 //    check for safepoint in progress
  2102 //    check if any thread suspend flags are set
  2103 //      call into JVM and possible unlock the JNI critical
  2104 //      if a GC was suppressed while in the critical native.
  2105 //    transition back to thread_in_Java
  2106 //    return to caller
  2107 //
  2108 nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
  2109                                                 methodHandle method,
  2110                                                 int compile_id,
  2111                                                 int total_in_args,
  2112                                                 int comp_args_on_stack, // in VMRegStackSlots
  2113                                                 BasicType* in_sig_bt,
  2114                                                 VMRegPair* in_regs,
  2115                                                 BasicType ret_type) {
  2116   if (method->is_method_handle_intrinsic()) {
  2117     vmIntrinsics::ID iid = method->intrinsic_id();
  2118     intptr_t start = (intptr_t)__ pc();
  2119     int vep_offset = ((intptr_t)__ pc()) - start;
  2120     gen_special_dispatch(masm,
  2121                          total_in_args,
  2122                          comp_args_on_stack,
  2123                          method->intrinsic_id(),
  2124                          in_sig_bt,
  2125                          in_regs);
  2126     int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
  2127     __ flush();
  2128     int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
  2129     return nmethod::new_native_nmethod(method,
  2130                                        compile_id,
  2131                                        masm->code(),
  2132                                        vep_offset,
  2133                                        frame_complete,
  2134                                        stack_slots / VMRegImpl::slots_per_word,
  2135                                        in_ByteSize(-1),
  2136                                        in_ByteSize(-1),
  2137                                        (OopMapSet*)NULL);
  2139   bool is_critical_native = true;
  2140   address native_func = method->critical_native_function();
  2141   if (native_func == NULL) {
  2142     native_func = method->native_function();
  2143     is_critical_native = false;
  2145   assert(native_func != NULL, "must have function");
  2147   // Native nmethod wrappers never take possesion of the oop arguments.
  2148   // So the caller will gc the arguments. The only thing we need an
  2149   // oopMap for is if the call is static
  2150   //
  2151   // An OopMap for lock (and class if static), and one for the VM call itself
  2152   OopMapSet *oop_maps = new OopMapSet();
  2153   intptr_t start = (intptr_t)__ pc();
  2155   // First thing make an ic check to see if we should even be here
  2157     Label L;
  2158     const Register temp_reg = G3_scratch;
  2159     AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
  2160     __ verify_oop(O0);
  2161     __ load_klass(O0, temp_reg);
  2162     __ cmp_and_brx_short(temp_reg, G5_inline_cache_reg, Assembler::equal, Assembler::pt, L);
  2164     __ jump_to(ic_miss, temp_reg);
  2165     __ delayed()->nop();
  2166     __ align(CodeEntryAlignment);
  2167     __ bind(L);
  2170   int vep_offset = ((intptr_t)__ pc()) - start;
  2172 #ifdef COMPILER1
  2173   if (InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) {
  2174     // Object.hashCode can pull the hashCode from the header word
  2175     // instead of doing a full VM transition once it's been computed.
  2176     // Since hashCode is usually polymorphic at call sites we can't do
  2177     // this optimization at the call site without a lot of work.
  2178     Label slowCase;
  2179     Register receiver             = O0;
  2180     Register result               = O0;
  2181     Register header               = G3_scratch;
  2182     Register hash                 = G3_scratch; // overwrite header value with hash value
  2183     Register mask                 = G1;         // to get hash field from header
  2185     // Read the header and build a mask to get its hash field.  Give up if the object is not unlocked.
  2186     // We depend on hash_mask being at most 32 bits and avoid the use of
  2187     // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
  2188     // vm: see markOop.hpp.
  2189     __ ld_ptr(receiver, oopDesc::mark_offset_in_bytes(), header);
  2190     __ sethi(markOopDesc::hash_mask, mask);
  2191     __ btst(markOopDesc::unlocked_value, header);
  2192     __ br(Assembler::zero, false, Assembler::pn, slowCase);
  2193     if (UseBiasedLocking) {
  2194       // Check if biased and fall through to runtime if so
  2195       __ delayed()->nop();
  2196       __ btst(markOopDesc::biased_lock_bit_in_place, header);
  2197       __ br(Assembler::notZero, false, Assembler::pn, slowCase);
  2199     __ delayed()->or3(mask, markOopDesc::hash_mask & 0x3ff, mask);
  2201     // Check for a valid (non-zero) hash code and get its value.
  2202 #ifdef _LP64
  2203     __ srlx(header, markOopDesc::hash_shift, hash);
  2204 #else
  2205     __ srl(header, markOopDesc::hash_shift, hash);
  2206 #endif
  2207     __ andcc(hash, mask, hash);
  2208     __ br(Assembler::equal, false, Assembler::pn, slowCase);
  2209     __ delayed()->nop();
  2211     // leaf return.
  2212     __ retl();
  2213     __ delayed()->mov(hash, result);
  2214     __ bind(slowCase);
  2216 #endif // COMPILER1
  2219   // We have received a description of where all the java arg are located
  2220   // on entry to the wrapper. We need to convert these args to where
  2221   // the jni function will expect them. To figure out where they go
  2222   // we convert the java signature to a C signature by inserting
  2223   // the hidden arguments as arg[0] and possibly arg[1] (static method)
  2225   int total_c_args = total_in_args;
  2226   int total_save_slots = 6 * VMRegImpl::slots_per_word;
  2227   if (!is_critical_native) {
  2228     total_c_args += 1;
  2229     if (method->is_static()) {
  2230       total_c_args++;
  2232   } else {
  2233     for (int i = 0; i < total_in_args; i++) {
  2234       if (in_sig_bt[i] == T_ARRAY) {
  2235         // These have to be saved and restored across the safepoint
  2236         total_c_args++;
  2241   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
  2242   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
  2243   BasicType* in_elem_bt = NULL;
  2245   int argc = 0;
  2246   if (!is_critical_native) {
  2247     out_sig_bt[argc++] = T_ADDRESS;
  2248     if (method->is_static()) {
  2249       out_sig_bt[argc++] = T_OBJECT;
  2252     for (int i = 0; i < total_in_args ; i++ ) {
  2253       out_sig_bt[argc++] = in_sig_bt[i];
  2255   } else {
  2256     Thread* THREAD = Thread::current();
  2257     in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
  2258     SignatureStream ss(method->signature());
  2259     for (int i = 0; i < total_in_args ; i++ ) {
  2260       if (in_sig_bt[i] == T_ARRAY) {
  2261         // Arrays are passed as int, elem* pair
  2262         out_sig_bt[argc++] = T_INT;
  2263         out_sig_bt[argc++] = T_ADDRESS;
  2264         Symbol* atype = ss.as_symbol(CHECK_NULL);
  2265         const char* at = atype->as_C_string();
  2266         if (strlen(at) == 2) {
  2267           assert(at[0] == '[', "must be");
  2268           switch (at[1]) {
  2269             case 'B': in_elem_bt[i]  = T_BYTE; break;
  2270             case 'C': in_elem_bt[i]  = T_CHAR; break;
  2271             case 'D': in_elem_bt[i]  = T_DOUBLE; break;
  2272             case 'F': in_elem_bt[i]  = T_FLOAT; break;
  2273             case 'I': in_elem_bt[i]  = T_INT; break;
  2274             case 'J': in_elem_bt[i]  = T_LONG; break;
  2275             case 'S': in_elem_bt[i]  = T_SHORT; break;
  2276             case 'Z': in_elem_bt[i]  = T_BOOLEAN; break;
  2277             default: ShouldNotReachHere();
  2280       } else {
  2281         out_sig_bt[argc++] = in_sig_bt[i];
  2282         in_elem_bt[i] = T_VOID;
  2284       if (in_sig_bt[i] != T_VOID) {
  2285         assert(in_sig_bt[i] == ss.type(), "must match");
  2286         ss.next();
  2291   // Now figure out where the args must be stored and how much stack space
  2292   // they require (neglecting out_preserve_stack_slots but space for storing
  2293   // the 1st six register arguments). It's weird see int_stk_helper.
  2294   //
  2295   int out_arg_slots;
  2296   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
  2298   if (is_critical_native) {
  2299     // Critical natives may have to call out so they need a save area
  2300     // for register arguments.
  2301     int double_slots = 0;
  2302     int single_slots = 0;
  2303     for ( int i = 0; i < total_in_args; i++) {
  2304       if (in_regs[i].first()->is_Register()) {
  2305         const Register reg = in_regs[i].first()->as_Register();
  2306         switch (in_sig_bt[i]) {
  2307           case T_ARRAY:
  2308           case T_BOOLEAN:
  2309           case T_BYTE:
  2310           case T_SHORT:
  2311           case T_CHAR:
  2312           case T_INT:  assert(reg->is_in(), "don't need to save these"); break;
  2313           case T_LONG: if (reg->is_global()) double_slots++; break;
  2314           default:  ShouldNotReachHere();
  2316       } else if (in_regs[i].first()->is_FloatRegister()) {
  2317         switch (in_sig_bt[i]) {
  2318           case T_FLOAT:  single_slots++; break;
  2319           case T_DOUBLE: double_slots++; break;
  2320           default:  ShouldNotReachHere();
  2324     total_save_slots = double_slots * 2 + single_slots;
  2327   // Compute framesize for the wrapper.  We need to handlize all oops in
  2328   // registers. We must create space for them here that is disjoint from
  2329   // the windowed save area because we have no control over when we might
  2330   // flush the window again and overwrite values that gc has since modified.
  2331   // (The live window race)
  2332   //
  2333   // We always just allocate 6 word for storing down these object. This allow
  2334   // us to simply record the base and use the Ireg number to decide which
  2335   // slot to use. (Note that the reg number is the inbound number not the
  2336   // outbound number).
  2337   // We must shuffle args to match the native convention, and include var-args space.
  2339   // Calculate the total number of stack slots we will need.
