src/cpu/sparc/vm/cppInterpreter_sparc.cpp

Mon, 27 Aug 2012 15:17:17 -0700

author
twisti
date
Mon, 27 Aug 2012 15:17:17 -0700
changeset 4020
a5dd6e3ef9f3
parent 3969
1d7922586cf6
child 4037
da91efe96a93
permissions
-rw-r--r--

6677625: Move platform specific flags from globals.hpp to globals_<arch>.hpp
Reviewed-by: kvn, dholmes, coleenp
Contributed-by: Tao Mao <tao.mao@oracle.com>

     1 /*
     2  * Copyright (c) 2007, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "interpreter/bytecodeHistogram.hpp"
    28 #include "interpreter/cppInterpreter.hpp"
    29 #include "interpreter/interpreter.hpp"
    30 #include "interpreter/interpreterGenerator.hpp"
    31 #include "interpreter/interpreterRuntime.hpp"
    32 #include "oops/arrayOop.hpp"
    33 #include "oops/methodDataOop.hpp"
    34 #include "oops/methodOop.hpp"
    35 #include "oops/oop.inline.hpp"
    36 #include "prims/jvmtiExport.hpp"
    37 #include "prims/jvmtiThreadState.hpp"
    38 #include "runtime/arguments.hpp"
    39 #include "runtime/deoptimization.hpp"
    40 #include "runtime/frame.inline.hpp"
    41 #include "runtime/interfaceSupport.hpp"
    42 #include "runtime/sharedRuntime.hpp"
    43 #include "runtime/stubRoutines.hpp"
    44 #include "runtime/synchronizer.hpp"
    45 #include "runtime/timer.hpp"
    46 #include "runtime/vframeArray.hpp"
    47 #include "utilities/debug.hpp"
    48 #ifdef SHARK
    49 #include "shark/shark_globals.hpp"
    50 #endif
    52 #ifdef CC_INTERP
    54 // Routine exists to make tracebacks look decent in debugger
    55 // while "shadow" interpreter frames are on stack. It is also
    56 // used to distinguish interpreter frames.
    58 extern "C" void RecursiveInterpreterActivation(interpreterState istate) {
    59   ShouldNotReachHere();
    60 }
    62 bool CppInterpreter::contains(address pc) {
    63   return ( _code->contains(pc) ||
    64          ( pc == (CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation) + frame::pc_return_offset)));
    65 }
    67 #define STATE(field_name) Lstate, in_bytes(byte_offset_of(BytecodeInterpreter, field_name))
    68 #define __ _masm->
    70 Label frame_manager_entry;
    71 Label fast_accessor_slow_entry_path;  // fast accessor methods need to be able to jmp to unsynchronized
    72                                       // c++ interpreter entry point this holds that entry point label.
    74 static address unctrap_frame_manager_entry  = NULL;
    76 static address interpreter_return_address  = NULL;
    77 static address deopt_frame_manager_return_atos  = NULL;
    78 static address deopt_frame_manager_return_btos  = NULL;
    79 static address deopt_frame_manager_return_itos  = NULL;
    80 static address deopt_frame_manager_return_ltos  = NULL;
    81 static address deopt_frame_manager_return_ftos  = NULL;
    82 static address deopt_frame_manager_return_dtos  = NULL;
    83 static address deopt_frame_manager_return_vtos  = NULL;
    85 const Register prevState = G1_scratch;
    87 void InterpreterGenerator::save_native_result(void) {
    88   // result potentially in O0/O1: save it across calls
    89   __ stf(FloatRegisterImpl::D, F0, STATE(_native_fresult));
    90 #ifdef _LP64
    91   __ stx(O0, STATE(_native_lresult));
    92 #else
    93   __ std(O0, STATE(_native_lresult));
    94 #endif
    95 }
    97 void InterpreterGenerator::restore_native_result(void) {
    99   // Restore any method result value
   100   __ ldf(FloatRegisterImpl::D, STATE(_native_fresult), F0);
   101 #ifdef _LP64
   102   __ ldx(STATE(_native_lresult), O0);
   103 #else
   104   __ ldd(STATE(_native_lresult), O0);
   105 #endif
   106 }
   108 // A result handler converts/unboxes a native call result into
   109 // a java interpreter/compiler result. The current frame is an
   110 // interpreter frame. The activation frame unwind code must be
   111 // consistent with that of TemplateTable::_return(...). In the
   112 // case of native methods, the caller's SP was not modified.
   113 address CppInterpreterGenerator::generate_result_handler_for(BasicType type) {
   114   address entry = __ pc();
   115   Register Itos_i  = Otos_i ->after_save();
   116   Register Itos_l  = Otos_l ->after_save();
   117   Register Itos_l1 = Otos_l1->after_save();
   118   Register Itos_l2 = Otos_l2->after_save();
   119   switch (type) {
   120     case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, Itos_i); break; // !0 => true; 0 => false
   121     case T_CHAR   : __ sll(O0, 16, O0); __ srl(O0, 16, Itos_i);   break; // cannot use and3, 0xFFFF too big as immediate value!
   122     case T_BYTE   : __ sll(O0, 24, O0); __ sra(O0, 24, Itos_i);   break;
   123     case T_SHORT  : __ sll(O0, 16, O0); __ sra(O0, 16, Itos_i);   break;
   124     case T_LONG   :
   125 #ifndef _LP64
   126                     __ mov(O1, Itos_l2);  // move other half of long
   127 #endif              // ifdef or no ifdef, fall through to the T_INT case
   128     case T_INT    : __ mov(O0, Itos_i);                         break;
   129     case T_VOID   : /* nothing to do */                         break;
   130     case T_FLOAT  : assert(F0 == Ftos_f, "fix this code" );     break;
   131     case T_DOUBLE : assert(F0 == Ftos_d, "fix this code" );     break;
   132     case T_OBJECT :
   133       __ ld_ptr(STATE(_oop_temp), Itos_i);
   134       __ verify_oop(Itos_i);
   135       break;
   136     default       : ShouldNotReachHere();
   137   }
   138   __ ret();                           // return from interpreter activation
   139   __ delayed()->restore(I5_savedSP, G0, SP);  // remove interpreter frame
   140   NOT_PRODUCT(__ emit_long(0);)       // marker for disassembly
   141   return entry;
   142 }
   144 // tosca based result to c++ interpreter stack based result.
   145 // Result goes to address in L1_scratch
   147 address CppInterpreterGenerator::generate_tosca_to_stack_converter(BasicType type) {
   148   // A result is in the native abi result register from a native method call.
   149   // We need to return this result to the interpreter by pushing the result on the interpreter's
   150   // stack. This is relatively simple the destination is in L1_scratch
   151   // i.e. L1_scratch is the first free element on the stack. If we "push" a return value we must
   152   // adjust L1_scratch
   153   address entry = __ pc();
   154   switch (type) {
   155     case T_BOOLEAN:
   156       // !0 => true; 0 => false
   157       __ subcc(G0, O0, G0);
   158       __ addc(G0, 0, O0);
   159       __ st(O0, L1_scratch, 0);
   160       __ sub(L1_scratch, wordSize, L1_scratch);
   161       break;
   163     // cannot use and3, 0xFFFF too big as immediate value!
   164     case T_CHAR   :
   165       __ sll(O0, 16, O0);
   166       __ srl(O0, 16, O0);
   167       __ st(O0, L1_scratch, 0);
   168       __ sub(L1_scratch, wordSize, L1_scratch);
   169       break;
   171     case T_BYTE   :
   172       __ sll(O0, 24, O0);
   173       __ sra(O0, 24, O0);
   174       __ st(O0, L1_scratch, 0);
   175       __ sub(L1_scratch, wordSize, L1_scratch);
   176       break;
   178     case T_SHORT  :
   179       __ sll(O0, 16, O0);
   180       __ sra(O0, 16, O0);
   181       __ st(O0, L1_scratch, 0);
   182       __ sub(L1_scratch, wordSize, L1_scratch);
   183       break;
   184     case T_LONG   :
   185 #ifndef _LP64
   186 #if defined(COMPILER2)
   187   // All return values are where we want them, except for Longs.  C2 returns
   188   // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
   189   // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
   190   // build even if we are returning from interpreted we just do a little
   191   // stupid shuffing.
   192   // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
   193   // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
   194   // first which would move g1 -> O0/O1 and destroy the exception we were throwing.
   195       __ stx(G1, L1_scratch, -wordSize);
   196 #else
   197       // native result is in O0, O1
   198       __ st(O1, L1_scratch, 0);                      // Low order
   199       __ st(O0, L1_scratch, -wordSize);              // High order
   200 #endif /* COMPILER2 */
   201 #else
   202       __ stx(O0, L1_scratch, -wordSize);
   203 #endif
   204       __ sub(L1_scratch, 2*wordSize, L1_scratch);
   205       break;
   207     case T_INT    :
   208       __ st(O0, L1_scratch, 0);
   209       __ sub(L1_scratch, wordSize, L1_scratch);
   210       break;
   212     case T_VOID   : /* nothing to do */
   213       break;
   215     case T_FLOAT  :
   216       __ stf(FloatRegisterImpl::S, F0, L1_scratch, 0);
   217       __ sub(L1_scratch, wordSize, L1_scratch);
   218       break;
   220     case T_DOUBLE :
   221       // Every stack slot is aligned on 64 bit, However is this
   222       // the correct stack slot on 64bit?? QQQ
   223       __ stf(FloatRegisterImpl::D, F0, L1_scratch, -wordSize);
   224       __ sub(L1_scratch, 2*wordSize, L1_scratch);
   225       break;
   226     case T_OBJECT :
   227       __ verify_oop(O0);
   228       __ st_ptr(O0, L1_scratch, 0);
   229       __ sub(L1_scratch, wordSize, L1_scratch);
   230       break;
   231     default       : ShouldNotReachHere();
   232   }
   233   __ retl();                          // return from interpreter activation
   234   __ delayed()->nop();                // schedule this better
   235   NOT_PRODUCT(__ emit_long(0);)       // marker for disassembly
   236   return entry;
   237 }
   239 address CppInterpreterGenerator::generate_stack_to_stack_converter(BasicType type) {
   240   // A result is in the java expression stack of the interpreted method that has just
   241   // returned. Place this result on the java expression stack of the caller.
   242   //
   243   // The current interpreter activation in Lstate is for the method just returning its
   244   // result. So we know that the result of this method is on the top of the current
   245   // execution stack (which is pre-pushed) and will be return to the top of the caller
   246   // stack. The top of the callers stack is the bottom of the locals of the current
   247   // activation.
   248   // Because of the way activation are managed by the frame manager the value of esp is
   249   // below both the stack top of the current activation and naturally the stack top
   250   // of the calling activation. This enable this routine to leave the return address
   251   // to the frame manager on the stack and do a vanilla return.
   252   //
   253   // On entry: O0 - points to source (callee stack top)
   254   //           O1 - points to destination (caller stack top [i.e. free location])
   255   // destroys O2, O3
   256   //
   258   address entry = __ pc();
   259   switch (type) {
   260     case T_VOID:  break;
   261       break;
   262     case T_FLOAT  :
   263     case T_BOOLEAN:
   264     case T_CHAR   :
   265     case T_BYTE   :
   266     case T_SHORT  :
   267     case T_INT    :
   268       // 1 word result
   269       __ ld(O0, 0, O2);
   270       __ st(O2, O1, 0);
   271       __ sub(O1, wordSize, O1);
   272       break;
   273     case T_DOUBLE  :
   274     case T_LONG    :
   275       // return top two words on current expression stack to caller's expression stack
   276       // The caller's expression stack is adjacent to the current frame manager's intepretState
   277       // except we allocated one extra word for this intepretState so we won't overwrite it
   278       // when we return a two word result.
   279 #ifdef _LP64
   280       __ ld_ptr(O0, 0, O2);
   281       __ st_ptr(O2, O1, -wordSize);
   282 #else
   283       __ ld(O0, 0, O2);
   284       __ ld(O0, wordSize, O3);
   285       __ st(O3, O1, 0);
   286       __ st(O2, O1, -wordSize);
   287 #endif
   288       __ sub(O1, 2*wordSize, O1);
   289       break;
   290     case T_OBJECT :
   291       __ ld_ptr(O0, 0, O2);
   292       __ verify_oop(O2);                                               // verify it
   293       __ st_ptr(O2, O1, 0);
   294       __ sub(O1, wordSize, O1);
   295       break;
   296     default       : ShouldNotReachHere();
   297   }
   298   __ retl();
   299   __ delayed()->nop(); // QQ schedule this better
   300   return entry;
   301 }
   303 address CppInterpreterGenerator::generate_stack_to_native_abi_converter(BasicType type) {
   304   // A result is in the java expression stack of the interpreted method that has just
   305   // returned. Place this result in the native abi that the caller expects.
   306   // We are in a new frame registers we set must be in caller (i.e. callstub) frame.
   307   //
   308   // Similar to generate_stack_to_stack_converter above. Called at a similar time from the
   309   // frame manager execept in this situation the caller is native code (c1/c2/call_stub)
   310   // and so rather than return result onto caller's java expression stack we return the
   311   // result in the expected location based on the native abi.
   312   // On entry: O0 - source (stack top)
   313   // On exit result in expected output register
   314   // QQQ schedule this better
   316   address entry = __ pc();
   317   switch (type) {
   318     case T_VOID:  break;
   319       break;
   320     case T_FLOAT  :
   321       __ ldf(FloatRegisterImpl::S, O0, 0, F0);
   322       break;
   323     case T_BOOLEAN:
   324     case T_CHAR   :
   325     case T_BYTE   :
   326     case T_SHORT  :
   327     case T_INT    :
   328       // 1 word result
   329       __ ld(O0, 0, O0->after_save());
   330       break;
   331     case T_DOUBLE  :
   332       __ ldf(FloatRegisterImpl::D, O0, 0, F0);
   333       break;
   334     case T_LONG    :
   335       // return top two words on current expression stack to caller's expression stack
   336       // The caller's expression stack is adjacent to the current frame manager's interpretState
   337       // except we allocated one extra word for this intepretState so we won't overwrite it
   338       // when we return a two word result.
   339 #ifdef _LP64
   340       __ ld_ptr(O0, 0, O0->after_save());
   341 #else
   342       __ ld(O0, wordSize, O1->after_save());
   343       __ ld(O0, 0, O0->after_save());
   344 #endif
   345 #if defined(COMPILER2) && !defined(_LP64)
   346       // C2 expects long results in G1 we can't tell if we're returning to interpreted
   347       // or compiled so just be safe use G1 and O0/O1
   349       // Shift bits into high (msb) of G1
   350       __ sllx(Otos_l1->after_save(), 32, G1);
   351       // Zero extend low bits
   352       __ srl (Otos_l2->after_save(), 0, Otos_l2->after_save());
   353       __ or3 (Otos_l2->after_save(), G1, G1);
   354 #endif /* COMPILER2 */
   355       break;
   356     case T_OBJECT :
   357       __ ld_ptr(O0, 0, O0->after_save());
   358       __ verify_oop(O0->after_save());                                               // verify it
   359       break;
   360     default       : ShouldNotReachHere();
   361   }
   362   __ retl();
   363   __ delayed()->nop();
   364   return entry;
   365 }
   367 address CppInterpreter::return_entry(TosState state, int length) {
   368   // make it look good in the debugger
   369   return CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation) + frame::pc_return_offset;
   370 }
   372 address CppInterpreter::deopt_entry(TosState state, int length) {
   373   address ret = NULL;
   374   if (length != 0) {
   375     switch (state) {
   376       case atos: ret = deopt_frame_manager_return_atos; break;
   377       case btos: ret = deopt_frame_manager_return_btos; break;
   378       case ctos:
   379       case stos:
   380       case itos: ret = deopt_frame_manager_return_itos; break;
   381       case ltos: ret = deopt_frame_manager_return_ltos; break;
   382       case ftos: ret = deopt_frame_manager_return_ftos; break;
   383       case dtos: ret = deopt_frame_manager_return_dtos; break;
   384       case vtos: ret = deopt_frame_manager_return_vtos; break;
   385     }
   386   } else {
   387     ret = unctrap_frame_manager_entry;  // re-execute the bytecode ( e.g. uncommon trap)
   388   }
   389   assert(ret != NULL, "Not initialized");
   390   return ret;
   391 }
   393 //
   394 // Helpers for commoning out cases in the various type of method entries.
   395 //
   397 // increment invocation count & check for overflow
   398 //
   399 // Note: checking for negative value instead of overflow
   400 //       so we have a 'sticky' overflow test
   401 //
   402 // Lmethod: method
   403 // ??: invocation counter
   404 //
   405 void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
   406   // Update standard invocation counters
   407   __ increment_invocation_counter(O0, G3_scratch);
   408   if (ProfileInterpreter) {  // %%% Merge this into methodDataOop
   409     __ ld_ptr(STATE(_method), G3_scratch);
   410     Address interpreter_invocation_counter(G3_scratch, 0, in_bytes(methodOopDesc::interpreter_invocation_counter_offset()));
   411     __ ld(interpreter_invocation_counter, G3_scratch);
   412     __ inc(G3_scratch);
   413     __ st(G3_scratch, interpreter_invocation_counter);
   414   }
   416   Address invocation_limit(G3_scratch, (address)&InvocationCounter::InterpreterInvocationLimit);
   417   __ sethi(invocation_limit);
   418   __ ld(invocation_limit, G3_scratch);
   419   __ cmp(O0, G3_scratch);
   420   __ br(Assembler::greaterEqualUnsigned, false, Assembler::pn, *overflow);
   421   __ delayed()->nop();
   423 }
   425 address InterpreterGenerator::generate_empty_entry(void) {
   427   // A method that does nothing but return...
   429   address entry = __ pc();
   430   Label slow_path;
   432   __ verify_oop(G5_method);
   434   // do nothing for empty methods (do not even increment invocation counter)
   435   if ( UseFastEmptyMethods) {
   436     // If we need a safepoint check, generate full interpreter entry.
   437     Address sync_state(G3_scratch, SafepointSynchronize::address_of_state());
   438     __ load_contents(sync_state, G3_scratch);
   439     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
   440     __ br(Assembler::notEqual, false, Assembler::pn, frame_manager_entry);
   441     __ delayed()->nop();
   443     // Code: _return
   444     __ retl();
   445     __ delayed()->mov(O5_savedSP, SP);
   446     return entry;
   447   }
   448   return NULL;
   449 }
   451 // Call an accessor method (assuming it is resolved, otherwise drop into
   452 // vanilla (slow path) entry
   454 // Generates code to elide accessor methods
   455 // Uses G3_scratch and G1_scratch as scratch
   456 address InterpreterGenerator::generate_accessor_entry(void) {
   458   // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites thereof;
   459   // parameter size = 1
   460   // Note: We can only use this code if the getfield has been resolved
   461   //       and if we don't have a null-pointer exception => check for
   462   //       these conditions first and use slow path if necessary.
   463   address entry = __ pc();
   464   Label slow_path;
   466   if ( UseFastAccessorMethods) {
   467     // Check if we need to reach a safepoint and generate full interpreter
   468     // frame if so.
   469     Address sync_state(G3_scratch, SafepointSynchronize::address_of_state());
   470     __ load_contents(sync_state, G3_scratch);
   471     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
   472     __ br(Assembler::notEqual, false, Assembler::pn, slow_path);
   473     __ delayed()->nop();
   475     // Check if local 0 != NULL
   476     __ ld_ptr(Gargs, G0, Otos_i ); // get local 0
   477     __ tst(Otos_i);  // check if local 0 == NULL and go the slow path
   478     __ brx(Assembler::zero, false, Assembler::pn, slow_path);
   479     __ delayed()->nop();
   482     // read first instruction word and extract bytecode @ 1 and index @ 2
   483     // get first 4 bytes of the bytecodes (big endian!)
   484     __ ld_ptr(Address(G5_method, 0, in_bytes(methodOopDesc::const_offset())), G1_scratch);
   485     __ ld(Address(G1_scratch, 0, in_bytes(constMethodOopDesc::codes_offset())), G1_scratch);
   487     // move index @ 2 far left then to the right most two bytes.
   488     __ sll(G1_scratch, 2*BitsPerByte, G1_scratch);
   489     __ srl(G1_scratch, 2*BitsPerByte - exact_log2(in_words(
   490                       ConstantPoolCacheEntry::size()) * BytesPerWord), G1_scratch);
   492     // get constant pool cache
   493     __ ld_ptr(G5_method, in_bytes(methodOopDesc::const_offset()), G3_scratch);
   494     __ ld_ptr(G3_scratch, in_bytes(constMethodOopDesc::constants_offset()), G3_scratch);
   495     __ ld_ptr(G3_scratch, constantPoolOopDesc::cache_offset_in_bytes(), G3_scratch);
   497     // get specific constant pool cache entry
   498     __ add(G3_scratch, G1_scratch, G3_scratch);
   500     // Check the constant Pool cache entry to see if it has been resolved.
   501     // If not, need the slow path.
   502     ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
   503     __ ld_ptr(G3_scratch, in_bytes(cp_base_offset + ConstantPoolCacheEntry::indices_offset()), G1_scratch);
   504     __ srl(G1_scratch, 2*BitsPerByte, G1_scratch);
   505     __ and3(G1_scratch, 0xFF, G1_scratch);
   506     __ cmp(G1_scratch, Bytecodes::_getfield);
   507     __ br(Assembler::notEqual, false, Assembler::pn, slow_path);
   508     __ delayed()->nop();
   510     // Get the type and return field offset from the constant pool cache
   511     __ ld_ptr(G3_scratch, in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset()), G1_scratch);
   512     __ ld_ptr(G3_scratch, in_bytes(cp_base_offset + ConstantPoolCacheEntry::f2_offset()), G3_scratch);
   514     Label xreturn_path;
   515     // Need to differentiate between igetfield, agetfield, bgetfield etc.
   516     // because they are different sizes.
   517     // Get the type from the constant pool cache
   518     __ srl(G1_scratch, ConstantPoolCacheEntry::tos_state_shift, G1_scratch);
   519     // Make sure we don't need to mask G1_scratch after the above shift
   520     ConstantPoolCacheEntry::verify_tos_state_shift();
   521     __ cmp(G1_scratch, atos );
   522     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
   523     __ delayed()->ld_ptr(Otos_i, G3_scratch, Otos_i);
   524     __ cmp(G1_scratch, itos);
   525     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
   526     __ delayed()->ld(Otos_i, G3_scratch, Otos_i);
   527     __ cmp(G1_scratch, stos);
   528     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
   529     __ delayed()->ldsh(Otos_i, G3_scratch, Otos_i);
   530     __ cmp(G1_scratch, ctos);
   531     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
   532     __ delayed()->lduh(Otos_i, G3_scratch, Otos_i);
   533 #ifdef ASSERT
   534     __ cmp(G1_scratch, btos);
   535     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
   536     __ delayed()->ldsb(Otos_i, G3_scratch, Otos_i);
   537     __ should_not_reach_here();
   538 #endif
   539     __ ldsb(Otos_i, G3_scratch, Otos_i);
   540     __ bind(xreturn_path);
   542     // _ireturn/_areturn
   543     __ retl();                      // return from leaf routine
   544     __ delayed()->mov(O5_savedSP, SP);
   546     // Generate regular method entry
   547     __ bind(slow_path);
   548     __ ba(fast_accessor_slow_entry_path);
   549     __ delayed()->nop();
   550     return entry;
   551   }
   552   return NULL;
   553 }
   555 address InterpreterGenerator::generate_Reference_get_entry(void) {
   556 #ifndef SERIALGC
   557   if (UseG1GC) {
   558     // We need to generate have a routine that generates code to:
   559     //   * load the value in the referent field
   560     //   * passes that value to the pre-barrier.
   561     //
   562     // In the case of G1 this will record the value of the
   563     // referent in an SATB buffer if marking is active.
   564     // This will cause concurrent marking to mark the referent
   565     // field as live.
   566     Unimplemented();
   567   }
   568 #endif // SERIALGC
   570   // If G1 is not enabled then attempt to go through the accessor entry point
   571   // Reference.get is an accessor
   572   return generate_accessor_entry();
   573 }
   575 //
   576 // Interpreter stub for calling a native method. (C++ interpreter)
   577 // This sets up a somewhat different looking stack for calling the native method
   578 // than the typical interpreter frame setup.
   579 //
   581 address InterpreterGenerator::generate_native_entry(bool synchronized) {
   582   address entry = __ pc();
   584   // the following temporary registers are used during frame creation
   585   const Register Gtmp1 = G3_scratch ;
   586   const Register Gtmp2 = G1_scratch;
   587   const Address size_of_parameters(G5_method, 0, in_bytes(methodOopDesc::size_of_parameters_offset()));
   589   bool inc_counter  = UseCompiler || CountCompiledCalls;
   591   // make sure registers are different!