  2341   // First count the abi requirement plus all of the outgoing args
  2342   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
  2344   // Now the space for the inbound oop handle area
  2346   int oop_handle_offset = round_to(stack_slots, 2);
  2347   stack_slots += total_save_slots;
  2349   // Now any space we need for handlizing a klass if static method
  2351   int klass_slot_offset = 0;
  2352   int klass_offset = -1;
  2353   int lock_slot_offset = 0;
  2354   bool is_static = false;
  2356   if (method->is_static()) {
  2357     klass_slot_offset = stack_slots;
  2358     stack_slots += VMRegImpl::slots_per_word;
  2359     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
  2360     is_static = true;
  2363   // Plus a lock if needed
  2365   if (method->is_synchronized()) {
  2366     lock_slot_offset = stack_slots;
  2367     stack_slots += VMRegImpl::slots_per_word;
  2370   // Now a place to save return value or as a temporary for any gpr -> fpr moves
  2371   stack_slots += 2;
  2373   // Ok The space we have allocated will look like:
  2374   //
  2375   //
  2376   // FP-> |                     |
  2377   //      |---------------------|
  2378   //      | 2 slots for moves   |
  2379   //      |---------------------|
  2380   //      | lock box (if sync)  |
  2381   //      |---------------------| <- lock_slot_offset
  2382   //      | klass (if static)   |
  2383   //      |---------------------| <- klass_slot_offset
  2384   //      | oopHandle area      |
  2385   //      |---------------------| <- oop_handle_offset
  2386   //      | outbound memory     |
  2387   //      | based arguments     |
  2388   //      |                     |
  2389   //      |---------------------|
  2390   //      | vararg area         |
  2391   //      |---------------------|
  2392   //      |                     |
  2393   // SP-> | out_preserved_slots |
  2394   //
  2395   //
  2398   // Now compute actual number of stack words we need rounding to make
  2399   // stack properly aligned.
  2400   stack_slots = round_to(stack_slots, 2 * VMRegImpl::slots_per_word);
  2402   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
  2404   // Generate stack overflow check before creating frame
  2405   __ generate_stack_overflow_check(stack_size);
  2407   // Generate a new frame for the wrapper.
  2408   __ save(SP, -stack_size, SP);
  2410   int frame_complete = ((intptr_t)__ pc()) - start;
  2412   __ verify_thread();
  2414   if (is_critical_native) {
  2415     check_needs_gc_for_critical_native(masm, stack_slots,  total_in_args,
  2416                                        oop_handle_offset, oop_maps, in_regs, in_sig_bt);
  2419   //
  2420   // We immediately shuffle the arguments so that any vm call we have to
  2421   // make from here on out (sync slow path, jvmti, etc.) we will have
  2422   // captured the oops from our caller and have a valid oopMap for
  2423   // them.
  2425   // -----------------
  2426   // The Grand Shuffle
  2427   //
  2428   // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
  2429   // (derived from JavaThread* which is in L7_thread_cache) and, if static,
  2430   // the class mirror instead of a receiver.  This pretty much guarantees that
  2431   // register layout will not match.  We ignore these extra arguments during
  2432   // the shuffle. The shuffle is described by the two calling convention
  2433   // vectors we have in our possession. We simply walk the java vector to
  2434   // get the source locations and the c vector to get the destinations.
  2435   // Because we have a new window and the argument registers are completely
  2436   // disjoint ( I0 -> O1, I1 -> O2, ...) we have nothing to worry about
  2437   // here.
  2439   // This is a trick. We double the stack slots so we can claim
  2440   // the oops in the caller's frame. Since we are sure to have
  2441   // more args than the caller doubling is enough to make
  2442   // sure we can capture all the incoming oop args from the
  2443   // caller.
  2444   //
  2445   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  2446   // Record sp-based slot for receiver on stack for non-static methods
  2447   int receiver_offset = -1;
  2449   // We move the arguments backward because the floating point registers
  2450   // destination will always be to a register with a greater or equal register
  2451   // number or the stack.
  2453 #ifdef ASSERT
  2454   bool reg_destroyed[RegisterImpl::number_of_registers];
  2455   bool freg_destroyed[FloatRegisterImpl::number_of_registers];
  2456   for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
  2457     reg_destroyed[r] = false;
  2459   for ( int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++ ) {
  2460     freg_destroyed[f] = false;
  2463 #endif /* ASSERT */
  2465   for ( int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0 ; i--, c_arg-- ) {
  2467 #ifdef ASSERT
  2468     if (in_regs[i].first()->is_Register()) {
  2469       assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "ack!");
  2470     } else if (in_regs[i].first()->is_FloatRegister()) {
  2471       assert(!freg_destroyed[in_regs[i].first()->as_FloatRegister()->encoding(FloatRegisterImpl::S)], "ack!");
  2473     if (out_regs[c_arg].first()->is_Register()) {
  2474       reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
  2475     } else if (out_regs[c_arg].first()->is_FloatRegister()) {
  2476       freg_destroyed[out_regs[c_arg].first()->as_FloatRegister()->encoding(FloatRegisterImpl::S)] = true;
  2478 #endif /* ASSERT */
  2480     switch (in_sig_bt[i]) {
  2481       case T_ARRAY:
  2482         if (is_critical_native) {
  2483           unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg], out_regs[c_arg - 1]);
  2484           c_arg--;
  2485           break;
  2487       case T_OBJECT:
  2488         assert(!is_critical_native, "no oop arguments");
  2489         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
  2490                     ((i == 0) && (!is_static)),
  2491                     &receiver_offset);
  2492         break;
  2493       case T_VOID:
  2494         break;
  2496       case T_FLOAT:
  2497         float_move(masm, in_regs[i], out_regs[c_arg]);
  2498         break;
  2500       case T_DOUBLE:
  2501         assert( i + 1 < total_in_args &&
  2502                 in_sig_bt[i + 1] == T_VOID &&
  2503                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
  2504         double_move(masm, in_regs[i], out_regs[c_arg]);
  2505         break;
  2507       case T_LONG :
  2508         long_move(masm, in_regs[i], out_regs[c_arg]);
  2509         break;
  2511       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
  2513       default:
  2514         move32_64(masm, in_regs[i], out_regs[c_arg]);
  2518   // Pre-load a static method's oop into O1.  Used both by locking code and
  2519   // the normal JNI call code.
  2520   if (method->is_static() && !is_critical_native) {
  2521     __ set_oop_constant(JNIHandles::make_local(Klass::cast(method->method_holder())->java_mirror()), O1);
  2523     // Now handlize the static class mirror in O1.  It's known not-null.
  2524     __ st_ptr(O1, SP, klass_offset + STACK_BIAS);
  2525     map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
  2526     __ add(SP, klass_offset + STACK_BIAS, O1);
  2530   const Register L6_handle = L6;
  2532   if (method->is_synchronized()) {
  2533     assert(!is_critical_native, "unhandled");
  2534     __ mov(O1, L6_handle);
  2537   // We have all of the arguments setup at this point. We MUST NOT touch any Oregs
  2538   // except O6/O7. So if we must call out we must push a new frame. We immediately
  2539   // push a new frame and flush the windows.
  2540 #ifdef _LP64
  2541   intptr_t thepc = (intptr_t) __ pc();
  2543     address here = __ pc();
  2544     // Call the next instruction
  2545     __ call(here + 8, relocInfo::none);
  2546     __ delayed()->nop();
  2548 #else
  2549   intptr_t thepc = __ load_pc_address(O7, 0);
  2550 #endif /* _LP64 */
  2552   // We use the same pc/oopMap repeatedly when we call out
  2553   oop_maps->add_gc_map(thepc - start, map);
  2555   // O7 now has the pc loaded that we will use when we finally call to native.
  2557   // Save thread in L7; it crosses a bunch of VM calls below
  2558   // Don't use save_thread because it smashes G2 and we merely
  2559   // want to save a copy
  2560   __ mov(G2_thread, L7_thread_cache);
  2563   // If we create an inner frame once is plenty
  2564   // when we create it we must also save G2_thread
  2565   bool inner_frame_created = false;
  2567   // dtrace method entry support
  2569     SkipIfEqual skip_if(
  2570       masm, G3_scratch, &DTraceMethodProbes, Assembler::zero);
  2571     // create inner frame
  2572     __ save_frame(0);
  2573     __ mov(G2_thread, L7_thread_cache);
  2574     __ set_oop_constant(JNIHandles::make_local(method()), O1);
  2575     __ call_VM_leaf(L7_thread_cache,
  2576          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
  2577          G2_thread, O1);
  2578     __ restore();
  2581   // RedefineClasses() tracing support for obsolete method entry
  2582   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
  2583     // create inner frame
  2584     __ save_frame(0);
  2585     __ mov(G2_thread, L7_thread_cache);
  2586     __ set_oop_constant(JNIHandles::make_local(method()), O1);
  2587     __ call_VM_leaf(L7_thread_cache,
  2588          CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
  2589          G2_thread, O1);
  2590     __ restore();
  2593   // We are in the jni frame unless saved_frame is true in which case
  2594   // we are in one frame deeper (the "inner" frame). If we are in the
  2595   // "inner" frames the args are in the Iregs and if the jni frame then
  2596   // they are in the Oregs.
  2597   // If we ever need to go to the VM (for locking, jvmti) then
  2598   // we will always be in the "inner" frame.
  2600   // Lock a synchronized method
  2601   int lock_offset = -1;         // Set if locked
  2602   if (method->is_synchronized()) {
  2603     Register Roop = O1;
  2604     const Register L3_box = L3;
  2606     create_inner_frame(masm, &inner_frame_created);
  2608     __ ld_ptr(I1, 0, O1);
  2609     Label done;
  2611     lock_offset = (lock_slot_offset * VMRegImpl::stack_slot_size);
  2612     __ add(FP, lock_offset+STACK_BIAS, L3_box);
  2613 #ifdef ASSERT
  2614     if (UseBiasedLocking) {
  2615       // making the box point to itself will make it clear it went unused
  2616       // but also be obviously invalid
  2617       __ st_ptr(L3_box, L3_box, 0);
  2619 #endif // ASSERT
  2620     //
  2621     // Compiler_lock_object (Roop, Rmark, Rbox, Rscratch) -- kills Rmark, Rbox, Rscratch
  2622     //
  2623     __ compiler_lock_object(Roop, L1,    L3_box, L2);
  2624     __ br(Assembler::equal, false, Assembler::pt, done);
  2625     __ delayed() -> add(FP, lock_offset+STACK_BIAS, L3_box);
  2628     // None of the above fast optimizations worked so we have to get into the
  2629     // slow case of monitor enter.  Inline a special case of call_VM that
  2630     // disallows any pending_exception.