   592   assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2);
   594   const Address access_flags      (G5_method, 0, in_bytes(methodOopDesc::access_flags_offset()));
   596   Label Lentry;
   597   __ bind(Lentry);
   599   __ verify_oop(G5_method);
   601   const Register Glocals_size = G3;
   602   assert_different_registers(Glocals_size, G4_scratch, Gframe_size);
   604   // make sure method is native & not abstract
   605   // rethink these assertions - they can be simplified and shared (gri 2/25/2000)
   606 #ifdef ASSERT
   607   __ ld(access_flags, Gtmp1);
   608   {
   609     Label L;
   610     __ btst(JVM_ACC_NATIVE, Gtmp1);
   611     __ br(Assembler::notZero, false, Assembler::pt, L);
   612     __ delayed()->nop();
   613     __ stop("tried to execute non-native method as native");
   614     __ bind(L);
   615   }
   616   { Label L;
   617     __ btst(JVM_ACC_ABSTRACT, Gtmp1);
   618     __ br(Assembler::zero, false, Assembler::pt, L);
   619     __ delayed()->nop();
   620     __ stop("tried to execute abstract method as non-abstract");
   621     __ bind(L);
   622   }
   623 #endif // ASSERT
   625   __ lduh(size_of_parameters, Gtmp1);
   626   __ sll(Gtmp1, LogBytesPerWord, Gtmp2);       // parameter size in bytes
   627   __ add(Gargs, Gtmp2, Gargs);                 // points to first local + BytesPerWord
   628   // NEW
   629   __ add(Gargs, -wordSize, Gargs);             // points to first local[0]
   630   // generate the code to allocate the interpreter stack frame
   631   // NEW FRAME ALLOCATED HERE
   632   // save callers original sp
   633   // __ mov(SP, I5_savedSP->after_restore());
   635   generate_compute_interpreter_state(Lstate, G0, true);
   637   // At this point Lstate points to new interpreter state
   638   //
   640   const Address do_not_unlock_if_synchronized(G2_thread, 0,
   641       in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
   642   // Since at this point in the method invocation the exception handler
   643   // would try to exit the monitor of synchronized methods which hasn't
   644   // been entered yet, we set the thread local variable
   645   // _do_not_unlock_if_synchronized to true. If any exception was thrown by
   646   // runtime, exception handling i.e. unlock_if_synchronized_method will
   647   // check this thread local flag.
   648   // This flag has two effects, one is to force an unwind in the topmost
   649   // interpreter frame and not perform an unlock while doing so.
   651   __ movbool(true, G3_scratch);
   652   __ stbool(G3_scratch, do_not_unlock_if_synchronized);
   655   // increment invocation counter and check for overflow
   656   //
   657   // Note: checking for negative value instead of overflow
   658   //       so we have a 'sticky' overflow test (may be of
   659   //       importance as soon as we have true MT/MP)
   660   Label invocation_counter_overflow;
   661   if (inc_counter) {
   662     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
   663   }
   664   Label Lcontinue;
   665   __ bind(Lcontinue);
   667   bang_stack_shadow_pages(true);
   668   // reset the _do_not_unlock_if_synchronized flag
   669   __ stbool(G0, do_not_unlock_if_synchronized);
   671   // check for synchronized methods
   672   // Must happen AFTER invocation_counter check, so method is not locked
   673   // if counter overflows.
   675   if (synchronized) {
   676     lock_method();
   677     // Don't see how G2_thread is preserved here...
   678     // __ verify_thread(); QQQ destroys L0,L1 can't use
   679   } else {
   680 #ifdef ASSERT
   681     { Label ok;
   682       __ ld_ptr(STATE(_method), G5_method);
   683       __ ld(access_flags, O0);
   684       __ btst(JVM_ACC_SYNCHRONIZED, O0);
   685       __ br( Assembler::zero, false, Assembler::pt, ok);
   686       __ delayed()->nop();
   687       __ stop("method needs synchronization");
   688       __ bind(ok);
   689     }
   690 #endif // ASSERT
   691   }
   693   // start execution
   695 //   __ verify_thread(); kills L1,L2 can't  use at the moment
   697   // jvmti/jvmpi support
   698   __ notify_method_entry();
   700   // native call
   702   // (note that O0 is never an oop--at most it is a handle)
   703   // It is important not to smash any handles created by this call,
   704   // until any oop handle in O0 is dereferenced.
   706   // (note that the space for outgoing params is preallocated)
   708   // get signature handler
   710   Label pending_exception_present;
   712   { Label L;
   713     __ ld_ptr(STATE(_method), G5_method);
   714     __ ld_ptr(Address(G5_method, 0, in_bytes(methodOopDesc::signature_handler_offset())), G3_scratch);
   715     __ tst(G3_scratch);
   716     __ brx(Assembler::notZero, false, Assembler::pt, L);
   717     __ delayed()->nop();
   718     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), G5_method, false);
   719     __ ld_ptr(STATE(_method), G5_method);
   721     Address exception_addr(G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
   722     __ ld_ptr(exception_addr, G3_scratch);
   723     __ br_notnull_short(G3_scratch, Assembler::pn, pending_exception_present);
   724     __ ld_ptr(Address(G5_method, 0, in_bytes(methodOopDesc::signature_handler_offset())), G3_scratch);
   725     __ bind(L);
   726   }
   728   // Push a new frame so that the args will really be stored in
   729   // Copy a few locals across so the new frame has the variables
   730   // we need but these values will be dead at the jni call and
   731   // therefore not gc volatile like the values in the current
   732   // frame (Lstate in particular)
   734   // Flush the state pointer to the register save area
   735   // Which is the only register we need for a stack walk.
   736   __ st_ptr(Lstate, SP, (Lstate->sp_offset_in_saved_window() * wordSize) + STACK_BIAS);
   738   __ mov(Lstate, O1);         // Need to pass the state pointer across the frame
   740   // Calculate current frame size
   741   __ sub(SP, FP, O3);         // Calculate negative of current frame size
   742   __ save(SP, O3, SP);        // Allocate an identical sized frame
   744   __ mov(I1, Lstate);          // In the "natural" register.
   746   // Note I7 has leftover trash. Slow signature handler will fill it in
   747   // should we get there. Normal jni call will set reasonable last_Java_pc
   748   // below (and fix I7 so the stack trace doesn't have a meaningless frame
   749   // in it).
   752   // call signature handler
   753   __ ld_ptr(STATE(_method), Lmethod);
   754   __ ld_ptr(STATE(_locals), Llocals);
   756   __ callr(G3_scratch, 0);
   757   __ delayed()->nop();
   758   __ ld_ptr(STATE(_thread), G2_thread);        // restore thread (shouldn't be needed)
   760   { Label not_static;
   762     __ ld_ptr(STATE(_method), G5_method);
   763     __ ld(access_flags, O0);
   764     __ btst(JVM_ACC_STATIC, O0);
   765     __ br( Assembler::zero, false, Assembler::pt, not_static);
   766     __ delayed()->
   767       // get native function entry point(O0 is a good temp until the very end)
   768        ld_ptr(Address(G5_method, 0, in_bytes(methodOopDesc::native_function_offset())), O0);
   769     // for static methods insert the mirror argument
   770     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
   772     __ ld_ptr(Address(G5_method, 0, in_bytes(methodOopDesc:: const_offset())), O1);
   773     __ ld_ptr(Address(O1, 0, in_bytes(constMethodOopDesc::constants_offset())), O1);
   774     __ ld_ptr(Address(O1, 0, constantPoolOopDesc::pool_holder_offset_in_bytes()), O1);
   775     __ ld_ptr(O1, mirror_offset, O1);
   776     // where the mirror handle body is allocated:
   777 #ifdef ASSERT
   778     if (!PrintSignatureHandlers)  // do not dirty the output with this
   779     { Label L;
   780       __ tst(O1);
   781       __ brx(Assembler::notZero, false, Assembler::pt, L);
   782       __ delayed()->nop();
   783       __ stop("mirror is missing");
   784       __ bind(L);
   785     }
   786 #endif // ASSERT
   787     __ st_ptr(O1, STATE(_oop_temp));
   788     __ add(STATE(_oop_temp), O1);            // this is really an LEA not an add
   789     __ bind(not_static);
   790   }
   792   // At this point, arguments have been copied off of stack into
   793   // their JNI positions, which are O1..O5 and SP[68..].
   794   // Oops are boxed in-place on the stack, with handles copied to arguments.
   795   // The result handler is in Lscratch.  O0 will shortly hold the JNIEnv*.
   797 #ifdef ASSERT
   798   { Label L;
   799     __ tst(O0);
   800     __ brx(Assembler::notZero, false, Assembler::pt, L);
   801     __ delayed()->nop();
   802     __ stop("native entry point is missing");
   803     __ bind(L);
   804   }
   805 #endif // ASSERT
   807   //
   808   // setup the java frame anchor
   809   //
   810   // The scavenge function only needs to know that the PC of this frame is
   811   // in the interpreter method entry code, it doesn't need to know the exact
   812   // PC and hence we can use O7 which points to the return address from the
   813   // previous call in the code stream (signature handler function)
   814   //
   815   // The other trick is we set last_Java_sp to FP instead of the usual SP because
   816   // we have pushed the extra frame in order to protect the volatile register(s)
   817   // in that frame when we return from the jni call
   818   //
   821   __ set_last_Java_frame(FP, O7);
   822   __ mov(O7, I7);  // make dummy interpreter frame look like one above,
   823                    // not meaningless information that'll confuse me.
   825   // flush the windows now. We don't care about the current (protection) frame
   826   // only the outer frames
   828   __ flush_windows();
   830   // mark windows as flushed
   831   Address flags(G2_thread,
   832                 0,
   833                 in_bytes(JavaThread::frame_anchor_offset()) + in_bytes(JavaFrameAnchor::flags_offset()));
   834   __ set(JavaFrameAnchor::flushed, G3_scratch);
   835   __ st(G3_scratch, flags);
   837   // Transition from _thread_in_Java to _thread_in_native. We are already safepoint ready.
   839   Address thread_state(G2_thread, 0, in_bytes(JavaThread::thread_state_offset()));
   840 #ifdef ASSERT
   841   { Label L;
   842     __ ld(thread_state, G3_scratch);
   843     __ cmp(G3_scratch, _thread_in_Java);
   844     __ br(Assembler::equal, false, Assembler::pt, L);
   845     __ delayed()->nop();
   846     __ stop("Wrong thread state in native stub");
   847     __ bind(L);
   848   }
   849 #endif // ASSERT
   850   __ set(_thread_in_native, G3_scratch);
   851   __ st(G3_scratch, thread_state);
   853   // Call the jni method, using the delay slot to set the JNIEnv* argument.
   854   __ callr(O0, 0);
   855   __ delayed()->
   856      add(G2_thread, in_bytes(JavaThread::jni_environment_offset()), O0);
   857   __ ld_ptr(STATE(_thread), G2_thread);  // restore thread
   859   // must we block?
   861   // Block, if necessary, before resuming in _thread_in_Java state.
   862   // In order for GC to work, don't clear the last_Java_sp until after blocking.
   863   { Label no_block;
   864     Address sync_state(G3_scratch, SafepointSynchronize::address_of_state());
   866     // Switch thread to "native transition" state before reading the synchronization state.
   867     // This additional state is necessary because reading and testing the synchronization
   868     // state is not atomic w.r.t. GC, as this scenario demonstrates:
   869     //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
   870     //     VM thread changes sync state to synchronizing and suspends threads for GC.
   871     //     Thread A is resumed to finish this native method, but doesn't block here since it
   872     //     didn't see any synchronization is progress, and escapes.
   873     __ set(_thread_in_native_trans, G3_scratch);
   874     __ st(G3_scratch, thread_state);
   875     if(os::is_MP()) {
   876       // Write serialization page so VM thread can do a pseudo remote membar.
   877       // We use the current thread pointer to calculate a thread specific
   878       // offset to write to within the page. This minimizes bus traffic
   879       // due to cache line collision.
   880       __ serialize_memory(G2_thread, G1_scratch, G3_scratch);
   881     }
   882     __ load_contents(sync_state, G3_scratch);
   883     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
   886     Label L;
   887     Address suspend_state(G2_thread, 0, in_bytes(JavaThread::suspend_flags_offset()));
   888     __ br(Assembler::notEqual, false, Assembler::pn, L);
   889     __ delayed()->
   890       ld(suspend_state, G3_scratch);
   891     __ cmp(G3_scratch, 0);
   892     __ br(Assembler::equal, false, Assembler::pt, no_block);
   893     __ delayed()->nop();
   894     __ bind(L);
   896     // Block.  Save any potential method result value before the operation and
   897     // use a leaf call to leave the last_Java_frame setup undisturbed.
   898     save_native_result();
   899     __ call_VM_leaf(noreg,
   900                     CAST_FROM_FN_PTR(address, JavaThread::check_safepoint_and_suspend_for_native_trans),
   901                     G2_thread);
   902     __ ld_ptr(STATE(_thread), G2_thread);  // restore thread
   903     // Restore any method result value
   904     restore_native_result();
   905     __ bind(no_block);
   906   }
   908   // Clear the frame anchor now
   910   __ reset_last_Java_frame();
   912   // Move the result handler address
   913   __ mov(Lscratch, G3_scratch);
   914   // return possible result to the outer frame
   915 #ifndef __LP64
   916   __ mov(O0, I0);
   917   __ restore(O1, G0, O1);
   918 #else
   919   __ restore(O0, G0, O0);
   920 #endif /* __LP64 */
   922   // Move result handler to expected register
   923   __ mov(G3_scratch, Lscratch);
   926   // thread state is thread_in_native_trans. Any safepoint blocking has
   927   // happened in the trampoline we are ready to switch to thread_in_Java.
   929   __ set(_thread_in_Java, G3_scratch);
   930   __ st(G3_scratch, thread_state);
   932   // If we have an oop result store it where it will be safe for any further gc
   933   // until we return now that we've released the handle it might be protected by
   935   {
   936     Label no_oop, store_result;
   938     __ set((intptr_t)AbstractInterpreter::result_handler(T_OBJECT), G3_scratch);
   939     __ cmp(G3_scratch, Lscratch);
   940     __ brx(Assembler::notEqual, false, Assembler::pt, no_oop);
   941     __ delayed()->nop();
   942     __ addcc(G0, O0, O0);
   943     __ brx(Assembler::notZero, true, Assembler::pt, store_result);     // if result is not NULL:
   944     __ delayed()->ld_ptr(O0, 0, O0);                                   // unbox it
   945     __ mov(G0, O0);
   947     __ bind(store_result);
   948     // Store it where gc will look for it and result handler expects it.
   949     __ st_ptr(O0, STATE(_oop_temp));
   951     __ bind(no_oop);
   953   }
   955   // reset handle block
   956   __ ld_ptr(G2_thread, in_bytes(JavaThread::active_handles_offset()), G3_scratch);
   957   __ st_ptr(G0, G3_scratch, JNIHandleBlock::top_offset_in_bytes());
   960   // handle exceptions (exception handling will handle unlocking!)
   961   { Label L;
   962     Address exception_addr (G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
   964     __ ld_ptr(exception_addr, Gtemp);
   965     __ tst(Gtemp);
   966     __ brx(Assembler::equal, false, Assembler::pt, L);
   967     __ delayed()->nop();
   968     __ bind(pending_exception_present);
   969     // With c++ interpreter we just leave it pending caller will do the correct thing. However...
   970     // Like x86 we ignore the result of the native call and leave the method locked. This
   971     // seems wrong to leave things locked.
   973     __ br(Assembler::always, false, Assembler::pt, StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
   974     __ delayed()->restore(I5_savedSP, G0, SP);  // remove interpreter frame
   976     __ bind(L);
   977   }
   979   // jvmdi/jvmpi support (preserves thread register)
   980   __ notify_method_exit(true, ilgl, InterpreterMacroAssembler::NotifyJVMTI);
   982   if (synchronized) {
   983     // save and restore any potential method result value around the unlocking operation
   984     save_native_result();
   986     const int entry_size            = frame::interpreter_frame_monitor_size() * wordSize;
   987     // Get the initial monitor we allocated
   988     __ sub(Lstate, entry_size, O1);                        // initial monitor
   989     __ unlock_object(O1);
   990     restore_native_result();
   991   }
   993 #if defined(COMPILER2) && !defined(_LP64)
   995   // C2 expects long results in G1 we can't tell if we're returning to interpreted
   996   // or compiled so just be safe.
   998   __ sllx(O0, 32, G1);          // Shift bits into high G1
   999   __ srl (O1, 0, O1);           // Zero extend O1
  1000   __ or3 (O1, G1, G1);          // OR 64 bits into G1
  1002 #endif /* COMPILER2 && !_LP64 */
  1004 #ifdef ASSERT
  1006     Label ok;
  1007     __ cmp(I5_savedSP, FP);
  1008     __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, ok);
  1009     __ delayed()->nop();
  1010     __ stop("bad I5_savedSP value");
  1011     __ should_not_reach_here();
  1012     __ bind(ok);
  1014 #endif
  1015   // Calls result handler which POPS FRAME
  1016   if (TraceJumps) {
  1017     // Move target to register that is recordable
  1018     __ mov(Lscratch, G3_scratch);
  1019     __ JMP(G3_scratch, 0);
  1020   } else {
  1021     __ jmp(Lscratch, 0);
  1023   __ delayed()->nop();
  1025   if (inc_counter) {
  1026     // handle invocation counter overflow
  1027     __ bind(invocation_counter_overflow);
  1028     generate_counter_overflow(Lcontinue);
  1032   return entry;
  1035 void CppInterpreterGenerator::generate_compute_interpreter_state(const Register state,
  1036                                                               const Register prev_state,
  1037                                                               bool native) {
  1039   // On entry
  1040   // G5_method - caller's method
  1041   // Gargs - points to initial parameters (i.e. locals[0])
  1042   // G2_thread - valid? (C1 only??)
  1043   // "prev_state" - contains any previous frame manager state which we must save a link
  1044   //
  1045   // On return
  1046   // "state" is a pointer to the newly allocated  state object. We must allocate and initialize
  1047   // a new interpretState object and the method expression stack.
  1049   assert_different_registers(state, prev_state);
  1050   assert_different_registers(prev_state, G3_scratch);
  1051   const Register Gtmp = G3_scratch;
  1052   const Address constMethod       (G5_method, 0, in_bytes(methodOopDesc::const_offset()));
  1053   const Address access_flags      (G5_method, 0, in_bytes(methodOopDesc::access_flags_offset()));
  1054   const Address size_of_parameters(G5_method, 0, in_bytes(methodOopDesc::size_of_parameters_offset()));
  1055   const Address max_stack         (G5_method, 0, in_bytes(methodOopDesc::max_stack_offset()));
  1056   const Address size_of_locals    (G5_method, 0, in_bytes(methodOopDesc::size_of_locals_offset()));
  1058   // slop factor is two extra slots on the expression stack so that
  1059   // we always have room to store a result when returning from a call without parameters
  1060   // that returns a result.
  1062   const int slop_factor = 2*wordSize;
  1064   const int fixed_size = ((sizeof(BytecodeInterpreter) + slop_factor) >> LogBytesPerWord) + // what is the slop factor?
  1065                          //6815692//methodOopDesc::extra_stack_words() +  // extra push slots for MH adapters
  1066                          frame::memory_parameter_word_sp_offset +  // register save area + param window
  1067                          (native ?  frame::interpreter_frame_extra_outgoing_argument_words : 0); // JNI, class
  1069   // XXX G5_method valid
  1071   // Now compute new frame size
  1073   if (native) {
  1074     __ lduh( size_of_parameters, Gtmp );
  1075     __ calc_mem_param_words(Gtmp, Gtmp);     // space for native call parameters passed on the stack in words
  1076   } else {
  1077     __ lduh(max_stack, Gtmp);                // Full size expression stack
  1079   __ add(Gtmp, fixed_size, Gtmp);           // plus the fixed portion
  1081   __ neg(Gtmp);                               // negative space for stack/parameters in words
  1082   __ and3(Gtmp, -WordsPerLong, Gtmp);        // make multiple of 2 (SP must be 2-word aligned)
  1083   __ sll(Gtmp, LogBytesPerWord, Gtmp);       // negative space for frame in bytes
  1085   // Need to do stack size check here before we fault on large frames
  1087   Label stack_ok;
  1089   const int max_pages = StackShadowPages > (StackRedPages+StackYellowPages) ? StackShadowPages :
  1090                                                                               (StackRedPages+StackYellowPages);
  1093   __ ld_ptr(G2_thread, in_bytes(Thread::stack_base_offset()), O0);
  1094   __ ld_ptr(G2_thread, in_bytes(Thread::stack_size_offset()), O1);
  1095   // compute stack bottom
  1096   __ sub(O0, O1, O0);
  1098   // Avoid touching the guard pages
  1099   // Also a fudge for frame size of BytecodeInterpreter::run
  1100   // It varies from 1k->4k depending on build type
  1101   const int fudge = 6 * K;
  1103   __ set(fudge + (max_pages * os::vm_page_size()), O1);
  1105   __ add(O0, O1, O0);
  1106   __ sub(O0, Gtmp, O0);
  1107   __ cmp(SP, O0);
  1108   __ brx(Assembler::greaterUnsigned, false, Assembler::pt, stack_ok);
  1109   __ delayed()->nop();
  1111      // throw exception return address becomes throwing pc
  1113   __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
  1114   __ stop("never reached");
  1116   __ bind(stack_ok);
  1118   __ save(SP, Gtmp, SP);                      // setup new frame and register window
  1120   // New window I7 call_stub or previous activation
  1121   // O6 - register save area, BytecodeInterpreter just below it, args/locals just above that
  1122   //
  1123   __ sub(FP, sizeof(BytecodeInterpreter), state);        // Point to new Interpreter state
  1124   __ add(state, STACK_BIAS, state );         // Account for 64bit bias
  1126 #define XXX_STATE(field_name) state, in_bytes(byte_offset_of(BytecodeInterpreter, field_name))
  1128   // Initialize a new Interpreter state
  1129   // orig_sp - caller's original sp
  1130   // G2_thread - thread
  1131   // Gargs - &locals[0] (unbiased?)
  1132   // G5_method - method
  1133   // SP (biased) - accounts for full size java stack, BytecodeInterpreter object, register save area, and register parameter save window
  1136   __ set(0xdead0004, O1);
  1139   __ st_ptr(Gargs, XXX_STATE(_locals));
  1140   __ st_ptr(G0, XXX_STATE(_oop_temp));
  1142   __ st_ptr(state, XXX_STATE(_self_link));                // point to self
  1143   __ st_ptr(prev_state->after_save(), XXX_STATE(_prev_link)); // Chain interpreter states
  1144   __ st_ptr(G2_thread, XXX_STATE(_thread));               // Store javathread
  1146   if (native) {
  1147     __ st_ptr(G0, XXX_STATE(_bcp));
  1148   } else {
  1149     __ ld_ptr(G5_method, in_bytes(methodOopDesc::const_offset()), O2); // get constMethodOop
  1150     __ add(O2, in_bytes(constMethodOopDesc::codes_offset()), O2);        // get bcp
  1151     __ st_ptr(O2, XXX_STATE(_bcp));
  1154   __ st_ptr(G0, XXX_STATE(_mdx));
  1155   __ st_ptr(G5_method, XXX_STATE(_method));
  1157   __ set((int) BytecodeInterpreter::method_entry, O1);
  1158   __ st(O1, XXX_STATE(_msg));
  1160   __ ld_ptr(constMethod, O3);
  1161   __ ld_ptr(O3, in_bytes(constMethodOopDesc::constants_offset()), O3);
  1162   __ ld_ptr(O3, constantPoolOopDesc::cache_offset_in_bytes(), O2);
  1163   __ st_ptr(O2, XXX_STATE(_constants));
  1165   __ st_ptr(G0, XXX_STATE(_result._to_call._callee));
  1167   // Monitor base is just start of BytecodeInterpreter object;
  1168   __ mov(state, O2);
  1169   __ st_ptr(O2, XXX_STATE(_monitor_base));
  1171   // Do we need a monitor for synchonized method?