  2631     __ mov(Roop, O0);            // Need oop in O0
  2632     __ mov(L3_box, O1);
  2634     // Record last_Java_sp, in case the VM code releases the JVM lock.
  2636     __ set_last_Java_frame(FP, I7);
  2638     // do the call
  2639     __ call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), relocInfo::runtime_call_type);
  2640     __ delayed()->mov(L7_thread_cache, O2);
  2642     __ restore_thread(L7_thread_cache); // restore G2_thread
  2643     __ reset_last_Java_frame();
  2645 #ifdef ASSERT
  2646     { Label L;
  2647     __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O0);
  2648     __ br_null_short(O0, Assembler::pt, L);
  2649     __ stop("no pending exception allowed on exit from IR::monitorenter");
  2650     __ bind(L);
  2652 #endif
  2653     __ bind(done);
  2657   // Finally just about ready to make the JNI call
  2659   __ flush_windows();
  2660   if (inner_frame_created) {
  2661     __ restore();
  2662   } else {
  2663     // Store only what we need from this frame
  2664     // QQQ I think that non-v9 (like we care) we don't need these saves
  2665     // either as the flush traps and the current window goes too.
  2666     __ st_ptr(FP, SP, FP->sp_offset_in_saved_window()*wordSize + STACK_BIAS);
  2667     __ st_ptr(I7, SP, I7->sp_offset_in_saved_window()*wordSize + STACK_BIAS);
  2670   // get JNIEnv* which is first argument to native
  2671   if (!is_critical_native) {
  2672     __ add(G2_thread, in_bytes(JavaThread::jni_environment_offset()), O0);
  2675   // Use that pc we placed in O7 a while back as the current frame anchor
  2676   __ set_last_Java_frame(SP, O7);
  2678   // We flushed the windows ages ago now mark them as flushed before transitioning.
  2679   __ set(JavaFrameAnchor::flushed, G3_scratch);
  2680   __ st(G3_scratch, G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
  2682   // Transition from _thread_in_Java to _thread_in_native.
  2683   __ set(_thread_in_native, G3_scratch);
  2685 #ifdef _LP64
  2686   AddressLiteral dest(native_func);
  2687   __ relocate(relocInfo::runtime_call_type);
  2688   __ jumpl_to(dest, O7, O7);
  2689 #else
  2690   __ call(native_func, relocInfo::runtime_call_type);
  2691 #endif
  2692   __ delayed()->st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
  2694   __ restore_thread(L7_thread_cache); // restore G2_thread
  2696   // Unpack native results.  For int-types, we do any needed sign-extension
  2697   // and move things into I0.  The return value there will survive any VM
  2698   // calls for blocking or unlocking.  An FP or OOP result (handle) is done
  2699   // specially in the slow-path code.
  2700   switch (ret_type) {
  2701   case T_VOID:    break;        // Nothing to do!
  2702   case T_FLOAT:   break;        // Got it where we want it (unless slow-path)
  2703   case T_DOUBLE:  break;        // Got it where we want it (unless slow-path)
  2704   // In 64 bits build result is in O0, in O0, O1 in 32bit build
  2705   case T_LONG:
  2706 #ifndef _LP64
  2707                   __ mov(O1, I1);
  2708 #endif
  2709                   // Fall thru
  2710   case T_OBJECT:                // Really a handle
  2711   case T_ARRAY:
  2712   case T_INT:
  2713                   __ mov(O0, I0);
  2714                   break;
  2715   case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, I0); break; // !0 => true; 0 => false
  2716   case T_BYTE   : __ sll(O0, 24, O0); __ sra(O0, 24, I0);   break;
  2717   case T_CHAR   : __ sll(O0, 16, O0); __ srl(O0, 16, I0);   break; // cannot use and3, 0xFFFF too big as immediate value!
  2718   case T_SHORT  : __ sll(O0, 16, O0); __ sra(O0, 16, I0);   break;
  2719     break;                      // Cannot de-handlize until after reclaiming jvm_lock
  2720   default:
  2721     ShouldNotReachHere();
  2724   Label after_transition;
  2725   // must we block?
  2727   // Block, if necessary, before resuming in _thread_in_Java state.
  2728   // In order for GC to work, don't clear the last_Java_sp until after blocking.
  2729   { Label no_block;
  2730     AddressLiteral sync_state(SafepointSynchronize::address_of_state());
  2732     // Switch thread to "native transition" state before reading the synchronization state.
  2733     // This additional state is necessary because reading and testing the synchronization
  2734     // state is not atomic w.r.t. GC, as this scenario demonstrates:
  2735     //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
  2736     //     VM thread changes sync state to synchronizing and suspends threads for GC.
  2737     //     Thread A is resumed to finish this native method, but doesn't block here since it
  2738     //     didn't see any synchronization is progress, and escapes.
  2739     __ set(_thread_in_native_trans, G3_scratch);
  2740     __ st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
  2741     if(os::is_MP()) {
  2742       if (UseMembar) {
  2743         // Force this write out before the read below
  2744         __ membar(Assembler::StoreLoad);
  2745       } else {
  2746         // Write serialization page so VM thread can do a pseudo remote membar.
  2747         // We use the current thread pointer to calculate a thread specific
  2748         // offset to write to within the page. This minimizes bus traffic
  2749         // due to cache line collision.
  2750         __ serialize_memory(G2_thread, G1_scratch, G3_scratch);
  2753     __ load_contents(sync_state, G3_scratch);
  2754     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
  2756     Label L;
  2757     Address suspend_state(G2_thread, JavaThread::suspend_flags_offset());
  2758     __ br(Assembler::notEqual, false, Assembler::pn, L);
  2759     __ delayed()->ld(suspend_state, G3_scratch);
  2760     __ cmp_and_br_short(G3_scratch, 0, Assembler::equal, Assembler::pt, no_block);
  2761     __ bind(L);
  2763     // Block.  Save any potential method result value before the operation and
  2764     // use a leaf call to leave the last_Java_frame setup undisturbed. Doing this
  2765     // lets us share the oopMap we used when we went native rather the create
  2766     // a distinct one for this pc
  2767     //
  2768     save_native_result(masm, ret_type, stack_slots);
  2769     if (!is_critical_native) {
  2770       __ call_VM_leaf(L7_thread_cache,
  2771                       CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
  2772                       G2_thread);
  2773     } else {
  2774       __ call_VM_leaf(L7_thread_cache,
  2775                       CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans_and_transition),
  2776                       G2_thread);
  2779     // Restore any method result value
  2780     restore_native_result(masm, ret_type, stack_slots);
  2782     if (is_critical_native) {
  2783       // The call above performed the transition to thread_in_Java so
  2784       // skip the transition logic below.
  2785       __ ba(after_transition);
  2786       __ delayed()->nop();
  2789     __ bind(no_block);
  2792   // thread state is thread_in_native_trans. Any safepoint blocking has already
  2793   // happened so we can now change state to _thread_in_Java.
  2794   __ set(_thread_in_Java, G3_scratch);
  2795   __ st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
  2796   __ bind(after_transition);
  2798   Label no_reguard;
  2799   __ ld(G2_thread, JavaThread::stack_guard_state_offset(), G3_scratch);
  2800   __ cmp_and_br_short(G3_scratch, JavaThread::stack_guard_yellow_disabled, Assembler::notEqual, Assembler::pt, no_reguard);
  2802     save_native_result(masm, ret_type, stack_slots);
  2803   __ call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages));
  2804   __ delayed()->nop();
  2806   __ restore_thread(L7_thread_cache); // restore G2_thread
  2807     restore_native_result(masm, ret_type, stack_slots);
  2809   __ bind(no_reguard);
  2811   // Handle possible exception (will unlock if necessary)
  2813   // native result if any is live in freg or I0 (and I1 if long and 32bit vm)
  2815   // Unlock
  2816   if (method->is_synchronized()) {
  2817     Label done;
  2818     Register I2_ex_oop = I2;
  2819     const Register L3_box = L3;
  2820     // Get locked oop from the handle we passed to jni
  2821     __ ld_ptr(L6_handle, 0, L4);
  2822     __ add(SP, lock_offset+STACK_BIAS, L3_box);
  2823     // Must save pending exception around the slow-path VM call.  Since it's a
  2824     // leaf call, the pending exception (if any) can be kept in a register.
  2825     __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), I2_ex_oop);
  2826     // Now unlock
  2827     //                       (Roop, Rmark, Rbox,   Rscratch)
  2828     __ compiler_unlock_object(L4,   L1,    L3_box, L2);
  2829     __ br(Assembler::equal, false, Assembler::pt, done);
  2830     __ delayed()-> add(SP, lock_offset+STACK_BIAS, L3_box);
  2832     // save and restore any potential method result value around the unlocking
  2833     // operation.  Will save in I0 (or stack for FP returns).
  2834     save_native_result(masm, ret_type, stack_slots);
  2836     // Must clear pending-exception before re-entering the VM.  Since this is
  2837     // a leaf call, pending-exception-oop can be safely kept in a register.
  2838     __ st_ptr(G0, G2_thread, in_bytes(Thread::pending_exception_offset()));
  2840     // slow case of monitor enter.  Inline a special case of call_VM that
  2841     // disallows any pending_exception.
  2842     __ mov(L3_box, O1);
  2844     __ call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), relocInfo::runtime_call_type);
  2845     __ delayed()->mov(L4, O0);              // Need oop in O0
  2847     __ restore_thread(L7_thread_cache); // restore G2_thread
  2849 #ifdef ASSERT
  2850     { Label L;
  2851     __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O0);
  2852     __ br_null_short(O0, Assembler::pt, L);
  2853     __ stop("no pending exception allowed on exit from IR::monitorexit");
  2854     __ bind(L);
  2856 #endif
  2857     restore_native_result(masm, ret_type, stack_slots);
  2858     // check_forward_pending_exception jump to forward_exception if any pending
  2859     // exception is set.  The forward_exception routine expects to see the
  2860     // exception in pending_exception and not in a register.  Kind of clumsy,
  2861     // since all folks who branch to forward_exception must have tested
  2862     // pending_exception first and hence have it in a register already.
  2863     __ st_ptr(I2_ex_oop, G2_thread, in_bytes(Thread::pending_exception_offset()));
  2864     __ bind(done);
  2867   // Tell dtrace about this method exit
  2869     SkipIfEqual skip_if(
  2870       masm, G3_scratch, &DTraceMethodProbes, Assembler::zero);
  2871     save_native_result(masm, ret_type, stack_slots);
  2872     __ set_oop_constant(JNIHandles::make_local(method()), O1);
  2873     __ call_VM_leaf(L7_thread_cache,
  2874        CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
  2875        G2_thread, O1);
  2876     restore_native_result(masm, ret_type, stack_slots);
  2879   // Clear "last Java frame" SP and PC.
  2880   __ verify_thread(); // G2_thread must be correct
  2881   __ reset_last_Java_frame();
  2883   // Unpack oop result
  2884   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
  2885       Label L;
  2886       __ addcc(G0, I0, G0);
  2887       __ brx(Assembler::notZero, true, Assembler::pt, L);
  2888       __ delayed()->ld_ptr(I0, 0, I0);
  2889       __ mov(G0, I0);
  2890       __ bind(L);
  2891       __ verify_oop(I0);
  2894   if (!is_critical_native) {
  2895     // reset handle block
  2896     __ ld_ptr(G2_thread, in_bytes(JavaThread::active_handles_offset()), L5);
  2897     __ st_ptr(G0, L5, JNIHandleBlock::top_offset_in_bytes());
  2899     __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), G3_scratch);
  2900     check_forward_pending_exception(masm, G3_scratch);
  2904   // Return
  2906 #ifndef _LP64
  2907   if (ret_type == T_LONG) {
  2909     // Must leave proper result in O0,O1 and G1 (c2/tiered only)
  2910     __ sllx(I0, 32, G1);          // Shift bits into high G1
  2911     __ srl (I1, 0, I1);           // Zero extend O1 (harmless?)
  2912     __ or3 (I1, G1, G1);          // OR 64 bits into G1
  2914 #endif
  2916   __ ret();
  2917   __ delayed()->restore();
  2919   __ flush();
  2921   nmethod *nm = nmethod::new_native_nmethod(method,
  2922                                             compile_id,
  2923                                             masm->code(),
  2924                                             vep_offset,
  2925                                             frame_complete,
  2926                                             stack_slots / VMRegImpl::slots_per_word,
  2927                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
  2928                                             in_ByteSize(lock_offset),
  2929                                             oop_maps);
  2931   if (is_critical_native) {
  2932     nm->set_lazy_critical_native(true);
  2934   return nm;
  2938 #ifdef HAVE_DTRACE_H
  2939 // ---------------------------------------------------------------------------
  2940 // Generate a dtrace nmethod for a given signature.  The method takes arguments
  2941 // in the Java compiled code convention, marshals them to the native
  2942 // abi and then leaves nops at the position you would expect to call a native
  2943 // function. When the probe is enabled the nops are replaced with a trap
  2944 // instruction that dtrace inserts and the trace will cause a notification
  2945 // to dtrace.
  2946 //
  2947 // The probes are only able to take primitive types and java/lang/String as
  2948 // arguments.  No other java types are allowed. Strings are converted to utf8
  2949 // strings so that from dtrace point of view java strings are converted to C
  2950 // strings. There is an arbitrary fixed limit on the total space that a method
  2951 // can use for converting the strings. (256 chars per string in the signature).
  2952 // So any java string larger then this is truncated.
  2954 static int  fp_offset[ConcreteRegisterImpl::number_of_registers] = { 0 };
  2955 static bool offsets_initialized = false;
  2957 nmethod *SharedRuntime::generate_dtrace_nmethod(
  2958     MacroAssembler *masm, methodHandle method) {
  2961   // generate_dtrace_nmethod is guarded by a mutex so we are sure to
  2962   // be single threaded in this method.
  2963   assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
  2965   // Fill in the signature array, for the calling-convention call.
  2966   int total_args_passed = method->size_of_parameters();
  2968   BasicType* in_sig_bt  = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
  2969   VMRegPair  *in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
  2971   // The signature we are going to use for the trap that dtrace will see
  2972   // java/lang/String is converted. We drop "this" and any other object
  2973   // is converted to NULL.  (A one-slot java/lang/Long object reference
  2974   // is converted to a two-slot long, which is why we double the allocation).
  2975   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
  2976   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
  2978   int i=0;
  2979   int total_strings = 0;
  2980   int first_arg_to_pass = 0;
  2981   int total_c_args = 0;
  2983   // Skip the receiver as dtrace doesn't want to see it
  2984   if( !method->is_static() ) {
  2985     in_sig_bt[i++] = T_OBJECT;
  2986     first_arg_to_pass = 1;
  2989   SignatureStream ss(method->signature());
  2990   for ( ; !ss.at_return_type(); ss.next()) {
  2991     BasicType bt = ss.type();
  2992     in_sig_bt[i++] = bt;  // Collect remaining bits of signature
  2993     out_sig_bt[total_c_args++] = bt;
  2994     if( bt == T_OBJECT) {
  2995       Symbol* s = ss.as_symbol_or_null();
  2996       if (s == vmSymbols::java_lang_String()) {
  2997         total_strings++;
  2998         out_sig_bt[total_c_args-1] = T_ADDRESS;
  2999       } else if (s == vmSymbols::java_lang_Boolean() ||
  3000                  s == vmSymbols::java_lang_Byte()) {
  3001         out_sig_bt[total_c_args-1] = T_BYTE;
  3002       } else if (s == vmSymbols::java_lang_Character() ||
  3003                  s == vmSymbols::java_lang_Short()) {
  3004         out_sig_bt[total_c_args-1] = T_SHORT;
  3005       } else if (s == vmSymbols::java_lang_Integer() ||
  3006                  s == vmSymbols::java_lang_Float()) {
  3007         out_sig_bt[total_c_args-1] = T_INT;
  3008       } else if (s == vmSymbols::java_lang_Long() ||
  3009                  s == vmSymbols::java_lang_Double()) {
  3010         out_sig_bt[total_c_args-1] = T_LONG;
  3011         out_sig_bt[total_c_args++] = T_VOID;
  3013     } else if ( bt == T_LONG || bt == T_DOUBLE ) {
  3014       in_sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  3015       // We convert double to long
  3016       out_sig_bt[total_c_args-1] = T_LONG;
  3017       out_sig_bt[total_c_args++] = T_VOID;
  3018     } else if ( bt == T_FLOAT) {
  3019       // We convert float to int
  3020       out_sig_bt[total_c_args-1] = T_INT;
  3024   assert(i==total_args_passed, "validly parsed signature");
  3026   // Now get the compiled-Java layout as input arguments
  3027   int comp_args_on_stack;
  3028   comp_args_on_stack = SharedRuntime::java_calling_convention(
  3029       in_sig_bt, in_regs, total_args_passed, false);
  3031   // We have received a description of where all the java arg are located
  3032   // on entry to the wrapper. We need to convert these args to where
  3033   // the a  native (non-jni) function would expect them. To figure out
  3034   // where they go we convert the java signature to a C signature and remove
  3035   // T_VOID for any long/double we might have received.
  3038   // Now figure out where the args must be stored and how much stack space
  3039   // they require (neglecting out_preserve_stack_slots but space for storing
  3040   // the 1st six register arguments). It's weird see int_stk_helper.
  3041   //
  3042   int out_arg_slots;
  3043   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
  3045   // Calculate the total number of stack slots we will need.
  3047   // First count the abi requirement plus all of the outgoing args
  3048   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
  3050   // Plus a temp for possible converion of float/double/long register args
  3052   int conversion_temp = stack_slots;
  3053   stack_slots += 2;
  3056   // Now space for the string(s) we must convert
  3058   int string_locs = stack_slots;
  3059   stack_slots += total_strings *
  3060                    (max_dtrace_string_size / VMRegImpl::stack_slot_size);
  3062   // Ok The space we have allocated will look like:
  3063   //
  3064   //
  3065   // FP-> |                     |
  3066   //      |---------------------|
  3067   //      | string[n]           |
  3068   //      |---------------------| <- string_locs[n]
  3069   //      | string[n-1]         |
  3070   //      |---------------------| <- string_locs[n-1]
  3071   //      | ...                 |
  3072   //      | ...                 |
  3073   //      |---------------------| <- string_locs[1]
  3074   //      | string[0]           |
  3075   //      |---------------------| <- string_locs[0]
  3076   //      | temp                |
  3077   //      |---------------------| <- conversion_temp
  3078   //      | outbound memory     |
  3079   //      | based arguments     |
  3080   //      |                     |
  3081   //      |---------------------|
  3082   //      |                     |
  3083   // SP-> | out_preserved_slots |
  3084   //
  3085   //
  3087   // Now compute actual number of stack words we need rounding to make
  3088   // stack properly aligned.