  1173     __ ld(access_flags, O1);
  1174     Label done;
  1175     Label got_obj;
  1176     __ btst(JVM_ACC_SYNCHRONIZED, O1);
  1177     __ br( Assembler::zero, false, Assembler::pt, done);
  1179     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
  1180     __ delayed()->btst(JVM_ACC_STATIC, O1);
  1181     __ ld_ptr(XXX_STATE(_locals), O1);
  1182     __ br( Assembler::zero, true, Assembler::pt, got_obj);
  1183     __ delayed()->ld_ptr(O1, 0, O1);                  // get receiver for not-static case
  1184     __ ld_ptr(constMethod, O1);
  1185     __ ld_ptr( O1, in_bytes(constMethodOopDesc::constants_offset()), O1);
  1186     __ ld_ptr( O1, constantPoolOopDesc::pool_holder_offset_in_bytes(), O1);
  1187     // lock the mirror, not the klassOop
  1188     __ ld_ptr( O1, mirror_offset, O1);
  1190     __ bind(got_obj);
  1192   #ifdef ASSERT
  1193     __ tst(O1);
  1194     __ breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
  1195   #endif // ASSERT
  1197     const int entry_size            = frame::interpreter_frame_monitor_size() * wordSize;
  1198     __ sub(SP, entry_size, SP);                         // account for initial monitor
  1199     __ sub(O2, entry_size, O2);                        // initial monitor
  1200     __ st_ptr(O1, O2, BasicObjectLock::obj_offset_in_bytes()); // and allocate it for interpreter use
  1201     __ bind(done);
  1204   // Remember initial frame bottom
  1206   __ st_ptr(SP, XXX_STATE(_frame_bottom));
  1208   __ st_ptr(O2, XXX_STATE(_stack_base));
  1210   __ sub(O2, wordSize, O2);                    // prepush
  1211   __ st_ptr(O2, XXX_STATE(_stack));                // PREPUSH
  1213   __ lduh(max_stack, O3);                      // Full size expression stack
  1214   guarantee(!EnableInvokeDynamic, "no support yet for java.lang.invoke.MethodHandle"); //6815692
  1215   //6815692//if (EnableInvokeDynamic)
  1216   //6815692//  __ inc(O3, methodOopDesc::extra_stack_entries());
  1217   __ sll(O3, LogBytesPerWord, O3);
  1218   __ sub(O2, O3, O3);
  1219 //  __ sub(O3, wordSize, O3);                    // so prepush doesn't look out of bounds
  1220   __ st_ptr(O3, XXX_STATE(_stack_limit));
  1222   if (!native) {
  1223     //
  1224     // Code to initialize locals
  1225     //
  1226     Register init_value = noreg;    // will be G0 if we must clear locals
  1227     // Now zero locals
  1228     if (true /* zerolocals */ || ClearInterpreterLocals) {
  1229       // explicitly initialize locals
  1230       init_value = G0;
  1231     } else {
  1232     #ifdef ASSERT
  1233       // initialize locals to a garbage pattern for better debugging
  1234       init_value = O3;
  1235       __ set( 0x0F0F0F0F, init_value );
  1236     #endif // ASSERT
  1238     if (init_value != noreg) {
  1239       Label clear_loop;
  1241       // NOTE: If you change the frame layout, this code will need to
  1242       // be updated!
  1243       __ lduh( size_of_locals, O2 );
  1244       __ lduh( size_of_parameters, O1 );
  1245       __ sll( O2, LogBytesPerWord, O2);
  1246       __ sll( O1, LogBytesPerWord, O1 );
  1247       __ ld_ptr(XXX_STATE(_locals), L2_scratch);
  1248       __ sub( L2_scratch, O2, O2 );
  1249       __ sub( L2_scratch, O1, O1 );
  1251       __ bind( clear_loop );
  1252       __ inc( O2, wordSize );
  1254       __ cmp( O2, O1 );
  1255       __ br( Assembler::lessEqualUnsigned, true, Assembler::pt, clear_loop );
  1256       __ delayed()->st_ptr( init_value, O2, 0 );
  1260 // Find preallocated  monitor and lock method (C++ interpreter)
  1261 //
  1262 void InterpreterGenerator::lock_method(void) {
  1263 // Lock the current method.
  1264 // Destroys registers L2_scratch, L3_scratch, O0
  1265 //
  1266 // Find everything relative to Lstate
  1268 #ifdef ASSERT
  1269   __ ld_ptr(STATE(_method), L2_scratch);
  1270   __ ld(L2_scratch, in_bytes(methodOopDesc::access_flags_offset()), O0);
  1272  { Label ok;
  1273    __ btst(JVM_ACC_SYNCHRONIZED, O0);
  1274    __ br( Assembler::notZero, false, Assembler::pt, ok);
  1275    __ delayed()->nop();
  1276    __ stop("method doesn't need synchronization");
  1277    __ bind(ok);
  1279 #endif // ASSERT
  1281   // monitor is already allocated at stack base
  1282   // and the lockee is already present
  1283   __ ld_ptr(STATE(_stack_base), L2_scratch);
  1284   __ ld_ptr(L2_scratch, BasicObjectLock::obj_offset_in_bytes(), O0);   // get object
  1285   __ lock_object(L2_scratch, O0);
  1289 //  Generate code for handling resuming a deopted method
  1290 void CppInterpreterGenerator::generate_deopt_handling() {
  1292   Label return_from_deopt_common;
  1294   // deopt needs to jump to here to enter the interpreter (return a result)
  1295   deopt_frame_manager_return_atos  = __ pc();
  1297   // O0/O1 live
  1298   __ ba(return_from_deopt_common);
  1299   __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_OBJECT), L3_scratch);    // Result stub address array index
  1302   // deopt needs to jump to here to enter the interpreter (return a result)
  1303   deopt_frame_manager_return_btos  = __ pc();
  1305   // O0/O1 live
  1306   __ ba(return_from_deopt_common);
  1307   __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_BOOLEAN), L3_scratch);    // Result stub address array index
  1309   // deopt needs to jump to here to enter the interpreter (return a result)
  1310   deopt_frame_manager_return_itos  = __ pc();
  1312   // O0/O1 live
  1313   __ ba(return_from_deopt_common);
  1314   __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_INT), L3_scratch);    // Result stub address array index
  1316   // deopt needs to jump to here to enter the interpreter (return a result)
  1318   deopt_frame_manager_return_ltos  = __ pc();
  1319 #if !defined(_LP64) && defined(COMPILER2)
  1320   // All return values are where we want them, except for Longs.  C2 returns
  1321   // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
  1322   // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
  1323   // build even if we are returning from interpreted we just do a little
  1324   // stupid shuffing.
  1325   // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
  1326   // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
  1327   // first which would move g1 -> O0/O1 and destroy the exception we were throwing.
  1329   __ srl (G1, 0,O1);
  1330   __ srlx(G1,32,O0);
  1331 #endif /* !_LP64 && COMPILER2 */
  1332   // O0/O1 live
  1333   __ ba(return_from_deopt_common);
  1334   __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_LONG), L3_scratch);    // Result stub address array index
  1336   // deopt needs to jump to here to enter the interpreter (return a result)
  1338   deopt_frame_manager_return_ftos  = __ pc();
  1339   // O0/O1 live
  1340   __ ba(return_from_deopt_common);
  1341   __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_FLOAT), L3_scratch);    // Result stub address array index
  1343   // deopt needs to jump to here to enter the interpreter (return a result)
  1344   deopt_frame_manager_return_dtos  = __ pc();
  1346   // O0/O1 live
  1347   __ ba(return_from_deopt_common);
  1348   __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_DOUBLE), L3_scratch);    // Result stub address array index
  1350   // deopt needs to jump to here to enter the interpreter (return a result)
  1351   deopt_frame_manager_return_vtos  = __ pc();
  1353   // O0/O1 live
  1354   __ set(AbstractInterpreter::BasicType_as_index(T_VOID), L3_scratch);
  1356   // Deopt return common
  1357   // an index is present that lets us move any possible result being
  1358   // return to the interpreter's stack
  1359   //
  1360   __ bind(return_from_deopt_common);
  1362   // Result if any is in native abi result (O0..O1/F0..F1). The java expression
  1363   // stack is in the state that the  calling convention left it.
  1364   // Copy the result from native abi result and place it on java expression stack.
  1366   // Current interpreter state is present in Lstate
  1368   // Get current pre-pushed top of interpreter stack
  1369   // Any result (if any) is in native abi
  1370   // result type index is in L3_scratch
  1372   __ ld_ptr(STATE(_stack), L1_scratch);                                          // get top of java expr stack
  1374   __ set((intptr_t)CppInterpreter::_tosca_to_stack, L4_scratch);
  1375   __ sll(L3_scratch, LogBytesPerWord, L3_scratch);
  1376   __ ld_ptr(L4_scratch, L3_scratch, Lscratch);                                       // get typed result converter address
  1377   __ jmpl(Lscratch, G0, O7);                                         // and convert it
  1378   __ delayed()->nop();
  1380   // L1_scratch points to top of stack (prepushed)
  1381   __ st_ptr(L1_scratch, STATE(_stack));
  1384 // Generate the code to handle a more_monitors message from the c++ interpreter
  1385 void CppInterpreterGenerator::generate_more_monitors() {
  1387   Label entry, loop;
  1388   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
  1389   // 1. compute new pointers                                // esp: old expression stack top
  1390   __ delayed()->ld_ptr(STATE(_stack_base), L4_scratch);            // current expression stack bottom
  1391   __ sub(L4_scratch, entry_size, L4_scratch);
  1392   __ st_ptr(L4_scratch, STATE(_stack_base));
  1394   __ sub(SP, entry_size, SP);                  // Grow stack
  1395   __ st_ptr(SP, STATE(_frame_bottom));
  1397   __ ld_ptr(STATE(_stack_limit), L2_scratch);
  1398   __ sub(L2_scratch, entry_size, L2_scratch);
  1399   __ st_ptr(L2_scratch, STATE(_stack_limit));
  1401   __ ld_ptr(STATE(_stack), L1_scratch);                // Get current stack top
  1402   __ sub(L1_scratch, entry_size, L1_scratch);
  1403   __ st_ptr(L1_scratch, STATE(_stack));
  1404   __ ba(entry);
  1405   __ delayed()->add(L1_scratch, wordSize, L1_scratch);        // first real entry (undo prepush)
  1407   // 2. move expression stack
  1409   __ bind(loop);
  1410   __ st_ptr(L3_scratch, Address(L1_scratch, 0));
  1411   __ add(L1_scratch, wordSize, L1_scratch);
  1412   __ bind(entry);
  1413   __ cmp(L1_scratch, L4_scratch);
  1414   __ br(Assembler::notEqual, false, Assembler::pt, loop);
  1415   __ delayed()->ld_ptr(L1_scratch, entry_size, L3_scratch);
  1417   // now zero the slot so we can find it.
  1418   __ st_ptr(G0, L4_scratch, BasicObjectLock::obj_offset_in_bytes());
  1422 // Initial entry to C++ interpreter from the call_stub.
  1423 // This entry point is called the frame manager since it handles the generation
  1424 // of interpreter activation frames via requests directly from the vm (via call_stub)
  1425 // and via requests from the interpreter. The requests from the call_stub happen
  1426 // directly thru the entry point. Requests from the interpreter happen via returning
  1427 // from the interpreter and examining the message the interpreter has returned to
  1428 // the frame manager. The frame manager can take the following requests:
  1430 // NO_REQUEST - error, should never happen.
  1431 // MORE_MONITORS - need a new monitor. Shuffle the expression stack on down and
  1432 //                 allocate a new monitor.
  1433 // CALL_METHOD - setup a new activation to call a new method. Very similar to what
  1434 //               happens during entry during the entry via the call stub.
  1435 // RETURN_FROM_METHOD - remove an activation. Return to interpreter or call stub.
  1436 //
  1437 // Arguments:
  1438 //
  1439 // ebx: methodOop
  1440 // ecx: receiver - unused (retrieved from stack as needed)
  1441 // esi: previous frame manager state (NULL from the call_stub/c1/c2)
  1442 //
  1443 //
  1444 // Stack layout at entry
  1445 //
  1446 // [ return address     ] <--- esp
  1447 // [ parameter n        ]
  1448 //   ...
  1449 // [ parameter 1        ]
  1450 // [ expression stack   ]
  1451 //
  1452 //
  1453 // We are free to blow any registers we like because the call_stub which brought us here
  1454 // initially has preserved the callee save registers already.