  3089   stack_slots = round_to(stack_slots, 4 * VMRegImpl::slots_per_word);
  3091   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
  3093   intptr_t start = (intptr_t)__ pc();
  3095   // First thing make an ic check to see if we should even be here
  3098     Label L;
  3099     const Register temp_reg = G3_scratch;
  3100     AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
  3101     __ verify_oop(O0);
  3102     __ ld_ptr(O0, oopDesc::klass_offset_in_bytes(), temp_reg);
  3103     __ cmp_and_brx_short(temp_reg, G5_inline_cache_reg, Assembler::equal, Assembler::pt, L);
  3105     __ jump_to(ic_miss, temp_reg);
  3106     __ delayed()->nop();
  3107     __ align(CodeEntryAlignment);
  3108     __ bind(L);
  3111   int vep_offset = ((intptr_t)__ pc()) - start;
  3114   // The instruction at the verified entry point must be 5 bytes or longer
  3115   // because it can be patched on the fly by make_non_entrant. The stack bang
  3116   // instruction fits that requirement.
  3118   // Generate stack overflow check before creating frame
  3119   __ generate_stack_overflow_check(stack_size);
  3121   assert(((intptr_t)__ pc() - start - vep_offset) >= 5,
  3122          "valid size for make_non_entrant");
  3124   // Generate a new frame for the wrapper.
  3125   __ save(SP, -stack_size, SP);
  3127   // Frame is now completed as far a size and linkage.
  3129   int frame_complete = ((intptr_t)__ pc()) - start;
  3131 #ifdef ASSERT
  3132   bool reg_destroyed[RegisterImpl::number_of_registers];
  3133   bool freg_destroyed[FloatRegisterImpl::number_of_registers];
  3134   for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
  3135     reg_destroyed[r] = false;
  3137   for ( int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++ ) {
  3138     freg_destroyed[f] = false;
  3141 #endif /* ASSERT */
  3143   VMRegPair zero;
  3144   const Register g0 = G0; // without this we get a compiler warning (why??)
  3145   zero.set2(g0->as_VMReg());
  3147   int c_arg, j_arg;
  3149   Register conversion_off = noreg;
  3151   for (j_arg = first_arg_to_pass, c_arg = 0 ;
  3152        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
  3154     VMRegPair src = in_regs[j_arg];
  3155     VMRegPair dst = out_regs[c_arg];
  3157 #ifdef ASSERT
  3158     if (src.first()->is_Register()) {
  3159       assert(!reg_destroyed[src.first()->as_Register()->encoding()], "ack!");
  3160     } else if (src.first()->is_FloatRegister()) {
  3161       assert(!freg_destroyed[src.first()->as_FloatRegister()->encoding(
  3162                                                FloatRegisterImpl::S)], "ack!");
  3164     if (dst.first()->is_Register()) {
  3165       reg_destroyed[dst.first()->as_Register()->encoding()] = true;
  3166     } else if (dst.first()->is_FloatRegister()) {
  3167       freg_destroyed[dst.first()->as_FloatRegister()->encoding(
  3168                                                  FloatRegisterImpl::S)] = true;
  3170 #endif /* ASSERT */
  3172     switch (in_sig_bt[j_arg]) {
  3173       case T_ARRAY:
  3174       case T_OBJECT:
  3176           if (out_sig_bt[c_arg] == T_BYTE  || out_sig_bt[c_arg] == T_SHORT ||
  3177               out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
  3178             // need to unbox a one-slot value
  3179             Register in_reg = L0;
  3180             Register tmp = L2;
  3181             if ( src.first()->is_reg() ) {
  3182               in_reg = src.first()->as_Register();
  3183             } else {
  3184               assert(Assembler::is_simm13(reg2offset(src.first()) + STACK_BIAS),
  3185                      "must be");
  3186               __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, in_reg);
  3188             // If the final destination is an acceptable register
  3189             if ( dst.first()->is_reg() ) {
  3190               if ( dst.is_single_phys_reg() || out_sig_bt[c_arg] != T_LONG ) {
  3191                 tmp = dst.first()->as_Register();
  3195             Label skipUnbox;
  3196             if ( wordSize == 4 && out_sig_bt[c_arg] == T_LONG ) {
  3197               __ mov(G0, tmp->successor());
  3199             __ br_null(in_reg, true, Assembler::pn, skipUnbox);
  3200             __ delayed()->mov(G0, tmp);
  3202             BasicType bt = out_sig_bt[c_arg];
  3203             int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
  3204             switch (bt) {
  3205                 case T_BYTE:
  3206                   __ ldub(in_reg, box_offset, tmp); break;
  3207                 case T_SHORT:
  3208                   __ lduh(in_reg, box_offset, tmp); break;
  3209                 case T_INT:
  3210                   __ ld(in_reg, box_offset, tmp); break;
  3211                 case T_LONG:
  3212                   __ ld_long(in_reg, box_offset, tmp); break;
  3213                 default: ShouldNotReachHere();
  3216             __ bind(skipUnbox);
  3217             // If tmp wasn't final destination copy to final destination
  3218             if (tmp == L2) {
  3219               VMRegPair tmp_as_VM = reg64_to_VMRegPair(L2);
  3220               if (out_sig_bt[c_arg] == T_LONG) {
  3221                 long_move(masm, tmp_as_VM, dst);
  3222               } else {
  3223                 move32_64(masm, tmp_as_VM, out_regs[c_arg]);
  3226             if (out_sig_bt[c_arg] == T_LONG) {
  3227               assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
  3228               ++c_arg; // move over the T_VOID to keep the loop indices in sync
  3230           } else if (out_sig_bt[c_arg] == T_ADDRESS) {
  3231             Register s =
  3232                 src.first()->is_reg() ? src.first()->as_Register() : L2;
  3233             Register d =
  3234                 dst.first()->is_reg() ? dst.first()->as_Register() : L2;
  3236             // We store the oop now so that the conversion pass can reach
  3237             // while in the inner frame. This will be the only store if
  3238             // the oop is NULL.
  3239             if (s != L2) {
  3240               // src is register
  3241               if (d != L2) {
  3242                 // dst is register
  3243                 __ mov(s, d);
  3244               } else {
  3245                 assert(Assembler::is_simm13(reg2offset(dst.first()) +
  3246                           STACK_BIAS), "must be");
  3247                 __ st_ptr(s, SP, reg2offset(dst.first()) + STACK_BIAS);
  3249             } else {
  3250                 // src not a register
  3251                 assert(Assembler::is_simm13(reg2offset(src.first()) +
  3252                            STACK_BIAS), "must be");
  3253                 __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, d);
  3254                 if (d == L2) {
  3255                   assert(Assembler::is_simm13(reg2offset(dst.first()) +
  3256                              STACK_BIAS), "must be");
  3257                   __ st_ptr(d, SP, reg2offset(dst.first()) + STACK_BIAS);
  3260           } else if (out_sig_bt[c_arg] != T_VOID) {
  3261             // Convert the arg to NULL
  3262             if (dst.first()->is_reg()) {
  3263               __ mov(G0, dst.first()->as_Register());
  3264             } else {
  3265               assert(Assembler::is_simm13(reg2offset(dst.first()) +
  3266                          STACK_BIAS), "must be");
  3267               __ st_ptr(G0, SP, reg2offset(dst.first()) + STACK_BIAS);
  3271         break;
  3272       case T_VOID:
  3273         break;
  3275       case T_FLOAT:
  3276         if (src.first()->is_stack()) {
  3277           // Stack to stack/reg is simple
  3278           move32_64(masm, src, dst);
  3279         } else {
  3280           if (dst.first()->is_reg()) {
  3281             // freg -> reg
  3282             int off =
  3283               STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
  3284             Register d = dst.first()->as_Register();
  3285             if (Assembler::is_simm13(off)) {
  3286               __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
  3287                      SP, off);
  3288               __ ld(SP, off, d);
  3289             } else {
  3290               if (conversion_off == noreg) {
  3291                 __ set(off, L6);
  3292                 conversion_off = L6;
  3294               __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
  3295                      SP, conversion_off);
  3296               __ ld(SP, conversion_off , d);
  3298           } else {
  3299             // freg -> mem
  3300             int off = STACK_BIAS + reg2offset(dst.first());
  3301             if (Assembler::is_simm13(off)) {
  3302               __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
  3303                      SP, off);
  3304             } else {
  3305               if (conversion_off == noreg) {
  3306                 __ set(off, L6);
  3307                 conversion_off = L6;
  3309               __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
  3310                      SP, conversion_off);
  3314         break;
  3316       case T_DOUBLE:
  3317         assert( j_arg + 1 < total_args_passed &&
  3318                 in_sig_bt[j_arg + 1] == T_VOID &&
  3319                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
  3320         if (src.first()->is_stack()) {
  3321           // Stack to stack/reg is simple
  3322           long_move(masm, src, dst);
  3323         } else {
  3324           Register d = dst.first()->is_reg() ? dst.first()->as_Register() : L2;
  3326           // Destination could be an odd reg on 32bit in which case
  3327           // we can't load direct to the destination.
  3329           if (!d->is_even() && wordSize == 4) {
  3330             d = L2;
  3332           int off = STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
  3333           if (Assembler::is_simm13(off)) {
  3334             __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(),
  3335                    SP, off);
  3336             __ ld_long(SP, off, d);
  3337           } else {
  3338             if (conversion_off == noreg) {
  3339               __ set(off, L6);
  3340               conversion_off = L6;
  3342             __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(),
  3343                    SP, conversion_off);
  3344             __ ld_long(SP, conversion_off, d);
  3346           if (d == L2) {
  3347             long_move(masm, reg64_to_VMRegPair(L2), dst);
  3350         break;
  3352       case T_LONG :
  3353         // 32bit can't do a split move of something like g1 -> O0, O1
  3354         // so use a memory temp
  3355         if (src.is_single_phys_reg() && wordSize == 4) {
  3356           Register tmp = L2;
  3357           if (dst.first()->is_reg() &&
  3358               (wordSize == 8 || dst.first()->as_Register()->is_even())) {
  3359             tmp = dst.first()->as_Register();
  3362           int off = STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
  3363           if (Assembler::is_simm13(off)) {
  3364             __ stx(src.first()->as_Register(), SP, off);
  3365             __ ld_long(SP, off, tmp);
  3366           } else {
  3367             if (conversion_off == noreg) {
  3368               __ set(off, L6);
  3369               conversion_off = L6;
  3371             __ stx(src.first()->as_Register(), SP, conversion_off);
  3372             __ ld_long(SP, conversion_off, tmp);
  3375           if (tmp == L2) {
  3376             long_move(masm, reg64_to_VMRegPair(L2), dst);
  3378         } else {
  3379           long_move(masm, src, dst);
  3381         break;
  3383       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
  3385       default:
  3386         move32_64(masm, src, dst);
  3391   // If we have any strings we must store any register based arg to the stack
  3392   // This includes any still live xmm registers too.