  1455 //
  1456 //
  1458 static address interpreter_frame_manager = NULL;
  1460 #ifdef ASSERT
  1461   #define VALIDATE_STATE(scratch, marker)                         \
  1462   {                                                               \
  1463     Label skip;                                                   \
  1464     __ ld_ptr(STATE(_self_link), scratch);                        \
  1465     __ cmp(Lstate, scratch);                                      \
  1466     __ brx(Assembler::equal, false, Assembler::pt, skip);         \
  1467     __ delayed()->nop();                                          \
  1468     __ breakpoint_trap();                                         \
  1469     __ emit_long(marker);                                         \
  1470     __ bind(skip);                                                \
  1472 #else
  1473   #define VALIDATE_STATE(scratch, marker)
  1474 #endif /* ASSERT */
  1476 void CppInterpreterGenerator::adjust_callers_stack(Register args) {
  1477 //
  1478 // Adjust caller's stack so that all the locals can be contiguous with
  1479 // the parameters.
  1480 // Worries about stack overflow make this a pain.
  1481 //
  1482 // Destroys args, G3_scratch, G3_scratch
  1483 // In/Out O5_savedSP (sender's original SP)
  1484 //
  1485 //  assert_different_registers(state, prev_state);
  1486   const Register Gtmp = G3_scratch;
  1487   const Register tmp = O2;
  1488   const Address size_of_parameters(G5_method, 0, in_bytes(methodOopDesc::size_of_parameters_offset()));
  1489   const Address size_of_locals    (G5_method, 0, in_bytes(methodOopDesc::size_of_locals_offset()));
  1491   __ lduh(size_of_parameters, tmp);
  1492   __ sll(tmp, LogBytesPerWord, Gtmp);       // parameter size in bytes
  1493   __ add(args, Gtmp, Gargs);                // points to first local + BytesPerWord
  1494   // NEW
  1495   __ add(Gargs, -wordSize, Gargs);             // points to first local[0]
  1496   // determine extra space for non-argument locals & adjust caller's SP
  1497   // Gtmp1: parameter size in words
  1498   __ lduh(size_of_locals, Gtmp);
  1499   __ compute_extra_locals_size_in_bytes(tmp, Gtmp, Gtmp);
  1501 #if 1
  1502   // c2i adapters place the final interpreter argument in the register save area for O0/I0
  1503   // the call_stub will place the final interpreter argument at
  1504   // frame::memory_parameter_word_sp_offset. This is mostly not noticable for either asm
  1505   // or c++ interpreter. However with the c++ interpreter when we do a recursive call
  1506   // and try to make it look good in the debugger we will store the argument to
  1507   // RecursiveInterpreterActivation in the register argument save area. Without allocating
  1508   // extra space for the compiler this will overwrite locals in the local array of the
  1509   // interpreter.
  1510   // QQQ still needed with frameless adapters???
  1512   const int c2i_adjust_words = frame::memory_parameter_word_sp_offset - frame::callee_register_argument_save_area_sp_offset;
  1514   __ add(Gtmp, c2i_adjust_words*wordSize, Gtmp);
  1515 #endif // 1
  1518   __ sub(SP, Gtmp, SP);                      // just caller's frame for the additional space we need.
  1521 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
  1523   // G5_method: methodOop
  1524   // G2_thread: thread (unused)
  1525   // Gargs:   bottom of args (sender_sp)
  1526   // O5: sender's sp
  1528   // A single frame manager is plenty as we don't specialize for synchronized. We could and
  1529   // the code is pretty much ready. Would need to change the test below and for good measure
  1530   // modify generate_interpreter_state to only do the (pre) sync stuff stuff for synchronized
  1531   // routines. Not clear this is worth it yet.
  1533   if (interpreter_frame_manager) {
  1534     return interpreter_frame_manager;
  1537   __ bind(frame_manager_entry);
  1539   // the following temporary registers are used during frame creation
  1540   const Register Gtmp1 = G3_scratch;
  1541   // const Register Lmirror = L1;     // native mirror (native calls only)
  1543   const Address constMethod       (G5_method, 0, in_bytes(methodOopDesc::const_offset()));
  1544   const Address access_flags      (G5_method, 0, in_bytes(methodOopDesc::access_flags_offset()));
  1545   const Address size_of_parameters(G5_method, 0, in_bytes(methodOopDesc::size_of_parameters_offset()));
  1546   const Address max_stack         (G5_method, 0, in_bytes(methodOopDesc::max_stack_offset()));
  1547   const Address size_of_locals    (G5_method, 0, in_bytes(methodOopDesc::size_of_locals_offset()));
  1549   address entry_point = __ pc();
  1550   __ mov(G0, prevState);                                                 // no current activation
  1553   Label re_dispatch;
  1555   __ bind(re_dispatch);
  1557   // Interpreter needs to have locals completely contiguous. In order to do that
  1558   // We must adjust the caller's stack pointer for any locals beyond just the
  1559   // parameters
  1560   adjust_callers_stack(Gargs);
  1562   // O5_savedSP still contains sender's sp
  1564   // NEW FRAME
  1566   generate_compute_interpreter_state(Lstate, prevState, false);
  1568   // At this point a new interpreter frame and state object are created and initialized
  1569   // Lstate has the pointer to the new activation
  1570   // Any stack banging or limit check should already be done.
  1572   Label call_interpreter;
  1574   __ bind(call_interpreter);
  1577 #if 1
  1578   __ set(0xdead002, Lmirror);
  1579   __ set(0xdead002, L2_scratch);
  1580   __ set(0xdead003, L3_scratch);
  1581   __ set(0xdead004, L4_scratch);
  1582   __ set(0xdead005, Lscratch);
  1583   __ set(0xdead006, Lscratch2);
  1584   __ set(0xdead007, L7_scratch);
  1586   __ set(0xdeaf002, O2);
  1587   __ set(0xdeaf003, O3);
  1588   __ set(0xdeaf004, O4);
  1589   __ set(0xdeaf005, O5);
  1590 #endif
  1592   // Call interpreter (stack bang complete) enter here if message is
  1593   // set and we know stack size is valid
  1595   Label call_interpreter_2;
  1597   __ bind(call_interpreter_2);
  1599 #ifdef ASSERT
  1601     Label skip;
  1602     __ ld_ptr(STATE(_frame_bottom), G3_scratch);
  1603     __ cmp(G3_scratch, SP);
  1604     __ brx(Assembler::equal, false, Assembler::pt, skip);
  1605     __ delayed()->nop();
  1606     __ stop("SP not restored to frame bottom");
  1607     __ bind(skip);
  1609 #endif
  1611   VALIDATE_STATE(G3_scratch, 4);
  1612   __ set_last_Java_frame(SP, noreg);
  1613   __ mov(Lstate, O0);                 // (arg) pointer to current state
  1615   __ call(CAST_FROM_FN_PTR(address,
  1616                            JvmtiExport::can_post_interpreter_events() ?
  1617                                                                   BytecodeInterpreter::runWithChecks
  1618                                                                 : BytecodeInterpreter::run),
  1619          relocInfo::runtime_call_type);
  1621   __ delayed()->nop();
  1623   __ ld_ptr(STATE(_thread), G2_thread);
  1624   __ reset_last_Java_frame();
  1626   // examine msg from interpreter to determine next action
  1627   __ ld_ptr(STATE(_thread), G2_thread);                                  // restore G2_thread
  1629   __ ld(STATE(_msg), L1_scratch);                                       // Get new message
  1631   Label call_method;
  1632   Label return_from_interpreted_method;
  1633   Label throw_exception;
  1634   Label do_OSR;
  1635   Label bad_msg;
  1636   Label resume_interpreter;
  1638   __ cmp(L1_scratch, (int)BytecodeInterpreter::call_method);
  1639   __ br(Assembler::equal, false, Assembler::pt, call_method);
  1640   __ delayed()->cmp(L1_scratch, (int)BytecodeInterpreter::return_from_method);
  1641   __ br(Assembler::equal, false, Assembler::pt, return_from_interpreted_method);
  1642   __ delayed()->cmp(L1_scratch, (int)BytecodeInterpreter::throwing_exception);
  1643   __ br(Assembler::equal, false, Assembler::pt, throw_exception);
  1644   __ delayed()->cmp(L1_scratch, (int)BytecodeInterpreter::do_osr);
  1645   __ br(Assembler::equal, false, Assembler::pt, do_OSR);
  1646   __ delayed()->cmp(L1_scratch, (int)BytecodeInterpreter::more_monitors);
  1647   __ br(Assembler::notEqual, false, Assembler::pt, bad_msg);
  1649   // Allocate more monitor space, shuffle expression stack....
  1651   generate_more_monitors();
  1653   // new monitor slot allocated, resume the interpreter.
  1655   __ set((int)BytecodeInterpreter::got_monitors, L1_scratch);
  1656   VALIDATE_STATE(G3_scratch, 5);
  1657   __ ba(call_interpreter);
  1658   __ delayed()->st(L1_scratch, STATE(_msg));
  1660   // uncommon trap needs to jump to here to enter the interpreter (re-execute current bytecode)
  1661   unctrap_frame_manager_entry  = __ pc();
  1663   // QQQ what message do we send
  1665   __ ba(call_interpreter);
  1666   __ delayed()->ld_ptr(STATE(_frame_bottom), SP);                  // restore to full stack frame
  1668   //=============================================================================
  1669   // Returning from a compiled method into a deopted method. The bytecode at the
  1670   // bcp has completed. The result of the bytecode is in the native abi (the tosca
  1671   // for the template based interpreter). Any stack space that was used by the
  1672   // bytecode that has completed has been removed (e.g. parameters for an invoke)
  1673   // so all that we have to do is place any pending result on the expression stack
  1674   // and resume execution on the next bytecode.
  1676   generate_deopt_handling();
  1678   // ready to resume the interpreter
  1680   __ set((int)BytecodeInterpreter::deopt_resume, L1_scratch);
  1681   __ ba(call_interpreter);
  1682   __ delayed()->st(L1_scratch, STATE(_msg));
  1684   // Current frame has caught an exception we need to dispatch to the
  1685   // handler. We can get here because a native interpreter frame caught
  1686   // an exception in which case there is no handler and we must rethrow
  1687   // If it is a vanilla interpreted frame the we simply drop into the
  1688   // interpreter and let it do the lookup.
  1690   Interpreter::_rethrow_exception_entry = __ pc();
  1692   Label return_with_exception;
  1693   Label unwind_and_forward;
  1695   // O0: exception
  1696   // O7: throwing pc
  1698   // We want exception in the thread no matter what we ultimately decide about frame type.
  1700   Address exception_addr (G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
  1701   __ verify_thread();
  1702   __ st_ptr(O0, exception_addr);
  1704   // get the methodOop
  1705   __ ld_ptr(STATE(_method), G5_method);
  1707   // if this current frame vanilla or native?
  1709   __ ld(access_flags, Gtmp1);
  1710   __ btst(JVM_ACC_NATIVE, Gtmp1);
  1711   __ br(Assembler::zero, false, Assembler::pt, return_with_exception);  // vanilla interpreted frame handle directly
  1712   __ delayed()->nop();
  1714   // We drop thru to unwind a native interpreted frame with a pending exception
  1715   // We jump here for the initial interpreter frame with exception pending
  1716   // We unwind the current acivation and forward it to our caller.
  1718   __ bind(unwind_and_forward);
  1720   // Unwind frame and jump to forward exception. unwinding will place throwing pc in O7
  1721   // as expected by forward_exception.
  1723   __ restore(FP, G0, SP);                  // unwind interpreter state frame
  1724   __ br(Assembler::always, false, Assembler::pt, StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
  1725   __ delayed()->mov(I5_savedSP->after_restore(), SP);
  1727   // Return point from a call which returns a result in the native abi
  1728   // (c1/c2/jni-native). This result must be processed onto the java
  1729   // expression stack.
  1730   //
  1731   // A pending exception may be present in which case there is no result present
  1733   address return_from_native_method = __ pc();
  1735   VALIDATE_STATE(G3_scratch, 6);
  1737   // Result if any is in native abi result (O0..O1/F0..F1). The java expression
  1738   // stack is in the state that the  calling convention left it.
  1739   // Copy the result from native abi result and place it on java expression stack.
  1741   // Current interpreter state is present in Lstate
  1743   // Exception pending?
  1745   __ ld_ptr(STATE(_frame_bottom), SP);                             // restore to full stack frame
  1746   __ ld_ptr(exception_addr, Lscratch);                                         // get any pending exception
  1747   __ tst(Lscratch);                                                            // exception pending?