  3394   if (total_strings > 0 ) {
  3396     // protect all the arg registers
  3397     __ save_frame(0);
  3398     __ mov(G2_thread, L7_thread_cache);
  3399     const Register L2_string_off = L2;
  3401     // Get first string offset
  3402     __ set(string_locs * VMRegImpl::stack_slot_size, L2_string_off);
  3404     for (c_arg = 0 ; c_arg < total_c_args ; c_arg++ ) {
  3405       if (out_sig_bt[c_arg] == T_ADDRESS) {
  3407         VMRegPair dst = out_regs[c_arg];
  3408         const Register d = dst.first()->is_reg() ?
  3409             dst.first()->as_Register()->after_save() : noreg;
  3411         // It's a string the oop and it was already copied to the out arg
  3412         // position
  3413         if (d != noreg) {
  3414           __ mov(d, O0);
  3415         } else {
  3416           assert(Assembler::is_simm13(reg2offset(dst.first()) + STACK_BIAS),
  3417                  "must be");
  3418           __ ld_ptr(FP,  reg2offset(dst.first()) + STACK_BIAS, O0);
  3420         Label skip;
  3422         __ br_null(O0, false, Assembler::pn, skip);
  3423         __ delayed()->add(FP, L2_string_off, O1);
  3425         if (d != noreg) {
  3426           __ mov(O1, d);
  3427         } else {
  3428           assert(Assembler::is_simm13(reg2offset(dst.first()) + STACK_BIAS),
  3429                  "must be");
  3430           __ st_ptr(O1, FP,  reg2offset(dst.first()) + STACK_BIAS);
  3433         __ call(CAST_FROM_FN_PTR(address, SharedRuntime::get_utf),
  3434                 relocInfo::runtime_call_type);
  3435         __ delayed()->add(L2_string_off, max_dtrace_string_size, L2_string_off);
  3437         __ bind(skip);
  3442     __ mov(L7_thread_cache, G2_thread);
  3443     __ restore();
  3448   // Ok now we are done. Need to place the nop that dtrace wants in order to
  3449   // patch in the trap
  3451   int patch_offset = ((intptr_t)__ pc()) - start;
  3453   __ nop();
  3456   // Return
  3458   __ ret();
  3459   __ delayed()->restore();
  3461   __ flush();
  3463   nmethod *nm = nmethod::new_dtrace_nmethod(
  3464       method, masm->code(), vep_offset, patch_offset, frame_complete,
  3465       stack_slots / VMRegImpl::slots_per_word);
  3466   return nm;
  3470 #endif // HAVE_DTRACE_H
  3472 // this function returns the adjust size (in number of words) to a c2i adapter
  3473 // activation for use during deoptimization
  3474 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) {
  3475   assert(callee_locals >= callee_parameters,
  3476           "test and remove; got more parms than locals");
  3477   if (callee_locals < callee_parameters)
  3478     return 0;                   // No adjustment for negative locals
  3479   int diff = (callee_locals - callee_parameters) * Interpreter::stackElementWords;
  3480   return round_to(diff, WordsPerLong);
  3483 // "Top of Stack" slots that may be unused by the calling convention but must
  3484 // otherwise be preserved.
  3485 // On Intel these are not necessary and the value can be zero.
  3486 // On Sparc this describes the words reserved for storing a register window
  3487 // when an interrupt occurs.
  3488 uint SharedRuntime::out_preserve_stack_slots() {
  3489   return frame::register_save_words * VMRegImpl::slots_per_word;
  3492 static void gen_new_frame(MacroAssembler* masm, bool deopt) {
  3493 //
  3494 // Common out the new frame generation for deopt and uncommon trap
  3495 //
  3496   Register        G3pcs              = G3_scratch; // Array of new pcs (input)
  3497   Register        Oreturn0           = O0;
  3498   Register        Oreturn1           = O1;
  3499   Register        O2UnrollBlock      = O2;
  3500   Register        O3array            = O3;         // Array of frame sizes (input)
  3501   Register        O4array_size       = O4;         // number of frames (input)
  3502   Register        O7frame_size       = O7;         // number of frames (input)
  3504   __ ld_ptr(O3array, 0, O7frame_size);
  3505   __ sub(G0, O7frame_size, O7frame_size);
  3506   __ save(SP, O7frame_size, SP);
  3507   __ ld_ptr(G3pcs, 0, I7);                      // load frame's new pc
  3509   #ifdef ASSERT
  3510   // make sure that the frames are aligned properly
  3511 #ifndef _LP64
  3512   __ btst(wordSize*2-1, SP);
  3513   __ breakpoint_trap(Assembler::notZero, Assembler::ptr_cc);
  3514 #endif
  3515   #endif
  3517   // Deopt needs to pass some extra live values from frame to frame
  3519   if (deopt) {
  3520     __ mov(Oreturn0->after_save(), Oreturn0);
  3521     __ mov(Oreturn1->after_save(), Oreturn1);
  3524   __ mov(O4array_size->after_save(), O4array_size);
  3525   __ sub(O4array_size, 1, O4array_size);
  3526   __ mov(O3array->after_save(), O3array);
  3527   __ mov(O2UnrollBlock->after_save(), O2UnrollBlock);
  3528   __ add(G3pcs, wordSize, G3pcs);               // point to next pc value
  3530   #ifdef ASSERT
  3531   // trash registers to show a clear pattern in backtraces
  3532   __ set(0xDEAD0000, I0);
  3533   __ add(I0,  2, I1);
  3534   __ add(I0,  4, I2);
  3535   __ add(I0,  6, I3);
  3536   __ add(I0,  8, I4);
  3537   // Don't touch I5 could have valuable savedSP
  3538   __ set(0xDEADBEEF, L0);
  3539   __ mov(L0, L1);
  3540   __ mov(L0, L2);
  3541   __ mov(L0, L3);
  3542   __ mov(L0, L4);
  3543   __ mov(L0, L5);
  3545   // trash the return value as there is nothing to return yet
  3546   __ set(0xDEAD0001, O7);
  3547   #endif
  3549   __ mov(SP, O5_savedSP);
  3553 static void make_new_frames(MacroAssembler* masm, bool deopt) {
  3554   //
  3555   // loop through the UnrollBlock info and create new frames
  3556   //
  3557   Register        G3pcs              = G3_scratch;
  3558   Register        Oreturn0           = O0;
  3559   Register        Oreturn1           = O1;
  3560   Register        O2UnrollBlock      = O2;
  3561   Register        O3array            = O3;
  3562   Register        O4array_size       = O4;
  3563   Label           loop;
  3565   // Before we make new frames, check to see if stack is available.
  3566   // Do this after the caller's return address is on top of stack
  3567   if (UseStackBanging) {
  3568     // Get total frame size for interpreted frames
  3569     __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes(), O4);
  3570     __ bang_stack_size(O4, O3, G3_scratch);
  3573   __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes(), O4array_size);
  3574   __ ld_ptr(O2UnrollBlock, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes(), G3pcs);
  3575   __ ld_ptr(O2UnrollBlock, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes(), O3array);
  3577   // Adjust old interpreter frame to make space for new frame's extra java locals
  3578   //
  3579   // We capture the original sp for the transition frame only because it is needed in
  3580   // order to properly calculate interpreter_sp_adjustment. Even though in real life
  3581   // every interpreter frame captures a savedSP it is only needed at the transition
  3582   // (fortunately). If we had to have it correct everywhere then we would need to
  3583   // be told the sp_adjustment for each frame we create. If the frame size array
  3584   // were to have twice the frame count entries then we could have pairs [sp_adjustment, frame_size]
  3585   // for each frame we create and keep up the illusion every where.
  3586   //
  3588   __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes(), O7);
  3589   __ mov(SP, O5_savedSP);       // remember initial sender's original sp before adjustment
  3590   __ sub(SP, O7, SP);
  3592 #ifdef ASSERT
  3593   // make sure that there is at least one entry in the array
  3594   __ tst(O4array_size);
  3595   __ breakpoint_trap(Assembler::zero, Assembler::icc);
  3596 #endif
  3598   // Now push the new interpreter frames
  3599   __ bind(loop);
  3601   // allocate a new frame, filling the registers
  3603   gen_new_frame(masm, deopt);        // allocate an interpreter frame
  3605   __ cmp_zero_and_br(Assembler::notZero, O4array_size, loop);
  3606   __ delayed()->add(O3array, wordSize, O3array);
  3607   __ ld_ptr(G3pcs, 0, O7);                      // load final frame new pc
  3611 //------------------------------generate_deopt_blob----------------------------
  3612 // Ought to generate an ideal graph & compile, but here's some SPARC ASM
  3613 // instead.
  3614 void SharedRuntime::generate_deopt_blob() {
  3615   // allocate space for the code
  3616   ResourceMark rm;
  3617   // setup code generation tools
  3618   int pad = VerifyThread ? 512 : 0;// Extra slop space for more verify code
  3619   if (UseStackBanging) {
  3620     pad += StackShadowPages*16 + 32;
  3622 #ifdef _LP64
  3623   CodeBuffer buffer("deopt_blob", 2100+pad, 512);
  3624 #else
  3625   // Measured 8/7/03 at 1212 in 32bit debug build (no VerifyThread)
  3626   // Measured 8/7/03 at 1396 in 32bit debug build (VerifyThread)
  3627   CodeBuffer buffer("deopt_blob", 1600+pad, 512);
  3628 #endif /* _LP64 */
  3629   MacroAssembler* masm               = new MacroAssembler(&buffer);
  3630   FloatRegister   Freturn0           = F0;
  3631   Register        Greturn1           = G1;
  3632   Register        Oreturn0           = O0;
  3633   Register        Oreturn1           = O1;
  3634   Register        O2UnrollBlock      = O2;
  3635   Register        L0deopt_mode       = L0;
  3636   Register        G4deopt_mode       = G4_scratch;
  3637   int             frame_size_words;
  3638   Address         saved_Freturn0_addr(FP, -sizeof(double) + STACK_BIAS);
  3639 #if !defined(_LP64) && defined(COMPILER2)
  3640   Address         saved_Greturn1_addr(FP, -sizeof(double) -sizeof(jlong) + STACK_BIAS);
  3641 #endif
  3642   Label           cont;
  3644   OopMapSet *oop_maps = new OopMapSet();
  3646   //
  3647   // This is the entry point for code which is returning to a de-optimized
  3648   // frame.
  3649   // The steps taken by this frame are as follows:
  3650   //   - push a dummy "register_save" and save the return values (O0, O1, F0/F1, G1)
  3651   //     and all potentially live registers (at a pollpoint many registers can be live).
  3652   //
  3653   //   - call the C routine: Deoptimization::fetch_unroll_info (this function
  3654   //     returns information about the number and size of interpreter frames
  3655   //     which are equivalent to the frame which is being deoptimized)
  3656   //   - deallocate the unpack frame, restoring only results values. Other
  3657   //     volatile registers will now be captured in the vframeArray as needed.
  3658   //   - deallocate the deoptimization frame
  3659   //   - in a loop using the information returned in the previous step
  3660   //     push new interpreter frames (take care to propagate the return
  3661   //     values through each new frame pushed)
  3662   //   - create a dummy "unpack_frame" and save the return values (O0, O1, F0)
  3663   //   - call the C routine: Deoptimization::unpack_frames (this function
  3664   //     lays out values on the interpreter frame which was just created)
  3665   //   - deallocate the dummy unpack_frame
  3666   //   - ensure that all the return values are correctly set and then do
  3667   //     a return to the interpreter entry point
  3668   //
  3669   // Refer to the following methods for more information:
  3670   //   - Deoptimization::fetch_unroll_info
  3671   //   - Deoptimization::unpack_frames
  3673   OopMap* map = NULL;
  3675   int start = __ offset();
  3677   // restore G2, the trampoline destroyed it
  3678   __ get_thread();
  3680   // On entry we have been called by the deoptimized nmethod with a call that
  3681   // replaced the original call (or safepoint polling location) so the deoptimizing
  3682   // pc is now in O7. Return values are still in the expected places
  3684   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
  3685   __ ba(cont);
  3686   __ delayed()->mov(Deoptimization::Unpack_deopt, L0deopt_mode);
  3688   int exception_offset = __ offset() - start;
  3690   // restore G2, the trampoline destroyed it
  3691   __ get_thread();
  3693   // On entry we have been jumped to by the exception handler (or exception_blob
  3694   // for server).  O0 contains the exception oop and O7 contains the original
  3695   // exception pc.  So if we push a frame here it will look to the
  3696   // stack walking code (fetch_unroll_info) just like a normal call so
  3697   // state will be extracted normally.
  3699   // save exception oop in JavaThread and fall through into the
  3700   // exception_in_tls case since they are handled in same way except
  3701   // for where the pending exception is kept.
  3702   __ st_ptr(Oexception, G2_thread, JavaThread::exception_oop_offset());
  3704   //
  3705   // Vanilla deoptimization with an exception pending in exception_oop
  3706   //
  3707   int exception_in_tls_offset = __ offset() - start;
  3709   // No need to update oop_map  as each call to save_live_registers will produce identical oopmap
  3710   (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
  3712   // Restore G2_thread
  3713   __ get_thread();
  3715 #ifdef ASSERT
  3717     // verify that there is really an exception oop in exception_oop
  3718     Label has_exception;
  3719     __ ld_ptr(G2_thread, JavaThread::exception_oop_offset(), Oexception);
  3720     __ br_notnull_short(Oexception, Assembler::pt, has_exception);
  3721     __ stop("no exception in thread");
  3722     __ bind(has_exception);
  3724     // verify that there is no pending exception
  3725     Label no_pending_exception;
  3726     Address exception_addr(G2_thread, Thread::pending_exception_offset());
  3727     __ ld_ptr(exception_addr, Oexception);
  3728     __ br_null_short(Oexception, Assembler::pt, no_pending_exception);
  3729     __ stop("must not have pending exception here");
  3730     __ bind(no_pending_exception);
  3732 #endif
  3734   __ ba(cont);
  3735   __ delayed()->mov(Deoptimization::Unpack_exception, L0deopt_mode);;
  3737   //
  3738   // Reexecute entry, similar to c2 uncommon trap
  3739   //
  3740   int reexecute_offset = __ offset() - start;
  3742   // No need to update oop_map  as each call to save_live_registers will produce identical oopmap
  3743   (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
  3745   __ mov(Deoptimization::Unpack_reexecute, L0deopt_mode);
  3747   __ bind(cont);
  3749   __ set_last_Java_frame(SP, noreg);
  3751   // do the call by hand so we can get the oopmap
  3753   __ mov(G2_thread, L7_thread_cache);
  3754   __ call(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info), relocInfo::runtime_call_type);
  3755   __ delayed()->mov(G2_thread, O0);
  3757   // Set an oopmap for the call site this describes all our saved volatile registers
  3759   oop_maps->add_gc_map( __ offset()-start, map);
  3761   __ mov(L7_thread_cache, G2_thread);
  3763   __ reset_last_Java_frame();
  3765   // NOTE: we know that only O0/O1 will be reloaded by restore_result_registers
  3766   // so this move will survive
  3768   __ mov(L0deopt_mode, G4deopt_mode);
  3770   __ mov(O0, O2UnrollBlock->after_save());
  3772   RegisterSaver::restore_result_registers(masm);
  3774   Label noException;
  3775   __ cmp_and_br_short(G4deopt_mode, Deoptimization::Unpack_exception, Assembler::notEqual, Assembler::pt, noException);
  3777   // Move the pending exception from exception_oop to Oexception so
  3778   // the pending exception will be picked up the interpreter.
  3779   __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), Oexception);
  3780   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
  3781   __ bind(noException);
  3783   // deallocate the deoptimization frame taking care to preserve the return values
  3784   __ mov(Oreturn0,     Oreturn0->after_save());
  3785   __ mov(Oreturn1,     Oreturn1->after_save());
  3786   __ mov(O2UnrollBlock, O2UnrollBlock->after_save());
  3787   __ restore();
  3789   // Allocate new interpreter frame(s) and possible c2i adapter frame
  3791   make_new_frames(masm, true);
  3793   // push a dummy "unpack_frame" taking care of float return values and
  3794   // call Deoptimization::unpack_frames to have the unpacker layout
  3795   // information in the interpreter frames just created and then return
  3796   // to the interpreter entry point
  3797   __ save(SP, -frame_size_words*wordSize, SP);
  3798   __ stf(FloatRegisterImpl::D, Freturn0, saved_Freturn0_addr);
  3799 #if !defined(_LP64)
  3800 #if defined(COMPILER2)
  3801   // 32-bit 1-register longs return longs in G1
  3802   __ stx(Greturn1, saved_Greturn1_addr);
  3803 #endif
  3804   __ set_last_Java_frame(SP, noreg);
  3805   __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, G4deopt_mode);
  3806 #else
  3807   // LP64 uses g4 in set_last_Java_frame
  3808   __ mov(G4deopt_mode, O1);
  3809   __ set_last_Java_frame(SP, G0);
  3810   __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, O1);
  3811 #endif
  3812   __ reset_last_Java_frame();
  3813   __ ldf(FloatRegisterImpl::D, saved_Freturn0_addr, Freturn0);
  3815 #if !defined(_LP64) && defined(COMPILER2)
  3816   // In 32 bit, C2 returns longs in G1 so restore the saved G1 into
  3817   // I0/I1 if the return value is long.
  3818   Label not_long;
  3819   __ cmp_and_br_short(O0,T_LONG, Assembler::notEqual, Assembler::pt, not_long);
  3820   __ ldd(saved_Greturn1_addr,I0);
  3821   __ bind(not_long);
  3822 #endif
  3823   __ ret();
  3824   __ delayed()->restore();
  3826   masm->flush();
  3827   _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_words);
  3828   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
  3831 #ifdef COMPILER2
  3833 //------------------------------generate_uncommon_trap_blob--------------------
  3834 // Ought to generate an ideal graph & compile, but here's some SPARC ASM
  3835 // instead.