  1748   __ brx(Assembler::notZero, false, Assembler::pt, return_with_exception);
  1749   __ delayed()->nop();
  1751   // Process the native abi result to java expression stack
  1753   __ ld_ptr(STATE(_result._to_call._callee), L4_scratch);                        // called method
  1754   __ ld_ptr(STATE(_stack), L1_scratch);                                          // get top of java expr stack
  1755   __ lduh(L4_scratch, in_bytes(methodOopDesc::size_of_parameters_offset()), L2_scratch); // get parameter size
  1756   __ sll(L2_scratch, LogBytesPerWord, L2_scratch     );                           // parameter size in bytes
  1757   __ add(L1_scratch, L2_scratch, L1_scratch);                                      // stack destination for result
  1758   __ ld(L4_scratch, in_bytes(methodOopDesc::result_index_offset()), L3_scratch); // called method result type index
  1760   // tosca is really just native abi
  1761   __ set((intptr_t)CppInterpreter::_tosca_to_stack, L4_scratch);
  1762   __ sll(L3_scratch, LogBytesPerWord, L3_scratch);
  1763   __ ld_ptr(L4_scratch, L3_scratch, Lscratch);                                       // get typed result converter address
  1764   __ jmpl(Lscratch, G0, O7);                                                   // and convert it
  1765   __ delayed()->nop();
  1767   // L1_scratch points to top of stack (prepushed)
  1769   __ ba(resume_interpreter);
  1770   __ delayed()->mov(L1_scratch, O1);
  1772   // An exception is being caught on return to a vanilla interpreter frame.
  1773   // Empty the stack and resume interpreter
  1775   __ bind(return_with_exception);
  1777   __ ld_ptr(STATE(_frame_bottom), SP);                             // restore to full stack frame
  1778   __ ld_ptr(STATE(_stack_base), O1);                               // empty java expression stack
  1779   __ ba(resume_interpreter);
  1780   __ delayed()->sub(O1, wordSize, O1);                             // account for prepush
  1782   // Return from interpreted method we return result appropriate to the caller (i.e. "recursive"
  1783   // interpreter call, or native) and unwind this interpreter activation.
  1784   // All monitors should be unlocked.
  1786   __ bind(return_from_interpreted_method);
  1788   VALIDATE_STATE(G3_scratch, 7);
  1790   Label return_to_initial_caller;
  1792   // Interpreted result is on the top of the completed activation expression stack.
  1793   // We must return it to the top of the callers stack if caller was interpreted
  1794   // otherwise we convert to native abi result and return to call_stub/c1/c2
  1795   // The caller's expression stack was truncated by the call however the current activation
  1796   // has enough stuff on the stack that we have usable space there no matter what. The
  1797   // other thing that makes it easy is that the top of the caller's stack is stored in STATE(_locals)
  1798   // for the current activation
  1800   __ ld_ptr(STATE(_prev_link), L1_scratch);
  1801   __ ld_ptr(STATE(_method), L2_scratch);                               // get method just executed
  1802   __ ld(L2_scratch, in_bytes(methodOopDesc::result_index_offset()), L2_scratch);
  1803   __ tst(L1_scratch);
  1804   __ brx(Assembler::zero, false, Assembler::pt, return_to_initial_caller);
  1805   __ delayed()->sll(L2_scratch, LogBytesPerWord, L2_scratch);
  1807   // Copy result to callers java stack
  1809   __ set((intptr_t)CppInterpreter::_stack_to_stack, L4_scratch);
  1810   __ ld_ptr(L4_scratch, L2_scratch, Lscratch);                          // get typed result converter address
  1811   __ ld_ptr(STATE(_stack), O0);                                       // current top (prepushed)
  1812   __ ld_ptr(STATE(_locals), O1);                                      // stack destination
  1814   // O0 - will be source, O1 - will be destination (preserved)
  1815   __ jmpl(Lscratch, G0, O7);                                          // and convert it
  1816   __ delayed()->add(O0, wordSize, O0);                                // get source (top of current expr stack)
  1818   // O1 == &locals[0]
  1820   // Result is now on caller's stack. Just unwind current activation and resume
  1822   Label unwind_recursive_activation;
  1825   __ bind(unwind_recursive_activation);
  1827   // O1 == &locals[0] (really callers stacktop) for activation now returning
  1828   // returning to interpreter method from "recursive" interpreter call
  1829   // result converter left O1 pointing to top of the( prepushed) java stack for method we are returning
  1830   // to. Now all we must do is unwind the state from the completed call
  1832   // Must restore stack
  1833   VALIDATE_STATE(G3_scratch, 8);
  1835   // Return to interpreter method after a method call (interpreted/native/c1/c2) has completed.
  1836   // Result if any is already on the caller's stack. All we must do now is remove the now dead
  1837   // frame and tell interpreter to resume.
  1840   __ mov(O1, I1);                                                     // pass back new stack top across activation
  1841   // POP FRAME HERE ==================================
  1842   __ restore(FP, G0, SP);                                             // unwind interpreter state frame
  1843   __ ld_ptr(STATE(_frame_bottom), SP);                                // restore to full stack frame
  1846   // Resume the interpreter. The current frame contains the current interpreter
  1847   // state object.
  1848   //
  1849   // O1 == new java stack pointer
  1851   __ bind(resume_interpreter);
  1852   VALIDATE_STATE(G3_scratch, 10);
  1854   // A frame we have already used before so no need to bang stack so use call_interpreter_2 entry
  1856   __ set((int)BytecodeInterpreter::method_resume, L1_scratch);
  1857   __ st(L1_scratch, STATE(_msg));
  1858   __ ba(call_interpreter_2);
  1859   __ delayed()->st_ptr(O1, STATE(_stack));
  1862   // Fast accessor methods share this entry point.
  1863   // This works because frame manager is in the same codelet
  1864   // This can either be an entry via call_stub/c1/c2 or a recursive interpreter call
  1865   // we need to do a little register fixup here once we distinguish the two of them
  1866   if (UseFastAccessorMethods && !synchronized) {
  1867   // Call stub_return address still in O7
  1868     __ bind(fast_accessor_slow_entry_path);
  1869     __ set((intptr_t)return_from_native_method - 8, Gtmp1);
  1870     __ cmp(Gtmp1, O7);                                                // returning to interpreter?
  1871     __ brx(Assembler::equal, true, Assembler::pt, re_dispatch);       // yep
  1872     __ delayed()->nop();
  1873     __ ba(re_dispatch);
  1874     __ delayed()->mov(G0, prevState);                                 // initial entry
  1878   // interpreter returning to native code (call_stub/c1/c2)
  1879   // convert result and unwind initial activation
  1880   // L2_scratch - scaled result type index
  1882   __ bind(return_to_initial_caller);
  1884   __ set((intptr_t)CppInterpreter::_stack_to_native_abi, L4_scratch);
  1885   __ ld_ptr(L4_scratch, L2_scratch, Lscratch);                           // get typed result converter address
  1886   __ ld_ptr(STATE(_stack), O0);                                        // current top (prepushed)
  1887   __ jmpl(Lscratch, G0, O7);                                           // and convert it
  1888   __ delayed()->add(O0, wordSize, O0);                                 // get source (top of current expr stack)
  1890   Label unwind_initial_activation;
  1891   __ bind(unwind_initial_activation);
  1893   // RETURN TO CALL_STUB/C1/C2 code (result if any in I0..I1/(F0/..F1)
  1894   // we can return here with an exception that wasn't handled by interpreted code
  1895   // how does c1/c2 see it on return?
  1897   // compute resulting sp before/after args popped depending upon calling convention
  1898   // __ ld_ptr(STATE(_saved_sp), Gtmp1);
  1899   //
  1900   // POP FRAME HERE ==================================
  1901   __ restore(FP, G0, SP);
  1902   __ retl();
  1903   __ delayed()->mov(I5_savedSP->after_restore(), SP);
  1905   // OSR request, unwind the current frame and transfer to the OSR entry
  1906   // and enter OSR nmethod
  1908   __ bind(do_OSR);
  1909   Label remove_initial_frame;
  1910   __ ld_ptr(STATE(_prev_link), L1_scratch);
  1911   __ ld_ptr(STATE(_result._osr._osr_buf), G1_scratch);
  1913   // We are going to pop this frame. Is there another interpreter frame underneath
  1914   // it or is it callstub/compiled?
  1916   __ tst(L1_scratch);
  1917   __ brx(Assembler::zero, false, Assembler::pt, remove_initial_frame);
  1918   __ delayed()->ld_ptr(STATE(_result._osr._osr_entry), G3_scratch);
  1920   // Frame underneath is an interpreter frame simply unwind
  1921   // POP FRAME HERE ==================================
  1922   __ restore(FP, G0, SP);                                             // unwind interpreter state frame
  1923   __ mov(I5_savedSP->after_restore(), SP);
  1925   // Since we are now calling native need to change our "return address" from the
  1926   // dummy RecursiveInterpreterActivation to a return from native
  1928   __ set((intptr_t)return_from_native_method - 8, O7);
  1930   __ jmpl(G3_scratch, G0, G0);
  1931   __ delayed()->mov(G1_scratch, O0);
  1933   __ bind(remove_initial_frame);
  1935   // POP FRAME HERE ==================================
  1936   __ restore(FP, G0, SP);
  1937   __ mov(I5_savedSP->after_restore(), SP);
  1938   __ jmpl(G3_scratch, G0, G0);
  1939   __ delayed()->mov(G1_scratch, O0);
  1941   // Call a new method. All we do is (temporarily) trim the expression stack
  1942   // push a return address to bring us back to here and leap to the new entry.
  1943   // At this point we have a topmost frame that was allocated by the frame manager
  1944   // which contains the current method interpreted state. We trim this frame
  1945   // of excess java expression stack entries and then recurse.
  1947   __ bind(call_method);
  1949   // stack points to next free location and not top element on expression stack
  1950   // method expects sp to be pointing to topmost element
  1952   __ ld_ptr(STATE(_thread), G2_thread);
  1953   __ ld_ptr(STATE(_result._to_call._callee), G5_method);
  1956   // SP already takes in to account the 2 extra words we use for slop
  1957   // when we call a "static long no_params()" method. So if
  1958   // we trim back sp by the amount of unused java expression stack
  1959   // there will be automagically the 2 extra words we need.
  1960   // We also have to worry about keeping SP aligned.
  1962   __ ld_ptr(STATE(_stack), Gargs);
  1963   __ ld_ptr(STATE(_stack_limit), L1_scratch);
  1965   // compute the unused java stack size
  1966   __ sub(Gargs, L1_scratch, L2_scratch);                       // compute unused space
  1968   // Round down the unused space to that stack is always 16-byte aligned
  1969   // by making the unused space a multiple of the size of two longs.
  1971   __ and3(L2_scratch, -2*BytesPerLong, L2_scratch);
  1973   // Now trim the stack
  1974   __ add(SP, L2_scratch, SP);
  1977   // Now point to the final argument (account for prepush)
  1978   __ add(Gargs, wordSize, Gargs);
  1979 #ifdef ASSERT
  1980   // Make sure we have space for the window
  1981   __ sub(Gargs, SP, L1_scratch);
  1982   __ cmp(L1_scratch, 16*wordSize);
  1984     Label skip;
  1985     __ brx(Assembler::greaterEqual, false, Assembler::pt, skip);
  1986     __ delayed()->nop();
  1987     __ stop("killed stack");
  1988     __ bind(skip);
  1990 #endif // ASSERT
  1992   // Create a new frame where we can store values that make it look like the interpreter
  1993   // really recursed.
  1995   // prepare to recurse or call specialized entry
  1997   // First link the registers we need
  1999   // make the pc look good in debugger
  2000   __ set(CAST_FROM_FN_PTR(intptr_t, RecursiveInterpreterActivation), O7);
  2001   // argument too
  2002   __ mov(Lstate, I0);
  2004   // Record our sending SP
  2005   __ mov(SP, O5_savedSP);
  2007   __ ld_ptr(STATE(_result._to_call._callee_entry_point), L2_scratch);
  2008   __ set((intptr_t) entry_point, L1_scratch);
  2009   __ cmp(L1_scratch, L2_scratch);
  2010   __ brx(Assembler::equal, false, Assembler::pt, re_dispatch);
  2011   __ delayed()->mov(Lstate, prevState);                                // link activations
  2013   // method uses specialized entry, push a return so we look like call stub setup
  2014   // this path will handle fact that result is returned in registers and not
  2015   // on the java stack.
  2017   __ set((intptr_t)return_from_native_method - 8, O7);
  2018   __ jmpl(L2_scratch, G0, G0);                               // Do specialized entry
  2019   __ delayed()->nop();
  2021   //
  2022   // Bad Message from interpreter
  2023   //
  2024   __ bind(bad_msg);
  2025   __ stop("Bad message from interpreter");
  2027   // Interpreted method "returned" with an exception pass it on...
  2028   // Pass result, unwind activation and continue/return to interpreter/call_stub
  2029   // We handle result (if any) differently based on return to interpreter or call_stub
  2031   __ bind(throw_exception);
  2032   __ ld_ptr(STATE(_prev_link), L1_scratch);
  2033   __ tst(L1_scratch);
  2034   __ brx(Assembler::zero, false, Assembler::pt, unwind_and_forward);
  2035   __ delayed()->nop();
  2037   __ ld_ptr(STATE(_locals), O1); // get result of popping callee's args
  2038   __ ba(unwind_recursive_activation);
  2039   __ delayed()->nop();
  2041   interpreter_frame_manager = entry_point;
  2042   return entry_point;
  2045 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
  2046  : CppInterpreterGenerator(code) {
  2047    generate_all(); // down here so it can be "virtual"
  2051 static int size_activation_helper(int callee_extra_locals, int max_stack, int monitor_size) {
  2053   // Figure out the size of an interpreter frame (in words) given that we have a fully allocated
  2054   // expression stack, the callee will have callee_extra_locals (so we can account for
  2055   // frame extension) and monitor_size for monitors. Basically we need to calculate
  2056   // this exactly like generate_fixed_frame/generate_compute_interpreter_state.
  2057   //
  2058   //
  2059   // The big complicating thing here is that we must ensure that the stack stays properly
  2060   // aligned. This would be even uglier if monitor size wasn't modulo what the stack
  2061   // needs to be aligned for). We are given that the sp (fp) is already aligned by
  2062   // the caller so we must ensure that it is properly aligned for our callee.
  2063   //
  2064   // Ths c++ interpreter always makes sure that we have a enough extra space on the
  2065   // stack at all times to deal with the "stack long no_params()" method issue. This
  2066   // is "slop_factor" here.
  2067   const int slop_factor = 2;
  2069   const int fixed_size = sizeof(BytecodeInterpreter)/wordSize +           // interpreter state object
  2070                          frame::memory_parameter_word_sp_offset;   // register save area + param window
  2071   const int extra_stack = 0; //6815692//methodOopDesc::extra_stack_entries();
  2072   return (round_to(max_stack +
  2073                    extra_stack +
  2074                    slop_factor +
  2075                    fixed_size +
  2076                    monitor_size +
  2077                    (callee_extra_locals * Interpreter::stackElementWords()), WordsPerLong));
  2081 int AbstractInterpreter::size_top_interpreter_activation(methodOop method) {
  2083   // See call_stub code
  2084   int call_stub_size  = round_to(7 + frame::memory_parameter_word_sp_offset,
  2085                                  WordsPerLong);    // 7 + register save area
  2087   // Save space for one monitor to get into the interpreted method in case
  2088   // the method is synchronized
  2089   int monitor_size    = method->is_synchronized() ?
  2090                                 1*frame::interpreter_frame_monitor_size() : 0;
  2091   return size_activation_helper(method->max_locals(), method->max_stack(),
  2092                                  monitor_size) + call_stub_size;
  2095 void BytecodeInterpreter::layout_interpreterState(interpreterState to_fill,
  2096                                            frame* caller,
  2097                                            frame* current,
  2098                                            methodOop method,
  2099                                            intptr_t* locals,
  2100                                            intptr_t* stack,
  2101                                            intptr_t* stack_base,
  2102                                            intptr_t* monitor_base,
  2103                                            intptr_t* frame_bottom,
  2104                                            bool is_top_frame
  2107   // What about any vtable?
  2108   //
  2109   to_fill->_thread = JavaThread::current();
  2110   // This gets filled in later but make it something recognizable for now
  2111   to_fill->_bcp = method->code_base();
  2112   to_fill->_locals = locals;
  2113   to_fill->_constants = method->constants()->cache();
  2114   to_fill->_method = method;
  2115   to_fill->_mdx = NULL;
  2116   to_fill->_stack = stack;
  2117   if (is_top_frame && JavaThread::current()->popframe_forcing_deopt_reexecution() ) {
  2118     to_fill->_msg = deopt_resume2;
  2119   } else {
  2120     to_fill->_msg = method_resume;
  2122   to_fill->_result._to_call._bcp_advance = 0;
  2123   to_fill->_result._to_call._callee_entry_point = NULL; // doesn't matter to anyone
  2124   to_fill->_result._to_call._callee = NULL; // doesn't matter to anyone
  2125   to_fill->_prev_link = NULL;
  2127   // Fill in the registers for the frame
  2129   // Need to install _sender_sp. Actually not too hard in C++!
  2130   // When the skeletal frames are layed out we fill in a value
  2131   // for _sender_sp. That value is only correct for the oldest
  2132   // skeletal frame constructed (because there is only a single
  2133   // entry for "caller_adjustment". While the skeletal frames
  2134   // exist that is good enough. We correct that calculation
  2135   // here and get all the frames correct.
  2137   // to_fill->_sender_sp = locals - (method->size_of_parameters() - 1);
  2139   *current->register_addr(Lstate) = (intptr_t) to_fill;
  2140   // skeletal already places a useful value here and this doesn't account
  2141   // for alignment so don't bother.
  2142   // *current->register_addr(I5_savedSP) =     (intptr_t) locals - (method->size_of_parameters() - 1);
  2144   if (caller->is_interpreted_frame()) {
  2145     interpreterState prev  = caller->get_interpreterState();
  2146     to_fill->_prev_link = prev;
  2147     // Make the prev callee look proper
  2148     prev->_result._to_call._callee = method;
  2149     if (*prev->_bcp == Bytecodes::_invokeinterface) {
  2150       prev->_result._to_call._bcp_advance = 5;
  2151     } else {
  2152       prev->_result._to_call._bcp_advance = 3;
  2155   to_fill->_oop_temp = NULL;
  2156   to_fill->_stack_base = stack_base;
  2157   // Need +1 here because stack_base points to the word just above the first expr stack entry
  2158   // and stack_limit is supposed to point to the word just below the last expr stack entry.
  2159   // See generate_compute_interpreter_state.
  2160   int extra_stack = 0; //6815692//methodOopDesc::extra_stack_entries();
  2161   to_fill->_stack_limit = stack_base - (method->max_stack() + 1 + extra_stack);
  2162   to_fill->_monitor_base = (BasicObjectLock*) monitor_base;
  2164   // sparc specific
  2165   to_fill->_frame_bottom = frame_bottom;
  2166   to_fill->_self_link = to_fill;
  2167 #ifdef ASSERT
  2168   to_fill->_native_fresult = 123456.789;
  2169   to_fill->_native_lresult = CONST64(0xdeadcafedeafcafe);
  2170 #endif
  2173 void BytecodeInterpreter::pd_layout_interpreterState(interpreterState istate, address last_Java_pc, intptr_t* last_Java_fp) {
  2174   istate->_last_Java_pc = (intptr_t*) last_Java_pc;
  2178 int AbstractInterpreter::layout_activation(methodOop method,
  2179                                            int tempcount, // Number of slots on java expression stack in use
  2180                                            int popframe_extra_args,
  2181                                            int moncount,  // Number of active monitors
  2182                                            int caller_actual_parameters,
  2183                                            int callee_param_size,
  2184                                            int callee_locals_size,
  2185                                            frame* caller,
  2186                                            frame* interpreter_frame,
  2187                                            bool is_top_frame) {
  2189   assert(popframe_extra_args == 0, "NEED TO FIX");
  2190   // NOTE this code must exactly mimic what InterpreterGenerator::generate_compute_interpreter_state()
  2191   // does as far as allocating an interpreter frame.
  2192   // If interpreter_frame!=NULL, set up the method, locals, and monitors.
  2193   // The frame interpreter_frame, if not NULL, is guaranteed to be the right size,
  2194   // as determined by a previous call to this method.
  2195   // It is also guaranteed to be walkable even though it is in a skeletal state
  2196   // NOTE: return size is in words not bytes
  2197   // NOTE: tempcount is the current size of the java expression stack. For top most
  2198   //       frames we will allocate a full sized expression stack and not the curback
  2199   //       version that non-top frames have.
  2201   // Calculate the amount our frame will be adjust by the callee. For top frame
  2202   // this is zero.
  2204   // NOTE: ia64 seems to do this wrong (or at least backwards) in that it
  2205   // calculates the extra locals based on itself. Not what the callee does
  2206   // to it. So it ignores last_frame_adjust value. Seems suspicious as far
  2207   // as getting sender_sp correct.
  2209   int extra_locals_size = callee_locals_size - callee_param_size;
  2210   int monitor_size = (sizeof(BasicObjectLock) * moncount) / wordSize;
  2211   int full_frame_words = size_activation_helper(extra_locals_size, method->max_stack(), monitor_size);
  2212   int short_frame_words = size_activation_helper(extra_locals_size, method->max_stack(), monitor_size);
  2213   int frame_words = is_top_frame ? full_frame_words : short_frame_words;
  2216   /*
  2217     if we actually have a frame to layout we must now fill in all the pieces. This means both
  2218     the interpreterState and the registers.
  2219   */
  2220   if (interpreter_frame != NULL) {
  2222     // MUCHO HACK
  2224     intptr_t* frame_bottom = interpreter_frame->sp() - (full_frame_words - frame_words);
  2225     // 'interpreter_frame->sp()' is unbiased while 'frame_bottom' must be a biased value in 64bit mode.
  2226     assert(((intptr_t)frame_bottom & 0xf) == 0, "SP biased in layout_activation");
  2227     frame_bottom = (intptr_t*)((intptr_t)frame_bottom - STACK_BIAS);
  2229     /* Now fillin the interpreterState object */
  2231     interpreterState cur_state = (interpreterState) ((intptr_t)interpreter_frame->fp() -  sizeof(BytecodeInterpreter));
  2234     intptr_t* locals;
  2236     // Calculate the postion of locals[0]. This is painful because of
  2237     // stack alignment (same as ia64). The problem is that we can
  2238     // not compute the location of locals from fp(). fp() will account
  2239     // for the extra locals but it also accounts for aligning the stack
  2240     // and we can't determine if the locals[0] was misaligned but max_locals
  2241     // was enough to have the
  2242     // calculate postion of locals. fp already accounts for extra locals.
  2243     // +2 for the static long no_params() issue.
  2245     if (caller->is_interpreted_frame()) {
  2246       // locals must agree with the caller because it will be used to set the
  2247       // caller's tos when we return.
  2248       interpreterState prev  = caller->get_interpreterState();
  2249       // stack() is prepushed.
  2250       locals = prev->stack() + method->size_of_parameters();
  2251     } else {
  2252       // Lay out locals block in the caller adjacent to the register window save area.
  2253       //
  2254       // Compiled frames do not allocate a varargs area which is why this if
  2255       // statement is needed.
  2256       //
  2257       intptr_t* fp = interpreter_frame->fp();
  2258       int local_words = method->max_locals() * Interpreter::stackElementWords();
  2260       if (caller->is_compiled_frame()) {
  2261         locals = fp + frame::register_save_words + local_words - 1;
  2262       } else {
  2263         locals = fp + frame::memory_parameter_word_sp_offset + local_words - 1;
  2267     // END MUCHO HACK
  2269     intptr_t* monitor_base = (intptr_t*) cur_state;
  2270     intptr_t* stack_base =  monitor_base - monitor_size;
  2271     /* +1 because stack is always prepushed */
  2272     intptr_t* stack = stack_base - (tempcount + 1);
  2275     BytecodeInterpreter::layout_interpreterState(cur_state,
  2276                                           caller,
  2277                                           interpreter_frame,
  2278                                           method,
  2279                                           locals,
  2280                                           stack,
  2281                                           stack_base,
  2282                                           monitor_base,
  2283                                           frame_bottom,
  2284                                           is_top_frame);
  2286     BytecodeInterpreter::pd_layout_interpreterState(cur_state, interpreter_return_address, interpreter_frame->fp());
  2289   return frame_words;
  2292 #endif // CC_INTERP

mercurial