  3836 void SharedRuntime::generate_uncommon_trap_blob() {
  3837   // allocate space for the code
  3838   ResourceMark rm;
  3839   // setup code generation tools
  3840   int pad = VerifyThread ? 512 : 0;
  3841   if (UseStackBanging) {
  3842     pad += StackShadowPages*16 + 32;
  3844 #ifdef _LP64
  3845   CodeBuffer buffer("uncommon_trap_blob", 2700+pad, 512);
  3846 #else
  3847   // Measured 8/7/03 at 660 in 32bit debug build (no VerifyThread)
  3848   // Measured 8/7/03 at 1028 in 32bit debug build (VerifyThread)
  3849   CodeBuffer buffer("uncommon_trap_blob", 2000+pad, 512);
  3850 #endif
  3851   MacroAssembler* masm               = new MacroAssembler(&buffer);
  3852   Register        O2UnrollBlock      = O2;
  3853   Register        O2klass_index      = O2;
  3855   //
  3856   // This is the entry point for all traps the compiler takes when it thinks
  3857   // it cannot handle further execution of compilation code. The frame is
  3858   // deoptimized in these cases and converted into interpreter frames for
  3859   // execution
  3860   // The steps taken by this frame are as follows:
  3861   //   - push a fake "unpack_frame"
  3862   //   - call the C routine Deoptimization::uncommon_trap (this function
  3863   //     packs the current compiled frame into vframe arrays and returns
  3864   //     information about the number and size of interpreter frames which
  3865   //     are equivalent to the frame which is being deoptimized)
  3866   //   - deallocate the "unpack_frame"
  3867   //   - deallocate the deoptimization frame
  3868   //   - in a loop using the information returned in the previous step
  3869   //     push interpreter frames;
  3870   //   - create a dummy "unpack_frame"
  3871   //   - call the C routine: Deoptimization::unpack_frames (this function
  3872   //     lays out values on the interpreter frame which was just created)
  3873   //   - deallocate the dummy unpack_frame
  3874   //   - return to the interpreter entry point
  3875   //
  3876   //  Refer to the following methods for more information:
  3877   //   - Deoptimization::uncommon_trap
  3878   //   - Deoptimization::unpack_frame
  3880   // the unloaded class index is in O0 (first parameter to this blob)
  3882   // push a dummy "unpack_frame"
  3883   // and call Deoptimization::uncommon_trap to pack the compiled frame into
  3884   // vframe array and return the UnrollBlock information
  3885   __ save_frame(0);
  3886   __ set_last_Java_frame(SP, noreg);
  3887   __ mov(I0, O2klass_index);
  3888   __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap), G2_thread, O2klass_index);
  3889   __ reset_last_Java_frame();
  3890   __ mov(O0, O2UnrollBlock->after_save());
  3891   __ restore();
  3893   // deallocate the deoptimized frame taking care to preserve the return values
  3894   __ mov(O2UnrollBlock, O2UnrollBlock->after_save());
  3895   __ restore();
  3897   // Allocate new interpreter frame(s) and possible c2i adapter frame
  3899   make_new_frames(masm, false);
  3901   // push a dummy "unpack_frame" taking care of float return values and
  3902   // call Deoptimization::unpack_frames to have the unpacker layout
  3903   // information in the interpreter frames just created and then return
  3904   // to the interpreter entry point
  3905   __ save_frame(0);
  3906   __ set_last_Java_frame(SP, noreg);
  3907   __ mov(Deoptimization::Unpack_uncommon_trap, O3); // indicate it is the uncommon trap case
  3908   __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, O3);
  3909   __ reset_last_Java_frame();
  3910   __ ret();
  3911   __ delayed()->restore();
  3913   masm->flush();
  3914   _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, NULL, __ total_frame_size_in_bytes(0)/wordSize);
  3917 #endif // COMPILER2
  3919 //------------------------------generate_handler_blob-------------------
  3920 //
  3921 // Generate a special Compile2Runtime blob that saves all registers, and sets
  3922 // up an OopMap.
  3923 //
  3924 // This blob is jumped to (via a breakpoint and the signal handler) from a
  3925 // safepoint in compiled code.  On entry to this blob, O7 contains the
  3926 // address in the original nmethod at which we should resume normal execution.
  3927 // Thus, this blob looks like a subroutine which must preserve lots of
  3928 // registers and return normally.  Note that O7 is never register-allocated,
  3929 // so it is guaranteed to be free here.
  3930 //
  3932 // The hardest part of what this blob must do is to save the 64-bit %o
  3933 // registers in the 32-bit build.  A simple 'save' turn the %o's to %i's and
  3934 // an interrupt will chop off their heads.  Making space in the caller's frame
  3935 // first will let us save the 64-bit %o's before save'ing, but we cannot hand
  3936 // the adjusted FP off to the GC stack-crawler: this will modify the caller's
  3937 // SP and mess up HIS OopMaps.  So we first adjust the caller's SP, then save
  3938 // the 64-bit %o's, then do a save, then fixup the caller's SP (our FP).
  3939 // Tricky, tricky, tricky...
  3941 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, bool cause_return) {
  3942   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
  3944   // allocate space for the code
  3945   ResourceMark rm;
  3946   // setup code generation tools
  3947   // Measured 8/7/03 at 896 in 32bit debug build (no VerifyThread)
  3948   // Measured 8/7/03 at 1080 in 32bit debug build (VerifyThread)
  3949   // even larger with TraceJumps
  3950   int pad = TraceJumps ? 512 : 0;
  3951   CodeBuffer buffer("handler_blob", 1600 + pad, 512);
  3952   MacroAssembler* masm                = new MacroAssembler(&buffer);
  3953   int             frame_size_words;
  3954   OopMapSet *oop_maps = new OopMapSet();
  3955   OopMap* map = NULL;
  3957   int start = __ offset();
  3959   // If this causes a return before the processing, then do a "restore"
  3960   if (cause_return) {
  3961     __ restore();
  3962   } else {
  3963     // Make it look like we were called via the poll
  3964     // so that frame constructor always sees a valid return address
  3965     __ ld_ptr(G2_thread, in_bytes(JavaThread::saved_exception_pc_offset()), O7);
  3966     __ sub(O7, frame::pc_return_offset, O7);
  3969   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
  3971   // setup last_Java_sp (blows G4)
  3972   __ set_last_Java_frame(SP, noreg);
  3974   // call into the runtime to handle illegal instructions exception
  3975   // Do not use call_VM_leaf, because we need to make a GC map at this call site.
  3976   __ mov(G2_thread, O0);
  3977   __ save_thread(L7_thread_cache);
  3978   __ call(call_ptr);
  3979   __ delayed()->nop();
  3981   // Set an oopmap for the call site.
  3982   // We need this not only for callee-saved registers, but also for volatile
  3983   // registers that the compiler might be keeping live across a safepoint.
  3985   oop_maps->add_gc_map( __ offset() - start, map);
  3987   __ restore_thread(L7_thread_cache);
  3988   // clear last_Java_sp
  3989   __ reset_last_Java_frame();
  3991   // Check for exceptions
  3992   Label pending;
  3994   __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O1);
  3995   __ br_notnull_short(O1, Assembler::pn, pending);
  3997   RegisterSaver::restore_live_registers(masm);
  3999   // We are back the the original state on entry and ready to go.
  4001   __ retl();
  4002   __ delayed()->nop();
  4004   // Pending exception after the safepoint
  4006   __ bind(pending);
  4008   RegisterSaver::restore_live_registers(masm);
  4010   // We are back the the original state on entry.
  4012   // Tail-call forward_exception_entry, with the issuing PC in O7,
  4013   // so it looks like the original nmethod called forward_exception_entry.
  4014   __ set((intptr_t)StubRoutines::forward_exception_entry(), O0);
  4015   __ JMP(O0, 0);
  4016   __ delayed()->nop();
  4018   // -------------
  4019   // make sure all code is generated
  4020   masm->flush();
  4022   // return exception blob
  4023   return SafepointBlob::create(&buffer, oop_maps, frame_size_words);
  4026 //
  4027 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
  4028 //
  4029 // Generate a stub that calls into vm to find out the proper destination
  4030 // of a java call. All the argument registers are live at this point
  4031 // but since this is generic code we don't know what they are and the caller
  4032 // must do any gc of the args.
  4033 //
  4034 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
  4035   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
  4037   // allocate space for the code
  4038   ResourceMark rm;
  4039   // setup code generation tools
  4040   // Measured 8/7/03 at 896 in 32bit debug build (no VerifyThread)
  4041   // Measured 8/7/03 at 1080 in 32bit debug build (VerifyThread)
  4042   // even larger with TraceJumps
  4043   int pad = TraceJumps ? 512 : 0;
  4044   CodeBuffer buffer(name, 1600 + pad, 512);
  4045   MacroAssembler* masm                = new MacroAssembler(&buffer);
  4046   int             frame_size_words;
  4047   OopMapSet *oop_maps = new OopMapSet();
  4048   OopMap* map = NULL;
  4050   int start = __ offset();
  4052   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
  4054   int frame_complete = __ offset();
  4056   // setup last_Java_sp (blows G4)
  4057   __ set_last_Java_frame(SP, noreg);
  4059   // call into the runtime to handle illegal instructions exception
  4060   // Do not use call_VM_leaf, because we need to make a GC map at this call site.
  4061   __ mov(G2_thread, O0);
  4062   __ save_thread(L7_thread_cache);
  4063   __ call(destination, relocInfo::runtime_call_type);
  4064   __ delayed()->nop();
  4066   // O0 contains the address we are going to jump to assuming no exception got installed
  4068   // Set an oopmap for the call site.
  4069   // We need this not only for callee-saved registers, but also for volatile
  4070   // registers that the compiler might be keeping live across a safepoint.
  4072   oop_maps->add_gc_map( __ offset() - start, map);
  4074   __ restore_thread(L7_thread_cache);
  4075   // clear last_Java_sp
  4076   __ reset_last_Java_frame();
  4078   // Check for exceptions
  4079   Label pending;
  4081   __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O1);
  4082   __ br_notnull_short(O1, Assembler::pn, pending);
  4084   // get the returned methodOop
  4086   __ get_vm_result(G5_method);
  4087   __ stx(G5_method, SP, RegisterSaver::G5_offset()+STACK_BIAS);
  4089   // O0 is where we want to jump, overwrite G3 which is saved and scratch
  4091   __ stx(O0, SP, RegisterSaver::G3_offset()+STACK_BIAS);
  4093   RegisterSaver::restore_live_registers(masm);
  4095   // We are back the the original state on entry and ready to go.
  4097   __ JMP(G3, 0);
  4098   __ delayed()->nop();
  4100   // Pending exception after the safepoint
  4102   __ bind(pending);
  4104   RegisterSaver::restore_live_registers(masm);
  4106   // We are back the the original state on entry.
  4108   // Tail-call forward_exception_entry, with the issuing PC in O7,
  4109   // so it looks like the original nmethod called forward_exception_entry.
  4110   __ set((intptr_t)StubRoutines::forward_exception_entry(), O0);
  4111   __ JMP(O0, 0);
  4112   __ delayed()->nop();
  4114   // -------------
  4115   // make sure all code is generated
  4116   masm->flush();
  4118   // return the  blob
  4119   // frame_size_words or bytes??
  4120   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);

mercurial